
Technical Report ��������

Time�Sensitive Computational Models with a Dynamic

Time Component�

Naya Nagy and Selim G� Akl

School of Computing

Queen�s University

Kingston� Ontario K�L �N�

Canada

Email� fnagy�aklg�cs�queensu�ca

Abstract

It is known that a parallel computer can solve problems that are impossible to be
solved sequentially� That is� any general purpose sequential model of computation�
such as the Turing machine or the random access machine 	RAM
� cannot simulate
certain computations� for example solutions to real�time problems� that are carried out
by a speci�c parallel computer� This paper extends the scope of such problems to the
class of problems with uncertain time constraints� The �rst type of time constraints
refers to uncertain time requirements on the input data� that is when and for how

long are input data available� A second type of time constraints refers to uncertain
deadlines for tasks� The main contribution of this paper is to exhibit computational
problems in which it is very di
cult to �nd out 	read compute
 what to do and when
to do it� Furthermore� problems with uncertain time constraints� as described in this
paper� prove once more� that it is impossible to de�ne a universal computer� that is� a
computer able to simulate all computable functions�

Keywords� real�time computation� unconventional computation� Turing machine�
universal computer� parallel computing�

� Introduction

Defer no time� delays have dangerous ends�

William Shakespeare� Henry VI� Part �� Act �� Scene �

Time plays an important role in real�life computations� This may imply that some
computational task has to meet a deadline or that the data to be processed has to be
collected at speci�c time intervals around the clock� It is our daily experience that most
	hopefully not all
 of the tasks around us� computational or not� incur some form of time
pressure� We talk about computing in real�time ��� 
� when computations are performed
under time constraints�

�This research was supported by the Natural Sciences and Engineering Research Council of Canada�

�



To illustrate the idea of time constraint� the simplest model of computation su�ces� that
is� one in which each computational cycle consists of three steps�

Step �� Data are read from the outside world�

Step �� Some operations are performed with these data�

Step �� The result data are written out�

Most often� computational time constraints refer to step �� The output needs to be
available before a certain deadline� If the result is produced too late� then it is either useless
	the deadline is hard ���
 or less valuable 	the deadline is soft �
�
� The implications of a time
deadline on the capacity of Turing�type computational models to simulate each other are
studied in ���� where it is proven that a parallel model is theoretically superior to a sequential
model�

Step � is also a candidate for time constraints� Input data may be available at a certain
time and also only for some time� after which the values deteriorate or are no longer accessible�
The following classes of input data subject to time constraints have been studied�

�� Time varying input data ����

�� Interdependent data ����

�� Data accumulating paradigm ����

Step � is performed internally by the computer and is less likely to be directly under
time constraints� At least� research to date does not take this option into consideration�
Nevertheless� if computers are considered part of their environment� rather than operating
as a closed system� time can a�ect the internal working of a computer� An obvious example
in this category is that computers can operate as long as they have a power supply� If the
power supply is time dependent� internal computation is also constrained by this dependency�
Time constraints on step � will not be considered in this paper�

This paper presents two problems that exhibit time constraints� The �rst problem has
a time constraint on the input of data� whereas the second problem has a constraint on
the output� Each problem is solved on both a sequential machine and a parallel machine�
Computing the time constraints in each case is computationally demanding� As such� the
parallel machine can use its additional power to compute the time constraints on time and
to monitor the environment exhaustively� The sequential machine performs worse than the
parallel machine and therefore is not equivalent in e�ectiveness to the parallel machine�

The problems presented here de�ne a new paradigm� They are easy to solve when it is
known what to do and when to do it� Yet� computing what to do and when to do it is what
presents the main challenge�

The rest of the paper is organized as follows� Section � introduces the concept of dynamic
time requirements for tasks and incorporates this concept into the problem of task scheduling�
Section � de�nes the models of computation used by our algorithms� Section � de�nes a
novel model of computation that includes time in its de�nition� Sections � and � describe
the paradigms of problems with time constraints on the input data and on the output data�
respectively� Section � discusses the common issues of the problems presented and section 

concludes the paper�

�



tasks
static dynamic

time static ��� ��� ��� 
�
requirements dynamic studied in not yet

this paper studied

Table �� Types of tasks versus types of time requirements�

� Dynamic Time Constraints

A task scheduler is responsible for scheduling some arbitrary set of tasks in an e�cient way�
Here� a task is meant to be some computation or program� The scheduler has to decide
on the order in which the tasks are to be executed� what resources are to be allocated to a
speci�c task� and when a task is to start or to �nish� Depending on the characteristics of the
task set� the scheduler may work very di�erently� from one scheduling problem to another�

In particular� static tasks are tasks de�ned at the outset� before any computation or task
execution starts� The scheduler has full knowledge of these tasks well in advance� Dynamic

tasks arrive to the scheduler during the computation in an unpredictable way�
The time requirements of a task are de�ned as its deadline� or the time constraints on

the input of data� or in general any time constraint concerning the task�s connection to the
outside world� Static time requirements on a task are requirements that are well de�ned
before the task starts executing� If the time constraints of a task are de�ned during the
task�s execution� or are computed by the task itself� then they are called dynamic time

requirements�
To date� in all problems with time constraints appearing in the literature ��� �� 
� ����

the time constraint is de�ned outside of the computation� When a task arrives� it has all
time constraints fully de�ned already� It is known when and how to acquire input and what
time constraints apply on the output or completion of the task�

The dynamic aspect of a scheduling problem lies solely in whether the tasks are fully
known to the scheduler before the computation even starts� or whether tasks are created
and destroyed during the computation� Thus� the scheduler is faced with four 	task�time
requirements
 scenarios shown in table ��

The �rst scenario in table � is de�ned by static tasks and static time requirements�
Thus� the number of tasks to be scheduled is known prior to the computation� Also� the
characteristics of the tasks are given at the outset� Time constraints are de�ned once and
for all and do not depend or vary over time� nor are they in�uenced by the execution of a
task or the scheduler itself� Descriptions of how to schedule static tasks are given in ��� ����

The second scenario in table � is de�ned by dynamic tasks and static time requirements�
Dynamic systems exhibiting dynamic scheduling problems are treated in ��� 
�� In this case�
the tasks and their characteristics are not fully known at the beginning of the computation�
Tasks are generated and destroyed during the computation� they arrive to the scheduler
in an unpredictable way and have to be scheduled on the �y� Still� the task itself is fully
de�ned at its generation� A new task� when taken into the scheduler� comes with its own
clear requirements of resources� clear requirements on the input data and speci�cally with a
well de�ned deadline 	hard or soft
�

The third scenario in table � is de�ned by static tasks and dynamic requirements�
The algorithms addressed in this paper fall into this category� The problem here is even

�



more interesting� the task to be solved has uncertain characteristics at the outset� The time
requirements of the task are not de�ned at the generation of the task� Time constraints on
the acquisition of data and�or deadlines will be de�ned during the execution of the task� Of
special interest is the case when considerable computational e�ort is required to establish the
time for an input operation� or the deadline of an output� In this situation� the power of the
computational device becomes crucial in order to learn which computational step necessary
for the task to complete is to be performed� and when to perform it�

Let us consider a task with no clearly de�ned deadline� Its deadline will be computed
while executing the task itself� In this case� the deadline will be known at some point during
the computation and may fall into one of the situations�

�� The deadline is far and the task can be executed without taking its deadline into
consideration�

�� The deadline is close� but the task still can be executed�

�� The deadline is so close that it is impossible for the task to be completed�

�� The deadline already passed�

In some situations� the computation reaches an unexpected state� completion was un�
successful because the computation did not know the deadline� Alternatively� the main
computation was easy to perform� but the time constraints were too di�cult to compute�

The fourth scenario in table � is de�ned by dynamic tasks and dynamic time require�
ments� This category has not been studied yet� as it has many variable characteristics and
is therefore di�cult to formalize�

� Models of Computation

��� The Sequential Machine

The sequential computational model used in this paper is a basic Random Access Machine
	RAM
 ����� A RAM consists of a processor able to perform computations� Also� the
processor has access to a memory and can read or write any arbitrary memory location�
The memory M is divided into four logical units 	�g� �
� The �rst unit Min contains the
input data and is meant to be read only� The processor writes �nal results in a dedicated
unit Mout� The unit Mcomp is used to store intermediate results during the computation� A
last unit Mprog contains the program to be executed� The reason for the separation of the
memory into units is that Min and Mout have a speci�c connection to the outside world� By
contrast� Mcomp and Mprog are internal to the RAM and not visible to the outside world�
The processor is able to access the entire memory M � Min

S
Mcomp

S
Mout

S
Mprog� The

availability of input data� which means the time at which the input is written from outside
into the input memory Min is not under the control of the RAM� Likewise� special time
requirements apply on Mout� as to when the output data is supposed to be written into
Mout and thus to be available to the outside world� As such� Min and Mout are subject to
conditions outside of the control of the RAM�

A computational step on the RAM means that the processor may do some or all of the
following�

�� An input datum is written from the outside world into the input memory Min�

�



progM

compMinM outM

Figure �� The four divisions of the memory�

�� The processor performs an operation on one or two values of the memoryM and writes
the result back to the memory� The input values may be taken from the input memory Min

or from the computation memory Mcomp� If some input value is taken from Mcomp� it is
the result of a previous operation� The result of the current operation is written either into
Mcomp to be used in the future or into Mout in which case it is visible to the outside world�

Copying a value from one memory unit to another is also an operation� For example�
transferring an input value from Min to the output memory Mout is an operation�

�� Transfer a value from the output memory Mout to the outside world�
A computational step may contain all three phases described above� or only a subset of

the three phases� The phases are considered to be executed in sequence from the �rst to the
third� The time required to execute a computational step is considered to be one time unit�
This one time unit is the same whether the computational step has all three phases or fewer�

��� The Parallel Machine

The parallel algorithms described in the next sections are supposed to run on a Parallel
Random Access Machine 	PRAM
 ����� The PRAM comprises a set of n processors that
access a common memory� Each processor is similar to the processor of the RAM� in that it
performs the same computational step�

The memory of the PRAM� as in the case of the RAM� is also divided into the same four
divisions Min� Mcomp� Mout� and Mprog� Several processors can read from the same memory�
permitting a concurrent read� Also several processors may write into the same memory
location� de�ning a concurrent write� The convention for the concurrent write is that it is
the sum of the 	written
 values that gets written into the memory location�

For the PRAM� all processors simultaneously execute one computational step in each
time unit�

� A Time�Aware Model of Computation

Programs will be written using a model that takes into consideration the time at which an
operation is executed� This will help to de�ne time constraints on input and output�

The new time�aware model of computation is de�ned by the quadruple U � 	C�O�M� P 

where�

�� C �� c�� c�� � � � � ci� � � � � is a sequence representing a clock that keeps track of elapsed
time� Each tick of the clock is one time unit� thus ci���ci � �� for i � �� In particular�
c� is the time unit at which U begins a computation�

�



�� O � fR�W�CP�O�� O�� � � � � On��g� where n � �� is a set of elementary operations�

	a
 R is a read operation which fetches inputs from the outside world� Whenever it
is invoked� R reads one constant�size input�

	b
 W is a write operation which returns outputs to the outside world� Whenever it
is invoked W writes one constant�size output�

	c
 CP is a copy operation that makes copies of memory locations� Whenever it is
invoked CP copies a constant�size datum from one memory location to another�

	d
 Oi� � � i � n��� is an elementary arithmetic or logical operation such as addition�
subtraction� comparison� logical AND� and so on�

�� M � fMin�Mout�Mcomp�Mprogg is the memory consisting of four sections� each poten�
tially of in�nite size�

	a
 Min� indexed �� �� 
� � � � � holds the input received from the outside world�

	b
 Mcomp� indexed �� �� �� � � � � holds intermediate computations�

	c
 Mout� indexed �� �� ��� � � � � holds the outputs delivered to the outside world�

	d
 Mprog� indexed �� �� ��� � � � � holds a program to be executed by U �

�� P is a processor capable of executing the elementary operations�

The program to be executed by U in solving a computational problem is a sequence of
instructions� each requiring one time unit� An instruction is a quadruple

Iq � 		R�Min� i� x
� 	Or�M� k� l�m
� 	W�Mout� s
� 	aq� bq



or

Iq � 		R�Min� i� x
� 	CP�M� k� l
� 	W�Mout� s
� 	aq� bq



where�

�� 	R�Min� i� x
 means that the input value x of constant size is obtained from the outside
world and stored in the location Min	i
 of the memory� If i � � then no input is read�

�� 	Or�M� k� l�m
 means that operation Or is executed on up to two values stored in
M	k
 and M	l
 and the result deposited in M	m
� depending on the values of k� l and
m� respectively�

	a
 If k mod � � � and�or l mod � � � then the values M	k
 and�or M	l
 are ob�
tained fromMin� If k mod � � � and�or l mod � � � then the values M	k
 and�or
M	l
 are obtained from Mcomp�

	b
 If m mod � � � then the value of M	m
 is written into Mcomp� If m mod � � �
then the value of M	m
 is written into Mout�

�� 	CP�M� k� l
 means that a value from M	k
 is copied to M	l
� This operation will be
used to transfer measured input values to the output memory�

�



�� 	W�Mout� s
 means that the value of Mout	s
 is sent to the outside world� provided that
s is nonnegative 	if s � � nothing is done
�

�� 	aq� bq
 is the time constraint for the instruction Iq to be executed� with aq� bq � C�

	a
 aq � � and bq � �� means that the instruction can be executed at any time 	in
other words� there is no time constraint on Iq
�

	b
 aq � � and bq � �� means that the instruction must be executed at time t � bq�
or else the computation fails�

	c
 aq � � and bq � �� means that the instruction must be executed at time t � aq�
or else the computation fails�

	d
 aq � � and bq � �� means that the instruction must be executed at time aq � t �
bq� or else the computation fails� In particular� if aq � bq � �� then the instruction
must be executed during time unit aq�

The following points are worth noting�

	a
 If there exists a schedule of the instructions that satis�es all the time constraints�
then it is assumed that the instructions have been already arranged sequentially
according to that schedule� Otherwise� the computation is infeasible�

	b
 Consider real�time applications with deadlines� The computation has to complete
before a deadline� Real�time computations with deadlines are a special case of
those computations a�orded by the new time�aware model U in two ways�

i� The deadline is re�ected in those cases where there is an upper bound on the
time at which an instruction is to complete� but not in the case where an
instruction must be executed in a given time unit�

ii� For all known real�time computation� deadlines are �xed a�priori� whereas in
U the pair 	aq� bq
 may be computed by the algorithm itself�

��� Why a New Model�

The new model of computation is intended to �ll both a theoretical and a practical void�
The need for such a model will become increasingly important for computations that are
increasingly unconventional ���� We single out two speci�c motivations for our present pur�
poses�

�� The presence of C in the model is what makes U unique� Without C� it is easy to see
that U is equivalent to any of the traditional models of computation� such as the Turing
Machine� the Random Access Machine� and so on� None of these conventional models
takes real time into consideration� By contrast� every general�purpose computer in
use today has a clock� and many computations on such machines are time�dependent�
Examples of such computations that are aware of real time include� scheduled virus
scans� regular backups� seasonal time changes ����� and so on� Therefore� U is intended
as a theoretical model that captures the capabilities of realistic computers�

�� The new time�aware model U satis�es all the criteria for universality aspired to by all
existing so�called universal models� such as the Turing Machine� the Random Access
Machine� and so on� all of which are subsumed by U � However� contrary to general

�



belief� none of these conventional models of computation is universal ��� �� ��� in the
sense of being able to simulate any computation that is possible on any computer� As
it turns out� U as well is not universal�

Thus� any existing computation� that can be expressed in Turing machine terms� can
be reformulated into the formalism of the new time�aware model� Additionally� problems
that have time as an explicit parameter of the computation can also be formalized on this
model� but not on the Turing machine� Therefore� the time�aware model o�ers a broader
perspective on the formal de�nition of computational problems� It can readily be applied to
the following known paradigms�

�� Problems with time varying data ��� in which input data is unstable and varies with
time�

�� Problems with time dependent complexity ��� in which the complexity of a certain
computational step depends on the time when the step is executed�

In this paper� we show how the model allows us to study problems with uncertain time re�
quirements� Here� time requirements depend on events or computations during the execution
of a task�

� Dynamic Time Requirements on the Acquisition of

Data

If faced with a task to be executed� we are accustomed to know what input data we will
need in order to perform the task and when to acquire the data necessary for the task�s
computations� in other words when to listen to the environment� This is actually an ab�
straction� a simpli�cation of many real�life tasks� Even very simple paradigms can illustrate
the idea that the nature of the input data 	what
 or the time requirements 	when
 of some
data cannot be known unless some event during the task�s computation happens�

We will call this paradigm� the paradigm of the unexpected event � where the cause of
the event needs to be investigated� During a computation or the execution of a task� an
unexpected event happens� By �unexpected�� it is meant not planned in advance and not
predicted by the computation itself� The need immediately arises to investigate the cause
of the event� This would mean to inspect the environment or� depending on the situation�
inspect the computer itself� Yet� we are interested in the state of the environment before the
event happened� This means that we need values of parameters describing the environment
measured at a moment prior to the one in which we are now performing the investigation�

The following story might best suggest the paradigm�






Mr� Clueless is quietly reading in his study� He can hear the jolly

hubbub of children outside� Suddenly� there is a loud crushing noise�

He goes into the kitchen� just to �nd his kitchen window broken by

a soccer ball� Quickly� Mr� Clueless gets out of the house and onto

the playground� but ��� the playground is empty� The children have

all run away� This is not very helpful� Mr� Clueless would like

to know� who was on the playground before the kitchen window

was broken� Investigating the playground now� is not giving any

clues about who caused the damage of the window� What is worse�

Mr� Clueless� while quietly reading� could have looked out of the

window to see who is playing soccer� but he didn�t know at the

time� that this information would be of any value later�

Real life examples of this paradigm are numerous and arise in a variety of contexts�
�� In a network 	of streets
 with a high tra�c of objects 	cars
� a collision 	accident


occurs� The problem is to �nd the cause of the collision� the objects 	cars
 responsible for
the unexpected collision event�

�� A patient contracts a disease� It is required to determine what caused the health
distress� A clear example for this idea would be the study of Sudden Infant Death Syn�
drome 	SIDS
 in children ����� This research monitors a sample of healthy children with the
intention of identifying among them some that will develop SIDS�

�� A nuclear reactor� after years of normal functioning� behaves erratically and even
explodes� What was the cause of this behavior� what parameters reached critical or out of
bounds values and why�

�� In the case of a natural disaster� such as an earthquake� the problem is to best describe
the conditions and parameters that allow the prediction of the earthquake�

�� A computer gets infected by a virus and crashes� We want to restore the computer to
a state prior to the virus infection ��� backups would have been a good idea�

The next subsection describes a simple abstract problem that broadly subsumes the
examples given above�

��� Implementation of the Paradigm of the Unexpected Event

The following example expresses the di�culty to perform a simple computation if time
constraints are to be de�ned during the computation� In particular� the time constraints
here refer to the acquisition of data�

A sensor has to monitor the environment in which it is located� The environment is
de�ned by two di�erent parameters� temperature T and pressure p� These parameters vary
unpredictably with time� T � T 	t
 and p � p	t
�

The computation starts at t� � � and continues for a time of length � �� time units�
that is� the monitor has to operate for this length of time� Computation has to �nish at
tf � t� � length� When designing the algorithm� we may refer to any time unit of the
monitor�s operational time� t� � �� t� � �� t� � �� ���� t�� � tf � ���

Requirements� The monitor has to measure� exactly once� one parameter of the en�
vironment and output this value at the end of its computation� that is� at time tf � At the
beginning of the task t�� the task does not know yet what needs to be measured and when�
The time at which the parameter is to be measured� denoted tinput� is anywhere during the
computation

�



t� � tinput � tf �

As a dynamic characteristic� tinput is not known at the beginning of the computation�
Information to compute tinput will be available during the computation� Also� which of the
two parameters to measure is not known at the beginning of the computation� that is� at
time t�� This information is represented by a binary value which and will also be computable
later in the computation� If which � � then the monitor has to measure the temperature
and if which � � then the monitor has to measure the pressure�

These two variables tinput and which will not be available easily� nor directly� There is
no information in the environment� that the computer could read� until the middle of the
computation� that is� at time tmiddle � t� �

length

�
� � � ��

�
� � � t�� Now� at tmiddle� all of

a sudden� several variables will make the computation of tinput and which possible� Three
variables denoted x�� x�� x� are now available in the environment for the computer to read
in� We chose the number of three variables to be smaller than the �ve time units left for
computation� from tmiddle to tf � This will give the sequential computer some small chance to
successfully complete the task� If there are more than �ve variables� the sequential computer
will never be successful�

The time tinput and the boolean which will be computed from the sum of x�� x�� and x�
according to the following formula�

tinput � 	x� � x� � x�
 mod ��

which � 	x� � x� � x�
 mod �

We see that the problem here is to compute tinput and which on time� Although the
monitoring is trivial otherwise� the di�culty is in knowing what to do and when�

We will see in the following subsections that the type of the computer employed to solve
the problem will make the di�erence between success and failure�

	���� Idle Sequential Solution

The �rst algorithmic solution is on a sequential computer� The computer does not start
monitoring its environment unless it fully knows what to do� The computer is working �on
request or according to the principle� Don�t do anything unless you absolutely have to ���

Thus� the monitor 	i�e�� the sequential computer
 is a RAM� able to do one measurement�
one computation and to output one value� all in one time unit� It starts its computation at
t� � �� but remains idle until it receives a measurement request at tmiddle � t�� At tmiddle�
the computer computes the parameters of the request� It takes the computer � � � time
units to compute the values for tinput and which� The following situations can happen�

�� tinput � tmiddle � �� The computer can satisfy the measurement request� At tinput� the
computer measures the requested parameter� temperature or pressure� and outputs the
value at tf �

�� tmiddle � tinput � tmiddle � �� The computer has not �nished calculating tinput and fails
to read the input at the required time�

��



�� tinput � tmiddle� The computer certainly fails to read the input at the required time� It
cannot go back in time to measure the environment parameter at tinput�

Below are the computation steps performed using the time aware model�

I� � 		R�Min� �� x�
����� 	�� �


I� � 		R�Min� �� x�
� 	��M� �� �� �
��� 	�� �


I� � 		R�Min� 
� x�
� 	��M� �� 
� �
��� 	�� �


I� � 	�� 	mod��M� �� value	��
� �
��� 	
� 



I� � 	�� 	mod���M� �� value	��
� �
��� 	�� �


I� � 		R�Min� ��� T or p � 	��M	�

� T �M	�
� p
�

	CP�M� ��� �
� 	W�Mout� �


This monitor has little chance of success� as it will try to get input only after all infor�
mation concerning the input� tinput and which� is computed� This leaves only tf � tmiddle� �
time units at the end� in which the environment is actually listened to� If tinput falls in this
range� the monitor is successful� otherwise it fails�

The overall success rate of this monitor is�

success � 	tf � tmiddle � �
�	tf � t�
 � ���� � ��!�

	���� Active 
Smart� Sequential Solution

In this case� the monitor will try to do better by anticipating the request� The computer
will monitor the environment� even though it does not know exactly what the requirements
will be� The principle of this computer is� Do as much as you can in advance ���

The monitor is again a sequential computer as in the previous case� Instead of being
idle while waiting for the request� the computer busily measures the environment� This is
done ever since the computation started at t� until it receives the request at tmiddle� Because
the parameter of interest is unknown� the best the computer can do is to choose just one
parameter� for example the temperature� The value of the temperature is recorded for all
time units� t�� t�� t�� t� and t�� Then the request is received during tmiddle � t�� t	� and t
�
The parameters tinput and which are computed during t� and t�� During t�� it is still possible
to read the correct environment parameter� if it so happens that tinput � t��� The following
situations can happen�

�� tinput � tmiddle � �� The computer is able to measure the required environment param�
eter and output the value of interest after it received the request�

�� tmiddle � tinput � tmiddle � �� The computer is busy reading the variables x�� x�� and x�
and has not recorded any history of the environment� The task fails�

�� tinput � tmiddle and the value of the temperature is required� The computer has recorded
the history of the temperature and can output the desired recorded value�

�� tinput � tmiddle and the value of the pressure is required� The computer has not recorded
the history of the pressure and is unable to meet the request�

The computation steps perform by the time aware computation model are given below�

I� � 		R�Min� �� T 
����� 	�� �


I� � 		R�Min� �� T 
����� 	�� �



��



I� � 		R�Min� 
� T 
����� 	�� �


I� � 		R�Min� ��� T 
����� 	�� �


I� � 		R�Min� ��� T 
����� 	�� �


I� � 		R�Min� ��� x�
����� 	�� �


I	 � 		R�Min� ��� x�
� 	��M� �� �� �
��� 	�� �


I
 � 		R�Min� �
� x�
� 	��M� �� 
� �
��� 	�� �


I� � 		R�Min� ��� T 
� 	mod��M� �� value	��
� �
��� 	
� 



I� � 		R�Min� ��� T 
� 	mod���M� �� value	��
� �
��� 	�� �


I�� � 		R�Min� ��� T or p � 	��M	�

� T �M	�
� p
�

	CP�M� tinput � �� �
� 	W�Mout� �


This monitor has a better chance of being successful� If the temperature is indeed re�
quired� the computer�s chances are almost ���!� The exact chance of success is 	tf � t� �
�
�	tf � t�
 � ����� If the value of the pressure is required� the success rate is the same as
for the idle solution 	tf � tmiddle � �
�	tf � t�
 � �����

The overall success rate is the average of the two rates computed above�

success �
�

�
� 	

tf � t� � �

tf � t�
�
tf � tmiddle � �

tf � t�

 �

�

�
	
�

��
�

�

��

 � ��!�

	���� Parallel Solution

The last and most successful algorithmic solution is o�ered by a parallel computer� The
parallel computer monitors the environment exhaustively in order to answer the request no
matter what is asked or when it is to be performed� The principle of this computer is� Do

absolutely everything and be prepared for the worst ���

The monitor is a parallel computer and can perform several measurements and compu�
tations in one time unit� For our example� it needs to have three processors� denoted P�� P��
and P��

The parallel computer can measure both the temperature and pressure of the environment
at the same time� The parallel computer is able to record the full history of the environment�
When tinput is computed during tmiddle � t�� the computer will still be able to fully monitor
the environment and also compute tinput and which� The following situations can happen�

�� tinput � tmiddle � �� The computer will measure the requested parameter at tinput and
write it out at the end of the computation�

�� tinput � tmiddle� �� The computer inspects its recorded history of the environment and
outputs the desired parameter�

The computation steps performed using the time aware model are shown in table ��
This monitor always answers the request successfully� Therefore� the success rate is�

success � ���!�

� Dynamic Time Requirements on the Output of Data

This section explores the situation where the deadline of a task is not de�ned at the outset�
but will be computed during the execution of the task� Thus it is of the utmost importance
that the computer executing the task be able to compute the deadline before it has passed�

��



Ii Processor Instruction

I� P� � 		R�Min� �� T 
����� 	�� �

P� � 		R�Min� ���� p
����� 	�� �

P� � 	������ 	�� �


I� P� � 		R�Min� �� T 
����� 	�� �

P� � 		R�Min� ���� p
����� 	�� �

P� � 	������ 	�� �


I� P� � 		R�Min� �� T 
����� 	�� �

P� � 		R�Min� ���� p
����� 	�� �

P� � 	������ 	�� �


I� P� � 		R�Min� ��� T 
����� 	�� �

P� � 		R�Min� ���� p
����� 	�� �

P� � 	������ 	�� �


I� P� � 		R�Min� ��� T 
����� 	�� �

P� � 		R�Min� ���� p
����� 	�� �

P� � 	������ 	�� �


I� P� � 		R�Min� ��� T 
����� 	�� �

P� � 		R�Min� ���� p
����� 	�� �

P� � 		R�Min� ���� x�
����� 	�� �


I	 P� � 		R�Min� ��� T 
����� 	�� �

P� � 		R�Min� ���� p
����� 	�� �

P� � 		R�Min� ���� x�
� 	��M� x�� x�� sum
��� 	�� �


I
 P� � 		R�Min� ��� T 
����� 	�� �

P� � 		R�Min� ���� p
����� 	�� �

P� � 		R�Min� ���� x�
� 	��M� sum� x�� sum
��� 	�� �


I� P� � 		R�Min� ��� T 
� 	����M� sum� ���m
��� 	�� �

P� � 		R�Min� ���� p
� 	mod���M� sum� ��� n
��� 	�� �

P� � 	������ 	�� �


I� P� � 		R�Min� ��� T 
����� 	�� �

P� � 		R�Min� ���� p
����� 	�� �

P� � 	������ 	�� �


I�� P� � 		R�Min� ��� T 
� 	CP�M� 	tinput � �
 or ��� � 	tinput � �

�
	W�Mout� T or p	n

� 	��� ��

P� � 		R�Min� ���� p
����� 	��� ��

P� � 	������ 	��� ��


Table �� Computation steps of the time aware model�

��



Requirements� A monitor is required to measure some parameter of the environment�
For de�niteness� consider the parameter to be the temperature T � The monitor is active for
a certain length of time � � length� This time is divided into two intervals � and length�
that will be de�ned later� It starts its activity at time t� and consequently �nishes at time
tf � t� � � � length� The task of the monitor is to measure the temperature T at the
beginning� that is� at time t�� Then� after some delay� the measured temperature value is
to be output at time toutput� The delay is not allowed to be null� it has to be larger than ��
Thus�

t� � � � toutput � tf

With the output of the measured temperature� the task �nishes�
Time toutput is not given at the outset� but has to be computed by the monitor according

to the following rules� The n input variables x�� x�� ���� xn are available in the environment
all trough the computation� The output time is de�ned by the sum modulo the length of its
activity�

toutput � t� � � � 	x� � x� � ���� xn
 mod length

This problem will be solved on a sequential and a parallel machine� This will show again
that the size of the machine matters� A sequential machine� or a parallel machine without
enough resources� fails to perform the task� whereas a su�ciently powerful parallel machine
successfully completes the task�

In our examples� we consider the following values� t� � � � � � �� length � 
� and n � ���

��� Sequential Solution

The sequential computer has the same de�nition as the example of section �� It is a RAM
described by the time�aware model�

The sequential monitor measures the temperature at t� and then proceeds to read the
input variables x�� x�� ���� x��� By the time the computer has managed to calculate the
deadline toutput� that moment has already passed� Therefore� the sequential monitor will not
be able to output the result� just because it did not know the deadline in time�

The RAM follows the steps below�

I� � 		R�Min� �� T 
����� 	�� �


I� � 		R�Min� �� x�
� 	��M� �� �� �
��� 	�� �


I� � 		R�Min� �� x�
� 	��M� �� �� �
��� 	�� �


I� � 		R�Min� �� x�
� 	��M� �� �� �
��� 	�� �


I� � 		R�Min� �� x�
� 	��M� �� �� �
��� 	�� �


I� � 		R�Min� �� x�
� 	��M� �� �� �
��� 	�� �


I	 � 		R�Min� �� x�
� 	��M� �� �� �
��� 	�� �


I
 � 		R�Min� �� x	
� 	��M� �� �� �
��� 	�� �


I� � 		R�Min� �� x

� 	��M� �� �� �
��� 	
� 



I� � 		R�Min� �� x�
� 	��M� �� �� �
��� 	�� �


I�� � 		R�Min� �� x�
� 	��M� �� �� �
��� 	��� ��



As can be seen from the program above� the monitor can barely compute the sum of the
input variables x�� x�� ���� x� until the total time of its activity expires� This happens at
tf � ��� Thus the sequential machine fails to output the value at the right time�

��



��� Parallel Solution

The parallel computer is a PRAM� It has n � � � �� processors� P�� P�� P�� ���� P��� to be
able to perform all measurements at the very beginning� that is� at t�� Then during the delay
�� the deadline toutput is computed� After this� the computer only has to wait for the right
time to output the value of the temperature� The PRAM follows the steps below�

Ii Instruction

I� P� � 		R�Min� �� x�
����� 	�� �


P� � 		R�Min� �� x�
����� 	�� �


���
P� � 		R�Min� �� x�
����� 	�� �


P�� � 		R�Min� �� T 
����� 	�� �



I� P� � 	�� 	mod���M� �� �
��� 	�� �


P� � �
P� � �
���
P�� � �

I� P� � 	�� 	CP�M� �� �
� 	W�Mout � �
� 	M	�
�M	�



P� � �
���
P�� � �

It can be seen that the parallel computer is able to meet the deadline because it is able to
compute the deadline on time� A parallel computer with enough processors can compute the
deadline in � time units� On the other hand� if the PRAM has fewer processors� for example
	n��
�� � � then this computer is not guaranteed to succeed� If toutput is very close to t�� � then
the computer will miss the deadline�

� Discussion

The examples of the previous sections have some common features� Both present very easy tasks�
to monitor certain environment variables and to output the measured values� The di
culty in both
cases arises from the fact that the time requirements of the task to be executed are not well de�ned
at the outset� It takes considerable e�ort to compute the time requirements of the tasks� It is an
unconventional paradigm in which de�ning the parameters of the task takes a large percentage of
the overall computational e�ort required to complete the task�

Thus� if time is an intrinsic characteristic of the problem� then the e�ort to de�ne these time
characteristics has to be considered in the abstract de�nition of the algorithm or program� The
new time aware model exhibits just this feature� Time is a parameter of each instruction�

In this case� a computer with enough computational power may be able to successfully complete
a task which cannot be computed by a weaker model� In particular� we have shown in our examples
that a parallel computer performs better than a sequential one� This happens to the point that the
sequential computer cannot simulate the parallel one�

��



	 Conclusion

Behind me time gathers ��� and I darken�

Mihai Eminescu� Years have trailed past ���

The examples in this paper describe problems whose time constraint are di
cult to compute�
They show that a parallel computer of an appropriate size is essential for the successful completion
of some computational task� In particular� a simple Turing machine� classically called �universal��
is not able to perform such tasks successfully� This Turing machine is not able to simulate a more
powerful machine capable of carrying these tasks to completion� This con�rms� once again� the
previously established result ��� ��� ��� ��� ��� ��� that the Turing machine is in fact not universal�
as it cannot simulate a task computable on a particular parallel machine�

Furthermore� any parallel computer can face a problem in which computing the time constraints
of a task is above its computational capacity� while a more powerful parallel computer can be de�ned
to solve the given problem� This means that a parallel computer of �xed size cannot be speci�ed
that is able to successfully complete any problem of the type described in this paper� For any
parallel computer� a problem can be de�ned such that this computer is not able to compute its
time constraints on time� Therefore� even a parallel computer is not universal� This also con�rms
the more general result� �rst given in ���� that no computer capable of a �nite number of operations
per time unit can be universal� This result holds even if the computer has access to the outside
world for input and output� is endowed with an unbounded memory and is allowed all the time it
needs to simulate a successful computation by another computer�

This study is open to continuation� A formalization of schedulers of dynamic tasks with dynamic
time requirements would lead to more general settings� Also� it may be useful to consider other
components of a task that allow for a dynamic de�nition� Thus� components that vary along the
computation� according to results of the computation often occur in realistic applications� One
example of such components mentioned in this paper is the inner computation of a task which may
be subject to constraints� perhaps a�ected by the computation itself� Such computations would
constitute a prime candidate for future investigations�

References

��� Luca Abeni and Giorgio Buttazzo� Resource reservation in dynamic real�time systems� Real�
Time Syst�� ��	�
��������� �����

��� Selim G� Akl� Three counterexamples to dispel the myth of the universal computer� Parallel
Processing Letters� ��	�
��������� September �����

��� Selim G� Akl� Even accelerating machines are not universal� International Journal of Uncon�
ventional Computing� �	�
��������� �����

��� Selim G� Akl� Evolving computational systems� In Sanguthevar Rajasekaran and John H�
Reif� editors� Handbook of Parallel Computing� Models� Algorithms� and Applications� pages
� � ��� Taylor and Francis� CRC Press� Boca Raton� Florida� �����

��� Selim G� Akl� Unconventional computational problems with consequences to universality�
International Journal of Unconventional Computing� �	�
������� �����

��� Stefan D� Bruda and Selim G� Akl� On the data�accumulating paradigm� In Proceedings of the

Fourth International Conference on Computer Science and Informatics � Research Triangle�
pages �������� �����

��� Giorgio C� Buttazzo� Hard Real�Time Computing Systems� Predictable Scheduling Algorithms

and Applications �Real�Time Systems Series�� Kluwer Academic Publishers� Boston� �����

��



��� Giorgio C� Buttazzo� Soft Real�Time Computing Systems� Predictable Scheduling Algorithms

and Applications �Real�Time Systems Series�� Springer� New York� NY� �����

��� C�S� Calude and Gh� P�aun� Bio�steps beyond Turing� BioSystems� ����������� �����

���� Thomas H� Cormen� Charles E� Leiserson� Ronald L� Rivest� and Cli�ord Stein� Introduction
to Algorithms� second edition� MIT� Cambridge� Massachusetts� �����

���� G� Etesi and I� N�emeti� Non�Turing computations via Malament�Hogarth space�times� Inter�
national Journal of Theoretical Physics� ��	�
��������� February �����

���� A� Gut� L� Miclea� Sz� Enyedi� M� Abrudean� and I� Hoka� Database globalization in enterprise
applications� In IEEE International Conference on Automation� Quality and Testing� Robotics�
pages �������� �����

���� J� J�aJ�a� An Introduction to Parallel Algorithms� Addison�Wesley� Reading� Massachusetts�
�����

���� Abha Moitra� Scheduling of hard real�time systems� In Proceedings of the Sixth Conference

on Foundations of Software Technology and Theoretical Computer Science� pages ��������
London� UK� ����� Springer�Verlag�

���� Marius Nagy and Selim G� Akl� Quantum measurements and universal computation� Inter�

national Journal of Unconvantional Computing� �	�
������� �����

���� H� T� Siegelmann� Neural Networks and Analog Computation� Beyond the Turing limit�
Birkh�auser� Boston� �����

���� M� Stannet� X�machines and the halting problem� Building a super�Turing machine� Formal

Aspects of Computing� �	�
��������� �����

���� P� Wegner and D� Goldin� Computation beyond Turing Machines� Communications of the

ACM� ��	�
��������� May �����

���� Craig Wehrenberg and Tracey Mulhall�Wehrenberg� The Best�Kept Secret to Raising a Healthy
Child��� and the Possible Prevention of Sudden Infant Death Sindrome �SIDS�� Speci�c Chi�
ropractic� �����

��


