
Mapping UML State Ma
hines to kilteraTe
hni
al Report 2008-552Ernesto Posse Juergen DingelApplied Formal Methods GroupSoftware Te
hnology LabQueen's UniversityKingston, Ontario, CanadaJanuary 5, 2009Abstra
tAs part of an e�ort to
larify the semanti
s of the UML we investigatethe semanti
s of UML State Ma
hines and in parti
ular we present anen
oding of a signi�
ant subset of UML State Ma
hines into a pro
ess al-gebra named kiltera,
losely related to the π-
al
ulus. Our approa
h di�ersfrom other related attempts in that it provides a pre
ise, exe
utable,
om-positional, and extensible semanti
s of UML State Ma
hines in terms of apre
ise language, whi
h furthermore does not resort to �attening the state-spa
e, and thus avoids the state-spa
e explosion problem. This approa
h
an serve as the basis for tool support for UML State Ma
hine models,in parti
ular, simulators,
ode-generators, debuggers and model-
he
kers.We
ompare our en
oding with several other proposed approa
hes.Contents1 Introdu
tion 21.1 Related work . 41.2 Organization of this report 72 Preliminaries 82.1 Sequen
es . 82.2 State
hart syntax . 92.3 kiltera's
ore: the κλτ -
al
ulus 113 From state
harts to kiltera pro
esses 143.1 Stru
ture of a mapped state
hart 143.2 Messages and paths . 163.3 Exe
uting a
tions . 183.4 Mapping basi
 states . 181

3.4.1 Entry sequen
e . 183.4.2 Exit sequen
e . 183.4.3 Ina
tive state . 193.4.4 A
tive state . 193.4.5 Translation of a basi
 state 203.5 Mapping or-states . 203.5.1 Entry sequen
e . 203.5.2 Exit sequen
e . 213.5.3 Forward sequen
e . 213.5.4 The relay . 213.5.5 Ina
tive state . 223.5.6 A
tive state . 233.5.7 Handling events . 233.5.8 Translation of an or-state 263.6 Mapping and-states . 263.6.1 Entry sequen
e . 273.6.2 Exit sequen
e . 273.6.3 Forward sequen
e . 273.6.4 The relay . 283.6.5 Ina
tive state . 283.6.6 A
tive state . 283.6.7 Handling events . 293.6.8 Translation of an and-state 314 Con
lusions 311 Introdu
tionThe Uni�ed Modeling Language (UML, [20℄) has be
ome the de fa
to standardfor software modelling, and has re
eived
onsiderable attention from softwarepra
titioners, tool developers, as well as resear
hers in Software Engineering.Despite its growing adoption, the UML la
ks a formal semanti
s. This ismajor sour
e of problems, as di�erent tool developers and vendors produ
esoftware modelling environments whi
h are
laimed to be �UML
ompliant� butmay, in fa
t, disagree in terms of the behaviours produ
ed by generated systems.Furthermore, this la
k of formal semanti
s also hinders the analyzability ofmodels and, as a result, there is a la
k of analysis tools for UML su
h as model-
he
kers.The need for a formal foundation for the UML is exempli�ed by the in
reasedinterest in exe
utable UML. The Obje
t Management Group has issued a Re-quest For Proposal (RFP) for a semanti
s for an exe
utable UML foundation[18℄. This Request For Proposal has been answered in [19℄, but the resultingsemanti
s is de�ned in terms of a Java-like language, making the semanti
s notas abstra
t as possible and too implementation-dependent in the sense that itrelies too heavily on the (non-trivial) semanti
s of the Java-like language used,whi
h in turn
ompromises analyzability without solving all ambiguities. For2

this reason it is desirable to sear
h for a formal semanti
s whi
h is based onsome simple, well-de�ned formalism, thus
larifying ambiguities and enablingmodel analysis.Formalizing the UML is a non-trivial task. The UML spe
i�
ation [20℄ isa very large do
ument full of te
hni
al details, and with a signi�
ant amountof ambiguities. Many of these ambiguities are deliberate, providing seman-ti
 variation points, in order to a

ommodate di�erent tool developers. Butothers are the result of la
k of spe
i�
ation and
larity. Nevertheless, the prob-lem of formalizing its semanti
s
an be broken down, as the UML
onsists ofseveral sub-languages, ea
h of whi
h
an be studied and understood with a
ertain degree of independen
e from the others. The UML sub-languages arebroadly divided into two
ategories: stru
tural and behavioural. Stru
tural sub-languages su
h as Class Diagrams, des
ribe the stru
ture of a software system.Behavioural sub-languages des
ribe the behaviour of systems. Sin
e the fo
us ofthe UML is modelling Obje
t-Oriented software, behavioural diagrams des
ribethe behaviour of obje
ts. There are three main kinds of behavioural diagrams:A
tivity Diagrams, Intera
tion Diagrams and State Ma
hines. This report is
on
erned with de�ning the semanti
s of State Ma
hines.We propose a formal semanti
s for a signi�
ant subset of UML State Ma-
hines (whi
h we also
all state
harts) by mapping them into a pro
ess algebra
alled kiltera [22, 23℄
losely related to the π-
al
ulus [15, 14℄. Furthermore,we propose a textual syntax for state ma
hine diagrams, based on the syntaxde�ned in [28℄.A question that may arise is why did we
hoose kiltera as a target languageinstead of better known languages su
h as CSP [9, 25℄, ASMs [2℄ or even the
π-
al
ulus [15, 14℄ upon whi
h kiltera is based. This sele
tion
ame down to the
hoi
e of operators provided by the language as well as the fa
ilities to simulatethe resulting models. In parti
ular, kiltera provides some higher-level
onstru
tssu
h as pattern-mat
hing whi
h fa
ilitate the des
ription of the generated mod-els and render them more readable. Furthermore, UML State Ma
hines allowtime-triggered transitions, but the existing timed variants of the aforementioned
al
uli do not easily
apture su
h semanti
s.The mapping des
ribed in this report is based on [4, 3℄. This previous workproposes an informal transformation from
lassi
al (STATEMATE) state
harts[8℄ into the DEVS formalism [32℄.Our mapping has several
hara
teristi
s that make it appealing: it providesa pre
ise, formal semanti
s in a
ompositional, non-�attening fashion whi
h isexe
utable and extensible enough to support several semanti
 variation points.The bene�ts of being a
ompositional mapping are multiple:

• the semanti
s of a state ma
hine is uniquely determined by the seman-ti
s of its
omponent sub-states, thus supporting
ompositional reasoningabout models, as well as
omponent repla
eability (i.e., a sub-state ma-
hine
an be repla
ed by an equivalent one without
hanging the behaviourof the whole state ma
hine), 3

• it does not rely on �attening the state
hart, thus resulting in a more
ompa
t representation,
• the stru
ture of the state
hart is mimi
ked by the resulting kiltera model,thus ea
h state is in a one-to-one
orresponden
e with a
omponent inthe kiltera model, whi
h fa
ilitates analysis, tra
eability, and tool support(e.g. debuggers, animation, et
).We
on
entrate on a subset of State Ma
hines, rather than dealing with the fullspe
i�
ation in all detail in order to simplify the treatment. We fo
us on thefollowing features of the o�
ial UML State Ma
hine spe
i�
ation:
• Composite states, in
luding both or-states (also known as sequential states)and and-states (also known as
on
urrent states),
• Inter-level transitions (i.e. transitions �
rossing boundaries�)
• Group transitions
• Entry and exit a
tions
• Transition a
tionsWe do not deal in the present version of the mapping with the following featuresof the o�
ial UML State Ma
hine spe
i�
ation:
• History states
• Pseudo states, in parti
ular, forks, joins,
ondition points, jun
tions, entrypoints and exit points.
• Transition guardsNevertheless, our mapping is extensible enough to be able to deal with all fea-tures of the o�
ial UML spe
i�
ation.1.1 Related workThere have been multiple e�orts to formalize the semanti
s of UML State Ma-
hines, as well as other variants of state
harts. We now dis
uss some of theseapproa
hes.Yeung et al (CSP semanti
s) One approa
h is presented in [29℄ where asubset of UML State Ma
hines is mapped into CSP [9, 24, 25℄. This approa
h is
omparable to ours in that the target of the mapping is a pro
ess algebra (CSP)and they use a notion of paths for transitions similar to ours, but that's wherethe similarities end. The most striking di�eren
e is that they map a state
hart toa �attened state ma
hine in CSP: the hierar
hi
al stru
ture of the state ma
hine4

