
Observations on solving discrete-event control problems:

patterns and strategies

Technical Report No. 2009-558

Lenko Grigorov

grigorov@cs.queensu.ca
School of Computing

Queen’s University, Kingston, Canada

Abstract

An observational study of solving discrete-event supervisory control
problems is described. Five graduate students with knowledge of
discrete-event system control were asked to think aloud while solving
two supervisory control problems. The problem-solving sessions were
recorded using audio and video equipment, and subsequently analysed
using protocol analysis. Patterns and strategies in solving discrete-
event supervisory control problems are identified and described, such as
the role of control specifications and supervisors, the selection of events
and the significance of controllability, the representation of discrete-
event system elements and relations in the interface of control software,
the flexibility necessary for different styles of problem solving, and the
techniques for verification of solutions. The implications for teaching
discrete-event systems and for designing discrete-event software inter-
faces are discussed.

April 27, 2009

Contents

1 Introduction 3

2 Literature overview 5

3 Description of study 9

3.1 Thinking aloud and protocol analysis . 9
3.2 Theoretical foundation of discrete-event system

control . 11
3.3 IDES software application . 13
3.4 Observational study setup . 14
3.5 Data encoding . 18

3.5.1 Typology . 18
3.5.2 Flowcharts . 20

3.6 N-gram analysis . 23
3.7 Tracking of attention . 23
3.8 Reference solutions . 24

3.8.1 Factory problem . 24
3.8.2 Hospital problem . 25

4 Individual performances 28

4.1 Subject 1 . 28
4.1.1 Factory problem . 28
4.1.2 Hospital problem . 31
4.1.3 Within-subject analysis . 34

4.2 Subject 2 . 38
4.2.1 Factory problem . 39
4.2.2 Hospital problem . 42
4.2.3 Within-subject analysis . 45

4.3 Subject 3 . 50
4.3.1 Factory problem . 51
4.3.2 Hospital problem . 54
4.3.3 Within-subject analysis . 57

4.4 Subject 4 . 63
4.4.1 Factory problem . 63

1

4.4.2 Hospital problem . 67
4.4.3 Within-subject analysis . 71

4.5 Subject 5 . 74
4.5.1 Factory problem . 74
4.5.2 Hospital problem . 79
4.5.3 Within-subject analysis . 84

5 Interviews with experts 91

5.1 Expert 1 . 91
5.2 Expert 2 . 93

6 Comparative analysis 95

6.1 Measure of progress in DES problem solving 95
6.2 Rate of errors in incomplete DES problems, perceived mistakes 97
6.3 Factory problem . 98
6.4 Hospital problem . 103
6.5 Overall observations . 108

7 Discussion 118

7.1 Global strategies . 118
7.2 Local strategies . 121
7.3 Human factors . 122
7.4 Events . 123
7.5 Control specifications . 127
7.6 Supervisors . 129
7.7 Computations . 130
7.8 Verification . 132
7.9 Low-level modelling . 135
7.10 Software for DES . 136

8 Conclusions 138

Appendices 140

A Problem definitions 140

A.1 Problem 1: Factory problem . 140
A.2 Problem 2: Hospital problem . 141

B Encoding typology 142

C Flowcharts of problem-solving strategies 150

C.1 Factory problem . 150
C.2 Hospital problem . 154

2

Chapter 1

Introduction

This work describes a set of observations of the processes in solving problems in the field
of control of Discrete-Event Systems (DESs). It is a part of a larger study aimed at the
improvement of the methodologies and the software used in the area of DES control. The
main goal of this part of the study is to collect the information needed to guide the proposal
of modifications to our DES software [51].

To this end, we decided to perform an observational study of subjects solving a set of
DES control problems and then apply mixed qualitative and quantitative analysis within a
pragmatic framework of investigation [26, 15]. The investigation is focused on the following
questions:

• Is there a difference between solving DES control problems using pen and paper and
using a computer? What is this difference? What is the preference of subjects?

• What are the strategies applied in solving such problems? Is there a difference between
the strategies applied by experts and by novices?

• What information is produced and consumed by subjects throughout the process of
problem solving?

Contemporary DES software offers a range of improvements over its first generation. The
most notable advantage is the implementation of a graphical interface which allows direct
manipulation of DES models using a pointing device. However, the experience of the authors
indicates that the user experience with the software may benefit significantly if other areas
are improved as well, potentially leading to an improvement to the overall process of problem
solving. Thus, the current investigation is further guided by an a priori decision to explore
if and how DES software can be bettered in the following aspects:

• Conceptual modeling

• Analogical problem-solving

• Information availability

• Appropriate information visualization for DESs

3

Finally, this study was conducted to also collect some information to be used later, in
the evaluation of the new features of our DES software implementation. The evaluation will
examine efficiency and correctness among other things. In order to be able to compare the
results, we needed to develop measures of progress towards the solution of a DES problem,
as well as consider what constitutes an error in the problem solving in order to measure the
rate.

The main contribution of this work is in the establishment of a better understanding of
how non-näıve people solve problems in control of DES. The results can be used by developers
for the improvement of DES software or by instructors for the design of DES control courses
which emphasize good problem-solving strategies. More specific contributions include

• Systematic examination of problem-solving data in the field of DES control

• Development of a typology used to encode such data

• Comparative analysis of performance across subjects and across problem types

• Determination of the most common strategies used in solving DES problems

• Proposal of measures of progress and error rate in DES problem solving

In the rest of this work we provide a brief overview of related literature (Chapter 2),
describe the methods used in the setup of the observational study and the data encoding
(Chapter 3), and the performance of the individual subjects, including a within-subject
comparison (Chapter 4). Subsequently, we make a between-subject comparative analysis
(Chapter 6) and we conclude with a discussion of our findings (Chapter 7).

4

Chapter 2

Literature overview

In the field of Discrete-Event System control there has been a long-recognized need for better
software tools [6]. Software tools are especially relevant to this field since usually it is compu-
tationally infeasible to perform the necessary computations by hand. In most DES software,
the central role is assumed by the implementation of different computational algorithms;
such is the case with the TCT [9] and UMDES [62] tools, for example. However, the sole
implementation of algorithms proves to be insufficient to aid in real-world problem solving.
In [16], the authors evaluate the elementary interface of the TCT software and determine
that its usability is very low, despite the excellent implementation of the DES algorithms.
Similarly, the development of the next generation, graphical DES software has been driven
by the need of users to visualize better the models and operations they work with. For ex-
ample, the Desco software [20] and later the Supremica software [2] were developed trying to
address issues surrounding the application of the DES supervision for the control of exam-
ple systems. Such issues include the implementation of DES supervisors in Programmable
Logic Controller (PLC) code for the control of real hardware and the simulation of control
in software.

The IDES software developed at Rudie’s research laboratory, [51], also offers a graphical
user interface. One of the main goals set at its conception was to center the design of the
software around usability. Thus, the development of the tool has been more balanced, where
functionality has been introduced at a slower rate compared to other tools (e.g., at the time
of writing IDES still does not offer a full array of DES operations) but each feature in the
interface has been carefully reviewed. However, it seems that merely providing a graphical
environment is insufficient in resolving all problems with the application of DES theory. The
modelling, even when done graphically, is still much too sensitive to errors. Even a single
error in one of the models may render the whole solution of a control problem incorrect.
Adding to this complication, in most cases the solutions to problems are too large to be
comprehended in their entirety, and thus verification becomes very hard. Lastly, even if a
correct (or desired) solution is obtained, due to the specificity of models and events, it is not
simple to reuse the solution in another project. This makes the application of DES control
very difficult for humans, even if all underlying functionality is implemented. In order to
resolve these issues, we felt it is necessary to investigate in more depth the origins of the
difficulties humans experience when working on DES control problems.

5

Human problem-solving has long been of interest to researchers, especially psychologists.
One of the first more rigorous investigations of problem solving is described in [13] where
the use of analogies in solving problems was examined. The contemporary investigation of
problem solving is done within the field of cognitive psychology, starting with the seminal
work of Newell and Simon on general problem solving [39]. Much of such research revolves
around the attempt to derive a computational model of the human cognitive processes and to
investigate the validity of specific hypotheses about the human cognitive faculties. The results
are used to incrementally build and refine our understanding of the cognitive phenomena.
For example, in [58, 48], the authors propose a computational model for the use of multiple
representations in problem solving (with focus on visual reasoning). The performance of
the model is described, but this work touches on problem solving only to discuss the use
of multiple representations in the process. Besides the investigation of solving strategies for
general and visual problems, research has also looked into the human cognitive performance
in expert fields. An empirical study of the use of diagrams in the construction/modification of
mental models is described in [44]. Subjects were asked to read Einstein’s work on relativity
and derive some of the equations. All produced records (drawings, gestures and speech) were
examined to interpret the subjects’ performance. Even though this work focuses on the use of
diagrams and mental imagery, it also provides insight into the use of observational studies to
study problem solving in general. Problem solving in Economics and Physics is also discussed
in [59]. The experiments described investigate the interpretation of visual representations
of data. The diagrams come from Economics (supply-and-demand) and Physics (reel with
rope, car motion). The conclusions of the study are interesting, however, there seems to
be a lack of an overarching hypothesis/theme and the work offers only cursory discussion
of the global process of problem solving in the examined fields. The cognitive activities of
computer programmers are studied in [24], with the goal of developing a computational model
to simulate the memory of programmers. The subjects are asked to memorize blocks of code
under different conditions and their recall rates are examined. Unfortunately, this fails to
provide any insight into the high-level process of programming.

Investigation of problem solving and human factors in the field of DES control, to our best
knowledge, has not been done. The publications closest to this topic pertain to the teaching
of DES to students and the design of DES software. In [21], for example, a graduate course
in DES control is described. The article describes the topics covered by the course and the
software used by the students, however, it does not discuss the relative difficulty of the topics
as experienced by the students or the points of the material which the students consistently
had problems understanding. In [2], the authors mention on a number of occasions that the
design of their software has been informed by their experience with teaching DES theory.
Unfortunately, again, they do not elaborate on their observations and instead only list the
features of the software. In [68], the author draws attention to some important aspects of
designing and applying DES control. For example, how one constructs the event set to be
used in modelling has a significant impact on how it is possible to reason about the problem
later on. Furthermore, the work demonstrates that solving a DES problem may involve a
number of iterations where not only the problem influences the solution (as expected), but
the solution influences the problem as well. This effect seems not to be unique to DES

6

control problems. In [55], the example of looking for a house to buy is given, where the final
solution (the chosen house) may not at all represent a solution to the initial problem (what
house one looks for). However, these insights do not provide enough information on the DES
problem-solving strategies either.

It seems that, at this point, it is not possible to study DES problem-solving using an
approach similar to the approaches generally used in the study of cognitive problem-solving
processes. In particular, one needs to have some preliminary information which will be
used for the formation of hypotheses. However, DES problem-solving is not a topic about
which much is known. Furthermore, DES problems are ill-structured, [54], where there is only
limited understanding of all the possible ways a problem can be solved and it is hard to define
an explicit evaluation procedure for the possible solutions. Thus, we decided instead to do
an observational study and examine it according to the methodology of qualitative research,
[43], where the goal is to uncover the patterns in a phenomenon through observation and
reasoning. The work of Rogers et al. on the performance of experts in radiological diagnosis,
[50, 49, 46, 47], served as an inspiration. The authors describe a study of X-ray cancer
diagnosis by experts and novices for the purpose of designing a computer interface to support
the diagnosis process. The study employs the protocol analysis proposed in [17]. It starts
with an observation of the work of diagnosticians to collect the information necessary to form
a more focused observational study. In the second study, in a number of trials, diagnosticians
are asked to diagnose different cases and to concurrently comment verbally on their activities.
Then, the verbal reports are encoded and analysed to discover the patterns of actions and the
information which is used to make a diagnosis. The researchers then proceed to create a model
of the cognitive processes involved in the diagnosis. This model is used to inform the design
of the computer interface. Finally, the performance of subjects with the computer interface is
evaluated. Another inspirational investigation is the work of Guindon on understanding high-
level software design [28]. Using protocol analysis, the author investigates different aspects of
problem solving—the exploration of the problem domain, the elaboration of the requirements,
the use of design strategies and notations, the application of problem solving schemata and
heuristics, and the selection of evaluation criteria. The discoveries are then used to formulate
a list of recommendations for software tools made to support high-level software design, e.g.,
such tools should support the exploration of alternative designs. This work shows that it is
possible to employ qualitative analysis of ill-structured, or not well understood, problems to a
beneficial end. The recommendations are directly linked, and derived, from the observations
in the study. Of course, the use of protocol analysis is not limited to qualitative studies.
For example, in [3], the authors use a quantitative approach to compare the problem-solving
performance of freshman and senior engineering students. The subjects are given the task of
designing a playground and asked to think aloud during problem solving. The protocols are
then analysed in terms of steps, activities, objects, and information involved by the subjects
during problem solving. All of these are quantified and then correlated with the quality of
the corresponding solutions. Similarly, Gero and Mc Neill, [23], use verbal protocol analysis
to compare the performance of three engineers when working on electronics and mechanical
designs. Each section of the protocols is encoded along different dimensions (e.g., the micro
strategy used by a subject at a given point). Then, the data are plotted against time to

7

create graphs of the evolution of the problem solving sessions. It is then argued that the
graphs can be used to distinguish between different types of problem solvers (e.g., experts
vs. beginners). One main drawback of such quantitative studies is that not much insight is
given into the actual processes involved in problem solving. The results are used mostly to
allow the numerical comparison between different problem-solving sessions. In our study, we
used mainly a qualitative approach, however, quantitative analysis of the performance of the
subjects was also employed.

8

Chapter 3

Description of study

In order to collect data relevant in the context of our bigger project, we decided to perform an
exploratory observational study of how subjects solve DES control problems. This decision
was based largely on two considerations. First, we could not find in the literature a description
of a previous investigation of this topic. Without any preliminary information, it is impossible
to design good experimental setups. Second, the nature of our investigation requires the
building of a holistic understanding of the process of problem solving. Instead of employing
quantitative analysis of isolated aspects of subjects’ activities, we decided to use qualitative
investigation and try to discover the general trends in the problem-solving processes of the
subjects. However, we also adopted an opportunistic approach during the analysis, where
quantification was used when appropriate. As the intention of the observational study was
to gain understanding of the thought processes of individuals, the approach proposed in [17]
was considered.

3.1 Thinking aloud and protocol analysis

The scientific study of cognitive activities such as problem-solving is intrinsically difficult to
perform as currently a feasible method to observe mental processes does not exist. In the
past, psychology researchers have attempted to acquire information about thought through
introspective reporting (described briefly in Chapter 1 of Gray’s book on Psychology [25]).
Specially trained subjects were asked to describe their thoughts as objectively as possible.
However, gradually it became apparent that there are serious problems with the reliability
of such reports and the lack of a base for validation. Thus, introspection as a method of
inquiry has already been rejected by the scientific community. In order to study cognitive
processes, Ericsson and Simon propose a new method, protocol analysis [17]. In this method,
subjects are asked to think aloud while performing the tasks in a given experiment and then
the collected information is analysed to uncover the patterns of their mental activities. As
protocol analysis is grounded in theories of human cognition, it has become widely accepted as
a method to study human cognitive processes. A list of studies employing this methodology
can be found in [17]; see [22] for applications in medical research and [5] for applications in
usability studies.

9

Indeed, thinking aloud shares a common base with introspective reporting in that the
data collected is the subjects’ verbal elaborations on their cognitive processes. However, this
is perhaps the only similarity; there are significant differences between the two methods. The
first significant difference, as explained in [18], is in the type of verbalization expected of the
subjects. In thinking-aloud studies, subjects are not asked to elaborate on their thoughts.
Instead, they are asked to simply voice their thoughts as they come. This does not require any
training by the subjects, nor does it call for the use of specific terminology, or language not
intuitive to the subject. Ericsson and Simon distinguish between three levels of elaboration
when subjects think aloud [17]. Level 1 (least interference) is the simple vocalization of any
verbalizable thoughts which occur naturally in the process of problem solving. Level 2 is
when the subjects transform their inner thoughts into more understandable verbalizations,
however, without elaborating. Level 3 (most interference) is when the subjects elaborate
on and explain their cognitive processes. The authors argue that verbalizations of levels 1
and 2 provide valid insight into one’s thinking as they do not cause one to break one’s
train of thought to attend to additional tasks such as elaborating on their current thoughts.
The authors warn against the use of level 3 verbalizations as data since such verbalizations
may influence the thought processes of the subjects. In fact, the authors point out in [18]
that level 3 verbalizations often lead to an improvement of the problem-solving performance
of subjects. The second significant difference between introspective reports and protocol
analysis lies in the way the collected data is used. Unlike introspective reports, thinking-
aloud protocols are not automatically considered to be indisputable. Instead, they are used
solely as indicators, helping in the interpretation of the behavior manifested by the subjects.

Ericsson and Simon provide detailed instructions on how to perform a think aloud study
in order to collect valid data [17]. However, their instructions on how to perform the analysis
of the resulting protocols are not as specific. Instead of recommending a given method,
the authors give examples of different ways to encode and analyse think aloud protocols.
In general, the verbal data should be examined and a universal vocabulary of the terms
and operations mentioned by the subjects has to be created. Then, the protocol has to
be segmented into statements and each statement has to be encoded using the vocabulary.
Finally, the encoded data are analysed according to the goals of the study. For example, the
analysis may concern the number of occurrences of a certain operation, the sequence of items
one attends to, the type of errors committed when reasoning, etc. In [22], the authors are
more specific. They propose a three-step procedure for protocol analysis. In the first step,
the referring phrase analysis, the analyst identifies the noun phrases used by the subject and
builds the vocabulary for encoding. In the second step, the assertion analysis, the analyst
identifies the assertions made by the subject about how concepts identified in the referring
phrase analysis relate. In the third step, the script analysis, the analyst identifies operators
that describe the predominant reasoning processes (such as “study”, “choose”, etc.) Then,
patterns of cognition can be examined in terms of which concepts are referred to at different
parts of reasoning and what relations are established between them. In [49], the authors
describe an exploratory study of the cognitive activities involved in diagnosing X-ray images.
The protocol analysis procedure, summarized below, is similar to the ones already discussed.

• Use prior information to define a taxonomy of the task;

10

• Refine the taxonomy from the observed data;

• Encode the observations as per the proposed taxonomy;

• Analyse the encoded form to find patterns and the interleaving of cognitive activities.

In our study we used think aloud protocol analysis as it appeared well-suited for our
purposes, namely, to gain understanding of the subjects’ thinking in problem-solving DES
control problems. Our approach was also informed by previous applied research in under-
standing cognitive processes for the purpose of designing software [47, 28] and the description
of the protocol analysis procedure the authors used [50, 49].

