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this reason it is desirable to searh for a formal semantis whih is based onsome simple, well-de�ned formalism, thus larifying ambiguities and enablingmodel analysis.Formalizing the UML is a non-trivial task. The UML spei�ation [20℄ isa very large doument full of tehnial details, and with a signi�ant amountof ambiguities. Many of these ambiguities are deliberate, providing seman-ti variation points, in order to aommodate di�erent tool developers. Butothers are the result of lak of spei�ation and larity. Nevertheless, the prob-lem of formalizing its semantis an be broken down, as the UML onsists ofseveral sub-languages, eah of whih an be studied and understood with aertain degree of independene from the others. The UML sub-languages arebroadly divided into two ategories: strutural and behavioural. Strutural sub-languages suh as Class Diagrams, desribe the struture of a software system.Behavioural sub-languages desribe the behaviour of systems. Sine the fous ofthe UML is modelling Objet-Oriented software, behavioural diagrams desribethe behaviour of objets. There are three main kinds of behavioural diagrams:Ativity Diagrams, Interation Diagrams and State Mahines. This report isonerned with de�ning the semantis of State Mahines.We propose a formal semantis for a signi�ant subset of UML State Ma-hines (whih we also all stateharts) by mapping them into a proess algebraalled kiltera [22, 23℄ losely related to the π-alulus [15, 14℄. Furthermore,we propose a textual syntax for state mahine diagrams, based on the syntaxde�ned in [28℄.A question that may arise is why did we hoose kiltera as a target languageinstead of better known languages suh as CSP [9, 25℄, ASMs [2℄ or even the
π-alulus [15, 14℄ upon whih kiltera is based. This seletion ame down to thehoie of operators provided by the language as well as the failities to simulatethe resulting models. In partiular, kiltera provides some higher-level onstrutssuh as pattern-mathing whih failitate the desription of the generated mod-els and render them more readable. Furthermore, UML State Mahines allowtime-triggered transitions, but the existing timed variants of the aforementionedaluli do not easily apture suh semantis.The mapping desribed in this report is based on [4, 3℄. This previous workproposes an informal transformation from lassial (STATEMATE) stateharts[8℄ into the DEVS formalism [32℄.Our mapping has several harateristis that make it appealing: it providesa preise, formal semantis in a ompositional, non-�attening fashion whih isexeutable and extensible enough to support several semanti variation points.The bene�ts of being a ompositional mapping are multiple:

• the semantis of a state mahine is uniquely determined by the seman-tis of its omponent sub-states, thus supporting ompositional reasoningabout models, as well as omponent replaeability (i.e., a sub-state ma-hine an be replaed by an equivalent one without hanging the behaviourof the whole state mahine), 3



• it does not rely on �attening the statehart, thus resulting in a moreompat representation,
• the struture of the statehart is mimiked by the resulting kiltera model,thus eah state is in a one-to-one orrespondene with a omponent inthe kiltera model, whih failitates analysis, traeability, and tool support(e.g. debuggers, animation, et).We onentrate on a subset of State Mahines, rather than dealing with the fullspei�ation in all detail in order to simplify the treatment. We fous on thefollowing features of the o�ial UML State Mahine spei�ation:
• Composite states, inluding both or-states (also known as sequential states)and and-states (also known as onurrent states),
• Inter-level transitions (i.e. transitions �rossing boundaries�)
• Group transitions
• Entry and exit ations
• Transition ationsWe do not deal in the present version of the mapping with the following featuresof the o�ial UML State Mahine spei�ation:
• History states
• Pseudo states, in partiular, forks, joins, ondition points, juntions, entrypoints and exit points.
• Transition guardsNevertheless, our mapping is extensible enough to be able to deal with all fea-tures of the o�ial UML spei�ation.1.1 Related workThere have been multiple e�orts to formalize the semantis of UML State Ma-hines, as well as other variants of stateharts. We now disuss some of theseapproahes.Yeung et al (CSP semantis) One approah is presented in [29℄ where asubset of UML State Mahines is mapped into CSP [9, 24, 25℄. This approah isomparable to ours in that the target of the mapping is a proess algebra (CSP)and they use a notion of paths for transitions similar to ours, but that's wherethe similarities end. The most striking di�erene is that they map a statehart toa �attened state mahine in CSP: the hierarhial struture of the state mahine4



is lost and eah group transition1 is enoded in eah possible sub-state of itssoure. Furthermore this mapping does not enfore priorities between on�itingtransitions at di�erent levels of nesting, as required by the UML spei�ation.Like ours, they do not deal with History states, other pseudo-states, or transitionguards, but unlike ours, it is not very lear how their mapping would have tobe extended to deal with suh features.This approah seems to build on the mapping introdued in [17℄, althoughthis earlier work also deals with hoie pseudo-states (onditionals) and it presentsa prototype translation tool from Rational Rose State Diagrams to CSP odesuitable as input for FDR [6℄ for veri�ation.Von der Beek (SOS semantis) In [28℄ an alternative approah is pre-sented, in whih a textual syntax for UML State Mahines is introdued and anoperational semantis is de�ned in the style of Plotkin's Strutural OperationalSemantis [21℄ as a set of inferene rules de�ning a labelled-transition systemfor stateharts. This approah has the advantage of being ompositional and iteven deals with features suh as shallow and deep history. Nevertheless it is nota diretly exeutable semantis, but rather, it provides the spei�ation for asimulation engine or interpreter. This ontrasts with our approah of mappingstateharts to another language for whih we have a simulator. A major draw-bak of this approah ompared to ours is that integrating timed transitions isnon-trivial, and would involve modifying and extending the inferene rules andpossibly the syntax, whereas in our approah this extension an be dealt withby using the timing onstruts of our target language.Van Langenhove (EHA/Kripke/SMV semantis) Another approah ispresented in [26℄, where State Mahines are represented as Extended Hierar-hial Automata, a kind of automata where eah state may be assoiated withanother automaton. These hierarhial automata are given an operational se-mantis as Kripke strutures whih are then mapped to SMV [13℄.The mapping presented there has the advantage of being non-�attening,but it is not lear whether it is ompositional or not, in the sense that it isnot lear whether the �nal SMV target ode of a statehart an be seen as theombination of the translations of the omponent sub-stateharts. Furthermore,their mapping already requires the de�nition of an operational semantis for theExtended Hierarhial Automata, whih is given as a Kripke struture whosestates, alled on�gurations, already arry a lot of the mahinery required ofUML State Mahines, suh as an event queue and a history. Furthermore,non-ompliant restritions suh as a maximum event-queue size, are imposedon the target ode. But de�ning the semantis of State Mahines in termsof something that already has those onepts embedded as primitive hardlylari�es the semantis. A semantis should de�ne something more omplex interms of something simpler. This ontrasts with our approah, where we do not1A group transition is a transition whose soure is a omposite state.5



