A real-time extension to the π-calculus.

Technical Report 2009-557

Ernesto Posse
Applied Formal Methods Group – Software Technology Lab
School of Computing – Queen’s University
Kingston, Ontario, Canada
eposse@cs.queensu.ca

May 21, 2009

Abstract

We propose an extension to the asynchronous π-calculus, the π_{real}-calculus, for real-time systems where processes execute over dense time, and have the ability to delay actions, measure time, and impose timeouts. Other extensions include explicit data-structures and pattern-matching. We present the calculus syntax and operational semantics and establish sufficient conditions for legitimacy (a.k.a. finite variability), and introduce the notion of timed-compositionality and the associated timed-congruence. We also develop an Abstract Machine for this calculus and establish its soundness w.r.t. the given operational semantics.

1 Introduction

Process algebras \cite{Hazard1982, Paar1988, Rewar1994} such as CSP \cite{Hoare1982, Paar1988, Hoare1985}, CCS \cite{Milner1980, Milner1982} and ACP \cite{Kahl1987} have become a well-established approach to modelling and reasoning about concurrent systems. They provide a concise and effective means to describe and analyze system behaviour.

Departing from their origins in Theoretical Computer Science, process algebras are finding applications in domains as diverse as Systems Biology \cite{Obermaier2005}, Web Services \cite{Smith2004}, Business Process Modelling \cite{B罅2001} and Embedded Systems \cite{Carr2002}. Nevertheless, the direct applicability of “classical” process algebras to these domains has been limited by their own capabilities as they do not take into account issues such as time, mobility and spatial distribution, demanded by these applications. This has sparked an interest in the definition of new process algebras that tackle these issues.

Consider the issue of time. In classical process algebras time is abstracted: advance in time means change of state, where state changes are the result of transitions or steps, and therefore time is discrete. Hence the notion of time
and that of a computational step are interlocked: if a system stops, time stops. However this is not very realistic. Identifying the passage of time with computational steps does not result in a clear approach for the description of timing requirements, making these algebras unsuitable to model and reason about real-time properties of dynamic systems. This has lead to the definition of a number of process calculi which extend the existing models with an explicit notion of time and some appropriate constructs (e.g. [3, 4, 13, 26, 37, 39, 17]).

Similarly, the issue of mobility lead to the creation of the π-calculus [25]. In the π-calculus one can describe structural changes by modifying the network of communication channels between processes. However, as the classical process algebras, it does not have an explicit notion of time.

There have been a few process algebras which extend the π-calculus with an explicit notion of time. One of the best known is the stochastic π-calculus [30], but others have been proposed as well, such as the πRT-calculus [22], the timed-π [14], and the $T D\pi$-calculus [31]. These calculi allow the description of delayable or dummable actions (usually probabilistic delays) with emphasis on modelling the duration of communication. This contrasts with the discrete-event world view [40] where one is more interested on the timing and scheduling of events than the duration of interaction between components.\footnote{It also contrasts with the so-called synchrony hypothesis of synchronous languages for reactive systems such as Estrel [8], Lustre [15] and Signal [21], which assumes that actions, and in particular interactions are instantaneous.} The ability of delaying an arbitrary process (not just interaction) seems to provide a more flexible modelling approach. Furthermore, in the context of time-sensitive discrete-event systems, when waiting for input, the possible continuation states depend not only on timeouts but also on the amount of time the system spends waiting. Therefore the ability to measure the passage of time, and the ability to change behaviour if an event has not occurred within some time-constraint are fundamental operations. While some of the calculi mentioned include timeouts, none include a mechanism to observe the duration of actions within the language (i.e., as a construct). Moreover, most of these algebras assume a discrete-time model which leads to an awkward and inefficient approximation of real-time behaviour. Furthermore, all of these calculi are based on the synchronous π-calculus, thus allow mixed-guarded choice which is difficult to implement in practice [27].

In this paper we introduce the π_{kle}-calculus, which extends the asynchronous π-calculus with basic real-time capabilities, namely, process delay, time observation and timeouts, and we look into two fundamental issues which have lacked attention in the context of timed π-caluli. The first concerns the issue of timed behavioural equivalence, and the second concerns progress in dense-time.

Perhaps the most comprehensive study of timed equivalences for timed π-caluli is found in [11] and [5]. These papers study extensions to the π-calculus in which actions have associated timers over discrete time. In [11] some forms of timed barbed bisimilarity are studied, while [5] presents asynchronous bisimilarities. Nevertheless, these equivalences are very stringent, as they require an exact match in the timing of the transitions of the processes being compared,
for all future behaviours, and as far in the future as the processes can run. In the context of real-time systems one of the main concerns is to meet so-called hard constraints: to ensure a system’s response within a certain amount of time T. In this context all late responses are failures and therefore we can restrict our equivalence checking to equivalence up-to time T. This in turn, leads to the issue of compositionality: when is it safe to replace one process by another in a timed context? In this paper we define such a behavioural equivalence up-to a given time, and show it to be compositional in our calculus.

The second major issue that we address concerns progress over dense-time and the property known as legitimacy (a.k.a. finite variability). A legitimate system is one that can perform only a finite number of actions in a finite amount of time. Hence, an illegitimate system may present divergent behaviour (in which time does not advance) or Zeno-behaviour (in which time advances but never beyond a certain point). From a practical perspective it is desirable to avoid illegitimate behaviours. While this issue has been explored in the context of Timed CSP [36], it has been neglected in the presence of mobility. We address this issue here and establish sufficient conditions for legitimacy of a process in our calculus. We contrast our approach with that followed by some timed process algebras such as Timed CSP which avoid this issue by requiring all recursions to have a strictly positive time guard, and thus, forbid illegitimate processes by construction. We argue nevertheless, that such an approach is overzealous, as it is possible to combine some processes that do not satisfy the time-guard requirement with legitimate processes to obtain composite legitimate systems.

Our calculus is intended to help bridge the gap between foundational process algebras and realistic languages and therefore it supports basic data structures and pattern matching. In addition to the issues sketched above, we develop an Abstract Machine for which we establish soundness w.r.t. the operational semantics. The inclusion of a real-time component as well as pattern-matching entail substantial differences with existing Abstract Machines for the π-calculus.

The contributions of this paper are: a process algebra that supports mobility and real-time with some higher-level features; a formal operational semantics, including a new timed observational equivalence, the notion of timed compositionality and timed congruence, and the establishment of sufficient conditions for legitimacy; a sound abstract machine to support execution with a working implementation.

The remainder of the paper is organized as follows: Section 2 introduces the core calculus, its syntax, its operational semantics and its basic theory. Section 3 develops an abstract machine for the core calculus. In section Section 4 we contrast this language and theory with some related work. Finally section Section 5 gives some concluding remarks. The appendices contain proofs and proof sketches.
2 Timed, mobile processes: the π_{klt}-calculus

The π_{klt}-calculus is used to describe the behaviour of timed, concurrent, interacting processes. It provides operators to compose processes in parallel, to describe communication via events, or equivalently via message-passing over channels, to limit the scope of events, to delay processes and to observe the passage of time.

Unlike other basic process algebras the π_{klt}-calculus provides some higher-level constructs, in particular, it allows the use of complex expressions and data-structures in messages, and uses pattern-matching as a mechanism to extract information from data. The reason behind this design decision is to present this calculus as an attempt to close the gap between foundational process algebras and more realistic languages.

Syntax and informal description

Definition 1. (Syntax) The set \mathcal{P} of π_{klt} terms, the set \mathcal{E} of expressions and the set of patterns \mathcal{F} are defined by the BNF in Table 1. Here P, P_i range over process terms, $x, y, ...$ range over the set of (channel or variable) names, A ranges over the set of process names, E ranges over expressions, and F ranges over patterns. Process definitions have the form: $A(x_1, ..., x_n) \stackrel{\text{def}}{=} P$. op ranges over standard arithmetic/relational operators, n ranges over floating point numbers, s ranges over strings, and f ranges over function names, with function definitions having the form: $f(x_1, ..., x_n) \stackrel{\text{def}}{=} E$.

The process $\sqrt{}$ simply terminates. The process $x!E$ triggers an event x and associates this event with the value of expression E. Alternatively, one can say that it sends the message E through channel x. This process performs communication by unicast; if there are multiple listeners, only one of them accepts the message, and the choice is non-deterministic. Mobility is achieved in the same way as in the π-calculus since event/channel names are expressions.

| P | $\sqrt{}$ | done
| \mid | $x!E$? | trigger
| \mid | $\sum_{i \in I} x_i ? F_i \@ y_i \rightarrow P_i$ | listener
| \mid | $\nu x.P$ | new/hide
| \mid | $\Delta E \rightarrow P$ | delay/timer
| \mid | $P_1 || P_2$ | parallel composition
| \mid | $A(x_1, ..., x_n)$ | process instantiation
| E | n | true | false
| \mid | s | x | $\langle E_1, ..., E_m \rangle$
| \mid | $\text{op } E$ | $E_1 \text{ op } E_2$ | $f(E_1, ..., E_m)$
| F | n | true | false
| \mid | s | x | $\langle F_1, ..., F_m \rangle$

Table 1: π_{klt} syntax
$P ::= \cdots$

- $P_1; P_2$ sequential composition
- $(\sum_{i \in I} \beta_i \rightarrow P_i) \triangleright E$ listener with timeout
- match E with $F_1 \rightarrow P_1 | \cdots | F_n \rightarrow P_n$ explicit pattern matching
- if E then P else Q conditional

Table 2: Some derived constructs

and so they can be sent as messages. The process $\sum_{i \in I} \beta_i \rightarrow P_i$ is a **listener**, consisting of a list of alternative input guarded processes $\beta_i \rightarrow P_i$. Each input **guard** β_i is of the form $x_i?F_i@y_i$, where x_i is an event/channel name, F_i is a pattern, and y_i is a variable. This process listens to all events (channels) x_i, and when x_i is triggered with a value v that matches the pattern F_i, the corresponding process P_i is executed with y_i bound to the amount of time the listener waited, and the alternatives are discarded. A listener process represents, thus, a process in a state with external choice. Pattern-matching of inputs means that the input value must have the same “shape” as the pattern, and if successful, the free names in the pattern are bound to the corresponding values of the input. For example, the value $(3, \text{true}, 7)$ matches the pattern $\langle 3, x, y \rangle$ with the resulting binding $\{\text{true}/x, 7/y\}$. The scope of these bindings is the corresponding P_i. The suffixes F_i and $@y_i$ are optional: $x? \rightarrow P$ is equivalent to $x?y@z \rightarrow P$ for some fresh names y and z. Sometimes we write listeners in infix notation: $x_1?F_1@y_1 \rightarrow P_1 \cdots + x_n?F_n@y_n \rightarrow P_n$. The process $\nu x. P$ hides the name x from the environment, so that it is private to P. Alternatively, $\nu x. P$ can be seen as the creation of a new name, i.e. a new event or channel, whose scope is P. We write $\nu x_1, x_2, \ldots, x_n. P$ for the process term $\nu x_1. \nu x_2. \ldots. \nu x_n. P$. The process $\Delta E \rightarrow P$ is a **delay** or **timer**: it delays the execution of process P by an amount of time equal to the value of the expression E. The process $P_1 \parallel P_2$ is the parallel composition of P_1 and P_2. In its generalized form, we write $\Pi_{i \in \{1, \ldots, n\}} P_i$ for $P_1 \parallel P_2 \parallel \cdots \parallel P_n$. The process $A(y_1, \ldots, y_n)$ creates a new instance of a process defined by $A(x_1, \ldots, x_n) \stackrel{def}{=} P$, where the ports x_1, \ldots, x_n are substituted in the body P by the events/channels (or values) y_1, \ldots, y_n.

There are several derived process terms such as the ones shown in Table 2. Here we only mention a few of them. These are all defined in terms of the operators above. See [28] for details. The process $P_1; P_2$ is the sequential composition of P_1 and P_2, this is, P_1 must terminate before beginning P_2. The process term $(\sum_{i \in I} \beta_i \rightarrow P_i) \triangleright E$ represents a listener process with a timeout. If after an amount of time determined by the value of the expression E, none of the events have been triggered, control passes to Q. We define this term by combining a listener with a delay as follows:

2Note that to enable an input guard it is not enough for the event to be triggered: the event’s value must match the guard’s pattern as well.

3This is essentially the same as pattern-matching as found in languages such as ML or Haskell, albeit, without a type system, the structure matched is that given by tuples.
\((\Sigma_{i \in I} \beta_i \rightarrow P_i) \vdash Q \overset{\text{def}}{=} \nu s.((\Sigma_{i \in I} \beta_i \rightarrow P_i + s? \rightarrow Q) \parallel \Delta E \rightarrow s!)\). The process match \(E\) with \(F_1 \rightarrow P_1 \cdots | F_n \rightarrow P_n\) evaluates the expression \(E\) and attempts to match it with each pattern \(F_i\). If a pattern \(F_i\) matches then the corresponding process \(P_i\) is executed. This construct is syntactic sugar for \(\nu x. (x!E \parallel x?F_1 \rightarrow P_1 + \cdots + x?F_n \rightarrow P_n)\). Finally, the process if \(E\) then \(P\) else \(Q\) is shorthand for match \(E\) with true \(\rightarrow P\) false \(\rightarrow Q\).

As in the asynchronous \(\pi\)-calculus, an output with a continuation \(x!E \rightarrow P\) is syntactic sugar for \(x!E \parallel P\).

The suffix \(\llcorner y\lrcorner\) of input guards is inherited from Timed CSP, but it is absent in all other timed variants of the \(\pi\)-calculus. This construct gives the calculus the power to measure the timing of events, and determine future behaviour accordingly.

2.2 Operational semantics

We now define formally the semantics. Let \(\mathcal{N}\) denote the set of all possible names (including event names). Let \(\mathcal{V}\) denote the universe of possible values including booleans, real numbers, strings, tuples of values and event (channel) names. We write \(n(v)\) for the set of all event names occurring in the value \(v\). To simplify the presentation we assume we have a function \(\text{eval} : \mathcal{E} \rightarrow \mathcal{V}\) that given an expression returns its value.\(^4\) A sequence of names or values \(x_1, \ldots, x_n\) is abbreviated as \(\vec{x}\). A substitution is a function \(\sigma : \mathcal{N} \rightarrow \mathcal{V}\). We write \(\{v_1/x_1, \ldots, v_n/x_n\}\) or \(\{v/x\}\) for the substitution \(\sigma\) where \(\sigma(x_1) = v_1, \ldots, \sigma(x_n) = v_n\) and \(\sigma(z) = z\) for all \(z \notin \{x_1, \ldots, x_n\}\). We write \(\text{dom}(\sigma)\) for \(\{x_1, \ldots, x_n\}\). Furthermore, we write \(\sigma \cup \sigma'\) for the substitution that extends \(\sigma\) with the bindings of \(\sigma'\). Substitution is generalized to processes as a function \(\sigma : \mathcal{P} \rightarrow \mathcal{P}\) in the natural way performing the necessary renamings to avoid capture of free names as usual. We write \(P\sigma\) for \(\sigma(P)\) denoting the process where all free occurrences of each \(x\) in \(\sigma\) have been (simultaneously) substituted by \(\sigma(x)\). We denote \(\mathcal{M}\) the set of all name substitutions. We write \(P \equiv_n Q\) if \(Q\) can be obtained from \(P\) by renaming of bound names. We denote \(\text{fn}(P)\) the set of free names of \(P\) (i.e. names not bound by either \(\nu\) or an input guard). We use \(\mathbb{R}_0^+\) to denote the non-negative reals.

Pattern-matching

Pattern matching is formally defined by a function \(\text{match}\) which takes as input a pattern, a datum (i.e., a concrete value) and a substitution and returns either a new substitution which extends the original substitution with the appropriate bindings, or an empty substitution if the datum does not match the pattern. The substitution provided as input is used to ensure that all occurrences of a variable in a tuple match the same data.

\(^4\)We do not need a name environment, as all expressions will be closed, since the appropriate substitutions of free names for values are performed before evaluation takes place.
\[
\begin{array}{c}
P \equiv_{\alpha} P' \\
\frac{P \equiv P'}{P \parallel \sqrt{P} \equiv \sqrt{P'}} \\
\frac{P \parallel \sqrt{P} \equiv \sqrt{P}}{\nu x. \sqrt{P} \equiv \sqrt{P}} \\
\frac{P \parallel P \equiv P_1 \parallel P_2 \equiv P_1 \parallel P_2}{P \parallel (P_2 \parallel P_3) \equiv (P_1 \parallel P_2) \parallel P_3} \\
\beta_1 \rightarrow P_1 + \beta_2 \rightarrow P_2 \equiv \beta_2 \rightarrow P_2 + \beta_1 \rightarrow P_1 \\
\beta_1 \rightarrow P_1 + (\beta_2 \rightarrow P_2 + \beta_3 \rightarrow P_3) \equiv (\beta_1 \rightarrow P_1 + \beta_2 \rightarrow P_2) + \beta_3 \rightarrow P_3 \\
x \notin fn(P) \\
\frac{P \parallel \nu x. Q \equiv \nu x. (P \parallel Q)}{A(x_1, \ldots, x_n) \equiv P} \\
\Delta E \rightarrow (P_1 \parallel P_2) \equiv \Delta E \rightarrow P_1 \parallel \Delta E \rightarrow P_2 \\
\end{array}
\]

Table 3: Axioms for structural congruence of processes.

Definition 2. (Pattern matching) Let \(\text{match} : \mathcal{F} \times \mathcal{V} \times \mathcal{M} \rightarrow \mathcal{M} \) be a function defined as:

\[
\text{match}(F, v, \sigma) \overset{\text{def}}{=} \begin{cases}
\sigma & \text{if } F = v \text{ and } v \in \mathcal{B} \\
\sigma \cup \{v/F\} & \text{if } \sigma \in \text{dom(}\sigma\text{)} \text{ and } \sigma(F) = v \\
\sigma_n & \text{if } F = (F_1, \ldots, F_n) \text{ and } v = (v_1, \ldots, v_n), \\
& \text{where } \forall i \in \{1, \ldots, n\}, \sigma_i \overset{\text{def}}{=} \text{match}(F_i, v_i, \sigma_{i-1}) \\
\emptyset & \text{otherwise}
\end{cases}
\]

where \(\mathcal{B} \) is the set of basic constants (i.e. non-tuple values).

The first case returns the given substitution when the pattern is a basic constant identical to the datum or it is a variable whose associated value in the substitution is identical to the datum. The second case returns the given substitution extended with a new association, binding the pattern to the datum when the pattern is a variable not in the given substitution. The third case matches tuples: each item in the tuple datum is matched against the corresponding item in the pattern tuple from left to right. The result is the substitution yielded by the last match. The last case returns the empty substitution when there is a mismatch, since all other cases have failed.

Structural congruence

Any well-defined semantics must ensure that processes which are syntactically equivalent should behave in the same way. We now define such an equivalence relation, called structural congruence.

Definition 3. (Structural congruence over process terms) The relation \(\equiv \subseteq \mathcal{P} \times \mathcal{P} \) is defined to be the smallest congruence\(^5\) over \(\mathcal{P} \) which satisfies the axioms shown in Table 3.

\(^5\)Note that since \(\equiv \) is defined to be a congruence relation, in addition to these axioms, it
Proposition 1. Every process is structurally congruent to a process of the form:
$\nu x_1, \ldots, x_n.(P_1 \parallel \cdots \parallel P_k)$, where each P_i is either a trigger, a listener, a delay or a process instantiation. We call such form “canonical normal form”.

Timed labelled-transitions systems

The meaning of a π_{klt} term is formally a timed labelled transition system, this is, a transition system in which we distinguish between transitions due to actions and evolution (passage of time). Formally, a timed label transition system or TLTS is a tuple $(S, \mathcal{L}, \rightarrow, \rightsquigarrow)$ where S is a set of states, \mathcal{L} is a set of labels, $\rightarrow \subseteq S \times \mathcal{L} \times S$ is a transition relation and $\rightsquigarrow \subseteq S \times \mathbb{R}_0^+ \times S$ is an evolution relation. A rooted TLTS is a tuple $(S, s_0, \mathcal{L}, \rightarrow, \rightsquigarrow)$ where $(S, \mathcal{L}, \rightarrow, \rightsquigarrow)$ is a TLTS and $s_0 \in S$ is a distinguished initial state. We write $s \xrightarrow{a} s'$ for $(s, a, s') \in \rightarrow$ and $s \xrightarrow{d} s'$ for $(s, d, s') \in \rightsquigarrow$. We write $s \xrightarrow{a}$ to mean that $\exists s' \in S. s \xrightarrow{a} s'$. Typically the set \mathcal{L} contains a distinguished element τ used to denote unobservable or silent actions. We write $s \xrightarrow{\tau^*}$ for $(s(\tau^{\ast}) \xrightarrow{a} (s(\tau^{\ast})^* s')$.

The notion of a TLTS characterizes a “two-dimensional” nature of time: transitions describe instantaneous actions and therefore a sequence of transitions describes an execution within the same instant of real-time, whereas evolution describes the passage of real-time itself.

Definition 4. (Process transitions and evolution) The meaning of a π_{klt} term P_0 is a rooted TLTS $T = (\mathcal{P}, P_0, \mathcal{A}, \rightarrow, \rightsquigarrow)$ where \mathcal{A} is the set of action labels described below, the relation $\rightarrow \subseteq \mathcal{P} \times \mathcal{A} \times \mathcal{P}$ is the smallest transition relation satisfying the inference rules in Table 4 and $\rightsquigarrow \subseteq \mathcal{P} \times \mathbb{R}_0^+ \times \mathcal{P}$ is the smallest evolution relation satisfying the inference rules in Table 5. The elements of \mathcal{A} are actions of the form τ (silent action), $x!v$ (trigger), or $x?v$ (reception), where v is a constant or a name. We let α range over \mathcal{A}. We write $\text{fn}(\alpha)$ (resp. $\text{bn}(\alpha)$) for the set of free (resp. bound) names of the action α. These are defined by the following table:

<table>
<thead>
<tr>
<th>α</th>
<th>τ</th>
<th>$x!v$</th>
<th>$x?v$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{fn}(\alpha)$</td>
<td>\emptyset</td>
<td>${x} \cup \text{n}(v)$</td>
<td>${x}$</td>
</tr>
<tr>
<td>$\text{bn}(\alpha)$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>$\text{n}(v)$</td>
</tr>
</tbody>
</table>

We impose an additional constraint on the TLTS to guarantee maximal progress: if $P \xrightarrow{\tau}$, then $P \xrightarrow{\frac{1}{2}d}$. This ensures that internal actions are urgent.

