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Abstract

As part of an effort to clarify the semantics of the UML we investigate
the semantics of UML State Machines and in particular we present an
encoding of a significant subset of UML State Machines into a process al-
gebra named kiltera, closely related to the w-calculus. Our approach differs
from other related attempts in that it provides a precise, executable, com-
positional, and extensible semantics of UML State Machines in terms of a
precise language, which furthermore does not resort to flattening the state-
space, and thus avoids the state-space explosion problem. This approach
can serve as the basis for tool support for UML State Machine models,
in particular, simulators, code-generators, debuggers and model-checkers.
We compare our encoding with several other proposed approaches.
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1 Introduction

The Unified Modeling Language (UML, [20]) has become the de facto standard
for software modelling, and has received considerable attention from software
practitioners, tool developers, as well as researchers in Software Engineering.

Despite its growing adoption, the UML lacks a formal semantics. This is
major source of problems, as different tool developers and vendors produce
software modelling environments which are claimed to be “UML compliant” but
may, in fact, disagree in terms of the behaviours produced by generated systems.
Furthermore, this lack of formal semantics also hinders the analyzability of
models and, as a result, there is a lack of analysis tools for UML such as model-
checkers.

The need for a formal foundation for the UML is exemplified by the increased
interest in executable UML. The Object Management Group has issued a Re-
quest For Proposal (RFP) for a semantics for an executable UML foundation
[18]. This Request For Proposal has been answered in [19], but the resulting
semantics is defined in terms of a Java-like language, making the semantics not
as abstract as possible and too implementation-dependent in the sense that it
relies too heavily on the (non-trivial) semantics of the Java-like language used,
which in turn compromises analyzability without solving all ambiguities. For



this reason it is desirable to search for a formal semantics which is based on
some simple, well-defined formalism, thus clarifying ambiguities and enabling
model analysis.

Formalizing the UML is a non-trivial task. The UML specification [20] is
a very large document full of technical details, and with a significant amount
of ambiguities. Many of these ambiguities are deliberate, providing seman-
tic variation points, in order to accommodate different tool developers. But
others are the result of lack of specification and clarity. Nevertheless, the prob-
lem of formalizing its semantics can be broken down, as the UML consists of
several sub-languages, each of which can be studied and understood with a
certain degree of independence from the others. The UML sub-languages are
broadly divided into two categories: structural and behavioural. Structural sub-
languages such as Class Diagrams, describe the structure of a software system.
Behavioural sub-languages describe the behaviour of systems. Since the focus of
the UML is modelling Object-Oriented software, behavioural diagrams describe
the behaviour of objects. There are three main kinds of behavioural diagrams:
Activity Diagrams, Interaction Diagrams and State Machines. This report is
concerned with defining the semantics of State Machines.

We propose a formal semantics for a significant subset of UML State Ma-
chines (which we also call statecharts) by mapping them into a process algebra
called kiltera [22, 23] closely related to the m-calculus [15, 14]. Furthermore,
we propose a textual syntax for state machine diagrams, based on the syntax
defined in [28].

A question that may arise is why did we choose kiltera as a target language
instead of better known languages such as CSP [9, 25], ASMs [2] or even the
m-calculus [15, 14] upon which kiltera is based. This selection came down to the
choice of operators provided by the language as well as the facilities to simulate
the resulting models. In particular, kiltera provides some higher-level constructs
such as pattern-matching which facilitate the description of the generated mod-
els and render them more readable. Furthermore, UML State Machines allow
time-triggered transitions, but the existing timed variants of the aforementioned
calculi do not easily capture such semantics.

The mapping described in this report is based on [4, 3]. This previous work
proposes an informal transformation from classical (STATEMATE) statecharts
[8] into the DEVS formalism [32].

Our mapping has several characteristics that make it appealing: it provides
a precise, formal semantics in a compositional, non-flattening fashion which is
executable and extensible enough to support several semantic variation points.
The benefits of being a compositional mapping are multiple:

e the semantics of a state machine is uniquely determined by the seman-
tics of its component sub-states, thus supporting compositional reasoning
about models, as well as component replaceability (i.e., a sub-state ma-
chine can be replaced by an equivalent one without changing the behaviour
of the whole state machine),



e it does not rely on flattening the statechart, thus resulting in a more
compact representation,

e the structure of the statechart is mimicked by the resulting kiltera model,
thus each state is in a one-to-one correspondence with a component in
the kiltera model, which facilitates analysis, traceability, and tool support
(e.g. debuggers, animation, etc).

We concentrate on a subset of State Machines, rather than dealing with the full
specification in all detail in order to simplify the treatment. We focus on the
following features of the official UML State Machine specification:

e Composite states, including both or-states (also known as sequential states)
and and-states (also known as concurrent states),

e Inter-level transitions (i.e. transitions “crossing boundaries”)

Group transitions

Entry and exit actions

e Transition actions

We do not deal in the present version of the mapping with the following features
of the official UML State Machine specification:

e History states

e Pseudo states, in particular, forks, joins, condition points, junctions, entry
points and exit points.

e Transition guards

Nevertheless, our mapping is extensible enough to be able to deal with all fea-
tures of the official UML specification.

1.1 Related work

There have been multiple efforts to formalize the semantics of UML State Ma-
chines, as well as other variants of statecharts. We now discuss some of these
approaches.

Yeung et al (CSP semantics) One approach is presented in [29] where a
subset of UML State Machines is mapped into CSP [9, 24, 25]. This approach is
comparable to ours in that the target of the mapping is a process algebra (CSP)
and they use a notion of paths for transitions similar to ours, but that’s where
the similarities end. The most striking difference is that they map a statechart to
a flattened state machine in CSP: the hierarchical structure of the state machine



is lost and each group transition! is encoded in each possible sub-state of its
source. Furthermore this mapping does not enforce priorities between conflicting
transitions at different levels of nesting, as required by the UML specification.
Like ours, they do not deal with History states, other pseudo-states, or transition
guards, but unlike ours, it is not very clear how their mapping would have to
be extended to deal with such features.

This approach seems to build on the mapping introduced in [17], although
this earlier work also deals with choice pseudo-states (conditionals) and it presents
a prototype translation tool from Rational Rose State Diagrams to CSP code
suitable as input for FDR [6] for verification.

Von der Beeck (SOS semantics) In [28] an alternative approach is pre-
sented, in which a textual syntax for UML State Machines is introduced and an
operational semantics is defined in the style of Plotkin’s Structural Operational
Semantics [21] as a set of inference rules defining a labelled-transition system
for statecharts. This approach has the advantage of being compositional and it
even deals with features such as shallow and deep history. Nevertheless it is not
a directly executable semantics, but rather, it provides the specification for a
simulation engine or interpreter. This contrasts with our approach of mapping
statecharts to another language for which we have a simulator. A major draw-
back of this approach compared to ours is that integrating timed transitions is
non-trivial, and would involve modifying and extending the inference rules and
possibly the syntax, whereas in our approach this extension can be dealt with
by using the timing constructs of our target language.

Van Langenhove (EHA /Kripke/SMV semantics) Another approach is
presented in [26], where State Machines are represented as Extended Hierar-
chical Automata, a kind of automata where each state may be associated with
another automaton. These hierarchical automata are given an operational se-
mantics as Kripke structures which are then mapped to SMV [13].