impose extraneous, target language restritions, and rely on a language whihdoes not inlude onepts of history or event-queues as primitive.Lam and Padget (π-alulus semantis) An approah whih maps StateMahines into the π-alulus, the proess algebra upon whih kiltera is based,was introdued in [11℄ and further developed in [12℄ and [10℄.Their approah assoiates states with π-alulus terms, and a protool ofhannel exhanges is used to model reeption and handling of events. Thisapproah supports both shallow and deep history. The thesis [10℄ also presentsa tool that generates input ode for the Mobility Workbenh (MWB [27℄) thatprovides deadlok detetion and equivalene heking between the generated π-alulus ode from two stateharts (open bisimilarity) and also generates inputode for the NuSMV model-heker [5℄.One of the main weaknesses of their approah is that the enoding does notlearly desribe how the hierarhial struture of a statehart is represented, andin partiular it is not lear how the enoding would aommodate an arbitrarilydeep hierarhy. Although the authors laim that their sheme respets thelowest-�rst �ring priority, the enoding and the examples provided seems tosupport only one level of nesting between states. This puts into question thelaim of ompositionality of this approah. There is no mention of how to dealwith inter-level and group transitions either, all fundamental features in UMLState Mahines.By relying on the pure π-alulus rather than a higher-level language, theirmapping makes use of ompliated enodings for simple ativities suh as eval-uation of a guard. Furthermore their mapping makes use of the unrestritedhoie operator + whih is very di�ult to implement in pratie (see [16℄).A ontroversial aspet of this translation is that the State Mahines mod-elled also inlude Ativities, thus desribing a hybrid formalism between UMLState Mahines and UML Ativity Diagrams. This addition seems to introdueonfusion in the semantis rather than larify it. Nevertheless, it appears to bea relatively orthogonal issue whih ould be taken away.Börger et al (ASMs semantis) Perhaps the most omprehensive approahis that of [1℄ where the dynamis of UML State Mahines are desribed usingAbstrat State Mahines [2℄. This approah takes into aount both sequentialstates (or-states), onurrent states (and-states) as well as history pseudo-states,and other features suh as deferred events.In this approah, the struture of the UML State Mahine is enoded as partof the state in the ASM, together with additional mahinery used to keep trakof the urrent states, history, et. Exeuting the state mahine is performed byASM agents whih hoose among enabled transitions and exeute the seletedtransition by removing states whih are exited and inserting entered states inthe table that keeps trak of the urrent on�guration.This approah is di�erent to others in that rather than mapping UML StateMahines to a �program� in the target language, they are mapped to a data6



struture in the target language, and a general algorithm is implemented in thetarget language whih exeutes (interprets) this data struture.A drawbak of this approah is that, while model-heking tehniques existfor ASMs (e.g. [7℄), using these tehniques on the approah presented wouldallow the veri�ation of properties of the simulation algorithm itself, rather thanproperties of a given statehart. Similarly, taking the �interpreter� approahto semantis makes the omparison of stateharts more di�ult: given twostate mahines to ompare, one has to onsider the steps that the interpretergoes through, rather than the steps that a semanti representation of the statemahines would follow. Furthermore, one wants to understand the behaviourof a state mahine whih does not have ertain features (e.g. history states),a mapping to some language would not enode the orresponding features andtherefore the meaning assoiated to the state mahine does not have elementswhih do not a�et its behaviour. By ontrast, in a semantis approah basedon an interpreter, suh as this ASM approah, when looking at the meanningof a state mahine one has to onsider the interpreter and how it deals with allfeatures in the formalism.Another drawbak of this approah is that, quoting [1℄: �The UML require-ment that an objet is not allowed to remain in a pseudostate, but has toimmediately move to a normal state, annot be guaranteed by the rules them-selves, but has to be imposed as an integrity onstraint on the permissible runs.�In other words, the algorithm itself is not su�ient to emulate the preise se-mantis of stateharts and one must resort to an extraneous onstraint on thepossible exeutions, limiting the diret exeutability of the semantis.Borland and Vangheluwe (DEVS semantis) The mapping upon whihour work is based was introdued in [4, 3℄. That work presents an informaltranslation from STATEMATE stateharts into DEVS [32, 30, 31℄ models.Beause of the signi�ant di�erenes between STATEMATE stateharts andUML stateharts, as well as the di�erenes between kiltera and DEVS, our map-ping departs signi�antly from the former in many respets, but the omposi-tionality of the approah is the same, inluding the idea of relay proesses tohandle events within a omposite state, as well as the routing mehanism withinthe hierarhial struture of the statehart.One of the main di�erenes in their approah, stemming from the STATE-MATE semantis is that inoming events are treated in a highest-�rst �ringpriority, as opposed the UML State Mahines. Furthermore their approahdoes not guarantee run-to-ompletion semantis.The most important di�erene, however, is that their work onstitutes an in-formal desription of the dynamis of stateharts, whereas our approah presentsa preise formal semantis.1.2 Organization of this reportThe remainder of this report is organized as follows: in Setion 2 we providesome preliminary de�nitions and notation used throughout the report. In par-7



tiular we introdue a new textual syntax for State Mahines in Setion 2.2and present an informal aount of the kiltera language in Setion 2.3. Se-tion 3 presents the mapping itself. We begin desribing the struture of themodel produed by the mapping (Subsetion 3.1), followed by a desription ofthe messages that �ow between omponents in the generated model (Subsetion3.2) and ations (Subsetion 3.3). Then we desribe the mapping of basi states(Subsetion 3.4), or-states (Subsetion 3.5) and and-states (Subsetion 3.6).2 Preliminaries2.1 SequenesIn the sequel we use several operations on sequenes. In this Subsetion wede�ne the notation for these operations.Notation 1. We write 1..k for the set {1, 2, ..., k}. Sequenes will be enlosedin 〈 and 〉. A sequene name will be denoted with an arrow on top, and itselements subsripted with their index, beginning from 1: ~x = 〈x1, x2, x3, ...〉. A�nite sequene 〈a1, ..., ak〉 will be abbreviated as a1..k. The empty sequene isdenoted 〈〉, or ǫ.Sequene onatenation will be denoted ·, so
〈a1, ..., ak〉 · 〈b1, ..., bl〉 def

= 〈a1, ..., ak, b1, ..., bk〉Prepending an item x to a sequene ~a = 〈a1, ..., ak〉 is denoted x~a, so x~a def
=

〈x〉 · ~a = 〈x, a1, ..., ak〉. We de�ne last(〈a1, ..., ak〉) def
= ak. We denote rev(~a) forthe reverse of the sequene, i.e. rev(〈a1, ..., ak〉) def

= 〈ak, ..., a1〉. We write |~a| forthe length of the sequene ~a.A sequene de�nes a total order on its elements aording to their positions:let ~a = 〈a1, ..., ak〉 be some sequene, then we write ai � aj if i ≤ j.We will also use sequene omprehension notation: if I is some totally or-dered set (possibly a sequene), ϕ(x) is an expression with free variable x, and
ψ(x) is some prediate on x, then the expression 〈ϕ(x) |x ∈ I, ψ(x)〉, also writ-ten 〈ϕ(x) |ψ(x)〉x∈I denotes the sequene of all ϕ(x) suh that ψ(x) holds, pre-serving the order over I, this is, if x ≤ x′ for some x, x′ ∈ I then ϕ(x) � ϕ(x′).For example, 〈x2〉x∈{1,2,3} = 〈1, 4, 9〉.De�nition 1. (Pre�x) Let ~a and ~b be a pair of sequenes. We say that ~a is apre�x of ~b, written ~a ⊑ ~b if there is a sequene ~w suh that ~a · ~w = ~b.Remark 1. ⊑ is a partial order, this is, it is re�exive, transitive and anti-symmetri.De�nition 2. (Pre�x removal and ommon pre�x) Let ~a be a sequeneand ~b some pre�x of ~a, i.e. ~a = ~b · ~w for some ~w. Then, we write ~a −~b for ~w.8



This an be de�ned reursively as follows:
ǫ− x~b

def
= ǫ

x~a− ǫ
def
= x~a

x~a− x~b
def
= ~a−~b

x~a− y~b
def
= x~a if x 6= yGiven two sequenes ~a and ~b, ~a ⊓~b denotes the greatest ommon pre�xof ~a and ~b, i.e. ~a⊓~b ⊑ ~a, ~a⊓~b ⊑ ~b and for any pre�x ~u of both ~a and ~b, ~u ⊑ ~a⊓~b.This an be de�ned reursively as follows:

ǫ ⊓~b def
= ǫ

~a ⊓ ǫ def
= ǫ

x~a ⊓ y~b def
= ǫ if x 6= y

x~a ⊓ x~b def
= x(~a ⊓~b)Remark 2. The greatest ommon pre�x is nothing but the greatest lower boundaording the the pre�x partial order ⊑.2.2 Statehart syntaxLetNS ,NT ,Π,A be the sets of all possible state names, transition names, eventsand ations respetively. We use n,m, ... for state names in NS and t1, t2, ... fortransition names in NT . We write e1, e2, ... for events in Π and a1, a2, ... forations in A. We assume that eah state is labelled with a unique name.De�nition 3. (Statehart terms) The set SC of statehart terms is de�nedaording to the following BNF where n ∈ NS and s, s1, ..., sk range over SC :

s ::= [n, (en, ex)] Basi-state
| [n, (s1, ..., sk), T, (en, ex)] Or-state
| [n, (s1, ..., sk), (en, ex)] And-stateHere en, ex ∈ A ∪ {⊥} and T ⊆ TR where TR

def
= NT × N ∗

S × Π × A ×
N ∗

S is the set of transitions of an or-state, subjet to the ondition that if
s = [n, (s1, ..., sk), T, (en, ex)] then for eah t ∈ T with t = (t, ~o, e, a, ~d), ~o =

〈o1, ..., ok〉 and ~d = 〈d1, ..., dl〉, the following holds2:1. oi = parents(oi+1) for eah i ∈ {1, ..., k − 1},2. di = parents(di+1) for eah i ∈ {1, ..., l− 1},2Note that onditions 3 and 4 state that the the sequenes for soure (~o) and target (~d) ofthe transition begin with the state name of the state that ontains the transition, rather thanfrom the �root� of the state mahine; in partiular, the state ontaining the transition is theleast ommon anestor of the soure and target of the transition.9



3. n = parents(o1), and4. n = parents(d1)where the funtion parents : NS → NS whih gives the name of the enlosingstate (a.k.a. the parent) of a state with a given name within the statehart s,is de�ned as follows for eah non-basi statehart term s:
parent[n,s1..k,T,(en,ex)](m)

def
= n if ∃i ∈ {1, ..., k}. name(si) = m

parent[n,s1..k,T,(en,ex)](m)
def
= parentsj

(m) if ¬∃i ∈ {1, ..., k}. name(si) = m

∧m ∈ descendants(sj)

parent[n,s1..k,(en,ex)](m)
def
= n if ∃i ∈ {1, ..., k}. name(si) = m

parent[n,s1..k,(en,ex)](m)
def
= parentsj

(m) if ¬∃i ∈ {1, ..., k}. name(si) = m

∧m ∈ descendants(sj)with the funtions name : SC → NS and descendants : SC → 2NS given by:
name([n, (en, ex)])

def
= n

name([n, s1..k, T, (en, ex)])
def
= n

name([n, s1..k, (en, ex)])
def
= nand

descendants([n, (en, ex)])
def
= ∅

descendants([n, s1..k, T, (en, ex)])
def
= {name(si)}i∈1..k ∪ ⋃

i∈1..k descendants(si)Given an or-state s = [n, (s1, ..., sk), T, (en, ex)], we all the �rst sub-state
s1 the default state of s.Given a transition t = (t, ~o, e, a, ~d) we de�ne name(t)

def
= t as the name ofthe transition, qsrc(t)

def
= ~o as the quali�ed soure of t, src(t)

def
= last(qsrc(t)) asthe soure of t, evt(t)

def
= e as the trigger event of t, act(t)

def
= a as the ationof t, qtrg(t)

def
= ~d as the quali�ed target of t, and trg(t)

def
= last(qtrg(t)) as thetarget of t.Notation 2. In the remainder we will omit the entry and exit ations when

en = ⊥ and ex = ⊥.Example 1. Consider the statehart depited in Figure 1. This statehartontains only or-states. In our syntax this statehart is desribed by the term
s1 where:

s1
def
= [n1, (s2, s3), {t1, t2}]

s2
def
= [n2, (s4, s5), {t3}]

s3
def
= [n3]

s4
def
= [n4]

s5
def
= [n5]10



n1

n2

n3n4

n5

t1 : e1/a1

t2 : e2/a2

t3 : e3/a3

Figure 1: A simple statehart.where
t1

def
= (t1, 〈n2, n4〉, e1, a1, 〈n3〉)

t2
def
= (t2, 〈n3〉, e2, a2, 〈n2, n5〉)

t3
def
= (t3, 〈n4〉, e3, a3, 〈n5〉)The syntax we have desribed is based on von der Beek's syntax from[28℄, but with some important di�erenes. The two main di�erenes betweenours and von der Beek's: 1) we do not expliitly inlude a pointer to theurrently ative state as part of the term, and 2) inter-level transitions arespei�ed by fully quali�ed state names rather than on�guration sets. In vonder Beek's syntax, an inter-level transition is spei�ed as (t, i, sr, e, a, td, j, ht)where t is the transition's name, i is the index of the soure state, sr is the�soure restrition�, a (possibly inomplete) on�guration, this is, a set of statenames whih determines the atual state inside the soure whih is the originof the transition, e is the trigger, a is the ation, td is the �target determinant�,the set of state names whih determines the atual state within the target state,whose index is j, and ht is the history type of the transition. This means thatthe atual origin of the transition is determined by the pair (i, sr) and the atualdestination is given by the pair (j, td). In our syntax we represent the originand destination of a transition by a sequene of enlosing state names, whihan be thought of as a fully quali�ed name for a state.2.3 kiltera's ore: the κλτ-alulusIn this Setion we desribe the ore of the kiltera language, a subset alled the

κλτ -alulus. This alulus is similar to the well-known π-alulus [15, 14℄,but departs from it in some important ways. In partiular, the κλτ -alulusallows the desription of timed behaviour (f. π-alulus proesses are untimed).Communiation is by asynhronous message passing, both by uniasting and11



multiasting (f. ommuniation in the π-alulus is only by uniasting). Unlikethe π-alulus, there are two uniasting send operations: x↑v and x!v (and twoorresponding multiasting versions). The later (x!v) orresponds more loselyto the π-alulus send ation. The di�erene is in their behaviour with respetto the presene of listeners at the time the ation is performed. In addition tothese features, it also inludes some higher-level apabilities suh as primitiveonstants, data strutures and pattern mathing. These features failitate thedesription of statehart behaviour.The basi syntax, whih de�nes the set KLT of κλτ terms, is as follows:
P ::=

√ | α | ∆E → P | νx.P | P1 ‖ P2

| P1;P2 |
∑

i∈I

βi → Pi | A(x1, ..., xn)

| match E : F1 → P1| · · · |Fn → Pn

α ::= x↑E | x!E | x↑∗E | x!∗E β ::= x?Fδtwhere P, Pi range over proess terms, α ranges over ations, β ranges overinput guards, x, xi range over the set of (event or hannel) names, t ranges overthe set of (variable) names, A ranges over the set of proess names, E rangesover expressions, and F ranges over patterns. Proess de�nitions have the form:
A(x1, ..., xn)

def
= PThe syntax for expressions and patterns is as follows:

E ::= F | opE | E1 opE2 | f(E1, ..., Em)

F ::= n | true | false | �s� | x | (E1, ..., Em)where op ∈ {+,−, ∗, /,mod, and, or, not, <,>,=, <=, >=, ! =}, n ranges over�oating point numbers, s ranges over strings, x ranges over variable names, and
f ranges over funtion names, with funtion de�nitions having the form:

f(x1, ..., xn)
def
= EThe proess√ simply terminates, and annot interat with others. Proesses