The rules for parallel composition seem to lack symmetry as they only describe the transitions of the first process. Nevertheless, this symmetry is recovered by using the congruence rule with the commutativity axiom for structural congruence. Note also that while there is no replication operator as in several presentations of the π-calculus, we allow recursive definitions, thus achieving the same result.

The (choice) rule requires a match between the pattern and the value associated with the event provided by the environment. If the match is successful, satisfies the of an equivalence relation and of a congruence: it is preserved by all contexts in the language.
\[
\begin{align*}
(\text{TRIG}) & \quad x!E \xrightarrow{\text{eval}(E)} \sqrt{\text{(CHOICE)}} \quad \sigma = \text{match}(F_i, v, \emptyset) \quad \sigma \neq \emptyset \\
& \quad \sum_{i \in I} x_i @ F_i \rightarrow P_i \xrightarrow{x_i \Leftarrow v} P_i(\sigma \cup \{0/y_i\}) \\
(\text{NEW}) & \quad P \xrightarrow{\sigma} P' \quad x \notin \text{n} (\alpha) \quad (\text{DELAY}) \quad \text{eval}(E) = 0 \\
& \quad \nu X. P \xrightarrow{\alpha} \nu X. P' \quad \Delta E \rightarrow P \xrightarrow{d} P \\
(\text{PAR}) & \quad P \xrightarrow{\alpha} P' \quad \text{bn}(\alpha) \cap \text{fn}(Q) = \emptyset \quad (\text{COMM}) \quad P \xrightarrow{x_i \nu} P' \quad Q \xrightarrow{x_i \nu} Q' \\
& \quad P \parallel Q \xrightarrow{\alpha} P' \parallel Q' \quad (\text{CNGR}) \quad P \equiv Q \quad P' \equiv Q' \\
& \quad Q \xrightarrow{\alpha} Q'
\end{align*}
\]

Table 4: Process transitions.

\[
\begin{align*}
(\text{TIDLE}) & \quad \sqrt{d} \xrightarrow{d} \sqrt{d} \quad (\text{TRIG}) \quad x!E \xrightarrow{d} x!E \\
(\text{TCHOICE}) & \quad \sum_{i \in I} x_i @ F_i \rightarrow P_i \xrightarrow{d} \sum_{i \in I} x_i @ F_i \rightarrow P_i \{y_i / y_i\} \\
(\text{TNEW}) & \quad P \xrightarrow{d} P' \quad \nu X. P \xrightarrow{d} \nu X. P' \quad (\text{TDelay}) \quad 0 \leq d \leq \text{eval}(E) \\
& \quad \Delta E \rightarrow P \xrightarrow{d} \Delta (E-d) \rightarrow P \\
(\text{TPAR}) & \quad P \xrightarrow{d} P' \quad Q \xrightarrow{d} Q' \quad (\text{TNGR}) \quad P \equiv Q \quad P' \equiv Q' \\
& \quad Q \xrightarrow{d} Q'
\end{align*}
\]

Table 5: Process evolution.
the resulting substitution is applied to the corresponding continuation, binding
the elapsed time variable \(y_i \) to 0. This may seem a bit counterintuitive at first,
but it is explained by the (tchoice) rule: when time advances \(d \) time units,
the elapsed time variables are incremented by \(d \) so when a listener’s transition
is triggered the value of this variable will be the correct amount.

An example

To illustrate the semantics, we look at a short example. Consider the term
\(x?\langle 4, z \rangle @ e \rightarrow \Delta(5 - e) \rightarrow z! e \). This term blocks waiting from an event \(x \) to
occur, with a pair \(\langle 4, z \rangle \) as data, and then responds 5 time units after it began
waiting, by triggering the received event \(z \) with the time elapsed between the
it started waiting and the occurrence of \(x \). Its TLTS will contain the following execution:

\[
\begin{align*}
\text{x?\langle 4, z \rangle @ e} & \rightarrow \Delta(5 - e) \rightarrow z! e \\
\text{3.2} & \quad x?\langle 4, z \rangle @ e \rightarrow \Delta(5 - (e + 3.2)) \rightarrow z!(e + 3.2) \\
\text{x?\langle 4, y \rangle} & \rightarrow \Delta(5 - (0 + 3.2)) \rightarrow y!(0 + 3.2) \\
\text{1.8} & \quad \Delta 0 \rightarrow y!(0 + 3.2) \\
\text{x?\langle 4, y \rangle} & \rightarrow y!(0 + 3.2) \\
\text{y!(3.2)} & \rightarrow \checkmark
\end{align*}
\]

Some properties

The operational semantics entails the following elementary properties.

Proposition 2.

1. (Zero time advance) For any \(P \in \mathcal{P} \), \(P \overset{0}{\rightarrow} P \).

2. (Time determinacy) For any \(P, P' \), \(P'' \in \mathcal{P} \), \(d \in \mathbb{R}_0^+ \), if \(P \overset{d}{\rightarrow} P' \) and
 \(P \overset{d}{\rightarrow} P'' \), then \(P' \equiv P'' \).

3. (Time continuity) For any \(P, P' \in \mathcal{P} \), \(d, d' \in \mathbb{R}_0^+ \), \(P \overset{d}{\rightarrow} P' \) if and only if
 there is a \(P'' \) such that \(P \overset{d}{\rightarrow} P'' \) and \(P'' \overset{d'}{\rightarrow} P' \).

4. (Persistency of offers) For any \(P, P' \in \mathcal{P} \), \(d \in \mathbb{R}_0^+ \), and any \(\alpha \neq \tau \), if
 \(P \overset{d}{\rightarrow} P' \) and \(P \overset{d}{\rightarrow} P' \) then \(P' \equiv P' \).

2.3 Timed equivalence

Several timed variants of bisimilarity for timed \(\pi \)-calculi have been studied in
[11], [5] and [6]. The calculi studied by these, extend the \(\pi \)-calculus with discrete
time, rather than dense time. Furthermore, the variants of bisimilarity presented,
identify processes based on their entire future behaviour. But this is too stringently,
and as explained in the introduction, all behaviours that violate
hard response-time constraints of real-time systems are considered to be failures. Therefore we can weaken our comparison criteria to behaviours up to a given deadline.

Consider the following processes:

\[A \overset{\text{def}}{=} (a? \rightarrow P) \overset{\beta}{\rightarrow} Q \]
\[B \overset{\text{def}}{=} (a? \rightarrow P) \overset{\beta}{\rightarrow} Q \]

These systems cannot be identified under standard notions of bisimilarity. To see these, recall the definition of timeout. We can expand these to

\[A = \text{vs.}((a? \rightarrow P + s? \rightarrow Q) \parallel \Delta 3 \rightarrow s!) \]
\[B = \text{vs.}((a? \rightarrow P + s? \rightarrow Q) \parallel \Delta 5 \rightarrow s!) \]

Then we see that \(A \) has the following execution:

\[A \overset{\beta}{\rightarrow} \text{vs.}((a? \rightarrow P + s? \rightarrow Q) \parallel \Delta 0 \rightarrow s!) \]
\[\overset{\tau}{\rightarrow} \text{vs.}((a? \rightarrow P + s? \rightarrow Q) \parallel s!) \]
\[\overset{\tau}{\rightarrow} Q \]

but this cannot be matched by \(B \):

\[B \overset{\beta}{\rightarrow} \text{vs.}((a? \rightarrow P + s? \rightarrow Q) \parallel \Delta 2 \rightarrow s!) \overset{\tau}{\rightarrow} Q \]

Hence, \(A \) and \(B \) cannot be identified by any of the existing timed bisimilarities for timed \(\pi \)-calculi, such as those in [11] or [5] or bisimilarities that match evolution directly (i.e., \(P \overset{d}{\rightarrow} P' \) implies \(Q \overset{d}{\rightarrow} Q' \) with \(P' \) bisimilar to \(Q' \)). Either way, at time 3 the process \(A \) has an interaction that cannot be matched by \(B \). Nevertheless, before time 3, both \(A \) and \(B \) have exactly the same transitions (\(a? \)) and evolutions. But if we have a hard constraint requiring interaction before 3 time units, we don’t care about their behaviour beyond time 3, and so it makes sense to identify the two processes up to time 3.

In [36], Schneider introduced a notion of \textit{timed bisimilarity up-to time} \(T \) to compare the behaviour of Timed CSP processes. A good notion of behavioural/observational equivalence is one which satisfies the property that whenever two processes are identified, no observer or context can distinguish between them. Such a property is satisfied by an equivalence relation which is preserved by all combinators or operators of the language, in other words, by a congruence relation (compositionality). Unfortunately Schneider’s equivalence is not a congruence in the context of timed \(\pi \)-calculi, because, as ground bisimilarity, it is not preserved by listeners (input). In the theory of the \(\pi \)-calculus several alternative definitions of bisimilarity have been explored to ensure compositionality. Sangiorgi’s \textit{open bisimilarity} [35] has the desired feature: it is a congruence for all \(\pi \)-calculus operators. This suggests the following equivalence for dense-time \(\pi \)-calculi which combines Schneider’s timed bisimilarity with Sangiorgi’s open bisimilarity.
Definition 5. (Open timed-bisimulation) Let \(S \) be a set of terms in some language for which there is a notion of substitution defined, where substitutions are functions \(\sigma : S \rightarrow S \). Let \((S, L, \rightarrow, \sim) \) a TLTS over \(S \). A relation \(R \subseteq S \times \mathbb{R}_0^+ \times S \), is called an open timed-bisimulation if for all \(t \in \mathbb{R}_0^+ \), whenever \((P, t, Q) \in R \) then, for any substitution \(\sigma : S \rightarrow S \) and any \(d \in \mathbb{R}_0^+ \) such that \(d < t \):

1. \(\forall \alpha \in L. \forall P' \in S. P \sigma \overset{\alpha}{\rightarrow} P' \Rightarrow \exists Q' \in S. Q \sigma \overset{\alpha}{\rightarrow} Q' \land (P', t, Q') \in R \)
2. \(\forall \alpha \in L. \forall Q' \in S. Q \sigma \overset{\alpha}{\rightarrow} Q' \Rightarrow \exists P' \in S. P \sigma \overset{\alpha}{\rightarrow} P' \land (P', t, Q') \in R \)
3. \(\forall P' \in S. P \sigma \overset{d}{\rightarrow} P' \Rightarrow \exists Q' \in S. Q \sigma \overset{d}{\rightarrow} Q' \land (P', t - d, Q') \in R \)
4. \(\forall Q' \in S. Q \sigma \overset{d}{\rightarrow} Q' \Rightarrow \exists P' \in S. P \sigma \overset{d}{\rightarrow} P' \land (P', t - d, Q') \in R \)

Let

\[\equiv \overset{\text{def}}{=} \{(P, u, Q) \in S \times \mathbb{R}_0^+ \times S \mid \exists R. R \text{ is an open time-bisimulation } \& (P, u, Q) \in R \} \]

We write \(P \equiv_u Q \) for \((P, u, Q) \in \equiv \) and say that \(P \) and \(Q \) are open timed-bisimilar up to \(u \). If \(P \equiv_u Q \), we call \(u \) the time-limit of the bisimulation.

For any given \(t \in \mathbb{R}_0^+ \), \(\equiv_t \overset{\text{def}}{=} \{(P, Q) \in S \times S \mid (P, t, Q) \in \equiv \} \).

This definition is applicable to any TLTS for which states are terms in a language with an appropriate notion of substitution. In our context we will assume that \(S \) is \(P \), the set of \(\pi_{klt} \) process terms, and the TLTS is that given in definition 4.

First notice that, as Sangiorgi’s open bisimilarity, this definition quantifies over substitutions \(\sigma \). This is to ensure listener processes are identified whenever possible. Also notice, that the first two items are the same as for standard (untimed) open bisimulation, if we ignore \(t \). It is the second two items which make a difference in the definition.

Now, let us revisit the processes \(A \overset{\text{def}}{=} (a? \rightarrow P) \overset{3}{\rightarrow} Q \) and \(B \overset{\text{def}}{=} (a? \rightarrow P) \overset{5}{\rightarrow} Q \). We have that \(A \equiv_3 B \), as the two processes have the same transitions and evolution up to any time strictly less than 3. Figure 1 on page 13 illustrates this: any state at time \(d < 3 \), both \(A \) and \(B \) have an \(a? \) transition which leads them to \(P \), and any process \(P \) is bisimilar with itself up to any time.

Open timed-bisimulation satisfies the following properties for any TLTS.

Proposition 3. For any TLTS \(M = (S, L, \rightarrow, \sim) \),

1. For any \(t \in \mathbb{R}_0^+ \), \(\equiv_t \) is an equivalence relation.
2. \(\equiv \) is an open timed-bisimulation.
3. \(\equiv \) is the largest open timed-bisimulation.

Furthermore, we have the following:
Figure 1: Time bisimulation. Here R_t denotes $\{(P, Q) | (P, t, Q) \in R\}$.

Proposition 4. For any TLTS $M = (S, \mathcal{L}, \rightarrow, \leadsto)$, any $t, u \in \mathbb{R}_0^+$, and any $P, P', P'' \in S$:

1. If $P \leftrightarrow_t P'$ then for any $u \leq t$, $P \leftrightarrow_u P'$
2. If $P \leftrightarrow_t P'$ and $P' \leftrightarrow_u P''$ then $P \leftrightarrow_{\min\{t, u\}} P''$

Timed compositionality

Now we focus on the compositionality properties of open timed-bisimilarity. First, we have that it is closed under substitutions:

Lemma 1. For any substitution σ, and any $t \in \mathbb{R}_0^+$, if $P \leftrightarrow_t Q$ then $P \sigma \leftrightarrow_t Q \sigma$.

As mentioned above, a good observational equivalence should be a congruence. However, as we have argued, we are only interested in equivalence up to some time T, and therefore we only care about the observable behaviour up to time T, which means that the equivalence must be preserved by our operators only up to that time. Hence we are after a notion of **timed-compositionality**, characterized by a **timed-congruence**, which we now formally define:

Definition 6. (**Timed-congruence**) Given some set S, and a ternary relation $R \subseteq S \times \mathbb{R}_0^+ \times S$, we define R’s t-**projection** to be the binary relation $R_t \overset{def}{=} \{(p, q) \in S \times S \mid (p, t, q) \in R\}$. R is called a t-**congruence** if R_t is a congruence. R is called a **timed-congruence** if it is a t-congruence for all $t \in \mathbb{R}_0^+$. R is called a **timed-congruence up-to u** if it is a t-congruence for all $0 \leq t \leq u$.

Open-timed bisimilarity satisfies the stronger property stated by the following, obtained using Lemma 1:

Lemma 2. For any $P, P', Q_1, ..., Q_n \in \mathcal{P}$, and any $t \in \mathbb{R}_0^+$, if $P \leftrightarrow_t P'$ then:

1. $\Delta E \rightarrow P \leftrightarrow_{t+e} \Delta E \rightarrow P'$ where $e = \text{eval}(E)$
2. $\nu x.P \leftrightarrow_t \nu x.P'$
3. $P \parallel Q \equiv_i P' \parallel Q$

4. $x?F@y \rightarrow P + \sum_{i=1}^{n} \beta_i \rightarrow Q_i \equiv_i x?F@y \rightarrow P' + \sum_{i=1}^{n} \beta_i \rightarrow Q_i$, where each β_i is of the form $x_i?F_i@y_i$.

The immediate consequence, which follows from Proposition 4 and Lemma 2 is timed compositionality:

Theorem 1. \equiv_i is a timed-congruence up-to t and \equiv is a timed-congruence.

We also obtain the following properties as a consequence of Lemma 2, which guarantee equivalence up to the least upper bound of the pairwise time-equivalences:

Corollary 1. For any families of terms $\{P_i \in \mathcal{P}\}_{i \in I}$ and $\{Q_i \in \mathcal{P}\}_{i \in I}$, if for each $i \in I$, $P_i \equiv_i Q_i$ then

1. $\prod_{i \in I} P_i \equiv_{\min \{t_i | i \in I\}} \prod_{i \in I} Q_i$

2. $\sum_{i \in I} x_i?F_i@y_i \rightarrow P_i \equiv_{\min \{t_i | i \in I\}} \sum_{i \in I} x_i?F_i@y_i \rightarrow Q_i$

2.4 Legitimacy

We will now turn our attention to another fundamental issue in the description of timed systems: legitimacy, a.k.a. finite variability. Consider the following process:

$L(x) \overset{def}{=} \nu u.((u? \rightarrow L(x)) \parallel u!)$

This process triggers a local event u which enables it to recursively call itself. In other words, it performs an internal action (the interaction on u) and loops indefinitely. This means that it has an infinite execution of internal actions:

$\gamma_0 = L(x) \stackrel{\vdash}{\longrightarrow} L(x) \stackrel{\vdash}{\longrightarrow} L(x) \stackrel{\vdash}{\longrightarrow} \cdots$

This kind of execution is called *instantaneous divergence*, since the system diverges at a single instant in time (it always has τ transitions, thus never reaching a stable state and forever proscribing any time advance).

There are systems that, even though they are not instantaneous divergent, do exhibit undesirable behaviour. Consider the following:

$Z(n) \overset{def}{=} \nu u.((u? \rightarrow Z'(n)) \parallel u!)$

$Z'(n) \overset{def}{=} \Delta z^{-n} \rightarrow Z(n + 1)$

This also produces an infinite execution:

$\gamma_1 = Z(1) \stackrel{\vdash}{\longrightarrow} Z'(1) \stackrel{\vdash}{\longrightarrow} Z(2) \stackrel{\vdash}{\longrightarrow} Z'(2) \stackrel{\vdash}{\longrightarrow} Z(3) \stackrel{\vdash}{\longrightarrow} Z'(3) \stackrel{\vdash}{\longrightarrow} \cdots$

While in this execution time advances, it never progresses beyond time 2. This sort of execution is known as *Zeno behaviour*.

Instantaneous divergence and Zeno behaviour have something in common: they represent behaviours of a process performing an infinite number of actions
in a finite amount of time. Those behaviours are not realistic, and we should avoid them. This gives rise to a fundamental question: how can we know if a system will behave in a way that time always progresses? In other words, we want to know what are the sufficient conditions for a system to have properly defined timed behaviour.

A system which can only perform a finite amount of actions in a finite amount of time is called legitimate. Some timed process algebras such as existing timed \(\pi \)-calculi of [11], [5] and [6], avoid the issue by restricting the time base to a discrete domain. This eliminates Zeno-behaviours but not divergent behaviours. Others, which accept dense-time domains, such as Timed CSP avoid the issue by requiring all recursions to have a strictly positive time guard, and thus, forbid by construction, illegitimate processes. We argue nevertheless, that such an approach disallows perfectly useful processes, as it will be illustrated below. It is preferable to be aware under what conditions we can guarantee legitimacy, without sacrificing expressiveness.

Now we formalize the notion of legitimacy and establish sufficient conditions for legitimacy.

Legitimate executions

Because of the properties of Proposition 2, every execution can be written in the following form:

\[\gamma = P_0 \xrightarrow{d_0} P'_0 \xrightarrow{\alpha_0} P_1 \xrightarrow{d_1} P'_1 \xrightarrow{\alpha_1} P_2 \xrightarrow{d_2} P'_2 \xrightarrow{\alpha_2} \cdots \]

This allows to define the length of the execution as \(\text{len}(\gamma) \defeq n \) where \(n \) is the number of transitions, the execution’s duration as \(\text{dur}(\gamma) \defeq \sum_{i=0}^{\text{len}(\gamma)} d_i \) and its action trace as \(\text{atr}(\gamma) \defeq (\alpha_0, \alpha_1, \alpha_2, \ldots) \).

Definition 7. (Legitimacy) A legitimate execution is an execution \(\gamma \) such that \(\text{len}(\gamma) = \infty \) implies that \(\text{dur}(\gamma) = \infty \). A legitimate process is a process such that all its executions are legitimate.

This definition implies that every finite execution is legitimate so illegitimate behaviours can arise only from infinite executions. In our calculus, the only way to obtain an infinite execution is via recursion. Hence we have to look at the delays between recursive invocations.

Well-timed definitions

Suppose that a process \(P \) may invoke some definition \(A(x) \defeq Q \). Since this invocation may occur anywhere inside \(P \), some amount of time may pass from the beginning of \(P \) until \(A \) is actually invoked. This amount of time may depend on \(P \) itself or its environment, if the invocation is inside a listener. We define a function \(\text{md}_A \) which, for a process \(P \), gives the minimum delay between the start of \(P \) and any invocation of \(A \) in \(P \).
Definition 8. (Minimum delay for invocation) Let $A(\bar{x}) \overset{def}{=} Q$ be some process definition. Define $md_A : \mathcal{P} \to \mathbb{R}_0^+ \cup \{\infty\}$ as follows:

- $md_A(\sqrt{\cdot}) \overset{def}{=} \infty$
- $md_A(x!E) \overset{def}{=} \infty$
- $md_A(\Delta E \rightarrow P) \overset{def}{=} \text{eval}(E) + md_A(P)$
- $md_A(\nu x.P) \overset{def}{=} md_A(P)$
- $md_A(P_1 \parallel P_2) \overset{def}{=} \min\{md_A(P_1), md_A(P_2)\}$
- $md_A(\Sigma_i \in \nu x_i.F_i@y_i \rightarrow P_i) \overset{def}{=} \min\{md_A(P_i) \mid i \in I\}$
- $md_A(A(y)) \overset{def}{=} 0$
- $md_A(B(y)) \overset{def}{=} md_A(Q'(y/x))$

where $B \neq A$ and $B(\bar{x}) \overset{def}{=} Q'$

We say that P is t-guarded for A, if $t \leq md_A(P)$.