3.2 Theoretical foundation of discrete-event system

control

The study described in this work investigates problem solving in the context of DES control,
within the framework of Ramadge and Wonham [45]. Here, we provide a brief introduction
to this framework.

Discrete-event systems (DESs) are mathematical constructs designed to represent the
behavior of real systems at an abstract level. Instead of describing the continuous evolution
of systems, e.g., the rate of filling a tank with liquid, the evolution is described as the
occurrences of discrete events, e.g., the commencement of filling a tank with liquid and the
completion of filling the tank. Events are assumed to be instantaneous and spontaneous,
i.e., they describe the moment something important occurs and the advancement of time is
irrelevant to the system—only the relative order of events, i.e., the sequencing, is important.

Customarily, such systems are modelled as finite-state automata (FSAs), [7], as such
models are well-suited to describe sequences of events. Finite-state automata consist of a
number of states and transitions between them. Transitions are labelled with events from
an event set. An example FSA is shown in Fig. 3.1. One of the states is chosen to be initial
(denoted with a small arrow in the figure). If one follows the transitions between states,
starting in the initial state, one will end up with a sequence of events from these transitions.
As the transitions one could take from each state are limited, only certain sequences can be
constructed. For example, in the automaton from the figure, one can construct the sequences
“encounter vending machine, insert coin, receive candy” or “encounter vending machine, walk
on”, however, the sequence “encounter vending machine, walk on, insert coin, receive candy”
cannot be constructed. Some states can be further chosen to be “marked” (denoted with
double circles in the figure). Event sequences leading to such states can be interpreted as
desirable or important. They may signify the completion of some task in the system. For
example, in the automaton from the figure, the sequence “encounter vending machine, walk
on” leads to a marked state, while the sequence “encounter vending machine, insert coin,
receive candy” does not. The first sequence signifies completion of one’s interaction with the
vending machine, while the second sequence does not—one could continue inserting coins
and receiving candy.

11

2 41

3

receive candy

encounter vending machine

insert coin

walk on

Figure 3.1: Simple example of a finite-state automaton. This model describes the interaction
with a vending machine.

The event set of an FSA specifies all events which can be used in the model. Control of
DES consists of the disablement of certain events at critical states. For example, one might
want to prevent their kid from inserting more coins into a vending machine after they have
already spent $10. However, it is not always possible to prevent the occurrence of an event.
For example, it is not possible to prevent the delivery of candy after the insertion of coins.
Thus, the occurrence of only certain events can be controlled—and these events are called
controllable. The other events are called uncontrollable. If the prevention of an uncontrollable
event is desired, one needs to prevent a controllable event preceding the uncontrollable event
in the executed event sequence.

The decision of which events to enable and disable to control a system is not very easy,
especially when the system is complex. The benefit of the mathematical theory of DES
control is that there exists an algorithm which can automatically generate the required control
decisions [45]. As input, it takes a model of the system (in the form of an FSA) and a
description of the control requirements (also in the form of an FSA, usually a restricted
version of the system model). The algorithm outputs what is called a supervisor. It is an
FSA model which, when used concurrently with the system model (i.e., via the intersection
operation), contains information about which events should be disabled at which points in an
event sequence. In other words, the supervisor defines the control decisions needed to ensure
that the control requirements are met. It is important to note that not always all requirements
are feasible. Sometimes it may not be possible to prevent the undesired evolution of a system
unless large parts of the desired evolution are also prevented. In the worst case, the only
way to prevent the execution of an undesirable sequence would be to block the system from
operation (e.g., the only way to prevent a robot from breaking down is to disable the robot’s
operation). The main contribution of the DES algorithm for generation of supervisors is
that the output is proved to be not only correct, i.e., it does not permit the execution of
undesired sequences, but it is also optimal (or most permissive), i.e., there is no better way
to control the system so that more desired sequences are allowed and all undesired sequences
are prevented.

One of the main problems with the application of the DES control algorithm lies in the fact
that the size of the model of a system grows exponentially with the number of components of
the system. As a result, the standard (or monolithic) application of the theory is infeasible
when non-trivial systems are considered. In many cases, modular supervision [67, 11] can be

12

used to resolve this issue. Instead of creating a single, big model of the system and a single, big
model for the control requirements, each system component and each control requirement
can be modelled separately, as a module. The interaction between different parts of the
system and the specifications is accomplished by using common events in the FSA models.
The exponential growth of the model size is avoided when modular design is used. Separate,
small supervisors can be generated automatically for each control specification using the
original algorithm. The only disadvantage of the modular approach is that the separate
supervisors may end up interfering with each other’s control decisions, as they are generated
independently. Such interference may lead to deadlock or livelock in the controlled system.
In order to verify that supervisors do not interfere, one can use different approaches. Two of
the most common ones are to compose all supervisors and examine the combined effect, or
to use an algorithm to check if the supervisors are non-conflicting.

The theory of DES control has received numerous other contributions since its conception.
However, we did not expect subjects in this study to use advanced approaches. The only
two other approaches, mentioned tangentially by subjects involved decentralized control, [52],
and observability, [35]. Decentralized control refers to cases where each supervisors may be
able to control only a small part of the system (i.e., the controllability of events is different
for different supervisors). Furthermore, in some cases not all events occurring in a system
can be observed by a supervisor, thus, it may be necessary to consider also the observability
of events when designing supervisors. Neither decentralized control, nor observability needed
to be considered when solving the DES problems in this study.

3.3 IDES software application

During the observational study, subjects had access to DES software to help in their problem
solving. The software package made available was IDES version 2. This software was devel-
oped at Karen Rudie’s research laboratory at the Department of Electrical and Computer
Engineering, Queen’s University, Canada [31]. There were two reasons for the selection of
this package. First, it belongs to the new generation of DES software with a graphical in-
terface. Second, we plan to use IDES as the platform on which to implement the features or
improvements which follow from the observations in this study. Thus, direct observations of
the use of the software “in the field” were assumed to potentially provide useful feedback.

The IDES software application provides a graphical environment for the modelling of
finite-state automata. As well, it includes a number of operations used in DES control, such
as parallel composition, intersection, check for controllability or the algorithm for automatic
generation of supervisors. For a further explanation of these algorithms, please refer to [7].
The overall interface is shown in Fig. 3.2. It consists of a panel listing all loaded models (see
Fig. 3.3). By double-clicking on a model name, the user can activate this model and then edit
it inside the graph panel (Fig. 3.4) or the events panel (Fig. 3.5). The graph panel displays
finite-state automata graphically and employs a pen-and-paper drawing paradigm [51]. The
user need not switch between tools to create states and transitions, as well transitions can
be drawn either by clicking or dragging. The event panel lets users specify events to be used
in the model. They can click on the “Create event” and “Delete event” buttons to create

13

Figure 3.2: The user interface of IDES version 2.

Figure 3.3: The list of loaded models in IDES version 2.

and, respectively, delete events. They can rename the events by typing in the corresponding
cells, as well as change the controllability and observability properties of events. Operations
can be invoked on the models selected in the model list by selecting from the “Operations”
menu (see Fig. 3.6).

The version of IDES used in the study was still under development and on occasions it
exhibited some problems when used by the subjects. These occasions are described when the
performance of the subjects is discussed.

3.4 Observational study setup

The study was set up so that we could observe and record the performance of subjects during
the solution of DES problems.

We recruited five subjects in total. Each subject had at least one university semester of

14

Figure 3.4: The graph panel in IDES version 2. This is where models can be drawn using
the mouse cursor.

Figure 3.5: The events panel in IDES version 2. This is where events can be manipulated.

Figure 3.6: The menu providing access to DES operations in IDES version 2.

15

exposure to supervisory control theory for DESs. All subjects had completed the graduate
course, “ELEC843: Control of Discrete-Event Systems”, offered by Dr. Rudie at the De-
partment of Electrical and Computer Engineering at Queen’s University, Kingston, Ontario,
Canada. A more detailed profile of each subject is included before the discussion of their
corresponding performances.

Each subject was administered two problems in the field of DES control. One of the
problem is an adaptation of a classic problem in the field, the “Transfer Line” [66]. Each
subject has seen this problem being solved in the process of instruction—this problem is used
as an example in the ELEC843 course. The problem asks for the design of a controller for
a system of factory machines and buffers between them. Besides guaranteeing the (rather
trivial) lack of underflow and overflow in the buffers, one needs to also consider a more
complicated situation where certain conditions in the processing by machines may cause
blocking of the system (see Appendix A.1 for the complete statement of the problem). We
will refer to this problem as the “Factory problem”. The second problem, the “Hospital
problem”, was modelled after the first one, however, the statement of the problem was
modified significantly, so as to hide its similarity. Instead of considering machines and buffers,
the problem talks about a patient in a hospital and certain requirements are set on the
intake of medication and on the processing of medical reports (see Appendix A.2 for the
complete statement of the problem). The second problem was originally designed for our
purposes and none of the subjects had seen it before being introduced to it in the study.
The reason to use this particular pair of problems was to amplify the difference between
“learned” (or mechanized [36]) problem solving and solving new problems, while keeping the
fabric underlying the solutions similar to allow for comparison. While it was attempted to
make the second problem as close to the first problem as possible, the two problems must
not be viewed as completely equivalent. The informal description offers a number of valid
interpretations. Furthermore, due to unfortunate wording, the description of the second
problem implies that the reception of candy by the patient and eating the candy are two
separate events, which makes the problem incompatible with the first problem. This issue
was discovered only during the analysis of the performance of the subjects, when it was too
late to make corrections. As a result, unless a subject interprets the description so that the
reception of candy results in an increase of sugar in the blood of the patient, the solutions
to the two problems become incomparable.

The problems were administered in the following fashion. Each subject participated in
two separate sessions—one for each problem. Each session lasted about one hour and the
subject had up to 50 minutes to solve the particular problem. If they did not complete the
problem in this time, they were interrupted. In order to reduce the effect of the first session
on the second, there was at least one week between the two sessions for each subject. The two
problems were administered in random order (i.e., for some subjects, the Factory problem
was first and for others, the Hospital problem was first).

The problems themselves imposed no specific methodology for problem solving. Subjects
were instructed to produce a DES supervisory solution and no particular approach (e.g.,
monolithic or modular [67]) was recommended. Furthermore, subjects were provided with a
pen, sufficient amount of paper, and a computer running the IDES software (see Section 3.3).

16

The problem description advised the use of pen and paper for the modelling, but mentioned
that the use of the software is possible, especially for computationally demanding tasks. In
practice, the subjects were free to use any tool in any fashion they desired and to switch
between tools (i.e., between pen and paper and the computer) whenever they wished and as
many times as desired. No restrictions were imposed during the observational sessions.

The subjects in the study were asked to think aloud while solving the problems in order
to collect data for a subsequent protocol analysis (see Section 3.1). The recommendations
for how to carry out a think aloud study, summarized in [5], were heeded whenever feasible.

We decided to let the subjects choose a comfortable level of elaboration, however, our
instructions clearly indicated that the subjects are not required to provide any explanation
or justification for any thought that they voice. Furthermore, each subject was introduced
to thinking aloud and underwent a brief practice session before performing the actual task.
This helps the subjects become more comfortable with the process of thinking-aloud and
reduces the incurred interference. In our study we noticed that subjects would vary in their
level of comfort with voicing thoughts but generally would “get accustomed” within five to
ten minutes after the beginning of the session. The level of verbalization was normally what
Ericsson and Simon classify as level 2, i.e., the subjects transformed their inner thoughts into
more understandable verbalizations, however, without elaborating.

The experimenter was present throughout each session for three reasons: to remind sub-
jects to voice their thought by saying “Keep talking”, to observe their performance and gain
subjective experience about it, and to provide administrative support such as directing the
camera properly when subjects switch between using pen and paper and using software. In
almost all cases the experimenter sat in front of the subjects to facilitate the personal obser-
vation of the subjects’ performance. In one case, however, this proved to be too distracting
to the subject as they repeatedly tried to engage in a conversation with the experimenter.
In this case, the experimenter remained in the room but moved out of the subject’s field
of view. In general, as subjects got accustomed to thinking aloud, it was not necessary to
encourage them to speak. One subject, however, was not very talkative and it was necessary
to repeatedly remind them to keep talking. In that case, the experimenter attempted to
subjectively judge when to encourage the subject so that there is not too much interference
but, at the same time, data about their thinking is collected. The experimenter did not oth-
erwise interact with the subjects with the exception of answering administrative questions
such as which folder subjects should use to save their files when using IDES, or when trying
to resolve a bug in the software which had rendered it unusable. Such interferences were duly
noted when the data from the study was encoded.

At the end of each observational session, the subjects were asked to answer a few questions
in an informal interview. The questions asked included

• Remember about what you thought and explain your approach?

• How confident are you in your solution so far?

• What would be your future steps, were you to continue solving this problem?

• Any comments?

17

as well as questions seeking to clarify aspects of the answers of the subjects to the above
questions. At the end of the second session, each subject was asked to voice also what they
think about the study. Potentially, it could be possible to learn if the subjects had realized
that the two problems had comparable solutions.

In order to allow for more complete data analysis from this study, the performance of
each subject was, consensually, video-taped. The video record (including the audio track),
as well as all paper records and computer files produced by the subjects, were retained for
analysis.

3.5 Data encoding

After all sessions of the observation study were completed, we proceeded with the encoding
of the data. As we envisioned the occasional use of quantitative analysis to accompany the
qualitative analysis of the observations, it was necessary to transform the data into a form
suitable for automatic processing. As discussed in literature, human performance is influenced
by, or happens along, two complementary paths generally characterized as “bottom-up” and
“top-down” [38, 46, 25]. This served as an inspiration to approach the data encoding in a
similar fashion. One the one hand, we encoded activities at a very low level, using typology
developed specifically for the purpose. On the other hand, we encoded activities at a very
high level, as hierarchical flowcharts of procedural steps. At the end, both encoding schemes
were reconciled by synchronizing them along the dimension of time. This allows us to go
back and forth between the low level and the high level and ask questions centered on either
aspect. The encoding schemes are presented in more detail next.

3.5.1 Typology

The type of low level data we decided to focus on was determined by the type of ques-
tions we had in mind, as well as best practices, i.e., to have a versatile encoding scheme so
that initially unforeseen questions will be answerable as the research advances (proposed in
private communication with Kathleen Norman, School of Rehabilitation Therapy, Queen’s
University, Canada). The questions we were interested in concerned mostly two aspects of
the problem solving:

1. The fluctuation of the subject’s attention and

2. The cognitive processes of the subject.

To this end, we developed an encoding scheme advised by previous work [46, 42] and Chap-
ter 8 of [43]. The first version of our scheme is briefly described in [27]. This version was
not, unfortunately, suitable for the encoding of the full range of information that was needed.
However, it was very instructive in the design of encoding schemes and helped us develop a
much better scheme which is described next.

The essential view that we took was that the low-level performance of subjects consisted
of a series of events. Each event represents a specific activity and it has a time stamp of

18

when exactly it occurred relative to the start of problem solving. Three different “streams”
of events were encoded:

Visual attention This stream consists of events which describe the shifts of the visual at-
tention of the subject, such as “subject shifts gaze to the computer display” or “subject
shifts gaze to the sheet with the problem description”.

Physical activity This stream consists of events which describe the physical activities per-
formed by the subject, such as “create an explanatory note on the sheet with the
problem description” or “draw a transition between two states in a model”. Actions
unrelated to problem solving were not encoded, e.g., subject relocating between desk
and computer, issuing commands to save files or create projects in IDES, etc.

Verbalization This stream consists of events which describe what the subject verbalizes,
such as “subject talks about their intention to model a specific subsystem” or “subject
counts the number of states in a model”.

In order to encode these events, typology was designed to assign a specific code to each
type of event. Each code is in the form ‘HT(P)’, where the prefix ‘H’ is a letter indicating
a general type of event, the suffix ‘T’ is a string of one or more letters specifying the type
of event further and ‘P’ is a comma-separated list of parameters. Parameters are used only
when relevant. An example of a code is ‘CMN(M1)’. Here ‘C’ stands for a physical activity
performed while using the software (computer), ‘MN’ stands for ‘DES module naming’ and
the parameter ‘M1’ encodes the fact that the module being named is the module for ‘Machine
1’ (in the factory problem). The only exception in the format of the code is when certain
events in the “verbalization” stream are encoded. Since human expression is very rich, it was
determined that sometimes “extended” codes need to be used to capture what the subject
says more fully. Thus, when encoding verbalizations, the code may consist of a number
of regular codes concatenated with dashes. For example, ‘XGY-D(DR)’ encodes that the
subject voiced their thought (X) considering (Y) their plan (G) in terms of the dynamics (D)
of the DES module for the doctor (in the hospital problem). The full encoding typology is
described in Appendix B.

Besides developing typology and applying it to encode single events, it is necessary also to
record the time when events occur. For this purpose, time stamps were additionally associated
with each event to specify when it occurred relative to the start of the observational session.
For example, if the event “the subject looks at the computer display” happens fifteen minutes,
twenty one seconds and three hundred milliseconds after the start of the observational session,
the time stamp used with the code for this event will be “15:21,300”. The software used to
collect the time stamps, [56], does not guarantee millisecond precision of positioning in the
video stream. Thus, milliseconds were used mostly to compute the relative time between
very close events, if necessary. The time stamps were collected for the onsets of events.

The encoding itself was carried out by a single person. The resources available for the
study, as well as the priorities we had, did not allow for hiring more encoders and then
cross-checking to increase the reliability of the encoding scheme.

19

3.5.2 Flowcharts

Even though it is very valuable to have the low-level data from the observational study, we
discovered that, in by itself, such data is insufficient to guide our inquiry. The most important
aspect that is missing from low-level data is the overarching intention (or pursuit of a goal)
in performing a set of actions. It is not possible to say what purpose the low-level actions
serve and where the boundary between different goals lies.

In order to understand the intentionality of the subjects’ low-level action, and to learn
what strategies of problem-solving they employ, we used qualitative analysis. However, in
light of our desire to have additional quantitative support, we decided to further encode the
observational data in terms of the inferred high-level activities of the subjects. To this end,
we decided to employ process diagrams in the form of hierarchical flowcharts, similar to what
is used in business and software development [33, 41].

