Mapping UML State Machines to kiltera

Technical Report 2008-552

Ernesto Posse Juergen Dingel
Applied Formal Methods Group
Software Technology Lab
Queen’s University
Kingston, Ontario, Canada

January 5, 2009

Abstract

As part of an effort to clarify the semantics of the UML we investigate
the semantics of UML State Machines and in particular we present an
encoding of a significant subset of UML State Machines into a process al-
gebra named kiltera, closely related to the π-calculus. Our approach differs
from other related attempts in that it provides a precise, executable, com-
positional, and extensible semantics of UML State Machines in terms of a
precise language, which furthermore does not resort to flattening the state-
space, and thus avoids the state-space explosion problem. This approach
can serve as the basis for tool support for UML State Machine models,
in particular, simulators, code-generators, debuggers and model-checkers.
We compare our encoding with several other proposed approaches.

Contents

1 Introduction ... 2
 1.1 Related work ... 4
 1.2 Organization of this report 7

2 Preliminaries ... 8
 2.1 Sequences .. 8
 2.2 Statechart syntax ... 9
 2.3 kiltera’s core: the $\kappa\lambda\tau$-calculus 11

3 From statecharts to kiltera processes 14
 3.1 Structure of a mapped statechart 14
 3.2 Messages and paths 16
 3.3 Executing actions 18
 3.4 Mapping basic states 18

1
1 Introduction

The Unified Modeling Language (UML, [20]) has become the de facto standard for software modelling, and has received considerable attention from software practitioners, tool developers, as well as researchers in Software Engineering.

Despite its growing adoption, the UML lacks a formal semantics. This is major source of problems, as different tool developers and vendors produce software modelling environments which are claimed to be “UML compliant” but may, in fact, disagree in terms of the behaviours produced by generated systems. Furthermore, this lack of formal semantics also hinders the analyzability of models and, as a result, there is a lack of analysis tools for UML such as model-checkers.

The need for a formal foundation for the UML is exemplified by the increased interest in executable UML. The Object Management Group has issued a Request For Proposal (RFP) for a semantics for an executable UML foundation [18]. This Request For Proposal has been answered in [19], but the resulting semantics is defined in terms of a Java-like language, making the semantics not as abstract as possible and too implementation-dependent in the sense that it relies too heavily on the (non-trivial) semantics of the Java-like language used, which in turn compromises analyzability without solving all ambiguities. For
this reason it is desirable to search for a formal semantics which is based on some simple, well-defined formalism, thus clarifying ambiguities and enabling model analysis.

Formalizing the UML is a non-trivial task. The UML specification [20] is a very large document full of technical details, and with a significant amount of ambiguities. Many of these ambiguities are deliberate, providing semantic variation points, in order to accommodate different tool developers. But others are the result of lack of specification and clarity. Nevertheless, the problem of formalizing its semantics can be broken down, as the UML consists of several sub-languages, each of which can be studied and understood with a certain degree of independence from the others. The UML sub-languages are broadly divided into two categories: structural and behavioural. Structural sub-languages such as Class Diagrams describe the structure of a software system. Behavioural sub-languages describe the behaviour of systems. Since the focus of the UML is modelling Object-Oriented software, behavioural diagrams describe the behaviour of objects. There are three main kinds of behavioural diagrams: Activity Diagrams, Interaction Diagrams and State Machines. This report is concerned with defining the semantics of State Machines.

We propose a formal semantics for a significant subset of UML State Machines (which we also call statecharts) by mapping them into a process algebra called kilera [22, 23] closely related to the \(\pi \)-calculus [15, 14]. Furthermore, we propose a textual syntax for state machine diagrams, based on the syntax defined in [28].

A question that may arise is why did we choose kilera as a target language instead of better known languages such as CSP [9, 25], ASMs [2] or even the \(\pi \)-calculus [15, 14] upon which kilera is based. This selection came down to the choice of operators provided by the language as well as the facilities to simulate the resulting models. In particular, kilera provides some higher-level constructs such as pattern-matching which facilitate the description of the generated models and render them more readable. Furthermore, UML State Machines allow time-triggered transitions, but the existing timed variants of the aforementioned calculi do not easily capture such semantics.

The mapping described in this report is based on [4, 3]. This previous work proposes an informal transformation from classical (STATEMATE) statecharts [8] into the DEVS formalism [32].

Our mapping has several characteristics that make it appealing: it provides a precise, formal semantics in a compositional, non-flattening fashion which is executable and extensible enough to support several semantic variation points. The benefits of being a compositional mapping are multiple:

- the semantics of a state machine is uniquely determined by the semantics of its component sub-states, thus supporting compositional reasoning about models, as well as component replaceability (i.e., a sub-state machine can be replaced by an equivalent one without changing the behaviour of the whole state machine),
• it does not rely on flattening the statechart, thus resulting in a more compact representation,

• the structure of the statechart is mimicked by the resulting kiltera model, thus each state is in a one-to-one correspondence with a component in the kiltera model, which facilitates analysis, traceability, and tool support (e.g. debuggers, animation, etc).

We concentrate on a subset of State Machines, rather than dealing with the full specification in all detail in order to simplify the treatment. We focus on the following features of the official UML State Machine specification:

• Composite states, including both or-states (also known as sequential states) and and-states (also known as concurrent states),

• Inter-level transitions (i.e. transitions “crossing boundaries”)

• Group transitions

• Entry and exit actions

• Transition actions

We do not deal in the present version of the mapping with the following features of the official UML State Machine specification:

• History states

• Pseudo states, in particular, forks, joins, condition points, junctions, entry points and exit points.

• Transition guards

Nevertheless, our mapping is extensible enough to be able to deal with all features of the official UML specification.

1.1 Related work

There have been multiple efforts to formalize the semantics of UML State Machines, as well as other variants of statecharts. We now discuss some of these approaches.

Yeung et al (CSP semantics) One approach is presented in [29] where a subset of UML State Machines is mapped into CSP [9, 24, 25]. This approach is comparable to ours in that the target of the mapping is a process algebra (CSP) and they use a notion of paths for transitions similar to ours, but that’s where the similarities end. The most striking difference is that they map a statechart to a flattened state machine in CSP: the hierarchical structure of the state machine
is lost and each group transition\(^1\) is encoded in each possible sub-state of its source. Furthermore this mapping does not enforce priorities between conflicting transitions at different levels of nesting, as required by the UML specification. Like ours, they do not deal with History states, other pseudo-states, or transition guards, but unlike ours, it is not very clear how their mapping would have to be extended to deal with such features.

This approach seems to build on the mapping introduced in [17], although this earlier work also deals with choice pseudo-states (conditionals) and it presents a prototype translation tool from Rational Rose State Diagrams to CSP code suitable as input for FDR [6] for verification.

Von der Beeck (SOS semantics) In [28] an alternative approach is presented, in which a textual syntax for UML State Machines is introduced and an operational semantics is defined in the style of Plotkin’s Structural Operational Semantics [21] as a set of inference rules defining a labelled-transition system for statecharts. This approach has the advantage of being compositional and it even deals with features such as shallow and deep history. Nevertheless it is not a directly executable semantics, but rather, it provides the specification for a simulation engine or interpreter. This contrasts with our approach of mapping statecharts to another language for which we have a simulator. A major drawback of this approach compared to ours is that integrating timed transitions is non-trivial, and would involve modifying and extending the inference rules and possibly the syntax, whereas in our approach this extension can be dealt with by using the timing constructs of our target language.

Van Langenhove (EHA /Kripke /SMV semantics) Another approach is presented in [26], where State Machines are represented as Extended Hierarchical Automata, a kind of automata where each state may be associated with another automaton. These hierarchical automata are given an operational semantics as Kripke structures which are then mapped to SMV [13].

The mapping presented there has the advantage of being non-flattening, but it is not clear whether it is compositional or not, in the sense that it is not clear whether the final SMV target code of a statechart can be seen as the combination of the translations of the component sub-statecharts. Furthermore, their mapping already requires the definition of an operational semantics for the Extended Hierarchical Automata, which is given as a Kripke structure whose states, called configurations, already carry a lot of the machinery required of UML State Machines, such as an event queue and a history. Furthermore, non-compliant restrictions such as a maximum event-queue size, are imposed on the target code. But defining the semantics of State Machines in terms of something that already has those concepts embedded as primitive hardly clarifies the semantics. A semantics should define something more complex in terms of something simpler. This contrasts with our approach, where we do not

\(^1\)A *group transition* is a transition whose source is a composite state.
impose extraneous, target language restrictions, and rely on a language which does not include concepts of history or event-queues as primitive.

Lam and Padget (π-calculus semantics) An approach which maps State Machines into the π-calculus, the process algebra upon which kiltera is based, was introduced in [11] and further developed in [12] and [10].

Their approach associates states with π-calculus terms, and a protocol of channel exchanges is used to model reception and handling of events. This approach supports both shallow and deep history. The thesis [10] also presents a tool that generates input code for the Mobility Workbench (MWB [27]) that provides deadlock detection and equivalence checking between the generated π-calculus code from two statecharts (open bisimilarity) and also generates input code for the NuSMV model-checker [5].

One of the main weaknesses of their approach is that the encoding does not clearly describe how the hierarchical structure of a statechart is represented, and in particular it is not clear how the encoding would accommodate an arbitrarily deep hierarchy. Although the authors claim that their scheme respects the lowest-first firing priority, the encoding and the examples provided seems to support only one level of nesting between states. This puts into question the claim of compositionality of this approach. There is no mention of how to deal with inter-level and group transitions either, all fundamental features in UML State Machines.