The mapping presented there has the advantage of being non-flattening,
but it is not clear whether it is compositional or not, in the sense that it is
not clear whether the final SMV target code of a statechart can be seen as the
combination of the translations of the component sub-statecharts. Furthermore,
their mapping already requires the definition of an operational semantics for the
Extended Hierarchical Automata, which is given as a Kripke structure whose
states, called configurations, already carry a lot of the machinery required of
UML State Machines, such as an event queue and a history. Furthermore,
non-compliant restrictions such as a maximum event-queue size, are imposed
on the target code. But defining the semantics of State Machines in terms
of something that already has those concepts embedded as primitive hardly
clarifies the semantics. A semantics should define something more complex in
terms of something simpler. This contrasts with our approach, where we do not

LA group transition is a transition whose source is a composite state.



impose extraneous, target language restrictions, and rely on a language which
does not include concepts of history or event-queues as primitive.

Lam and Padget (7m-calculus semantics) An approach which maps State
Machines into the 7-calculus, the process algebra upon which kiltera is based,
was introduced in [11] and further developed in [12] and [10].

Their approach associates states with w-calculus terms, and a protocol of
channel exchanges is used to model reception and handling of events. This
approach supports both shallow and deep history. The thesis [10] also presents
a tool that generates input code for the Mobility Workbench (MWB [27]) that
provides deadlock detection and equivalence checking between the generated 7-
calculus code from two statecharts (open bisimilarity) and also generates input
code for the NuSMV model-checker [5].

One of the main weaknesses of their approach is that the encoding does not
clearly describe how the hierarchical structure of a statechart is represented, and
in particular it is not clear how the encoding would accommodate an arbitrarily
deep hierarchy. Although the authors claim that their scheme respects the
lowest-first firing priority, the encoding and the examples provided seems to
support only one level of nesting between states. This puts into question the
claim of compositionality of this approach. There is no mention of how to deal
with inter-level and group transitions either, all fundamental features in UML
State Machines.

By relying on the pure m-calculus rather than a higher-level language, their
mapping makes use of complicated encodings for simple activities such as eval-
uation of a guard. Furthermore their mapping makes use of the unrestricted
choice operator + which is very difficult to implement in practice (see [16]).

A controversial aspect of this translation is that the State Machines mod-
elled also include Activities, thus describing a hybrid formalism between UML
State Machines and UML Activity Diagrams. This addition seems to introduce
confusion in the semantics rather than clarify it. Nevertheless, it appears to be
a relatively orthogonal issue which could be taken away.

Borger et al (ASMs semantics) Perhaps the most comprehensive approach
is that of [1] where the dynamics of UML State Machines are described using
Abstract State Machines [2]. This approach takes into account both sequential
states (or-states), concurrent states (and-states) as well as history pseudo-states,
and other features such as deferred events.

In this approach, the structure of the UML State Machine is encoded as part
of the state in the ASM, together with additional machinery used to keep track
of the current states, history, etc. Executing the state machine is performed by
ASM agents which choose among enabled transitions and execute the selected
transition by removing states which are exited and inserting entered states in
the table that keeps track of the current configuration.

This approach is different to others in that rather than mapping UML State
Machines to a “program” in the target language, they are mapped to a data



structure in the target language, and a general algorithm is implemented in the
target language which executes (interprets) this data structure.

A drawback of this approach is that, while model-checking techniques exist
for ASMs (e.g. [7]), using these techniques on the approach presented would
allow the verification of properties of the simulation algorithm itself, rather than
properties of a given statechart. Similarly, taking the “interpreter” approach
to semantics makes the comparison of statecharts more difficult: given two
state machines to compare, one has to consider the steps that the interpreter
goes through, rather than the steps that a semantic representation of the state
machines would follow. Furthermore, one wants to understand the behaviour
of a state machine which does not have certain features (e.g. history states),
a mapping to some language would not encode the corresponding features and
therefore the meaning associated to the state machine does not have elements
which do not affect its behaviour. By contrast, in a semantics approach based
on an interpreter, such as this ASM approach, when looking at the meanning
of a state machine one has to consider the interpreter and how it deals with all
features in the formalism.

Another drawback of this approach is that, quoting [1]: “The UML require-
ment that an object is not allowed to remain in a pseudostate, but has to
immediately move to a normal state, cannot be guaranteed by the rules them-
selves, but has to be imposed as an integrity constraint on the permissible runs.”
In other words, the algorithm itself is not sufficient to emulate the precise se-
mantics of statecharts and one must resort to an extraneous constraint on the
possible executions, limiting the direct executability of the semantics.

Borland and Vangheluwe (DEVS semantics) The mapping upon which
our work is based was introduced in [4, 3]. That work presents an informal
translation from STATEMATE statecharts into DEVS [32, 30, 31] models.

Because of the significant differences between STATEMATE statecharts and
UML statecharts, as well as the differences between kiltera and DEVS, our map-
ping departs significantly from the former in many respects, but the composi-
tionality of the approach is the same, including the idea of relay processes to
handle events within a composite state, as well as the routing mechanism within
the hierarchical structure of the statechart.

One of the main differences in their approach, stemming from the STATE-
MATE semantics is that incoming events are treated in a highest-first firing
priority, as opposed the UML State Machines. Furthermore their approach
does not guarantee run-to-completion semantics.

The most important difference, however, is that their work constitutes an in-
formal description of the dynamics of statecharts, whereas our approach presents
a precise formal semantics.

1.2 Organization of this report

The remainder of this report is organized as follows: in Section 2 we provide
some preliminary definitions and notation used throughout the report. In par-



ticular we introduce a new textual syntax for State Machines in Section 2.2
and present an informal account of the kiltera language in Section 2.3. Sec-
tion 3 presents the mapping itself. We begin describing the structure of the
model produced by the mapping (Subsection 3.1), followed by a description of
the messages that flow between components in the generated model (Subsection
3.2) and actions (Subsection 3.3). Then we describe the mapping of basic states
(Subsection 3.4), or-states (Subsection 3.5) and and-states (Subsection 3.6).

2 Preliminaries

2.1 Sequences

In the sequel we use several operations on sequences. In this Subsection we
define the notation for these operations.

Notation 1. We write 1.k for the set {1,2,...,k}. Sequences will be enclosed
in ( and ). A sequence name will be denoted with an arrow on top, and its
elements subscripted with their index, beginning from 1: ¥ = (1, z2, 3,...). A
finite sequence (a1, ..., ar) will be abbreviated as ai. ;. The empty sequence is
denoted (), or e.

Sequence concatenation will be denoted -, so

de
(@1, ey ar) - b1y by) < (ar, ooy an, b1, ooy i)

Prepending an item z to a sequence @ = (a1, ...,ax) is denoted zd, so zd def
(x) - d = (x,a1,...,ar). We define last({aq, ..., ag)) = a,. We denote rev(ad) for
the reverse of the sequence, i.e. rev({as, ..., ax)) et (ag, ...,a1). We write |@| for

the length of the sequence a.

A sequence defines a total order on its elements according to their positions:
let @ = (a1, ..., ax) be some sequence, then we write a; < a; if ¢ < j.

We will also use sequence comprehension notation: if I is some totally or-
dered set (possibly a sequence), ¢(z) is an expression with free variable x, and
¥(x) is some predicate on z, then the expression (p(z) |z € I, ¥(z)), also writ-
ten (p(x) |¥(x))zer denotes the sequence of all p(z) such that ¥ (x) holds, pre-
serving the order over I, this is, if © < 2’ for some z, 2’ € I then ¢(x) < p(z’).
For example, (22),c(1,2,33 = (1,4,9).