α are output proesses. The proess x ↑ E triggers an event x and assoiates thisevent with the value of expression E. Alternatively, one an say that it sendsthe message E through hannel x. This is a transient trigger, this is, if thereare no listeners, i.e. proesses ready to interat via x, at the urrent time, thenthe event is disarded. In any ase, the trigger is �onsumed� in the urrenttime. This ontrasts with x!E, whih also triggers x with E as value, but ifthere are no listeners at the urrent time, this proess remains alive until thereis at least one other proess ready to interat with it. One interation ours,the trigger is onsumed. We all x!E a lasting trigger. Both x ↑ E and x!E12



perform ommuniation by uniasting. The proesses x ↑∗E and x!∗E are themultiasting variants of x↑E and x!E respetively, so the message is deliveredto all relevant listeners. If there are no listeners when x!∗E is performed, it willremain alive until at least one proess is ready to aept the message. At thattime, all potential reeivers will obtain the message, and the trigger is onsumed(not repliated in the future). In all of the trigger proesses, the expression E isoptional. The proess ∆E → P delays the exeution of proess P by an amountof time t, the value of the expression E. The proess νx.P hides the name xfrom the environment, so that it is private to P . Alternatively, νx.P an be seenas the reation of a new name, i.e. a new event or hannel, whose sope is P .We write νx1, x2, ..., xn.P for the proess term νx1.νx2....νxn.P . The proess
P1 ‖ P2 is the parallel omposition of P1 and P2. In its generalized form, wewrite Πi∈{1,...,n}Pi for P1 ‖ P2 ‖ · · · ‖ Pn. The proess P1;P2 is the sequentialomposition of P1 and P2, this is, P1 must terminate before beginning P2.3 Theproess ∑

i∈I βi → Pi is a reeiver or listener, onsisting of a list of alternativeinput guarded proesses βi → Pi. Eah input guard βi is of the form xi?Fiδti,where xi is an event/hannel name, Fi is a pattern, and ti is a variable4. Thisproess listens to all events (hannels) xi, and when xi is triggered with a value
v that mathes the pattern Fi, the orresponding proess Pi is exeuted and thealternatives are disarded. A listener proess represents, thus, a proess in astate with external hoie. Before Pi is exeuted, ti is assigned the elapsed time,this is, the time the proess remained bloked waiting for an event to our.Furthermore, if the event xi was triggered with some value v whih mathesthe pattern Fi, this mathing results in the binding of Fi's variables by theorresponding values of v.5 The sope of these bindings is Pi. The su�xes Fiand δti are optional. If Fi is absent, no pattern-mathing is done. Sometimeswe write listeners in in�x notation: x1?F1δt1 → P1 + · · · + xn?Fnδtn → Pn.This operator is not ommutative: a guard xi?Fiδti will be enabled only if theprevious i−1 guards are not enabled (no events triggered or mathed patterns).Hene the guards are evaluated in order. We will use the symbol _ in patterns asa nameless variable (i.e. a pattern that mathes anything) to denote �anythingelse�. The proess A(y1, ..., yn) reates a new instane of a proess de�nedby A(x1, ..., xn)

def
= P , where the ports x1, ..., xn are substituted in the body

P by the events or hannels y1, ..., yn. Finally, the proess match E : F1 →
P1| · · · |Fn → Pn evaluates the expression E and attempts to math it witheah pattern Fi. If a pattern Fi mathes then the orresponding proess Pi isexeuted. If more than one pattern mathes the hoie is non-deterministi.This onstrut is syntati sugar for νx.(x↑E ‖ x?F1 → P1 + · · ·+x?Fn → Pn).We also write match E : |i∈IFi → Pi for match E : F1 → P1| · · · |Fn → Pn.For a formal semantis of this alulus, we refer the reader to [22℄.3The sequential omposition operator is atually a derived operator, but for simpliity weinlude it here as a primitive. See [22℄ for details.4The symbol δ is just a separator, whih is read as �after�.5This is essentially the same as pattern-mathing in funtional languages like ML or Haskell.13
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Figure 2: Hierarhial struture of the kiltera proess orresponding to the stat-ehart from Figure 1. Eah box labelled pi represents the kiltera proess orre-sponding to the state named ni.3 From stateharts to kiltera proessesIn this Setion we will de�ne a mapping J·KT,fp,tp,out : SC → KLT whih, for anywell-formed statehart term gives a kiltera proess desribing the statehart'sbehaviour. When translating a term s ∈ SC, the additional parameters speifythe set of transitions (T ) going out of s or any of its desendants and the ports(fp, tp, and out) used by the resulting kiltera term to ommuniate with theenlosing proess (see Subsetion 3.1 below for details on the role of these ports).3.1 Struture of a mapped statehartEah statehart is mapped to a kiltera proess whih mimis its nesting stru-ture6. In the ase of or-states and and-states, the orresponding kiltera proessonsists of one sub-proess for eah sub-state, and a relay proess, whih is inharge of ontrolling whih sub-state is ative, as well as forwarding messages a-ordingly. For example, the statehart in Figure 1 is mapped to a kiltera proesswith a struture depited in Figure 2.Eah kiltera proess denoting a statehart has an interfae onsisting of threeports: fp, tp and out. This is depited in Figure 3. The �rst port, fp is usedto reeive messages from the parent, this is, the kiltera proess representingthe enlosing statehart. The seond port, tp is used to send messages to the6This is, the mapping is ompositional. 14
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Figure 3: kiltera proess interfae for a statehart.parent. The third port, out is used to send output messages (i.e. the ation ofthe transition performed).At run-time, the relay omponent of an or-state keeps trak of the urrentlyative sub-state by a pair of links fc and tc to the orresponding sub-proess.Sine the ative sub-state hanges, so do these links. Hene, hannel mobilityplays a fundamental role in desribing the dynamis of stateharts.The general idea is as follows: when a new event is reeived by the statehart,an event message is given to the top-level (a.k.a. the root) proess for thestatehart. Its relay then forwards this event message to its urrently ativesub-state, whih in turn forwards it down its urrently ative sub-state, and soon. When the message reahes a basi state, it is mathed against the triggersof the outgoing transitions from this state. If some transition mathes thetrigger, it means that the transition is taken, so an entry message is sent to theproess representing the target of the transition, and the proess representingthe urrently ative state exits (exeuting its exit ation) and beomes inative.Sine there is no diret link between the proesses representing the soure andtarget of the transition, this entry message is routed through the hierarhyof proesses, aording to the states that the transition rosses. While theentry message is sent to the destination, the states being exited exeute theirexit ation and beome inative as the entry message travels �up� to the leastommon anestor of the soure and target of the transition. When the messagereahes the least ommon anestor, the transition's ation is exeuted, and themessage is routed �down� to the appropriate target. As the message goes �down�,the states being entered beome ative and their entry ations exeuted, until wereah the atual target, whih answers with an entry aknowledgement message,to be forwarded all the way up to the root. On the other hand, if the event didnot math any transition of the urrently ative basi state, then a message issent to the enlosing state (a.k.a. the parent) informing it that the event wasnot handled. In suh ase, the enlosing state attempts to math the event inthe same manner as the basi state.
15



Message Desription
“enter” enter a state
“exit” exit from urrent state
(“enter”, doact, actdone) enter a state with ation trigger (see se. 3.4.4)
“en_ack” enter aknowledgment
“ex_ack” exit aknowledgment
(“evt”, value) event with given value
“enhh” event not handled hereTable 1: Message types.3.2 Messages and pathsMessages exhanged between proesses representing states are of the form (~p,m)where ~p = 〈p1, ..., pk〉 is the path to the destination, and m is the message.A message m ontains either a ommand to enter or exit a state, an event,or an aknowledgment. The possible values are shown in Table 1.A path ~p is a sequene of the form 〈“up”, “up”, ..., “up”, n1, n2, ..., nl〉 whihdesribes how to route the message from one state to another. The pre�x