By relying on the pure π-calculus rather than a higher-level language, their mapping makes use of complicated encodings for simple activities such as evaluation of a guard. Furthermore their mapping makes use of the unrestricted choice operator + which is very difficult to implement in practice (see [16]).

A controversial aspect of this translation is that the State Machines modelled also include Activities, thus describing a hybrid formalism between UML State Machines and UML Activity Diagrams. This addition seems to introduce confusion in the semantics rather than clarify it. Nevertheless, it appears to be a relatively orthogonal issue which could be taken away.

Börger et al (ASMs semantics) Perhaps the most comprehensive approach is that of [1] where the dynamics of UML State Machines are described using Abstract State Machines [2]. This approach takes into account both sequential states (or-states), concurrent states (and-states) as well as history pseudo-states, and other features such as deferred events.

In this approach, the structure of the UML State Machine is encoded as part of the state in the ASM, together with additional machinery used to keep track of the current states, history, etc. Executing the state machine is performed by ASM agents which choose among enabled transitions and execute the selected transition by removing states which are exited and inserting entered states in the table that keeps track of the current configuration.

This approach is different to others in that rather than mapping UML State Machines to a “program” in the target language, they are mapped to a data
structure in the target language, and a general algorithm is implemented in the
target language which executes (interprets) this data structure.

A drawback of this approach is that, while model-checking techniques exist
for ASMs (e.g. [7]), using these techniques on the approach presented would
allow the verification of properties of the simulation algorithm itself, rather than
properties of a given statechart. Similarly, taking the “interpreter” approach
to semantics makes the comparison of statecharts more difficult: given two
state machines to compare, one has to consider the steps that the interpreter
goes through, rather than the steps that a semantic representation of the state
machines would follow. Furthermore, one wants to understand the behaviour
of a state machine which does not have certain features (e.g. history states),
a mapping to some language would not encode the corresponding features and
therefore the meaning associated to the state machine does not have elements
which do not affect its behaviour. By contrast, in a semantics approach based
on an interpreter, such as this ASM approach, when looking at the meaning
of a state machine one has to consider the interpreter and how it deals with all
features in the formalism.

Another drawback of this approach is that, quoting [1]: “The UML require-
ment that an object is not allowed to remain in a pseudostate, but has to
immediately move to a normal state, cannot be guaranteed by the rules them-
selves, but has to be imposed as an integrity constraint on the permissible runs.”
In other words, the algorithm itself is not sufficient to emulate the precise
semantics of statecharts and one must resort to an extraneous constraint on the
possible executions, limiting the direct executability of the semantics.

Borland and Vangheluwe (DEVS semantics) The mapping upon which
our work is based was introduced in [4, 3]. That work presents an *informal*
translation from STATEMATE statecharts into DEVS [32, 30, 31] models.

Because of the significant differences between STATEMATE statecharts and
UML statecharts, as well as the differences between kiltera and DEVS, our map-
ing departs significantly from the former in many respects, but the composi-
tionality of the approach is the same, including the idea of relay processes to
handle events within a composite state, as well as the routing mechanism within
the hierarchical structure of the statechart.

One of the main differences in their approach, stemming from the STATE-
MATE semantics is that incoming events are treated in a highest-first firing
priority, as opposed the UML State Machines. Furthermore their approach
does not guarantee run-to-completion semantics.

The most important difference, however, is that their work constitutes an in-
formal description of the dynamics of statecharts, whereas our approach presents
a precise formal semantics.

1.2 Organization of this report

The remainder of this report is organized as follows: in Section 2 we provide
some preliminary definitions and notation used throughout the report. In par-
ticular we introduce a new textual syntax for State Machines in Section 2.2 and present an informal account of the filter language in Section 2.3. Section 3 presents the mapping itself. We begin describing the structure of the model produced by the mapping (Subsection 3.1), followed by a description of the messages that flow between components in the generated model (Subsection 3.2) and actions (Subsection 3.3). Then we describe the mapping of basic states (Subsection 3.4), or-states (Subsection 3.5) and and-states (Subsection 3.6).

2 Preliminaries

2.1 Sequences

In the sequel we use several operations on sequences. In this Subsection we define the notation for these operations.

Notation 1. We write $1..k$ for the set $\{1, 2, ..., k\}$. Sequences will be enclosed in \langle and \rangle. A sequence name will be denoted with an arrow on top, and its elements subscripted with their index, beginning from 1: $\vec{x} = \langle x_1, x_2, x_3, ... \rangle$. A finite sequence $\langle a_1, ..., a_k \rangle$ will be abbreviated as $a_{1..k}$. The empty sequence is denoted $\langle \rangle$, or ϵ.

Sequence concatenation will be denoted \cdot, so

$$\langle a_1, ..., a_k \rangle \cdot \langle b_1, ..., b_l \rangle \overset{df}{=} \langle a_1, ..., a_k, b_1, ..., b_l \rangle$$

Prepending an item x to a sequence $\vec{a} = \langle a_1, ..., a_k \rangle$ is denoted xa, so $xa \overset{df}{=} \langle x \rangle \cdot \vec{a} = \langle x, a_1, ..., a_k \rangle$. We define last($\langle a_1, ..., a_k \rangle$) $\overset{df}{=} a_k$. We denote rev(\vec{a}) for the reverse of the sequence, i.e. rev($\langle a_1, ..., a_k \rangle$) $\overset{df}{=} \langle a_k, ..., a_1 \rangle$. We write $|\vec{a}|$ for the length of the sequence \vec{a}.

A sequence defines a total order on its elements according to their positions: let $\vec{a} = \langle a_1, ..., a_k \rangle$ be some sequence, then we write $a_i \preceq a_j$ if $i \leq j$.

We will also use sequence comprehension notation: if I is some totally ordered set (possibly a sequence), $\varphi(x)$ is an expression with free variable x, and $\psi(x)$ is some predicate on x, then the expression $\langle \varphi(x) \mid x \in I, \psi(x) \rangle$, also written $\langle \varphi(x) \mid x \in I \rangle$ denotes the sequence of all $\varphi(x)$ such that $\psi(x)$ holds, preserving the order over I, this is, if $x \preceq x'$ for some $x, x' \in I$ then $\varphi(x) \preceq \varphi(x')$. For example, $\langle x^2 \rangle_{x \in \{1, 2, 3\}} = \{1, 4, 9\}$.

Definition 1. (Prefix) Let \vec{a} and \vec{b} be a pair of sequences. We say that \vec{a} is a prefix of \vec{b}, written $\vec{a} \sqsubseteq \vec{b}$ if there is a sequence \vec{w} such that $\vec{a} \cdot \vec{w} = \vec{b}$.

Remark 1. \sqsubseteq is a partial order, this is, it is reflexive, transitive and antisymmetric.

Definition 2. (Prefix removal and common prefix) Let \vec{a} be a sequence and \vec{b} some prefix of \vec{a}, i.e. $\vec{a} = \vec{b} \cdot \vec{w}$ for some \vec{w}. Then, we write $\vec{a} - \vec{b}$ for \vec{w}.
This can be defined recursively as follows:

\[\epsilon - x\vec{b} \defeq \epsilon \]
\[x\vec{a} - \epsilon \defeq x\vec{a} \]
\[x\vec{a} - x\vec{b} \defeq \vec{a} - \vec{b} \]
\[x\vec{a} - y\vec{b} \defeq x\vec{a} \quad \text{if } x \neq y \]

Given two sequences \(\vec{a} \) and \(\vec{b} \), \(\vec{a} \cap \vec{b} \) denotes the greatest common prefix of \(\vec{a} \) and \(\vec{b} \), i.e., \(\vec{a} \cap \vec{b} \subseteq \vec{a} \), \(\vec{a} \cap \vec{b} \subseteq \vec{b} \) and for any prefix \(\vec{a} \) of both \(\vec{a} \) and \(\vec{b} \), \(\vec{a} \subseteq \vec{a} \cap \vec{b} \).
This can be defined recursively as follows:

\[\epsilon \cap \vec{b} \defeq \epsilon \]
\[\vec{a} \cap \epsilon \defeq \epsilon \]
\[x\vec{a} \cap y\vec{b} \defeq \epsilon \quad \text{if } x \neq y \]
\[x\vec{a} \cap x\vec{b} \defeq x(\vec{a} \cap \vec{b}) \]

Remark 2. The greatest common prefix is nothing but the greatest lower bound according the the prefix partial order \(\sqsubseteq \).

2.2 Statechart syntax

Let \(N_S, N_T, \Pi, \mathcal{A} \) be the sets of all possible state names, transition names, events and actions respectively. We use \(n, m, \ldots \) for state names in \(N_S \) and \(t_1, t_2, \ldots \) for transition names in \(N_T \). We write \(e_1, e_2, \ldots \) for events in \(\Pi \) and \(a_1, a_2, \ldots \) for actions in \(\mathcal{A} \). We assume that each state is labelled with a unique name.