Definition 1. (Prefix) Let @ and b be a pair of sequences. We say that a is
prefix of b written @ C b if there is a sequence w such that @ -« = b.

Remark 1. C is a partial order, this is, it is reflexive, transitive and anti-
symmetric.

Definition 2. (Prefix removal and common prefix) Let @ be a sequence
and b some prefix of @, i.e. @ = b - for some w. Then, we write @ — b for .



This can be defined recursively as follows:

- de
e—xb ef €
N def N

rd—€ = xd

. > def -
xa — xb ef a—b

5 = def = .
xd — yb 2 ifx#y

Given two sequences @ and g, @nb denotes the greatest common prefix
of d and b, i.e. dMbC a@, aMb C b and for any prefix « of both @ and b, ¥ C aMb.
This can be defined recursively as follows:

enb def €
- def
alle = €
- 7 def .
xa Myb el . ifx#y
— 7 def — ™
xaMaxb = xz(@nb)

Remark 2. The greatest common prefix is nothing but the greatest lower bound
according the the prefix partial order C.

2.2 Statechart syntax

Let Ng, N7, 11, A be the sets of all possible state names, transition names, events
and actions respectively. We use n,m, ... for state names in Ng and t;,¢,, ... for
transition names in Np. We write ey, e, ... for events in II and ay,as, ... for
actions in 4. We assume that each state is labelled with a unique name.

Definition 3. (Statechart terms) The set SC of statechart terms is defined
according to the following BNF where n € Ng and s, s1, ..., s range over SC :

s u= [n,(en,er)] Basic-state
| [n, (51, 88), T, (en, ex)] Or-state
| [n, (81, SK), (en, ex)] And-state

Here en,ex € AU {1} and T C TR where TR & Ny x N x IT x A x
N§ is the set of transitions of an or-state, subject to the condition that if

s = [n,(s1,..., s), T, (en, ex)] then for each t € T with t = (£, 5,e,a,d), & =
(01,...,05) and d = (dy, ..., d;), the following holds?:
1. 0, = parent,(0;41) for each i € {1,....,k — 1},

2. d; = parenty(d;41) for each i € {1,...,1 — 1},

2Note that conditions 3 and 4 state that the the sequences for source (5) and target (d) of
the transition begin with the state name of the state that contains the transition, rather than
from the “root” of the state machine; in particular, the state containing the transition is the
least common ancestor of the source and target of the transition.



3. n = parent,(o1), and
4. n = parent,(d;)

where the function parent, : Ng — N which gives the name of the enclosing
state (a.k.a. the parent) of a state with a given name within the statechart s,
is defined as follows for each non-basic statechart term s:

def

parent(, o . 1 (en,ex) (M) d: n if 3i e {1,....,k}. name(s;) =m
parenty, o 7 (en ca)] (m) e/ parent, (m) if =3 e {1,...,k}.name(s;) =m
Am € descendants(s;)
S E COR if 3i € {1,.... k). name(s;) = m
parenty, o\ (enex)) (M) 24 parent (m) it =3i € {1,...,k}.name(s;) =m

Am € descendants(s;)

with the functions name : SC — Ny and descendants : SC — 2Vs given by:

name([n, (en, ex)]) def
name([n, 1., T, (en, ex)]) def
name([n, s1_, (en, ex)]) def
and
descendants([n, (en, ex)]) oy
descendants([n, s1.x, T, (en, ex)]) =4 {name(s;)}ie1..x U U,cq. , descendants(s;)

Given an or-state s = [n, (s1, ..., sx), T, (en, ex)], we call the first sub-state
s1 the default state of s.

Given a transition ¢t = (¢,0,¢e,a,d) we define name(t) %/ { as the name of
the transition, gsrc(t) 1 5 as the qualified source of ¢, src(t) =4 last(qsrc(t)) as
the source of ¢, evt(t) ©l ¢ as the trigger event of ¢, act(t) ) 4 as the action
of ¢, qtrg(t) ) 7 as the qualified target of ¢, and trg(t) = last(qtrg(t)) as the
target of t.

Notation 2. In the remainder we will omit the entry and exit actions when
en= 1 and ex = L.

Example 1. Consider the statechart depicted in Figure 1. This statechart
contains only or-states. In our syntax this statechart is described by the term
s1 where:

S1 = [n17(52553)7{t17t2}]

s2 o, (54, 85), {t3)]
def

S3 = [ng]

S4 def [n4]

s < [ng]

10



t3 : es/as

ns

to : eafas

——

Figure 1: A simple statechart.

where
y (t1, (n2,n4),€1,a1, (n3))
to def (ty, (n3), €2, a2, (n2,ns))
ty (t3, (n4), e3,as, (ns))

The syntax we have described is based on von der Beeck’s syntax from
[28], but with some important differences. The two main differences between
ours and von der Beeck’s: 1) we do not explicitly include a pointer to the
currently active state as part of the term, and 2) inter-level transitions are
specified by fully qualified state names rather than configuration sets. In von
der Beeck’s syntax, an inter-level transition is specified as (¢, 1, sr, e, a, td, j, ht)
where t is the transition’s name, 4 is the index of the source state, sr is the
“source restriction”, a (possibly incomplete) configuration, this is, a set of state
names which determines the actual state inside the source which is the origin
of the transition, e is the trigger, a is the action, td is the “target determinant”,
the set of state names which determines the actual state within the target state,
whose index is j, and At is the history type of the transition. This means that
the actual origin of the transition is determined by the pair (¢, sr) and the actual
destination is given by the pair (j,¢d). In our syntax we represent the origin
and destination of a transition by a sequence of enclosing state names, which
can be thought of as a fully qualified name for a state.

2.3 kiltera’s core: the xk\7-calculus

In this Section we describe the core of the kiltera language, a subset called the
kAT-calculus. This calculus is similar to the well-known m-calculus [15, 14],
but departs from it in some important ways. In particular, the xA7-calculus
allows the description of timed behaviour (cf. w-calculus processes are untimed).
Communication is by asynchronous message passing, both by unicasting and

11



multicasting (cf. communication in the m-calculus is only by unicasting). Unlike
the m-calculus, there are two unicasting send operations: v and z!v (and two
corresponding multicasting versions). The later (z!v) corresponds more closely
to the m-calculus send action. The difference is in their behaviour with respect
to the presence of listeners at the time the action is performed. In addition to
these features, it also includes some higher-level capabilities such as primitive
constants, data structures and pattern matching. These features facilitate the
description of statechart behaviour.
The basic syntax, which defines the set KLT of kA7 terms, is as follows:

P == | «a | AE—=P | vz.P | P | P
| PuP | ) Bi— P | Alx, ..z
icl
| match E: Fy — Py|---|F, — P,
a == zlE | zIE | z1"E | zI"E B = xlFét

where P, P; range over process terms, o ranges over actions, 3 ranges over
input guards, x, z; range over the set of (event or channel) names, t ranges over
the set of (variable) names, A ranges over the set of process names, F ranges
over expressions, and F' ranges over patterns. Process definitions have the form:

Az, .y y) “p

The syntax for expressions and patterns is as follows:

E == F | opE | EiopEsy | f(F1,....,Em)
F == n | true | false | “s" | = | (E1,...,Em)

where op € {+,—,*, /,mod,and,or, not,<,>, =, <=,>=,! =}, n ranges over
floating point numbers, s ranges over strings, x ranges over variable names, and
f ranges over function names, with function definitions having the form:

de
fz1, . xn) “I'E

The process 4/ simply terminates, and cannot interact with others. Processes
« are output processes. The process x T E triggers an event x and associates this
event with the value of expression E. Alternatively, one can say that it sends
the message E through channel x. This is a transient trigger, this is, if there
are no listeners, i.e. processes ready to interact via x, at the current time, then
the event is discarded. In any case, the trigger is “consumed” in the current
time. This contrasts with z!E, which also triggers  with F as value, but if
there are no listeners at the current time, this process remains alive until there
is at least one other process ready to interact with it. Once interaction occurs,
the trigger is consumed. We call z!E a lasting trigger. Both x T E and z!F

12



perform communication by unicasting. The processes x T* E and z!*E are the
multicasting variants of T F and x!FE respectively, so the message is delivered
to all relevant listeners. If there are no listeners when x!* E is performed, it will
remain alive until at least one process is ready to accept the message. At that
time, all potential receivers will obtain the message, and the trigger is consumed
(not replicated in the future). In all of the trigger processes, the expression E is
optional. The process AE — P delays the execution of process P by an amount
of time ¢, the value of the expression E. The process vz.P hides the name x
from the environment, so that it is private to P. Alternatively, vx.P can be seen
as the creation of a new name, i.e. a new event or channel, whose scope is P.
We write vy, o, ..., ,.P for the process term vzy.vzs....vz,.P. The process
Py | Pz is the parallel composition of P, and P,. In its generalized form, we
write ;g1 ny P for Py || Py || --- || P,. The process Pi; P is the sequential
composition of P; and Ps, this is, P; must terminate before beginning P,.> The
process Y ,.; i — P; is a receiver or listener, consisting of a list of alternative
input guarded processes 5; — P;. Each input guard (; is of the form z;?F;ét;,
where x; is an event/channel name, F; is a pattern, and t; is a variable?. This
process listens to all events (channels) z;, and when x; is triggered with a value
v that matches the pattern F;, the corresponding process P; is executed and the
alternatives are discarded. A listener process represents, thus, a process in a
state with external choice. Before P; is executed, ¢; is assigned the elapsed time,
this is, the time the process remained blocked waiting for an event to occur.
Furthermore, if the event z; was triggered with some value v which matches
the pattern Fj, this matching results in the binding of F;’s variables by the
corresponding values of v.> The scope of these bindings is P;. The suffixes F;
and 0t; are optional. If F; is absent, no pattern-matching is done. Sometimes
we write listeners in infix notation: z1?Fi6t7 — P + -+ + 2,7 F,0t, — P,.
This operator is not commutative: a guard z;?F;dt; will be enabled only if the
previous ¢ — 1 guards are not enabled (no events triggered or matched patterns).
Hence the guards are evaluated in order. We will use the symbol _ in patterns as
a nameless variable (i.e. a pattern that matches anything) to denote “anything

else”. The process A(y1,...,yn) creates a new instance of a process defined

d . .
by A(z1,...,2n) e/ P, where the ports x1,...,x, are substituted in the body

P by the events or channels yi,...,y,. Finally, the process match F: F} —
Py|---|F, — P, evaluates the expression F and attempts to match it with
each pattern F;. If a pattern F; matches then the corresponding process P; is
executed. If more than one pattern matches the choice is non-deterministic.
This construct is syntactic sugar for ve.(z1E || 2?F) — Py +---+2?F, — P,).
We also write match E: |;c;F; — P; for match E: Fy — Py|---|F, — P,.

For a formal semantics of this calculus, we refer the reader to [22].

3The sequential composition operator is actually a derived operator, but for simplicity we
include it here as a primitive. See [22] for details.

4The symbol § is just a separator, which is read as “after”.

5This is essentially the same as pattern-matching in functional languages like ML or Haskell.
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Figure 2: Hierarchical structure of the kiltera process corresponding to the stat-
echart from Figure 1. Each box labelled p; represents the kiltera process corre-
sponding to the state named n;.

3 From statecharts to kiltera processes

In this Section we will define a mapping [-]7 ¢, 1 out : SC — KLT which, for any
well-formed statechart term gives a kiltera process describing the statechart’s
behaviour. When translating a term s € SC, the additional parameters specify
the set of transitions (T") going out of s or any of its descendants and the ports
(fp, tp, and out) used by the resulting kiltera term to communicate with the
enclosing process (see Subsection 3.1 below for details on the role of these ports).

3.1 Structure of a mapped statechart

Each statechart is mapped to a kiltera process which mimics its nesting struc-
ture®. In the case of or-states and and-states, the corresponding kiltera process
consists of one sub-process for each sub-state, and a relay process, which is in
charge of controlling which sub-state is active, as well as forwarding messages ac-
cordingly. For example, the statechart in Figure 1 is mapped to a kiltera process
with a structure depicted in Figure 2.

Each kiltera process denoting a statechart has an interface consisting of three
ports: fp, tp and out. This is depicted in Figure 3. The first port, fp is used
to receive messages from the parent, this is, the kiltera process representing
the enclosing statechart. The second port, ¢p is used to send messages to the

6This is, the mapping is compositional.
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fr tp out

Figure 3: kiltera process interface for a statechart.

parent. The third port, out is used to send output messages (i.e. the action of
the transition performed).

At run-time, the relay component of an or-state keeps track of the currently
active sub-state by a pair of links fc and tc to the corresponding sub-process.
Since the active sub-state changes, so do these links. Hence, channel mobility
plays a fundamental role in describing the dynamics of statecharts.

The general idea is as follows: when a new event is received by the statechart,
an event message is given to the top-level (a.k.a. the root) process for the
statechart. Its relay then forwards this event message to its currently active
sub-state, which in turn forwards it down its currently active sub-state, and so
on. When the message reaches a basic state, it is matched against the triggers
of the outgoing transitions from this state. If some transition matches the
trigger, it means that the transition is taken, so an entry message is sent to the
process representing the target of the transition, and the process representing
the currently active state exits (executing its exit action) and becomes inactive.
Since there is no direct link between the processes representing the source and
target of the transition, this entry message is routed through the hierarchy
of processes, according to the states that the transition crosses. While the
entry message is sent to the destination, the states being exited execute their
exit action and become inactive as the entry message travels “up” to the least
common ancestor of the source and target of the transition. When the message
reaches the least common ancestor, the transition’s action is executed, and the
message is routed “down” to the appropriate target. As the message goes “down”,
the states being entered become active and their entry actions executed, until we
reach the actual target, which answers with an entry acknowledgement message,
to be forwarded all the way up to the root. On the other hand, if the event did
not match any transition of the currently active basic state, then a message is
sent to the enclosing state (a.k.a. the parent) informing it that the event was
not handled. In such case, the enclosing state attempts to match the event in
the same manner as the basic state.
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| Message | Description |
“enter” enter a state
“exit” exit from current state
(“enter”, doact, actdone) | enter a state with action trigger (see sec. 3.4.4)
“en _ack” enter acknowledgment
“ex ack” exit acknowledgment
(“evt”, value) event with given value
“enhh” event not handled here

Table 1: Message types.

3.2 Messages and paths

Messages exchanged between processes representing states are of the form (p, m)
where p'= (p1, ..., pr) is the path to the destination, and m is the message.

A message m contains either a command to enter or exit a state, an event,
or an acknowledgment. The possible values are shown in Table 1.