〈“up”, ..., “up”〉 spei�es the number of levels the message has to go �up� in thenesting hierarhy, and the post�x 〈n1, ..., nl〉 spei�es the states that must betaken going �down� in the nesting hierarhy until reahing the destination. Here
nl is the name of the target. 7Example 2. Consider the statehart in Figure 4. The nesting tree for thisstatehart, and the path from state n9 to state n10 are shown in Figure 5. If thestatehart is urrently in state n9 and reeives and event that auses transition
t1 to n10 to �re, an event message (evt) is sent from the top-level state n1downwards to n9 with path 〈n2, n4, n7, n9〉. This auses state n9 to send anentry message (“enter”) to n10 with path 〈“up”, “up”, n5, n8, n10〉. It has onlytwo “up”'s beause one is taken at state n7 and the other is taken at state n4,leaving the message in state n2, where it will go down the path 〈n5, n8, n10〉.We de�ne the following funtion to ompute the path of a given transitionfrom one state to another.De�nition 4. (Path of a transition) Let t = (t, ~o, e, a, ~d) ∈ TR be sometransition. The path from src(t) to trg(t) is given by:

tpath(t)
def
= 〈“up”〉i∈{1,...,|~o|−1} · ~dThis is, the path of a transition ontains an “up” for eah state until theleast ommon anestor of the soure and target, followed by the sequene ofnames going �down� until the destination.7A message sent to a desendant would not have any “up”'s, but in our translation, mes-sages sent to desendants are sent only to diret sub-states through their spei� hannels,and the path will be 〈〉. 16
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We also de�ne the following funtions to ompute the path of a transitionfrom one state to another, given the soure and target of the transition.3.3 Exeuting ationsWhen a state s is entered, its entry ation en must be exeuted, and when itis exited, its exit ation ex must be exeuted. Furthermore, when a transitionis taken, its ation must also be exeuted. In the remainder of this Setion weassume there is a funtion exec whih exeutes ations (entry, exit and transitionations). More preisely, it is a funtion execout : A → KLT mapping ationsto appropriate kiltera proesses, whih may produe its output at a given port
out.8One a state has exeuted its entry ation (resp. exit ation), it sendsan aknowledgment signal “en_ack” (resp. “ex_ack”) to its parent. Theseaknowledgments are used to guarantee that ations are fully exeuted and inthe right order, and to guarantee run-to-ompletion semantis.3.4 Mapping basi statesIn the remainder of this Subsetion we will assume that s = [n, (en, ex)] is thebasi state that we are translating. Before showing the translation of s itself,we need some preliminary proess de�nitions.3.4.1 Entry sequeneThe following proess exeutes the state's entry ation en and sends an entryaknowledgment to its parent.9

basic_enseqs(tp, out)
def
= execout(en); tp↑(〈〉, “en_ack”)3.4.2 Exit sequeneThe following proess is analogous. It exeutes the state's exit ation ex andsends an exit aknowledgment to its parent.

basic_exseqs(tp, out)
def
= execout(ex); tp↑(〈〉, “ex_ack”)8In this enoding we assume that the only observable e�et of exeuting an ation is sendinga message to an objet, and thus, we only assume the (possible) use of an out port. A moreomprehensive mapping would also allow ations to modify the attributes of the objet whoowns the statehart. In suh ase, the exec mapping would also be parametrized by somelink(s) to a proess that gives aess to the objet's attributes.9Note that the path is the empty sequene 〈〉 sine the destination is the parent itself.
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3.4.3 Inative stateThe following proess represents an inative basi state. The subsript T denotesthe set of outgoing transitions from this state (s).
basic_inactives,T (fp, tp, out)

def
=

fp?(〈〉, “enter”) → (basic_enseqs(tp, out); basic_actives,T (fp, tp, out))An inative basi state an only aept enter messages. One an enter mes-sage arrives, it exeutes its entry sequene and beomes ative.3.4.4 Ative stateThe following proess represents an ative basi state. As before, the subsript
T denotes the set of outgoing transitions from this state.

basic_actives,T (fp, tp, out)
def
=

fp?(〈〉, “exit”) →
(basic_exseqs(tp, out);
basic_inactives,T (fp, tp, out))

+
∑

ti∈T fp?(〈〉, (“evt”, evt(ti))) →
(basic_exseqs(tp, out);
basic_jumps,T,ti

(fp, tp, out))

+ fp?(〈〉, (“evt”,_)) →
(tp↑(〈〉, “enhh”);
basic_actives,T (fp, tp, out))An ative state an reeive either an exit message (“exit”) or an event ofthe form (“evt”, value). If it reeives an exit message, it must perform the exitsequene and beome inative. If it reeives an event, there are two possibilities:either the event's value mathes the trigger evt(ti) of some transition ti, or itdoesn't.If the event's value mathes the trigger evt(ti) of some transition ti, thestate must exeute the exit sequene, and then handle the event, whih is doneaording to the following:

basic_jumps,T,ti
(fp, tp, out)

def
=

ν doact, actdone. (doact? → (execout(act(ti)); actdone↑)
‖ tp↑(tpath(ti), (“enter”, doact, actdone)));

basic_inactives,T (fp, tp, out)This proess sets up the exeution of the transition's ation (act(ti)) but thisis not exeuted right away, sine there might be exit ations of enlosing statesthat must be exeuted before. Instead, the exeution of this ation is deferreduntil all neessary exit ations of enlosing states are exeuted. Hene we onlyreate a �allbak� proess doact? → (execout(act(ti)); actdone ↑) that waits for19



the signal doact whih is to be triggered when the ation must be exeuted, andthen triggers signal actdone when the ation has �nished. While reating this�allbak� for the ation, we send an “enter” message to the destination, viathe state's parent (tp), following the appropriate path tpath(ti). This messagearries additional information, namely the signals doact and actdone, so thatthe ation is triggered at the appropriate moment, when all “up” steps havebeen performed, and just before entering states going down.10 Finally the statebeomes inative.If the state reeives an event whih does not math the trigger event of any ofthe outgoing transitions, then it sends the parent an “enhh” message indiatingthat the event is not handled here. Then it remains ative.3.4.5 Translation of a basi stateGiven these de�nitions we are now able to map a basi state s = [n, (ex, en)] toa kiltera term as follows:
J[n, (ex, en)]KT,fp,tp,out

def
= basic_inactive[n,(ex,en)],T (fp, tp, out)This is, a state is mapped to an initially inative proess.3.5 Mapping or-statesIn the remainder of this Subsetion we will assume that s = [n, s1..k, T, (en, ex)]is the or-state that we are translating.3.5.1 Entry sequeneThe entry sequene for an or-state must �rst exeute the state's entry ation

en, then reursively enter the default state (with the proess enter_child de�nedbelow), and �nally send an aknowledgment to the parent:
or_enseqs(tp, out, fd, td)

def
=

execout(en); enter_child(fd, td); tp↑(〈〉, “en_ack”)where fd and td are the ports from the default state and to the default staterespetively, tp is the port to the parent, and out is the output port.The proess enter_child tells a given hild to enter, and then waits for a-knowledgment:
enter_child(fc, tc)

def
= tc↑(〈〉, “enter”); fc?(〈〉, “en_ack”)Here fc denotes the port where messages from the hild are expeted, and tcthe port where messages to the hild are sent.10Note that here we make use of kiltera's (and the π-alulus) de�ning harateristi: hannelmobility. We send an event (hannel) as part of the message.20