Definition 3. (Statechart terms) The set SC of statechart terms is defined according to the following BNF where \(n \in N_S \) and \(s, s_1, \ldots, s_k \) range over SC:

\[
s ::= \begin{cases} [n, (en, ex)] & \text{Basic-state} \\ \mid [n, (s_1, \ldots, s_k), T, (en, ex)] & \text{Or-state} \\ \mid [n, (s_1, \ldots, s_k), (en, ex)] & \text{And-state} \end{cases}
\]

Here \(en, ex \in \mathcal{A} \cup \{\bot\} \) and \(T \subseteq \mathcal{T}R \) where \(TR \defeq N_T \times N^*_S \times \Pi \times \mathcal{A} \times N^*_S \) is the set of transitions of an or-state, subject to the condition that if \(s = [n, (s_1, \ldots, s_k), T, (en, ex)] \) then for each \(t \in T \) with \(t = (l, \vec{o}, e, a, \vec{d}) \), \(\vec{o} = \langle o_1, \ldots, o_k \rangle \) and \(\vec{d} = \langle d_1, \ldots, d_l \rangle \), the following holds\(^2\):

1. \(o_i = \text{parent}_s(o_{i+1}) \) for each \(i \in \{1, \ldots, k-1\} \),
2. \(d_i = \text{parent}_s(d_{i+1}) \) for each \(i \in \{1, \ldots, l-1\} \),

\(^2\)Note that conditions 3 and 4 state that the the sequences for source \(\vec{a} \) and target \(\vec{d} \) of the transition begin with the state name of the state that contains the transition, rather than from the “root” of the state machine; in particular, the state containing the transition is the least common ancestor of the source and target of the transition.
3. \(n = \text{parent}_s(o_1) \), and
4. \(n = \text{parent}_s(d_1) \)

where the function \(\text{parent}_s : \mathcal{N}_S \rightarrow \mathcal{N}_S \) which gives the name of the enclosing state (a.k.a. the parent) of a state with a given name within the statechart \(s \), is defined as follows for each non-basic statechart term \(s \):

\[
\begin{align*}
\text{parent}_{[n,s_1..k,T,(en,ex)]}(m) & \overset{\text{def}}{=} n \quad \text{if } \exists i \in \{1,...,k\}. \text{name}(s_i) = m \\
\text{parent}_{[n,s_1..k,T,(en,ex)]}(m) & \overset{\text{def}}{=} \text{parent}_{s_j}(m) \quad \text{if } \neg \exists i \in \{1,...,k\}. \text{name}(s_i) = m \land m \in \text{descendants}(s_j) \\
\text{parent}_{[n,s_1..k,(en,ex)]}(m) & \overset{\text{def}}{=} n \quad \text{if } \exists i \in \{1,...,k\}. \text{name}(s_i) = m \\
\text{parent}_{[n,s_1..k,(en,ex)]}(m) & \overset{\text{def}}{=} \text{parent}_{s_j}(m) \quad \text{if } \neg \exists i \in \{1,...,k\}. \text{name}(s_i) = m \land m \in \text{descendants}(s_j)
\end{align*}
\]

with the functions \(\text{name} : \mathcal{S}_C \rightarrow \mathcal{N}_S \) and \(\text{descendants} : \mathcal{S}_C \rightarrow 2^\mathcal{N}_S \) given by:

\[
\begin{align*}
\text{name}([n, (en, ex)]) & \overset{\text{def}}{=} n \\
\text{name}([n, s_1..k, T, (en, ex)]) & \overset{\text{def}}{=} n \\
\text{name}([n, s_1..k, (en, ex)]) & \overset{\text{def}}{=} n
\end{align*}
\]

and

\[
\begin{align*}
\text{descendants}([n, (en, ex)]) & \overset{\text{def}}{=} \emptyset \\
\text{descendants}([n, s_1..k, T, (en, ex)]) & \overset{\text{def}}{=} \{ \text{name}(s_i) \}_{i \in 1..k} \cup \bigcup_{i \in 1..k} \text{descendants}(s_i)
\end{align*}
\]

Given an \(\text{or-state} \) \(s = [n, (s_1, ..., s_k), T, (en, ex)] \), we call the first sub-state \(s_1 \) the **default state** of \(s \).

Given a transition \(t = (t, \overline{o}, e, a, \overline{d}) \) we define \(\text{name}(t) \overset{\text{def}}{=} t \) as the name of the transition, \(\text{qsrc}(t) \overset{\text{def}}{=} \overline{o} \) as the qualified source of \(t \), \(\text{src}(t) \overset{\text{def}}{=} \text{last(\text{qsrc}(t))} \) as the source of \(t \), \(\text{evt}(t) \overset{\text{def}}{=} e \) as the trigger event of \(t \), \(\text{act}(t) \overset{\text{def}}{=} a \) as the action of \(t \), \(\text{qtrg}(t) \overset{\text{def}}{=} \overline{d} \) as the qualified target of \(t \), and \(\text{trg}(t) \overset{\text{def}}{=} \text{last(\text{qtrg}(t))} \) as the target of \(t \).

Notation 2. In the remainder we will omit the entry and exit actions when \(en = \bot \) and \(ex = \bot \).

Example 1. Consider the statechart depicted in Figure 1. This statechart contains only \(\text{or-states} \). In our syntax this statechart is described by the term \(s_1 \) where:

\[
\begin{align*}
s_1 & \overset{\text{def}}{=} [n_1, (s_2, s_3), \{ t_1, t_2 \}] \\
s_2 & \overset{\text{def}}{=} [n_2, (s_4, s_5), \{ t_3 \}] \\
s_3 & \overset{\text{def}}{=} [n_3] \\
s_4 & \overset{\text{def}}{=} [n_4] \\
s_5 & \overset{\text{def}}{=} [n_5]
\end{align*}
\]
Figure 1: A simple statechart.

where

\[t_1 \overset{\text{def}}{=} (\xi_1, (n_2, n_4), e_1, a_1, (n_3)) \]
\[t_2 \overset{\text{def}}{=} (\xi_2, (n_3), e_2, a_2, (n_2, n_5)) \]
\[t_3 \overset{\text{def}}{=} (\xi_3, (n_4), e_3, a_3, (n_5)) \]

The syntax we have described is based on von der Beeck’s syntax from [28], but with some important differences. The two main differences between ours and von der Beeck’s: 1) we do not explicitly include a pointer to the currently active state as part of the term, and 2) inter-level transitions are specified by fully qualified state names rather than configuration sets. In von der Beeck’s syntax, an inter-level transition is specified as \((t, i, sr, e, a, td, j, ht) \) where \(t \) is the transition’s name, \(i \) is the index of the source state, \(sr \) is the “source restriction”, a (possibly incomplete) configuration, this is, a set of state names which determines the actual state inside the source which is the origin of the transition, \(e \) is the trigger, \(a \) is the action, \(td \) is the “target determinant”, the set of state names which determines the actual state within the target state, whose index is \(j \), and \(ht \) is the history type of the transition. This means that the actual origin of the transition is determined by the pair \((i, sr) \) and the actual destination is given by the pair \((j, td) \). In our syntax we represent the origin and destination of a transition by a sequence of enclosing state names, which can be thought of as a fully qualified name for a state.

2.3 kiltera’s core: the \(\kappa\lambda\tau \)-calculus

In this Section we describe the core of the kiltera language, a subset called the \(\kappa\lambda\tau \)-calculus. This calculus is similar to the well-known \(\pi \)-calculus [15, 14], but departs from it in some important ways. In particular, the \(\kappa\lambda\tau \)-calculus allows the description of timed behaviour (cf. \(\pi \)-calculus processes are untimed). Communication is by asynchronous message passing, both by uncasting and
multicasting (cf. communication in the π-calculus is only by unicasting). Unlike the π-calculus, there are two unicasting send operations: $x \uparrow v$ and $x!v$ (and two corresponding multicasting versions). The later ($x!v$) corresponds more closely to the π-calculus send action. The difference is in their behaviour with respect to the presence of listeners at the time the action is performed. In addition to these features, it also includes some higher-level capabilities such as primitive constants, data structures and pattern matching. These features facilitate the description of statalchart behaviour.

The basic syntax, which defines the set KLT of $\kappa\lambda\tau$ terms, is as follows:

$$
\begin{align*}
P & ::= \sqrt{\cdot} \mid \alpha \mid \Delta E \to P \mid \nu x.P \mid P_1 || P_2 \\
 & \quad \mid P_1; P_2 \mid \sum_{i \in I} \beta_i \to P_i \mid A(x_1, ..., x_n) \\
 & \quad \mid \text{match } E : F_1 \to P_1 | \cdots | F_n \to P_n \\
\alpha & ::= x \uparrow E \mid x!E \mid x \uparrow^* E \mid x!^* E \quad \beta ::= x?F\delta t
\end{align*}
$$

where P, P_i range over process terms, α ranges over actions, β ranges over input guards, x, x_i range over the set of (event or channel) names, t ranges over the set of (variable) names, A ranges over the set of process names, E ranges over expressions, and F ranges over patterns. Process definitions have the form:

$$A(x_1, ..., x_n) \stackrel{\text{def}}{=} P$$

The syntax for expressions and patterns is as follows:

$$
\begin{align*}
E & ::= F \mid \text{op} \ E \mid E_1 \text{op} E_2 \mid f(E_1, ..., E_m) \\
F & ::= n \mid \text{true} \mid \text{false} \mid "s" \mid x \mid (E_1, ..., E_m)
\end{align*}
$$

where $\text{op} \in \{+, -, *, /, \text{mod}, \text{and}, \text{or}, \text{not}, <, >, =, <=, >=, !, =\}$, n ranges over floating point numbers, s ranges over strings, x ranges over variable names, and f ranges over function names, with function definitions having the form:

$$f(x_1, ..., x_n) \stackrel{\text{def}}{=} E$$

The process $\sqrt{\cdot}$ simply terminates, and cannot interact with others. Processes α are output processes. The process $x \uparrow E$ triggers an event x and associates this event with the value of expression E. Alternatively, one can say that it sends the message E through channel x. This is a transient trigger, this is, if there are no listeners, i.e. processes ready to interact via x, at the current time, then the event is discarded. In any case, the trigger is "consumed" in the current time. This contrasts with $x!E$, which also triggers x with E as value, but if there are no listeners at the current time, this process remains alive until there is at least one other process ready to interact with it. Once interaction occurs, the trigger is consumed. We call $x!E$ a lasting trigger. Both $x \uparrow E$ and $x!E$
perform communication by unifying. The processes \(x \uparrow E \) and \(x! E \) are the
multicasting variants of \(x \uparrow E \) and \(x! E \) respectively, so the message is delivered
to all relevant listeners. If there are no listeners when \(x! E \) is performed, it will
remain alive until at least one process is ready to accept the message. At that
time, all potential receivers will obtain the message, and the trigger is consumed
(not replicated in the future). In all of the trigger processes, the expression \(E \) is
optional. The process \(\Delta E \rightarrow P \) delays the execution of process \(P \) by an amount
of time \(t \), the value of the expression \(E \). The process \(\nu x. P \) hides the name \(x \)
from the environment, so that it is private to \(P \). Alternatively, \(\nu x. P \) can be seen
as the creation of a new name, i.e. a new event or channel, whose scope is \(P \).
We write \(\nu x_1, x_2, ..., x_n. P \) for the process term \(\nu x_1, \nu x_2, ..., \nu x_n. P \). The process
\(P_1 || P_2 \) is the parallel composition of \(P_1 \) and \(P_2 \). In its generalized form, we
write \(\Pi_{i \in \{1, ..., n\}} P_i \) for \(P_1 || P_2 || \cdots || P_n \). The process \(P_1; P_2 \) is the sequential
composition of \(P_1 \) and \(P_2 \); this is, \(P_1 \) must terminate before beginning \(P_2 \).\(^3\) The
process \(\sum_{i \in I} \beta_i \rightarrow P_i \) is a receiver or listener, consisting of a list of alternative
input guarded processes \(\beta_i \rightarrow P_i \). Each input guard \(\beta_i \) is of the form \(x_i \delta_i \rightarrow F_i \),
where \(x_i \) is an event/channel name, \(F_i \) is a pattern, and \(\delta_i \) is a variable\(^4\). This
process listens to all events (channels) \(x_i \), and when \(x_i \) is triggered with a value
\(v \) that matches the pattern \(F_i \), the corresponding process \(P_i \) is executed and the
alternatives are discarded. A listener process represents, thus, a process in a
state with external choice. Before \(P_i \) is executed, \(\delta_i \) is assigned the elapsed time,
this is, the time the process remained blocked waiting for an event to occur.
Furthermore, if the event \(x_i \) was triggered with some value \(v \) which matches
the pattern \(F_i \), this matching results in the binding of \(F_i \)'s variables by the
corresponding values of \(v \).\(^5\) The scope of these bindings is \(P_i \). The suffixes \(F_i \)
and \(\delta_i \) are optional. If \(F_i \) is absent, no pattern-matching is done. Sometimes
we write listeners in infix notation: \(x_1 \delta_1 \rightarrow F_1 + \cdots + x_n \delta_n \rightarrow F_n \rightarrow P_n \).
This operator is not commutative: a guard \(x_i \delta_i \rightarrow F_i \) will be enabled only if the
previous \(i - 1 \) guards are not enabled (no events triggered or matched patterns).
Hence the guards are evaluated in order. We will use the symbol _ in patterns as
a nameless variable (i.e. a pattern that matches anything) to denote “anything
else”. The process \(A(y_1, ..., y_n) \) creates a new instance of a process defined
by \(A(x_1, ..., x_n) \) where the ports \(x_1, ..., x_n \) are substituted in the body
\(P \) by the events or channels \(y_1, ..., y_n \). Finally, the process match \(E : F_1 \rightarrow P_1 | \cdots | P_n \rightarrow P_n \) evaluates the expression \(E \) and attempts to match it with
each pattern \(F_i \). If a pattern \(F_i \) matches then the corresponding process \(P_i \) is
executed. If more than one pattern matches the choice is non-deterministic.
This construct is syntactic sugar for \(\nu x. (x \uparrow E || x? F_1 \rightarrow P_1 + \cdots + x? F_n \rightarrow P_n) \).
We also write match \(E : |_{i \in I} F_i \rightarrow P_i \) for match \(E : F_1 \rightarrow P_1 | \cdots | F_n \rightarrow P_n \).

For a formal semantics of this calculus, we refer the reader to [22].

\(^3\)The sequential composition operator is actually a derived operator, but for simplicity we
include it here as a primitive. See [22] for details.

\(^4\)The symbol \(\delta \) is just a separator, which is read as “after”.

\(^5\)This is essentially the same as pattern-matching in functional languages like ML or Haskell.
3 From statecharts to kiltera processes

In this Section we will define a mapping \(T_{fp, tp, out} : SC \to KL \) which, for any well-formed statechart term gives a kiltera process describing the statechart’s behaviour. When translating a term \(s \in SC \), the additional parameters specify the set of transitions \(T \) going out of \(s \) or any of its descendants and the ports \((fp, tp, \text{ and } out) \) used by the resulting kiltera term to communicate with the enclosing process (see Subsection 3.1 below for details on the role of these ports).

3.1 Structure of a mapped statechart

Each statechart is mapped to a kiltera process which mimics its nesting structure\(^6\). In the case of or-states and and-states, the corresponding kiltera process consists of one sub-process for each sub-state, and a relay process, which is in charge of controlling which sub-state is active, as well as forwarding messages accordingly. For example, the statechart in Figure 1 is mapped to a kiltera process with a structure depicted in Figure 2.

Each kiltera process denoting a statechart has an interface consisting of three ports: \(fp, tp \) and \(out \). This is depicted in Figure 3. The first port, \(fp \) is used to receive messages from the parent, this is, the kiltera process representing the enclosing statechart. The second port, \(tp \) is used to send messages to the

\(^6\)This is, the mapping is compositional.
parent. The third port, out is used to send output messages (i.e. the action of the transition performed).

At run-time, the relay component of an or-state keeps track of the currently active sub-state by a pair of links fc and tc to the corresponding sub-process. Since the active sub-state changes, so do these links. Hence, channel mobility plays a fundamental role in describing the dynamics of statecharts.

The general idea is as follows: when a new event is received by the statechart, an event message is given to the top-level (a.k.a. the root) process for the statechart. Its relay then forwards this event message to its currently active sub-state, which in turn forwards it down its currently active sub-state, and so on. When the message reaches a basic state, it is matched against the triggers of the outgoing transitions from this state. If some transition matches the trigger, it means that the transition is taken, so an entry message is sent to the process representing the target of the transition, and the process representing the currently active state exits (executing its exit action) and becomes inactive.

Since there is no direct link between the processes representing the source and target of the transition, this entry message is routed through the hierarchy of processes, according to the states that the transition crosses. While the entry message is sent to the destination, the states being exited execute their exit action and become inactive as the entry message travels “up” to the least common ancestor of the source and target of the transition. When the message reaches the least common ancestor, the transition’s action is executed, and the message is routed “down” to the appropriate target. As the message goes “down”, the states being entered become active and their entry actions executed, until we reach the actual target, which answers with an entry acknowledgement message, to be forwarded all the way up to the root. On the other hand, if the event did not match any transition of the currently active basic state, then a message is sent to the enclosing state (a.k.a. the parent) informing it that the event was not handled. In such case, the enclosing state attempts to match the event in the same manner as the basic state.
<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“enter”</td>
<td>enter a state</td>
</tr>
<tr>
<td>“exit”</td>
<td>exit from current state</td>
</tr>
<tr>
<td>(“enter”, doact, actdone)</td>
<td>enter a state with action trigger (see sec. 3.4.4)</td>
</tr>
<tr>
<td>“en_ack”</td>
<td>enter acknowledgment</td>
</tr>
<tr>
<td>“ex_ack”</td>
<td>exit acknowledgment</td>
</tr>
<tr>
<td>(“evt”, value)</td>
<td>event with given value</td>
</tr>
<tr>
<td>“enhh”</td>
<td>event not handled here</td>
</tr>
</tbody>
</table>

Table 1: Message types.

3.2 Messages and paths

Messages exchanged between processes representing states are of the form \((\vec{p}, m)\) where \(\vec{p} = \langle p_1, \ldots, p_k \rangle\) is the path to the destination, and \(m\) is the message.

A message \(m\) contains either a command to enter or exit a state, an event, or an acknowledgment. The possible values are shown in Table 1.

A path \(\vec{p}\) is a sequence of the form \(\langle \text{“up”}, \text{“up”}, \ldots, \text{“up”}, n_1, n_2, \ldots, n_l \rangle\) which describes how to route the message from one state to another. The prefix \(\langle \text{“up”}, \ldots, \text{“up”} \rangle\) specifies the number of levels the message has to go “up” in the nesting hierarchy, and the postfix \(\langle n_1, \ldots, n_l \rangle\) specifies the states that must be taken going “down” in the nesting hierarchy until reaching the destination. Here \(n_i\) is the name of the target.