The syntax of the flowcharts we used were based on the Activity diagrams defined in
UML [41]. However, we did not purposefully attribute any of the UML semantics to the
way we used the notation. In our case, actions (or boxes) were used to denote a stage of
the problem solving of a subject, e.g., “modelling modules”, “inputting module ‘TU’ ” or
“verifying model”. Transitions (or arrows between boxes) were used to signify the problem-
solving path which a subject follows. Decisions (or diamonds, choice points) were used to
denote the places where the subject may choose to proceed along two or more alternative
paths. The same graphical notation, following the convention in UML, was used also to
denote when two or more alternative paths merge back together (the proper UML term
for this element is merge). Actions (boxes) were considered hierarchical so as to allow the
refinement of high-level activities. For example, the box “model modules” may be refined to
a flowchart where the subject follows a path through the boxes “model M1”, “model M2”
and “model TU”. Initial and final states were used to denote the entry and exit points,
respectively, in a lower-level (more detailed) diagram. Final states were not used when the
encoded high-level task was incomplete during the study, e.g., was interrupted due to the
expiry of a session. Examples of hierarchical flowcharts of the type we used can be found in
Appendix C.

There were three main goals we had in mind when we started encoding data with high-
level flowcharts.

1. The high-level data should make the subjects’ strategies more explicit.

2. The flowcharts should “normalize” the data to some extent to allow direct comparisons
between subjects.

3. It should be possible to reconcile the high-level encoding with the low-level encoding.

In order to address the first two goals, we decided to use as a base the preliminary
taxonomy of problem solving in DES control as described in [27]. Indeed, this taxonomy is
very incomplete and has not been validated. However, it was sufficient for our research since
our observations are of exploratory nature. Furthermore, we used only the top-level elements
in the taxonomy, i.e., the elements which are least likely to fail validation. For our purpose,
we encoded the following problem-solving activities:

20

Understand the subject gains understanding of the problem and the existing situation,

Model the subject creates a (more or less) formal representation of their understanding of
a part of the problem,

Input the subject inputs into the software a model which they have created on paper,

Compute the subject invokes the algorithms in the software to obtain a model of a part of
the problem,

Verify the subject uses any of the available means to confirm that a part of their solution
is correct.

This is more or less in line with the Execution-Evaluation Cycle proposed by Norman in [40].
The encoding of the data proceeded in three stages: subject-specific encoding, general-

ization, and normalized encoding. In the first stage, the video record of each problem-solving
session was observed, and a flowchart with the performance of each subject was created.
The encoding was subject-specific. There were no specific criteria for the encoding; in-
stead, all available information (video, diagrams, computer files...) was used by the encoder
to intuitively determine what high-level activity the subject is engaged in at any moment.
Thus, the process was comparable to what any (knowledgeable) observer would perceive in
an everyday setting. At the end of this stage, we obtained ten, subject-specific flowcharts
(five subjects solving two problems). These flowcharts had only marginal commonalities and
even comparison of the strategies employed by a single subject for the two problems seemed
difficult—let alone any comparisons between subjects. This problem was addressed with the
second and third stages of encoding. The second stage, generalization, consisted of building
two universal flowcharts—one for each problem—in which all problem-solving paths were
mapped. The encoder examined all subject-specific flowcharts for a given problem and at-
tempted to recognize general patterns that emerge—and then encode them in the generalized
flowchart. The process involved a mix of two approaches. On the one hand, the encoder ex-
amined the subject-specific flowcharts, formed a generalization, and amended the universal
flowchart. On the other hand, subject-specific data was elevated to the universal flowchart
and, as more subject-specific data was amalgamated into the flowchart, a generalized pat-
tern emerged. At the end, two flowcharts were obtained, in which it was possible to trace,
with approximation, the problem-solving paths of all subjects. The generalized flowcharts
are shown in Appendix C. Unlike the subject-specific flowcharts, the generalized flowcharts
contain branching and merging. Since different subjects had different strategies, different
paths have to be taken in the generalized flowcharts. However, with the given merging,
the generalized flowcharts indicate that there may be many more potential problem-solving
strategies which none of the subjects exhibited. The last stage was the most important to
allow between-subject comparisons. Here, the performance of individual subjects was en-
coded using “normalized” flowcharts. In essence, this stage consisted of selecting the specific
problem-solving path that each subject takes within the context of the generalized flowchart.
Thus, ten flowcharts were obtained which correspond to the ten subject-specific charts from
the first stage. However, the flowchart elements are selected from the generalized flowchart

21

for the corresponding problem. Thus, if two subjects performed the same problem-solving
step, they would share the same flowchart element in their normalized flowcharts. As a
result, the direct comparison of strategies of different subjects became possible. The normal-
ized flowcharts are shown when the subject-specific performances are discussed (Chapter 4).
Similar to the initial flowcharts, there is no branching since each subject took only one spe-
cific problem-solving path. One of the main benefits of these normalized flowcharts is that,
by reducing and unifying the encoded elements, it becomes possible to perceive more easily
what a subject’s problem-solving strategy is.

The third goal we had in mind when encoding the high-level data was to allow for some
reconciliation with the low-level data. The most obvious way to achieve this was to map low-
level events to the high-level “blocks” of activity. For each element of a flowchart, timestamps,
relative to the video recording, were used to mark the beginning and end of the element. For
example, if the subject was modelling the ‘DR’ module from minute 15:06 to minute 18:43
of the video record, the block “Model DR” in the corresponding normalized flowchart was
marked with the timestamps “15:06,000” as the beginning of activity and “18:43,000” as the
end of activity. Then, all low-level events with timestamps falling in this interval were mapped
onto the “Model DR” block. In this way, it became possible to answer both the question
“What specifically was the subject performing while modelling ‘DR’?” and the question “In
which part of the subject’s problem-solving approach did they say that the modules ‘M1’ and
‘M2’ are similar?” As the low-level events are the only relevant aspects of the performance of
subjects, it was sufficient to choose only approximate chronological boundaries for the blocks
in the flowcharts—enough to include the proper low-level events. In this way, we sidestepped
the controversial issue of defining precise points in time when a subject transitions from one
activity to another.

After all encoding was completed, we proceeded with the analysis of the problem solving
as manifested by the subjects. The data we had consisted of:

• Video footage of the problem-solving sessions

• Sheets of paper which the subjects used

• Computer files with the models the subjects input into or generated with the software

• Short interviews

• Subject profiles

• Lists of encoded low-level events, timestamped

• Generalized flowcharts of potential problem-solving strategies

• Flowcharts for every subject specifying their strategies in a comparable way

• Mapping of the low-level events into the high-level flowcharts

The n-gram analysis used for the low-level data, the methods used to track attention, as well
as the reference solutions for the two problems are described next.

22

3.6 N-gram analysis

An important goal of this study was to obtain information to guide the improvement of the
interface of DES software. Usually it is not difficult to design software interfaces suitable
for work within a particular context (or mode of operation); it is harder, however, to design
interfaces for multiple contexts. Thus, information regarding the workflow of users (how they
change of contexts) is very important. For this reason, we decided to analyse the workflow of
the subjects in the observational study. We considered the context of the physical actions from
the low-level encoding. Five different contexts were recognized: module, state, transition,
event and computation. These were denoted M, S, T, E and C, respectively, following the
notation in the typology from Appendix B.

The sequence of contexts in the low-level physical activities for each session was analysed
using n-grams. N-gram analysis [57] is the determination of the frequency of occurrence
of a specific sub-sequence of n items in a larger sequence. For example, in the sequence
“MSTESST”, the 2-gram (or bigram) ‘ST’ occurs two times, while the 3-gram ‘STE’ occurs
only once. In our study we computed both absolute and relative ratios of n-grams. An
absolute ratio is the ratio of the number of occurrences of a given n-gram to the total number
of n-grams in the sequence. We use the term “relative ratio” to refer to the ratio of the number
of occurrences of an n-gram to the number of occurrences of all n-grams which start with
the same n − 1 items. For example, in the sequence “MSTESST”, the relative ratio of the
bigram ‘ST’ is 2/3 since there are two occurrences of ‘ST’, one occurrence of ‘SS’ and no
other bigrams starting with ‘S’. In comparison, the absolute ratio of ‘ST’ is 2/6 since ‘ST’
occurs twice and in the sequence there are six bigrams in total.

By using n-gram analysis, it was possible to determine how frequently the subjects worked
on different elements of their models and what were the most common changes of contexts.
Initially, we considered n-gram analysis for multiple values of ‘n’. However, the ratio distribu-
tions for n≥ 3 were uniform and did not provide any information. Thus, we only investigated
the results of the 2-gram (or bigram) analysis.

3.7 Tracking of attention

The attention of the subjects throughout the problem solving was partially indicated by
their verbalizations. As one of our goals is to discover what information is used to solve
DES problems, we decided to track two types of events related to attention: perceptually-
triggered data discovery and cognitively-driven data discovery. Perceptually-triggered data
discovery refers to the event when the subject discovers some information relevant to the
problem without actively seeking it, e.g., noticing that a model does not have an initial state.
Cognitively-driven data discovery refers to the event when the subject purposefully decides
to seek out some information relevant to the problem, e.g., deciding to check all models if
they have properly defined initial states. The typology developed for the encoding of the low-
level data (see Appendix B) provides convenient codes: ‘XP’ for perceptually-triggered data
discovery and ‘XD’ and ‘XHQ’ for cognitively-driven data discovery. Whenever possible,
these codes include the type of entity that the subject considers (e.g., states, dynamics,

23

modules, etc.) and the specific DES module being considered.
Since the shift of attention was not always announced verbally by the subject, we also

performed an analysis of the visual attention of the subject. More specifically, we took note
of what sheets of paper the subjects looked at while working on a given model, or what other
models in the software they looked at while using the program to work on a given model.
Unfortunately, when analysing the visual attention directed at sheets of paper, it cannot be
established with certainty which model the subject paid attention to specifically as there
could be more than one model per sheet.

In each section describing the within-subject analysis of performance, the shifts of atten-
tion demonstrated by the corresponding subject during problem solving are discussed.

3.8 Reference solutions

The problems which the subjects in this study had to solve do not have a trivial solution,
however, they can be categorized as very simple. Even so, the space of possible solutions is
very large and only becomes larger when various interpretations of the problem description are
considered. Nevertheless, drawing as a source on the solutions of problems in the ELEC843
course, it was possible to come up with reference solutions for the problems in this study.
These solutions were used later on as a base of comparison when the solutions of the subjects
were considered.

3.8.1 Factory problem

The factory problem is described in Appendix A.1. As already discussed, it is very similar
to the “Transfer line” problem from the literature [66]. Thus, the reference solution follows
closely the solution to the aforementioned problem.

The modelling of the system is modular, consisting of three modules (see Fig. 3.7). There
are two models for the two machines and they are identical, save for the naming of the events.
The model of the testing unit is also similar, however, the testing unit makes a choice between
two actions after testing a part.

The buffers mentioned in the problem are not components of the system. In fact, they
only impose limitations to the functioning of the system. Thus, the buffers comprise the
control specifications. The modelling of the control specifications is also modular. There are
two models for the two buffers (see Fig. 3.8). The first model counts the number of parts
deposited in buffer 1. Whenever machine 1 outputs a part or the testing unit rejects a part,
the number of parts increases. Conversely, whenever machine 2 takes a part, the number of
parts decreases. In an analogous way, the second model counts the number of parts deposited
in buffer 2. As it is necessary to explicitly mention at each state all events which need not
be disabled, the specifications contain self-loops listing the events which are irrelevant for
the control (e.g., the specification for buffer 2 contains also the events from machine 1 even
though they are irrelevant for this buffer).

In the reference solution, the modules of the system are composed into a monolithic
system by using the synchronous product operation. Similarly, the control specifications are

24

Machine 1 Machine 2 Testing unit

WI

put1

take1

WI

take2

put2

WI

takeTU

accept, reject

Event Description
take1 machine 1 takes a part for processing, from the environment
put1 machine 1 outputs a part after processing it, into buffer 1
take2 machine 2 takes a part for processing, from buffer 1
put2 machine 2 outputs a part after processing it, into buffer 2

takeTU testing unit takes a part for testing, from buffer 2
accept testing unit outputs a part after a successful test, into the environment
reject testing unit outputs a part after an unsuccessful test, into buffer 1

Figure 3.7: The models of the system components for the Factory problem and a description
of the events used in the models.

composed into a monolithic model using the intersection operation. Finally, the monolithic
models are input into the algorithm for automatic generation of supervisors to obtain the
appropriate supervisor.

3.8.2 Hospital problem

The hospital problem is analogous to the factory problem. Thus, its reference solution
resembles the reference solution of the factory problem. It is sufficient to cast components
and events of the factory problem into the new setting. For example, the restrictions on the
blood sugar level of the patient in the hospital problem are identical to the restrictions for
buffer 1. In Fig. 3.9, the correspondence of the two solutions is demonstrated.

25

Buffer 1 Buffer 2

1 30 2

put1, reject put1, reject

accept, take1, put2, takeTU

put2, accept, take1, takeTU

take2
take2

put2, accept, take1, takeTU

put1, reject

take2

accept, take1, put2, takeTU

10

put1, accept, take2, reject, take1

put2

takeTU

put1, accept, take2, reject, take1

Event Description
take1 machine 1 takes a part for processing, from the environment
put1 machine 1 outputs a part after processing it, into buffer 1
take2 machine 2 takes a part for processing, from buffer 1
put2 machine 2 outputs a part after processing it, into buffer 2

takeTU testing unit takes a part for testing, from buffer 2
accept testing unit outputs a part after a successful test, into the environment
reject testing unit outputs a part after an unsuccessful test, into buffer 1

Figure 3.8: The models of the control specifications for the factory problem and a description
of the events used in the models.

26

Machine 1 → Grandmother

WI

put1

take1

VA

candy

visit

Machine 2 → Equipment

WI

take2

put2

WI

reading

insulin

Testing unit → Doctor

WI

takeTU

accept, reject

WI

medication, sweet

report

Buffer 1

1 30 2

put1, reject put1, reject

accept, take1, put2, takeTU

put2, accept, take1, takeTU

take2
take2

put2, accept, take1, takeTU

put1, reject

take2

accept, take1, put2, takeTU

→

Patient

8 240 16

insulin

reading, medication, visit, reportmedication, visit, reading, report

insulin

reading, medication, visit, report

candy, sweet

medication, visit, reading, report

candy, sweet

insulin

candy, sweet

Buffer 2 → Hospital Information System

10

put1, accept, take2, reject, take1

put2

takeTU

put1, accept, take2, reject, take1

10

candy, medication, insulin, sweet, visit

candy, medication, insulin, sweet, visit

report

reading

take1 → visit
put1 → candy
take2 → insulin
put2 → reading

takeTU → report
accept → medication
reject → sweet

Event Description
visit grandmother visits the patient

candy patient gets candy from grandmother
insulin equipment administers insulin to patient
reading equipment takes reading of blood sugar level
report doctor reads report about patient

medication doctor prescribes medication to patient
sweet patient gets candy from doctor

Figure 3.9: Demonstration of the recasting of the models from the factory problem in the
setting of the hospital problem, and a description of the events used in the new models.

27

Chapter 4

Individual performances

In this chapter we will introduce the subjects who participated in the observational study
and we will describe their individual performances when solving the two problems.

4.1 Subject 1

At the time of their participation, subject 1 was a fifth-year student of Control Engineering.
The subject rated their background, on a scale from 1 (very little) to 5 (very much), as
follows:

• Knowledge of some natural science: 5,

• Engineering background: 5,

• Knowledge of DES control theory: 3,

• Experience using software for DES: 4,

• Experience using the IDES software: 5.

Using the same scale, they rated their comfort using English as 5. At the time of participation,
the subject was enrolled at the ELEC843 course offered by Dr. Rudie at Queen’s University.

The observations of the experimenter were that during the study, the subject felt com-
fortable with thinking aloud. During the factory problem, the experimenter reminded them
to keep talking 15 times; during the hospital problem—9 times. The subject occasionally
struggled to find the right words to express their thoughts but, overall, it appeared that the
the act of speaking did not have a significant impact on their problem solving.

4.1.1 Factory problem

The strategy used to solve the problem can be seen graphically in Fig. 4.1. The subject
modelled both the system and the control specifications in a modular way. However, they
used the IDES software to combine the modules into monolithic models and to produce a

28

The following abbreviations are used in the chart: M1 – machine 1, M2 – machine 2, M – machines 1 and 2,

TU – testing unit, L – monolithic system, B1 – buffer 1, B2 – buffer 2, B – buffers 1 and 2, K – monolithic

control specification, S – monolithic supervisor.

Figure 4.1: Flowchart of the strategy used by subject 1 when solving the factory problem.

monolithic supervisor for the system. Apparently, the subject had had this strategy in mind
from the beginning, since they formally defined how the monolithic system and specifications
can be obtained after they finished modelling, correspondingly, the system modules and the
specification modules.

Upon receiving the description of the problem, the subject almost immediately noticed
that this problem is similar to, if not the same as, the problem discussed in the ELEC843
course. They read the description of the problem and examined the supplied diagram. They
made no additional diagrams and did not write down any notes.

The subject used exclusively pen and paper to model the DES modules (system and
control specifications). The modelling proceeded fast and the subject seemed to be very
confident in what they did. From the beginning they recognized that the models for the
two machines are identical and they created a single, indexed model. On the other hand,
they chose to include extra behavior in their models for the machines and the testing unit.
In the problem description, there is no mention of machines breaking down or of failing to
process a part. However, the models the subject made allow for a part to be “lost” by a
machine or by the testing unit, once it is accepted for processing. This appears to be an
influence from the problem discussed in the ELEC843 course, where machines can break
down and, subsequently, fail to process a part. We feel there is evidence for this influence in
both the subject mentioning that they remember the problem from class, and in observing

29

a similar design decision made by another subject. During the modelling of the control
specifications, the buffers, the subject experienced uncertainty only once. When they finished
modelling the modules of the specifications, they verified them against the requirements in
the problem description. The subject became unsure about how exactly to mark the states
in the models and what exactly “blocking” means. It seemed that this induced uncertainty
in their judgment of whether the system would block or not under different marking schemes.
They considered first marking all states of the buffers but finally settled for marking only
the states where the buffers are empty.

During the modelling, the subject used the diagram provided with the problem description
to write down the events they decided to use. Each event was spatially associated with the
modules it belongs to. The event names were based on the verbal descriptions of the events,
however, not to an extent where their semantics would be obvious. For example, the event
when machine 1 takes a part for processing was named “t1”, the event when machine 2 puts
a part in the output buffer was named “p2”, the events when the testing of the quality of a
part by the testing unit is positive or negative were named “p” and “n”, respectively. The
subject did not seem to consider event controllability at the modelling stage.