A path p'is a sequence of the form (“up”, “up”, ..., “up”,n1,na, ...,n;) which
describes how to route the message from one state to another. The prefix
(“up”, ..., “up”) specifies the number of levels the message has to go “up” in the

nesting hierarchy, and the postfix (ni,...,n;) specifies the states that must be
taken going “down” in the nesting hierarchy until reaching the destination. Here
n; is the name of the target. ”

Example 2. Consider the statechart in Figure 4. The nesting tree for this
statechart, and the path from state ng to state nig are shown in Figure 5. If the
statechart is currently in state ng and receives and event that causes transition
t; to nig to fire, an event message (evt) is sent from the top-level state ng
downwards to ng with path (ns,n4,n7,n9). This causes state ng to send an
entry message (“enter”) to nig with path (“up”, “up”,ns,ns,n1p). It has only
two “up”’s because one is taken at state ny; and the other is taken at state nq,

leaving the message in state ny, where it will go down the path (ns, ng, ni0).

We define the following function to compute the path of a given transition
from one state to another.

-

Definition 4. (Path of a transition) Let ¢t = (¢,0,e,a,d) € TR be some
transition. The path from src(t) to trg(t) is given by:
d j “ 99 7
tpath(t) = (“up”)icqr.... 11} - d
This is, the path of a transition contains an “up” for each state until the

least common ancestor of the source and target, followed by the sequence of
names going “down” until the destination.

7A message sent to a descendant would not have any “up”’s, but in our translation, mes-
sages sent to descendants are sent only to direct sub-states through their specific channels,
and the path will be ().
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Figure 4: A statechart with an inter-level transition.
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Figure 5: Nesting tree and path from ng to nig.
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We also define the following functions to compute the path of a transition
from one state to another, given the source and target of the transition.

3.3 Executing actions

When a state s is entered, its entry action en must be executed, and when it
is exited, its exit action ex must be executed. Furthermore, when a transition
is taken, its action must also be executed. In the remainder of this Section we
assume there is a function exec which executes actions (entry, exit and transition
actions). More precisely, it is a function execyy: : A — KLT mapping actions
to appropriate kiltera processes, which may produce its output at a given port
out.®

Once a state has executed its entry action (resp. exit action), it sends
an acknowledgment signal “en ack” (resp. “ex_ack”) to its parent. These
acknowledgments are used to guarantee that actions are fully executed and in
the right order, and to guarantee run-to-completion semantics.

3.4 Mapping basic states

In the remainder of this Subsection we will assume that s = [n, (en, ex)] is the
basic state that we are translating. Before showing the translation of s itself,
we need some preliminary process definitions.

3.4.1 Entry sequence

The following process executes the state’s entry action en and sends an entry
acknowledgment to its parent.®

basic_enseq, (tp, out) =4 exeCoyt(en); tp1 ({), “en__ack”)

3.4.2 Exit sequence

The following process is analogous. It executes the state’s exit action ex and
sends an exit acknowledgment to its parent.

basic_exseq, (tp, out) . exeCoyt(ex); tpT (), “ex_ack”)

81In this encoding we assume that the only observable effect of executing an action is sending
a message to an object, and thus, we only assume the (possible) use of an out port. A more
comprehensive mapping would also allow actions to modify the attributes of the object who
owns the statechart. In such case, the exec mapping would also be parametrized by some
link(s) to a process that gives access to the object’s attributes.

9Note that the path is the empty sequence () since the destination is the parent itself.
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3.4.3 Inactive state

The following process represents an inactive basic state. The subscript T denotes
the set of outgoing transitions from this state (s).

basic _inactive, (fp, tp, out) def

fp?((), “enter”) — (basic_enseq, (tp, out); basic_active, -(fp, tp, out))

An inactive basic state can only accept enter messages. Once an enter mes-
sage arrives, it executes its entry sequence and becomes active.

3.4.4 Active state

The following process represents an active basic state. As before, the subscript
T denotes the set of outgoing transitions from this state.

: . d
basic_active, .(fp, tp, out) f

fp?((), “exit”) —
(basic__exseq, (tp, out);
basic_inactives)T(fp, tp, out))
+ ZtieT fp?(<>7 (“th” I th(ti))) -
(basic_exseq,(tp, out);
basic_jump, 1, (fp,tp, out))
+ fp?((), (Fevt”, _)) —
)

(tp1({), “enhh”
basic_active, ,.(fp,tp, out))

)

An active state can receive either an exit message (“exit”) or an event of
the form (“evt”,value). If it receives an exit message, it must perform the exit
sequence and become inactive. If it receives an event, there are two possibilities:
either the event’s value matches the trigger evt(¢;) of some transition ¢;, or it
doesn’t.

If the event’s value matches the trigger evt(t;) of some transition ¢;, the
state must execute the exit sequence, and then handle the event, which is done
according to the following:

basic_jump, .. (fp,tp, out) def
v doact, actdone. (doact? — (execoyt(act(t;)); actdone?)
I tp1 (tpath(t;), (“enter”, doact, actdone)));
basic_inactive_ - (fp, tp, out)

This process sets up the execution of the transition’s action (act(t;)) but this
is not executed right away, since there might be exit actions of enclosing states
that must be executed before. Instead, the execution of this action is deferred
until all necessary exit actions of enclosing states are executed. Hence we only
create a “callback” process doact? — (execoui(act(t;)); actdone 1) that waits for
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the signal doact which is to be triggered when the action must be executed, and
then triggers signal actdone when the action has finished. While creating this
“callback” for the action, we send an “enter” message to the destination, via
the state’s parent (tp), following the appropriate path tpath(¢;). This message
carries additional information, namely the signals doact and actdone, so that
the action is triggered at the appropriate moment, when all “up” steps have
been performed, and just before entering states going down.'? Finally the state
becomes inactive.

If the state receives an event which does not match the trigger event of any of
the outgoing transitions, then it sends the parent an “enhh” message indicating
that the event is not handled here. Then it remains active.

3.4.5 Translation of a basic state

Given these definitions we are now able to map a basic state s = [n, (ex, en)] to
a kiltera term as follows:

def . . .
[[[TL, (ew?en)]ﬂT,fp,tp,out = baSIC_InaCtlve[n,(ez,en)],T(fpa tp70Ut)

This is, a state is mapped to an initially inactive process.

3.5 Mapping or-states

In the remainder of this Subsection we will assume that s = [n, s1.x, 7, (en, ex)]
is the or-state that we are translating.

3.5.1 Entry sequence

The entry sequence for an or-state must first execute the state’s entry action
en, then recursively enter the default state (with the process enter child defined
below), and finally send an acknowledgment to the parent:
or_enseq,(tp, out, fd,td) =4
exeCoyt(en);enter child(fd, td);tp1((), “en _ack”)
where fd and td are the ports from the default state and to the default state
respectively, ¢p is the port to the parent, and out is the output port.

The process enter _child tells a given child to enter, and then waits for ac-
knowledgment:

enter_child(fc,tc) =4 tel ((), “enter”); fc?((), “en_ack”)

Here fc denotes the port where messages from the child are expected, and tc
the port where messages to the child are sent.

10Note that here we make use of kiltera’s (and the m-calculus) defining characteristic: channel
mobility. We send an event (channel) as part of the message.
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Note that the default child must be fully entered and given its entry acknowl-
edgment, before the or-state sends its own acknowledgment to its parent. This
guarantees that when an entry acknowledgment is received, the corresponding
child has completed its entry and executed all entry actions in the appropriate
order.