Example 2. Consider the statechart in Figure 4. The nesting tree for this statechart, and the path from state \(n_0\) to state \(n_{10}\) are shown in Figure 5. If the statechart is currently in state \(n_9\) and receives an event that causes transition \(\ell_1\) to fire, an event message \(\langle \text{“evt”} \rangle\) is sent from the top-level state \(n_1\) downwards to \(n_9\) with path \(\langle n_2, n_4, n_7, n_9 \rangle\). This causes state \(n_9\) to send an entry message \(\langle \text{“enter”} \rangle\) to \(n_{10}\) with path \(\langle \text{“up”}, \text{“up”}, n_5, n_8, n_{10} \rangle\). It has only two “up”s because one is taken at state \(n_7\) and the other is taken at state \(n_4\), leaving the message in state \(n_2\), where it will go down the path \(\langle n_5, n_8, n_{10} \rangle\).

We define the following function to compute the path of a given transition from one state to another.

Definition 4. (Path of a transition) Let \(t = (\langle \ell, \delta, e, a, d \rangle, \delta, e, a, d) \in TR\) be some transition. The path from \(\text{src}(t)\) to \(\text{trg}(t)\) is given by:

\[
\text{tpath}(t) \overset{\text{def}}{=} \langle \text{“up”} \rangle_{i \in \{1, \ldots, |\delta| - 1\}} \cdot \vec{d}
\]

This is, the path of a transition contains an “up” for each state until the least common ancestor of the source and target, followed by the sequence of names going “down” until the destination.

\(^7\) A message sent to a descendant would not have any “up”s, but in our translation, messages sent to descendants are sent only to direct sub-states through their specific channels, and the path will be \(\langle \rangle\).
Figure 4: A statechart with an inter-level transition.

Figure 5: Nesting tree and path from n_9 to n_{10}.
We also define the following functions to compute the path of a transition from one state to another, given the source and target of the transition.

3.3 Executing actions

When a state s is entered, its entry action en must be executed, and when it is exited, its exit action ex must be executed. Furthermore, when a transition is taken, its action must also be executed. In the remainder of this Section we assume there is a function exec which executes actions (entry, exit and transition actions). More precisely, it is a function $\text{exec}_{\text{out}}: A \to \text{KLT mapping actions to appropriate \textit{kiltera} processes, which may produce its output at a given port out.}\footnote{In this encoding we assume that the only observable effect of executing an action is sending a message to an object, and thus, we only assume the (possible) use of an out port. A more comprehensive mapping would also allow actions to modify the attributes of the object who owns the statechart. In such case, the exec mapping would also be parameterized by some link(s) to a process that gives access to the object’s attributes.}

Once a state has executed its entry action (resp. exit action), it sends an acknowledgment signal “en_ack” (resp. “ex_ack”) to its parent. These acknowledgments are used to guarantee that actions are fully executed and in the right order, and to guarantee run-to-completion semantics.

3.4 Mapping basic states

In the remainder of this Subsection we will assume that $s = [a, (en, ex)]$ is the basic state that we are translating. Before showing the translation of s itself, we need some preliminary process definitions.

3.4.1 Entry sequence

The following process executes the state’s entry action en and sends an entry acknowledgment to its parent.$\footnote{Note that the path is the empty sequence $\langle \rangle$ since the destination is the parent itself.}$

$$\text{basic_enseq}(tp, out) \overset{df}{=} \text{exec}_{\text{out}}(en); tp \uparrow \langle \rangle, \text{"en_ack"}$$

3.4.2 Exit sequence

The following process is analogous. It executes the state’s exit action ex and sends an exit acknowledgment to its parent.

$$\text{basic_exseq}(tp, out) \overset{df}{=} \text{exec}_{\text{out}}(ex); tp \uparrow \langle \rangle, \text{"ex_ack"}$$
3.4.3 Inactive state
The following process represents an inactive basic state. The subscript T denotes the set of outgoing transitions from this state (s).

$$\text{basic}_\text{inactive}_{s,T}(fp, tp, out) \overset{def}{=}$$

$$fp?((\emptyset, \text{“enter”}) \rightarrow (\text{basic}_\text{enseq}_{s}(tp, out); \text{basic}_\text{active}_{s,T}(fp, tp, out)))$$

An inactive basic state can only accept enter messages. Once an enter message arrives, it executes its entry sequence and becomes active.

3.4.4 Active state
The following process represents an active basic state. As before, the subscript T denotes the set of outgoing transitions from this state.

$$\text{basic}_\text{active}_{s,T}(fp, tp, out) \overset{def}{=}$$

$$fp?((\emptyset, \text{“exit”}) \rightarrow$$

$$\quad (\text{basic}_\text{enseq}_{s}(tp, out);$$
$$\quad \text{basic}_\text{inactive}_{s,T}(fp, tp, out))$$

$$+ \sum_{t_i \in T} fp?((\emptyset, (\text{“evt”}, \text{evt}(t_i))) \rightarrow$$

$$\quad (\text{basic}_\text{enseq}_{s}(tp, out);$$
$$\quad \text{basic}_\text{jump}_{s,T,t_i}(fp, tp, out))$$

$$+ fp?((\emptyset, (\text{“evt”}, _)) \rightarrow$$

$$\quad (tp\uparrow(\emptyset, \text{“enhh”});$$
$$\quad \text{basic}_\text{active}_{s,T}(fp, tp, out)))$$

An active state can receive either an exit message (“exit”) or an event of the form (“evt”, value). If it receives an exit message, it must perform the exit sequence and become inactive. If it receives an event, there are two possibilities: either the event’s value matches the trigger $\text{evt}(t_i)$ of some transition t_i, or it doesn’t.

If the event’s value matches the trigger $\text{evt}(t_i)$ of some transition t_i, the state must execute the exit sequence, and then handle the event, which is done according to the following:

$$\text{basic}_\text{jump}_{s,T,t_i}(fp, tp, out) \overset{def}{=}$$

$$\nu \text{doact, actdone}. (\text{doact}？ \rightarrow (\text{exec}_{\text{out}}(\text{act}(t_i)); \text{actdone} \uparrow)$$

$$\| \text{tp} \uparrow (\text{tp}(t_i), (\text{“enter”}, \text{doact}, \text{actdone})))$$

$$\text{basic}_\text{inactive}_{s,T}(fp, tp, out)$$

This process sets up the execution of the transition’s action ($\text{act}(t_i)$) but this is not executed right away, since there might be exit actions of enclosing states that must be executed before. Instead, the execution of this action is deferred until all necessary exit actions of enclosing states are executed. Hence we only create a “callback” process $\text{doact}？ \rightarrow (\text{exec}_{\text{out}}(\text{act}(t_i)); \text{actdone} \uparrow)$ that waits for
the signal \textit{doact} which is to be triggered when the action must be executed, and then triggers signal \textit{actdone} when the action has finished. While creating this “callback” for the action, we send an “enter” message to the destination, via the state’s parent \((tp)\), following the appropriate path \textit{tpath}(t_i). This message carries additional information, namely the signals \textit{doact} and \textit{actdone}, so that the action is triggered at the appropriate moment, when all “up” steps have been performed, and just before entering states going down.\footnote{Note that here we make use of kiltera’s (and the \(\pi\)-calculus) defining characteristic: channel mobility. We send an event (channel) as part of the message.} Finally the state becomes inactive.

If the state receives an event which does not match the trigger event of any of the outgoing transitions, then it sends the parent an “\textit{enhh}” message indicating that the event is not handled here. Then it remains active.

3.4.5 Translation of a basic state

Given these definitions we are now able to map a basic state \(s = [n, (ex, en)]\) to a kiltera term as follows:

\[
[[n, (ex, en)]]_{(f, t, p, t', out)} \overset{\text{def}}{=} \text{basic_inactive}_{(n, (ex, en)), T}(f, t, p, out)
\]

This is, a state is mapped to an initially inactive process.

3.5 Mapping or-states

In the remainder of this Subsection we will assume that \(s = [n, s_{1..k}, T, (en, ex)]\) is the or-state that we are translating.

3.5.1 Entry sequence

The entry sequence for an or-state must first execute the state’s entry action \(en\), then recursively enter the default state (with the process \textit{enter_child} defined below), and finally send an acknowledgment to the parent:

\[
\text{or_enseq}_{(tp, out, fd, td)}(f, c, t, td) \overset{\text{def}}{=} \text{exec}_{out}(en); \text{enter_child}(fd, td); tp\uparrow (\langle \rangle, “en_ack”)
\]

where \(fd\) and \(td\) are the ports from the default state and to the default state respectively, \(tp\) is the port to the parent, and \(out\) is the output port.

The process \textit{enter_child} tells a given child to enter, and then waits for acknowledgment:

\[
\text{enter_child}(fc, tc) \overset{\text{def}}{=} tc\uparrow (\langle \rangle, “enter”); fc? (\langle \rangle, “en_ack”)
\]

Here \(fc\) denotes the port where messages from the child are expected, and \(tc\) the port where messages to the child are sent.
Note that the default child must be fully entered and given its entry acknowledgment, before the or-state sends its own acknowledgment to its parent. This guarantees that when an entry acknowledgment is received, the corresponding child has completed its entry and executed all entry actions in the appropriate order.