After the basic modelling, the subject requested the use of the software. They first
input all modules and then computed the monolithic system and specification. The entry
of events seemed to be the biggest hurdle and a few times the subject needed to switch
the view to modules which were already input to examine their events. This was most
prominent when inputting the models of the buffers, as the consistent naming of the events
is crucial for producing a meaningful solution. After inputting the models, the subject used
the available DES operations to obtain the monolithic models. Each monolithic model was
visually examined to confirm that it was the desired result. It appeared that the “proper”
layout of the models was of very high importance to the subject, who commented that they
needed to improve the layout to understand the models more clearly. Correspondingly, they
spent a significant amount of time modifying the layout of all models generated by the
software. Another common verification procedure was checking out if the number of states
in the generated models was consistent with the subject’s expectations.

When all models were ready, the subject proceeded with the computation of a supervisor.
The first step was to check if the monolithic specification is controllable with respect to the
monolithic system, by using the corresponding operation in IDES. Then, the subject used
IDES to obtain the supremal controllable sublanguage of the specification. At this point,
due to a bug in the way large graphs are visualized in the software, IDES crashed. After
IDES was restarted, the subject decided to verify their solution without actually displaying
it graphically. They checked the number of transitions and states in the generated supervisor
(this information is available without laying out a graph of the model), and then checked
to see if the supervisor is controllable with respect to the system—a negative answer would
indicate a flaw in the DES algorithms. After the positive answer, the subject concluded that
the supervisor should be OK. However, they voiced their strong dislike of the fact that they
could not see the graphical structure of the result.

Instead of simply ending the session at this point, the experimenter proposed a way to get
around the bug in IDES so that the subject could actually see the graph of the supervisor.

30

The subject used the advice and obtained the automatically laid-out graph. Then, similar to
what they did for the monolithic models, they started reorganizing the layout so that they
could acquire a better understanding of the behavior encoded in the structure. After some
time of moving states and straightening transitions, the subject became unhappy with the
way they had changed the layout and decided to get a new, automatically laid-out copy of the
supervisor. Unfortunately, apparently the monolithic system model had not loaded correctly
after IDES crashed and the DES algorithm failed to reproduce the correct supervisor. At
first, the subject thought that the mistake was in the parameters they had provided to
the algorithm, but after repeatedly calling the algorithm and obtaining the same incorrect
result, they checked the monolithic models and saw the problem—which they fixed and then
obtained the expected supervisor.

The second time the subject verified the supervisor, their actions seemed more targeted.
They first looked up the initial state of the supervisor and then started tracing different
event strings to see if they lead to the expected states. During one of these verifications,
they discovered a string where instead of the testing unit sending a part back to buffer 1 for
reprocessing when the part fails the test, the part is removed from the system. The subject
diagnosed this as a potential issue with the model for buffer 1. Upon examination, this was
confirmed. The subject corrected the problem, regenerated the supervisor and proceeded to
verify it once more. They traced the same sequence of events which led to the discovery
of the problem in the previous instance. After they confirmed that, this time, it works as
expected, the subject seemed unwilling to perform more extensive testing. They announced
that, for the purpose of the study, they feel their solution is complete.

During the interview, the subject explained briefly their problem solving. The subject
mentioned that they did not make any diagrams describing the situation in the problem since
a diagram was already provided. They tried to make models with the smallest number of
states possible in order to reduce the complexity of the solution. They pointed out that even
with only about thirty states, it was very hard to find the error in the model of the supervisor.
Furthermore, the subject tried to model everything as things they already intimately knew,
so that they would have a better idea of what to expect from all operations. On the other
hand, coming up with a novel solution is much harder when one is already acquainted with
a solution, the subject noted. Had they not seen a solution for this problem, they would
have had a much harder time deciding what is a part of the system and what is a part
of the specifications. The subject theorized that they would have most probably modelled
the buffers as modules of the system, similar to the machines. The control specification then
would have been the “trim” version of the composed system. Having the current solution, the
subject indicated that as a future step in the problem solving they would like to implement
their solution and run a black-box test on it.

4.1.2 Hospital problem

The strategy used to solve the problem can be seen graphically in Fig. 4.2. The subject
modelled both the system and the control specifications in a modular way. They did not use
the IDES software at any point. At the very end of the session they indicated they would
like to use it for their next problem-solving steps, however, the session was over.

31

The following abbreviations are used in the chart: GM – grandmother, PT – patient, NR – nurse, DR –

doctor, DN – personnel (doctor and nurse), EQ – prototype equipment, CP – computer, HIS – Hospital

Information System, BSL – blood sugar level, RP – report.

Figure 4.2: Flowchart of the strategy used by subject 1 when solving the hospital problem.

32

The subject started by reading the description of the problem and then drawing a diagram
of the entities participating in the described situation. They focused their attention roughly
in the following order: patient, candy, nurse, doctor, equipment, computer, information
system, doctor, grandmother, nurse, candy. The nurse and the doctor were amalgamated
into a single subsystem called “personnel”.

The subject kept track of the events they used on a separate sheet of paper. They listed
each new event as they started using it in their models. The event names were based on the
verbal descriptions of the events, however, not to an extent where their semantics would be
obvious. For example, the event when the child eats a candy was called “ec”, the event when
the computer transmits the information to the hospital information system was called “tr”,
the event when the doctor read the report was called “rr”, etc. The controllability of the
events was not considered during the problem solving. It seemed that the subject found it
particularly difficult to deal with the proper way to model the increase of sugar level of the
patient. Apparently, this was a result of the incorrect wording in the problem (described in
Section 3.4). The subject chose to use three different events: the grandmother brings candy
to the child, the child eats a candy, and the doctor gives a candy to the child, which made
the problem much more difficult to solve.

The subject started modelling by drawing the model for the personnel. However, they
soon gave up modelling the personnel as a single subsystem, amid uncertainty about how
to keep track of when more insulin should be administered to the patient. They proceeded
by modelling the nurse and, later, the doctor modules separately. Then they modelled the
module for the patient and the specifications for the control of the sugar level in the blood
(i.e., to keep the sugar level between 0 and 24 grams). After modelling the modules for the
equipment and the computer, the subject realized that they are identical in behavior and
one is sufficient.

The subject was most uncertain how to model the transmitting of the blood sugar level
detected by the equipment to the doctor. Indeed, they seemed to think that it is insufficient
to keep track of how much candy the child consumes, and that the doctor has to base their
treatment decision (candy or medication) on the knowledge of the exact blood sugar level.
Thus, the subject created a model called “report” where the result of the measurement
should be captured. The creation was preceded by a two-minute period of deliberation. The
“report” model was least rigorous of all models and necessitated the introduction of many
new events: a separate “administer insulin” event for all possible levels of sugar in the blood.
The subject was not very certain how to model the behavior of the grandmother either. They
proposed a model where the event “bring candy” was repeated in a loop.

Towards the end of the session, the subject considered that most parts of the system
were modelled to a degree sufficient to move on with the solution. They started composing
the doctor and nurse modules manually, however, soon they requested the use of IDES to
complete the task. At that point the time limit for the session was reached and the session
was terminated.

During the modelling, the subject decided to correct or remodel some modules. When
modelling the computer module, the subject presumably realized that the equipment module
which they had modelled before, would need modifications to reconcile with the computer

33

module. Similarly, the modelling of the doctor module resulted in the subject rethinking what
the dynamics of the nurse module should be. When the subject modelled the grandmother
module, they became uncertain about how the patient module would keep track of candy and
they reconsidered the original design for that module. Again, the confusion revolved mostly
around which “candy” events should be used and when (i.e., “grandmother brings candy”,
“child eats candy”, and “doctor gives candy to child”).

During the interview, the subject explained briefly their problem solving. The subject
mentioned that they started by trying to get an overview of the situation described in the
problem, without trying to focus on details. The next step was to try to model all subsystems
identified during the overview. The subject complained about the way the problem is stated—
that much of the information is scattered throughout the description and they had to hunt
for it. For example, the subject did not initially realize that the prototype equipment is
so dependent on the computer and, consequently, they had to correct the model of the
equipment. They would have preferred if the information was organized similar to the way
they had grouped it during the overview. A further complaint was that they did not have all
the necessary information, e.g., what blood sugar level corresponds to the doctor deciding
between giving candy to the patient and prescribing medication. The comments of the subject
confirmed the observations that they had most trouble with the model for the report, but
also indicated that they were not happy with the models of the patient and the blood sugar
level, more specifically, with the fact that the models seem to be unbounded (infinite). The
model of the grandmother and its interaction with the model of the patient was not resolved
to satisfaction. The subject expressed their low confidence in the correctness of the solution,
noting their belief that it was full of errors. As future, hypothetical steps they mentioned
that they would like to talk to the doctor and nurse involved and try to discover the relevant
information missing from the description. Furthermore, the subject would try to analyse the
composed subsystems to see if there were any further errors in the models. More specifically,
they would try to follow the behavior of the composed models and see if it makes sense in a
real-world setting. As well, before any deployment, extensive tests should be made.

4.1.3 Within-subject analysis

For this subject, the hospital problem was administered before the factory problem. No
conscious transfer of knowledge between the two problems was observed and during the
interviews the subject did not mention noticing a degree of similarity between the problems.
Their interpretation of the study was that it was designed to examine to what kind of
problems discrete-event system control theory is applicable. They noted that the hospital
problem was in a sense “softer” than the factory problem—and that human interaction
seemed to be much harder to model.

This subject did not discuss what their motivation was for using pen and paper versus
software to solve the DES problems. Our observation shows that the subject in both cases
started problem solving by using pen and paper. They completed all modeling of individual
modules on paper and only when they needed to perform a DES operation, such as compo-
sition of modules, did they decide to use the computer. In the hospital problem, the subject
even tried first to compose two modules manually before requesting the use of the software.

34

In general, to the extent to which the hospital problem was advanced, the subject used
a similar problem-solving strategy. First, they read the description of the problem and
tried to get an overview of the situation. To this end, they employed a diagram showing the
different participants or entities and how they are linked. In the case of the factory problem, a
diagram was already provided and the subject deemed it acceptable for their purposes. In the
second step, the subject modelled all subsystems and all control specifications, as identified
during the first step. In the factory problem, there was a clear separation between modelling
subsystems (machines and testing unit) and modelling control specifications (buffers). In
the hospital problem, such a separation was not evident. Rather, it seemed that the subject
modelled modules in a sequence according to how they relate to each other. For example,
the control specification for the blood sugar level was modelled after the patient module; and
the modelling advanced from prototype equipment to computer to information system—in
the logical sequence of information transfer.

A significant, and expected difference between the solving of the two problems was in the
speed and confidence which the subject manifested. The subject was very fast in solving the
factory problem and they did not make any recognizable mistakes. Within the time limit of
the observational session, even faced with problems in the implementation of the software,
they succeeded in completing a solution. On the other hand, when solving the hospital
problem, the subject advanced more slowly and frequently paused in order to consider their
next steps. They demonstrated occasional uncertainty about the models they had produced
and, on a few occasions, they had to return to previously designed models to correct perceived
problems. In the allotted time, they did not succeed in advancing further than modelling the
relevant components. An objective evaluation of the produced models also distinguishes the
solutions to the two problems. In the factory problem, the models produced by the subject
were, within a reasonable level of tolerance, correct. In the hospital problem, the subject did
not succeed in modelling all system behavior correctly. They had notable problems with the
granularity of the events they considered (they used three separate “candy” events) and they
did not realize that the nurse does not have to be modelled to solve this problem. In general,
it seems that the subject had a much harder time recognizing the parts of the system which
are relevant to the solution. Furthermore, they struggled to model aspects of interaction
observed in real-life even when these aspects were not required for solving the problem.

While all the observations discussed in the previous paragraph point to a much higher
cognitive load in the hospital problem, it is interesting to note that thinking aloud seems to
be more impacted in the factory problem. During the hospital problem (the first problem the
subject solved—and thus with less experience thinking aloud), the experimenter reminded the
subject to keep talking nine times. During the factory problem, the experimenter reminded
the subject to keep talking fifteen times. Two potential explanations are that, during the
factory problem, the subject was more focused (as they worked faster), or that there was
a discrepancy in the criteria the experimenter used to decide when to remind the subject.
Our belief is that, considering also the behavior of other subjects, the subject found it more
demanding to voice their thoughts when they had a clear idea of what to do. Most probably
such ideas are largely non-verbal. There are two inconveniences to the subject in such a
case: first, they have to spend mental efforts translating their thoughts into verbal form and,

35

second, they are slowed down if they have to voice their thoughts. This interpretation is
consistent with the hypothesized impact of level 2 verbalization [17].

Lower-level activities of the subject, examined using n-gram analysis (see Section 3.6),
also indicate patterns of similarity and difference. For example, the way the subject dealt
with events during the two problems is different. In the factory problem, the subject used
the diagram provided with the problem description to write down the events, associating
them graphically with the relevant components of the system. There were no descriptions
for the events. In the hospital problem, the subject kept a separate list of events and there
was a description for each event. The n-gram analysis of the actions of the subject (see
Fig. 4.3) further shows that during the factory problem, the subject specified events in bulk
(high relative ratio of the bigram ‘EE’). Conversely, during the hospital problem, events were
specified on-the-go (the relative ratios of the bigrams ‘ES’ and ‘ET’ are higher than the one
of ‘EE’). This may indicate that the subject was confident in which events will be used in
their factory model, but was less confident about the events for the hospital problem.

The results of the n-gram analysis show that when the subject modelled using pen and
paper, they were likely to continue working on the same aspect of the model, e.g., when
working on transitions they were likely to continue working on transitions. This is visible
in the high absolute and relative ratios of the bigrams ‘TT’ and ‘SS’. This pattern is not as
pronounced for the hospital problem, where the relative ratio of the bigram ‘ST’ is a little
bit higher than that of ‘SS’. This may be the result of the subject being less certain of which
states a model should consist of—and thus considering states incrementally, as opposed to an
uninterrupted sequence of state-related actions. An interesting observation is the fact that,
in both problems, the bigram ‘MS’ has a very high relative ratio. This means that, after
considering a module, the subject very reliably proceeded working on the states of a model.

Fewer differences can be observed when examining the results of the n-gram analysis for
the factory problem, when solving with pen-and-paper or software (see Fig. 4.4). There are
only two facts which stand out. First, the relative ratio of the bigram ‘MS’ when using
the software is quite small when compared to that of the bigrams ‘MM’, ‘ME’ and ‘MC’. It
appears that when using the software, the consideration of modules was within a higher-level
context (such as events and algorithms)—and not concerned with the actual modeling (i.e.,
having to deal with states and transitions). The second fact which stands out is that when
dealing with DES algorithms (bigrams including the code ‘C’), the subject tended to stay in
at the higher-level context of modules and algorithms (notice the high relative ratios of the
bigrams ‘CM’, ‘MC’ and ‘CC’). The elements of the low-level models that seem to be most
relevant to the DES algorithms are the states (high relative ratio of ‘CS’ and no ‘CT’ or ‘CE’
bigrams). These results are within our expectations. When working with pen and paper, the
subject was creating models of the subsystems from the problem, while when using software,
they were simply inputting these models and then using the DES operations for higher-level
modelling such as composition of subsystems.

The attention of the subject throughout the problem solving was partially indicated by
their verbalizations. As one of our goals is to discover what information is used to solve
DES problems, we decided to track two types of events related to attention: perceptually-
triggered data discovery and cognitively-driven data discovery. The description of how this

36

Figure 4.3: The absolute and relative ratios of bigrams for pen-and-paper problem solving
during factory problem (FP) and the hospital problem (H). Data are sorted according to the
ratios in the factory problem.

analysis is performed can be found in Section 3.7. All events were examined and the following
was discovered. During the factory problem, mostly the states of the models contributed to
perceptually-triggered data discovery. Such discoveries usually occurred within the current
context of the subject (e.g., when working on the testing unit, they discovered something
about the same module, the testing unit). Cognitively-driven data discovery concerned pre-
dominantly states and events, and the intention was to collect it most frequently by visual
inspection and/or by counting the elements. When counting, they counted states and events.
During the hospital problem, no low-level elements triggered data discovery. Instead, the sub-
ject’s attention seemed to be drawn by the general dynamics of subsystems and the figures
displaying how the subsystems interact. On occasion, the discovered data would concern parts
of the system different from what the subject was working on (e.g., information about the
hospital information system while working on the module of the doctor), however, no stable
pattern was discovered. The cognitively-driven data discovery concerned mostly the dynam-
ics of modules and the subject most frequently expressed intentions to obtain it through
visual inspection or reading (the problem description). These results show that graphical
data representation was helpful to the subject.

The analysis of the visual attention of the subject revealed the following facts. During the
factory problem, the problem description was the most common target of visual attention,
especially during the modelling of the modules. Otherwise, the subject usually did not focus
on a specific sheet of paper but rather examined all models. Thus, no specific patterns of
attention could be established. During the hospital problem, the subject’s attention was

37

Figure 4.4: The absolute and relative ratios of bigrams for pen-and-paper problem solving
(FP) and solving using software (FC) during the factory problem. Data are sorted according
to the ratios in pen-and-paper solving.

not, proportionally, attracted as much by the problem description. The following patterns
emerged. When modelling the module of the patient, the subject frequently paid attention
to the sheets of paper with the models of the equipment, computer, hospital information
system, report and the grandmother. When modelling the hospital information system, they
frequently paid attention to the sheet with the models of the doctor, nurse, patient and
blood sugar level. When modelling the report, they paid attention to the same sheet—with
models of the doctor, nurse, patient and blood sugar level. The modelling of the blood
sugar level, computer, doctor, grandmother, nurse and prototype equipment was much more
self-contained, without switching the visual attention to other sheets of paper.

4.2 Subject 2

At the time of their participation, subject 2 was a fifth-year student of Control Engineering.
The subject rated their background, on a scale from 1 (very little) to 5 (very much), as
follows:

• Knowledge of some natural science: 4,

• Engineering background: 5,

• Knowledge of DES control theory: 4,

38

• Experience using software for DES: 5,

• Experience using the IDES software: 5.

Using the same scale, they rated their comfort using English as 4. At the time of participation,
the subject was enrolled at the ELEC843 course offered by Dr. Rudie at Queen’s University.

The observations of the experimenter were that, after an initial period of getting accus-
tomed, the subject felt comfortable with thinking aloud and kept a very steady pace. During
the factory problem, the experimenter reminded them to keep talking 6 times; during the
hospital problem—3 times. The subject rarely used well-formed sentences and did not seem
to focus on explaining their thoughts. However, in one of the short interviews, the subject
mentioned that they felt uncomfortable working in front of a camera. Additionally, they felt
it took more effort to work on the problem while having to voice their thoughts. Neverthe-
less, they felt thinking aloud did not affect their “train of thought” beyond slowing down the
problem solving.

4.2.1 Factory problem

The strategy used to solve the problem can be seen graphically in Fig. 4.5. The subject
modelled both the system and the supervisors in a modular way. However, they used the
IDES software to combine the system modules into a monolithic model. Apparently, the
subject had had this strategy in mind from the beginning, since they formally defined how
the monolithic system can be obtained after they finish modelling the system modules. On
the other hand, the subject never combined the supervisors into a monolithic model and
seemed to act so as to avoid doing this. The subject did not create models of the control
specifications during their problem solving.