3.5.2 [Exit sequence

The exit sequence of an or-state is analogous to its entry sequence, but when

the state is asked to exit, its currently active sub-state must be exited (using

the process exit _child defined below) before the state’s exit action is performed.
d

or_exseq,(tp, out, fe, tc) </

exit_child(fc,tc); execout(ex); tpT ({), “ex_ack”)

The exit_child process is analogous to the enter child process:

exit_child(fe, te) & te1 (), “exit”); fe?((), “ex_ack”)

where fc and tc are the channels to the currently active child.

As before, the currently active sub-state must have fully exited before the
exit action of the state is performed and the exit acknowledgment sent to the
parent. This guarantees that when an exit acknowledgment is received, the
corresponding child has completed its exit and executed all exit actions in the
appropriate order.

3.5.3 Forward sequence

When we are taking a transition whose target is a descendant of the state, rather
than the state itself, the relay for the state must forward the entry message to the
appropriate child, in accordance with the message’s path. This is accomplished
by the following process, which sends a message to the child specified by the
ports fc and tc with etc as the remaining path to the destination'!, and waits
for an entry acknowledgment from the child which, in turn, is forwarded up to
the state’s parent.

d
forward _enter(tp, fc, tc, etc) tef

tel (ete, “enter”); fe?((), “en_ack”) — tpT((), “en_ack”)

3.5.4 The relay

The relay process is in charge of keeping track of active sub-states, as well as
handling and forwarding messages. The relay can be in two modes: active or

I The first element of the path is stripped by the relay, as described below.
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inactive. Initially it starts in the inactive state:

or_relay&T(fp, tp, out, fer. g, ter k) def
or_inactive, 1-(fp,tp,out, fc1 k,tcr k)

The relay contains not only the fp, tp, and out ports of the state, but also a
pair of ports fc; and tc; for each sub-state 4 to communicate with them!?. We
assume that the first component represents the default state, and therefore fc;
and tc; are the links to the default state. The subscript T denotes the set of
outgoing transitions from this state (s) or any descendant.

3.5.5 Inactive state

When the state is inactive, it may receive an enter message directed to it (if the
state is the target of the corresponding transition), or to a descendant (if the
descendant is the target of the transition). In the following, fp, tp, and out are
the usual ports. In addition to these, for each child ¢ we have a pair of ports
fe; and tc; respectively from the child and to the child.
. . def
or_inactive, 1-(fp,tp, out, fc1 g, te1 k) =
fp?({), “enter”) —
(or_enseq,(tp, out, fc1,tcr);
or_active, (fp,tp,out, fei,ter, fer k,ter k)
+ Zsiesl.,k fp?({name(s;)) - ete, “enter”) —
(execout(en);
forward _enter(tp, fc;, te;, ete);
or_activeS)T(fp, tp, out, fe;, te, fer gy ter k)

When the inactive state receives an enter message directed to it, is executes
its entry sequence (using the ports f¢; and tc; to communicate with the default
state), and becomes active, setting the currently actuve sub-state to be the
default state by executing the or_active, ;. process with the ports fci and tey
as the fourth and fifth ports respectively.

When the inactive state receives a message aimed at a descendant within
the sub-state s;, it must be an enter message to the descendant, and thus, the
state must be entered. This means that the enter action must be executed,
the message must be forwarded to the corresponding sub-process (via the chan-
nels fc; and tc; which correspond to the child s;),'* and then it must become
active, with the sub-state s; active (indicated by the fourth and fifth ports of
the or_active, ;- process). By executing the entry action before forwarding the
message we guarantee the semantics of transitions, where entry actions must be
executed in order of nesting, from outermost to innermost, for all states that
the transition is entering.

12Note that we use the sequence notation fci j for the sequence of ports fci, ..., fci, and
similarly for tcy. k.-

I3Note that at this point the first item of the path is stripped and only the remainder etc
is passed to the forwarding process.

22



3.5.6 Active state

The following process represents an active or-state. As before, for each child ¢
we have a pair of ports fc; and tc; respectively from the child and to the child,
and the distinguished ports fc and tc link the process with the currently active
sub-state.'*

def

or_active, »(fp,tp,out, fe,te, fei g, ter k) =
fp?((), “exit”) —
(or_exseq, (tp, out, fe, tc);
or_inactive, ,-(fp,tp, out, fci g, tcr k)
+ I (et 3)
or_handle_event,_ (fp,tp,out, fe,te, fei k,ter k, @)

When an or-state is active it may receive an exit message or an event. If it
is an exit message, it must execute the exit sequence, sending an exit message
to the currently active sub-state (via tc) and then become inactive. If it is an
event, the or_handle_event, ;. process, defined below, takes care of it.

3.5.7 Handling events

The semantics of UML statecharts states that when two transitions with the
same trigger are enabled, and the source of one is a descendant of the other
(i.e. it is at a lower level of nesting), then the one with lower level takes priority
over its ancestor. In order to capture this semantics, the event handling process
must first send the event message “down” the nesting hierarchy to the currently
active sub-state to give it a chance to handle it. Suppose the or-state s receives
an event. Then, the event is sent to the currently active sub-state. There are
two possibilities, either:

1. The event is handled by the currently active sub-state, i.e., there was a
transition with a trigger that matched the event, or

2. The event is not handled by the currently active sub-state.

In the first possibility, we have two cases, depending on the target of the transi-
tion: either the target of the transition is outside s (Figure 6 (a)), or the target
is inside s. Furthermore, in the later case we have two sub-cases: either the
transition’s source and target are in different sub-states of s (Figure 6 (b)), or
they are in the same sub-state (Figure 6 (c)).

For each of these possible scenarios we have a corresponding answer from
the currently active child:

1. If the event was handled by the child (or some descendant), with some
transition from the child (or a descendant) to some state outside s, then
the child responded with an enter message directed to the target state
outside s, with a path that begins with “up”,

14Note that at run-time these ports will link the relay with different sub-states, as the active
sub-state changes. This exemplifies our use of channel mobility.
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Figure 6: Event handled by the currently active sub-state c.

2. If the event was handled by the child (or some descendant), with some
transition from the child (or a descendant) to some state inside s, where
the source and target of the transition are in different sub-states of s,
and so s is the least common ancestor of the source and target of the
transition, then the child responded with an enter message directed at
the target state inside s, with a path that begins with the name of the
(ancestor of the) target state,

3. If the event was handled by the child (or some descendant), with some
transition from the child (or a descendant) to some state inside s, where
the source and target of the transition are in the same sub-state of s,
and so s is not the least common ancestor of the source and target of
the transition, then, the child responded with an entry acknowledgment
(“en_ack”), sent by the target of the transition,

4. If the event was not handled by the child (or any descendant), then, the
child responded with an “enhh” message.

Each of these alternatives is handled by the branches of the choice below.

d
or_handle_event_ (fp,tp,out, fe,te, fei g, ter k, @) <

teT ((), (“evt”, x));
(e ((“up”) - ete, msg) —
or_trans_out, +(fp,tp,out, fei .k, ter k, ete, msg)
+ D g5, . fe?((name(s;)) - etc, (“enter”, doact, actdone)) —
or_trans_sibling, 1, (fp,tp, out, fci1 .k, ter k, doact, actdone, etc)
+ fe?((), “en_ack”) —
or_trans_internal, 7 (fp,tp,out, fc,te, fer k. ter k)
+ fe?({), “enhh”) —
or_match_event,_ 1. (fp,tp, out, fe,tc, fer k,ter k, )