3.5.2 Exit sequence

The exit sequence of an or-state is analogous to its entry sequence, but when the state is asked to exit, its currently active sub-state must be exited (using the process `exit_child` defined below) before the state's exit action is performed.

\[
\text{or_exseq}(tp, out, fc, tc) \overset{def}{=} \text{exit_child}(fc, tc); \text{exec_out}(ex); tp \uparrow (\langle \rangle, \text{"ex_ack"})
\]

The `exit_child` process is analogous to the `enter_child` process:

\[
\text{exit_child}(fc, tc) \overset{def}{=} tc \uparrow (\langle \rangle, \text{"exit"}); \ fc?\langle \rangle, \text{"ex_ack"})
\]

where `fc` and `tc` are the channels to the currently active child.

As before, the currently active sub-state must have fully exited before the exit action of the state is performed and the exit acknowledgment sent to the parent. This guarantees that when an exit acknowledgment is received, the corresponding child has completed its exit and executed all exit actions in the appropriate order.

3.5.3 Forward sequence

When we are taking a transition whose target is a descendant of the state, rather than the state itself, the relay for the state must forward the entry message to the appropriate child, in accordance with the message's path. This is accomplished by the following process, which sends a message to the child specified by the ports `fc` and `tc` with `etc` as the remaining path to the destination\(^1\), and waits for an entry acknowledgment from the child which, in turn, is forwarded up to the state's parent.

\[
\text{forward_enter}(tp, fc, tc, etc) \overset{def}{=} tc \uparrow (etc, \text{"enter"}); \ fc?\langle \rangle, \text{"en_ack"}) \rightarrow tp \uparrow (\langle \rangle, \text{"en_ack"})
\]

3.5.4 The relay

The relay process is in charge of keeping track of active sub-states, as well as handling and forwarding messages. The relay can be in two modes: active or

\(^1\text{The first element of the path is stripped by the relay, as described below.}\)
inactive. Initially it starts in the inactive state:

\[\text{or_relay}_{s,T}(fp, tp, out, fc_{1..k}, tc_{1..k}) \overset{def}{=} \]
\[\text{or_inactive}_{s,T}(fp, tp, out, fc_{1..k}, tc_{1..k}) \]

The relay contains not only the \(fp\), \(tp\), and \(out\) ports of the state, but also a pair of ports \(fc_i\) and \(tc_i\) for each sub-state \(i\) to communicate with them. We assume that the first component represents the default state, and therefore \(fc_1\) and \(tc_1\) are the links to the default state. The subscript \(T\) denotes the set of outgoing transitions from this state \(s\) or any descendant.

3.5.5 Inactive state

When the state is inactive, it may receive an enter message directed to it (if the state is the target of the corresponding transition), or to a descendant (if the descendant is the target of the transition). In the following, \(fp\), \(tp\), and \(out\) are the usual ports. In addition to these, for each child \(i\) we have a pair of ports \(fc_i\) and \(tc_i\) respectively from the child and to the child.

\[\text{or_inactive}_{s,T}(fp, tp, out, fc_{1..k}, tc_{1..k}) \overset{def}{=} \]
\[fp?((\langle \rangle, \text{"enter"})) \rightarrow \]
\[(\text{or_enqueue}(tp, out, fc_1, tc_1)); \]
\[\text{or_active}_{s,T}(fp, tp, out, fc_1, tc_1, fc_{1..k}, tc_{1..k}) \]
\[+ \sum_{s_i \in s_{1..k}} fp?((\text{name}(s_i)) \cdot \text{etc} , \text{"enter"}) \rightarrow \]
\[(\text{exec_out}(en)); \]
\[\text{forward_enter}(tp, fc_i, tc_i, etc); \]
\[\text{or_active}_{s,T}(fp, tp, out, fc_1, tc_1, fc_{1..k}, tc_{1..k}) \]

When the inactive state receives an enter message directed to it, it executes its entry sequence (using the ports \(fc_1\) and \(tc_1\) to communicate with the default state), and becomes active, setting the currently active sub-state to be the default state by executing the \(\text{or_active}_{s,T}\) process with the ports \(fc_i\) and \(tc_i\) as the fourth and fifth ports respectively.

When the inactive state receives a message aimed at a descendant within the sub-state \(s_i\), it must be an enter message to the descendant, and thus the state must be entered. This means that the enter action must be executed, the message must be forwarded to the corresponding sub-process (via the channels \(fc_i\) and \(tc_i\) which correspond to the child \(s_i\)), and then it must become active, with the sub-state \(s_i\) active (indicated by the fourth and fifth ports of the \(\text{or_active}_{s,T}\) process). By executing the entry action before forwarding the message we guarantee the semantics of transitions, where entry actions must be executed in order of nesting, from outermost to innermost, for all states that the transition is entering.

12Note that we use the sequence notation \(fc_{1..k}\) for the sequence of ports \(fc_1, ..., fc_k\), and similarly for \(tc_{1..k}\).

13Note that at this point the first item of the path is stripped and only the remainder \(etc\) is passed to the forwarding process.
3.5.6 Active state

The following process represents an active or-state. As before, for each child i we have a pair of ports fc_i and tc_i respectively from the child and to the child, and the distinguished ports fc and tc link the process with the currently active sub-state.\(^{14}\)

$$
\text{or_active}_{s,T}(fp, tp, out, fc, tc, fc_{1..k}, tc_{1..k}) \overset{df}{=} \\
fp?([], "exit") \rightarrow \\
(\text{or_exseq}_{s,T}(tp, out, fc, tc); \ \\
\text{or_inactive}_{s,T}(fp, tp, out, fc_{1..k}, tc_{1..k})) \\
+ fp?([], ("evt", x)) \rightarrow \\
\text{or_handle_event}_{s,T}(fp, tp, out, fc, tc, fc_{1..k}, tc_{1..k}, x)
$$

When an or-state is active it may receive an exit message or an event. If it is an exit message, it must execute the exit sequence, sending an exit message to the currently active sub-state (via tc) and then become inactive. If it is an event, the or_handle_event_{s,T} process, defined below, takes care of it.

3.5.7 Handling events

The semantics of UML statecharts states that when two transitions with the same trigger are enabled, and the source of one is a descendant of the other (i.e. it is at a lower level of nesting), then the one with lower level takes priority over its ancestor. In order to capture this semantics, the event handling process must first send the event message “down” the nesting hierarchy to the currently active sub-state to give it a chance to handle it. Suppose the or-state s receives an event. Then, the event is sent to the currently active sub-state. There are two possibilities, either:

1. The event is handled by the currently active sub-state, i.e., there was a transition with a trigger that matched the event, or

2. The event is not handled by the currently active sub-state.

In the first possibility, we have two cases, depending on the target of the transition: either the target of the transition is outside s (Figure 6 (a)), or the target is inside s. Furthermore, in the later case we have two sub-cases: either the transition’s source and target are in different sub-states of s (Figure 6 (b)), or they are in the same sub-state (Figure 6 (c)).

For each of these possible scenarios we have a corresponding answer from the currently active child:

1. If the event was handled by the child (or some descendant), with some transition from the child (or a descendant) to some state outside s, then the child responded with an enter message directed to the target state outside s, with a path that begins with “up”;

\(^{14}\)Note that at run-time these ports will link the relay with different sub-states, as the active sub-state changes. This exemplifies our use of channel mobility.
2. If the event was handled by the child (or some descendant), with some transition from the child (or a descendant) to some state inside s, where the source and target of the transition are in different sub-states of s, and so s is the least common ancestor of the source and target of the transition, then the child responded with an enter message directed at the target state inside s, with a path that begins with the name of the (ancestor of the) target state.

3. If the event was handled by the child (or some descendant), with some transition from the child (or a descendant) to some state inside s, where the source and target of the transition are in the same sub-state of s, and so s is not the least common ancestor of the source and target of the transition, then, the child responded with an entry acknowledgment (“en_ack”), sent by the target of the transition,

4. If the event was not handled by the child (or any descendant), then, the child responded with an “enhh” message.

Each of these alternatives is handled by the branches of the choice below.

\[
\text{or_handle_event}_{s,T}(fp, tp, out, fc, tc, fc_1..k, tc_1..k, x) \overset{df}{=} \begin{cases}
\text{tc} \uparrow ((), \text{"evt", }x)); \\
(fce?((\text{"up"}: etc, msg) \rightarrow \text{or_trans_out}_{s,T}(fp, tp, out, fc_1..k, tc_1..k, etc, msg)) \\
+ \sum_{s_i \in s_1..k} fce?((\text{name}(s_i)) \cdot etc, \text{"enter", doact, actdone}) \rightarrow \text{or_trans_internal}_{s,T,i}(fp, tp, out, fc, fc_1..k, tc_1..k) \\
+ fce?((\text{"en_ack"}) \rightarrow \text{or_match_event}_{s,T}(fp, tp, out, fc, fc_1..k, tc_1..k, x)) \\
\end{cases}
\]

1. In the first case, the child answers with an enter message directed to a state outside s, and therefore the path begins with “up”. This case is handled by the process $\text{or_trans_out}_{s,T}$ defined below. We must exit s which entails executing its exit action ex, then send the message to the
parent, stripping the first item from the path (so the remaining path is etc), and then become inactive.

$$\text{or_trans_out}_{s,T}(fp, tp, out, fc_{1..k}, tc_{1..k}, etc, msg) \overset{\text{def}}{=} \quad \text{exec_out}(ex);$$

$$tp \uparrow (etc, msg);$$

$$\text{or_inactive}_{s,T}(fp, tp, out, fc_{1..k}, tc_{1..k})$$

2. In the second case, the child answers with an enter message directed to a state inside s (different than the source of the transition), and therefore the path begins with the name of a sub-state of s, specifically the name of the sub-state s_i which contains the target of the message. This case is handled by the process $\text{or_trans_sibling}_{s, T, i}$ defined below.

$$\text{or_trans_sibling}_{s, T, i}(fp, tp, out, fc_{1..k}, tc_{1..k}, doact, actdone, etc) \overset{\text{def}}{=}$$

$$\begin{align*}
doact &; \quad \text{actdone?} \rightarrow (\text{forward_enter}(tp, fc_i, tc_i, etc);$$

$$\text{or_active}_{s, T}(fp, tp, out, fc_i, tc_i, fc_{1..k}, tc_{1..k}))
\end{align*}$$

The state s must be the least common ancestor of the source and the target of the transition taking place. Hence the message is of the form (“enter", doact, actdone) where doact is the signal to execute the transition’s action, and actdone is the event signaling the termination of the action. At this point all relevant exit actions for the transition have been executed, so we trigger the action signal doact and wait for the transition’s action to finish. Then we forward the enter message to the appropriate target tc_i. The state remains active in this case, but the links to the currently active sub-state change to fc_i and tc_i.