After receiving the description of the problem and examining it, the subject recognized
that the problem is similar to, if not the same as, the problem discussed in the ELEC843
course. They read the description of the problem and examined the supplied diagram. They
expressed dislike of the diagram. However, apparently the description and the diagram were
enough for them to gain understanding of the problem. They made no additional diagrams
and did not write down any notes.

The subject used exclusively pen and paper to model the DES modules (system and
supervisors). The modelling proceeded fast and, except for the modelling of the first buffer,
the subject seemed to be very confident in what they did. From the beginning they recognized
that the models for the two machines are identical and they created a single, indexed model.
When modelling the supervisors for the buffers, the subject decided to model the second
buffer first. They mention at one point that this was “the simple part”. We assume that
they wanted to complete modelling the parts they felt confident about before moving to
the more difficult parts. When modelling the first buffer, the subject decided to split the
model into two: one model preventing the underflow of the buffer and one model preventing
the overflow. Again, the subject rated the underflow control as simpler than the overflow
control. The production of the specification for the underflow prevention did not appear to
cause significant difficulty to the subject, even though it was preceded by a longer period of

39

The following abbreviations are used in the chart: M1 – machine 1, M2 – machine 2, M – machines 1 and 2,

TU – testing unit, L – monolithic system, K – monolithic control specification, SB1 – supervisor for buffer 1,

SB2 – supervisor for buffer 2.

Figure 4.5: Flowchart of the strategy used by subject 2 when solving the factory problem.

planning. The specification for overflow prevention appeared troublesome to the subject and
they had to discard their first attempt and re-model it. They determined their initial model
was incorrect by considering the dynamics of the different subsystems and realizing that
they had used the wrong events to control the load of the buffer. While the analysis of the
subject’s work shows that they were modelling supervisors instead of control specifications for
the buffers, the subject did not appear to be aware of this explicitly. They were terming the
models “specifications” instead of “supervisors”. Implicitly, however, the subject was aware
that these are supervisors as they used them as such when employing the software later on.
None of the models produced on paper contained marked states; the subject appeared not
to consider marking at this stage.

The event names used by the subject were based on the verbal descriptions of the events,
however, not to an extent where their semantics would be obvious. For example, the event
when machine 1 takes a part for processing was named “t1” and the event when machine
2 puts a part in the output buffer was named “p2”. The events of the testing unit were
less clear. While “pU”, the negative outcome of testing part quality, was consistent with the
naming scheme (i.e., it stands for “the testing unit puts a part in buffer 1”), the event for
a positive outcome of the test was “fU”. The subject did not make any notes about what
events were used in the models besides the occurrences of the events as labels of transitions.
The controllability of events was considered only verbally and the models did not include
any indication of which events were controllable and which were not.

After the basic modelling, the subject requested the use of the software. They first input

40

all modules. This process took longer than what would be expected. The subject wished to
use the “copy” function of the software to copy similar models and speed up the process of
inputting. For example, they attempted to create the model for machine 2 by copying the
model of machine 1, with the intention of modifying only the relevant parts, e.g., changing
the event names. Unfortunately, due to a bug in the implementation of IDES, the “copy”
function did not always produce the desired result. In order to resolve this issue, the subject
was offered to save their current work and then open it within an older version of IDES which
did not exhibit this particular bug. Another shortcoming of the software discovered by the
subject was that the software does not have the capability to automatically create self-loops
of events in a model, as required by the computational algorithms used. During the inputting
of the models, the subject decided which states had to be initial states and which states had
to be marked.

When all modules were input, the subject proceeded by constructing the monolithic model
of the system behavior. Then, they decided to check the controllability of the supervisors.
First, they checked the controllability of buffer 2. The older version of IDES which the
user started using to resolve the bug with the input of automata, unfortunately did not
contain a correct implementation of the algorithm for checking controllability. Thus, it gave
an incorrect result saying that the model of the buffer was not controllable. The subject
apparently had the opposite expectation and they briefly checked all modules to confirm
that their model ought to be controllable. Then, they announced that there was a problem
with the software. To resolve this new issue, the subject saved their work and opened it once
again in the version of IDES which was originally used in the observational study. Then, they
checked the controllability of the supervisor again and they obtained the, correct, result that
the model is, indeed, controllable. The controllability check of the underflow prevention for
buffer 1 revealed that the model is not controllable. Again, this was contrary to the subject’s
expectations. This triggered a cycle of attempts to correct the model and then check its
controllability until the model was verified as controllable. The issue lay with the subject
forgetting to set the controllability properties of the events of the model. The controllability
check for the overflow prevention for buffer one revealed that it is, indeed, controllable. The
subject then voiced their desire to check if the specifications were not conflicting, a standard
way to verify that supervisors will not cause a deadlock or a livelock in a system. The software
does not offer this capability, so the subject tried to come up with another way of verifying
that the controlled system will be deadlock- and livelock-free. Eventually, they converged to
a solution where all supervisors will be composed into a monolithic model and then its action
on the system examined. At this point the time for the observational session expired.

During the interview, the subject explained briefly their problem solving. They mentioned
that in the beginning they realized that they had seen the solution to this problem before,
however, they could not remember the details. Thus, they had to produce the solution anew.
They modelled the modules on paper and that served as a way to “offload” them from their
mind. They preferred to use pen and paper because they find modeling like that easier
than using mouse and software. However, when there were too many states, the subject
preferred using the computer. They mentioned that even the combination of of the system
components, which would result in eight states, seemed to call for the use of the software. The

41

software itself was evaluated as mostly intuitive, but lacking a number of desired features.
For example, modelling a number of modules was tedious since event names cannot be copied
from existing models. As well, the subject theorized that modelling a large system would
be problematic. When asked what they would do to complete the solution to the factory
problem, the subject indicated that they would like to check if the supervisors they created
are non-conflicting and that potentially they would like to create a new, monolithic supervisor
instead of the modular ones.

4.2.2 Hospital problem

The strategy used to solve the problem can be seen graphically in Fig. 4.6. The subject
modelled both the system and the supervisors in a modular way. They did not use the IDES
software at any point. At the very end of the session they indicated they would like to use
it for their next problem solving steps, however, the session was over. The subject did not
create models of the control specifications during their problem solving.

The subject started by reading the description of the problem. From what they said,
their attention was focused on the patient and on the interaction between the computer and
prototype equipment (which they could not understand entirely).

The subject did not make any notes about what events were used in the models besides
the occurrences of the events as labels of transitions. The event names were descriptive
enough to make their semantics obvious. For example, the event when the child eats a
candy was called “eat candy”, the event when the computer transmits the information to the
hospital information system was called “send report”, the event when the doctor read the
report was called “read”, etc. The controllability of the events was not considered initially.
Only after the subject tried to establish the specifications for the controlled system did they
start considering event controllability. The subject correctly identified most of the relevant
events in the system, as well as their controllability. Apparently, due to the incorrect wording
in the problem (described in Section 3.4), they chose to use two events, “give candy” and
“eat candy” to describe the behavior of the patient. This significantly complicated the
problem. Furthermore, they identified the outcomes of the doctor’s evaluation (giving candy
or prescribing medicine) as controllable events. While, from the doctor’s perspective, they
are, indeed, controllable, within the context of the problem, they are not. The doctor’s
expert opinion cannot be superseded by that of an automatic controller. Finally, the subject
also interpreted the description of the problem such that prescribing medication was in fact
prescribing insulin. While the description does not mention what the prescribed medication
is, or what effect it has, there is no indication that it is equivalent to administering insulin.

The process of modelling did not advance continuously. Rather, the subject modelled
a few modules and then spent time analysing how to proceed. They seemed to consider
extensively their options for what to do before advancing. As well, they seemed to prioritize
their actions according to their depth of understanding of different aspects of the problem.

The subject started modelling by drawing the model for the patient, describing the com-
plementary function of consuming candy and receiving a shot of insulin. Then, they focused
attention on the flow of information from the prototype equipment to the doctor. They drew
a small diagram and then sketched out the models for the equipment, the computer, the

42

The following abbreviations are used in the chart: GM – grandmother, PT – patient, DR – doctor, EQ –

prototype equipment, CP – computer, HIS – Hospital Information System, SBSL – supervisor for the blood

sugar level, SRP – supervisor for the report.

Figure 4.6: Flowchart of the strategy used by subject 2 when solving the hospital problem.

43

hospital information system and for the doctor.
After these models were complete, the subject focused on the actions of the grandmother

and what control can be exercised to prevent the child from eating dangerous amounts of
candy. At some point, however, it seemed that the subject gave up this train of thought
and instead proceeded with remodelling the modules responsible for the processing of the
information from the equipment. They correctly noticed that it is redundant to consider the
equipment and computer modules separately, thus they modelled them as a single module.
After remodelling these modules, they copied the initial model of the patient. Then, the
subject again shifted their attention to the actions of the grandmother. They seemed to
struggle trying to decide how to model this part of the system. At the end, they announced
that they will instead try to deal first with the other aspects which they understand better.
In the next stage, they wrote down a more formal version of the specifications for which the
problem calls, and they determined the controllability of events. That led to a re-evaluation
of their understanding of the model of the patient. They modelled an additional component
that described another aspect of the patient’s activities. Apparently, the latest considerations
also made it more clear for the subject how to model the grandmother—they created a model
right away after finishing the additional model for the patient.

When all relevant subsystems were modelled, the subject started considering the control
necessary to protect the patient from overdosing on sugar or receiving too much insulin. They
seemed to have a hard time deciding how to model the corresponding specifications. The
main stumbling block was how to keep track of how much candy the child has been given and
how much candy has been consumed. The impasse was resolved when the subject decided
to use the same approach as the one they used with the buffer in the factory problem. They
modelled two supervisors: one for preventing “overflow”, i.e., eating too much candy, and
one for preventing “underflow”, i.e., administering too much insulin. While it did not appear
that the subject realized that the factory problem and the hospital problem are very similar
(neither did they mention this in the interview), there was clearly transfer of knowledge from
the solution of the first problem. In this case, this transfer was particularly important since
this was the knowledge that helped the subject advance.

The next realization by the subject was that in some of the their models, the event “give
candy” is controllable while, in others, it is not. They spent a long period trying to reconcile
their dualistic approach—considering both what it would mean to make all instances of the
event controllable and what it would mean to make all instances uncontrollable. At the end,
they resolved the issue by remodelling the model of the grandmother and making all instances
of “give candy” controllable. The subject seemed to realize that there is some redundancy
in their models but they did not seem to be able to pinpoint it.

In the last problem-solving step before the end of the session, the subject reviewed all
modules they had designed and determined that they were missing the supervisor which
would prevent the failure of the hospital information system. They created a very rough
sketch of the model, labelling states but not using any events. Then, they requested to use
the software, however, the time for the session expired.

During the modelling, the subject frequently modified or remodelled their models. How-
ever, it seems that there were two main causes for that behavior. First, the subject apparently

44

decided to initially sketch out rough models, and then create the “real”, more elaborate ver-
sions. Thus, remodelling seemed to be part of their plan. Second, a lot of the modifications
to existing models were induced by the changes of the subject’s understanding of the nature
of the system events. There was a variety of such modifications, from simple changes to the
controllability of events, to remodelling a complete module (for example, the module for the
grandmother was remodelled to reconcile it with the new understanding of the semantics of
the event “give candy”).

During the interview, the subject explained briefly their problem solving. They mentioned
that first they read the whole problem description, but afterwards they focused on different
parts, as the amount of information felt overwhelming. They attempted to model the parts
that they understood in order to “free” their mind from having to think about them. Then,
they could refer to the models when they needed to recall details (referring to the problem
description was not considered necessary since they trusted their models). The subject said
that the two most difficult aspects of the problem were determining what is part of the
system and what is part of the specifications, and what events should be used and what their
controllability should be. Having the current solution, the subject indicated that as future
steps in the problem solving they would like to check if the supervisors they designed are
controllable and if they are non-conflicting. If both tests are positive, they would announce
a successful solution. If not, they would go back to review if the models are correct and to
check if their interpretation of the control requirements is correct.

4.2.3 Within-subject analysis

For this subject, the factory problem was administered before the hospital problem. Transfer
of knowledge between the two problems was observed. The subject resolved a design issue
during the hospital problem by recalling a part of their solution of the factory problem.
However, there was no indication that the subject noticed a deeper-running similarity between
the two problems. For example, except on this one occasion, they never mentioned the factory
problem. Their interpretation of the study was that it was designed to examine to how people
interpret DES problems and how they convert informal verbal descriptions into formal DES
models.

This subject started using pen and paper for both problems, and used the software only
in the factory problem, when the process called for the composition of simple models into
more complex entities. The subject explained that they prefer the use of pen and paper
over a computer and they were “forced” to use software only due to the complexity of the
problem. However, their evaluation of the software was not entirely negative. They found the
the main interface intuitive and they liked the fact that they can drag elements of a model
to change its layout. The main complaints were the lack of some DES operations, such as
inverse projection and the check for conflict, and the fact that copying of events between
models was not supported.

When comparing the problem-solving strategies of the subject for both problems, they
were quite similar, however, there were also some differences. Both strategies were based
on the idea of first modelling all subsystems, then modelling supervisors and then checking
if the supervisors are controllable and non-conflicting. The subsystems were modelled in

45

sequence according to the “flow” of material or data through the system. However, due to
the perceived greater difficulty of the hospital problem, the subject employed an additional
strategy. When they encountered a subsystem which the subject did not have a good idea
how to model, they decided to postpone modelling it and to first complete modelling the
subsystems they were more confident about. This shift of priority was demonstrated two
times when the subject considered how to model the grandmother and then chose to first
model another aspect of the system. However, when modelling the supervisors, the subject
experienced difficulty in both problems—and subsequently applied the same strategy of first
modelling the simplest parts and last the hardest. A difference in problem solving was
observed in the management of information. In the factory problem, the subject read the
description of the problem thoroughly once and then all modelling proceeded without a major
interruption. During the hospital problem, the subject seemed to “partition” the problem
description into sections and then focus on each section separately—first examining it, and
then modelling the modules derived from the section. This was later confirmed by the subject
in the interview, where they explained that the amount of information was overwhelming for
them, so they decided to model the parts they understood so that they would not have to
think about them anymore. Another observed difference is the fact that during the hospital
problem the subject on a few occasions sketched very rough models which were later refined
and remodelled in greater detail. This approach was not used in the factory problem.

In both sessions, the subject never called the supervisor models “supervisors”. Instead,
they referred to them as “specifications”. However, in the last stages of problem solving it be-
came most clear that, in fact, these specifications were, or were being treated as, supervisors.
There are three indicators for this:

• The models of the specifications in the factory problem expressed not only the desired
behavior of the system, but also gave prescriptions for how to accomplish this behavior.
While there is quite a lot of flexibility in the extent to which control prescriptions are
included in the specifications, usually it is up to the supervisor construction algorithm
(in the software) to determine the best way to satisfy restrictions on system behavior.

• The subject was very concerned with having controllable specifications. A controllable
specification implies that the supervisor for this specification will be identical with the
specification, i.e., no additional control has to be exercised. Usually, specifications are
not controllable and the purpose of the supervisor construction algorithm is to find the
proper control policy to satisfy the specification. In this sense, the subject was aiming
for specifications which can be directly applied as supervisors.

• The check for lack of conflict is applied to supervisors. It has no significance when
applied to specifications.

Thus, we conclude that this subject did not have distinct concepts for specifications and
for supervisors. Designing supervisors is, normally, more demanding that designing control
specifications. This may also explain why this subject consistently experienced more difficulty
modelling, in their eyes, the “specifications” for the systems, compared to modelling the
subsystem modules.

46

A significant, and expected difference between the solving of the two problems was in
the speed and confidence which the subject manifested. The subject was fast in solving
the factory problem until they got to the modelling of the supervisors. They did not make
any recognizable mistakes with the subsystem modules. They managed to resolve most
issues with the specifications/supervisors and almost completed the problem within the time
allotment. On the other hand, when solving the hospital problem, the subject advanced
more slowly and made longer pauses between solving different parts of the problem. They
referred to the problem description to gain better understanding of the specific parts they
were working on. In the allotted time, they did not succeed in advancing further than
modelling the relevant components, some of them only very roughly. An objective evaluation
of the produced models also distinguishes the solutions to the two problems. In the factory
problem, the models and supervisors produced by the subject were, within a reasonable level
of tolerance, correct. In the hospital problem, the subject did not succeed in modelling all
system behavior correctly. They had notable problems with the models for the patient and
the grandmother. They considered two separate modules for the patient and for the level of
sugar in the blood of the patient, while a single model would have resolved some of the issues
the subject experienced. Furthermore, the module for the patient was modelled using two
separate, complementary models. This indicates that the complete function of the patient
was not apparent to the subject from the beginning. The module for the grandmother was,
eventually (and incorrectly), reduced to a single self-looping event. The subject indicated
that they had trouble discerning which parts of the problem should be part of the system
description and which ones should be part of the control specifications.

Lower-level activities of the subject also indicate patterns of similarity and difference.
For example, when comparing the results of the n-gram analysis for the pen-and-paper part
of problem solving (see Fig. 4.7), it is clear that the subject followed similar patterns of
actions during both problems. The only exception is in the actions related to events. It
was only during the hospital problem that the subject considered event controllability—and
thus performed event-specific actions. As a result, only during the hospital problem did
event-related actions have non-zero ratios (which is clearly visible in the chart with relative
ratios).

The results of the n-gram analysis show that when the subject modelled using pen and
paper, they were likely to continue working on the same aspect of the model, e.g., when
working on transitions they were likely to continue working on transitions. This is visible in
the high absolute and relative ratios of the bigrams ‘TT’, ‘SS’, ‘EE’ (for the hospital problem)
and ‘MM’. The relative ratio of the bigram ‘ST’ is a little bit higher than that of ‘TS’. This
indicates that usually the subject would first draw all states and then start drawing the all
transitions, i.e., they would normally not return to drawing states after drawing transitions.
The bigram ‘MS’ has a high relative ratio. This means that, after considering a module, the
subject very reliably proceeded working on the states of a model.