1. In the first case, the child answers with an enter message directed to a
state outside s, and therefore the path begins with “up”. This case is
handled by the process or_trans_out, ;- defined below. We must exit s

which entails executing its exit action ex, then send the message to the
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parent, stripping the first item from the path (so the remaining path is

etc), and then become inactive.

dof
or_trans_out&T(fp, tp,out, fc1. g, ter. k, etc,msg) lef

execCout(ex);
tpT (etc,msg);
or_inactive&T(fp,tp, out, fey g, ter k)

. In the second case, the child answers with an enter message directed to a
state inside s (different than the source of the transition), and therefore
the path begins with the name of a sub-state of s, specifically the name
of the sub-state s; which contains the target of the message. This case is
handled by the process or_trans_sibling, ., defined below.

or_trans_sibling, 1, (fp,tp, out, fc1. k, tei. k, doact, actdone, etc) def

doact T
actdone? — (forward _enter(tp, fc;, te;, ete);
or_active, (fp,tp,out, fei,tei, fer k,ter k)

The state s must be the least common ancestor of the source and the
target of the transition taking place. Hence the message is of the form
(“enter”, doact, actdone) where doact is the signal to execute the transi-
tion’s action, and actdone is the event signaling the termination of the
action. At this point all relevant exit actions for the transition have been
executed, so we trigger the action signal doact and wait for the transition’s
action to finish. Then we forward the enter message to the appropriate
target tc;. The state remains active in this case, but the links to the
currently active sub-state change to fe¢; and tc;.

. In the third case, the child answers with an entry acknowledgment which
indicates that the transition was fully handled within some sub-state of s.
This case is handled by the process or_trans_internal, ;. below.

. d
or_trans_internal, (fp,tp,out, fe, te, fer g, ter k) =

tp1({), “en_ack”);
or_active, »(fp,tp,out, fe,te, fei , ter k)

In this case, we simply propagate the acknowledgment up to s’s parent,
and remain active, with the currently active sub-state unchanged.

. In the last case, the child answers with an “enhh” message, indicating that
the current sub-state did not handle the event. In this case, we must try
to match the event, according to the transitions 7" going out of s:

T {t € T'| src(t) = name(s)}

The matching of the event is done by the or_match_event, ., process:
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d
or_match_event_ +(fp,tp,out, fe,tc, fei, ..., fex, ter, ..., teg, @) </

match z:
t;eT evt(ti) —
(or_exseq,(tp, out, fe, tc);
Or_jumps)T)ti (fp7 tpa OUtu fcl..k7 tcl..k))
_ —
(tp1({), “enhh”);
or_active, »(fp,tp,out, fe,te, fei, ..., fex, ter, ..., tex))

When the event of transition ¢; is matched, we must leave the state and
therefore, we must execute the exit sequence (using the links fc and tc to
communicate with the currently active sub-state), and then we jump out
of the state, as specified by the following:

. def
or_jump, 5., (fp,tp,out, fer k, ter k) =

v doact, actdone. (doact? — (execoyt(act(t;)); actdone?)
Il tp T (tpath(t;), (“enter”, doact, actdone)));
or_inactive, 1 (fp,tp,out, fei,ter, fer ks ter k)

As in a basic state, we setup a “callback” process to execute the transition’s
action once a signal doact is triggered. Then we send the enter message
to the target of the transition via the state’s parent, and finally become
inactive.

If none of the triggers match, we send an “enhh” message to the par-
ent, while remaining active, to inform the parent that the event was not
handled here.

3.5.8 Translation of an or-state

The translation of the or-state s = [n, s1. ., T, (en, ex)] consists of the relay and
the parallel composition of the translations of each of the sub-state terms:
def
[slz.sp.tp.out =
vfel, ..., fex,ter, ... teg.(or _relay, »(fp,tp,out, fei, ..., feg,ter, .. tey)
| Wicqr,... k3 [SilT tes fesout)

where T; = {t € T|src(t) € descendants(s;) U {name(s;)}} for each i €
{1,...,k} is the set of transitions with source in sub-state s;, i.e. going out of s;
or any of its descendants. Note that the parameters of the translation [s;] of
a sub-state s; are given in order T, tc;, fc;, out. This is because the relay’s tc;
port must be linked to the child’s fp port, and the fc; port must be linked to
the child’s tp port.

3.6 Mapping and-states

And-states consists of a set of orthogonal regions each of which is a statechart
in its own right. The kiltera process representing an and-state has the same
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structure described above, with a relay and a process corresponding to each
orthogonal region. The main difference with or-states is that in an or-state
there is only one active sub-state at any point in time whereas in an and-state
all orthogonal components are active. When an event arrives, it is broadcasted
to all orthogonal regions.

In this report we deal only with a subset of the full UML State Machines
specification. In particular we do not deal with forks and joins. As a conse-
quence, if the target of a transition is a sub-state of an and-state, it is only
within one of its orthogonal regions, so that when the transition is taken, the
other orthogonal regions will enter through their default state. Furthermore,
when a transition comes out of a sub-state of an and-state, all other regions will
exit.

3.6.1 Entry sequence

When entering an and-state, all orthogonal regions must be entered, but not
before executing the state’s own entry action.

d
and_enseq,(tp, out, feci, ..., feg, ter, ..., tey) ef

exeCoyt(en); (I;e1. wenter _child(fe;, te;));tpT ((), “en _ack”)

where enter child is the same as in Section 3.5.1. Note that the parallel com-
position of enter child processes, which causes all orthogonal regions to enter,
does not prescribe a particular order of entry to the orthogonal regions. This is
conformant with the UML specification which leaves open the particular order
of entry.

3.6.2 [Exit sequence

The exit sequence for the and-state is analogous. All sub-regions are ordered to
exit before executing the state’s own exit action.

and_exseq, (tp, out, fci, ..., feg, ten, ..., teg) =
(Iie1..nexit _child(fe;, tei)); execout(ex); tpT (), “ex_ack”)
As before, exit_child is the same as in Section 3.5.2. Furthermore, the sequence

operator guarantees that all enter child sub-processes will be fully completed
before the execution of the state’s exit action.

3.6.3 Forward sequence

The forward sequence for and-states is the same as for or-states, as described
in Section 3.5.3.
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3.6.4 The relay

The relay for an and-state is analogous to the relay of an or-state. The relay
can be in two modes: active or inactive. Initially it starts in the inactive state:

and_relay, +(fp,tp,out, fci1, ..., fe, ter, .., tey) def

and _inactive, -(fp, tp, out, fci, ..., feg, tea, ..., tey)

The relay contains not only the fp, tp, and out ports of the state, but also
a pair of ports fc; and tc; for each sub-state ¢ to communicate with them. The
subscript 7' denotes the set of outgoing transitions from this state (s) or any
descendant.

3.6.5 Inactive state

The inactive-state of an and-state is similar to that of an or-state. It can
receive either an enter message, in which case it performs the entry sequence
and becomes active, or it can receive a message aimed at a sub-state s;, in
which case it must execute the entry action, forward the message to s;, and
enter the orthogonal regions to their default state. Once all orthogonal regions
have entered, the state becomes active.

L d
and_inactive, 1.(fp,tp, out, fei, ..., fey, tei, ..., tey) lef

fp?((), “enter”) —
(and_enseq,(tp, out, feci, ..., fex, ter, ..., ter);
and_active&T(fp,tp, out, fea, ..., fex, tea, ..., te))
+ Ys.cs, , [P?((name(s;)) - etc, “enter”) —
(execout(en);
(forward _enter(tp, fc;, te;, ete)
| TLic1. 1\ (iyenter _child(fec;, tey));
and_active, (fp,tp,out, fei, ..., fex, ter, ... tey))

Notice that the enter_child process is invoked for each child j € 1..k\{i},
this is, for every child which is not 4, since this is the target of the transition,
and all other orthogonal regions enter to their default state.