Note that the default hild must be fully entered and given its entry aknowl-edgment, before the or-state sends its own aknowledgment to its parent. Thisguarantees that when an entry aknowledgment is reeived, the orrespondinghild has ompleted its entry and exeuted all entry ations in the appropriateorder.3.5.2 Exit sequeneThe exit sequene of an or-state is analogous to its entry sequene, but whenthe state is asked to exit, its urrently ative sub-state must be exited (usingthe proess exit_child de�ned below) before the state's exit ation is performed.
or_exseqs(tp, out, fc, tc)

def
=

exit_child(fc, tc); execout(ex); tp↑(〈〉, “ex_ack”)The exit_child proess is analogous to the enter_child proess:
exit_child(fc, tc)

def
= tc↑(〈〉, “exit”); fc?(〈〉, “ex_ack”)where fc and tc are the hannels to the urrently ative hild.As before, the urrently ative sub-state must have fully exited before theexit ation of the state is performed and the exit aknowledgment sent to theparent. This guarantees that when an exit aknowledgment is reeived, theorresponding hild has ompleted its exit and exeuted all exit ations in theappropriate order.3.5.3 Forward sequeneWhen we are taking a transition whose target is a desendant of the state, ratherthan the state itself, the relay for the state must forward the entry message to theappropriate hild, in aordane with the message's path. This is aomplishedby the following proess, whih sends a message to the hild spei�ed by theports fc and tc with etc as the remaining path to the destination11, and waitsfor an entry aknowledgment from the hild whih, in turn, is forwarded up tothe state's parent.

forward_enter(tp, fc, tc, etc)
def
=

tc↑(etc, “enter”); fc?(〈〉, “en_ack”) → tp↑(〈〉, “en_ack”)3.5.4 The relayThe relay proess is in harge of keeping trak of ative sub-states, as well ashandling and forwarding messages. The relay an be in two modes: ative or11The �rst element of the path is stripped by the relay, as desribed below.21



inative. Initially it starts in the inative state:
or_relays,T (fp, tp, out, fc1..k, tc1..k)

def
=

or_inactives,T (fp, tp, out, fc1..k, tc1..k)The relay ontains not only the fp, tp, and out ports of the state, but also apair of ports fci and tci for eah sub-state i to ommuniate with them12. Weassume that the �rst omponent represents the default state, and therefore fc1and tc1 are the links to the default state. The subsript T denotes the set ofoutgoing transitions from this state (s) or any desendant.3.5.5 Inative stateWhen the state is inative, it may reeive an enter message direted to it (if thestate is the target of the orresponding transition), or to a desendant (if thedesendant is the target of the transition). In the following, fp, tp, and out arethe usual ports. In addition to these, for eah hild i we have a pair of ports
fci and tci respetively from the hild and to the hild.

or_inactives,T (fp, tp, out, fc1..k, tc1..k)
def
=

fp?(〈〉, “enter”) →
(or_enseqs(tp, out, fc1, tc1);
or_actives,T (fp, tp, out, fc1, tc1, fc1..k, tc1..k))

+
∑

si∈s1..k
fp?(〈name(si)〉 · etc, “enter”) →

(execout(en);
forward_enter(tp, fci, tci, etc);
or_actives,T (fp, tp, out, fci, tci, fc1..k, tc1..k))When the inative state reeives an enter message direted to it, is exeutesits entry sequene (using the ports fc1 and tc1 to ommuniate with the defaultstate), and beomes ative, setting the urrently atuve sub-state to be thedefault state by exeuting the or_actives,T proess with the ports fc1 and tc1as the fourth and �fth ports respetively.When the inative state reeives a message aimed at a desendant withinthe sub-state si, it must be an enter message to the desendant, and thus, thestate must be entered. This means that the enter ation must be exeuted,the message must be forwarded to the orresponding sub-proess (via the han-nels fci and tci whih orrespond to the hild si),13 and then it must beomeative, with the sub-state si ative (indiated by the fourth and �fth ports ofthe or_actives,T proess). By exeuting the entry ation before forwarding themessage we guarantee the semantis of transitions, where entry ations must beexeuted in order of nesting, from outermost to innermost, for all states thatthe transition is entering.12Note that we use the sequene notation fc1..k for the sequene of ports fc1, ..., fck, andsimilarly for tc1..k .13Note that at this point the �rst item of the path is stripped and only the remainder etcis passed to the forwarding proess. 22



3.5.6 Ative stateThe following proess represents an ative or-state. As before, for eah hild iwe have a pair of ports fci and tci respetively from the hild and to the hild,and the distinguished ports fc and tc link the proess with the urrently ativesub-state.14
or_actives,T (fp, tp, out, fc, tc, fc1..k, tc1..k)

def
=

fp?(〈〉, “exit”) →
(or_exseqs(tp, out, fc, tc);
or_inactives,T (fp, tp, out, fc1..k, tc1..k))

+ fp?(〈〉, (“evt”, x)) →
or_handle_events,T (fp, tp, out, fc, tc, fc1..k, tc1..k, x)When an or-state is ative it may reeive an exit message or an event. If itis an exit message, it must exeute the exit sequene, sending an exit messageto the urrently ative sub-state (via tc) and then beome inative. If it is anevent, the or_handle_events,T proess, de�ned below, takes are of it.3.5.7 Handling eventsThe semantis of UML stateharts states that when two transitions with thesame trigger are enabled, and the soure of one is a desendant of the other(i.e. it is at a lower level of nesting), then the one with lower level takes priorityover its anestor. In order to apture this semantis, the event handling proessmust �rst send the event message �down� the nesting hierarhy to the urrentlyative sub-state to give it a hane to handle it. Suppose the or-state s reeivesan event. Then, the event is sent to the urrently ative sub-state. There aretwo possibilities, either:1. The event is handled by the urrently ative sub-state, i.e., there was atransition with a trigger that mathed the event, or2. The event is not handled by the urrently ative sub-state.In the �rst possibility, we have two ases, depending on the target of the transi-tion: either the target of the transition is outside s (Figure 6 (a)), or the targetis inside s. Furthermore, in the later ase we have two sub-ases: either thetransition's soure and target are in di�erent sub-states of s (Figure 6 (b)), orthey are in the same sub-state (Figure 6 ()).For eah of these possible senarios we have a orresponding answer fromthe urrently ative hild:1. If the event was handled by the hild (or some desendant), with sometransition from the hild (or a desendant) to some state outside s, thenthe hild responded with an enter message direted to the target stateoutside s, with a path that begins with “up”,14Note that at run-time these ports will link the relay with di�erent sub-states, as the ativesub-state hanges. This exempli�es our use of hannel mobility.23



c

n
t

c

n

t

c

n

t(a) (b) ()Figure 6: Event handled by the urrently ative sub-state c.2. If the event was handled by the hild (or some desendant), with sometransition from the hild (or a desendant) to some state inside s, wherethe soure and target of the transition are in di�erent sub-states of s,and so s is the least ommon anestor of the soure and target of thetransition, then the hild responded with an enter message direted atthe target state inside s, with a path that begins with the name of the(anestor of the) target state,3. If the event was handled by the hild (or some desendant), with sometransition from the hild (or a desendant) to some state inside s, wherethe soure and target of the transition are in the same sub-state of s,and so s is not the least ommon anestor of the soure and target ofthe transition, then, the hild responded with an entry aknowledgment(“en_ack”), sent by the target of the transition,4. If the event was not handled by the hild (or any desendant), then, thehild responded with an “enhh” message.Eah of these alternatives is handled by the branhes of the hoie below.
or_handle_events,T (fp, tp, out, fc, tc, fc1..k, tc1..k, x)

def
=

tc↑(〈〉, (“evt”, x));
(fc?(〈“up”〉 · etc,msg) →

or_trans_outs,T (fp, tp, out, fc1..k, tc1..k, etc,msg)