More differences can be observed when examining the results of the n-gram analysis
for the factory problem, when solving with pen-and-paper or software (see Fig. 4.8). The
first difference, as expected, is the fact that only when the software was used did the DES-
algorithm-related bigrams (including the code ‘C’) have non-zero ratios. Similarly, as dis-

47

cussed previously, no event-related actions were recorded during solving with pen and paper.
For both stages of problem solving, the relative ratios show that continuing working on the
same aspect of the problem is very likely (even the occurrence of ‘CC’ is more likely than
any other bigram containing ‘C’). However, there is an interesting exception: during the use
of the software, both the ‘ST’ and ‘TS’ bigrams occur more frequently than the ‘SS’ bigram
(see the absolute ratios), and the relative ratio of ‘ST’ is higher than that of ‘SS’. This means
that, when using the software, the subject did not tend to create states in bulk. Rather, they
would alternate between creating states and transitions.

When dealing with DES algorithms (bigrams including the code ‘C’), the subject tended
to stay in at the higher-level context of modules and algorithms (notice the elevated relative
ratios of the bigrams ‘CM’, ’MC’ and ’CC’). The elements of the low-level models that seem
to be most relevant to the DES algorithms are the transitions (higher relative ratio of ‘CT’
and lower ‘CS’ or ‘CE’ ratios). However, the number of algorithm-related bigrams is quite
small (see low absolute ratios) and thus these conclusions may not be reliable.

Figure 4.7: The absolute and relative ratios of bigrams for pen-and-paper problem solving
during factory problem (FP) and the hospital problem (H). Data are sorted according to the
ratios in the factory problem.

The attention of the subject throughout the problem solving was analysed as described in
Section 3.7. During the factory problem, the subject was very verbal about their discoveries
about the functionality of IDES. Besides that, most of the times, the perceptually-triggered
data discovery concerned modules and their control. Such discoveries usually occurred within
the current context of the subject (e.g., when working on the supervisor for buffer 1 under-
flow, they discovered something about the same model, the supervisor for buffer 1 underflow).
There was some indication that discoveries about the problem description were also made

48

Figure 4.8: The absolute and relative ratios of bigrams for pen-and-paper problem solving
(FP) and solving using software (FC) during the factory problem. Data are sorted according
to the ratios in pen-and-paper solving.

from within a number of contexts, most prominently when working on the supervisors for
the buffers. Cognitively-driven data discovery concerned all possible aspects and entities
which were used in the encoding, evenly. The subject voiced intentions to collect the data
using all ways which were encoded, evenly. When counting, they counted states, events and
models. Again, discovery targeted most frequently aspects of the current context. During
the hospital problem, the subject did not report almost any perception-triggered data discov-
ery. The reported discovery concerned dynamics of subsystems and usually referred to the
problem description. The cognitively-driven data discovery concerned mostly the problem-
solving method, modules and events. When counting, the subject counted states or modules.
Examining the contexts of the cognitively-driven data discovery, a clear pattern emerged:
the subject seemed to be interested in data about all modules while working on the patient
module. The most frequent modules of interest were the module for the grandmother and
the module for the doctor. The subject also seemed to be interested in information about
other modules while working on the modules for the doctor and for the hospital information
system. No other reliable patterns were discovered.

The analysis of the visual attention of the subject revealed the following facts. During the
factory problem, the problem description was the most common target of visual attention,
especially during the modelling of the supervisors for the buffers. Otherwise, the subject
usually did not focus on a specific sheet of paper but rather examined all models. Thus, no
specific patterns of attention could be established. During the hospital problem, the subject’s
attention was, again, attracted most by the problem description. The following patterns

49

emerged. When remodelling the module of the patient, the subject frequently paid attention
to the sheets of paper with the initial, prototype models of the patient, equipment, computer
and doctor, and the models of the supervisors for the control of the blood sugar level. When
modelling the supervisors for the control of the blood sugar level and for the report, they paid
attention to the sheet with the proper models of the equipment, hospital information system,
doctor, grandmother and patient. When modelling properly the equipment and the hospital
information system, they paid attention to the sheet with the initial, prototype models of
the patient, equipment, computer and doctor. When remodelling the grandmother, they
paid attention to the sheet with the models of the supervisors for the control of the blood
sugar level. The modelling of the doctor was much more self-contained, without switching
the visual attention to other sheets of paper.

4.3 Subject 3

At the time of their participation, subject 3 was a Master’s student in Computer Science.
The subject rated their background, on a scale from 1 (very little) to 5 (very much), as
follows:

• Knowledge of some natural science: 5,

• Engineering background: 3,

• Knowledge of DES control theory: 4,

• Experience using software for DES: 5,

• Experience using the IDES software: 4.

Using the same scale, they rated their comfort using English as 5. At the time of participation,
one semester had passed since the subject was enrolled at the ELEC843 course offered by
Dr. Rudie at Queen’s University.

The observations of the experimenter were that during the study, the subject felt comfort-
able with thinking aloud, however, they tended to be very talkative and they often interrupted
their problem solving to elaborate on their thoughts. In the beginning, the subject aimed
their speech at the experimenter and often attempted to initiate a conversation. For this rea-
son, the experimenter decided to forgo the opportunity to observe the actions of the subject
directly and instead moved out of the field of view of the subject. This significantly reduced
the interactivity in the speech of the subject. During the factory problem, the experimenter
reminded them to keep talking 9 times; during the hospital problem—12 times. Thinking
aloud at a low level of elaboration seemed to be difficult for the subject. Thus, it is expected
that this subject’s problem solving was impacted by the act of thinking aloud—at the very
least, by decreasing the speed of the subject’s performance. Furthermore, it is possible that
the problem-solving strategy of the subject might have also been altered due to verbalizing.
However, the results for this subject are also included in the study since they exhibited some
unusual points of view and since this seems to be the subject with the least expertise. Thus,
their approach is useful in illustrating problems less experienced users of DES tools may have.

50

The following abbreviations are used in the chart: TU – testing unit, B1 – buffer 1, B2 – buffer 2, K –

monolithic control specification, SL – composition of testing unit with monolithic control specification.

Figure 4.9: Flowchart of the strategy used by subject 1 when solving the factory problem.

4.3.1 Factory problem

The strategy used to solve the problem can be seen graphically in Fig. 4.9. While the
subject did not make a distinction between modules of the system and modules of the control
specifications, they modelled the problem in a modular way. Then, they tried to combine
the modules into a monolithic model. Before the time allotment for the session was over, the
subject announced that they “give up” solving the problem and the session was terminated.

After receiving the description of the problem and examining it, the subject noticed that
this problem is very similar to, if not the same as, the problem discussed in the ELEC843
course. They read the description of the problem and examined the supplied diagram. They
made no additional diagrams and did not write down any notes.

The subject started modelling using pen and paper. First, they announced that they
would model the machines mentioned in the description, but almost immediately they rein-
terpreted their actions as modelling the buffers from the problem. First, they modelled
buffer 1 and then buffer 2. Then, the subject modelled the testing unit. Unlike modelling
the buffers, modelling the testing unit seemed more demanding for the subject. After being
done with this model, they made an overview of all the models they had, also checking if the
problem mentions machines breaking down. Since this is never mentioned in the problem
description, one can assume the subject was recalling the problem solved in the ELEC483
course where machines, indeed, could break down. They also made a guess that the main

51

issue in this problem is the prevention of deadlock.
The next step of the subject was to compose the models of the buffers, announcing

that they would use the operation “meet” (or intersection). They started composing the
modules manually, however, soon they requested the use of the computer. After inputting
the two buffers, the subject attempted to compose the models by using the “meet” operation.
Repeated attempts did not produce the results the subject expected, e.g., the outcome was
an automaton with a single state and no transitions. The subject, for a brief period of time,
discontinued using the software and tried instead to “see the solution in their head”. They
analysed the problem and came up with the idea of keeping an empty slot in the first buffer.
Soon afterward, however, they returned to their attempts to compose the two buffers using
both pen and paper and software in an iterative process. The first issue they addressed was
the question of whether the events have to be shared between the two models or whether
the models should use different events. The subject recalled that this is a problem they
also had in solving the hospital problem, however, they could not remember what they had
decided at that time. Finally, they decided to use shared events. The second issue they
addressed was the issue of self-loops in the model of control specifications. They added
self-loops to the models of the buffers and, after another iteration, the result of the module
composition was acceptable. The subject referred to the outputs of the DES operations as
being “interesting” with various degrees. It seemed that being “interesting”, or having a
rich graphical representation (such as many states and transitions), was the criterion used
to determine if a result was acceptable or not. Later, in the interview, the subject explained
more specifically what cues they used to judge the validity of the models output by the
software. They said that having only one or two states was an obvious indication that a
model is incorrect. When there were more states, the subject looked at the transitions,
following short traces to see if the traces lead to states in a way that made sense. In the
model they accepted as correct, they noticed that all transitions seem to follow a pattern
and to generally flow in the same direction.

When the composition of the buffers was obtained, the subject announced that would
like to verify it. To that end, they wanted to obtain a paper copy of the computed model. A
natural way to do it would be to print it. However, IDES does not provide this functionality
and so the subject had to manually copy the model from the screen. During the copying,
they seemed to pay extra attention to the structure of the model. Furthermore, they did
not perform any verification activities after finishing the copying. Thus, it seemed that they
verified the model during the process of copying.

In the next step, the subject wanted to consider the testing unit in their overall solution.
They used pen and paper and the model of the buffers copied from the software. Again,
the subject focused their attention on the problematic state during the execution of the
system, where both buffers are full and a failed test of a part would result in a deadlock,
the testing unit not being able to deposit the part in buffer 1. Then, they remodelled the
testing unit in terms of the events used in the buffers. Choosing which events to use appeared
very problematic for the subject. As well, they indicated that they were not sure how to
“combine” the model of the testing unit with the model of the buffers. After finishing the
model, they proceeded to inputting it into the software and composing it with the combined

52

model of the buffers using “meet”. Then, they tried to interpret the result and see if it
“makes sense”. The subject did not find the automatically generated layout helpful so they
spent time moving nodes and transitions to make the layout more clear. They followed a
trace of events from the initial state and soon concluded that “something is wrong.” They
returned to examining their models designed on paper.

The subject decided to try remodelling the testing unit once again. While doing that,
they proceeded to modify the model of the first buffer to include a separate event denoting
the depositing of a part from the testing unit. Initially, there was only a single event for
part depositing by both machine one and the testing unit. Then, their attention seemed
to be exclusively focused on trying to figure out how to implement their understanding of
how to solve the problem of deadlock when buffer 1 is full and the testing unit rejects a
part. They examined all models, including already rejected models (such as their first model
of the testing unit). After some time struggling to come up with a strategy, the subject
discontinued solving the problem—well before the expiration of the session.

The event names used by the subject were abstract and were not based on the verbal
descriptions of the events. For example, the event when machine 1 puts a part into buffer 1
was named “a” and the event when machine 2 puts a part into buffer 2 was named initially
“c” (and later was renamed to “a”). Initially, the subject did not make any notes about what
events were used in the models besides the occurrences of the events as labels of transitions.
However, when they started modelling the testing unit, they wrote down a legend for the
used events (in this case, from “a” to “f”). The use of abstract names did not seem to pose
a problem for the subject, in the sense of causing confusion over which event is denoted by
a given name. The controllability of events was not considered at all during the session.

During the modelling, the subject decided to correct or remodel some modules. Some of
the changes to models were inspired by working on a different module and recognizing an
inconsistency. For example, while working at the testing unit, the subject realized that the
model for the first buffer did not have an event to denote the depositing of a part which has
failed the test. However, most of the other modifications and remodelling occurred only in
response to specific issues, such as the unsuccessful composition of two models. The subject
did not appear to have much justification for their activities; it seemed that they were trying
to recall what had worked in the past and then they applied it to the current situation. They
tried using both shared and disparate events, substantiating their choice by “checking to see
what the result would be”. Similarly, the addition of self-looped events in the models was
considered when the subject remembered that this had been a successful solution in the past.
It was not the description of the problem that led them to the conclusion that self-loops are
necessary. Most of the difficulties the subject had and most of the modifications they did
revolved around the events used in the models. It seemed the subject was not very sure how
to model the dynamics of the system using events.

During the interview, the subject explained briefly their problem solving. The subject
mentioned that they tried to model all subsystems, namely the buffers and the testing unit
separately and then to compose them. They reiterated that the modular approach is very
important to deal with difficult-to-model systems. They expressed confidence in their models
of the buffers and the composition of the buffers, however, they confirmed that the testing

53

unit was difficult to model. The subject said that they understand the problem that needs
to be resolved (i.e., the potential for a deadlock when all buffers are full), however, they were
not able to express it using DES theory. They explained that they realized where there could
be a problem by considering the different cases of what could happen in the system. Their
attention had been attracted, according to them logically, by the state when all buffers are
full since this is the only case that could result in a deadlock (i.e., when the testing unit
attempts to return a part for re-processing). The machines in the problem do not break
down, so the flow of parts through the system would be fluid if there were no feedback loop
from the testing unit. Having the current solution, the subject indicated that as a future
step in the problem solving they would like to consider the controllability of events. As well,
they would like to review the solution for the similar system, given as an example in the
ELEC843 course.

4.3.2 Hospital problem

The strategy used to solve the problem can be seen graphically in Fig. 4.10. The subject
modelled only part of the system, in a modular way. They did not use the IDES software at
any point. Before the time allotment for the session was over, the subject decided to stop
solving the problem.

The subject started solving by reading the description of the problem and then taking
notes, summarizing the points they found important. They focused their attention roughly in
the following order: candy, computer, equipment, patient, equipment, doctor, grandmother,
patient, report, sugar level.

For each model, the subject created a separate legend to keep track of the events that
they used. They listed each new event as they started using it in a model. The event names
used by the subject were abstract and were not based on the verbal descriptions of the events.
For example, the event when the doctor gives a candy to the child was called “f”, the event
when the computer transmits the information to the hospital information system was called
“b”, etc. In general, the subject named the first event they started using in a model “a”, the
second one “b”, and so on using consecutive letters from the alphabet. When a new event
was listed in a legend, a short description of the event was included, e.g., “c – inject insulin”.
The controllability of the events was not considered during the problem solving. Frequently,
events would signify actions, such as “send data” or “order insulin injection”. However, there
were also events signifying a state of the system, such as “blood sugar level outside limit” or
“good report”; and even events such as “do nothing”.

The subject started modelling by drawing the model for the doctor. They interrupted
working on this model to consider the dynamics of, and then model, the prototype equipment.
After this, the subject decided to create a more high-level block diagram of the entities
in the problem. They considered the prototype equipment, the computer and the hospital
information system. Then, the subject modelled the hospital information system. The model
seemed to be more of a sketch rather than a complete model, however, the subject moved
on to review the role of the nurse in the problem. They did not produce any model for the
nurse, but instead they started remodelling the equipment. They remarked that they will not
consider marked states since the system is non-terminating. They proceeded by creating a

54

The following abbreviations are used in the chart: DR – doctor, EQ – prototype equipment, CP – computer,

HIS – Hospital Information System.

Figure 4.10: Flowchart of the strategy used by subject 3 when solving the hospital problem.

55

model for the computer and then shifted their attention back to the incomplete model for the
doctor. The subject did not seem to interpret some of the requirements from the description
of the problem correctly. In their model of the doctor, the doctor can access the information
system before a report is available and only has to wait until the report appears. In the
problem description, it is explicitly stated that the doctor should not access the information
system if no report is available.

When the subject finished modelling the doctor, they briefly reviewed all the models and
decided to copy the good ones onto a single page. They copied only the equipment model
and then they again preoccupied themselves with trying to come understand the problem
and what needs to be done to arrive at a solution. They complained about the complexity
of the problem or, more specifically, with the amount of information that they need to
consider. As an example, they mentioned that they had forgotten about the requirement to
keep the level of sugar in the patient’s bloodstream limited. They entertained the idea of
having a “rollback” system to keep track of sugar and insulin. However, no formalizations
were produced. The subject reviewed once again all the models they had and announced
that they would try to establish if the models can “work together”—especially if the “meet”
operation is applied. While they were examining the models, they came to the realization
that they had not considered controllability and observability of events. Soon after, the
subject conceded defeat and stopped solving the problem.

During the modelling, the subject decided to remodel only one module—that of the
prototype equipment. It is not clear what exactly is the reason for this decision. The subject
suddenly ventured into this task after examining the description of the problem. They did
not seem to reference their previous model for the equipment at all. Furthermore, the subject
initially designed two separate models for the equipment and for the computer. They did
not seem to realize that it is sufficient to model the functionality of these two entities using
a single, small model. However, there was some indication that, implicitly, the subject was
aware that it is not important to consider the computer separately. They never referenced
the model of the computer in their discussions and they did not include it in their review
of the modules which were “ready”. We feel this omission of the computer model cannot be
explained simply by the fact that the computer was on a separate sheet of paper since the
subject always examined this sheet as well.

During the interview, the subject explained briefly their problem solving. The subject
mentioned that they tried to model each entity separately. However, after a while of working,
they noticed that their approach was flawed. They should have spent more time trying to
abstract away details of the system and they should have considered relationships between
entities earlier on. Also, they recognized that they did not consider the grandmother in
their solution, which was to them obviously an omission. The subject noted that they did
not have problems recalling concepts from DES theory, however, they did not know how to
use them in modelling. They recommended that courses teaching DES theory focus more on
modelling specific systems. The two ideas put forth for how to achieve this were either to have
a two-semester course, or to move the theory into an undergraduate course and then expect
graduate students to have this prerequisite. As future, hypothetical steps in problem solving,
the subject mentioned that they would like to input the models into software like TCT [9],

56

define the controllability and observability of events, compose the models and examine them
to see if all states are reachable and if there is a deadlock. In order to conclude that the
problem has been solved, to them it was necessary to make sure that the solution is safe
for the patient. However, the subject said that, in order to solve the problem, they would
most probably have to review again the material from the ELEC843 course. Specifically,
they would have to examine other problems which have been solved, e.g., the problem with
machines (here the subject most probably referred to one of the factory problems in [66])
and they would have to study how events interact when models are composed.

4.3.3 Within-subject analysis

For this subject, the hospital problem was administered before the factory problem. Trans-
fer of knowledge between the two problems was observed. They applied knowledge from
solving the hospital problem to resolve an issue in the factory problem. More specifically,
they recalled that shared events have to be considered when composing modules which work
together. However, there was no indication that the subject noticed a deeper-running simi-
larity between the two problems. During the final interview, the subject noted that they felt
better about their solution to the factory problem in comparison to the hospital problem.
They explained that the hospital problem seemed to have significantly more information to
attend to and that it was the largest problem they had had to solve up to that point.

This subject did not discuss what their motivation was to use pen and paper or software
to solve the DES problems. Our observation shows that the subject in both cases started
problem solving by using pen and paper. Only when they needed to perform a DES operation,
such as composition of modules, would they decide to use the computer. In the factory
problem, the subject even tried first to compose two modules manually before requesting
the use of the software. Furthermore, after obtaining the composition of modules, they
preferred to transfer the new model from the software onto paper and to continue working
with pen and paper. On the other hand, the application of a DES operation—selecting the
relevant modules and then choosing the operation—was simple according to the subject.
They appeared to use the software interface with confidence and they spent a portion of the
problem-solving session working simultaneously with the software and with pen and paper
with an apparently fluid workflow. In the interviews, the subject had comments about the
software. They would have liked to have support for diagrams and to have a central repository
of events from where events would be selected during modelling. Furthermore, the subject
imagined software where hovering over event names, or zooming into small sections of a
model, would reveal the descriptions for the events. In this way, short (and non-intuitive)
event names would be used in complex models to reduce clutter but descriptions of the events
will be available upon request.

The comparison of the problem-solving strategies used by the subject in the two problems
indicates similarity only on the surface level. First, in both problems the subject used a
modular approach to modelling instead of trying to create a monolithic model. Furthermore,
in both problems the subject did not seem to clearly distinguish between subsystems and
specifications for the control of the subsystems. The fact that sometimes specifications appear
like real units may be contributing to the difficulty of making a distinction. For example, in

57

the factory problem buffers are real entities, parts of the factory floor. However, in a DES
system description they should be modelled as parts of the control specifications since they
are passive units and only impose limitations on the units interacting with them. Beyond
these similarities, the strategies employed by the subject are largely incomparable. The
actions of the subject were predominantly opportunistic, i.e., they seemed to be motivated
by what was possible to do at a given situation rather than by the procedure of a thought-
out plan. It is clear that the subject was uncertain how to approach DES problem solving
and they had difficulty expressing the situation described for a problem in terms of DES
models. Most of the models they created do not have an interpretation helpful for solving
the problem. Similarly, the events used in the models do not reflect good understanding of
DES modelling methodologies. As a result, the attempts of the subject to compose models
did not work out properly since correctly defined events are crucial for the success of the
composition operation.

An examination of the models produced by the subject indicates that they have a different
interpretation of finite-state automata than the one employed in DES design. In the DES
framework, the states of a model represent specific configurations of the controlled system.
The events on the transitions signify actions executed by the system or changes of the system
configuration due to events in the environment, e.g., a water tank filling up above a threshold
value. The subject, however, had a different interpretation of finite-state automata, much
closer to that of process diagrams. In process diagrams, states (or boxes) signify steps or
tasks of a process, e.g., “transport a part between two factory robots” or “fill up water tank”.
In this sense, the system may be executing a number of actions in order to complete the task.
The transitions between states signify potential outcomes of a process step and lead to the
steps that have to follow each respective outcome. For example, there can be a transition
from “fill up water tank” to “water garden”, labelled with “tank is full”, and a transition
from “fill up water tank” back to the same task, labelled with “tank is not full”. In this
sense, transitions are interpreted as states of the system and lead to the actions which have
to be taken under different circumstances. This is different from the DES interpretation,
where transitions are the actions which lead to different states. The models of the subject
included states labelled, for example, “read report” and “send data” and transitions labelled,
for example, “report is not available” and “part is present”. This is completely contrary to
how the system would be modelled as a DES, where “read report” and “send data” would
be the transitions and “report is available” and “part is present” would be states. However,
this confusion was not consistent in the models of the subject. In many cases, the models
were much more along the lines of the DES approach. For example, in the buffer models, the
states indicated how many parts are in the buffer and the transitions stood for the actions
of depositing or removing parts from the buffer; or, in the model of the doctor, there would
be events for the prescription of insulin or for giving candy to the patient. The subject
occasionally employed in their models transitions labelled “do nothing” or “wait for. . . ”.
These transitions usually led between states with different tasks but where no action has to be
taken to move between these states. For example, in the model for the prototype equipment
from the hospital problem, the subject drew a “do nothing” transition between the “send
data” and “take reading” states (since the equipment can take a new reading after it sends

58

fail

e

d

f

Figure 4.11: A reconstruction of a part of the model of the testing unit made by subject 3
during the factory problem. In the associated legend, the events were listed as follows: “d –
part failed”, “e – no space in buffer”, “f – reject back to B1”.

the data from the previous reading). The confusion between states and transitions not only
resulted in models which could not be used in the DES framework. Apparently, sometimes
it also led to incorrect interpretations of the behavior of the system. For example, during
the factory problem, in one of the model of the testing unit, the subject had the structure
shown in Fig. 4.11. According to this structure, and according to the verbal interpretation
given by the subject, when a part fails the quality test, the testing unit has to wait until
there is an empty spot in buffer 1 in order to deposit it there. This, according to the subject,
would be the cause of a deadlock in the system. In the problem description, however, it is
explained that one can only control when a part is picked up by the testing unit and that
the depositing into buffer 1 cannot be prevented in case the part fails the test. Thus, in the
system there will be a deadlock if and only if the control strategy, designed by the control
engineer (in the case of our study—by the subject), results in preventing both machines and
the testing unit from picking a part for processing.

Besides the problematic models, the way the subject dealt with the events in the system
also contributed, in our opinion, to the failure of their problem solving. The first observation
is that, especially in the hospital problem, the subject modelled each module completely sep-
arately. As they indicated in their interview, they failed to consider module interactions early
on in the process of problem solving and subsequently they felt they would have to remodel
everything—contributing to their decision to give up problem solving. A similar lack of un-
derstanding of how to couple interacting modules via shared events was demonstrated in the
factory problem where the attempts of the subject to compose modules were consistently un-
successful (and even in the cases when the subject believed they had the proper composition,
it was incorrect). In our opinion, these problems were also, to a certain extent, due to the use
of abstract event names by the subject. It can be observed that generic names (such as “a”,
“b”, etc.) generally contribute to a more difficult process of problem solving since the subject
has to maintain a mapping between arbitrary symbols and the significance of the symbols.
More descriptive event names may serve as retrieval keys and make this task easier. During
the factory problem, when the subject (correctly) observed that modules have to share event
names, they (incorrectly) decided to make the events of the buffers identical. It seems that
this mistake would have been more easily avoided if event names were more specific, e.g.,
containing information on which machine is executing the event (and thus, distinguishing the
“put” event in buffer one from the “put” event in buffer two by virtue of which machine is

59

depositing a part). During the hospital problem, the same mistake was made, inadvertently.
Since the events in all modules were labelled with letters from the beginning of the alpha-
bet, all modules shared events that should have been completely separate. Had the subject
attempted any composition of modules, they would have ended with a meaningless model.

In terms of the speed and confidence of problem solving, there did not seem to be a
marked difference between the two problems. Only the modelling of the buffers in the factory
problem seemed to be accomplished with a degree of confidence. Considering that these two
models were also closest to the expected, correct versions of the models, we believe that the
subject had the best recollection of the buffer models from the problem that they had seen
in the ELEC843 course. The quality of the solution deteriorated significantly for the rest
of the models, presumably because they could not remember the other parts of the solution
from the course. This interpretation is substantiated to some extent from a number of
observations. For example, the subject indicated on a few occasions that they were thinking
about the previously seen solutions and that they could not recall many details from the
course material. Also, during the interview, they expressed interest in reviewing examples
from the course. Overall, the models produced of the subject were incorrect and could not be
used to correctly solve the problem. The subject did not work fast and frequently struggled
with different issues. In both problems, they discontinued their solving before the session
expired.

Lower-level activities of the subject also indicate patterns of similarity and difference.
For example, when comparing the results of the n-gram analysis for the pen-and-paper part
of problem solving (see Fig. 4.12), it is clear that the subject followed similar patterns of
actions during both problems. When the subject modelled using pen and paper, they were
likely to continue working on the same aspect of the model, e.g., when working on transitions
they were likely to continue working on transitions. This is visible in the high absolute and
relative ratios of the bigrams ‘TT’, ‘SS’, ‘EE’ and ‘MM’ (for the hospital problem). However,
a general trend can be observed in the data from the hospital problem which indicates that
the subject was less likely to work with a specific entity in bulk. For example, the absolute
ratio of the bigram ‘TT’ is reduced while that of ‘ST’ and ‘TS’ is elevated, in comparison
to the factory problem. Similarly, the relative ratios of the bigrams ‘SS’, ‘EE’ and ‘TT’ are
lower. The only exception is the relative ratio of the bigram ‘MM’ which is higher for the
hospital problem. This indicates longer periods in which the subject considered modules
without mentioning building blocks (such as states and transitions). The bigram ‘MS’ has a
very high relative ratio for both problems. This means that, after considering a module (or a
number of modules in the case of the hospital problem), the subject very reliably proceeded
working on the states of a model.

More differences can be observed when examining the results of the n-gram analysis for
the factory problem, when solving with pen-and-paper or software (see Fig. 4.13). The first
difference, as expected, is the fact that only when the software was used, the DES-algorithm-
related bigrams (including the code ‘C’) have non-zero ratios. For both stages of problem
solving, the relative ratios show that continuing working on the same aspect of the problem
is very likely, with the exception of the use of computational algorithms. The relative ratio
of the bigram ‘CM’ is much higher than that of the bigram ‘CC’. Furthermore, when working

60

with the software, the subject was much more likely to continue examining a module once
they started looking at it (as shown by the high absolute and relative ratios of the bigram
‘MM’, and by the large decrease in the relative ratio of the bigram ‘MS’). The subject used
the software mainly to compose modules and they were struggling to determine how to do
it properly. Thus, it is not a surprise that the data indicate a workflow where first a DES
operation is called and then the result is extensively examined.

Figure 4.12: The absolute and relative ratios of bigrams for pen-and-paper problem solving
during factory problem (FP) and the hospital problem (H). Data are sorted according to the
ratios in the factory problem.

The attention of the subject throughout the problem solving was analysed as described in
Section 3.7. During the factory problem, the subject did not report almost any perception-
triggered data discovery. Cognitively-driven data discovery concerned mostly relationships
between modules and the dynamics of modules. The functionality of the software was also
frequently of interest. This may be largely due to the fact that the subject was struggling
with the composition of modules. The subject voiced intentions to collect the data using
mostly visual inspection or counting. When counting, they counted states and transitions.
However, the most common method the subject used to discover information was to ask the
experimenter. As already mentioned, this heightened level of interaction was also observed
by the experimenter. The cognitive-driven data discovery frequently concerned modules
other than the one that the subject was working on, e.g., there was cross-context reference
between the testing unit and the buffers and between the testing unit and the composition
of the buffers. This indicates that the subject was actively searching for disparate pieces
of information. This is consistent with the observation that the problem solving approach
of the subject was mostly opportunistic. During the hospital problem, the subject did not

61

Figure 4.13: The absolute and relative ratios of bigrams for pen-and-paper problem solving
(FP) and solving using software (FC) during the factory problem. Data are sorted according
to the ratios in pen-and-paper solving.

report almost any perception-triggered data discovery either. The reported discovery usually
concerned the problem description and they were made while working on the model of the
prototype equipment. There were only a limited number of occasions when the subject voiced
their intention of cognitively-driven data discovery. The most frequent item of interest was
the relationship between modules. The methods for data collection usually involved reading
the description or asking the experimenter. There was no compelling evidence for cross-
context data discovery.

The analysis of the visual attention of the subject revealed the following facts. During the
factory problem, the subject did not attend to the problem description very frequently, except
when modelling the testing unit. The following other patterns emerged. When modifying
the specification for buffer 1, the subject paid attention to the sheet of paper with the latest
version of the model for the testing unit. When modifying the specification for buffer 2, they
paid attention to the composition of the two buffers—both as displayed on the computer
screen and as re-drawn on a sheet of paper. When composing the models of the buffers using
the software, the subject attended to the sheet with the models of the buffers and the testing
unit. When remodelling the testing unit, the they referred to the sheets with the models of
the buffers, the composition of the buffers, and the initial model of the testing unit. During
the hospital problem, the subject’s attention was attracted more frequently by the problem
description, however, most of these references occurred during the modelling of the module
for the equipment. The following other patterns emerged. When remodelling the module
of the computer, the subject paid attention also to the sheets of paper with the models of

62

the doctor, equipment and hospital information system. When modelling the module for the
doctor, they paid attention to the sheets with the models of the equipment, the computer,
and the summary of the problem description. When remodelling the equipment, they paid
attention to the sheets with the previous models of the equipment, the models of the doctor,
hospital information system, computer, the summary of the problem description and the
diagram the subject had created. They referred to this diagram also during the modelling of
the hospital information system and the initial modelling of the equipment.

4.4 Subject 4

At the time of their participation, subject 4 was a Master’s student in Computer Science.
The subject rated their background, on a scale from 1 (very little) to 5 (very much), as
follows:

• Knowledge of some natural science: 4,

• Engineering background: 2,

• Knowledge of DES control theory: 4,

• Experience using software for DES: 4,

• Experience using the IDES software: 4.

Using the same scale, they rated their comfort using English as 5. At the time of participation,
one semester had passed since the subject was enrolled at the ELEC843 course offered by
Dr. Rudie at Queen’s University.

The observations of the experimenter were that during the study, the subject did not feel
entirely confident thinking aloud. It seemed that they talk due to the requirements of the
study (i.e., they were asked to think aloud) instead of using natural flow of speech. During
the factory problem, the experimenter reminded them to keep talking three times; during
the hospital problem no reminders were given. The impact of thinking aloud on the problem
solving of the subject was hard to estimate. The impression is that the process of problem
solving exhibited by the subject might have been more structured than it would normally
be since the subject proceeded slowly and did not make many corrections. The subjective
impression of the subject was that thinking aloud was not as difficult as they had anticipated.

4.4.1 Factory problem

The strategy used to solve the problem can be seen graphically in Fig. 4.14. The subject
modelled both the system and the control specifications in a modular way. They started
designing modular supervisors manually, however, time ran out before they could finish their
work.

Upon receiving the description of the problem, the subject read it and immediately ven-
tured into modelling the system. They made no additional diagrams and did not write down

63

The following abbreviations are used in the chart: M – machines 1 and 2, TU – testing unit, B1 – buffer 1,

B2 – buffer 2, B – buffers 1 and 2, K – monolithic control specification, SB1 – supervisor for buffer 1, SB2 –

supervisor for buffer 2.

Figure 4.14: Flowchart of the strategy used by subject 4 when solving the factory problem.

64

any notes. Apparently reading was enough for them to gain understanding of the problem.
The subject did not mention that they had recognized any similarity between this problem
and the problem that had been discussed in the ELEC843 course. However, during the in-
terview at the end, they said that they remembered the problem from the course and they
were trying to recall how the solution should proceed.

The subject used exclusively pen and paper to model the DES modules and, later, the
supervisors for the system. The modelling proceeded at a slow but steady pace and the
subject did not need to correct their work very often. They began by considering how to
model the first buffer and machine 1. However, soon their attention was subsumed by the
events they should use—what names to use and which ones are controllable. These issues were
the most significant uncertainties experienced by the subject during the modelling. After the
issues were resolved, the subject modelled machine 1 and then, instead of creating another
model for machine 2, they copied the model, generalizing it for both machines using indexed
events. The subject considered marking of states in all modules during the modelling. When
working on buffer 1, the subject wondered what the requirements are for the marking in the
specifications and they re-examined the problem description. They did not seem to find the
information they needed so they decided to mark the state where the buffer is empty. When
marking states in buffer 2, they referred to their decision with buffer 1 and did the same to
“be consistent”. A similar justification was given for the general design of buffer 2, which
indicates that the subject was reusing their design decisions.

The event names used by the subject were abstract and were not based on the verbal
descriptions of the events. For example, the event when machine 1 takes a part for processing
was named “α1”, the event when machine 2 puts a part in the output buffer was named “β2”,
the events when the testing of the quality of a part by the testing unit is positive or negative
were named “β3” and “ρ”, respectively. The only potential argument for some influence of
speech on the event names could be the event “ρ” where the Greek letter could stand for
the first letter of the word “reject” (as “reject” was frequently used by the subject in their
verbal references to “ρ”). Initially, the subject did not make any notes about what events are
used in the models besides the occurrences of the events as labels of transitions. However,
as they introduced more events in their models, they wrote them down. After finishing all
models, the subject amalgamated all events that had been used into a separate list where
their controllability was noted as well. The use of abstract names did not seem to pose a
problem to the subject, in the sense of being confused about which event is denoted by a
given name. In the interview they mentioned that they were coming up with event names
as needed. However, they tried to use a scheme which helped them remember the names.
They said that they became completely comfortable with the event names half way into the
session.

After the basic modelling, the subject proceeded in their problem solving by building
supervisors for the system manually. They tried to recall what the solution had been in the
problem they had seen in the ELEC843 course. They decided to create modular supervisors
(a separate supervisor for each specification). One point of concern they had was whether
during the modelling they had managed to separate the control requirements from the system
model.

65

The subject started modelling the supervisor for buffer 2 because, in their words, this
supervisor should be easier as the feedback from the testing unit does not have to be con-
sidered. This fact had been pointed out in the ELEC843 course and the subject could have
recalled it. Before designing the finite-state representation, they wrote down a more formal
version of the requirements from the problem description and they drew a small diagram of
the relevant modules (basically replicating a subsection of the diagram provided with the
problem). While drawing the finite-state model, they remarked a number of time that the
task is similar to drawing the intersection of the models for machine 1 and buffer 2. The
modelling task made the subject question again if there is enough separation between their
models of the specifications and the system. From the verbalizations of the subject and from
their subsequent modifications of the models of the buffers it became clear that they were
confused about the interpretation of the buffer models. The subject thought that they had
embedded the control decisions into the buffer models since these models did not describe
what is physically possible in the system. E.g., the model for buffer 2 did not reflect that it
is physically possible for machine 2 to deposit a part into it after one part has already been
deposited (the buffer has a capacity of one). As a result, the subject modified the buffer
modules to indicate potential evolutions which lead to “bad” (or undesirable) states. In do-
ing this, the subject forfeited the purpose of having separate buffer modules since the only
purpose for having them is to model the specifications for the system. When all possible sys-
tem behavior is modelled, implicitly no restrictions are imposed on the system. Apparently,
the subject experienced doubts about the role of the buffer modules and gradually converged
onto considering them as subsystem modules.