is lost and ea
h group transition1 is en
oded in ea
h possible sub-state of itssour
e. Furthermore this mapping does not enfor
e priorities between
on�i
tingtransitions at di�erent levels of nesting, as required by the UML spe
i�
ation.Like ours, they do not deal with History states, other pseudo-states, or transitionguards, but unlike ours, it is not very
lear how their mapping would have tobe extended to deal with su
h features.This approa
h seems to build on the mapping introdu
ed in [17℄, althoughthis earlier work also deals with
hoi
e pseudo-states (
onditionals) and it presentsa prototype translation tool from Rational Rose State Diagrams to CSP
odesuitable as input for FDR [6℄ for veri�
ation.Von der Bee
k (SOS semanti
s) In [28℄ an alternative approa
h is pre-sented, in whi
h a textual syntax for UML State Ma
hines is introdu
ed and anoperational semanti
s is de�ned in the style of Plotkin's Stru
tural OperationalSemanti
s [21℄ as a set of inferen
e rules de�ning a labelled-transition systemfor state
harts. This approa
h has the advantage of being
ompositional and iteven deals with features su
h as shallow and deep history. Nevertheless it is nota dire
tly exe
utable semanti
s, but rather, it provides the spe
i�
ation for asimulation engine or interpreter. This
ontrasts with our approa
h of mappingstate
harts to another language for whi
h we have a simulator. A major draw-ba
k of this approa
h
ompared to ours is that integrating timed transitions isnon-trivial, and would involve modifying and extending the inferen
e rules andpossibly the syntax, whereas in our approa
h this extension
an be dealt withby using the timing
onstru
ts of our target language.Van Langenhove (EHA/Kripke/SMV semanti
s) Another approa
h ispresented in [26℄, where State Ma
hines are represented as Extended Hierar-
hi
al Automata, a kind of automata where ea
h state may be asso
iated withanother automaton. These hierar
hi
al automata are given an operational se-manti
s as Kripke stru
tures whi
h are then mapped to SMV [13℄.The mapping presented there has the advantage of being non-�attening,but it is not
lear whether it is
ompositional or not, in the sense that it isnot
lear whether the �nal SMV target
ode of a state
hart
an be seen as the
ombination of the translations of the
omponent sub-state
harts. Furthermore,their mapping already requires the de�nition of an operational semanti
s for theExtended Hierar
hi
al Automata, whi
h is given as a Kripke stru
ture whosestates,
alled
on�gurations, already
arry a lot of the ma
hinery required ofUML State Ma
hines, su
h as an event queue and a history. Furthermore,non-
ompliant restri
tions su
h as a maximum event-queue size, are imposedon the target
ode. But de�ning the semanti
s of State Ma
hines in termsof something that already has those
on
epts embedded as primitive hardly
lari�es the semanti
s. A semanti
s should de�ne something more
omplex interms of something simpler. This
ontrasts with our approa
h, where we do not1A group transition is a transition whose sour
e is a
omposite state.5

impose extraneous, target language restri
tions, and rely on a language whi
hdoes not in
lude
on
epts of history or event-queues as primitive.Lam and Padget (π-
al
ulus semanti
s) An approa
h whi
h maps StateMa
hines into the π-
al
ulus, the pro
ess algebra upon whi
h kiltera is based,was introdu
ed in [11℄ and further developed in [12℄ and [10℄.Their approa
h asso
iates states with π-
al
ulus terms, and a proto
ol of
hannel ex
hanges is used to model re
eption and handling of events. Thisapproa
h supports both shallow and deep history. The thesis [10℄ also presentsa tool that generates input
ode for the Mobility Workben
h (MWB [27℄) thatprovides deadlo
k dete
tion and equivalen
e
he
king between the generated π-
al
ulus
ode from two state
harts (open bisimilarity) and also generates input
ode for the NuSMV model-
he
ker [5℄.One of the main weaknesses of their approa
h is that the en
oding does not
learly des
ribe how the hierar
hi
al stru
ture of a state
hart is represented, andin parti
ular it is not
lear how the en
oding would a

ommodate an arbitrarilydeep hierar
hy. Although the authors
laim that their s
heme respe
ts thelowest-�rst �ring priority, the en
oding and the examples provided seems tosupport only one level of nesting between states. This puts into question the
laim of
ompositionality of this approa
h. There is no mention of how to dealwith inter-level and group transitions either, all fundamental features in UMLState Ma
hines.By relying on the pure π-
al
ulus rather than a higher-level language, theirmapping makes use of
ompli
ated en
odings for simple a
tivities su
h as eval-uation of a guard. Furthermore their mapping makes use of the unrestri
ted
hoi
e operator + whi
h is very di�
ult to implement in pra
ti
e (see [16℄).A
ontroversial aspe
t of this translation is that the State Ma
hines mod-elled also in
lude A
tivities, thus des
ribing a hybrid formalism between UMLState Ma
hines and UML A
tivity Diagrams. This addition seems to introdu
e
onfusion in the semanti
s rather than
larify it. Nevertheless, it appears to bea relatively orthogonal issue whi
h
ould be taken away.Börger et al (ASMs semanti
s) Perhaps the most
omprehensive approa
his that of [1℄ where the dynami
s of UML State Ma
hines are des
ribed usingAbstra
t State Ma
hines [2℄. This approa
h takes into a

ount both sequentialstates (or-states),
on
urrent states (and-states) as well as history pseudo-states,and other features su
h as deferred events.In this approa
h, the stru
ture of the UML State Ma
hine is en
oded as partof the state in the ASM, together with additional ma
hinery used to keep tra
kof the
urrent states, history, et
. Exe
uting the state ma
hine is performed byASM agents whi
h
hoose among enabled transitions and exe
ute the sele
tedtransition by removing states whi
h are exited and inserting entered states inthe table that keeps tra
k of the
urrent
on�guration.This approa
h is di�erent to others in that rather than mapping UML StateMa
hines to a �program� in the target language, they are mapped to a data6

stru
ture in the target language, and a general algorithm is implemented in thetarget language whi
h exe
utes (interprets) this data stru
ture.A drawba
k of this approa
h is that, while model-
he
king te
hniques existfor ASMs (e.g. [7℄), using these te
hniques on the approa
h presented wouldallow the veri�
ation of properties of the simulation algorithm itself, rather thanproperties of a given state
hart. Similarly, taking the �interpreter� approa
hto semanti
s makes the
omparison of state
harts more di�
ult: given twostate ma
hines to
ompare, one has to
onsider the steps that the interpretergoes through, rather than the steps that a semanti
 representation of the statema
hines would follow. Furthermore, one wants to understand the behaviourof a state ma
hine whi
h does not have
ertain features (e.g. history states),a mapping to some language would not en
ode the
orresponding features andtherefore the meaning asso
iated to the state ma
hine does not have elementswhi
h do not a�e
t its behaviour. By
ontrast, in a semanti
s approa
h basedon an interpreter, su
h as this ASM approa
h, when looking at the meanningof a state ma
hine one has to
onsider the interpreter and how it deals with allfeatures in the formalism.Another drawba
k of this approa
h is that, quoting [1℄: �The UML require-ment that an obje
t is not allowed to remain in a pseudostate, but has toimmediately move to a normal state,
annot be guaranteed by the rules them-selves, but has to be imposed as an integrity
onstraint on the permissible runs.�In other words, the algorithm itself is not su�
ient to emulate the pre
ise se-manti
s of state
harts and one must resort to an extraneous
onstraint on thepossible exe
utions, limiting the dire
t exe
utability of the semanti
s.Borland and Vangheluwe (DEVS semanti
s) The mapping upon whi
hour work is based was introdu
ed in [4, 3℄. That work presents an informaltranslation from STATEMATE state
harts into DEVS [32, 30, 31℄ models.Be
ause of the signi�
ant di�eren
es between STATEMATE state
harts andUML state
harts, as well as the di�eren
es between kiltera and DEVS, our map-ping departs signi�
antly from the former in many respe
ts, but the
omposi-tionality of the approa
h is the same, in
luding the idea of relay pro
esses tohandle events within a
omposite state, as well as the routing me
hanism withinthe hierar
hi
al stru
ture of the state
hart.One of the main di�eren
es in their approa
h, stemming from the STATE-MATE semanti
s is that in
oming events are treated in a highest-�rst �ringpriority, as opposed the UML State Ma
hines. Furthermore their approa
hdoes not guarantee run-to-
ompletion semanti
s.The most important di�eren
e, however, is that their work
onstitutes an in-formal des
ription of the dynami
s of state
harts, whereas our approa
h presentsa pre
ise formal semanti
s.1.2 Organization of this reportThe remainder of this report is organized as follows: in Se
tion 2 we providesome preliminary de�nitions and notation used throughout the report. In par-7

ti
ular we introdu
e a new textual syntax for State Ma
hines in Se
tion 2.2and present an informal a

ount of the kiltera language in Se
tion 2.3. Se
-tion 3 presents the mapping itself. We begin des
ribing the stru
ture of themodel produ
ed by the mapping (Subse
tion 3.1), followed by a des
ription ofthe messages that �ow between
omponents in the generated model (Subse
tion3.2) and a
tions (Subse
tion 3.3). Then we des
ribe the mapping of basi
 states(Subse
tion 3.4), or-states (Subse
tion 3.5) and and-states (Subse
tion 3.6).2 Preliminaries2.1 Sequen
esIn the sequel we use several operations on sequen
es. In this Subse
tion wede�ne the notation for these operations.Notation 1. We write 1..k for the set {1, 2, ..., k}. Sequen
es will be en
losedin 〈 and 〉. A sequen
e name will be denoted with an arrow on top, and itselements subs
ripted with their index, beginning from 1: ~x = 〈x1, x2, x3, ...〉. A�nite sequen
e 〈a1, ..., ak〉 will be abbreviated as a1..k. The empty sequen
e isdenoted 〈〉, or ǫ.Sequen
e
on
atenation will be denoted ·, so
〈a1, ..., ak〉 · 〈b1, ..., bl〉 def

= 〈a1, ..., ak, b1, ..., bk〉Prepending an item x to a sequen
e ~a = 〈a1, ..., ak〉 is denoted x~a, so x~a def
=

〈x〉 · ~a = 〈x, a1, ..., ak〉. We de�ne last(〈a1, ..., ak〉) def
= ak. We denote rev(~a) forthe reverse of the sequen
e, i.e. rev(〈a1, ..., ak〉) def

= 〈ak, ..., a1〉. We write |~a| forthe length of the sequen
e ~a.A sequen
e de�nes a total order on its elements a

ording to their positions:let ~a = 〈a1, ..., ak〉 be some sequen
e, then we write ai � aj if i ≤ j.We will also use sequen
e
omprehension notation: if I is some totally or-dered set (possibly a sequen
e), ϕ(x) is an expression with free variable x, and
ψ(x) is some predi
ate on x, then the expression 〈ϕ(x) |x ∈ I, ψ(x)〉, also writ-ten 〈ϕ(x) |ψ(x)〉x∈I denotes the sequen
e of all ϕ(x) su
h that ψ(x) holds, pre-serving the order over I, this is, if x ≤ x′ for some x, x′ ∈ I then ϕ(x) � ϕ(x′).For example, 〈x2〉x∈{1,2,3} = 〈1, 4, 9〉.De�nition 1. (Pre�x) Let ~a and ~b be a pair of sequen
es. We say that ~a is apre�x of ~b, written ~a ⊑ ~b if there is a sequen
e ~w su
h that ~a · ~w = ~b.Remark 1. ⊑ is a partial order, this is, it is re�exive, transitive and anti-symmetri
.De�nition 2. (Pre�x removal and
ommon pre�x) Let ~a be a sequen
eand ~b some pre�x of ~a, i.e. ~a = ~b · ~w for some ~w. Then, we write ~a −~b for ~w.8