+
∑

si∈s1..k
fc?(〈name(si)〉 · etc, (“enter”, doact, actdone)) →

or_trans_siblings,T,i(fp, tp, out, fc1..k, tc1..k, doact, actdone, etc)

+ fc?(〈〉, “en_ack”) →
or_trans_internals,T (fp, tp, out, fc, tc, fc1..k, tc1..k)

+ fc?(〈〉, “enhh”) →
or_match_events,T ′(fp, tp, out, fc, tc, fc1..k, tc1..k, x))1. In the �rst ase, the hild answers with an enter message direted to astate outside s, and therefore the path begins with “up”. This ase ishandled by the proess or_trans_outs,T de�ned below. We must exit swhih entails exeuting its exit ation ex, then send the message to the24



parent, stripping the �rst item from the path (so the remaining path is
etc), and then beome inative.

or_trans_outs,T (fp, tp, out, fc1..k, tc1..k, etc,msg)
def
=

execout(ex);
tp↑(etc,msg);
or_inactives,T (fp, tp, out, fc1..k, tc1..k)2. In the seond ase, the hild answers with an enter message direted to astate inside s (di�erent than the soure of the transition), and thereforethe path begins with the name of a sub-state of s, spei�ally the nameof the sub-state si whih ontains the target of the message. This ase ishandled by the proess or_trans_siblings,T,i de�ned below.

or_trans_siblings,T,i(fp, tp, out, fc1..k, tc1..k, doact, actdone, etc)
def
=

doact↑;
actdone? → (forward_enter(tp, fci, tci, etc);

or_actives,T (fp, tp, out, fci, tci, fc1..k, tc1..k))The state s must be the least ommon anestor of the soure and thetarget of the transition taking plae. Hene the message is of the form
(“enter”, doact, actdone) where doact is the signal to exeute the transi-tion's ation, and actdone is the event signaling the termination of theation. At this point all relevant exit ations for the transition have beenexeuted, so we trigger the ation signal doact and wait for the transition'sation to �nish. Then we forward the enter message to the appropriatetarget tci. The state remains ative in this ase, but the links to theurrently ative sub-state hange to fci and tci.3. In the third ase, the hild answers with an entry aknowledgment whihindiates that the transition was fully handled within some sub-state of s.This ase is handled by the proess or_trans_internals,T below.

or_trans_internals,T (fp, tp, out, fc, tc, fc1..k, tc1..k)
def
=

tp↑(〈〉, “en_ack”);
or_actives,T (fp, tp, out, fc, tc, fc1..k, tc1..k)In this ase, we simply propagate the aknowledgment up to s's parent,and remain ative, with the urrently ative sub-state unhanged.4. In the last ase, the hild answers with an “enhh” message, indiating thatthe urrent sub-state did not handle the event. In this ase, we must tryto math the event, aording to the transitions T ′ going out of s:

T ′ def
= {t ∈ T | src(t) = name(s)}The mathing of the event is done by the or_match_events,T ′ proess:
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or_match_events,T (fp, tp, out, fc, tc, fc1, ..., fck, tc1, ..., tck, x)
def
=

match x :
|ti∈T evt(ti) →

(or_exseqs(tp, out, fc, tc);
or_jumps,T,ti

(fp, tp, out, fc1..k, tc1..k))

|_ →
(tp↑(〈〉, “enhh”);
or_actives,T (fp, tp, out, fc, tc, fc1, ..., fck, tc1, ..., tck))When the event of transition ti is mathed, we must leave the state andtherefore, we must exeute the exit sequene (using the links fc and tc toommuniate with the urrently ative sub-state), and then we jump outof the state, as spei�ed by the following:

or_jumps,T,ti
(fp, tp, out, fc1..k, tc1..k)

def
=

ν doact, actdone. (doact? → (execout(act(ti)); actdone↑)
‖ tp↑(tpath(ti), (“enter”, doact, actdone)));

or_inactives,T (fp, tp, out, fc1, tc1, fc1..k, tc1..k)As in a basi state, we setup a �allbak� proess to exeute the transition'sation one a signal doact is triggered. Then we send the enter messageto the target of the transition via the state's parent, and �nally beomeinative.If none of the triggers math, we send an “enhh” message to the par-ent, while remaining ative, to inform the parent that the event was nothandled here.3.5.8 Translation of an or-stateThe translation of the or-state s = [n, s1..k, T, (en, ex)] onsists of the relay andthe parallel omposition of the translations of eah of the sub-state terms:
JsKT,fp,tp,out

def
=

νfc1, ..., fck, tc1, ..., tck.(or_relays,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck)

‖ Πi∈{1,...,k}JsiKTi,tci,fci,out)where Ti
def
= {t ∈ T | src(t) ∈ descendants(si) ∪ {name(si)}} for eah i ∈

{1, ..., k} is the set of transitions with soure in sub-state si, i.e. going out of sior any of its desendants. Note that the parameters of the translation JsiK ofa sub-state si are given in order T, tci, fci, out. This is beause the relay's tciport must be linked to the hild's fp port, and the fci port must be linked tothe hild's tp port.3.6 Mapping and-statesAnd-states onsists of a set of orthogonal regions eah of whih is a statehartin its own right. The kiltera proess representing an and-state has the same26



struture desribed above, with a relay and a proess orresponding to eahorthogonal region. The main di�erene with or-states is that in an or-statethere is only one ative sub-state at any point in time whereas in an and-stateall orthogonal omponents are ative. When an event arrives, it is broadastedto all orthogonal regions.In this report we deal only with a subset of the full UML State Mahinesspei�ation. In partiular we do not deal with forks and joins. As a onse-quene, if the target of a transition is a sub-state of an and-state, it is onlywithin one of its orthogonal regions, so that when the transition is taken, theother orthogonal regions will enter through their default state. Furthermore,when a transition omes out of a sub-state of an and-state, all other regions willexit.3.6.1 Entry sequeneWhen entering an and-state, all orthogonal regions must be entered, but notbefore exeuting the state's own entry ation.
and_enseqs(tp, out, fc1, ...., fck, tc1, ..., tck)

def
=

execout(en); (Πi∈1..kenter_child(fci, tci)); tp↑(〈〉, “en_ack”)where enter_child is the same as in Setion 3.5.1. Note that the parallel om-position of enter_child proesses, whih auses all orthogonal regions to enter,does not presribe a partiular order of entry to the orthogonal regions. This isonformant with the UML spei�ation whih leaves open the partiular orderof entry.3.6.2 Exit sequeneThe exit sequene for the and-state is analogous. All sub-regions are ordered toexit before exeuting the state's own exit ation.
and_exseqs(tp, out, fc1, ...., fck, tc1, ..., tck)

def
=

(Πi∈1..kexit_child(fci, tci)); execout(ex); tp↑(〈〉, “ex_ack”)As before, exit_child is the same as in Setion 3.5.2. Furthermore, the sequeneoperator guarantees that all enter_child sub-proesses will be fully ompletedbefore the exeution of the state's exit ation.3.6.3 Forward sequeneThe forward sequene for and-states is the same as for or-states, as desribedin Setion 3.5.3. 27