3.6.6 Active state

An active and-state is analogous to an or-state, but there is no distinguished
currently active sub-state, since all orthogonal regions are active.
. def

and_actlve&T(fp, tp,out, fci, ..y feg, ter, . teg) =
fp?((), “exit”) —

(and _exseq,(tp, out, fci, ...., fex, ter, ... ter);

and_inactive, 1-(fp,tp,out, fc1, ..., feg, ter, ..., tey))
+/p2((), (Yevt”, 1)) —

and_handle_event, +(fp,tp,out, fci, ..., fex, ter, ..., teg, @)
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As with an or-state, when an and-state is active it may receive an exit
message or an event. If it is an exit message, it must execute the exit sequence,
sending an exit message to all sub-states and then become inactive. If it is an
event, the and_handle_event, ;. process, defined below, takes care of it.

3.6.7 Handling events
Handling events in an and-state is a bit different. The event must be broadcasted

to all orthogonal regions, and there are four possible outcomes:

1. No region handled the event, and thus the and-state itself must attempt
to handle it, or

2. Some regions handled the event, and there is at least one transition to be
taken outside of s. 1°

3. Some (or all) regions handled the event internally, but no region that
handled the event is performing a transition outside s.

To handle these possibilities, we use the following auxiliary processes:

broadcast(z, tcy, ..., tex) < (Wier.xtes T((), (“evt”, 2)))

This process sends the event x to all children (i.e. orthogonal regions).

. d
wait_for_enack(feci, ..., fek,all,ny, ..., ng) </

(IWie1 k(fei?((), “enhh”) — n; T+ fc;?((), “en_ack”) — /));all ]

This process waits for an entry acknowledgment or an “enhh” message from
all children, and once all have answered, it triggers the all event. When the
child 7 answers with “enhh”, an event n; is triggered, in order to identify case 1
above, which is detected by the following process.

wait_for_enhh(ng, ..., ng, nche) def (Tie1. xni? — /);nche?

This process triggers the signal nche (no child handled the event) if (and
only if) all events n; where triggered.

With these processes, we can built the event handler for and-states:

151n the present version of this mapping we assume that at most one transition fired goes
outside the state. Otherwise the and-state would act as a fork.
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d
and_handle_event_ .(fp,tp,out, fei, ..., feg, ten, ... teg, @) f

broadcast(zx, tcy, ..., tcg);
vnche,all,nq, ..., ng.
(wait_for_enack(fei, ..., fex, all,ny, ...,ng)
|| wait_for_enhh(ng, ..., ng, nche)
I (nche? —
and_match_event,_ 1. (fp,tp,out, fei, ..., feg, ter, ..., teg, @)
+ 2iers fai?({fup”) - ete, msg) —
and_trans_out_ (fp,tp,out, fe1 k, ter .k, ete, msg)
+ all? —
(tp1 () “en_ack”);
and_active, (fp,tp,out, fei, ..., fex, ter, ..., tey))))

First we broadcast the event to all children. Then we wait for their response,
which can be an entry acknowledgment (“en _ack”), and event not-handled here
message (“enhh”) or a message with a path beginning with “up”.

If all answered “enhh”, then we are in case 1, and so the signal nche is
triggered, in which case we attempt to match the event with the transitions
coming out of s, with the process and_match_event, 1, were

s def
T' = {t € T|src(t) = name(s)}
is the set of transitions coming out of s. The matching of events is as for
or-states:

d
and_match_event_ .(fp,tp,out, fei, ..., fex, ter, ..., teg, @) &)

match z:
le;er evt(ti) —
(and_exseq,(tp, out, fci, ..., fer, tea, ..., tew);
and_jump, . (fp,tp,out, fei g, ter k)
| —
(tpT((), “enhh”);
and_active&T(fp,tp, out, fea, ..., fex, ter, ..., teg))

When the event of transition ¢; is matched, we must execute the exit se-
quence, as we are leaving the state, and then it leaves the state according to the

following:
. def
and_Jumps,T,ti (fp7 tpaOUtvfcl..k;tcl..k) é

v doact, actdone. (doact? — (execoyt(act(t;)); actdone?)
I tp1 (tpath(t;), (“enter”, doact, actdone)));
and_inactives)T(fp,tp, out, fe1. g, ter k)

As before, we setup a “callback” process to execute the transition’s action
once a signal doact is triggered. Then we send the enter message to the target
of the transition via the state’s parent, and finally become inactive. If none of
the triggers match, we send an “enhh” message to the parent, while remaining
active, to inform the parent that the event was not handled here.
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If someone answered with a message with a path beginning with “up”, we
are in case 2, taking a transition outside s. Hence we tell all children to exit,
and after they have exited, we execute the state’s exit action, send the message

up to the parent and become inactive. This is performed by the following:

d
and_trans_out, +(fp,tp,out, fei k, ter .k, ete, msg) =4

(Hjelk\{l}exlt_chlld (fC] s tC])),
exeCout(ex);

tpT (ete, msg);

and_inactive&T(fp,tp, out, fe1. g, ter k)

Finally if all events answered, but the signal nche has not been triggered and
no child answered with a message directed outside, then the signal all must have
been triggered (case 3). In this case we simply send an entry acknowledgment
to the parent, indicating the event was handled, and remain active.

3.6.8 Translation of an and-state

As with or-states, the translation of the and-state s = [n, s1._x, (en, ex)] consists
of the relay and the parallel composition of the translations of each of the sub-
state terms:
def
[slz.sp.tpout =
vfei, ..., fep ter, ..., teg.(and _relay, +(fp, tp,out, fei, ..., fex, ter, ..., tek)
| Wicqa,... k3 I8l tes fesout)

d )
where T; % {t € T|src(t) € descendants(s;) U {name(s;)}} for each i €
{1,...,k} is the set of transitions with source in sub-state s;, i.e. going out of s;
or any of its descendants.

4 Conclusions

We have presented a mapping from a significant subset of UML State Machines
to a process algebra named kiltera. This constitutes a precise, compositional
and executable formal semantics for UML State Machines.

While our mapping does not deal with several features such as the history
mechanism or defered events, we preview that it will be relatively simple to
modify it to support them. Furthermore, we have left out a precise description
of object interaction, but this can be easily adapted: an object can be repre-
sented as a kiltera process with a suitable queueing mechanism for events, which
dispatches them to the top-level state. The entry/exit acknowledgement pro-
tocol can be used to guarantee the run-to-completion semantics by associating
the process that represents the object with a dispatcher process that will send
the next available event only after receiveiving an acknowledgement from the
top-level state, indicating that the event has been fully processed. The sending
of events to other objects is encapsulated within the exec function, which sends
those messages directly through the statechart’s out port. The treatment of
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synchronous vs. asynchronous messages is also the responsibility of this func-

tion.
Our encoding highlights the relative complexity of the semantics of and-

states compared to or-states. This could be used as an argument against and-
states as a mechanism to achieve concurrency and perhaps in favour of alterna-
tive approaches such as the one taken by the UML-RT profile, where concurrent
processes are described as separate active objects with well-defined interfaces
whose behaviour is given by simplified State Machines with only or-states.
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