This
an be de�ned re
ursively as follows:
ǫ− x~b

def
= ǫ

x~a− ǫ
def
= x~a

x~a− x~b
def
= ~a−~b

x~a− y~b
def
= x~a if x 6= yGiven two sequen
es ~a and ~b, ~a ⊓~b denotes the greatest
ommon pre�xof ~a and ~b, i.e. ~a⊓~b ⊑ ~a, ~a⊓~b ⊑ ~b and for any pre�x ~u of both ~a and ~b, ~u ⊑ ~a⊓~b.This
an be de�ned re
ursively as follows:

ǫ ⊓~b def
= ǫ

~a ⊓ ǫ def
= ǫ

x~a ⊓ y~b def
= ǫ if x 6= y

x~a ⊓ x~b def
= x(~a ⊓~b)Remark 2. The greatest
ommon pre�x is nothing but the greatest lower bounda

ording the the pre�x partial order ⊑.2.2 State
hart syntaxLetNS ,NT ,Π,A be the sets of all possible state names, transition names, eventsand a
tions respe
tively. We use n,m, ... for state names in NS and t1, t2, ... fortransition names in NT . We write e1, e2, ... for events in Π and a1, a2, ... fora
tions in A. We assume that ea
h state is labelled with a unique name.De�nition 3. (State
hart terms) The set SC of state
hart terms is de�neda

ording to the following BNF where n ∈ NS and s, s1, ..., sk range over SC :

s ::= [n, (en, ex)] Basi
-state
| [n, (s1, ..., sk), T, (en, ex)] Or-state
| [n, (s1, ..., sk), (en, ex)] And-stateHere en, ex ∈ A ∪ {⊥} and T ⊆ TR where TR

def
= NT × N ∗

S × Π × A ×
N ∗

S is the set of transitions of an or-state, subje
t to the
ondition that if
s = [n, (s1, ..., sk), T, (en, ex)] then for ea
h t ∈ T with t = (t, ~o, e, a, ~d), ~o =

〈o1, ..., ok〉 and ~d = 〈d1, ..., dl〉, the following holds2:1. oi = parents(oi+1) for ea
h i ∈ {1, ..., k − 1},2. di = parents(di+1) for ea
h i ∈ {1, ..., l− 1},2Note that
onditions 3 and 4 state that the the sequen
es for sour
e (~o) and target (~d) ofthe transition begin with the state name of the state that
ontains the transition, rather thanfrom the �root� of the state ma
hine; in parti
ular, the state
ontaining the transition is theleast
ommon an
estor of the sour
e and target of the transition.9

3. n = parents(o1), and4. n = parents(d1)where the fun
tion parents : NS → NS whi
h gives the name of the en
losingstate (a.k.a. the parent) of a state with a given name within the state
hart s,is de�ned as follows for ea
h non-basi
 state
hart term s:
parent[n,s1..k,T,(en,ex)](m)

def
= n if ∃i ∈ {1, ..., k}. name(si) = m

parent[n,s1..k,T,(en,ex)](m)
def
= parentsj

(m) if ¬∃i ∈ {1, ..., k}. name(si) = m

∧m ∈ descendants(sj)

parent[n,s1..k,(en,ex)](m)
def
= n if ∃i ∈ {1, ..., k}. name(si) = m

parent[n,s1..k,(en,ex)](m)
def
= parentsj

(m) if ¬∃i ∈ {1, ..., k}. name(si) = m

∧m ∈ descendants(sj)with the fun
tions name : SC → NS and descendants : SC → 2NS given by:
name([n, (en, ex)])

def
= n

name([n, s1..k, T, (en, ex)])
def
= n

name([n, s1..k, (en, ex)])
def
= nand

descendants([n, (en, ex)])
def
= ∅

descendants([n, s1..k, T, (en, ex)])
def
= {name(si)}i∈1..k ∪ ⋃

i∈1..k descendants(si)Given an or-state s = [n, (s1, ..., sk), T, (en, ex)], we
all the �rst sub-state
s1 the default state of s.Given a transition t = (t, ~o, e, a, ~d) we de�ne name(t)

def
= t as the name ofthe transition, qsrc(t)

def
= ~o as the quali�ed sour
e of t, src(t)

def
= last(qsrc(t)) asthe sour
e of t, evt(t)

def
= e as the trigger event of t, act(t)

def
= a as the a
tionof t, qtrg(t)

def
= ~d as the quali�ed target of t, and trg(t)

def
= last(qtrg(t)) as thetarget of t.Notation 2. In the remainder we will omit the entry and exit a
tions when

en = ⊥ and ex = ⊥.Example 1. Consider the state
hart depi
ted in Figure 1. This state
hart
ontains only or-states. In our syntax this state
hart is des
ribed by the term
s1 where:

s1
def
= [n1, (s2, s3), {t1, t2}]

s2
def
= [n2, (s4, s5), {t3}]

s3
def
= [n3]

s4
def
= [n4]

s5
def
= [n5]10

n1

n2

n3n4

n5

t1 : e1/a1

t2 : e2/a2

t3 : e3/a3

Figure 1: A simple state
hart.where
t1

def
= (t1, 〈n2, n4〉, e1, a1, 〈n3〉)

t2
def
= (t2, 〈n3〉, e2, a2, 〈n2, n5〉)

t3
def
= (t3, 〈n4〉, e3, a3, 〈n5〉)The syntax we have des
ribed is based on von der Bee
k's syntax from[28℄, but with some important di�eren
es. The two main di�eren
es betweenours and von der Bee
k's: 1) we do not expli
itly in
lude a pointer to the
urrently a
tive state as part of the term, and 2) inter-level transitions arespe
i�ed by fully quali�ed state names rather than
on�guration sets. In vonder Bee
k's syntax, an inter-level transition is spe
i�ed as (t, i, sr, e, a, td, j, ht)where t is the transition's name, i is the index of the sour
e state, sr is the�sour
e restri
tion�, a (possibly in
omplete)
on�guration, this is, a set of statenames whi
h determines the a
tual state inside the sour
e whi
h is the originof the transition, e is the trigger, a is the a
tion, td is the �target determinant�,the set of state names whi
h determines the a
tual state within the target state,whose index is j, and ht is the history type of the transition. This means thatthe a
tual origin of the transition is determined by the pair (i, sr) and the a
tualdestination is given by the pair (j, td). In our syntax we represent the originand destination of a transition by a sequen
e of en
losing state names, whi
h
an be thought of as a fully quali�ed name for a state.2.3 kiltera's
ore: the κλτ-
al
ulusIn this Se
tion we des
ribe the
ore of the kiltera language, a subset
alled the

κλτ -
al
ulus. This
al
ulus is similar to the well-known π-
al
ulus [15, 14℄,but departs from it in some important ways. In parti
ular, the κλτ -
al
ulusallows the des
ription of timed behaviour (
f. π-
al
ulus pro
esses are untimed).Communi
ation is by asyn
hronous message passing, both by uni
asting and11

multi
asting (
f.
ommuni
ation in the π-
al
ulus is only by uni
asting). Unlikethe π-
al
ulus, there are two uni
asting send operations: x↑v and x!v (and two
orresponding multi
asting versions). The later (x!v)
orresponds more
loselyto the π-
al
ulus send a
tion. The di�eren
e is in their behaviour with respe
tto the presen
e of listeners at the time the a
tion is performed. In addition tothese features, it also in
ludes some higher-level
apabilities su
h as primitive
onstants, data stru
tures and pattern mat
hing. These features fa
ilitate thedes
ription of state
hart behaviour.The basi
 syntax, whi
h de�nes the set KLT of κλτ terms, is as follows:
P ::=

√ | α | ∆E → P | νx.P | P1 ‖ P2

| P1;P2 |
∑

i∈I

βi → Pi | A(x1, ..., xn)

| match E : F1 → P1| · · · |Fn → Pn

α ::= x↑E | x!E | x↑∗E | x!∗E β ::= x?Fδtwhere P, Pi range over pro
ess terms, α ranges over a
tions, β ranges overinput guards, x, xi range over the set of (event or
hannel) names, t ranges overthe set of (variable) names, A ranges over the set of pro
ess names, E rangesover expressions, and F ranges over patterns. Pro
ess de�nitions have the form:
A(x1, ..., xn)

def
= PThe syntax for expressions and patterns is as follows:

E ::= F | opE | E1 opE2 | f(E1, ..., Em)

F ::= n | true | false | �s� | x | (E1, ..., Em)where op ∈ {+,−, ∗, /,mod, and, or, not, <,>,=, <=, >=, ! =}, n ranges over�oating point numbers, s ranges over strings, x ranges over variable names, and
f ranges over fun
tion names, with fun
tion de�nitions having the form:

f(x1, ..., xn)
def
= EThe pro
ess√ simply terminates, and
annot intera
t with others. Pro
esses

α are output pro
esses. The pro
ess x ↑ E triggers an event x and asso
iates thisevent with the value of expression E. Alternatively, one
an say that it sendsthe message E through
hannel x. This is a transient trigger, this is, if thereare no listeners, i.e. pro
esses ready to intera
t via x, at the
urrent time, thenthe event is dis
arded. In any
ase, the trigger is �
onsumed� in the
urrenttime. This
ontrasts with x!E, whi
h also triggers x with E as value, but ifthere are no listeners at the
urrent time, this pro
ess remains alive until thereis at least one other pro
ess ready to intera
t with it. On
e intera
tion o

urs,the trigger is
onsumed. We
all x!E a lasting trigger. Both x ↑ E and x!E12

perform
ommuni
ation by uni
asting. The pro
esses x ↑∗E and x!∗E are themulti
asting variants of x↑E and x!E respe
tively, so the message is deliveredto all relevant listeners. If there are no listeners when x!∗E is performed, it willremain alive until at least one pro
ess is ready to a

ept the message. At thattime, all potential re
eivers will obtain the message, and the trigger is
onsumed(not repli
ated in the future). In all of the trigger pro
esses, the expression E isoptional. The pro
ess ∆E → P delays the exe
ution of pro
ess P by an amountof time t, the value of the expression E. The pro
ess νx.P hides the name xfrom the environment, so that it is private to P . Alternatively, νx.P
an be seenas the
reation of a new name, i.e. a new event or
hannel, whose s
ope is P .We write νx1, x2, ..., xn.P for the pro
ess term νx1.νx2....νxn.P . The pro
ess
P1 ‖ P2 is the parallel
omposition of P1 and P2. In its generalized form, wewrite Πi∈{1,...,n}Pi for P1 ‖ P2 ‖ · · · ‖ Pn. The pro
ess P1;P2 is the sequential
omposition of P1 and P2, this is, P1 must terminate before beginning P2.3 Thepro
ess ∑

i∈I βi → Pi is a re
eiver or listener,
onsisting of a list of alternativeinput guarded pro
esses βi → Pi. Ea
h input guard βi is of the form xi?Fiδti,where xi is an event/
hannel name, Fi is a pattern, and ti is a variable4. Thispro
ess listens to all events (
hannels) xi, and when xi is triggered with a value
v that mat
hes the pattern Fi, the
orresponding pro
ess Pi is exe
uted and thealternatives are dis
arded. A listener pro
ess represents, thus, a pro
ess in astate with external
hoi
e. Before Pi is exe
uted, ti is assigned the elapsed time,this is, the time the pro
ess remained blo
ked waiting for an event to o

ur.Furthermore, if the event xi was triggered with some value v whi
h mat
hesthe pattern Fi, this mat
hing results in the binding of Fi's variables by the
orresponding values of v.5 The s
ope of these bindings is Pi. The su�xes Fiand δti are optional. If Fi is absent, no pattern-mat
hing is done. Sometimeswe write listeners in in�x notation: x1?F1δt1 → P1 + · · · + xn?Fnδtn → Pn.This operator is not
ommutative: a guard xi?Fiδti will be enabled only if theprevious i−1 guards are not enabled (no events triggered or mat
hed patterns).Hen
e the guards are evaluated in order. We will use the symbol _ in patterns asa nameless variable (i.e. a pattern that mat
hes anything) to denote �anythingelse�. The pro
ess A(y1, ..., yn)
reates a new instan
e of a pro
ess de�nedby A(x1, ..., xn)

def
= P , where the ports x1, ..., xn are substituted in the body

P by the events or
hannels y1, ..., yn. Finally, the pro
ess match E : F1 →
P1| · · · |Fn → Pn evaluates the expression E and attempts to mat
h it withea
h pattern Fi. If a pattern Fi mat
hes then the
orresponding pro
ess Pi isexe
uted. If more than one pattern mat
hes the
hoi
e is non-deterministi
.This
onstru
t is synta
ti
 sugar for νx.(x↑E ‖ x?F1 → P1 + · · ·+x?Fn → Pn).We also write match E : |i∈IFi → Pi for match E : F1 → P1| · · · |Fn → Pn.For a formal semanti
s of this
al
ulus, we refer the reader to [22℄.3The sequential
omposition operator is a
tually a derived operator, but for simpli
ity wein
lude it here as a primitive. See [22℄ for details.4The symbol δ is just a separator, whi
h is read as �after�.5This is essentially the same as pattern-mat
hing in fun
tional languages like ML or Haskell.13

fp tp out fp tp out

fp tp out

fp tp out

fp tp out

p4 p5

fp tp out

relay2

p2

p3

fp tp out

relay1

p1

Figure 2: Hierar
hi
al stru
ture of the kiltera pro
ess
orresponding to the stat-e
hart from Figure 1. Ea
h box labelled pi represents the kiltera pro
ess
orre-sponding to the state named ni.3 From state
harts to kiltera pro
essesIn this Se
tion we will de�ne a mapping J·KT,fp,tp,out : SC → KLT whi
h, for anywell-formed state
hart term gives a kiltera pro
ess des
ribing the state
hart'sbehaviour. When translating a term s ∈ SC, the additional parameters spe
ifythe set of transitions (T) going out of s or any of its des
endants and the ports(fp, tp, and out) used by the resulting kiltera term to
ommuni
ate with theen
losing pro
ess (see Subse
tion 3.1 below for details on the role of these ports).3.1 Stru
ture of a mapped state
hartEa
h state
hart is mapped to a kiltera pro
ess whi
h mimi
s its nesting stru
-ture6. In the
ase of or-states and and-states, the
orresponding kiltera pro
ess
onsists of one sub-pro
ess for ea
h sub-state, and a relay pro
ess, whi
h is in
harge of
ontrolling whi
h sub-state is a
tive, as well as forwarding messages a
-
ordingly. For example, the state
hart in Figure 1 is mapped to a kiltera pro
esswith a stru
ture depi
ted in Figure 2.Ea
h kiltera pro
ess denoting a state
hart has an interfa
e
onsisting of threeports: fp, tp and out. This is depi
ted in Figure 3. The �rst port, fp is usedto re
eive messages from the parent, this is, the kiltera pro
ess representingthe en
losing state
hart. The se
ond port, tp is used to send messages to the6This is, the mapping is
ompositional. 14

fp tp out

Figure 3: kiltera pro
ess interfa
e for a state
hart.parent. The third port, out is used to send output messages (i.e. the a
tion ofthe transition performed).At run-time, the relay
omponent of an or-state keeps tra
k of the
urrentlya
tive sub-state by a pair of links fc and tc to the
orresponding sub-pro
ess.Sin
e the a
tive sub-state
hanges, so do these links. Hen
e,
hannel mobilityplays a fundamental role in des
ribing the dynami
s of state
harts.The general idea is as follows: when a new event is re
eived by the state
hart,an event message is given to the top-level (a.k.a. the root) pro
ess for thestate
hart. Its relay then forwards this event message to its
urrently a
tivesub-state, whi
h in turn forwards it down its
urrently a
tive sub-state, and soon. When the message rea
hes a basi
 state, it is mat
hed against the triggersof the outgoing transitions from this state. If some transition mat
hes thetrigger, it means that the transition is taken, so an entry message is sent to thepro
ess representing the target of the transition, and the pro
ess representingthe
urrently a
tive state exits (exe
uting its exit a
tion) and be
omes ina
tive.Sin
e there is no dire
t link between the pro
esses representing the sour
e andtarget of the transition, this entry message is routed through the hierar
hyof pro
esses, a

ording to the states that the transition
rosses. While theentry message is sent to the destination, the states being exited exe
ute theirexit a
tion and be
ome ina
tive as the entry message travels �up� to the least
ommon an
estor of the sour
e and target of the transition. When the messagerea
hes the least
ommon an
estor, the transition's a
tion is exe
uted, and themessage is routed �down� to the appropriate target. As the message goes �down�,the states being entered be
ome a
tive and their entry a
tions exe
uted, until werea
h the a
tual target, whi
h answers with an entry a
knowledgement message,to be forwarded all the way up to the root. On the other hand, if the event didnot mat
h any transition of the
urrently a
tive basi
 state, then a message issent to the en
losing state (a.k.a. the parent) informing it that the event wasnot handled. In su
h
ase, the en
losing state attempts to mat
h the event inthe same manner as the basi
 state.
15

Message Des
ription
“enter” enter a state
“exit” exit from
urrent state
(“enter”, doact, actdone) enter a state with a
tion trigger (see se
. 3.4.4)
“en_ack” enter a
knowledgment
“ex_ack” exit a
knowledgment
(“evt”, value) event with given value
“enhh” event not handled hereTable 1: Message types.3.2 Messages and pathsMessages ex
hanged between pro
esses representing states are of the form (~p,m)where ~p = 〈p1, ..., pk〉 is the path to the destination, and m is the message.A message m
ontains either a
ommand to enter or exit a state, an event,or an a
knowledgment. The possible values are shown in Table 1.A path ~p is a sequen
e of the form 〈“up”, “up”, ..., “up”, n1, n2, ..., nl〉 whi
hdes
ribes how to route the message from one state to another. The pre�x