Using this notion we can define what it means for a process definition to have proper timed behaviour.

Definition 9. (Well-timed definition) A definition $A(\bar{x}) \overset{def}{=} P$ with $\bar{x} = x_1, ..., x_n$, is said to be well-timed if there is a $b \in \mathbb{R}_0^+$ such that $b > 0$ and for all $\bar{v} = v_1, ..., v_n$, where each $v_i \in V$, $md_A(P(\bar{v}/\bar{x})) \geq b$.

This definition states that there must be a strictly positive lower bound on the minimal delay before any possible instantiation of A in its body. Notice that this includes any indirect invocation of A, by definition of minimal delay.

We will need the following, which states that transitions and evolutions are preserved and reflected by substitution.

Proposition 5. For any $P, P' \in \mathcal{P}, d \in \mathbb{R}_0^+, \alpha \in A$, and any substitution σ,

1. if $P \overset{\sigma}{\rightarrow} P'$ then $P\sigma \overset{\sigma(\alpha)}{\rightarrow} P'\sigma$

2. if $P \overset{d}{\rightarrow} P'$ then $P\sigma \overset{d}{\rightarrow} P'\sigma$

3. if $P\sigma \overset{\alpha}{\rightarrow} P'$ then there is a α' and a Q such that $P \overset{\alpha'}{\rightarrow} Q$ with $\alpha = \sigma(\alpha')$ and $P' = Q\sigma$.

4. if $P\sigma \overset{d}{\rightarrow} P'$ then there is a Q such that $P \overset{d}{\rightarrow} Q$ and $P' = Q\sigma$.

This proposition allows us to conclude that legitimacy is preserved by substitutions.

Lemma 3. Let $P \in \mathcal{P}$, and σ any substitution. If P is legitimate, so is $P\sigma$.

This leads us to the main result:

Theorem 2. (Sufficient conditions for legitimacy) Let D be a finite set of process definitions and P a process which invokes only definitions in D. If all definitions in D are well-timed then P is legitimate.
Examples

Let us revisit the examples at the beginning of this section. First, we saw that the definition L leads to a divergent execution γ_0 which is illegitimate, since $\text{len}(\gamma_0) = \infty$ but $\text{dur}(\gamma_0) = 0$. In this case, we have that the problem is that the definition of L is not well-timed: the minimum delay before any recursive invocation of L is $md_L(P\{y/z\}) = 0$ for any y, where $P = \nu u.(u \rightarrow L(x) \parallel u!)$, and therefore there is no $b > 0$ such that $md_L(P\{y/z\}) \geq b$ for any y.

In the second example, we saw how the definition of Z led to an infinite execution γ_1 where we have that $\text{len}(\gamma_1) = \infty$ but $\text{dur}(\gamma_1) = \Sigma_{n=0}^{\infty} 1/2^n = 2$, so it is illegitimate. In this case, we can check that $md_Z(P\{y/n\}) = 2^{-y}$ for any y where $P = \nu u.(u \rightarrow Z'(n) \parallel u!)$. But there is no $b > 0$ such that $b \leq 2^{-y}$ for all y. Hence, the definition of Z is not well-timed.

On the other hand, consider the following variation of Z:

\[
B(n) \overset{\text{def}}{=} \rho u.(u? \rightarrow B'(n)) \parallel u!
\]

\[
B'(n) \overset{\text{def}}{=} \Delta(1 + 2^{-n}) \rightarrow B(n + 1)
\]

In this case, we have the execution

\[
\gamma_2 = B(1) \rightarrow B'(1) \rightarrow \cdots \rightarrow B'(3) \rightarrow \cdots
\]

So $\text{dur}(\gamma_2) = \Sigma_{n=0}^{\infty} (1 + 1/2^n) = \infty$, and therefore it is a legitimate execution. This is because $md_Z(P\{y/n\}) = 1 + 2^{-y}$ for any y where $P = \nu u.(u? \rightarrow B'(n)) \parallel u!)$. But there is a $b > 0$ such that $b \leq 1 + 2^{-y}$ for all y, namely $b = 1$, and so B has a well-timed definition.

Legitimacy and non-well-timed definitions

We remarked that some timed process algebras such as Timed CSP require all recursions to have a strictly positive time guard, and thus, forbid by construction, illegitimate processes. But such requirement is a bit excessive. Consider for example the following process definition:

\[
C(a, b) \overset{\text{def}}{=} a? \rightarrow b! \rightarrow C(a, b)
\]

It is easy to establish that $md_C(P\{a'/a, b'/b\}) = 0$ for any a', b' where $P = a? \rightarrow b! \rightarrow C(a, b)$. Therefore this definition is not well-timed. But should we forbid such definition? Consider the process $D(a, b) \overset{\text{def}}{=} a! \rightarrow b? \rightarrow D(a, b)$. If we combine an instance of C with an instance of D, as in $E = \nu a, b.(C(a, b) \parallel D(a, b))$ we obtain a divergent execution

\[
E \rightarrow \nu a, b.(b! \rightarrow C(a, b) \parallel b? \rightarrow D(a, b)) \rightarrow E \rightarrow \cdots
\]

But what if we consider the following alternative context: $D'(a, b) \overset{\text{def}}{=} a! \rightarrow \Delta 0.1 \rightarrow b? \rightarrow D'(a, b)$? Then the process $E' = \nu a, b.(C(a, b) \parallel D'(a, b))$ has a
legitimate execution:

\[
E' \xrightarrow{\pi} \nu a, b. (b! \rightarrow C(a, b) \parallel \Delta 0.1 \rightarrow b? \rightarrow D'(a, b))
\]

\[\xrightarrow{0,1} \nu a, b. (b! \rightarrow C(a, b) \parallel \Delta 0 \rightarrow b? \rightarrow D'(a, b)) \]

\[\xrightarrow{t} \nu a, b. (b! \rightarrow C(a, b) \parallel b? \rightarrow D'(a, b)) \]

\[\xrightarrow{t} E' \]

\[\ldots \]

This does not contradict Theorem 2, because the Theorem establishes sufficient, but not necessary conditions for legitimacy. Hence, some process definitions like \(C \), while not well-timed, may be combined with other processes to obtain legitimate systems, and therefore they should not be dismissed by construction.

Legitimacy and time-bisimulation

We introduced the notion of open time-bisimilarity as a means to compare the behaviour of processes up to a given time. How is open time-bisimilarity related to legitimacy? Naturally, if two processes are equivalent, their evolution over time must be equivalent, and therefore, they should both be legitimate or both illegitimate. We prove formally this statement. First, we need the following Lemma.

Lemma 4. Let \(P, Q \in \mathcal{P} \). If \(P \trianglelefteq Q \) and \(\gamma_P \) is an execution beginning with \(P \) such that \(\text{dur}(\gamma_P) < t \), then there is an execution \(\gamma_Q \), starting at \(Q \), such that \(\text{atr}(\gamma_P) = \text{atr}(\gamma_Q), \text{len}(\gamma_P) = \text{len}(\gamma_Q) \) and \(\text{dur}(\gamma_P) = \text{dur}(\gamma_Q) \).

From this, the result follows: open-time-bisimilarity preserves legitimacy (and illegitimacy.)

Theorem 3. Let \(P, Q \in \mathcal{P} \). If \(P \trianglelefteq Q \) for all \(t \in \mathbb{R}^+_0 \) then \(P \) is legitimate if and only if \(Q \) is legitimate.

3 **An Abstract Machine for the \(\pi_{kl}t \)-calculus**

Process algebras can be used strictly as specification languages, but when we see them as modelling or programming languages we become interested in how the “models” or programs are to be executed. An operational semantics for such a language given as a set of Plotkin-style SOS rules, describes execution, but at a very high-level of abstraction. It is not always clear how a set of inductively defined rules defining an LTS, or even a non-labelled reduction system, is to be executed by a machine. A commonly accepted approach is to define an Abstract Machine for the language which captures the operational semantics prescribed by the inference rules, and which describes computation at an appropriate level of abstraction such that it can be easily implemented. In this section we describe such Abstract Machine for the \(\pi_{kl}t \) calculus and proof it is sound w.r.t. the operational semantics.
3.1 Abstract Machine specification

When ignoring time, our Abstract Machine is quite similar to Turner’s Abstract Machine for the π-calculus [38]. But unlike Turner’s, we have to take into account evolution over real-time. In spite of supporting dense time, our calculus can be classified as a discrete-event formalism [40], since changes of state occur only at specific instants. Therefore, we can simulate the execution of a process by means of event-scheduling. The key idea is to treat each π_{klt} term as a simulation event to be executed by an event-scheduler (and not to be confused with a communication event in the language itself). Such event scheduler forms the heart of our Abstract Machine.

The global queue

The event-scheduler contains a queue of simulation events (terms) to be executed, but rather than store them all in a single linear queue, we divide them into time-slots, i.e., sequences of all simulation events to be executed at a given instant in time. Hence the global event queue is a time-ordered queue of time-slots, each of which is a queue of terms. We describe the operation of our Abstract Machine by showing how it evolves in these two “dimensions” of time: the “vertical dimension” which corresponds to the execution of all terms in a single time-slot, and the “horizontal dimension”, which corresponds to the advance in time, i.e. the progress of the global queue.

Definition 10. (Global queue) The set R of global queue states, ranging over R is defined by the following BNF, where T ranges over the set T of time-slots:

\[
R ::= (t_1, T_1) \cdot (t_2, T_2) \cdot \ldots \cdot (t_n, T_n) \mid \emptyset
\]

\[
T ::= P_1 :: P_2 :: \ldots :: P_m \mid \epsilon
\]

where each $P_i \in \mathcal{P}$, each $t_i \in \mathbb{R}_0^+$, and for each $i \geq 1$, $t_i < t_{i+1}$.

Event observers and the heap

Processes interact through (communication) events (a.k.a. channels) introduced by the ν operator. Furthermore, multiple processes can trigger and/or listen to the same event. Hence each such event can affect multiple processes. So there can be multiple attempts to interact through it, and therefore we need to keep track of each of these requests in an observer set\(^6\), containing observers, i.e., requests to either trigger the event or listen to it\(^7\). We also define the heap, which is essentially a map associating each event name to its observer set.

Definition 11. (Event observers and heap) The set of event observers, ranged over by O, observer sets, ranged over by Q and the set \mathcal{H} of heaps,

\(^6\) Analogous to “channel queues” in Turner’s terminology.

\(^7\) In Turner’s terminology, triggers are “writers” and listeners are “readers”.

19
ranged over by H, are defined by the following BNF:

$$
O ::= \nu | ?(F, y, P, t, c) \\
Q ::= \{O_1, O_2, \ldots, O_n\} | \emptyset \\
H ::= x_1 \mapsto Q_1, x_2 \mapsto Q_2, \ldots, x_m \mapsto Q_m | \epsilon
$$

where, as usual, $v \in V$, $F \in F$, $P \in P$, and $t \in \mathbb{R}_0^+$. We denote $H\{x \mapsto Q\}$ for the heap where the entry for x is updated to Q. Formally:

$$
\epsilon\{x \mapsto Q\} \overset{\text{def}}{=} x \mapsto Q \\
(H, x \mapsto Q)\{x \mapsto Q'\} \overset{\text{def}}{=} H, x \mapsto Q' \\
(H, x' \mapsto Q)\{x \mapsto Q'\} \overset{\text{def}}{=} H\{x \mapsto Q'\}, x' \mapsto Q \quad \text{where } x \neq x'
$$

We extend this notation to indexed sets of names: $H\{x_i \mapsto Q_i\}_{i \in I}$ stands for $H\{x_1 \mapsto Q_1\} \cdots \{x_n \mapsto Q_n\}$ for $I = \{1, \ldots, n\}$.

Observers of the form ν are output observers, and denote an attempt to trigger the given event with a value v. Observers of the form $?(F, y, P, t, c)$ denote input observers, with a pattern F to match, elapsed-time variable y, body P to execute when the event is triggered with a matching value and which start listening at time t. This tag t is necessary in order to assign the correct elapsed time to y once the event is triggered. Such time-stamp is not present in Turner’s machine, since his is “time agnostic”. The last item, c is a tag used to identify the original π_{klt} listener, so that each branch of a listener $\sum_{i \in I} x_i ?F_i @y_i \rightarrow P_i$ will have an observer $? (F_i, y_i, P_i, t, c)$ sharing the same identifier c. This is also absent from Turner’s machine, since he does not implement the choice operator.

We assume the standard set theoretical operations are available for observer sets: *e.g.*, $Q \cup \{O\}$ denotes the observer set that adds O to Q, $Q \setminus O$ is the set that results from removing O from Q, $O \in Q$ tests for membership, etc.

Note also, that unlike Turner’s machine, any given non-empty observer set can contain both inputs and outputs simultaneously, because it is possible that the value associated with a triggered event does not match any of the patterns of the available input observers and thus the corresponding output observer must be suspended with the existing inputs on the same observer set. Hence the following auxiliary definitions will be useful to extract the relevant observers from a set.

Definition 12. Given an observer set Q, we denote:

$$
\begin{align*}
\text{inputs}(Q) & \overset{\text{def}}{=} \{O \in Q \mid O \text{ is of the form } ?(F, y, P, t, c)\} \\
\text{outputs}(Q) & \overset{\text{def}}{=} \{O \in Q \mid O \text{ is of the form } \nu\} \\
\text{patt}(?(F, y, P, t, c)) & \overset{\text{def}}{=} F \\
\text{tag}(?(F, y, P, t, c)) & \overset{\text{def}}{=} c \\
\text{val}(\nu) & \overset{\text{def}}{=} v
\end{align*}
$$
and we define the following functions:

\[
\begin{align*}
inms(v, Q) &\overset{\text{def}}{=} \{ (O, \sigma) \mid O \in \text{inputs}(Q), \sigma = \text{match}(\text{patt}(O), v, \emptyset), \sigma \neq \emptyset \} \\
outms(F, Q) &\overset{\text{def}}{=} \{ (O, \sigma) \mid O \in \text{outputs}(Q), \sigma = \text{match}(F, \text{val}(O), \emptyset), \sigma \neq \emptyset \}
\end{align*}
\]

which give us the set of observers and bindings for successful matches between a value \(v\) (resp. a pattern \(F\)) and the patterns (resp. values) available as input (resp. output) observers in the set.

Furthermore, we need the ability to remove input observers from all branches of a listener once a branch has been triggered. To this end, we define the following which removes all \(c\) tagged inputs from an observer set \(Q\):

\[
\text{withdraw}(Q, c) \overset{\text{def}}{=} \{ O \in \text{inputs}(Q) \mid \text{tag}(O) \neq c \} \cup \text{outputs}(Q)
\]

which we use to define the following function that removes all such inputs anywhere in the heap\(^8\):

\[
\text{remalts}(c, c) \overset{\text{def}}{=} \epsilon \\
\text{remalts}((H, x \mapsto Q), c) \overset{\text{def}}{=} \text{remalts}(H, c, x \mapsto \text{withdraw}(Q, c))
\]

Executing time-slots

We now describe the “vertical dimension” of time, i.e., the execution of terms within one time-slot.

Definition 13. (Time-slot execution) The behaviour of time-slots at a time \(t \in \mathbb{R}_0^+\) is defined as the smallest relation \(\rightarrow_t \subseteq (\mathcal{H} \times T) \times (\mathcal{H} \times T)\) satisfying the axioms in Table 6.

The rule (NIL) simply ignores a terminated process. The (SPAWN) rules break a parallel composition into its components and schedules their execution in the current time-slot in an arbitrary order. Unlike Turner’s machine, this is non-deterministic. The (RESTR) rule allocates a new spot for the new event, and initializes its observer set to empty.

The (OUT-\(E\)) rule describes the case when we trigger an event \(x\), and there is no matching listener in \(x\)’s observer set (output failure). In this case we simply add a new trigger observer to \(x\)’s observer set and continue. The (OUT-S) rule (output success) applies when there is a matching observer \(O\) with \(\sigma\) being the resulting bindings. In this case, we remove all observers belonging to the listener which has matched the event (those tagged with \(c\)), and then execute the body \(P\) of the observer, applying the substitution \(\sigma\) extended with the binding of the elapsed time variable \(y\) to the difference between the current time \(t\) and the time \(u\) when the receiver started listening. Note that since there might be more

\(^8\)This definition is inefficient since it traverses the entire heap. In practice, the input observers contain a list of pointers to the relevant heap entries to remove the alternatives efficiently.
(NIL) \((H, \sqrt{\::\ T}) \rightarrow_t (H, T) \)

(SPAWN\(_1\)) \((H, (P_1 \parallel P_2) :: T) \rightarrow_t (H, T :: P_1 :: P_2) \)

(SPAWN\(_2\)) \((H, (P_1 \parallel P_2) :: T) \rightarrow_t (H, T :: P_2 :: P_1) \)

(RESTR) \(\text{fresh} \quad (H, \nu x.P :: T) \rightarrow_t (H[k \mapsto \emptyset], P[k/x] :: T) \)

(OUT-F) \(H(x) = Q, v = \text{eval}(E), \text{inms}(v, Q) = \emptyset \quad (H, x!E :: T) \rightarrow_t (H[x \mapsto Q \cup \{v\}], T) \)

(OUT-S) \(H(x) = Q, (O, \sigma) \in \text{inms}(\text{eval}(E), Q) \neq \emptyset \quad O = ?(F, y, P, u, c) \quad (H, x!E :: T) \rightarrow_t (\text{remalts}(H, c), P(\sigma \cup \{t-u/y\}) :: T) \)

(INP-F) \(\text{fresh} \quad \forall i \in I. \quad H(x_i) = Q_i, \text{outsms}(F_i, Q_i) = \emptyset \quad (H, \sum_{i \in I} x_i ? F_i [y_i] :: P_i :: T) \rightarrow_t (H\{x_i \mapsto Q_i \cup \{?F_i, y_i, P_i, t, c\}\}_{i \in I}, T) \)

(INP-S) \(\exists i \in I. \quad H(x_i) = Q_i, (O, \sigma) \in \text{outsms}(F_i, Q_i) \neq \emptyset \quad (H, \sum_{i \in I} x_i ? F_i [y_i] :: P_i :: T) \rightarrow_t (H\{x_i \mapsto Q_i \setminus O\}, P(\sigma \cup \{y_i\}) :: T) \)

(INST) \(A(\vec{x}) \overset{\text{def}}{=} P \quad (H, A(\vec{v}) :: T) \rightarrow_t (H, T :: P[\vec{v}/\vec{x}]) \)

Table 6: Time-slot execution
than one successful match, the choice is non-deterministic, contrasting again with Turner’s machine.

The rules (INP-S) and (INP-F) are the dual of (OUT-S) and (OUT-F). In rule (INP-F), when attempting to execute a listener, if there are no matching triggers in the relevant observer sets, we simply add the appropriate observers to the corresponding observer sets. Note that the added observers are tagged with the current time t, and with the same tag c. On the other hand, in rule (INP-S), one of the branches succeeds in matching the pattern with an observer O and binding σ. In this case, we remove the output observer from the event’s observer set and execute the body of the corresponding branch, applying the substitution σ and binding y_i to 0, since the listener did not have to wait.\footnote{Note that in this case we don’t have to traverse the heap to remove input observers because it is a listener which is being executed and we have not added any input observers for it.}

Finally, the rule, (INST) deals with process instantiations. This simply assumes the set of process definitions is available, and schedules the execution of the body of the definition replacing its parameters by the arguments provided by the instantiation.\footnote{In the actual implementation the heap is replaced by a structured environment that supports lexical scoping, and which stores not only named events but also process definitions.}

Note that there is no rule associated with the Δ operator. We specify its behaviour in the description of the global scheduler below.

Global event scheduler

Now that we have the execution rules for time-slots, we can define the behaviour of the global event scheduler. For this purpose we will assume we have a function $\text{insort} : \mathbb{R}^+_0 \times \mathcal{P} \times \mathcal{R} \rightarrow \mathcal{R}$ which, given a time, inserts a term in the appropriate time-slot in the global queue, i.e., which satisfies the following:

\[
\begin{align*}
\text{insort}(t, P, (j)) &= (t, P) \\
\text{insort}(t, P, (t_1, T_1) \cdots (t_i, T_i) \cdots (t_n, T_n)) \\
&= (t_1, T_1) \cdots (t_i, T_i :: P) \cdots (t_n, T_n) \\
&\quad \text{if } t = t_i \text{ for some } i \in \{1, ..., n\} \\
\text{insort}(t, P, (t_1, T_1) \cdots (t_i, T_i) \cdot (t_{i+1}, T_{i+1}) \cdots (t_n, T_n)) \\
&= (t_1, T_1) \cdots (t_i, T_i) \cdot (t, P) \cdot (t_{i+1}, T_{i+1}) \cdots (t_n, T_n) \\
&\quad \text{if } t \notin \{t_1, ..., t_n\} \text{ and } t_i < t < t_{i+1}
\end{align*}
\]

Now we can define the global scheduler.

Definition 14. (Scheduler) The behaviour of the scheduler is given by the smallest relations $\leadsto_0, \leadsto_1, \leadsto_2 \subseteq (\mathcal{H} \times \mathcal{R}) \times (\mathcal{H} \times \mathcal{R})$ which satisfy the rules in Table 7.\footnote{The subscripts denote “vertical” step (0), “horizontal” step (1), and “scheduling” (2).}

The rule (TIMESLOT) states that as long as there are terms in the current time-slot then they are executed. The (ADVANCE) rule states that when the current time-slot is empty, simply move on to the next available time-slot. Finally, the (SCHED) rule describes the behaviour of the delay operator: to execute $\Delta E \rightarrow P$ simply compute the value d of E and insert P at time $t + d$ (where t
is the current time). Note that this is inserted in \((t, T) \cdot R\) because the value of \(E\) may be 0. Also note that this may create a new time-slot, if there was none at time \(t + d\).