3. In the third case, the child answers with an entry acknowledgment which indicates that the transition was fully handled within some sub-state of s. This case is handled by the process $\text{or_trans_internal}_{s, T}$ below.

$$\begin{align*}
\text{or_trans_internal}_{s, T}(fp, tp, out, fc, tc, fc_{1..k}, tc_{1..k}) \overset{\text{def}}{=} \quad tp \uparrow (\emptyset, \text{"en_ack"});$$

$$\text{or_active}_{s, T}(fp, tp, out, fc, tc, fc_{1..k}, tc_{1..k})
\end{align*}$$

In this case, we simply propagate the acknowledgment up to s’s parent, and remain active, with the currently active sub-state unchanged.

4. In the last case, the child answers with an “enhh” message, indicating that the current sub-state did not handle the event. In this case, we must try to match the event, according to the transitions T' going out of s:

$$T' \overset{\text{def}}{=} \{ t \in T \mid \text{src}(t) = \text{name}(s) \}$$

The matching of the event is done by the $\text{or_match_event}_{s, T'}$ process:
or_match_event_s,T(fp, tp, out, fc, tc, fc_1, ..., fc_k, tc_1, ..., tc_k, x) \overset{\text{def}}{=} \\
match x: \\
| t_i \in T \text{ is a trigger} (t_i) \rightarrow \\
(\text{or_exseq}_s(tp, out, fc, tc); \\
\text{or_jump}_s,T,t_i(fp, tp, out, fc_1..k, tc_1..k)) \\
| _ \rightarrow \\
(tp \uparrow (\emptyset, "enhh"); \\
\text{or_active}_s,T(fp, tp, out, fc, tc, fc_1, ..., fc_k, tc_1, ..., tc_k))

When the event of transition t_i is matched, we must leave the state and therefore, we must execute the exit sequence (using the links fc and tc to communicate with the currently active sub-state), and then we jump out of the state, as specified by the following:

or_jump_s,T,t_i(fp, tp, out, fc_1..k, tc_1..k) \overset{\text{def}}{=} \\
\nu doact, actdone. (doact? \rightarrow (exec_out (act(t_i)); actdone)) \\
\| tp \uparrow (\text{path}(t_i), ("enter", doact, actdone))); \\
\text{or_inactive}_s,T(fp, tp, out, fc_1, tc_1, fc_1..k, tc_1..k)

As in a basic state, we setup a "callback" process to execute the transition’s action once a signal $doact$ is triggered. Then we send the enter message to the target of the transition via the state’s parent, and finally become inactive.

If none of the triggers match, we send an “enhh” message to the parent, while remaining active, to inform the parent that the event was not handled here.

3.5.8 Translation of an or-state

The translation of the or-state $s = [n, s_1..k, T, (en, ex)]$ consists of the relay and the parallel composition of the translations of each of the sub-state terms:

$[s]T,fp,tp,out \overset{\text{def}}{=} \\
\nu fc_1, ..., fc_k, tc_1, ..., tc_k. (or_relay_s,T(fp, tp, out, fc_1, ..., fc_k, tc_1, ..., tc_k) \\
\| \Pi_{i \in \{1,...,k\}}[s_i]T,tc_i,fc_i,out)$

where $T_1 \overset{\text{def}}{=} \{ t \in T \mid \text{src}(t) \in \text{descendants}(s_i) \cup \{\text{name}(s_i)\} \}$ for each $i \in \{1, ..., k\}$ is the set of transitions with source in sub-state s_i, i.e. going out of s_i or any of its descendants. Note that the parameters of the translation $[s_i]$ of a sub-state s_i are given in order T, tc_i, fc_i, out. This is because the relay’s tc_i port must be linked to the child’s fp port, and the fc_i port must be linked to the child’s tp port.

3.6 Mapping and-states

And-states consists of a set of orthogonal regions each of which is a statechart in its own right. The kiltera process representing an and-state has the same
structure described above, with a relay and a process corresponding to each orthogonal region. The main difference with or-states is that in an or-state there is only one active sub-state at any point in time whereas in an and-state all orthogonal components are active. When an event arrives, it is broadcasted to all orthogonal regions.

In this report we deal only with a subset of the full UML State Machines specification. In particular we do not deal with forks and joins. As a consequence, if the target of a transition is a sub-state of an and-state, it is only within one of its orthogonal regions, so that when the transition is taken, the other orthogonal regions will enter through their default state. Furthermore, when a transition comes out of a sub-state of an and-state, all other regions will exit.

3.6.1 Entry sequence
When entering an and-state, all orthogonal regions must be entered, but not before executing the state’s own entry action.

\[
\text{and_enseq}(tp, out, fc_1, \ldots, fc_k, tc_1, \ldots, tc_k) \overset{df}{=} \text{exec}_{out}(en); (\Pi_i \text{enter_child}(fc_i, tc_i)); tp \uparrow (\langle \rangle, \text{“en_ack”})
\]

where enter_child is the same as in Section 3.5.1. Note that the parallel composition of enter_child processes, which causes all orthogonal regions to enter, does not prescribe a particular order of entry to the orthogonal regions. This is conformant with the UML specification which leaves open the particular order of entry.

3.6.2 Exit sequence
The exit sequence for the and-state is analogous. All sub-regions are ordered to exit before executing the state’s own exit action.

\[
\text{and_exseq}(tp, out, fc_1, \ldots, fc_k, tc_1, \ldots, tc_k) \overset{df}{=} (\Pi_i \text{exit_child}(fc_i, tc_i)); \text{exec}_{out}(ex); tp \uparrow (\langle \rangle, \text{“ex_ack”})
\]

As before, exit_child is the same as in Section 3.5.2. Furthermore, the sequence operator guarantees that all enter_child sub-processes will be fully completed before the execution of the state’s exit action.

3.6.3 Forward sequence
The forward sequence for and-states is the same as for or-states, as described in Section 3.5.3.
3.6.4 The relay

The relay for an and-state is analogous to the relay of an or-state. The relay can be in two modes: active or inactive. Initially it starts in the inactive state:

\[\text{and_relay}_{s,T}(fp, tp, out, f_{c1}, ..., f_{ck}, t_{c1}, ..., t_{ck}) \stackrel{def}{=} \]
\[\text{and_inactive}_{s,T}(fp, tp, out, f_{c1}, ..., f_{ck}, t_{c1}, ..., t_{ck}) \]

The relay contains not only the \(fp, tp \) and \(out \) ports of the state, but also a pair of ports \(f_{ci} \) and \(t_{ci} \) for each sub-state \(i \) to communicate with them. The subscript \(T \) denotes the set of outgoing transitions from this state \((s) \) or any descendant.

3.6.5 Inactive state

The inactive-state of an and-state is similar to that of an or-state. It can receive either an enter message, in which case it performs the entry sequence and becomes active, or it can receive a message aimed at a sub-state \(s_i \), in which case it must execute the entry action, forward the message to \(s_i \), and enter the orthogonal regions to their default state. Once all orthogonal regions have entered, the state becomes active.

\[\text{and_inactive}_{s,T}(fp, tp, out, f_{c1}, ..., f_{ck}, t_{c1}, ..., t_{ck}) \stackrel{def}{=} \]
\[\overline{f p?}(\epsilon, \text{“enter”}) \rightarrow \]
\[(\text{and_enseq}_{s,T}(tp, out, f_{c1}, ..., f_{ck}, t_{c1}, ..., t_{ck}); \]
\[\text{and_active}_{s,T}(fp, tp, out, f_{c1}, ..., f_{ck}, t_{c1}, ..., t_{ck})) \]
\[+ \sum_{s_i \in s_i, k} f p?((\text{name}(s_i)) \cdot \text{etc}, \text{“enter”}) \rightarrow \]
\[(\text{exec}_{out}(en)); \]
\[(\text{forward_enter}(tp, f_{ci}, t_{ci}, etc) \]
\[|| \prod_{j \in 1..k \setminus \{i\}} \text{enter_child}(f_{cj}, t_{cj}); \]
\[\text{and_active}_{s,T}(fp, tp, out, f_{c1}, ..., f_{ck}, t_{c1}, ..., t_{ck})) \]

Notice that the \(\text{enter_child} \) process is invoked for each child \(j \in 1..k \setminus \{i\} \), this is, for every child which is not \(i \), since this is the target of the transition, and all other orthogonal regions enter to their default state.