〈“up”, ..., “up”〉 spe
i�es the number of levels the message has to go �up� in thenesting hierar
hy, and the post�x 〈n1, ..., nl〉 spe
i�es the states that must betaken going �down� in the nesting hierar
hy until rea
hing the destination. Here
nl is the name of the target. 7Example 2. Consider the state
hart in Figure 4. The nesting tree for thisstate
hart, and the path from state n9 to state n10 are shown in Figure 5. If thestate
hart is
urrently in state n9 and re
eives and event that
auses transition
t1 to n10 to �re, an event message (evt) is sent from the top-level state n1downwards to n9 with path 〈n2, n4, n7, n9〉. This
auses state n9 to send anentry message (“enter”) to n10 with path 〈“up”, “up”, n5, n8, n10〉. It has onlytwo “up”'s be
ause one is taken at state n7 and the other is taken at state n4,leaving the message in state n2, where it will go down the path 〈n5, n8, n10〉.We de�ne the following fun
tion to
ompute the path of a given transitionfrom one state to another.De�nition 4. (Path of a transition) Let t = (t, ~o, e, a, ~d) ∈ TR be sometransition. The path from src(t) to trg(t) is given by:

tpath(t)
def
= 〈“up”〉i∈{1,...,|~o|−1} · ~dThis is, the path of a transition
ontains an “up” for ea
h state until theleast
ommon an
estor of the sour
e and target, followed by the sequen
e ofnames going �down� until the destination.7A message sent to a des
endant would not have any “up”'s, but in our translation, mes-sages sent to des
endants are sent only to dire
t sub-states through their spe
i�

hannels,and the path will be 〈〉. 16

n1

n2 n3

n4 n5

n6

n8

n7 n10

n9 t1

Figure 4: A state
hart with an inter-level transition.
n1

lllllllllll

DD
DD

D

n2

""FF
FF

F
n3

n4

66mmmmmmmmmm n5

��
n6

zzzzz
n7

aaDDDDD
n8

��
n9

OO

n10Figure 5: Nesting tree and path from n9 to n10.17

We also de�ne the following fun
tions to
ompute the path of a transitionfrom one state to another, given the sour
e and target of the transition.3.3 Exe
uting a
tionsWhen a state s is entered, its entry a
tion en must be exe
uted, and when itis exited, its exit a
tion ex must be exe
uted. Furthermore, when a transitionis taken, its a
tion must also be exe
uted. In the remainder of this Se
tion weassume there is a fun
tion exec whi
h exe
utes a
tions (entry, exit and transitiona
tions). More pre
isely, it is a fun
tion execout : A → KLT mapping a
tionsto appropriate kiltera pro
esses, whi
h may produ
e its output at a given port
out.8On
e a state has exe
uted its entry a
tion (resp. exit a
tion), it sendsan a
knowledgment signal “en_ack” (resp. “ex_ack”) to its parent. Thesea
knowledgments are used to guarantee that a
tions are fully exe
uted and inthe right order, and to guarantee run-to-
ompletion semanti
s.3.4 Mapping basi
 statesIn the remainder of this Subse
tion we will assume that s = [n, (en, ex)] is thebasi
 state that we are translating. Before showing the translation of s itself,we need some preliminary pro
ess de�nitions.3.4.1 Entry sequen
eThe following pro
ess exe
utes the state's entry a
tion en and sends an entrya
knowledgment to its parent.9

basic_enseqs(tp, out)
def
= execout(en); tp↑(〈〉, “en_ack”)3.4.2 Exit sequen
eThe following pro
ess is analogous. It exe
utes the state's exit a
tion ex andsends an exit a
knowledgment to its parent.

basic_exseqs(tp, out)
def
= execout(ex); tp↑(〈〉, “ex_ack”)8In this en
oding we assume that the only observable e�e
t of exe
uting an a
tion is sendinga message to an obje
t, and thus, we only assume the (possible) use of an out port. A more
omprehensive mapping would also allow a
tions to modify the attributes of the obje
t whoowns the state
hart. In su
h
ase, the exec mapping would also be parametrized by somelink(s) to a pro
ess that gives a

ess to the obje
t's attributes.9Note that the path is the empty sequen
e 〈〉 sin
e the destination is the parent itself.

18

3.4.3 Ina
tive stateThe following pro
ess represents an ina
tive basi
 state. The subs
ript T denotesthe set of outgoing transitions from this state (s).
basic_inactives,T (fp, tp, out)

def
=

fp?(〈〉, “enter”) → (basic_enseqs(tp, out); basic_actives,T (fp, tp, out))An ina
tive basi
 state
an only a

ept enter messages. On
e an enter mes-sage arrives, it exe
utes its entry sequen
e and be
omes a
tive.3.4.4 A
tive stateThe following pro
ess represents an a
tive basi
 state. As before, the subs
ript
T denotes the set of outgoing transitions from this state.

basic_actives,T (fp, tp, out)
def
=

fp?(〈〉, “exit”) →
(basic_exseqs(tp, out);
basic_inactives,T (fp, tp, out))

+
∑

ti∈T fp?(〈〉, (“evt”, evt(ti))) →
(basic_exseqs(tp, out);
basic_jumps,T,ti

(fp, tp, out))

+ fp?(〈〉, (“evt”,_)) →
(tp↑(〈〉, “enhh”);
basic_actives,T (fp, tp, out))An a
tive state
an re
eive either an exit message (“exit”) or an event ofthe form (“evt”, value). If it re
eives an exit message, it must perform the exitsequen
e and be
ome ina
tive. If it re
eives an event, there are two possibilities:either the event's value mat
hes the trigger evt(ti) of some transition ti, or itdoesn't.If the event's value mat
hes the trigger evt(ti) of some transition ti, thestate must exe
ute the exit sequen
e, and then handle the event, whi
h is donea

ording to the following:

basic_jumps,T,ti
(fp, tp, out)

def
=

ν doact, actdone. (doact? → (execout(act(ti)); actdone↑)
‖ tp↑(tpath(ti), (“enter”, doact, actdone)));

basic_inactives,T (fp, tp, out)This pro
ess sets up the exe
ution of the transition's a
tion (act(ti)) but thisis not exe
uted right away, sin
e there might be exit a
tions of en
losing statesthat must be exe
uted before. Instead, the exe
ution of this a
tion is deferreduntil all ne
essary exit a
tions of en
losing states are exe
uted. Hen
e we only
reate a �
allba
k� pro
ess doact? → (execout(act(ti)); actdone ↑) that waits for19

the signal doact whi
h is to be triggered when the a
tion must be exe
uted, andthen triggers signal actdone when the a
tion has �nished. While
reating this�
allba
k� for the a
tion, we send an “enter” message to the destination, viathe state's parent (tp), following the appropriate path tpath(ti). This message
arries additional information, namely the signals doact and actdone, so thatthe a
tion is triggered at the appropriate moment, when all “up” steps havebeen performed, and just before entering states going down.10 Finally the statebe
omes ina
tive.If the state re
eives an event whi
h does not mat
h the trigger event of any ofthe outgoing transitions, then it sends the parent an “enhh” message indi
atingthat the event is not handled here. Then it remains a
tive.3.4.5 Translation of a basi
 stateGiven these de�nitions we are now able to map a basi
 state s = [n, (ex, en)] toa kiltera term as follows:
J[n, (ex, en)]KT,fp,tp,out

def
= basic_inactive[n,(ex,en)],T (fp, tp, out)This is, a state is mapped to an initially ina
tive pro
ess.3.5 Mapping or-statesIn the remainder of this Subse
tion we will assume that s = [n, s1..k, T, (en, ex)]is the or-state that we are translating.3.5.1 Entry sequen
eThe entry sequen
e for an or-state must �rst exe
ute the state's entry a
tion

en, then re
ursively enter the default state (with the pro
ess enter_child de�nedbelow), and �nally send an a
knowledgment to the parent:
or_enseqs(tp, out, fd, td)

def
=

execout(en); enter_child(fd, td); tp↑(〈〉, “en_ack”)where fd and td are the ports from the default state and to the default staterespe
tively, tp is the port to the parent, and out is the output port.The pro
ess enter_child tells a given
hild to enter, and then waits for a
-knowledgment:
enter_child(fc, tc)

def
= tc↑(〈〉, “enter”); fc?(〈〉, “en_ack”)Here fc denotes the port where messages from the
hild are expe
ted, and tcthe port where messages to the
hild are sent.10Note that here we make use of kiltera's (and the π-
al
ulus) de�ning
hara
teristi
:
hannelmobility. We send an event (
hannel) as part of the message.20

Note that the default
hild must be fully entered and given its entry a
knowl-edgment, before the or-state sends its own a
knowledgment to its parent. Thisguarantees that when an entry a
knowledgment is re
eived, the
orresponding
hild has
ompleted its entry and exe
uted all entry a
tions in the appropriateorder.3.5.2 Exit sequen
eThe exit sequen
e of an or-state is analogous to its entry sequen
e, but whenthe state is asked to exit, its
urrently a
tive sub-state must be exited (usingthe pro
ess exit_child de�ned below) before the state's exit a
tion is performed.
or_exseqs(tp, out, fc, tc)

def
=

exit_child(fc, tc); execout(ex); tp↑(〈〉, “ex_ack”)The exit_child pro
ess is analogous to the enter_child pro
ess:
exit_child(fc, tc)

def
= tc↑(〈〉, “exit”); fc?(〈〉, “ex_ack”)where fc and tc are the
hannels to the
urrently a
tive
hild.As before, the
urrently a
tive sub-state must have fully exited before theexit a
tion of the state is performed and the exit a
knowledgment sent to theparent. This guarantees that when an exit a
knowledgment is re
eived, the
orresponding
hild has
ompleted its exit and exe
uted all exit a
tions in theappropriate order.3.5.3 Forward sequen
eWhen we are taking a transition whose target is a des
endant of the state, ratherthan the state itself, the relay for the state must forward the entry message to theappropriate
hild, in a

ordan
e with the message's path. This is a

omplishedby the following pro
ess, whi
h sends a message to the
hild spe
i�ed by theports fc and tc with etc as the remaining path to the destination11, and waitsfor an entry a
knowledgment from the
hild whi
h, in turn, is forwarded up tothe state's parent.

forward_enter(tp, fc, tc, etc)
def
=

tc↑(etc, “enter”); fc?(〈〉, “en_ack”) → tp↑(〈〉, “en_ack”)3.5.4 The relayThe relay pro
ess is in
harge of keeping tra
k of a
tive sub-states, as well ashandling and forwarding messages. The relay
an be in two modes: a
tive or11The �rst element of the path is stripped by the relay, as des
ribed below.21

ina
tive. Initially it starts in the ina
tive state:
or_relays,T (fp, tp, out, fc1..k, tc1..k)

def
=

or_inactives,T (fp, tp, out, fc1..k, tc1..k)The relay
ontains not only the fp, tp, and out ports of the state, but also apair of ports fci and tci for ea
h sub-state i to
ommuni
ate with them12. Weassume that the �rst
omponent represents the default state, and therefore fc1and tc1 are the links to the default state. The subs
ript T denotes the set ofoutgoing transitions from this state (s) or any des
endant.3.5.5 Ina
tive stateWhen the state is ina
tive, it may re
eive an enter message dire
ted to it (if thestate is the target of the
orresponding transition), or to a des
endant (if thedes
endant is the target of the transition). In the following, fp, tp, and out arethe usual ports. In addition to these, for ea
h
hild i we have a pair of ports
fci and tci respe
tively from the
hild and to the
hild.

or_inactives,T (fp, tp, out, fc1..k, tc1..k)
def
=

fp?(〈〉, “enter”) →
(or_enseqs(tp, out, fc1, tc1);
or_actives,T (fp, tp, out, fc1, tc1, fc1..k, tc1..k))

+
∑

si∈s1..k
fp?(〈name(si)〉 · etc, “enter”) →

(execout(en);
forward_enter(tp, fci, tci, etc);
or_actives,T (fp, tp, out, fci, tci, fc1..k, tc1..k))When the ina
tive state re
eives an enter message dire
ted to it, is exe
utesits entry sequen
e (using the ports fc1 and tc1 to
ommuni
ate with the defaultstate), and be
omes a
tive, setting the
urrently a
tuve sub-state to be thedefault state by exe
uting the or_actives,T pro
ess with the ports fc1 and tc1as the fourth and �fth ports respe
tively.When the ina
tive state re
eives a message aimed at a des
endant withinthe sub-state si, it must be an enter message to the des
endant, and thus, thestate must be entered. This means that the enter a
tion must be exe
uted,the message must be forwarded to the
orresponding sub-pro
ess (via the
han-nels fci and tci whi
h
orrespond to the
hild si),13 and then it must be
omea
tive, with the sub-state si a
tive (indi
ated by the fourth and �fth ports ofthe or_actives,T pro
ess). By exe
uting the entry a
tion before forwarding themessage we guarantee the semanti
s of transitions, where entry a
tions must beexe
uted in order of nesting, from outermost to innermost, for all states thatthe transition is entering.12Note that we use the sequen
e notation fc1..k for the sequen
e of ports fc1, ..., fck, andsimilarly for tc1..k .13Note that at this point the �rst item of the path is stripped and only the remainder etcis passed to the forwarding pro
ess. 22

3.5.6 A
tive stateThe following pro
ess represents an a
tive or-state. As before, for ea
h
hild iwe have a pair of ports fci and tci respe
tively from the
hild and to the
hild,and the distinguished ports fc and tc link the pro
ess with the
urrently a
tivesub-state.14
or_actives,T (fp, tp, out, fc, tc, fc1..k, tc1..k)

def
=

fp?(〈〉, “exit”) →
(or_exseqs(tp, out, fc, tc);
or_inactives,T (fp, tp, out, fc1..k, tc1..k))

+ fp?(〈〉, (“evt”, x)) →
or_handle_events,T (fp, tp, out, fc, tc, fc1..k, tc1..k, x)When an or-state is a
tive it may re
eive an exit message or an event. If itis an exit message, it must exe
ute the exit sequen
e, sending an exit messageto the
urrently a
tive sub-state (via tc) and then be
ome ina
tive. If it is anevent, the or_handle_events,T pro
ess, de�ned below, takes
are of it.3.5.7 Handling eventsThe semanti
s of UML state
harts states that when two transitions with thesame trigger are enabled, and the sour
e of one is a des
endant of the other(i.e. it is at a lower level of nesting), then the one with lower level takes priorityover its an
estor. In order to
apture this semanti
s, the event handling pro
essmust �rst send the event message �down� the nesting hierar
hy to the
urrentlya
tive sub-state to give it a
han
e to handle it. Suppose the or-state s re
eivesan event. Then, the event is sent to the
urrently a
tive sub-state. There aretwo possibilities, either:1. The event is handled by the
urrently a
tive sub-state, i.e., there was atransition with a trigger that mat
hed the event, or2. The event is not handled by the
urrently a
tive sub-state.In the �rst possibility, we have two
ases, depending on the target of the transi-tion: either the target of the transition is outside s (Figure 6 (a)), or the targetis inside s. Furthermore, in the later
ase we have two sub-
ases: either thetransition's sour
e and target are in di�erent sub-states of s (Figure 6 (b)), orthey are in the same sub-state (Figure 6 (
)).For ea
h of these possible s
enarios we have a
orresponding answer fromthe
urrently a
tive
hild:1. If the event was handled by the
hild (or some des
endant), with sometransition from the
hild (or a des
endant) to some state outside s, thenthe
hild responded with an enter message dire
ted to the target stateoutside s, with a path that begins with “up”,14Note that at run-time these ports will link the relay with di�erent sub-states, as the a
tivesub-state
hanges. This exempli�es our use of
hannel mobility.23

c

n
t

c

n

t

c

n

t(a) (b) (
)Figure 6: Event handled by the
urrently a
tive sub-state c.2. If the event was handled by the
hild (or some des
endant), with sometransition from the
hild (or a des
endant) to some state inside s, wherethe sour
e and target of the transition are in di�erent sub-states of s,and so s is the least
ommon an
estor of the sour
e and target of thetransition, then the
hild responded with an enter message dire
ted atthe target state inside s, with a path that begins with the name of the(an
estor of the) target state,3. If the event was handled by the
hild (or some des
endant), with sometransition from the
hild (or a des
endant) to some state inside s, wherethe sour
e and target of the transition are in the same sub-state of s,and so s is not the least
ommon an
estor of the sour
e and target ofthe transition, then, the
hild responded with an entry a
knowledgment(“en_ack”), sent by the target of the transition,4. If the event was not handled by the
hild (or any des
endant), then, the
hild responded with an “enhh” message.Ea
h of these alternatives is handled by the bran
hes of the
hoi
e below.
or_handle_events,T (fp, tp, out, fc, tc, fc1..k, tc1..k, x)

def
=

tc↑(〈〉, (“evt”, x));
(fc?(〈“up”〉 · etc,msg) →

or_trans_outs,T (fp, tp, out, fc1..k, tc1..k, etc,msg)

+
∑

si∈s1..k
fc?(〈name(si)〉 · etc, (“enter”, doact, actdone)) →

or_trans_siblings,T,i(fp, tp, out, fc1..k, tc1..k, doact, actdone, etc)

+ fc?(〈〉, “en_ack”) →
or_trans_internals,T (fp, tp, out, fc, tc, fc1..k, tc1..k)

+ fc?(〈〉, “enhh”) →
or_match_events,T ′(fp, tp, out, fc, tc, fc1..k, tc1..k, x))1. In the �rst
ase, the
hild answers with an enter message dire
ted to astate outside s, and therefore the path begins with “up”. This
ase ishandled by the pro
ess or_trans_outs,T de�ned below. We must exit swhi
h entails exe
uting its exit a
tion ex, then send the message to the24

parent, stripping the �rst item from the path (so the remaining path is
etc), and then be
ome ina
tive.

or_trans_outs,T (fp, tp, out, fc1..k, tc1..k, etc,msg)
def
=

execout(ex);
tp↑(etc,msg);
or_inactives,T (fp, tp, out, fc1..k, tc1..k)2. In the se
ond
ase, the
hild answers with an enter message dire
ted to astate inside s (di�erent than the sour
e of the transition), and thereforethe path begins with the name of a sub-state of s, spe
i�
ally the nameof the sub-state si whi
h
ontains the target of the message. This
ase ishandled by the pro
ess or_trans_siblings,T,i de�ned below.

or_trans_siblings,T,i(fp, tp, out, fc1..k, tc1..k, doact, actdone, etc)
def
=

doact↑;
actdone? → (forward_enter(tp, fci, tci, etc);

or_actives,T (fp, tp, out, fci, tci, fc1..k, tc1..k))The state s must be the least
ommon an
estor of the sour
e and thetarget of the transition taking pla
e. Hen
e the message is of the form
(“enter”, doact, actdone) where doact is the signal to exe
ute the transi-tion's a
tion, and actdone is the event signaling the termination of thea
tion. At this point all relevant exit a
tions for the transition have beenexe
uted, so we trigger the a
tion signal doact and wait for the transition'sa
tion to �nish. Then we forward the enter message to the appropriatetarget tci. The state remains a
tive in this
ase, but the links to the
urrently a
tive sub-state
hange to fci and tci.3. In the third
ase, the
hild answers with an entry a
knowledgment whi
hindi
ates that the transition was fully handled within some sub-state of s.This
ase is handled by the pro
ess or_trans_internals,T below.

or_trans_internals,T (fp, tp, out, fc, tc, fc1..k, tc1..k)
def
=

tp↑(〈〉, “en_ack”);
or_actives,T (fp, tp, out, fc, tc, fc1..k, tc1..k)In this
ase, we simply propagate the a
knowledgment up to s's parent,and remain a
tive, with the
urrently a
tive sub-state un
hanged.4. In the last
ase, the
hild answers with an “enhh” message, indi
ating thatthe
urrent sub-state did not handle the event. In this
ase, we must tryto mat
h the event, a

ording to the transitions T ′ going out of s:

T ′ def
= {t ∈ T | src(t) = name(s)}The mat
hing of the event is done by the or_match_events,T ′ pro
ess:

25

or_match_events,T (fp, tp, out, fc, tc, fc1, ..., fck, tc1, ..., tck, x)
def
=

match x :
|ti∈T evt(ti) →

(or_exseqs(tp, out, fc, tc);
or_jumps,T,ti

(fp, tp, out, fc1..k, tc1..k))

|_ →
(tp↑(〈〉, “enhh”);
or_actives,T (fp, tp, out, fc, tc, fc1, ..., fck, tc1, ..., tck))When the event of transition ti is mat
hed, we must leave the state andtherefore, we must exe
ute the exit sequen
e (using the links fc and tc to
ommuni
ate with the
urrently a
tive sub-state), and then we jump outof the state, as spe
i�ed by the following:

or_jumps,T,ti
(fp, tp, out, fc1..k, tc1..k)

def
=

ν doact, actdone. (doact? → (execout(act(ti)); actdone↑)
‖ tp↑(tpath(ti), (“enter”, doact, actdone)));

or_inactives,T (fp, tp, out, fc1, tc1, fc1..k, tc1..k)As in a basi
 state, we setup a �
allba
k� pro
ess to exe
ute the transition'sa
tion on
e a signal doact is triggered. Then we send the enter messageto the target of the transition via the state's parent, and �nally be
omeina
tive.If none of the triggers mat
h, we send an “enhh” message to the par-ent, while remaining a
tive, to inform the parent that the event was nothandled here.3.5.8 Translation of an or-stateThe translation of the or-state s = [n, s1..k, T, (en, ex)]
onsists of the relay andthe parallel
omposition of the translations of ea
h of the sub-state terms:
JsKT,fp,tp,out

def
=

νfc1, ..., fck, tc1, ..., tck.(or_relays,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck)

‖ Πi∈{1,...,k}JsiKTi,tci,fci,out)where Ti
def
= {t ∈ T | src(t) ∈ descendants(si) ∪ {name(si)}} for ea
h i ∈

{1, ..., k} is the set of transitions with sour
e in sub-state si, i.e. going out of sior any of its des
endants. Note that the parameters of the translation JsiK ofa sub-state si are given in order T, tci, fci, out. This is be
ause the relay's tciport must be linked to the
hild's fp port, and the fci port must be linked tothe
hild's tp port.3.6 Mapping and-statesAnd-states
onsists of a set of orthogonal regions ea
h of whi
h is a state
hartin its own right. The kiltera pro
ess representing an and-state has the same26

stru
ture des
ribed above, with a relay and a pro
ess
orresponding to ea
horthogonal region. The main di�eren
e with or-states is that in an or-statethere is only one a
tive sub-state at any point in time whereas in an and-stateall orthogonal
omponents are a
tive. When an event arrives, it is broad
astedto all orthogonal regions.In this report we deal only with a subset of the full UML State Ma
hinesspe
i�
ation. In parti
ular we do not deal with forks and joins. As a
onse-quen
e, if the target of a transition is a sub-state of an and-state, it is onlywithin one of its orthogonal regions, so that when the transition is taken, theother orthogonal regions will enter through their default state. Furthermore,when a transition
omes out of a sub-state of an and-state, all other regions willexit.3.6.1 Entry sequen
eWhen entering an and-state, all orthogonal regions must be entered, but notbefore exe
uting the state's own entry a
tion.
and_enseqs(tp, out, fc1,, fck, tc1, ..., tck)

def
=

execout(en); (Πi∈1..kenter_child(fci, tci)); tp↑(〈〉, “en_ack”)where enter_child is the same as in Se
tion 3.5.1. Note that the parallel
om-position of enter_child pro
esses, whi
h
auses all orthogonal regions to enter,does not pres
ribe a parti
ular order of entry to the orthogonal regions. This is
onformant with the UML spe
i�
ation whi
h leaves open the parti
ular orderof entry.3.6.2 Exit sequen
eThe exit sequen
e for the and-state is analogous. All sub-regions are ordered toexit before exe
uting the state's own exit a
tion.
and_exseqs(tp, out, fc1,, fck, tc1, ..., tck)

def
=

(Πi∈1..kexit_child(fci, tci)); execout(ex); tp↑(〈〉, “ex_ack”)As before, exit_child is the same as in Se
tion 3.5.2. Furthermore, the sequen
eoperator guarantees that all enter_child sub-pro
esses will be fully
ompletedbefore the exe
ution of the state's exit a
tion.3.6.3 Forward sequen
eThe forward sequen
e for and-states is the same as for or-states, as des
ribedin Se
tion 3.5.3. 27

3.6.4 The relayThe relay for an and-state is analogous to the relay of an or-state. The relay
an be in two modes: a
tive or ina
tive. Initially it starts in the ina
tive state:
and_relays,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck)

def
=

and_inactives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck)The relay
ontains not only the fp, tp, and out ports of the state, but alsoa pair of ports fci and tci for ea
h sub-state i to
ommuni
ate with them. Thesubs
ript T denotes the set of outgoing transitions from this state (s) or anydes
endant.3.6.5 Ina
tive stateThe ina
tive-state of an and-state is similar to that of an or-state. It
anre
eive either an enter message, in whi
h
ase it performs the entry sequen
eand be
omes a
tive, or it
an re
eive a message aimed at a sub-state si, inwhi
h
ase it must exe
ute the entry a
tion, forward the message to si, andenter the orthogonal regions to their default state. On
e all orthogonal regionshave entered, the state be
omes a
tive.
and_inactives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck)

def
=

fp?(〈〉, “enter”) →
(and_enseqs(tp, out, fc1, ..., fck, tc1, ..., tck);
and_actives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck))

+
∑

si∈s1..k
fp?(〈name(si)〉 · etc, “enter”) →

(execout(en);
(forward_enter(tp, fci, tci, etc)
‖ Πj∈1..k\{i}enter_child(fcj , tcj));

and_actives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck))Noti
e that the enter_child pro
ess is invoked for ea
h
hild j ∈ 1..k\{i},this is, for every
hild whi
h is not i, sin
e this is the target of the transition,and all other orthogonal regions enter to their default state.3.6.6 A
tive stateAn a
tive and-state is analogous to an or-state, but there is no distinguished
urrently a
tive sub-state, sin
e all orthogonal regions are a
tive.
and_actives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck)

def
=

fp?(〈〉, “exit”) →
(and_exseqs(tp, out, fc1,, fck, tc1, ..., tck);
and_inactives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck))

+ fp?(〈〉, (“evt”, x)) →
and_handle_events,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck, x)28

As with an or-state, when an and-state is a
tive it may re
eive an exitmessage or an event. If it is an exit message, it must exe
ute the exit sequen
e,sending an exit message to all sub-states and then be
ome ina
tive. If it is anevent, the and_handle_events,T pro
ess, de�ned below, takes
are of it.3.6.7 Handling eventsHandling events in an and-state is a bit di�erent. The event must be broad
astedto all orthogonal regions, and there are four possible out
omes:1. No region handled the event, and thus the and-state itself must attemptto handle it, or2. Some regions handled the event, and there is at least one transition to betaken outside of s. 153. Some (or all) regions handled the event internally, but no region thathandled the event is performing a transition outside s.To handle these possibilities, we use the following auxiliary pro
esses:
broadcast(x, tc1, ..., tck)

def
= (Πi∈1..ktci ↑(〈〉, (“evt”, x)))This pro
ess sends the event x to all
hildren (i.e. orthogonal regions).

wait_for_enack(fc1, ..., fck, all, n1, ..., nk)
def
=

(Πi∈1..k(fci?(〈〉, “enhh”) → ni ↑+fci?(〈〉, “en_ack”) → √
)); all↑This pro
ess waits for an entry a
knowledgment or an “enhh” message fromall
hildren, and on
e all have answered, it triggers the all event. When the
hild i answers with “enhh”, an event ni is triggered, in order to identify
ase 1above, whi
h is dete
ted by the following pro
ess.

wait_for_enhh(n1, ..., nk, nche)
def
= (Πi∈1..kni? → √

);nche↑This pro
ess triggers the signal nche (no
hild handled the event) if (andonly if) all events ni where triggered.With these pro
esses, we
an built the event handler for and-states:15In the present version of this mapping we assume that at most one transition �red goesoutside the state. Otherwise the and-state would a
t as a fork.
29

and_handle_events,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck, x)
def
=

broadcast(x, tc1, ..., tck);
ν nche, all, n1, ..., nk.

(wait_for_enack(fc1, ..., fck, all, n1, ..., nk)
‖ wait_for_enhh(n1, ..., nk, nche)
‖ (nche? →

and_match_events,T ′(fp, tp, out, fc1, ..., fck, tc1, ..., tck, x)

+
∑

i∈1..k fci?(〈“up”〉 · etc,msg) →
and_trans_outs,T (fp, tp, out, fc1..k, tc1..k, etc,msg)

+ all? →
(tp↑(〈〉, “en_ack”);
and_actives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck))))First we broad
ast the event to all
hildren. Then we wait for their response,whi
h
an be an entry a
knowledgment (“en_ack”), and event not-handled heremessage (“enhh”) or a message with a path beginning with “up”.If all answered “enhh”, then we are in
ase 1, and so the signal nche istriggered, in whi
h
ase we attempt to mat
h the event with the transitions
oming out of s, with the pro
ess and_match_events,T ′ were

T ′ def
= {t ∈ T | src(t) = name(s)}is the set of transitions
oming out of s. The mat
hing of events is as foror-states:

and_match_events,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck, x)
def
=

match x :
|ti∈T evt(ti) →

(and_exseqs(tp, out, fc1,, fck, tc1, ..., tck);
and_jumps,T,ti

(fp, tp, out, fc1..k, tc1..k))

|_ →
(tp↑(〈〉, “enhh”);
and_actives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck))When the event of transition ti is mat
hed, we must exe
ute the exit se-quen
e, as we are leaving the state, and then it leaves the state a

ording to thefollowing:

and_jumps,T,ti
(fp, tp, out, fc1..k, tc1..k)

def
=

ν doact, actdone. (doact? → (execout(act(ti)); actdone↑)
‖ tp↑(tpath(ti), (“enter”, doact, actdone)));

and_inactives,T (fp, tp, out, fc1..k, tc1..k)As before, we setup a �
allba
k� pro
ess to exe
ute the transition's a
tionon
e a signal doact is triggered. Then we send the enter message to the targetof the transition via the state's parent, and �nally be
ome ina
tive. If none ofthe triggers mat
h, we send an “enhh” message to the parent, while remaininga
tive, to inform the parent that the event was not handled here.30

If someone answered with a message with a path beginning with “up”, weare in
ase 2, taking a transition outside s. Hen
e we tell all
hildren to exit,and after they have exited, we exe
ute the state's exit a
tion, send the messageup to the parent and be
ome ina
tive. This is performed by the following:
and_trans_outs,T (fp, tp, out, fc1..k, tc1..k, etc,msg)

def
=

(Πj∈1..k\{i}exit_child(fcj , tcj));
execout(ex);
tp↑(etc,msg);
and_inactives,T (fp, tp, out, fc1..k, tc1..k,)Finally if all events answered, but the signal nche has not been triggered andno
hild answered with a message dire
ted outside, then the signal all must havebeen triggered (
ase 3). In this
ase we simply send an entry a
knowledgmentto the parent, indi
ating the event was handled, and remain a
tive.3.6.8 Translation of an and-stateAs with or-states, the translation of the and-state s = [n, s1..k, (en, ex)]
onsistsof the relay and the parallel
omposition of the translations of ea
h of the sub-state terms:

JsKT,fp,tp,out
def
=

νfc1, ..., fck, tc1, ..., tck.(and_relays,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck)

‖ Πi∈{1,...,k}JsiKTi,tci,fci,out)where Ti
def
= {t ∈ T | src(t) ∈ descendants(si) ∪ {name(si)}} for ea
h i ∈

{1, ..., k} is the set of transitions with sour
e in sub-state si, i.e. going out of sior any of its des
endants.4 Con
lusionsWe have presented a mapping from a signi�
ant subset of UML State Ma
hinesto a pro
ess algebra named kiltera. This
onstitutes a pre
ise,
ompositionaland exe
utable formal semanti
s for UML State Ma
hines.While our mapping does not deal with several features su
h as the historyme
hanism or defered events, we preview that it will be relatively simple tomodify it to support them. Furthermore, we have left out a pre
ise des
riptionof obje
t intera
tion, but this
an be easily adapted: an obje
t
an be repre-sented as a kiltera pro
ess with a suitable queueing me
hanism for events, whi
hdispat
hes them to the top-level state. The entry/exit a
knowledgement pro-to
ol
an be used to guarantee the run-to-
ompletion semanti
s by asso
iatingthe pro
ess that represents the obje
t with a dispat
her pro
ess that will sendthe next available event only after re
eiveiving an a
knowledgement from thetop-level state, indi
ating that the event has been fully pro
essed. The sendingof events to other obje
ts is en
apsulated within the exec fun
tion, whi
h sendsthose messages dire
tly through the state
hart's out port. The treatment of31

syn
hronous vs. asyn
hronous messages is also the responsibility of this fun
-tion.Our en
oding highlights the relative
omplexity of the semanti
s of and-states
ompared to or-states. This
ould be used as an argument against and-states as a me
hanism to a
hieve
on
urren
y and perhaps in favour of alterna-tive approa
hes su
h as the one taken by the UML-RT pro�le, where
on
urrentpro
esses are des
ribed as separate a
tive obje
ts with well-de�ned interfa
eswhose behaviour is given by simpli�ed State Ma
hines with only or-states.Referen
es[1℄ E. Börger, A. Cavarra, and E. Ri

obene. Modeling the Dynami
s of UMLState Ma
hines. In Abstra
t State Ma
hines � Theory and Appli
ations.International Workshop, ASM 2000, Pro
eedings., volume 1912 of Le
tureNotes in Computer S
ien
e, pages 167 � 186. Springer, 2000.[2℄ E. Börger and R. Stärk. Abstra
t State Ma
hines. A Method for High-LevelSystem Design and Analysis. Springer, 2003.[3℄ S. Borland. Transforming State
harts to DEVS. M.S
. thesis, S
hool ofComputer S
ien
e � M
Gill University, 2004.[4℄ S. Borland and H. Vangheluwe. Transforming State
harts to DEVS. In Pro-
eedings of the 2003 Summer Computer Simulation Conferen
e (SCSC'03)� Student Workshop., 2003.[5℄ A. Cimatti, E. Clarke, E. Giun
higlia, F. Giun
higlia, M. Pistore,M. Roveri, R. Sebastiani, and A. Ta

hella. NuSMV2: an open sour
etool for symboli
 model
he
king. Te
hni
al report, January 01 2002.[6℄ Formal Systems (Europe) Ltd. Failures-Divergen
e Re�nement: FDR2User Manual, 1992.[7℄ A. Gawanmeh, S. Tahar, and K. Winter. Formal veri�
ation of ASMs usingMDGs. Journal of Systems Ar
hite
ture: the EUROMICRO Journal, 52(1�2):15�34, January 2008.[8℄ D. Harel and A. Naamad. The STATEMATE semanti
s of State
harts.ACM Transa
tions on Software Engineering and Methodology, 5(4), 1996.[9℄ C. A. R. Hoare. Communi
ating Sequential Pro
esses. Communi
ations ofthe ACM, 21(8):666�677, August 1978.[10℄ V. S. W. Lam. A Formal Exe
ution Semanti
s and Rigorous Analyti
alApproa
h for Communi
ating UML State
hart Diagrams. Ph.D. thesis,University of Bath, 2006. 32

[11℄ V. S. W. Lam and J. A. Padget. Formalization of UML state
hart diagramsin the π-
al
ulus. In Australian Software Engineering Conferen
e, pages213�223. IEEE Computer So
iety, 2001.[12℄ V. S. W Lam and J. A. Padget. On exe
ution semanti
s of UML state
hartdiagrams using the π-
al
ulus. In Ban Al-Ani, Hamid R. Arabnia, andYoungsong Mun, editors, Pro
eedings of the International Conferen
e onSoftware Engineering Resear
h and Pra
ti
e, SERP '03, June 23 - 26, 2003,Las Vegas, Nevada, USA, Volume 2, pages 877�882. CSREA Press, 2003.[13℄ K. L. M
millan. The SMV system, November 06 1992.[14℄ R. Milner. Communi
ating and mobile systems: the π-
al
ulus. CambridgeUniversity Press, 1999.[15℄ R. Milner, J. Parrow, and D. Walker. A
al
ulus of mobile pro
esses,parts I and II. Reports ECS-LFCS-89-85 and 86, Computer S
ien
e Dept.,University of Edinburgh, Mar
h 1989.[16℄ U. Nestmann and B. C. Pier
e. De
oding
hoi
e en
odings. Informationand Computation, 163(1):1�59, 2000.[17℄ M. Y. Ng and M. Butler. Towards Formalizing UML State Diagrams inCSP. In Pro
eedings of the 1st International Conferen
e on Software En-gineering and Formal Methods SEFM'03, pages 138�147. IEEE ComputerSo
iety, 2003.[18℄ Obje
t Management Group. Semanti
s of a FoundationalSubset for Exe
utable UML Models. Request For Proposal.http://www.omg.org/do
s/ad/05-04-02.pdf, 2 April 2005.[19℄ Obje
t Management Group. Semanti
s of a Foundational Subset for Exe-
utable UML Models. http://www.omg.org/do
s/ad/08-05-02.pdf, 2008.[20℄ Obje
t Management Group. UML Superstru
ture Spe
i�
ation v2.1.2.http://www.omg.org/do
s/formal/07-11-01.pdf, 2008.[21℄ G. Plotkin. A stru
tural approa
h to operational semanti
s. Le
ture NotesDAIMI FN-19, Dept. of Computer S
ien
e, Aarhus University, 1981.[22℄ E. Posse. Modelling and simulation of dynami
 stru
ture dis
rete-eventsystems. Ph.D. thesis, S
hool of Computer S
ien
e � M
Gill University,O
tober 2008.[23℄ E. Posse and H. Vangheluwe. kiltera: A simulation language for timed,dynami
 stru
ture systems. In Pro
eedings of the 40th Annual SimulationSymposium, 2007.[24℄ W. A. Ros
oe. Theory and Pra
ti
e of Con
urren
y. Prenti
e-Hall, 1998.33

[25℄ S. S
hneider. Con
urrent and Real-time Systems: The CSP Approa
h. JohnWiley & Sons, Ltd., 2000.[26℄ S. Van Langenhove. Towards the Corre
tness of Software Behavior in UML.Ph.D. thesis, Universiteit Gent, May 2006.[27℄ B. Vi
tor and F. Moller. The Mobility Workben
h: A Tool for the Pi-Cal
ulus. Te
hni
al Report ECS-LFCS-94-285, S
hool of Informati
s �University of Edinburgh, February 1994.[28℄ M. von der Bee
k. A stru
tured operational semanti
s for UML-state
harts.Software and Systems Modeling, 1(2):130�141, 2002.[29℄ W. L. Yeung, K.R.P.H. Leung, J. Wang, and W. Dong. ImprovementsTowards Formalizing UML State Diagrams in CSP. In Pro
. of the 12thAsia-Pa
i�
 Software Engineering Conferen
e, 2005, APSEC '05, pages176 � 184. IEEE Computer So
iety, 2005.[30℄ B. P. Zeigler. Multifa
etted modelling and dis
rete event simulation. A
a-demi
 Press, 1984.[31℄ B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and Sim-ulation. A
ademi
 Press, �rst edition, 1976.[32℄ B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and Sim-ulation. A
ademi
 Press, se
ond edition, 2000.

34