Example

We illustrate the Abstract Machine with a sample execution. Consider the processes \(Q \overset{\text{def}}{=} \Delta 3.2 \rightarrow x!1\) and \(P \overset{\text{def}}{=} x?1@e \rightarrow P_1\) where \(P_1 \overset{\text{def}}{=} \Delta (5 - e) \rightarrow P_2\) for some \(P_2\). Under the TLTS semantics we have the following execution for \(\nu x. (P \parallel Q)\):

\[
\begin{align*}
\nu x. (P \parallel Q) & \xrightarrow{\text{3,2}} \nu x. (x?1@e \rightarrow P_1\{e+3.2/c\} \parallel \Delta 0 \rightarrow x!1) \\
& \xrightarrow{\tau} \nu x. (x?1@e \rightarrow P_1\{e+3.2/c\} \parallel x!1) \\
& \overset{\tau}{\equiv} \nu x. (P_1\{e+3.2/c\}\{0/c\}) \\
& \equiv \nu x. (\Delta (5 - (e + 3.2)) \rightarrow P_2\{e+3.2/c\}\{0/c\}) \\
& \equiv \nu x. \Delta (5 - (0 + 3.2)) \rightarrow P_2\{e+3.2/c\}\{0/c\} \\
& \xrightarrow{\text{1,8}} \nu x. P_2\{e+3.2/c\}\{0/c\} \\
& \overset{\tau}{\equiv} \nu x. P_2\{3.2/e\}.
\end{align*}
\]

Now we'll see how this is mimicked by the Abstract Machine. Suppose that the current time is \(7\).\(^{12}\) Let us see the execution of the time-slot containing only \(\nu x. (P \parallel Q)\), assuming the heap is initially empty (just to simplify notation):

\[
\begin{align*}
(\epsilon, \nu x. (P \parallel Q)) & \xrightarrow{\tau} (k \mapsto \emptyset, (P \parallel Q)\{k/x\}) \quad \text{(RESTR) } k \text{ fresh} \\
& \equiv (k \mapsto \emptyset, (P\{k/x\} \parallel Q\{k/x\})) \\
& \xrightarrow{\tau} (k \mapsto \emptyset, P\{k/x\} :: Q\{k/x\}) \quad \text{(SPAWN)} \\
& \xrightarrow{\tau} (k \mapsto \{(1, e, P_1\{k/x\}, 7, c), Q\{k/x\}\}) \quad \text{(INP-F) } c \text{ fresh}
\end{align*}
\]

Hence, at the global queue level we have:

\(^{12}\) Any time will do.
\((\epsilon, (7, \nu x. (P \parallel Q)))\)

\(<_0 (k \rightarrow \emptyset, (7, (P \parallel Q)\{k/x\})) \quad \text{(TIMESLOT)}\)

\(\equiv (k \rightarrow \emptyset, (7, (P\{k/x\} \parallel Q\{k/x\}))\))

\(<_0 (k \rightarrow \emptyset, (7, P\{k/x\} :: Q\{k/x\})) \quad \text{(TIMESLOT)}\)

\(<_0 (k \rightarrow {?}(1, e, P_1\{k/x\}, 7, c), (7, Q\{k/x\})) \quad \text{(TIMESLOT)}\)

\(\equiv (k \rightarrow {?}(1, e, P_1\{k/x\}, 7, c), (7, \Delta 3.2 \rightarrow k!1)) \quad \text{(SCHED)}\)

\(<_2 (k \rightarrow {?}(1, e, P_1\{k/x\}, 7, c), \text{insert}(7 + 3.2, k!1, (7, e))) \quad \text{(SCHED)}\)

\(\equiv (k \rightarrow {?}(1, e, P_1\{k/x\}, 7, c), (7, e) \cdot (10.2, k!1)) \quad \text{(ADVANCE)}\)

\(<_0 (k \rightarrow \emptyset, (10.2, P_k\{k/x\}\{10.2 - 7/e\})) \quad \text{(OUT-S) + (TIMESLOT)}\)

\(\equiv (k \rightarrow \emptyset, (10.2, \Delta(5 - 3.2) \rightarrow P_2\{3.2/e\}\{k/x\}))\)

\(<_2 (k \rightarrow \emptyset, (10.2, e) \cdot (12, P_2\{3.2/e\}\{k/x\})) \quad \text{(SCHED)}\)

\(<_1 (k \rightarrow \emptyset, (12, P_2\{3.2/e\}\{k/x\})) \quad \text{(ADVANCE)}\)

Here we used \((\text{spawn}_1)\) which selected the left process \(P\) to be executed first. This resulted in registering the input observer in \(k\)'s observer set. If we had used \((\text{spawn}_2)\) instead, then \(Q\) would have been executed first, resulting in the scheduling happening first, but \(P\) would remain in the time-slot for time 7, and thus it would be executed before advancing in time.

3.2 Soundness

We now establish that reductions in our Abstract Machine correspond to valid \(\pi_{klt}\) executions following the same approach as that in [38] for the \(\pi\)-calculus. To do this we first encode the states of our Abstract Machine as \(\pi_{klt}\) terms. We need to encode the heap, its observer sets, time-slots and the global queue. We use \(x \in H\) to denote that there is an entry for \(x\) in the heap \(H\).

Definition 15. (Encoding the machine state) The set of triggers in the heap entry for \(x\) and the set of all triggers in the heap are given by:

\[
\begin{align*}
\text{triggers}(Q, x) & \overset{\text{def}}{=} \{x!v \mid \exists v \in \text{outputs}(Q)\} \\
\text{alltriggers}(H) & \overset{\text{def}}{=} \bigcup_{x \in H} \text{triggers}(H(x))
\end{align*}
\]

The set of branches of a listener with tag \(c\) is given by:

\[
\begin{align*}
\text{branches}(H, c, t) & \overset{\text{def}}{=} \bigcup_{x \in H} \text{alts}(H(x), c, x, t) \\
\text{alts}(Q, c, x, t) & \overset{\text{def}}{=} \{x?F@y \rightarrow P\{y+(t-u)/y\} \mid \exists (F, y, P, u, c) \in \text{inputs}(Q)\}
\end{align*}
\]

The set of all listeners in the heap is given by:

\[
\begin{align*}
\text{alllisteners}(H, t) & \overset{\text{def}}{=} \{\sum \text{branches}(H, c, t) \mid c \in \text{alltags}(H)\}
\end{align*}
\]
where
\[\text{alltags}(H) \overset{def}{=} \bigcup_{x \in H} \text{tags}(H(x))\]
\[\text{tags}(Q) \overset{def}{=} \{\text{tag}(O) | O \in \text{inputs}(Q)\}\]

The **encoding of the heap** \(H\) **at time** \(t\), is given by:
\[\llbracket H \rrbracket_t \overset{def}{=} \left(\prod_{x \in H} \text{alllisteners}(H, t)\right) \parallel \left(\prod_{x \in H} \text{alltriggers}(H)\right)\]

The **encoding of a time-slot** \(T = P_1 :: P_2 :: \cdots :: P_n\) is:
\[\llbracket T \rrbracket \overset{def}{=} P_1 \parallel P_2 \parallel \cdots \parallel P_n\]

The **encoding of a heap/time-slot pair at time** \(t\) is:
\[\llbracket (H, T) \rrbracket_t \overset{def}{=} \nu x_1, \ldots, x_k.\left(\llbracket H \rrbracket_t \parallel \llbracket T \rrbracket\right)\]

The **encoding of the global queue** \(R = (t_1, T_1) \cdot (t_2, T_2) \cdot \cdots \cdot (t_m, T_m)\) is:
\[\llbracket R \rrbracket \overset{def}{=} \llbracket T_1 \rrbracket \parallel \Delta(t_2 - t_1) \rightarrow \llbracket T_2 \rrbracket \parallel \cdots \parallel \Delta(t_m - t_1) \rightarrow \llbracket T_m \rrbracket\]

The **encoding of the machine state** \((H, R)\) is defined as:
\[\llbracket (H, R) \rrbracket \overset{def}{=} \nu x_1, \ldots, x_k.\left(\llbracket H \rrbracket_{\text{curtime}(R)} \parallel \llbracket R \rrbracket\right)\]

where \(\{x_1, \ldots, x_k\}\) are the names of entries in the heap \(H\) and where \(\text{curtime}((t, T), R)\) \overset{def}{=} \(t\) is the time-stamp of the first time-slot.\(^{13}\)

A few comments about this encoding. First, note that to create a single listener we have to quantify over the possible entries in the heap. This is because each branch of a listener may listen to different events/channels, and therefore, the corresponding input observers may be dispersed over multiple heap entries. This is why we use the tags \(c\), to identify all input observers which belong to the same listener. Second, note that the definition allts which gives us the alternative branches of a listener in some observer set, substitutes \(y + (t - u)\) for \(y\) in \(P\), where \(t\) is the current time and \(u\) is the time-stamp of the input observer, i.e., when the listener began listening. This is because the encoding corresponds to taking a “snapshot” of the machine’s state at time \(t\), but each listener may have registered at some time \(u \leq t\) so we have to take into account the time already elapsed. The encoding \(\llbracket R \rrbracket\) for the global queue considers the first time-slot to represent the current one, so all future time-slots are delayed relative to the current time \(t_1\).

In the following we will write \(\equiv\) for \((\overset{\rightarrow}{\Rightarrow}) \equiv \equiv \equiv\), this is \(P \Rightarrow Q\) if there is zero or one reductions from \(P\) to \(Q\) (moduel structural congruence). We first establish the consistency of execution within one time-slot at time \(t\).

\(^{13}\)Note that \(\llbracket (H, R) \rrbracket\) is in canonical normal form (cf. Proposition 1).
Lemma 5. *(Sound time-slot execution)*

If \((H, T) \rightarrow_t (H', T') \) then \(\llbracket (H, T) \rrbracket_t \Rightarrow \llbracket (H', T') \rrbracket_t \)

From this, the validity of the scheduler’s rules follows:

Theorem 4. *(Abstract Machine Validity)*

1. If \((H, R) \leftarrow_0 (H', R') \) then \(\llbracket (H, R) \rrbracket \Rightarrow \llbracket (H', R') \rrbracket \)

2. If \((H, R) \leftarrow_1 (H', R') \) then \(\llbracket (H, R) \rrbracket \xrightarrow{d} \llbracket (H', R') \rrbracket \) with \(d = t_2 - t_1 \)

where \(R = (t_1, T_1) :: (t_2, T_2) :: ... \)

3. If \((H, R) \leftarrow_2 (H', R') \) then \(\llbracket (H, R) \rrbracket \equiv \llbracket (H', R') \rrbracket \)

3.3 **Implementation:** kiltera

We have implemented the Abstract Machine described in this Section, forming the basis of a language called kiltera. This language includes all the basic and derived constructs mentioned in this paper, plus some which we have not mentioned, such as event channel arrays, indexed parallel composition, and loops, all defined in terms of the core. Table 8 shows the ASCII syntax equivalent of \(\pi_{klt} \) terms in kiltera.

The implementation follows the specification quite closely, but there is one difference, for the sake of efficiency. While the Abstract Machine presented here uses substitution, the actual implementation uses frame environments to support lexical scoping, according to the standard approach followed by functional programming languages. This also allows us to support local variable definitions and nested process definitions. Furthermore, process definitions result in closures which are treated as first class values and thus can be communicated.

The language also supports some primitives for mobile distributed computation and the implementation supports truly distributed (virtual time) simulation based on Time-Warp [19].

4 **Related work**

There have been several timed extensions to the \(\pi \)-calculus. We now contrast them with \(\pi_{klt} \). Most of the timed extensions assume a discrete time model, and none include a time-observing construct as \(@_y \) in \(\pi_{klt} \) listeners. Most are based on the synchronous \(\pi \)-calculus, whereas \(\pi_{klt} \) is based on asynchronous communication. Only a couple have reported on notions of behavioural equivalence and compositionality. To the best of our knowledge, none of the previous work on timed \(\pi \)-calculi has studied time-bounded equivalences, none has dealt with the issue of legitimacy (finite variability) and no Abstract Machine has been proposed. Furthermore the only other language in this family, apart from ours, with an actual implementation is the stochastic \(\pi \)-calculus.
\[\begin{array}{|c|c|} \hline \text{\(\pi_{klit}\) notation} & \text{kiltera ASCH notation} \\
\hline \sqrt{x!E} & \text{done} \\
\hline x_1 ? F_1 @ y_1 \rightarrow P_1 + \cdots + x_n ? F_n @ y_n \rightarrow P_n & \text{trigger} \ x \ \text{with} \ E \\
\hline \nu x_1, \ldots, x_n, \nu P & \text{event} \ x_1, \ldots, x_n \ \text{in} \ \\
\hline \Delta E \rightarrow P & \text{wait} \ E \rightarrow \ \\
\hline P_1 \parallel \cdots \parallel P_n & \text{par} \\
\hline A(x_1, \ldots, x_n) & A[x_1, \ldots, x_n] \\
\hline A(x_1, \ldots, x_n) \ \text{def} = P & \text{process} \ A[x_1, \ldots, x_n] :: P \\
\hline \end{array} \]

Table 8: kiltera notation for \(\pi_{klit}\) syntax

The stochastic \(\pi\)-calculus

The stochastic \(\pi\)-calculus [30] makes a small but significant modification to the syntax and semantics of the (synchronous) \(\pi\)-calculus, by associating rates to (input and output) actions. The meaning of this rate is that the given action is completed only after an amount of time which is drawn from an exponential distribution determined by the rate. As \(\pi_{klit}\), processes execute with respect to a global clock over continuous time. But, unlike \(\pi_{klit}\), the amount of delay is a random variable over a distribution, and therefore, transitions and their timing, are probabilistic. Semantically, each transition also has a rate, which depends on the rate of the corresponding term. This implies that communication between processes has a rate which depends on the rates of the participating input and output actions.

The probabilistic nature of this calculus results in a theory which is substantially different from ours, in scope and purpose. While both the stochastic \(\pi\)-calculus and \(\pi_{klit}\) can be used to reason about quantitative aspects of the timing behaviour of systems, the emphasis of the stochastic \(\pi\) theory is on probabilistic analysis and performance evaluation, whereas \(\pi_{klit}\)'s theory is focused on the discrete-event behaviour of systems, focusing in properties of legitimacy, behavioural equivalence and compositionality. We have not seen any comparable results in the theory of the stochastic \(\pi\)-calculus.
The πRT-calculus

The calculus introduced in [22] extends the π-calculus with a timeout operator from Timed CSP [37, 36] as well as allowing transmission of time values. Like π_{klt}, it has a model of computation based on a global clock, but unlike π_{klt}, time is discrete. The model of computation includes several properties similar to π_{klt}'s, such as maximal progress, time determinacy and time continuity. Nevertheless, the status of these properties in their theory is not clear: are they assumptions or derived properties? To the best of our knowledge, the theory of this calculus has not been developed. The authors do not report any results regarding the issues we have treated in this paper, namely legitimacy, equivalence and compositionality.

The $T\pi$ and $TD\pi$-calculi

Of the timed-π calculi we surveyed, we have found the $T\pi$ and $TD\pi$-calculi [31] to have one of the most developed theories. This algebra extends the π-calculus in several ways: 1) computation proceeds with respect to a global clock over discrete time; 2) input and output actions (i.e., listeners and triggers), have associated timers, which represent timeouts; 3) it supports distributed computation in a sense similar to π_{klt}, where processes execute in locations, and can move between locations; 4) it has a type system which assigns capabilities to channels (e.g., read or write), and locations (e.g., can move). Its theory is centered around several notions of barbed bisimulation, which identify processes based on the satisfaction of certain predicates known as barbs. Different variants of this equivalence are proposed which distinguish processes depending on their type information, and/or their timing behaviour.

There are several obvious similarities as well as differences between π_{klt} and this calculus. First, both have a notion of timed execution with respect to a global clock, but while in $TD\pi$ time is discrete, in π_{klt} it is continuous. Second, the timer tags on channels of $TD\pi$ are easily emulated with timeouts in π_{klt}, but while π_{klt} provides a mechanism to observe the elapsed time, $TD\pi$ does not. Furthermore, unlike πRT and π_{klt}, time values are not transmittable as data. Third, $TD\pi$ provides a type system, while π_{klt}'s processes are untyped. The remaining distinction are with respect to the model of distributed processing, so we leave the comparison of these features to the second part of this paper.

As with the previously discussed variants, the theory does not provide any results regarding legitimacy, unlike our theory. They do discuss a timed barbed bisimilarity relation, but it is a much more stringent equivalence than our own open-timed bisimilarity. Whereas their equivalence requires an exact match in the timing of transitions, our equivalence requires match up to a given time. For example, consider the processes $(a? \rightarrow P) \triangleright Q_1$ and $(a? \rightarrow P) \triangleright Q_2$. In π_{klt}, we are able to show these processes as equivalent up to time 3, which includes equivalence of all intermediate states between time 0 (included) and time 3 (excluded). The corresponding $TD\pi$ processes could not be identified at all, because their timeouts are different. This makes timed barbed bisimilarity
in $TD\pi$ a very stringent equivalence. Furthermore there are no results regarding its compositionality, whether it is a congruence, whether it is preserved by the operators in the language. We suspect that in fact, it is not a congruence, for the same reasons that strong, ground bisimilarity is not a congruence in the π-calculus, or (non-open) timed-bisimilarity is not a congruence in π_{klt}: it ignores transmitted values over channels.

The π_t and π_{mlt}-calculi

The π_t and π_{mlt}-calculi [5, 6] are similar to the $T\pi$ and $TD\pi$-calculi. They support time, and in the case of π_{mlt}, locations and message failures. Like π_{klt}, communication is asynchronous. Nevertheless, time is discrete. Their timer construct corresponds in π_{klt} to a single-branching listener with a timeout. The theory studies several bisimilarities, establishing compositionality of strong, time-closed, renaming-closed asynchronous bisimilarity. While the requirements of time-closedness and renaming-closedness are similar to those of our open timed-bisimilarity, their equivalence is defined only in the discrete-time setting, and identifies processes with respect to the entire future, unlike our equivalence up to some time.

The timed-π calculus

Another timed extension to the π-calculus was provided in [14]. This extension introduces a delay operator and an integral operator, which is nothing but a sum (a choice operator) over a continuous time domain. Unfortunately there is nothing much to comment about this, since no theory is developed for this language. No results regarding legitimacy, equivalence, compositionality, or any other interesting property. Furthermore, there is no mention of an implementation either.

The SpacePi calculus

Another related process algebra recently introduced is SpacePi [20], an extension to the π-calculus with both continuous time and space. In this algebra, processes have an associated position in the euclidean vector space \mathbb{R}^n, as well as a movement function which updates the process’s position. Communication channels have an associated radius, which determines how far a process can send or receive a message. Time, while continuous, is divided in computation intervals, so that the movement function specifies where a process will be at the end of the interval, if it does not interact with other processes.

This calculus is quite different than π_{klt}. While it presents some novel features, like radius for channels, it seems to impose a rather unnatural structure to time in the form of time-intervals, apparently, to justify the meaning of the movement functions. The result is that the modeller is forced to be aware of such imposition, and develop models accordingly. In addition, to the best of our knowledge, there are no theoretical results for this language, no properties

30
regarding its semantics, such as conditions for legitimacy, or adequate notions of behavioural equivalence. Furthermore, there are no tools yet to support modelling and simulation with this calculus.

The ϕ-calculus

The ϕ-calculus [33] is another timed variant of the π-calculus for hybrid, embedded systems. Its distinguishing characteristic is the ability to describe hybrid systems consisting of an environment which runs over continuous time and a process expression which performs discrete actions which may change the continuous environment. The emphasis of this calculus is on hybrid systems, whereas π_{klt} is concerned with discrete-event systems.

Previous version of kiltera

To end, we would like to mention that the language presented in this paper was first published in [29], where rendez-vous was the main form of communication. In the author’s thesis, this was changed to asynchronous communication, added multicasting and a form of ephemeral or transient interaction. In this paper we have decided to trim the language back to make it closer to the π-calculus, due to several difficulties introduced by mixing multicasting, transient interaction and time. This allows us to take advantage of a large body of work that is already in place for the π-calculus.

5 Conclusions and future work

We have introduced the π_{klt}-calculus, a dense-time extension to the asynchronous π-calculus which adds some high-level features such as pattern-matching. We have given an operational semantics in terms of time-forward labelled transition systems, and developed its basic theory, including a notion of timed compositionality and a timed-bisimilarity up to a given time, which is shown to be a timed-congruence. We also explored the issue of legitimate process definitions and established sufficient conditions for legitimacy. We developed an Abstract Machine for the calculus, based on event-scheduling, and established its soundness with respect to the operational semantics. We have implemented this in a language called kiltera. We view this language as a step towards filling the gap between foundational process algebras and realistic languages, specially in the context of real-time mobile systems.

In the second part we will present the distributed computation extensions to the core language, as well as a distributed Abstract Machine, based on the TimeWarp algorithm [19]. These have been implemented in the kiltera simulator.

There are multiple directions for future research. First, concerning the core theory, an axiomatization of open-time bisimilarity would be interesting to support automatic verification. Weaker variants of this equivalence are also of interest, as well as fully-abstract denotational models, and comparisons with similar
models. The applicability of real-time temporal logics and model-checking approaches can be valuable. At the meta-theory level it might be interesting to explore the idea of rule formats for timed process algebras which yield timed-congruences, in the same vein as those described in [1].

From the point of view of language features, several issues should be explored, including type systems, and with respect to the distributed features, active process migration. The implementation is mostly a proof of concept, with the simulator written entirely in Python, and thus it is not very fast. Optimization strategies for the Abstract Machine are also issues to be explored.

The implementation is available at http://www.kiltera.org

References

A Basic properties

Proposition 1. Every process is structurally congruent to a process of the form:
\(\nu x_1, \ldots, x_n. (P_1 \parallel \cdots \parallel P_k) \), where each \(P_i \) is either a trigger, a listener, a delay or a process instantiation. We call such form “canonical normal form”.

Proof. (Sketch) Using the scope extrusion axiom for structural congruence (\(P \parallel \nu x.Q \equiv \nu x.(P \parallel Q) \) if \(x \notin \text{fn}(P) \)) together with the \(\alpha \)-conversion axiom (\(P \equiv Q \) if \(P \equiv_\alpha Q \)) we can extract, from all parallel subterms, any \(\nu x \) which is not inside a listener or delay, to the outermost position. \(\square \)

Proposition 2.

1. (Zero time advance) For any \(P \in \mathcal{P} \), \(P \overset{0}{\rightarrow} P \).
2. (Time determinacy) For any \(P, P', P'' \in \mathcal{P} \), \(d \in \mathbb{R}_0^+ \), if \(P \overset{d}{\rightarrow} P' \) and \(P \overset{d'}{\rightarrow} P'' \), then \(P' \equiv P'' \).
3. (Time continuity) For any \(P, P' \in \mathcal{P} \), \(d, d' \in \mathbb{R}_0^+ \), \(P \overset{d \rightarrow d'}{\rightarrow} P' \) if and only if there is a \(P'' \) such that \(P \overset{d}{\rightarrow} P'' \) and \(P'' \overset{d'}{\rightarrow} P' \).
4. (Persistency of offers) For any \(P, P' \in \mathcal{P} \), \(d \in \mathbb{R}_0^+ \), and any \(\alpha \neq \tau \), if \(P \overset{\alpha}{\rightarrow} \) and \(P \overset{d}{\rightarrow} P' \) then \(P' \overset{\alpha}{\rightarrow} \).

Proof. All these can be proven using standard induction on the structure of \(P \). We show here time determinacy and time continuity. The rest are similar. We begin with time determinacy.

Case 1. \(P \equiv \sqrt{1}, P \equiv x!E, P \equiv \Delta E \rightarrow P' \), or \(P \equiv \sum_{i \in I} \beta_i \rightarrow P_i \). In each of these cases, there is only one axiom that can be applied, or the \(\text{(TCNGR)} \) rule, and therefore the result is uniquely determined up-to \(\equiv \).

Case 2. \(P \equiv \nu x.P_1 \). Assume that the statement holds for \(P_1 \) (which is a subterm of \(P \)): if \(P_1 \overset{d}{\rightarrow} P'_1 \) and \(P_1 \overset{d'}{\rightarrow} P''_1 \) then \(P'_1 \equiv P''_1 \). Suppose that \(P \overset{d}{\rightarrow} P' \) and \(P \overset{d'}{\rightarrow} P'' \). Each of these must be the conclusion of the \(\text{(TNEW)} \) rule. Therefore \(P' \equiv \nu x.P'_1 \) for some \(P'_1 \) such that \(P_1 \overset{d}{\rightarrow} P'_1 \). Similarly \(P'' \equiv \nu x.P''_1 \) for some \(P''_1 \) such that \(P_1 \overset{d'}{\rightarrow} P''_1 \). Hence, by induction hypothesis, \(P'_1 \equiv P''_1 \), and since \(\equiv \) is a congruence, \(\nu x.P'_1 \equiv \nu x.P''_1 \), this is \(P' \equiv P'' \) are required.
Case 3. $P \equiv P_1 \parallel P_2$. Assume that the statement holds for each sub-term P_1 and P_2. Suppose that $P \xrightarrow{d'} P'$ and $P \xrightarrow{d''} P''$. Each case must be the conclusion of (TPAR). Therefore, $P' \equiv P_1' \parallel P_2'$ for some P_1' such that $P_1 \xrightarrow{d} P_1'$ and some P_2' such that $P_2 \xrightarrow{d'} P_2'$. Similarly, since $P \xrightarrow{d''} P''$, we have that $P'' \equiv P_1'' \parallel P_2''$ for some P_1'' such that $P_1 \xrightarrow{d} P_1''$ and some P_2'' such that $P_2 \xrightarrow{d'} P_2''$. Hence, by our induction hypothesis, we conclude that $P_1' \equiv P_1''$ and $P_2' \equiv P_2''$. And since \equiv is a congruence, we have that $P_1' \parallel P_2' \equiv P_1'' \parallel P_2''$. This is, $P' \equiv P''$ as required.

Now we show time continuity.

Case 1. $P \equiv \sqrt{\nu x.E}$ (\Leftarrow) Assume there is a P'' such that $P \xrightarrow{d} P''$ and $P'' \xrightarrow{d'} P'$. Then $P'' \equiv P$ and $P'' \equiv P$. So, by (TILE) if $P \equiv \sqrt{\nu x.E}$, $P \xrightarrow{d+d'} P'$. (\Rightarrow) Dually, whenever $P \xrightarrow{d+d'} P'$, it is possible to find a P'', namely $P'' \equiv P$, such that $P \xrightarrow{d} P''$ and $P'' \xrightarrow{d'} P'$.

Case 2. $P \equiv \Delta E \rightarrow P_1$. ($\Leftarrow$) Assume there is a P'' such that $P \xrightarrow{d} P''$ and $P'' \xrightarrow{d'} P'$. Then $P'' \equiv \Delta((E-d)-d') \rightarrow P_1$ where $0 \leq d \leq eval(E)$. Therefore, $P' \equiv \Delta((E-d)-d') \rightarrow P_1$ where $0 \leq d \leq eval(E-d)$. But this means that $P' \equiv \Delta((E-(d+d')) \rightarrow P_1$ and $0 \leq d + d' \leq eval(E)$, so by (TDELAY), $P \xrightarrow{d+d'} P'$. (\Rightarrow) Suppose $P \xrightarrow{d+d'} P'$. Then, it must be the case that $P' \equiv \Delta((E-d-d')) \rightarrow P_1$ with $0 \leq d + d' \leq eval(E)$. Define $P'' \equiv \Delta((E-d) \rightarrow P_1$. Then $P \xrightarrow{d} P''$ and $P'' \xrightarrow{d'} P'$.

Case 3. $P \equiv \nu x.P_1$. Assume the statement is true for the sub-term P_1. (\Leftarrow) Suppose there is a P'' such that $P \xrightarrow{d} P''$ and $P'' \xrightarrow{d'} P'$. Then $P'' \equiv \nu x.P_1''$ for some P_1'' such that $P_1 \xrightarrow{d} P_1''$. Hence it must be that $P' \equiv \nu x.P_1'$ for some P_1' such that $P_1'' \xrightarrow{d'} P_1'$. This implies that $P_1 \xrightarrow{d+d'} P_1'$. By the induction hypothesis, and this in turn implies that $\nu x.P_1 \xrightarrow{d+d'} \nu x.P_1'$ by (TNEW), in other words, $P \xrightarrow{d+d'} P'$. (\Rightarrow) Suppose $P \xrightarrow{d+d'} P'$. Then, $P'' \equiv \nu x.P_1''$ for some P_1'' with $P_1 \xrightarrow{d+d'} P_1'$. So, by induction hypothesis, there is a P_1'' such that $P_1 \xrightarrow{d} P_1''$ and $P_1'' \xrightarrow{d'} P_1'$. Define $P'' \equiv \nu x.P_1''$. It follows that $P \xrightarrow{d} P''$ and $P'' \xrightarrow{d'} P'$ by (TNEW).

Case 4. $P \equiv P_1 \parallel P_2$. Assume the statement is true for the sub-terms P_1 and P_2. (\Leftarrow) Suppose there is a P'' such that $P \xrightarrow{d} P''$ and $P'' \xrightarrow{d'} P'$. Then $P'' \equiv P_1'' \parallel P_2''$ for some P_1'' and P_2'' where $P_1 \xrightarrow{d} P_1''$ and $P_2 \xrightarrow{d'} P_2''$. Hence, it is also the case that $P' \equiv P_1' \parallel P_2'$ for some P_1' and P_2' where $P_1'' \xrightarrow{d+d'} P_1'$ and $P_2'' \xrightarrow{d+d'} P_2'$. We conclude, by induction hypothesis, that $P_1 \xrightarrow{d+d'} P_1'$ and $P_2 \xrightarrow{d+d'} P_2'$. So, by (TPAR), we have that $P_1 \parallel P_2 \xrightarrow{d+d'} P_1' \parallel P_2'$, this is, $P \xrightarrow{d+d'} P'$.

36
(⇒) Suppose \(P \overset{d + d'}{\Rightarrow} P' \). Then, \(P' \equiv P'_1 \parallel P'_2 \) for some \(P'_1 \) and \(P'_2 \) where \(P'_1 \overset{d}{\Rightarrow} P'_1' \) and \(P'_2 \overset{d + d'}{\Rightarrow} P'_2' \). So, by induction hypothesis, there are \(P''_1 \) and \(P''_2 \) such that \(P'_1 \overset{d}{\Rightarrow} P''_1 \overset{d}{\Rightarrow} P'_1' \) and \(P'_2 \overset{d}{\Rightarrow} P''_2 \overset{d}{\Rightarrow} P'_2' \). Therefore, by using (TPAR), we obtain that \(P_1 \parallel P_2 \overset{d}{\Rightarrow} P''_1 \parallel P''_2 \parallel P'_1 \parallel P'_2' \). This is, \(P \overset{d}{\Rightarrow} P'' \) and \(P'' \overset{d}{\Rightarrow} P' \), where \(P'' \equiv P''_1 \parallel P''_2 \).

Case 5. \(P \equiv \Sigma_{i \in I} \beta_i \rightarrow P_i \), where for each \(i \in I \), \(\beta_i \) is of the form \(x_i ? F_i @ y_i \).

(⇐) Suppose there is a \(P'' \) such that \(P \overset{d}{\Rightarrow} P'' \) and \(P'' \overset{d'}{\Rightarrow} P' \). Then \(P'' \equiv \Sigma_{i \in I} \beta_i \rightarrow P''_i \) where \(P''_i \equiv P_i \{ y_i \mapsto y_i \} \). Hence, \(P' \equiv \Sigma_{i \in I} \beta_i \rightarrow P'_i \) where \(P'_i \equiv P'_i \{ y_i \mapsto (y_i + d') \} \). So we have that \(P_i \equiv P'_i \{ y_i \mapsto y_i \} \{ y_i \mapsto y_i \} \equiv P_i \{ y_i \mapsto (y_i + d') \} \). By composition of substitutions. Hence, \(P \overset{d + d'}{\Rightarrow} P' \) by (TCHOICE).

(⇐) Suppose \(P \overset{d + d'}{\Rightarrow} P' \). So \(P' \equiv \Sigma_{i \in I} \beta_i \rightarrow P'_i \) with \(P'_i \equiv P_i \{ y_i \mapsto (y_i + d') \} \). Define \(P'' \equiv \Sigma_{i \in I} \beta_i \rightarrow P''_i \) with \(P''_i \equiv P_i \{ y_i \mapsto y_i \} \). Hence, \(P'' \equiv P''_i \{ y_i \mapsto y_i \} \equiv P'_i \{ y_i \mapsto y_i \} \equiv P_i \{ y_i \mapsto y_i \} \). By (TCHOICE), \(P'' \overset{d}{\Rightarrow} P' \) and by definition of \(P'' \) and (TCHOICE), we also have that \(P \overset{d}{\Rightarrow} P'' \), as required.

\[\square \]

B Timed-equivalence

Proposition 3. For any TLTS \(M = (S, \mathcal{L}, \rightarrow, \leadsto) \),

1. For any \(t \in \mathbb{R}_+^\ast \), \(\Rightarrow_t \) is an equivalence relation.

2. \(\Rightarrow_t \) is an open timed-bisimulation.

3. \(\Rightarrow_t \) is the largest open timed-bisimulation.

Proof. We only show the second, for illustration. Assume that \(P \Rightarrow_t Q \), i.e. that \((P, t, Q) \in \Rightarrow_t \). By definition of \(\Rightarrow_t \), there must be an open timed-bisimulation \(R \) such that \((P, t, Q) \in R \). We now check that \(\Rightarrow_t \) satisfies the four conditions of open timed-bisimulation.

1. Suppose that \(P \sigma \overset{\alpha}{\rightarrow} P' \) for some \(\sigma \), \(\alpha \) and \(P' \). Then, \(Q \sigma \overset{\alpha}{\rightarrow} Q' \) and \((P', t, Q') \in R \), since \(R \) is an open timed-bisimulation. But since there is an open timed-bisimulation that contains \((P', t, Q') \), then \(P' \Rightarrow_t Q' \).

2. This is analogous to the previous item.

3. Suppose that \(d < t \) and \(P \sigma \overset{d}{\rightarrow} P' \). Then \(Q \sigma \overset{d}{\rightarrow} Q' \) and \((P', t - d, Q') \in R \), since \(R \) is an open timed-bisimulation. But since there is an open timed-bisimulation that contains \((P', t - d, Q') \), then \(P' \Rightarrow_{t - d} Q' \).

4. This is analogous to the previous item.
Proposition 4. For any TLTS $M = (S, \mathcal{L}, \rightarrow, \leadsto)$, any $t, u \in \mathbb{R}_0^+$, and any $P, P', P'' \in S$:

1. If $P \vdash_t P'$ then for any $u \leq t$, $P \vdash_u P'$
2. If $P \vdash_t P'$ and $P' \vdash_u P''$ then $P \vdash_{\min\{t, u\}} P''$

Proof. We show 1 first. Pick any $t \in \mathbb{R}_0^+$. Consider the following relation:

$$R \overset{\text{def}}{=} \bigcup_{0 \leq z \leq t} R_z$$

where

$$R_z \overset{\text{def}}{=} \{(P, u, Q) \in \mathcal{P} \times \mathbb{R}_0^+ \times \mathcal{P} \mid u \leq z \text{ and } P \vdash z Q\}$$

We claim that R is an open timed-bisimulation. To see this, take any $(P, u, Q) \in R$. Then there must be a $z \in \mathbb{R}_0^+$ such that $z \leq t$ and $(P, u, Q) \in R_z$. Hence $u \leq z$ and $P \vdash z Q$. Now we check the four conditions of open timed-bisimulation:

1. Suppose that $P \vdash_t P'$ for some σ, α and P'. Since $P \vdash z Q$ we conclude that $Q \vdash \sigma Q'$ for some Q' and $P' \vdash z Q'$. Since $u \leq z$ and $P' \vdash z Q'$ hold, we conclude that $(P', u, Q') \in R_z$ and therefore $(P', u, Q') \in R$.

2. Analogous to the previous item.

3. Suppose that $d < u$ and $P \vdash_{d} P'$ for some σ and P'. Since $u \leq z$ we have that $d < z$, and since $P \vdash z Q$ we conclude that $Q \vdash_{d} Q'$ for some Q' and $P' \vdash_{d} Q'$. Since $u \leq z$, we have that $u - d \leq z - d$, and since $P' \vdash_{d} Q'$, we obtain that $(P', u - d, Q') \in R_{z-d}$, but $d < u \leq z$ so $0 < z - d$ and $z \leq t$ which means that $z - d \leq t$, so $0 \leq z - d \leq t$ which implies that $(P', u - d, Q') \in R$.

4. Analogous to the previous item.

So we conclude that R is indeed an open timed-bisimulation. Suppose that $P \vdash_t Q$ and $u \leq t$. Then $(P, u, Q) \in R_t$, which means that $(P, u, Q) \in R$. In other words, $P \vdash_u Q$.

Now we show 2. Assume that $P \vdash_t P'$ and $P' \vdash_{u} P''$. Let $m = \min t, u$ so $m \leq t$ and $m \leq u$. Hence, by what we just proves (1), we have that $P \vdash_m P'$ and $P' \vdash_m P''$, which by transitivity implies $P \vdash_m P''$. \(\square\)

Lemma 1. For any substitution σ, and any $t \in \mathbb{R}_0^+$, if $P \vdash_t Q$ then $P \sigma \vdash_t Q \sigma$.

Proof. Let $R = \bigcup_{t \in \mathbb{R}_0^+} R_t$ with $R_t \overset{\text{def}}{=} \{(P \sigma, t, Q \sigma) \mid \sigma \text{ is any substitution and } P \vdash_t Q\}$. We claim that R is an open timed-bisimulation. First, note that if $P \vdash_t Q$ then $(P, t, Q) \in R_t$ (and thus $(P, t, Q) \in R$), since the identity function is a substitution. Assume that $(P, Q) \in R$. Then $(P, Q) \in R_t$ for some t and $P = P_0 \sigma_0$ and $Q = Q_0 \sigma_0$ for some substitution σ_0 and some P_0, Q_0 with $P_0 \vdash_t Q_0$. Take any substitution σ. Then
1. Suppose $P_{\sigma} \overset{\alpha}{\rightarrow} P'$. This is, $P_{0}\sigma_{0}\sigma \overset{\alpha}{\rightarrow} P'$. But $P_{0} \sqsubseteq_{t} Q_{0}$, so $Q_{0}\sigma_{0}\sigma \overset{\alpha}{\rightarrow} Q'$ with $P' \sqsubseteq_{t} Q'$, which implies that $(P', t, Q') \in R_{t}$ and thus $Q_{\sigma} \overset{\alpha}{\rightarrow} Q'$ and $(P', t, Q') \in R$ as required.

2. This is the dual of the previous case.

3. Suppose $d < t$ and $P_{\sigma} \overset{d}{\rightarrow} P'$. This is, $P_{0}\sigma_{0}\sigma \overset{d}{\rightarrow} P'$. Since $P_{0} \sqsubseteq_{t} Q_{0}$, we have that $Q_{0}\sigma_{0}\sigma \overset{d}{\rightarrow} Q'$ and $P' \sqsubseteq_{t-d} Q'$. But this implies that $(P', t - d, Q') \in R_{t-d}$. Therefore $Q_{\sigma} \overset{d}{\rightarrow} Q'$ and $(P', t - d, Q') \in R$.

4. This is the dual of the previous case.

We conclude that R is an open timed-bisimulation. So, for any σ, if $P \sqsubseteq_{t} Q$ then $(P_{\sigma}, t, Q_{\sigma}) \in R_{t}$, and therefore $(P_{\sigma}, t, Q_{\sigma}) \in R$, i.e. $P_{\sigma} \sqsubseteq_{t} Q_{\sigma}$. □

Lemma 2. For any $P, P', Q_{1}, ..., Q_{n} \in P$, and any $t \in \mathbb{R}_{0}^{+}$, if $P \sqsubseteq_{t} P'$ then:

1. $\Delta E \rightarrow P \sqsubseteq_{t+\epsilon_{1}} \Delta E \rightarrow P'$ where $e = \text{eval}(E)$
2. $\nu x. P \sqsubseteq_{t} \nu x. P'$
3. $P \parallel Q \sqsubseteq_{t} P \parallel Q$
4. $x?F@y \rightarrow P + \sum_{i=1}^{n} \beta_{i} \rightarrow Q_{i} \sqsubseteq_{t} x?F@y \rightarrow P' + \sum_{i=1}^{n} \beta_{i} \rightarrow Q_{i}$ where each β_{i} is of the form $x_{i}?F_{i}@y_{i}$.

Proof.

1. We first show that $\Delta E \rightarrow P \sqsubseteq_{t+\epsilon_{1}} \Delta E \rightarrow P'$ where $e = \text{eval}(E)$ given that $P \sqsubseteq_{t} P'$. Let $R = \bigcup_{u \in \mathbb{R}_{0}^{+}} R_{u}$ with $R_{u} \overset{def}{=} R_{u}^{0} \cup \sqsubseteq_{u}$ where

$$R_{u}^{0} \overset{def}{=} \{(\Delta E \rightarrow P_{1}, u, \Delta E \rightarrow P_{2}) \mid P_{1} \sqsubseteq_{u-e} P_{2} \land e = \text{eval}(E) \leq u\}$$

We claim that R is an open timed-bisimulation. Suppose that $(Q_{1}, u, Q_{2}) \in R$. Then $(Q_{1}, u, Q_{2}) \in R_{u}$. Hence either $(Q_{1}, u, Q_{2}) \in R_{u}$ or $Q_{1} \sqsubseteq_{u} Q_{2}$.

Case 1. $(Q_{1}, u, Q_{2}) \in R_{u}$. Then $Q_{i} \overset{def}{=} \Delta E \rightarrow P_{i}$ for $i \in \{1, 2\}$ and $P_{1} \sqsubseteq_{u-e} P_{2}$ with $e = \text{eval}(E) \leq u$. Now we check the four conditions for open timed-bisimulation:

(a) Suppose $Q_{1}\sigma \overset{\alpha}{\rightarrow} Q_{1}'$. This transition could be derived only by the (DELAY) rule. Hence, $\alpha = \tau$, $e = \text{eval}(E\sigma) = 0$ and $Q_{1}' \equiv P_{1}\sigma$. Since $e = 0$, this transition can be matched, using (DELAY), by $Q_{2}\sigma \overset{\alpha}{\rightarrow} Q_{2}'$ where $Q_{2}' \equiv P_{2}\sigma$. But $P_{1} \sqsubseteq_{u-e} P_{2}$ and \sqsubseteq_{t} is closed under substitution (Lemma 1), therefore, $Q_{1}' \sqsubseteq_{u-e} Q_{2}'$, but $e = 0$, so $Q_{1}' \sqsubseteq_{u} Q_{2}'$, which implies that $(Q_{1}', u, Q_{2}') \in R$.

(b) This is the dual of the previous item.
(c) Suppose $d < u$ and $Q_1 \sigma \overset{d}{\rightarrow} Q'_1$. This evolution could be derived only by the (DELAY) rule. Hence $Q'_1 \equiv \Delta(E - d)\sigma \rightarrow P_1 \sigma$. Let $e' = \text{eval}((E - d)\sigma) = e - d$ where $e = \text{eval}(E)$. This can be matched by $Q_2 \sigma \overset{d}{\rightarrow} Q'_2$ where $Q'_2 \equiv \Delta(E - d)\sigma \rightarrow P_2 \sigma$. We know that $P_1 \equiv \mu_{u - e} P_2$, and since \equiv_t is closed under substitution (Lemma 1), we have that $P_1 \sigma \equiv \mu_{u - e} P_2 \sigma$. But note that $e = e' + d$, so $u - e = u - e' - d = (u - d) - e'$. Furthermore, since $e \leq u$ we have that $e' \leq u - d$. Also note that, by definition,

$$R'_{u - d} = \{ (\Delta E' \rightarrow P'_1, u - d, \Delta E' \rightarrow P'_2) \}$$

$$P'_1 \equiv_{(u - d) - e'} P'_2 \land e' = \text{eval}(E') \leq u - d$$

Hence, by taking $P'_1 \equiv P_1 \sigma$, $P'_2 \equiv P_2 \sigma$ and $E' = (E - d)\sigma$ we have that $(Q'_1, u - d, Q'_2) \in R'_{u - d}$ and therefore $(Q'_1, u - d, Q'_2) \in R_{u - d}$, and $(Q'_1, u - d, Q'_2) \in R$ as required.

(d) This is the dual of the previous item.

Case 2. $Q_1 \equiv u Q_2$. We check the four conditions for open time-bisimulation:

(a) Suppose $Q_1 \sigma \overset{\eta}{\rightarrow} Q'_1$. Then $Q_2 \sigma \overset{\eta}{\rightarrow} Q'_2$ and $Q'_1 \equiv u Q'_2$, hence $(Q'_1, u, Q'_2) \in R$.

(b) This is the dual of the previous item.

(c) Suppose $d < u$ and $Q_1 \sigma \overset{d}{\rightarrow} Q'_1$. Then $Q_2 \sigma \overset{d}{\rightarrow} Q'_2$ and $Q'_1 \equiv u - d Q'_2$, hence $(Q'_1, u - d, Q'_2) \in R$.

(d) This is the dual of the previous item.

We conclude that R is indeed an open timed-bisimulation. Now, suppose that $P_1 \equiv_t P_2$. Then we have that $(\Delta E \rightarrow P_1, t + e, \Delta E \rightarrow P_2) \in R_{t + e}$, where $e = \text{eval}(E)$, and so $(\Delta E \rightarrow P_1, t + e, \Delta E \rightarrow P_2) \in R$, which means that $\Delta E \rightarrow P_1 \equiv_{t + e} \Delta E \rightarrow P_2$, as required.

2. Now we show that $\nu x. P \equiv_t \nu x. P'$ given that $P \equiv_t P'$. Let $R = \bigcup_{u \in \mathbb{R}_0} R_u$ where

$$R_u \overset{\text{def}}{=} \{ (\nu x. P_1, u, \nu x. P_2) \mid P_1 \equiv_u P_2 \}$$

We claim that R is an open time-bisimulation. Let $(\nu x. P_1, u, \nu x. P_2) \in R$. So $(\nu x. P_1, u, \nu x. P_2) \in R_u$ and therefore $P_1 \equiv_u P_2$. We proceed to check the four conditions of open time-bisimulation:

(a) Suppose $(\nu x. P_1) \sigma \overset{\alpha}{\rightarrow} X$. For simplicity assume that x does not occur in σ either as a source or as a target.\(^{14}\) This way we can assume that $(\nu x. P_1) \sigma = \nu x. P_1$ and $(\nu x. P_2) \sigma = \nu x. P_2 \sigma$. The transition must have been derived by (NEW):

$$(\nu x. P_1) \sigma \overset{\alpha}{\rightarrow} P'_1 \quad x \notin \text{n}((\alpha))$$

$$(\nu x. P_1) \sigma \overset{\alpha}{\rightarrow} X \equiv \nu x. P'_1$$

\(^{14}\)If x occurs in σ we can simply rename it with a fresh name x' to $\nu x'. P_1\{x'/x\}$ and $\nu x'. P_2\{x'/x\}$.\)
Hence $x \notin n(\alpha)$ and $P_1 \sigma \xrightarrow{\alpha} P_1'$. But $P_1 \equiv u P_2$ so the transition $P_1 \sigma \xrightarrow{\alpha} P_1'$ can be matched by $P_2 \sigma \xrightarrow{\alpha} P_2'$ with $P_1' \equiv u P_2'$. So by (NEW), $\nu x. P_2 \sigma \xrightarrow{\alpha} Y \equiv \nu x. P_2'$. Since $P_1' \equiv u P_2'$, we have that $(\nu x. P_1', u, \nu x. P_2') \in R_u$, i.e., $(X, u, Y) \in R_u$ and therefore $(X, u, Y) \in R$.

(b) Suppose $(\nu x. P_2) \sigma \xrightarrow{\alpha} Y$. This is the dual of the previous item.

(c) Suppose $d < u$ and $(\nu x. P_1) \sigma \xrightarrow{d} X$. For simplicity assume that x does not occur in σ either as a source or as a target. If it is we can simply rename it with a fresh name. This way we can assume that $(\nu x. P_1) \sigma = \nu x. P_1$ and $(\nu x. P_2) \sigma = \nu x. P_2$. This transition could have been derived only by (TNEW):

$$
\begin{array}{c}
P_1 \sigma \xrightarrow{d} P_1' \\
\nu x. P_1 \sigma \xrightarrow{d} X \equiv \nu x. P_1'
\end{array}
$$

So it must be that $P_1 \sigma \xrightarrow{d} P_1'$. But $P_1 \equiv u P_2$, and so $P_1 \sigma \xrightarrow{d} P_1'$ can be matched by $P_2 \sigma \xrightarrow{d} P_2'$ and $P_1' \equiv u_d P_2'$. Therefore by (TNEW), $\nu x. P_2 \sigma \xrightarrow{d} Y \equiv \nu x. P_2'$. Since $P_1' \equiv u_d P_2'$, we have that $(\nu x. P_1', u - d, \nu x. P_2') \in R_{u-d}$, i.e., $(X, u - d, Y) \in R_{u-d}$ and therefore $(X, u - d, Y) \in R$.

(d) Suppose $d < u$ and $(\nu x. P_2) \sigma \xrightarrow{d} Y$. This is the dual of the previous item.

We conclude that R is an open time-bisimulation. Suppose $P_1 \equiv_t P_2$. Therefore $(\nu x. P_1, t, \nu x. P_2) \in R_t$ and so $(\nu x. P_1, t, \nu x. P_2) \in R$ which means that $\nu x. P_1 \equiv_t \nu x. P_2$.

3. Now we prove that $P \parallel Q \equiv_t P' \parallel Q$ given that $P \equiv_t P'$. Let $R \overset{def}{=} \bigcup_{t \in R_t} R_t$ where

$$
R_t \overset{def}{=} \{(P_1 \parallel Q, t, P_2 \parallel Q) \mid P_1 \equiv_t P_2, Q \text{ is any process}\}
$$

We claim that R is an open time-bisimulation. From this the result follows directly. Suppose $(P_1 \parallel Q, t, P_2 \parallel Q) \in R$. So $(P_1 \parallel Q, t, P_2 \parallel Q) \in R_t$. Hence $P_1 \equiv_t P_2$ by definition of R_t. Now we proceed to check each of the four conditions of time-bisimulation:

(a) Suppose that $(P_1 \parallel Q) \sigma \xrightarrow{\alpha} X$. We need to show that there is a Y such that $(P_2 \parallel Q) \sigma \xrightarrow{\alpha} Y$ with $(X, t, Y) \in R$. Note that $(P_1 \parallel Q) \sigma \equiv P_1 \sigma \parallel Q \sigma$ by definition of substitution. We proceed by considering the possible cases of how this transition was derived:
Case 1. The transition was derived by rule \((\text{PAR})\):

\[
P_1\sigma \xrightarrow{\alpha} P' \quad \text{bn}(\alpha) \cap \text{fn}(Q\sigma) = \emptyset
\]

\[
P_1\sigma \parallel Q\sigma \xrightarrow{\alpha} X \equiv P' \parallel Q\sigma
\]

so it must be the case that \(P_1\sigma \xrightarrow{\alpha} P'\) and \(\text{bn}(\alpha) \cap \text{fn}(Q\sigma) = \emptyset\).

But we know that \(P_1 \equiv t P_2\), so \(P_2\sigma \xrightarrow{\alpha} P'_2\) and \(P'_1 \equiv t P'_2\). So by applying \((\text{PAR})\), we have that \(P_2\sigma \parallel Q\sigma \xrightarrow{\alpha} Y \equiv P'_2 \parallel Q\sigma\), and since \(P'_1 \equiv t P'_2\), we have that \((P'_1 \parallel Q\sigma, t, P'_2 \parallel Q\sigma) \in R_t\), i.e. \((X, t, Y) \in R_t\) and so \((X, t, Y) \in R\).

Case 2. The transition was derived by rule \((\text{COMM})\): In this case we have two possibilities: either the input \(x?v\) was performed by \(P_1\sigma\) or it was performed by \(Q\sigma\). Both cases are analogous, so we’ll show only the first:

\[
P_1\sigma \xrightarrow{x?v} P'_1 \quad Q\sigma \xrightarrow{x?v} Q'
\]

\[
P_1\sigma \parallel Q\sigma \xrightarrow{?} X \equiv P'_1 \parallel Q'
\]

so it must be the case that \(P_1\sigma \xrightarrow{x?v} P'_1\) and \(Q\sigma \xrightarrow{x?v} Q'\). But we know that \(P_1 \equiv t P_2\), so \(P_2\sigma \xrightarrow{x?v} P'_2\) and \(P'_1 \equiv t P'_2\). So by applying \((\text{PAR})\), we have that \(P_2\sigma \parallel Q\sigma \xrightarrow{?} Y \equiv P'_2 \parallel Q\sigma\), and since \(P'_1 \equiv t P'_2\), we have that \((P'_1 \parallel Q, t, P'_2 \parallel Q) \in R_t\), i.e. \((X, t, Y) \in R_t\) and so \((X, t, Y) \in R\).

(b) Suppose that \((P_2 \parallel Q)\sigma \xrightarrow{\alpha} Y\). This is analogous to the previous case.

(c) Suppose that \(d < t\) and \((P_1 \parallel Q)\sigma \equiv P_1\sigma \parallel Q\sigma \xrightarrow{d} X\). We need to show that there is a \(Y\) such that \((P_2 \parallel Q)\sigma \equiv P_2\sigma \parallel Q\sigma \xrightarrow{d} Y\) and \((X, t - d, Y) \in R\). As before, we proceed by considering the possible cases of how this evolution was derived. But this could have been derived only by \((\text{TPAR})\):

\[
P_1\sigma \xrightarrow{d} P'_1 \quad Q\sigma \xrightarrow{d} Q'
\]

\[
P_1\sigma \parallel Q\sigma \xrightarrow{d} X \equiv P'_1 \parallel Q'
\]

so it must be that \(P_1\sigma \xrightarrow{d} P'_1\) and \(Q\sigma \xrightarrow{d} Q'\). But since \(P_1 \equiv t P_2, \)

\(P_2\sigma \xrightarrow{d} P'_2\) and \(P'_1 \equiv t-d P'_2\). By \((\text{TPAR})\), we obtain \(P_2\sigma \parallel Q\sigma \xrightarrow{d} Y \equiv P'_2 \parallel Q'\), and since \(P'_1 \equiv t-d P'_2\), we conclude that \((P'_1 \parallel Q', t - d, P'_2 \parallel Q') \in R_{t-d}\), i.e. \((X, t - d, Y) \in R_{t-d}\) and so \((X, t - d, Y) \in R\).

(d) Suppose that \(d < t\) and \((P_2 \parallel Q)\sigma \equiv P_2\sigma \parallel Q\sigma \xrightarrow{d} Y\). This is analogous to the previous case.
Now that we have established that \(R \) is an open timed-bisimulation, the result follows, because if we assume that \(P \sim R P' \), then there is an open timed-bisimulation, \(R' \), such that \((P \parallel Q, t, P' \parallel Q) \in R' \), for any \(Q \), i.e., \(P \parallel Q \sim_R P' \parallel Q \).

4. Finally we prove that given \(P \sim R P' \), \(\beta \rightarrow P + \sum_{i=1}^n \beta_i \rightarrow Q \), \(\beta \rightarrow P' + \sum_{i=1}^n \beta_i \rightarrow Q' \) where \(\beta \) is of the form \(x?F \| y \) and each \(\beta_i \) is of the form \(x_i?F_i \| y_i \). Let \(R = \bigcup_{u \in R_u^+} R_u \) with \(R_u \overset{d\text{ef}}{=} R_u' \cup \sim_u \) where

\[
R_u' \overset{d\text{ef}}{=} \{ (\beta \rightarrow P + \sum_{i=1}^n \beta_i \rightarrow Q, u, \beta \rightarrow P' + \sum_{i=1}^n \beta_i \rightarrow Q') \mid P \sim_u P' \}
\]

We first claim that \(R \) is an open time-bisimulation. Suppose that \((P_1, u, P_2) \in R \). Then \((P_1, u, P_2) \in R_u \). Hence either \((P_1, u, P_2) \in R_u' \) or \(P_1 \sim_u P_2 \).

Case 1. \((P_1, u, P_2) \in R_u' \). Then \(P_1 \equiv \beta \rightarrow P + \sum_{i=1}^n \beta_i \rightarrow Q, P_2 \equiv \beta \rightarrow P' + \sum_{i=1}^n \beta_i \rightarrow Q', P \equiv_u P' \). Note that \(P_1 \sigma \equiv \beta \sigma \rightarrow P \sigma + \sum_{i=1}^n \beta \sigma_i \rightarrow Q_1 \sigma \) and \(P_2 \sigma \equiv \beta \sigma \rightarrow P' \sigma + \sum_{i=1}^n \beta \sigma_i \rightarrow Q_2 \sigma \). We now check the four conditions of open timed-bisimulation:\(^{15}\)

(a) Suppose \(P_1 \sigma \overset{a_1}{\rightarrow} P'_1 \). This transition could be derived only by the \(\text{(choice)} \) rule. There are two possibilities, either the transition was taken by the \(\beta \sigma \) branch, or by any of the \(\beta \sigma_i \) branches.

Subcase 1: Suppose that the \(\beta \sigma \) transition was taken. Then, \(\alpha = \sigma(x?v) \) for some \(v \) where \(\sigma' = \text{match}(F, v, \emptyset) \neq \emptyset \), and \(P'_1 = P \sigma \sigma' \{0/y\} \). This transition can be matched by \(P_2 \sigma \), since it has the same guard \(\beta \sigma \), so \(P_2 \sigma \overset{a_1}{\rightarrow} P'_2 \) where \(P'_2 = P' \sigma \sigma' \{0/y\} \).

But we know that \(P \sim_u P' \), and since \(\sim_u \) is closed under substitution (Lemma 1) we have that \(P'_1 \sim_u P'_2 \) which entails that \((P_1, u, P_2) \in R_u \) and therefore \((P_1, u, P_2) \in R \).

Subcase 2: Suppose that some \(\beta_i \sigma \) transition was enabled instead. Then, \(\alpha = \sigma(x_i?v) \) for some \(v \) where \(\sigma' = \text{match}(F_i, v, \emptyset) \neq \emptyset \), and \(P'_1 = Q \sigma \sigma' \{0/y\} \). This transition can be matched by \(P_2 \sigma \), since it has the same guard \(\beta \sigma \), so \(P_2 \sigma \overset{a_1}{\rightarrow} P'_2 \) where \(P'_2 = Q \sigma \sigma' \{0/y\} \). Hence \(P'_1 = P'_2 \) which implies that \(P'_1 \sim_u P'_2 \) and so \((P_1, u, P_2) \in R_u \) and therefore \((P_1, u, P_2) \in R \).

(b) Suppose \(P_2 \sigma \overset{a_2}{\rightarrow} P'_2 \). This case is the exact symmetric of the previous one.

(c) Suppose \(d < u \) and \(P_1 \sigma \overset{d}{\rightarrow} P'_1 \). This could be derived only by \(\text{(choice)} \). This implies that \(P'_1 \equiv \beta \sigma \rightarrow P \sigma \{y+d/y\} + \sum_{i=1}^n \beta \sigma_i \rightarrow Q \sigma \{y+d/y\} \). This can be matched by \(P_2 \sigma \overset{d}{\rightarrow} P'_2 \) where \(P'_2 \equiv \beta \sigma \rightarrow P' \sigma \{y+d/y\} + \sum_{i=1}^n \beta \sigma_i \rightarrow Q \sigma \{y+d/y\} \). Since \(P \sim_u P' \), by closure under substitution (Lemma 1) we have that \(P \sigma \{y+d/y\} \sim_u P' \sigma \{y+d/y\} \). Furthermore, we have that, \(u - d \leq u \)

\(^{15}\)For simplicity we assume that bound variables in \(P_1 \) and \(P_2 \) have been renamed if necessary.
because $0 \leq d < u$, and therefore $P \sigma \{ y+\ell_\gamma / y \} \leftrightarrow_{a-d} P' \sigma \{ y+\ell_\gamma / y \}$ by Proposition 4. Hence $(P'_1, u-d, P''_2) \in R_u$ and so $(P'_1, u-d, P''_2) \in R$.

d) Suppose $d < u$ and $P_2 \sigma \xrightarrow{d} P'_2$. As in the previous case.

Case 2. $P_1 \leftrightarrow_u P_2$. We check the four conditions for open time-bisimulation:

(a) Suppose $P_1 \sigma \xrightarrow{\alpha} P'_1$. Then $P_2 \sigma \xrightarrow{\alpha} P''_2$ and $P'_1 \leftrightarrow_u P''_2$, hence $(P'_1, u, P''_2) \in R$.

(b) This is the dual of the previous item.

(c) Suppose $d < u$ and $P_1 \sigma \xrightarrow{d} P'_1$. Then $P_2 \sigma \xrightarrow{d} P''_2$ and $P'_1 \leftrightarrow_{u-d} P''_2$, hence $(P'_1, u-d, P''_2) \in R$.

d) This is the dual of the previous item.

Now that we have established that R is an open timed-bisimulation, the result follows, because if we assume that $P \leftrightarrow_t P'$, then there is an open timed-bisimulation, R, such that $(\beta \to Q_i \cdot \sum_{i \in I} \beta_i \to Q_i) \in R$, i.e., $P \to + \sum_{i \in I} \beta_i \to Q_i \to Q_i = \sum_{i \in I} \beta_i \to Q_i$.

\[\square \]

Theorem 1. \leftrightarrow_t is a timed-congruence up to t and \leftrightarrow is a timed-congruence.

Proof. This follows from Lemma 2 together with Proposition 4: For any given $t \in \mathbb{R}^+_0$, given $P \leftrightarrow P'$ we obtain $\Delta E \to P \leftrightarrow_{t+e} \Delta E \to P'$ where $e = \text{eval}(E)$ by Lemma 2, which implies $\Delta E \to P \leftrightarrow E \to P'$ by Proposition 4, since $t \leq t + e$, and so \leftrightarrow_t is preserved by delays. The rest of the items in Lemma 2 show that it is also preserved by all other operators, hence, for any $t \in \mathbb{R}^+_0$, \leftrightarrow_t is a t-congruence, and so \leftrightarrow is a timed-congruence. Furthermore, \leftrightarrow_t is a timed-congruence up to t because each \leftrightarrow_u is a congruence for each $0 \leq u \leq t$.

\[\square \]

Corollary 1. For any families of terms $\{P_i \in \mathcal{P} \}_{i \in I}$ and $\{Q_i \in \mathcal{P} \}_{i \in I}$, if for each $i \in I$, $P_i \leftrightarrow_{t_i} Q_i$, then

1. $\prod_{i \in I} P_i \leftrightarrow_{\min \{ \min \{ t_i | i \in I \} \}} \prod_{i \in I} Q_i$.

2. $\sum_{i \in I} x_i ? F_i @ y_i \to P_i \leftrightarrow_{\min \{ t_i | i \in I \}} \sum_{i \in I} x_i ? F_i @ y_i \to Q_i$.

Proof. This is a consequence of Lemma 2.

\[\square \]

1. By induction on the size of I. Let $I = \{1, \ldots, n-1\}$, $P = \prod_{i \in I} P_i$, $Q = \prod_{i \in I} Q_i$ and $M = \min \{ t_i | i \in I \}$. Our goal is to show that $P' \equiv_M Q'$ where $P' = P \parallel P_n$, $Q' = Q \parallel Q_n$ and $M' = \min \{ t_i | i \in I' \}$ with $I' = I \cup \{ n \}$ assuming the induction hypothesis that $P \equiv_M Q$. From $P \equiv_M Q$ we get by Lemma 2 that $P \parallel P_n \equiv_M Q \parallel Q_n$. Also, by Lemma 2 we have that $Q \parallel P_n \equiv_{t_n} Q \parallel Q_n$ since $P_n \equiv_{t_n} Q_n$ by assumption. Hence, by Proposition 4 we have that $P \parallel P_n \equiv_{\min \{ M, t_n \}} Q \parallel Q_n$. But $\min\{M, t_n\} = M'$ and so $P' \equiv_{M'} Q'$.

44
2. Also by induction. The argument mimicks the previous one, replacing \parallel with $\parallel \alpha$.

C Legitimacy

Proposition 5. For any $P, P' \in \mathcal{P}, d \in \mathbb{R}_0^+, \alpha \in \mathcal{A}$, and any substitution σ,

1. if $P \overset{\alpha}{\rightarrow} P'$ then $P\sigma \overset{\sigma(\alpha)}{\rightarrow} P'\sigma$
2. if $P \overset{d}{\rightarrow} P'$ then $P\sigma \overset{d}{\rightarrow} P'\sigma$
3. if $P\sigma \overset{\alpha}{\rightarrow} P'$ then there is a α' and a Q such that $P \overset{\alpha'}{\rightarrow} Q$ with $\alpha = \sigma(\alpha')$ and $P' = Q\sigma$.
4. if $P\sigma \overset{d}{\rightarrow} P'$ then there is a Q such that $P \overset{d}{\rightarrow} Q$ and $P' = Q\sigma$.

Proof. We'll show only the first two items. By induction on the derivation of $P \overset{\alpha}{\rightarrow} P'$ and $P \overset{d}{\rightarrow} P'$ respectively. We proceed by case analysis on the structure of P.

Case 1. $P \equiv \sqrt{\cdot}$. In this case, P has no transitions, so 1 is vacuously true. For 2 note that $\sqrt{\cdot} \equiv \sqrt{\cdot}$ and $\sqrt{\cdot} \overset{d}{\rightarrow} \sqrt{\cdot}$, hence $P\sigma \overset{d}{\rightarrow} P'\sigma$.

Case 2. $P \equiv x!E$. This has only one transition: $P \overset{\alpha}{\rightarrow} \sqrt{\cdot}$ where $\alpha = x!\text{eval}(E)$. By definition of substitution, $P\sigma \equiv \sigma(x)!E\sigma$. But by (TRIG), $P\sigma \overset{\alpha'}{\rightarrow} \sqrt{\cdot}$, where $\alpha' \equiv \sigma(x)!\text{eval}(E\sigma) = \sigma(\alpha)$. For evolution, suppose that $P \overset{d}{\rightarrow} P'$. Then $P' \equiv P$ and so $P'\sigma \equiv P\sigma$. By (TRIG), $P\sigma \overset{d}{\rightarrow} P\sigma \equiv P'\sigma$.

Case 3. $P \equiv \Delta E \rightarrow Q$. We have that $P\sigma \equiv \Delta E\sigma \rightarrow Q\sigma$. 1) The only transition that P has is from (DELAY), which implies that if $P \overset{\alpha}{\rightarrow} P'$ then $\alpha = \tau$, eval(E) = 0, and $P' \equiv Q$. This means that eval($E\sigma$) = 0, and so, by (DELAY), $P\sigma \overset{\alpha}{\rightarrow} P'\sigma$. 2) If $P \overset{d}{\rightarrow} P'$ then $0 \leq d \leq \text{eval}(E)$ and $P' \equiv \Delta(E - d) \rightarrow Q$. So, $P'\sigma \equiv \Delta(E\sigma - d) \rightarrow Q\sigma$. But this means that $P\sigma \overset{d}{\rightarrow} P'\sigma$ by (TDELAY).

Case 4. $P \equiv \nu x.Q$. Let σ be any substitution. We can assume, without loss of generality that x does not occur in σ\(^{16}\). We now show each item:

1) A transition $P \overset{\alpha}{\rightarrow} P'$ must have been derived by (NEW). Then $P' \equiv \nu x.Q'$ for some Q' such that $Q \overset{\alpha}{\rightarrow} Q'$ with $\alpha(\nu x)$. Then by induction hypothesis, $Q\sigma \overset{\sigma(\alpha)}{\rightarrow} Q'\sigma$. Hence, by (NEW), $\nu x.Q\sigma \overset{\sigma(\alpha)}{\rightarrow} \nu x.Q'\sigma$. But we assumed that x does not occur in σ, so we have $(\nu x.Q)\sigma \overset{\sigma(\alpha)}{\rightarrow} (\nu x.Q')\sigma$.

2) An evolution $P \overset{d}{\rightarrow} P'$ must have been derived with (TNEW). Hence $P' \equiv$

\(^{16}\)If x occurs in σ, we can simply rename x for a fresh name.
\(\nu.x.Q'\) for some \(Q'\) such that \(Q \overset{d}{\sim} Q'\). By induction we have that \(Q\sigma \overset{d}{\sim} Q'\sigma\), and so, by \(\textsc{tmp}\), we have \(\nu.x.Q\sigma \overset{d}{\sim} \nu.x.Q'\sigma\), which implies \((\nu.x.Q)\sigma \overset{d}{\sim} (\nu.x.Q')\sigma\).

Case 5. \(P \equiv P_1 \parallel P_r\). Let \(\sigma\) be any substitution. Assume, without loss of generality that names of \(\sigma\) (either as sources or as targets) are not bound names of \(P\), and also that the bound names of \(P_1\) are not free in \(P_r\).

1) The transition \(P \overset{\alpha}{\rightarrow} P'\) must have been derived \((\textsc{par})\) or \((\textsc{comm})\).

Sub-case 1 It was derived by \((\textsc{par})\). Then \(P' \equiv P'_1 \parallel P_r\) for some \(P'_1\) such that \(P_1 \overset{\alpha}{\rightarrow} P'_1\) and \(\text{bn}(\alpha) \cap \text{fn}(P_1) = \emptyset\). We know that \(\text{bn}(\alpha) \subseteq \text{bn}(P_1)\) and so these bound names do not occur in \(\sigma\) by our assumption. Hence \(\text{bn}(\sigma(\alpha)) = \text{bn}(\alpha)\). Since the target names of \(\sigma\) are not bound names in \(P\) (and therefore in \(P_1\)) then \(\text{fn}(P_r) \cap \text{bn}(P_1) = \emptyset\) and therefore \(\text{fn}(P_r) \cap \text{bn}(\sigma(\alpha)) = \emptyset\). This, and the induction hypothesis, \(P_1 \sigma \overset{\sigma(\alpha)}{\rightarrow} P'_1\sigma\), imply, by \((\textsc{par})\), that \(P \sigma \equiv P_1 \sigma \parallel P_r \sigma \equiv P'_r\sigma\).

Sub-case 2 It was derived by \((\textsc{comm})\). Then \(\alpha = \tau\) and \(P' \equiv P'_1 \parallel P'_r\) for some \(P'_1\) and \(P'_r\) such that \(P_1 \overset{\alpha}{\rightarrow} P'_1\) and \(P_r \overset{\alpha}{\rightarrow} P'_r\) for some \(x\) and \(v\). By induction hypothesis, \(P_1 \sigma \overset{\sigma(x)}{\rightarrow} P'_1\sigma\) and \(P_r \sigma \overset{\sigma(v)}{\rightarrow} P'_r\sigma\). But since \(\sigma(x) = \sigma(x)\sigma(v) = \sigma(x)\alpha(\sigma(v))\),

\[\text{we conclude, by \((\textsc{comm})\), that } P \sigma \equiv P_1 \sigma \parallel P_r \sigma \overset{\sigma(\alpha)}{\rightarrow} P'_1\sigma \parallel P'_r\sigma, \text{ from which we conclude, by \((\textsc{tpar})\), that } P \sigma \equiv P_1 \sigma \parallel P_r \sigma \overset{d}{\rightarrow} P'_1\sigma \parallel P'_r\sigma \equiv P'\sigma.\]

Case 6. \(P \equiv \Sigma_{i \in J} \beta_i \rightarrow P_i\) where each \(\beta_i = x_i?F_i@y_i\). Without loss of generality, we assume that the bound names of the guards do not occur in \(\sigma\). Then we have that \(P \sigma \equiv \Sigma_{i \in J} \beta_i \sigma \rightarrow P_i \sigma\), where each \(\beta_i\sigma = \alpha(x_i)?F_i@y_i\).

1) A transition \(P \overset{\alpha}{\rightarrow} P'\) must have been derived \((\textsc{choic})\), and so \(\alpha = x_k?v\) for some \(x_k\) and \(v\), and \(P' \equiv P_k \sigma''\) for some substitution \(\sigma'' = \sigma' \cup \{y_k/z\}\) where \(\sigma' = \text{match}(F_k, v, \emptyset) \neq \emptyset\) with \(\beta_k = x_k?F_i@y_k\). Let \(\zeta' \overset{d}{=} \text{match}(F_k, \sigma(v), \emptyset)\) and \(\zeta'' \overset{d}{=} \zeta' \cup \{y_k/z\}\). Since the structure and constants of \(\sigma(v)\) are the same as those of \(v\), we have that \(\sigma'\) and \(\zeta'\) are essentially the same, modulo \(\sigma\), this is, \(\zeta'(z) = \sigma(\sigma'(z))\) for any \(z \in N\), and \(\zeta' = \emptyset \iff \sigma' = \emptyset\). Since this transition occurred, \(\sigma' \neq \emptyset\) and therefore \(\zeta' \neq \emptyset\). This allows us to conclude that \(P \sigma \overset{\sigma(\alpha)}{\rightarrow} P'\sigma\).

11If this is not the case, as usual we can rename bound names of \(P\) with fresh names not occurring in \(\sigma\) or \(P_r\).

12Note that this is a substitution \(\sigma\) applied to an input action \(\alpha = x?v\), not to an input process \(x?y \rightarrow P\). Substitution for processes is defined in the standard way to avoid capture of free variables. The key is that in a transition \(P \overset{\alpha}{\rightarrow} P'\) the action \(x?v\) represents the action provided by the environment, i.e., the value \(v\) is not the bound name in \(P\), but the data sent through channel \(x\). Hence, \(v\) is not bound in the action, whereas \(y\) is bound in \(x?y \rightarrow P\).

13If they occur in \(\sigma\), we can simply rename them.
P'' where $\sigma(\alpha) = \sigma(x_k)\sigma(v)$ and $P'' \equiv P_k\sigma''$ by (choice). We claim that $\sigma'' = \sigma''\sigma$. To see this, consider any name $z \in N$. We have three possibilities:
a) $z = y_k$, b) $z \in n(F_k)$ or c) $z \notin n(F_k) \cup \{y_k\}$. In each case we have that the substitutions coincide: a) $\zeta''(\sigma(y_k)) = \zeta''(y_k)$ since y_k does not occur in σ and a substitution is always defined to be the identity on names which are not in its source. Hence $\zeta''(\sigma(y_k)) = 0$ by definition of ζ''. On the other hand, $\sigma(\sigma''(y_k)) = \sigma(0) = 0$, by definition of σ''. b) $\zeta''(\sigma(z)) = \zeta''(z)$ since z does not occur in σ’s source; but we know that $\zeta'(z) = \sigma(\sigma'(z))$, hence $\zeta''(\sigma(z)) = \sigma(\sigma'(z))$. c) $\zeta''(\sigma(z)) = \sigma(z)$ since none of the variables in $n(F_k) \cup \{y_k\}$ occur in the targets of σ, and therefore ζ'' acts as the identity on anything that does not have names in $n(F_k) \cup \{y_k\}$. On the other hand, $\sigma(\sigma''(z)) = \sigma(z)$ for the same reason: σ'' is the identity on names not in $n(F_k) \cup \{y_k\}$. In the three cases we have seen that $\sigma\zeta'' = \sigma''\sigma$, and therefore $P_k\sigma\zeta'' \equiv P_k\sigma''\sigma$ so we have that $P'' \equiv P'\sigma$ and therefore $P\sigma \xrightarrow{\sigma(\alpha)} P'\sigma$.

2) An evolution $P \xrightarrow{d} P'$ must have been derived with (tchoice), so $P' \equiv \Sigma_{i \in I}\beta_i \rightarrow P'_i$, where $P'_i \equiv P_i\{y_i+d/y_i\}$. So $P'\sigma \equiv \Sigma_{i \in I}\beta_i\sigma \rightarrow P'_i\sigma$. On the other hand we have, by (tchoice), that $P\sigma \xrightarrow{d} \Sigma_{i \in I}\beta_i\sigma \rightarrow Q_i$, where $Q_i \equiv P_i\{y_i+d/y_i\}\sigma \equiv \sigma\{y_i+d/y_i\}$, so $Q_i \equiv P_i\{y_i+d/y_i\}\sigma \equiv P'_i\sigma$, and therefore $P\sigma \xrightarrow{d} P'\sigma$.

Case 7. $P \equiv A(\bar{y})$. Let σ be any substitution. We assume that the definition of A is closed, i.e. if $A(\bar{x}) \xrightarrow{d} Q$ then $fn(Q) \subseteq \bar{x}$.

1) A transition $P \xrightarrow{\alpha} P'$ must have been obtained by (cng), and therefore $Q(\bar{y}/\bar{x}) \xrightarrow{\alpha} Q'$ for some Q and Q'. By induction hypothesis we have that $Q(\bar{y}/\bar{x})\sigma \xrightarrow{\sigma(\alpha)} Q'\sigma$. Without loss of generality we can assume that none of the names in \bar{x} occur in σ20. Hence $Q(\bar{y}/\bar{x})\sigma = \sigma\{\bar{y}/\bar{x}\}$ and so $Q(\bar{y}/\bar{x})\sigma = Q\sigma\{\bar{y}/\bar{x}\}$, but the definition of A is closed, $fn(Q) \subseteq \bar{x}$ which means that $Q\sigma = Q$ since none of the names in \bar{x} occurs in σ. Therefore $Q(\bar{y}/\bar{x})\sigma = Q(\bar{y}/\bar{x})\sigma$ and so $Q(\bar{y}/\bar{x}) \xrightarrow{\sigma(\alpha)} Q'\sigma$, from which we conclude, by (cng), that $A(\bar{y}) \xrightarrow{\sigma(\alpha)} A'\sigma$, or in other words $P\sigma \xrightarrow{\sigma(\alpha)} P'\sigma$ where $P' \equiv Q'$.

2) The evolution $P \xrightarrow{d} P'$ must be derived by (tcng), which implies that $d = 0$ and $P' \equiv P$. Hence $P\sigma \xrightarrow{\sigma(\alpha)} A(\bar{y}) \xrightarrow{\sigma(\alpha)} A(\bar{y}) \equiv P'\sigma$.

\square

Lemma 3. Let $P \in P$, and σ any substitution. If P is legitimate, so is $P\sigma$.

Proof. Let γ_σ be any execution of $P\sigma$:

$\gamma_\sigma = P\sigma \xrightarrow{d_0} Q'_0 \xrightarrow{\alpha_0} Q'_1 \xrightarrow{d_1} Q'_1 \xrightarrow{\alpha_1} Q'_2 \xrightarrow{d_2} Q'_2 \xrightarrow{\alpha_2} \ldots$

Then, by Proposition 5, this execution has the form

$P\sigma \xrightarrow{d_0} P'_0\sigma \xrightarrow{\sigma(\alpha'_0)} P'_1\sigma \xrightarrow{\sigma(\alpha'_1)} P'_2\sigma \xrightarrow{\sigma(\alpha'_2)} \ldots$

20If they occur we can rename them in Q by fresh names.
for some $P'_0, P'_1, P'_2, P'_2, \ldots$ and some $\alpha'_0, \alpha'_1, \alpha'_2, \ldots$ such that

$$
\gamma = P \xrightarrow{d_0} P'_0 \xrightarrow{\alpha'_0} P'_1 \xrightarrow{d_1} P'_1 \xrightarrow{\alpha'_1} P'_2 \xrightarrow{d_2} P'_2 \xrightarrow{\alpha'_2} \ldots
$$

Note that $\text{len}(\gamma) = \text{len}(\gamma_\sigma)$, since there is a one-to-one relation between evolutions and transitions in γ with those in γ_σ. Furthermore, $\text{dur}(\gamma) = \text{dur}(\gamma_\sigma)$ since the substitution preserves the amount of time in each evolution. But we assumed that P is legitimate, and therefore, γ is a legitimate execution. Hence either $\text{len}(\gamma) < \infty$ or $\text{len}(\gamma) = \infty$ and $\text{dur}(\gamma) = \infty$. But this is to say that either $\text{len}(\gamma_\sigma) < \infty$ or $\text{len}(\gamma_\sigma) = \infty$ and $\text{dur}(\gamma_\sigma) = \infty$, i.e., that $P \sigma$ is legitimate. □

Theorem 2. (Sufficient conditions for legitimacy) Let D be a finite set of process definitions and P a process which invokes only definitions in D. If all definitions in D are well-timed then P is legitimate.

Proof. By induction on the structure of P.

Case 1. $P \equiv \sqrt{ } \text{ or } P \equiv x!E$. These processes have no infinite executions, so they are always legitimate.

Case 2. $P \equiv \Delta E \rightarrow Q$. Assume the statement holds for Q. Let γ be any execution of P. If it is finite, then it is legitimate, by definition. Assume that γ is infinite. Then, it must begin by $P \xrightarrow{e} P' \rightarrow Q$ where $e = \text{eval}(E)$. Let γ_1 be the remainder of the execution, starting from Q. By induction hypothesis, γ_1 must be legitimate, so $\text{dur}(\gamma_1) = \infty$. But $\text{dur}(\gamma) = e + \text{dur}(\gamma_1)$, so $\text{dur}(\gamma) = \infty$ as required.

Case 3. $P \equiv \nu x.Q$. Assume the statement holds for Q. Let γ be any execution of P. If it is finite, then it is legitimate, by definition. Assume that γ is infinite. Then, it must begin with $P \xrightarrow{d} P'_1 \xrightarrow{\alpha} P_1$. The evolution must have been obtained by (NEW), which means that $P'_1 \equiv \nu x.Q'_1$ for some Q'_1 and $Q \xrightarrow{d} Q'_1$ by a shorter inference. Since $P'_1 \equiv \nu x.Q'_1$, the transition must have been obtained by (NEW), which implies that $P_1 \equiv \nu x.Q_1$ for some Q_1 such that $Q'_1 \xrightarrow{\alpha} Q_1$. By repeating this over γ we obtain an execution γ_1 starting from Q. By induction hypothesis, γ_1 must be legitimate, so $\text{dur}(\gamma_1) = \infty$. But $\text{dur}(\gamma) = \text{dur}(\gamma_1)$, because it has exactly the same evolutions, so $\text{dur}(\gamma) = \infty$ as required.

Case 4. $P \equiv P_1 \parallel P_r$. Assume the statement holds for P_1 and P_r. Let γ be any execution of P. If it is finite, then it is legitimate, by definition. Assume that γ is infinite. Then it must begin with a pair $P \xrightarrow{d} P'_1 \parallel P'_2$ and $P'_2 \parallel P'_r \xrightarrow{\alpha_1} P'_1 \parallel P'_r \xrightarrow{\alpha_2}$. The evolution must have been the result of (TPAR), and therefore $P_1 \xrightarrow{d} P'_1$ and $P_r \xrightarrow{d} P'_r$. The transition may have been the result of either (PAR) or (COMM). If it was the result of (COMM), then we have that $P'_1 \xrightarrow{\alpha_1} P'_1(1)$ and $P'_r \xrightarrow{\alpha_2} P'_r(1)$ for some complementary actions α_1 and α_2. If it was the result of a (PAR) rule, then we have that either $P'_1 \xrightarrow{\alpha_1} P'_1(1)$ or $P'_r \xrightarrow{\alpha_2} P'_r(1)$. In either case we can build a
The page contains a complex mathematical text discussing the evolution of parallel compositions of processes and their derivations. It introduces and explains the interaction between infinite executions, the role of individual components within a process, and the behavior of these components over time. The text delves into the rules governing the evolution of parallel processes and the conditions under which these evolutions can be considered legitimate. Special attention is given to the behavior of processes over infinite time frames, highlighting the importance of derivatives in maintaining the legitimacy of these processes. The discussion is supported by examples and mathematical expressions to clarify the theoretical concepts presented.
have that $P_{i-1} \xrightarrow{d_{i-1}} P'_{i-1} \xrightarrow{\alpha_{i-1}} P_i$. But note that $\Sigma_{j=0}^{i-1} d_j \leq \text{dur}(\gamma_i) < t$ and so $d_{i-1} + \Sigma_{j=0}^{i-2} d_j < t$. Therefore $d_{i-1} < u_{i-1}$. Hence, from $P_{i-1} \equiv u_{i-1}, Q_{i-1}$ and $P_{i-1} \xrightarrow{d_{i-1}} P'_{i-1}$ we deduce that $Q_{i-1} \xrightarrow{d_{i-1}} Q'_{i-1}$ with $P'_{i-1} \equiv u_{i-1}, Q'_{i-1}$ where $u_{i-1} = u_{i-1} - d_{i-1} = t - (d_{i-1} + \Sigma_{j=0}^{i-2} d_j) = t - \Sigma_{j=0}^{i-1} d_j$. This in turn implies, together with $P'_{i-1} \xrightarrow{\alpha_{i-1}} P_i$, that $Q'_{i-1} \xrightarrow{\alpha_{i-1}} Q_i$ and $P_i \equiv u_i, Q_i$ where $u_i = u'_{i-1} = t - \Sigma_{j=0}^{i-1} d_j$, and so $Q_{i-1} \xrightarrow{d_{i-1}} Q'_{i-1} \xrightarrow{\alpha_{i-1}} Q_i$. So we can build an execution γ_Q starting with Q with the form

$$Q \xrightarrow{d_0} Q_0 \xrightarrow{\alpha_0} Q_1 \xrightarrow{d_1} Q'_1 \xrightarrow{\alpha_1} Q_2 \xrightarrow{d_2} Q'_2 \xrightarrow{\alpha_2} \cdots$$

which has the same trace and therefore, attr(γ_P) = attr(γ_Q), len(γ_P) = len(γ_Q) and dur(γ_P) = dur(γ_Q).

Theorem 3. Let $P, Q \in \mathcal{P}$. If $P \equiv_t Q$ for all $t \in \mathbb{R}_0^+$ then P is legitimate if and only if Q is legitimate.

Proof. It is enough to prove that if Q is legitimate then so is P. We prove this by contradiction. Assume that Q is legitimate, but P is not. Then there is an infinite execution γ_P starting at P such that $\text{dur}(\gamma_P) = t < \infty$ for some $t \in \mathbb{R}_0^+$. But $P \equiv_t Q$ by assumption, so by Lemma 4, there must be an execution γ_Q beginning with Q such that $\text{len}(\gamma_P) = \text{len}(\gamma_Q)$ and $\text{dur}(\gamma_P) = \text{dur}(\gamma_Q)$. But this is to say that $\text{len}(\gamma_Q) = \infty$ and $\text{dur}(\gamma_Q) = t < \infty$, i.e. Q is illegitimate. A contradiction.

D Abstract Machine Soundness

Lemma 5. (Correct time-slot execution)

If $(H, T) \rightarrow_t (H', T')$ then $[[H, T]]_t = [[H', T']]_t$.

Proof. We proceed by case analysis on the rules for time-slot transitions. In this proof we’ll use the following notational shortcuts: $A = \text{HallList}(H, t)$, $B = \text{HallTriggers}(H)$

Case 1. Rule (NIL). $(H, \sqrt{::}) \rightarrow_t (H, T)$

$$[[H, \sqrt{::}]_t = \nu x.([H]_t || [\sqrt{::}])$$

$$= \nu x.([H]_t || \sqrt{[]} || [T])$$

$$= \nu x.([H]_t || [T])$$

$$= [[H, T]]_t$$

Case 2. Rule (SPAWN$_N$). $(H, (P_1 || P_2) :: T) \rightarrow_t (H, T :: P_1 :: P_2)$

$$[[H, (P_1 || P_2) :: T]]_t = \nu x.([H]_t || [(P_1 || P_2) :: T])$$

$$= \nu x.([H]_t || (P_1 || P_2) || [T])$$

$$= \nu x.([H]_t || [T] || P_1 || P_2)$$

$$= [[H, T]]_t$$
Case 3. Rule (spawn₂). As the previous case.

Case 4. Rule (restr). \((H, \nu x. P :: T) \rightarrow_t (H[k \mapsto \emptyset], P[k/x] :: T)\) with \(k\) fresh. First note that if \(H' = H[k \mapsto \emptyset]\) then we have that \(H'(k) = \emptyset\) and therefore \(\text{alts}(H'(k), c, k, t) = \emptyset\) for any \(c\) and \(t\). This implies that \(\text{alllisteners}(H', t) = \text{alllisteners}(H, t)\) and therefore \(\llbracket H' \rrbracket_t = \llbracket H \rrbracket_t\). Hence,

\[
\llbracket (H, \nu x. P :: T) \rrbracket_t = \nu \hat{x}.(\llbracket H \rrbracket_t \parallel \llbracket \nu x. P :: T \rrbracket)
\]

\[
= \nu \hat{x}.(\llbracket H \rrbracket_t \parallel \nu x. P \parallel \llbracket T \rrbracket)
\]

\[
= \nu \hat{x}.(\llbracket H \rrbracket_t \parallel \nu k. P[k/x] \parallel \llbracket T \rrbracket)
\]

\[
= \nu \hat{x}.(\llbracket H[k \mapsto \emptyset] \rrbracket_t \parallel P[k/x] \parallel \llbracket T \rrbracket)
\]

\[
= \llbracket (H[k \mapsto \emptyset], P[k/x] :: T) \rrbracket_t
\]

Case 5. Rule (out-f). \((H, x!E :: T) \rightarrow_t (H[x \mapsto Q \cup \{v\}, T] \) given that \(\text{inms}(v, Q) = \emptyset\) where \(H(x) = Q\) and \(v = \text{eval}(E)\).

Let \(H' = H[x \mapsto Q \cup \{v\}]\). So \(\text{outputs}(H'(x)) = \{v\} \cup \text{outputs}(Q) \cup \text{outputs}(H(x))\) and therefore \(\text{triggers}(H', x) = \{xv\} \cup \text{triggers}(H, x)\). This entails that \(\text{alltriggers}(H') = \{xv\} \cup \text{alltriggers}(H)\), and so \(B' = \Pi \text{alltriggers}(H') = xv \parallel \Pi \text{alltriggers}(H) = xv \parallel B\). On the other hand, notice that \(A' = \Pi \text{alllisteners}(H', t) = \Pi \text{alllisteners}(H, t) = A\) because \(H'\) doesn’t add any new listeners. Hence,

\[
\llbracket (H, x!E :: T) \rrbracket_t = \nu \hat{x}.(\llbracket H \rrbracket_t \parallel \llbracket x!E :: T \rrbracket)
\]

\[
= \nu \hat{x}.(\llbracket H \rrbracket_t \parallel x!E \parallel \llbracket T \rrbracket)
\]

\[
= \nu \hat{x}.(A \parallel B \parallel \llbracket x!E \parallel \llbracket T \rrbracket)
\]

\[
= \nu \hat{x}.(A' \parallel B' \parallel \llbracket T \rrbracket)
\]

\[
= \llbracket (H', T) \rrbracket_t
\]

Case 6. Rule (out-s). \((H, x!E :: T) \rightarrow_t (\text{remalts}(H, c), P(\sigma \cup \{t \mapsto y\}) :: T)\) given that \((O, \sigma) \in \text{inms}(v, Q) \neq \emptyset\) where \(v = \text{eval}(E)\), \(H(x) = Q\) and \(O = \text{out}(F, y, P, u, c)\).

Let \(H' = \text{remalts}(H, c)\). Since \((O, \sigma) \in \text{inms}(v, Q)\), then we know that \(O \in \text{inputs}(Q)\) and \(\sigma = \text{match}(F, v, \emptyset) \neq \emptyset\). Hence, there is a listener on \(x\), with (unique) tag \(c\), with the form \(L = \sum \text{branches}(H, c, t) = \sum \cup z \in \text{alts}(H(z), c, z, t) = x?F\mapsto y \rightarrow P[z \mapsto \{t \mapsto y\}] + D \) where \(D\) are the remaining alternatives. By using (choice) we can deduce \(L \overset{x?n}{\rightarrow} P[z \mapsto \{t \mapsto y\}]\). Then, by (comm) we obtain \(L \parallel x!E \overset{z}{\rightarrow} P(\sigma \cup \{t \mapsto y\}) \parallel \sqrt{=} P(\sigma \cup \{t \mapsto y\})\). Note also that \(H'\) is \(H\) with all \(c\)-tagged observers removed, so \(\text{alltriggers}(H') = \text{alltriggers}(H)\) and \(\text{alllisteners}(H', t) = \text{alllisteners}(H, t) \setminus \{L\}\) and hence, \(B' = \Pi \text{alltriggers}(H') = B\) and \(A' = \Pi \text{alllisteners}(H', t) = \Pi \text{alllisteners}(H, t) \setminus \{L\}\), i.e., the set of listeners without \(L\), so \(A = A' \parallel L\). By applying (par) we obtain,
\[B \parallel A \parallel x!E \equiv B \parallel A' \parallel L \parallel x!E \xrightarrow{\tau} B' \parallel A' \parallel P(\sigma \cup \{t \mapsto \eta\}) \]. Hence,

\[[(H, x!E :: T)]_t = \nu \bar{x}.(\nu \bar{x}.([H]_t \parallel [x!E :: T]])
\]

\[= \nu \bar{x}.([H]_t \parallel x!E \parallel [T])
\]

\[= \nu \bar{x}.(A \parallel B \parallel x!E \parallel [T])
\]

\[\cong \nu \bar{x}.(A' \parallel B' \parallel P(\sigma \cup \{t \mapsto \eta\}) \parallel [T])
\]

\[= \nu \bar{x}.([H']_t \parallel [P(\sigma \cup \{t \mapsto \eta\}) :: T])
\]

\[= [[(H', P(\sigma \cup \{t \mapsto \eta\}) :: T)]_t
\]

Case 7. Rule (inp-f). \((H, L :: T) \to \tau (H\{x_i \mapsto Q_i \cup \{?(F_i, y_i, P_i, t, c)\}\})\) where \(L = \sum_{i \in I} x_i ? F_i @ y_i \rightarrow P_i\), \(c\) is fresh, and for each \(i \in I\), \(H(x_i) = Q_i\) and \(\text{outms}(F_i, Q_i) = \emptyset\). Let \(H' = H\{x_i \mapsto Q_i \cup \{?(F_i, y_i, t, c)\}\}\). First note that \(B' = \text{Alltriggers}(H') = B\), since no triggers are being added. As for listeners, note that for each \(i \in I\), \(\text{inputs}(H'(x_i)) = \{?(F_i, y_i, t, c)\} \cup \text{inputs}(H(x_i))\), and therefore, \(\text{allts}(H'(x_i), c, x_i, t) = \{x_i ? F_i @ y_i \rightarrow P_i\}?\{?(F_i, y_i, t, c)\}\) since \(\{w + (t - \eta) / y_i\} = \{w + 0 / y_i\} = \{w / y_i\}\) is the identity substitution. Hence \(\text{branches}(H', c, t) = \{x_i ? F_i @ y_i \rightarrow P_i\}\). Note that since \(c\) is fresh, there is no observer \(O\) in \(H\) such that \(\text{tag}(O) = c\). Therefore for all tags \(c'\) in \(H', c' \neq c\) and so \(\text{alltags}(H') = \text{alltags}(H) \cup \{c\}\), and also \(\text{branches}(H', c', t) = \text{branches}(H, c', t)\). Hence,

\[A' = \text{Alllisteners}(H', t)
\]

\[= \Pi\{\sum \text{branches}(H', c', t) | c' \in \text{alltags}(H')\}
\]

\[= \Pi\{\sum \text{branches}(H', c', t) | c' \in \text{alltags}(H) \cup \{c\}\}
\]

\[= \sum \text{branches}(H', c, t) \parallel \Pi\{\sum \text{branches}(H', c', t) | c' \in \text{alltags}(H), c' \neq c\}
\]

\[= L \parallel A
\]

So it follows that

\[[(H, L :: T)]_t = \nu \bar{x}.([H]_t \parallel [L :: T])
\]

\[= \nu \bar{x}.([H]_t \parallel L \parallel [T])
\]

\[= \nu \bar{x}.(A \parallel B \parallel L \parallel [T])
\]

\[\cong \nu \bar{x}.(A' \parallel B' \parallel [T])
\]

\[= \nu \bar{x}.([H']_t \parallel [T])
\]

\[= [[(H', T)]_t
\]

Case 8. Rule (inp-s). \((H, L :: T) \to \tau (H\{x_j \mapsto Q_j \setminus O\}, P_j(\sigma \cup \{0 / y_j\}) :: T)\) where \(L = \sum_{i \in I} x_i ? F_i @ y_i \rightarrow P_i\), and there is an \(j \in I\) for which \(H(x_j) = Q_j\) and \((O, \sigma) \in \text{outms}(F_j, Q_j) \neq \emptyset\). Let \(H' = H\{x_j \mapsto Q_j \setminus O\}\). Since \((O, \sigma) \in \text{outms}(F_j, Q_j) \neq \emptyset, O\) must be of the form \(!v\) and \(\sigma = \text{match}(F_j, v, \emptyset) \neq \emptyset\). Hence, there is a trigger on \(x_j\), \(x_j !v\). By (choice) we have that \(L \xrightarrow{x_j !v} P_j(\sigma \cup \{0 / y_j\})\). By (comm) we have that \(x_j !v ||

52
\[L \xrightarrow{\tau} \sqrt{P_j(\sigma \cup \{s/y_j\})} \equiv P_j(\sigma \cup \{s/y_j\}) \] Since \(H' \) is the same as \(H \) with an output observer removed, its listeners are the same, so \(A' = \text{Alllisteners}(H', t) = A \), and its triggers are those of \(H \) minus \(x_j!v \): \(\text{outputs}(Q_j \setminus O) = \text{outputs}(Q_j) \setminus O \) so \(\text{triggers}(Q_j \setminus O, x_j) = \text{triggers}(Q_j, x_j) \setminus \{x_j!v\} \) and so \(B' = \text{Alltriggers}(H') = \text{Alltriggers}(H) \setminus \{x_j!v\} \), this is, \(B = B' \parallel x_j!v \). Hence,

\[
\begin{align*}
[(H, L :: T)]_t & = \nu\bar{x}.([H]_t \parallel [L :: T]) \\
& = \nu\bar{x}.([H]_t \parallel [L] \parallel [T]) \\
& \xrightarrow{\tau} \nu\bar{x}.(A' \parallel B' \parallel P(\sigma \cup \{s/y_j\}) \parallel [T]) \\
& = \nu\bar{x}.([H']_t \parallel [P(\sigma \cup \{s/y_j\}) :: T]) \\
& = \nu\bar{x}.([H', P(\sigma \cup \{s/y_j\}) :: T])_t
\end{align*}
\]

Case 9. Rule \textsc{(inst)}. \((H, A(\bar{v}) :: T) \xrightarrow{\tau} (H, T :: P\{\bar{v}/x\})\) where \((A(\bar{x}) \equiv P)\).

By definition of congruence, \(A(\bar{v}) \equiv P\{\bar{v}/x\} \), so

\[
\begin{align*}
[(H, A(\bar{v}) :: T)]_t & = \nu\bar{x}.([H]_t \parallel [A(\bar{v}) :: T]) \\
& = \nu\bar{x}.([H]_t \parallel A(\bar{v}) \parallel [T]) \\
& = \nu\bar{x}.([H]_t \parallel P\{\bar{v}/x\} \parallel [T]) \\
& = \nu\bar{x}.([H]_t \parallel [T :: P\{\bar{v}/x\}])
\end{align*}
\]

Theorem 4. \textit{(Abstract Machine Validity)}

1. If \((H, R) \xrightarrow{\tau_0} (H', R')\) then \([(H, R)] \Longrightarrow [(H', R')]\)

2. If \((H, R) \xrightarrow{\tau_1} (H', R')\) then \([(H, R)] \xrightarrow{d} [(H', R')]\) with \(d = t_2 - t_1 \) where \(R = (t_1, T_1) \cdot (t_2, T_2) \cdot \ldots \cdot (t_n, T_n) \).

3. If \((H, R) \xrightarrow{\tau_2} (H', R')\) then \([(H, R)] \equiv [(H', R')]\)

Proof. To prove the result, let us rewrite the encoding of the queue \(R = (t_1, T_1) \cdot (t_2, T_2) \cdot \ldots \cdot (t_n, T_n) \) as follows: Let \(R = (t_1, T_1) \cdot R_1 \) where \(R_1 = (t_2, T_2) \cdot \ldots \cdot (t_n, T_n) \). Define \(\llbracket R \rrbracket \stackrel{def}{=} \llbracket T_1 \rrbracket \parallel [R_1]_{t_1} \) where the auxiliary function \([-] \), over queues is defined as \(\llbracket \cdot \rrbracket_{t_i} \stackrel{def}{=} \sqrt{[-]} \) and \(\llbracket (t, T) \cdot R_1 \rrbracket_{t_i} \stackrel{def}{=} (\Delta(t-t_1) \rightarrow \llbracket T \rrbracket) \parallel \llbracket R_1 \rrbracket_{t_i} \).

It is straightforward to see that the previous definition is just the unfolding of this definition. Intuitively, \(\llbracket R \rrbracket_{t_i} \) encodes the queue \(R \) advancing each timer by \(t \) (i.e., the delay for each time-slot is subtracted \(t \)).

Now we prove each of the three items.
1. Assume that \((H, R) \rightarrow_0 (H', R')\). Hence it must have been derived using \textsc{(timeslot)} where \(R\) is of the form \((t_1, T_1) \cdot R_1\) and \(R'\) is of the form \((t_1, T'_1) \cdot R_1\) with \(T_1 \neq \epsilon\) and \((H, T_1) \rightarrow_t (H', T'_1)\). So by Lemma 5 we have that
\[
[(H, T_1)]_{t_1} \Rightarrow [(H', T'_1)]_{t_1}.
\]
This is, \(\nu_x([H]_{t_1} \ || \ [T_1]) \Rightarrow \nu_x([H']_{t_1} \ || \ [T'_1])\), which, by using the properties of congruence implies that \(\nu_x([H]_{t_1} \ || \ [T_1] \ || \ [R_1]_{t_1}) \Rightarrow \nu_x([H']_{t_1} \ || \ [T'_1] \ || \ [R_1]_{t_1})\), so,
\[
[(H, R)] = \nu_x([H]_{t_1} \ || \ [R])
\]
\[
= \nu_x([H]_{t_1} \ || \ [T_1] \ || \ [R_1]_{t_1})
\]
\[
\Rightarrow \nu_x([H']_{t_1} \ || \ [T'_1] \ || \ [R_1]_{t_1})
\]
\[
= \nu_x([H']_{t_1} \ || \ [R'])
\]
\[
= [(H', R')]
\]
where \([R'] = [(t_1, T'_1) \cdot R_1] = [T'_1] \ || \ [R_1]_{t_1}\).

2. Assume that \((H, R) \rightarrow_1 (H', R')\). In this case, it must be that \(R = (t_1, \epsilon) \cdot R_1, R' = R_1\) and \(H' = H\). Let us assume that \(R_1 = (t_2, T_2) \cdot R_2\) for some \(R_2\), so that \([R_1]_{t_1} = \Delta(t_2 - t_1) \rightarrow [T_2] \ || \ [R_2]_{t_1}\). Furthermore, let \(d = t_2 - t_1\). First we will show that \([R_2]_{t_1} \overset{d}{\rightarrow} [R_2]_{t_2}\). The remainder of the proof, \(R_2\) can be empty or have more timeslots. If it is empty, then \([R_2]_{t_1} = \emptyset\) for any \(t\). Suppose that it is not empty, i.e., \(R_2 = (t_3, T_3) \cdot R_3\). Hence \([R_2]_{t_1} = \Delta(t_3 - t_1) \rightarrow [T_3] \ || \ [R_3]_{t_1}\). Hence, by \textsc{(delay)} we have that
\[
[R_2]_{t_1} \overset{d}{\rightarrow} \Delta(t_3 - t_1 - d) \rightarrow [T_3] \ || \ [R_3]_{t_1} + d
\]
\[
= \Delta(t_3 - t_2) \rightarrow [T_3] \ || \ [R_3]_{t_2}
\]
\[
= [R_2]_{t_2}
\]
Now we will show that \([H]_{t_1} \overset{d}{\rightarrow} [H]_{t_2}\). To do this, recall that \([H]_{t_1} = \text{Halllisteners}(H, t_1) \ || \ \text{Halltriggers}(H)\). First note that under evolution, the set of triggers in the heap does not change at all, only listeners change, by updating the elapsed-time variables of each branch in each listener, incrementing them with \(d\). Each listener in \([H]_{t_1}\) has the form \(L = \sum_{i \in I} x_i ? F_i @ y_i \rightarrow P_i \{y_i + (t_i - u) / y_i\}\) where \(u\) is the time when the listener was registered. By using \textsc{(choice)}, each such listener evolves as follows: \(L \overset{d}{\rightarrow} L' = \sum_{i \in I} x_i ? F_i @ y_i \rightarrow P_i \{y_i + (t_i - u) / y_i\}\{y_i + d / y_i\}\) but the composition of substitutions \(\{y_i + (t_i - u) / y_i\}\{y_i + d / y_i\}\) is the same as the substitution \(\{y_i + d + (t_i - u) / y_i\}\) which is the same as \(\{y_i + (t_i - u) / y_i\}\) since \(d = t_2 - t_1\). Hence each resulting listener is of the form \(L' = \sum_{i \in I} x_i ? F_i @ y_i \rightarrow P_i \{y_i + (t_i - u) / y_i\}\) which when we put all together in parallel gives us \text{Halllisteners}(H, t_2)\) and since the triggers remained the same, by using the \textsc{(enlarge)} rule on all listeners and triggers, we conclude that \([H]_{t_1} \overset{d}{\rightarrow} \text{Halllisteners}(H, t_2) \ || \ \text{Halltriggers}(H) = [H]_{t_2}\).

Having established that \([R_2]_{t_1} \overset{d}{\rightarrow} [R_2]_{t_2}\) and \([H]_{t_1} \overset{d}{\rightarrow} [H]_{t_2}\) we obtain
the result as follows:
\[
\nu \bar{x}.([H]_{t_1} \parallel [R])
\]
\[
\nu \bar{x}.([H]_{t_1} \parallel [c] \parallel [R_1]_{t_1})
\]
\[
\nu \bar{x}.([H]_{t_1} \parallel \Delta(t_2 - t_1) \rightarrow [T_2] \parallel [R_2]_{t_1})
\]
\[
\Delta, \nu \bar{x}.([H]_{t_2} \parallel \Delta 0 \rightarrow [T_2] \parallel [R_2]_{t_2})
\]
\[
\nu \bar{x}.([H]_{t_2} \parallel [T_2] \parallel [R_2]_{t_2})
\]
\[
\nu \bar{x}.([H]_{t_2} \parallel [R_1])
\]
\[
\nu \bar{x}.([H', R'])
\]

3. Assume that \((H, R) \rightarrow_2 (H', R')\). Hence, \(R\) is of the form \((t_1, \Delta E \rightarrow P :: T_1) \cdot R_1, H' = H\) and \(R' = \text{insort}(t_1 + d, P, (t_1, T_1) \cdot R_1)\) where \(d = \text{eval}(E)\). Suppose that the queue \((t_1, T_1) \cdot R_1\) has the form \((t_1, T_1) \cdot (t_2, T_2) \cdot \ldots \cdot (t_1 + d, T') \cdot \ldots \cdot (t_n, T_n)\), where there is a non-empty time-slot \((t_1 + d, T')\) with \(T'' = P_1 :: P_2 :: \ldots :: P_m\). Hence, we have that

\[
[R_1]_{t_1} = \Delta(t_2 - t_1) \rightarrow [T_2] \parallel \cdots \parallel \Delta(t_1 + d - t_1) \rightarrow [T'] \parallel \cdots
\]

\[
= \Delta(t_2 - t_1) \rightarrow [T_2] \parallel \cdots \parallel \Delta d \rightarrow [T'] \parallel \cdots
\]

Let \(T'' = T' :: P\), the result of inserting \(P\) in the time-slot\(^{21}\) \(t_1 + d\). Then, we have that

\[
[R'] = [(t_1, T_1) \cdot (t_2, T_2) \cdot \ldots \cdot (t_1 + d, T'') \cdot \ldots]
\]

\[
= [T_1] \parallel \Delta(t_2 - t_1) \rightarrow [T_2] \parallel \cdots \parallel \Delta(t_1 + d - t_1) \rightarrow [T''] \parallel \cdots
\]

\[
= [T_1] \parallel \Delta(t_2 - t_1) \rightarrow [T_2] \parallel \cdots \parallel \Delta d \rightarrow [T''] \parallel \cdots
\]

\[
= \Delta d \rightarrow P \parallel [T_1] \parallel \Delta(t_2 - t_1) \rightarrow [T_2] \parallel \cdots \parallel \Delta d \rightarrow [T'] \parallel \cdots
\]

Hence we obtain the following

\[
\nu \bar{x}.([H]_{t_1} \parallel [R]) = [H', R']
\]

\^[21]If we assume that there was no such time-slot, the result is the same.