3.6.6 Active state

An active and-state is analogous to an or-state, but there is no distinguished currently active sub-state, since all orthogonal regions are active.

\[\text{and_active}_{s,T}(fp, tp, out, f_{c1}, ..., f_{ck}, t_{c1}, ..., t_{ck}) \stackrel{def}{=} \]
\[\overline{f p?}(\epsilon, \text{“exit”}) \rightarrow \]
\[(\text{and_exseq}_{s,T}(tp, out, f_{c1}, ..., f_{ck}, t_{c1}, ..., t_{ck}); \]
\[\text{and_inactive}_{s,T}(fp, tp, out, f_{c1}, ..., f_{ck}, t_{c1}, ..., t_{ck})); \]
\[+ f p?((\text{“exit”, } x)) \rightarrow \]
\[\text{and_handle_event}_{s,T}(fp, tp, out, f_{c1}, ..., f_{ck}, t_{c1}, ..., t_{ck}, x) \]
As with an or-state, when an and-state is active it may receive an exit message or an event. If it is an exit message, it must execute the exit sequence, sending an exit message to all sub-states and then become inactive. If it is an event, the \(\text{and_handle_event}_{s,T} \) process, defined below, takes care of it.

3.6.7 Handling events

Handling events in an and-state is a bit different. The event must be broadcasted to all orthogonal regions, and there are four possible outcomes:

1. No region handled the event, and thus the and-state itself must attempt to handle it, or
2. Some regions handled the event, and there is at least one transition to be taken outside of \(s \).
3. Some (or all) regions handled the event \textit{internally}, but no region that handled the event is performing a transition \textit{outside} \(s \).

To handle these possibilities, we use the following auxiliary processes:

\[
\text{broadcast}(x, t_{c_1}, ..., t_{c_k}) \equiv (\Pi_{i \in 1..k} t_{c_i} \uparrow (\langle \rangle, ("evt", x)))
\]

This process sends the event \(x \) to all children (i.e. orthogonal regions).

\[
\text{wait_for_enack}(f_{c_1}, ..., f_{c_k}, all, n_1, ..., n_k) \equiv (\Pi_{i \in 1..k} (f_{c_i} \uparrow (\langle \rangle, "enhh") \rightarrow n_i \uparrow + f_{c_i} \uparrow (\langle \rangle, "en_ack") \rightarrow \sqrt{f}); all \uparrow
\]

This process waits for an entry acknowledgment or an “enhh” message from all children, and once all have answered, it triggers the \textit{all} event. When the child \(i \) answers with “enhh”, an event \(n_i \) is triggered, in order to identify case 1 above, which is detected by the following process.

\[
\text{wait_for_enhh}(n_1, ..., n_k, nche) \equiv (\Pi_{i \in 1..k} (n_i \rightarrow \sqrt{f}); nche \uparrow
\]

This process triggers the signal \(nche \) (no child handled the event) if (and only if) all events \(n_i \) where triggered.

With these processes, we can built the event handler for and-states:

In the present version of this mapping we assume that at most one transition fired goes outside the state. Otherwise the and-state would act as a fork.
and_handle_event_{s,T} (fp, tp, out, fc_1, ..., fc_k, tc_1, ..., tc_k, x) \overset{def}{=}
\nu nc, all, n_1, ..., n_k,
(wait _for _enack (fc_1, ..., fc_k, all, n_1, ..., n_k)
\parallel wait _for _enhh (n_1, ..., n_k, nc)
\parallel (nc ? \rightarrow
and_match_event_{s,T} (fp, tp, out, fc_1, ..., fc_k, tc_1, ..., tc_k, x)
+ \sum_{i \in 1..k} fc_i ? (\langle \text{\textquoteleft\textquoteleft up\textquoteright\textquoteright\rangle} \rangle \cdot etc, msg) \rightarrow
and_trans_out_{s,T} (fp, tp, out, fc_{1..k}, tc_{1..k}, etc, msg)
\parallel all? \rightarrow
(tp \uparrow (\langle \rangle, \text{\textquoteleft\textquoteleft en_ack\textquoteright\textquoteright\rangle);
and_active_{s,T} (fp, tp, out, fc_1, ..., fc_k, tc_1, ..., tc_k))))

First we broadcast the event to all children. Then we wait for their response, which can be an entry acknowledgment (“en_ack”), and event not-handled here message (“enhh”) or a message with a path beginning with “up”.

If all answered “enhh”, then we are in case 1, and so the signal nc ? is triggered, in which case we attempt to match the event with the transitions coming out of s, with the process and_match_event_{s,T} were

\[T' \overset{def}{=} \{ t \in T \mid \text{src}(t) = \text{name}(s) \} \]

is the set of transitions coming out of s. The matching of events is as for or-states:

\[\text{and_match_event}_{s,T} (fp, tp, out, fc_1, ..., fc_k, tc_1, ..., tc_k, x) \overset{def}{=} \]
match \(x \):
\[|_{t_i \in T} ev(t_i) \rightarrow
(and_exseq_{s} (tp, out, fc_1, ..., fc_k, tc_1, ..., tc_k);
and_jump_{s,T,t_i} (fp, tp, out, fc_{1..k}, tc_{1..k}))
\parallel _{i} \rightarrow
(tp \uparrow (\langle \rangle, \text{\textquoteleft\textquoteleft enhh\textquoteright\textquoteright\rangle);
and_active_{s,T} (fp, tp, out, fc_1, ..., fc_k, tc_1, ..., tc_k)) \]

When the event of transition \(t_i \) is matched, we must execute the exit sequence, as we are leaving the state, and then it leaves the state according to the following:

\[\text{and_jump}_{s,T,t_i} (fp, tp, out, fc_{1..k}, tc_{1..k}) \overset{def}{=} \]
\[\nu doact, actdone. \ (doact ? \rightarrow (exec_{out}(act(t_i)); actdone [])) \parallel tp \uparrow (\text{\textquoteleft\textquoteleft enter\textquoteright\textquoteright\rangle, doact, actdone));\]
and_inactive_{s,T} (fp, tp, out, fc_{1..k}, tc_{1..k})

As before, we setup a “callback” process to execute the transition’s action once a signal doact is triggered. Then we send the enter message to the target of the transition via the state’s parent, and finally become inactive. If none of the triggers match, we send an “enhh” message to the parent, while remaining active, to inform the parent that the event was not handled here.
If someone answered with a message with a path beginning with "up", we are in case 2, taking a transition outside \(s \). Hence we tell all children to exit, and after they have exited, we execute the state's exit action, send the message up to the parent and become inactive. This is performed by the following:

\[
\text{and_trans_out}_{s,T}(fp, tp, out, fc_{1..k}, tc_{1..k}, etc, msg) \overset{def}{=} \\
(\Pi_{j \in \{1..k\} \setminus \{i\}} \text{exit_child}(fc_j, tc_j)); \\
\text{exec}_{out}(ex); \\
tp \parallel (etc, msg); \\
\text{and_inactive}_{s,T}(fp, tp, out, fc_{1..k}, tc_{1..k}, etc, msg)
\]

Finally if all events answered, but the signal \(nche \) has not been triggered and no child answered with a message directed outside, then the signal \(all \) must have been triggered (case 3). In this case we simply send an entry acknowledgment to the parent, indicating the event was handled, and remain active.

3.6.8 Translation of an and-state

As with or-states, the translation of the and-state \(s = [n, s_{1..k}, (en, ex)] \) consists of the relay and the parallel composition of the translations of each of the sub-state terms:

\[
[s]_{T,fp,tp,out} \overset{def}{=} \\
\nu fc_1, ..., fc_k, tc_1, ..., tc_k. (\text{and_relay}_{s,T}(fp, tp, out, fc_1, ..., fc_k, tc_1, ..., tc_k) \\
\parallel \Pi_{i \in \{1, ..., k\}} [s_i]_{T,tc_i,out})
\]

where \(T_i \overset{def}{=} \{ t \in T \mid \text{src}(t) \in \text{descendants}(s_i) \cup \{\text{name}(s_i)\} \} \) for each \(i \in \{1, ..., k\} \) is the set of transitions with source in sub-state \(s_i \), i.e. going out of \(s_i \) or any of its descendants.

4 Conclusions

We have presented a mapping from a significant subset of UML State Machines to a process algebra named \texttt{kiltera}. This constitutes a precise, compositional and executable formal semantics for UML State Machines.

While our mapping does not deal with several features such as the history mechanism or deferred events, we preview that it will be relatively simple to modify it to support them. Furthermore, we have left out a precise description of object interaction, but this can be easily adapted: an object can be represented as a \texttt{kiltera} process with a suitable queueing mechanism for events, which dispatch them to the top-level state. The entry/exit acknowledgement protocol can be used to guarantee the run-to-completion semantics by associating the process that represents the object with a dispatcher process that will send the next available event only after receiving an acknowledgement from the top-level state, indicating that the event has been fully processed. The sending of events to other objects is encapsulated within the \texttt{exec} function, which sends those messages directly through the statechart's \texttt{out} port. The treatment of
synchronous vs. asynchronous messages is also the responsibility of this function.

Our encoding highlights the relative complexity of the semantics of and-states compared to or-states. This could be used as an argument against and-states as a mechanism to achieve concurrency and perhaps in favour of alternative approaches such as the one taken by the UML-RT profile, where concurrent processes are described as separate active objects with well-defined interfaces whose behaviour is given by simplified State Machines with only or-states.

References