3.6.4 The relayThe relay for an and-state is analogous to the relay of an or-state. The relayan be in two modes: ative or inative. Initially it starts in the inative state:
and_relays,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck)

def
=

and_inactives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck)The relay ontains not only the fp, tp, and out ports of the state, but alsoa pair of ports fci and tci for eah sub-state i to ommuniate with them. Thesubsript T denotes the set of outgoing transitions from this state (s) or anydesendant.3.6.5 Inative stateThe inative-state of an and-state is similar to that of an or-state. It anreeive either an enter message, in whih ase it performs the entry sequeneand beomes ative, or it an reeive a message aimed at a sub-state si, inwhih ase it must exeute the entry ation, forward the message to si, andenter the orthogonal regions to their default state. One all orthogonal regionshave entered, the state beomes ative.
and_inactives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck)

def
=

fp?(〈〉, “enter”) →
(and_enseqs(tp, out, fc1, ..., fck, tc1, ..., tck);
and_actives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck))

+
∑

si∈s1..k
fp?(〈name(si)〉 · etc, “enter”) →

(execout(en);
(forward_enter(tp, fci, tci, etc)
‖ Πj∈1..k\{i}enter_child(fcj , tcj));

and_actives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck))Notie that the enter_child proess is invoked for eah hild j ∈ 1..k\{i},this is, for every hild whih is not i, sine this is the target of the transition,and all other orthogonal regions enter to their default state.3.6.6 Ative stateAn ative and-state is analogous to an or-state, but there is no distinguishedurrently ative sub-state, sine all orthogonal regions are ative.
and_actives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck)

def
=

fp?(〈〉, “exit”) →
(and_exseqs(tp, out, fc1, ...., fck, tc1, ..., tck);
and_inactives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck))

+ fp?(〈〉, (“evt”, x)) →
and_handle_events,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck, x)28



As with an or-state, when an and-state is ative it may reeive an exitmessage or an event. If it is an exit message, it must exeute the exit sequene,sending an exit message to all sub-states and then beome inative. If it is anevent, the and_handle_events,T proess, de�ned below, takes are of it.3.6.7 Handling eventsHandling events in an and-state is a bit di�erent. The event must be broadastedto all orthogonal regions, and there are four possible outomes:1. No region handled the event, and thus the and-state itself must attemptto handle it, or2. Some regions handled the event, and there is at least one transition to betaken outside of s. 153. Some (or all) regions handled the event internally, but no region thathandled the event is performing a transition outside s.To handle these possibilities, we use the following auxiliary proesses:
broadcast(x, tc1, ..., tck)

def
= (Πi∈1..ktci ↑(〈〉, (“evt”, x)))This proess sends the event x to all hildren (i.e. orthogonal regions).

wait_for_enack(fc1, ..., fck, all, n1, ..., nk)
def
=

(Πi∈1..k(fci?(〈〉, “enhh”) → ni ↑+fci?(〈〉, “en_ack”) → √
)); all↑This proess waits for an entry aknowledgment or an “enhh” message fromall hildren, and one all have answered, it triggers the all event. When thehild i answers with “enhh”, an event ni is triggered, in order to identify ase 1above, whih is deteted by the following proess.

wait_for_enhh(n1, ..., nk, nche)
def
= (Πi∈1..kni? → √

);nche↑This proess triggers the signal nche (no hild handled the event) if (andonly if) all events ni where triggered.With these proesses, we an built the event handler for and-states:15In the present version of this mapping we assume that at most one transition �red goesoutside the state. Otherwise the and-state would at as a fork.
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and_handle_events,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck, x)
def
=

broadcast(x, tc1, ..., tck);
ν nche, all, n1, ..., nk.

(wait_for_enack(fc1, ..., fck, all, n1, ..., nk)
‖ wait_for_enhh(n1, ..., nk, nche)
‖ (nche? →

and_match_events,T ′(fp, tp, out, fc1, ..., fck, tc1, ..., tck, x)

+
∑

i∈1..k fci?(〈“up”〉 · etc,msg) →
and_trans_outs,T (fp, tp, out, fc1..k, tc1..k, etc,msg)

+ all? →
(tp↑(〈〉, “en_ack”);
and_actives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck))))First we broadast the event to all hildren. Then we wait for their response,whih an be an entry aknowledgment (“en_ack”), and event not-handled heremessage (“enhh”) or a message with a path beginning with “up”.If all answered “enhh”, then we are in ase 1, and so the signal nche istriggered, in whih ase we attempt to math the event with the transitionsoming out of s, with the proess and_match_events,T ′ were

T ′ def
= {t ∈ T | src(t) = name(s)}is the set of transitions oming out of s. The mathing of events is as foror-states:

and_match_events,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck, x)
def
=

match x :
|ti∈T evt(ti) →

(and_exseqs(tp, out, fc1, ...., fck, tc1, ..., tck);
and_jumps,T,ti

(fp, tp, out, fc1..k, tc1..k))

|_ →
(tp↑(〈〉, “enhh”);
and_actives,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck))When the event of transition ti is mathed, we must exeute the exit se-quene, as we are leaving the state, and then it leaves the state aording to thefollowing:

and_jumps,T,ti
(fp, tp, out, fc1..k, tc1..k)

def
=

ν doact, actdone. (doact? → (execout(act(ti)); actdone↑)
‖ tp↑(tpath(ti), (“enter”, doact, actdone)));

and_inactives,T (fp, tp, out, fc1..k, tc1..k)As before, we setup a �allbak� proess to exeute the transition's ationone a signal doact is triggered. Then we send the enter message to the targetof the transition via the state's parent, and �nally beome inative. If none ofthe triggers math, we send an “enhh” message to the parent, while remainingative, to inform the parent that the event was not handled here.30



If someone answered with a message with a path beginning with “up”, weare in ase 2, taking a transition outside s. Hene we tell all hildren to exit,and after they have exited, we exeute the state's exit ation, send the messageup to the parent and beome inative. This is performed by the following:
and_trans_outs,T (fp, tp, out, fc1..k, tc1..k, etc,msg)

def
=

(Πj∈1..k\{i}exit_child(fcj , tcj));
execout(ex);
tp↑(etc,msg);
and_inactives,T (fp, tp, out, fc1..k, tc1..k, )Finally if all events answered, but the signal nche has not been triggered andno hild answered with a message direted outside, then the signal all must havebeen triggered (ase 3). In this ase we simply send an entry aknowledgmentto the parent, indiating the event was handled, and remain ative.3.6.8 Translation of an and-stateAs with or-states, the translation of the and-state s = [n, s1..k, (en, ex)] onsistsof the relay and the parallel omposition of the translations of eah of the sub-state terms:

JsKT,fp,tp,out
def
=

νfc1, ..., fck, tc1, ..., tck.(and_relays,T (fp, tp, out, fc1, ..., fck, tc1, ..., tck)

‖ Πi∈{1,...,k}JsiKTi,tci,fci,out)where Ti
def
= {t ∈ T | src(t) ∈ descendants(si) ∪ {name(si)}} for eah i ∈

{1, ..., k} is the set of transitions with soure in sub-state si, i.e. going out of sior any of its desendants.4 ConlusionsWe have presented a mapping from a signi�ant subset of UML State Mahinesto a proess algebra named kiltera. This onstitutes a preise, ompositionaland exeutable formal semantis for UML State Mahines.While our mapping does not deal with several features suh as the historymehanism or defered events, we preview that it will be relatively simple tomodify it to support them. Furthermore, we have left out a preise desriptionof objet interation, but this an be easily adapted: an objet an be repre-sented as a kiltera proess with a suitable queueing mehanism for events, whihdispathes them to the top-level state. The entry/exit aknowledgement pro-tool an be used to guarantee the run-to-ompletion semantis by assoiatingthe proess that represents the objet with a dispather proess that will sendthe next available event only after reeiveiving an aknowledgement from thetop-level state, indiating that the event has been fully proessed. The sendingof events to other objets is enapsulated within the exec funtion, whih sendsthose messages diretly through the statehart's out port. The treatment of31
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