After the subject modified the models of the buffers to include all possible system be-
havior, they focused their attention on the supervisor for the first buffer. They first labelled
with events the connections in the diagram provided with the problem description. This
activity did not appear to be essential to the problem solving and seemed to happen only
so that the subject could get a “mental break” from the more demanding task of modelling.
The subject proceeded by writing down a more formal version of the requirements from the
problem description, just as they did before modelling the supervisor for buffer 2. However,
this time they were more detailed. They announced they would first look at the task of
preventing buffer overflow. They came up with the following equation, similar to what had
been discussed in the ELEC843 course:

0 ≤ #β1 − #α2 + #α3 − #ρ − #β3 ≤ 3,

where # stands for the number of occurrences of a given event, β1 is the output of a part by
machine 1, α2 is the pickup of a part by machine 2, α3 is the pickup of a part by the testing
unit, ρ is the rejection of a part by the testing unit (the part is deposited back into buffer 1),
and β3 is the successful test of a part (the part is delivered to the environment). This equation
will prevent the overflow of buffer 1, however, it will not be able to prevent a deadlock in the
system if used concurrently with the specification for buffer 2. For example, if both buffers fill
up (there are four occurrences of β1 and one occurrence of α2), the event α3 will be disabled,
however, so will be α2 by the other specification. Thus, the processing of parts will halt.
The subject experienced difficulty designing the supervisor for this specification; as well, they

66

ended up considering both overflow and underflow in their model. After struggling with the
supervisor for some time and not knowing how to complete the model, they again shifted
attention to the control for buffer 2. They realized that the supervisors for the two buffers
will interact, or “conflict” in the words of the subject, through the event α3 (the testing unit
picks up a part). The subject modelled one more version of the supervisor for buffer 2 but
their model was not capable of preventing buffer overflow. It seems that the subject did not
consider all events necessary for such control.

The subject apparently timed their progress since they completed a brief overview of all
models they had produced as the time for the session expired.

In summary, during the modelling, the subject made only two significant changes to their
work. First, when they started modelling the supervisors, they reinterpreted the purpose
of the buffer modules. Consequently, they modified to models of the buffers to include all
possible system behavior. Second, after attempting to model the supervisor for buffer 1,
the subject felt they had not addressed the specifications for buffer 2 properly. Thus, they
ventured in remodelling the supervisor for buffer 2.

During the interview, the subject explained briefly their problem solving. The subject
mentioned that they started by modelling the different components of the system and they
tried to model what is physically possible to occur. They explained that this approach had
been taught in the ELEC843 course and that the models of what is physically possible may
include behavior which needs to be restricted. Similarly, the subject had tried to describe
the control requirements also according to what they had seen before—using equations and
event counts. They felt their solution is incomplete and they expressed lack of confidence
in the way they had modelled what is physically possible in the system. Having the current
solution, the subject indicated that as future steps in the problem solving they would like
to design modular supervisors to prevent underflow and overflow of the buffers, and then to
merge the supervisors—after checking background literature on how to do this step. These
intentions show that the subject self-evaluated the models for the supervisors as incomplete
and/or incorrect.

4.4.2 Hospital problem

The strategy used to solve the problem can be seen graphically in Fig. 4.15. The subject
modelled the system and the supervisors in a modular way. They did not use the IDES
software at any point. At the very end of the session they indicated they would like to use
it for their next problem solving steps, however, the session was over.

The subject started by reading the description of the problem and then highlighting
different parts of the text—mostly relating to the control specifications for the system. After
finishing reading, they started modelling.

The subject used exclusively pen and paper to model the DES modules and, later, the
supervisors for the system. The modelling proceeded at a slow but steady pace. The subject
started by modelling the module describing the intake of glucose and insulin by the patient.
They considered what is physically possible in the system and their model included undesir-
able states where the level of blood sugar is too high or too low. However, at the end, they
drew a box around the model which delimited the acceptable states. From the verbalizations

67

The following abbreviations are used in the chart: PT – patient, DR – doctor, EQ – prototype equipment,

CP – computer, CE – composition of computer and prototype equipment, SBSL – supervisor for the blood

sugar level, SRP – supervisor for the report, SCED – supervisor acting on the composition of computer,

prototype equipment and doctor.

Figure 4.15: Flowchart of the strategy used by subject 4 when solving the hospital problem.

68

of the subject, it seems that they considered their model a part of the system description.
In fact, it is not necessary to model the behavior of the patient unless the model is used
to specify how the system should be controlled. In some sense, the subject accomplished
that by delimiting the desired behavior. However, their approach indicates that they had
trouble distinguishing subsystem and specification modules and that they might have had a
misunderstanding of how control specifications are given.

After modelling the patient, the subject proceeded by modelling the components of the
system. They considered modelling the prototype equipment and the computer together,
however, they decided to first model them separately. No explanation was given for this
decision but during the modelling, the subject occasionally indicated that they keep in mind
their intention to compose the models. For example, they purposefully used the same event
names in both models. The design of the module for the equipment did not prove to be
an easy task and the subject had to re-examine the problem description on a number of
occasions. The model they produced did not describe precisely the situation in the problem.
In the model, insulin could be administered without taking a reading from the blood which
contradicts the problem description. However, the subject justified this choice by claiming
that the description does not explicitly mention that insulin injection and taking a reading
always occur together. The design of the computer model also seemed demanding. The
subject frequently referred to the problem description. They also made notes to clarify
the specifications for the report generated by the computer. In their notes, they referred
to underflow and overflow of a “report buffer”. While this is not an explicit reference to
the factory problems the subject had had experience with, one could hypothesize that that
experience had an impact on the interpretation of the subject. A further indication of previous
experience influencing the subject was displayed in their interpretation of the behavior of the
prototype equipment. More specifically, they supposed that the software controlling the
equipment is not multi-threaded (does not allow concurrent executions of tasks) and this
is the reason why the equipment is non-responsive before completing the transmission of a
reading. While this guess is reasonable, nothing in the problem description would imply a
specific reason for the no-responsiveness of the equipment.

The modelling of the module for the doctor was relatively fast and the subject properly
interpreted the problem description: the prescription of medication is irrelevant to the rest
of the system; it does not equal the administration of insulin. The subject proceeded by
analysing what other modules they had to model. They considered the role of the nurse
but decided that they will not make a separate model. This is consistent with the expected
solution since the nurse does not influence the behavior of the system in any way. Next, the
subject considered the role of the grandmother. They recognized that her visit would result in
an increase of the blood sugar level of the patient but such a visit is preventable. The subject
thought about incorporating the behavior of the grandmother into the model of the patient
but they did not complete this task. Instead, they decided to create the composition of the
computer and equipment models. The subject performed the composition correctly, however,
they named the operation incorrectly (they referred to “meet”—or intersection—while the
operation is called “parallel composition”). During the follow-up interview, they were asked
for a clarification of what “meet” means to them and it was discovered that, indeed, the

69

subject referred to the correct operation and they only mixed up the terminology.
After modelling the system modules, the subject reviewed their models and all control

requirements in the problem description. Then, they began modelling the modular supervi-
sors, starting with the supervisor which should guarantee that the doctor accesses the reports
in the hospital information system correctly. The design of this supervisor also resulted in
the subject trying to determine the controllability of the events. Due to the subject’s beliefs
about the controllability of the events, they discovered that the supervisors for the report
and, later on, for the blood sugar level were very simple. A further review of the subject
determined that the patient module under the control of the blood sugar level supervisor
is identical to the behavior described by the supervisor. The subject then focused their at-
tention on building the model of the equipment, computer and doctor modules under the
control of the supervisor for the report. They reasoned that these specific modules need to be
considered because they have events which the supervisor uses as well. The subject admit-
ted that doing the composition of the system modules and the application of the supervisor
manually is feasible only because the models are small. They did not manage to complete
the task, however, since the time for the session expired.

During the modelling, the subject did not make any notes about what events are used in
the models besides the occurrences of the events as labels of transitions. The event names
were descriptive enough to make their semantics obvious. For example, the event when the
child eats a candy and the level of glucose in the blood increases was called “glucose”, the
event when the computer transmits the information to the hospital information system was
called “transmit report”, the event when the doctor read the report was called “get report”,
etc. The controllability of the events was not considered initially. Only after the subject
started designing the supervisors did they start considering event controllability. This was
also the time when they decided to create a legend with all events used in the models and the
corresponding controllability information. The subject did not correctly identify all relevant
events in the system, as well as they did not interpret their controllability correctly. For
example, they had separate events for the administration of insulin, the start of transmission
from the equipment to the computer and the end of transmission. Since the administration of
insulin and the transmission of data always happen together and nothing can interrupt this
process (the equipment is non-responsive), these events can be amalgamated into a single
one. The incorrect interpretation of event controllability also had implications for the control
solution proposed by the subject. The solution turned out to be more or less trivial.

The subject did not generally correct or remodel their models during the problem solving.
There were only three exceptions, where gradual advancement in the modelling of a module
made the subject realize that they need fewer states or fewer transitions—thus necessitating
changes to the part of the model they had already created. In the case of the module for the
equipment, the subject preferred to simply start over.

During the interview, the subject explained briefly their problem solving. The subject
mentioned that in the beginning the problem seemed larger than the factory problem but
it turned out to be manageable. They started by trying to model the behavior of different
subsystems. Only after did they look back and consider what events were used. After building
the list of events, no problems were discovered in the models so there was no need to go back

70

and make modifications. Having the current solution, the subject indicated that as a future
step in the problem solving they would like to finish applying the modular supervisors to the
system. Then, they would like to merge the controlled system to check for conflicts. They
did not expect any conflicts since, to them, the control requirements seemed orthogonal. In
case there were conflicts, the subject would prefer to first consult background literature to
determine how to fix this problem, however, they hypothesized that changes to the supervisors
would be necessary.

4.4.3 Within-subject analysis

For this subject, the factory problem was administered before the hospital problem. The
subject did not mention noticing a degree of similarity between the two problems during the
interviews, however, there was some indication of knowledge transfer between the two. For
example, when interpreting the problem description, the subject referred to the requirements
for the report in the hospital information system as the “underflow and overflow” of a “report
buffer”. This terminology is not normally expected in the context of the problem, but fits
well with the terminology of the factory problem.

The subject did not use the provided software at all during problem solving. They
performed the required module compositions manually and even designed the supervisors for
the system by hand (while the software package offers an automated supervisor construction
algorithm). When explaining their decision to work manually, the subject explained that
the systems seemed small and manageable. According to them, using the software package
requires a lot of preparation, such as inputting all models and typing in all events, so it did
not seem worthwhile to do all these steps for the given systems. The subject said that in the
past they had used the software only for large systems. However, the subject indicated that
they would use the software to check their final solutions.

Roughly speaking, the subject used a similar problem-solving strategy in both problems.
After getting acquainted with the problem description, the subject modelled the components
of the system, summarized all events and their controllability, and then attempted to model
the supervisors to enforce the control requirements. In both cases the subject seemed to be
confused about how control specifications should be modelled, instead creating models which
are interpreted as parts of the system functionality. In this sense, the subject did not have
to distinguish between subsystems and specifications—and they created models in the order
of how the models relate and interact.

A small difference in how they solved the two problems is that the subject did not consider
marking of states during the hospital problem.

The speed and confidence which the subject manifested was approximately the same
during the solving of both problems; and the subject advanced almost equally. However, there
are more pronounced differences in the quality of the two solutions. In the factory problem,
the models produced by the subject were correct, save for some minor issues. However,
the subject did not succeed in formalizing properly all specifications and, subsequently, they
experienced great difficulty in designing the supervisors for the system. The design of modular
supervisors is not a trivial task and, as the subject correctly observed, in this problem there
was some interaction between the supervisors due to the feedback from the testing unit.

71

In the hospital problem, the subject seemed to advance a bit further, e.g., they completed
the design of two supervisors and started applying them to the system. However, it can be
argued that the apparent advantage is not due to a lower inherent level of difficulty of the
hospital problem. Indeed, the performance of the subject contradicts the expectation since
the hospital problem is theoretically of the same difficulty as the factory problem, however,
the novel setting and the more ambiguous presentation should make it more difficult to solve.
The observed advantage, we believe, stems from the fact that the subject did not model all
components correctly and, even more importantly, from the fact that they assigned incorrect
controllability to the events in the models. By interpreting some key events as controllable,
the supervisory solution was reduced to a triviality. This problem illustrates not only the
well-known fact that the correct interpretation of controllability of events is essential to
DES problem solving. It shows that making this interpretation from an informal, verbal
description of a non-trivial problem can be very challenging. The subject did not make any
explicit error of judgment when determining event controllability in the hospital problem;
rather, uncertainties and small mistakes led incrementally to an incorrect interpretation of
the text and simultaneously to a high confidence in the subject. It seems that the only way
to avoid such an escalation is to conduct consultations with the commissioner of a given
problem.

Lower-level activities of the subject indicate patterns of similarity. The results of the
n-gram analysis show that during modelling the subject was likely to continue working on
the same aspect of a model, e.g., when working on transitions they were likely to continue
working on transitions. This is visible in the high absolute and relative ratios of the bigrams
‘MM’, ‘TT’, ‘SS’ and ‘EE’ (see Fig. 4.16). Most pronounced is the effect in the bigram ‘EE’
whose relative ratio is the highest for both problems. This indicates that the subject tended
to specify events in bulk, which is confirmed by the observations. While most of the bigrams
have similar ratio distributions for the two problems, one difference stands out. During
the factory problem the subject was more likely to work on states in bulk than during the
hospital problem. In the hospital problem, the absolute an relative ratios of the bigram ‘SS’
are lower, while the absolute and relative ratios of ‘ST’ are higher—indicating that work on
states was more likely to precipitate in working on transitions. This may be the result of the
subject being less certain of which states a model should consist—and thus considered states
incrementally, as opposed to an uninterrupted sequence of state-related actions.

The attention of the subject throughout the problem solving was analysed as described
in Section 3.7. During the factory problem, there were a limited number of occasions of
perceptually-triggered data discovery, without an apparent pattern. Cognitively-driven data
discovery concerned predominantly events and the dynamics of modules. In the cases when
the method of discovery was announced, most frequently the intention was to collect data
by visual inspection. The subject was most interested in learning about other components
when working on the buffers. When working on buffer 2, they were interested in the overall
dynamics of the system and the control specifications. When working on buffer 1, they were
interested in the testing unit and the control specifications. This cross-context interest is
even stronger since during work on the control specifications, the subject was also interested
in buffer 1 and the testing unit. From these observations we can conclude that, as could be

72

Figure 4.16: The absolute and relative ratios of bigrams for pen-and-paper problem solving
during the factory problem (FP) and the hospital problem (H). Data are sorted according to
the ratios in the factory problem.

expected, the subject thought of the buffers and the related components as tightly interacting
units. During the hospital problem, there were more instances of perception-driven data
discovery but not enough to establish any specific patterns. It seems that the subject’s
attention was attracted by perceptions about the properties of events and about the relations
between modules. On occasions, the discovered data would concern parts of the system
different from what the subject was working on (e.g., information about the nurse while
working on the module of the doctor), however, no stable pattern was discovered. The
cognitively-driven data discovery concerned mostly states and events. When counting, the
subject counted states, transitions or modules. Again, discovery was targeted most frequently
for aspects of the current context. Only when working on the module of the computer did
the subject express substantial interest outside the context. More specifically, they sought
information about the modules of the equipment and the doctor. Similar to the results from
the factory problem, these results are not surprising as these modules are related.

The analysis of the visual attention of the subject revealed the following facts. During
the factory problem, the problem description was by far the most common target of visual
attention, during the modelling of all modules. The following other patterns emerged. When
modifying the models of the specifications for the two buffers, the subject paid attention also
to the sheet of paper with the models of the supervisors for the buffers. Conversely, when
modelling the supervisors for the two buffers, the subject also paid attention to the sheet
with the models of the specifications of the buffers and the models of the machines and the
testing unit. During the hospital problem, the subject’s attention was, again, attracted most

73

by the problem description, however, not in such a pronounced way as during the factory
problem. The other patterns which emerged were expected. When modelling the supervisors
for the blood sugar level and for the report, the subject frequently paid attention to the sheet
of paper with the models of the patient, equipment, computer and doctor. When modelling
the composition of the equipment, computer and doctor modules under the control of the
supervisor for the report, they paid attention to the other sheets with all the models and the
supervisors.

4.5 Subject 5

At the time of their participation, subject 5 was a PhD student in Computer Science. The
subject rated their background, on a scale from 1 (very little) to 5 (very much), as follows:

• Knowledge of some natural science: 5,

• Engineering background: 1,

• Knowledge of DES control theory: 5,

• Experience using software for DES: 4,

• Experience using the IDES software: 3.

Using the same scale, they rated their comfort using English as 5. At the time of participation,
more than one year had passed since the subject was enrolled at the ELEC843 course offered
by Dr. Rudie at Queen’s University.

The observations of the experimenter were that during the study, the subject did not
feel comfortable with thinking aloud. Most of their verbalizations were the pronunciations
of elements of thought which already exist in verbal form, such as event names, state labels,
etc. During the factory problem, the experimenter reminded them to keep talking 7 times;
during the hospital problem—7 times as well. The subject was not talkative, however, the
experimenter felt that the interruption inflicted by a reminder was quite high and thus used
restraint in reminding the subject to keep talking.

4.5.1 Factory problem

The strategy used to solve the problem can be seen graphically in Fig. 4.17. The subject
modelled the system in a modular way and then designed modular supervisors to enforce
the control requirements. All modelling was done manually. At the end the subject started
inputting their solution into the IDES software to verify it. However, the time for the session
expired before they could complete their work.

Upon receiving the description of the problem, the subject read the description and
wrote down some events on the supplied diagram. However, they did not spend much time
on this task and, soon, started modelling the system. The subject did not mention that they

74

The following abbreviations are used in the chart: M1 – machine 1, M2 – machine 2, TU – testing unit, L –

monolithic system, SB1 – supervisor for buffer 1, SB2 – supervisor for buffer 2, SB – supervisors for buffers 1

and 2.

Figure 4.17: Flowchart of the strategy used by subject 5 when solving the factory problem.

75

had recognized any similarity between this problem and the problem they had seen in the
ELEC843 course.

The subject used exclusively pen and paper to model the DES modules. The modelling
of subsystems proceeded very fast. The subject started by building a model of the complete
behavior of the system, however, in midway they announced that creating a monolithic model
is not good and, instead, a modular approach has to be taken. The subject used the terms
“centralized” and “decentralized” instead of “monolithic” and “modular”. Centralization is a
property of the method of supervision and not of the design of a system. Since decentralized
supervisors are most frequently used with a modular system, apparently the subject confused
the two terms.

During the modelling, the subject did not make any notes about what events are used in
the models besides the occurrences of the events as labels of transitions. The event names
were descriptive enough to make their semantics obvious. For example, the event when
machine 1 takes a part for processing was named “M take”, the event when machine 2 puts
a part in the output buffer was named “M2 Put B2”, the events when the testing of the
quality of a part by the testing unit is positive or negative were named “TU Pass Out” and
“TU Fail B2”, respectively. We observed that the subject did not use consistent event names
in their models. For example, sometimes they would use “M1 Put B1” and “TU Pass Out”
and at other times they would use “M1 Put” and “TU Pass” instead. We speculate that
this might be a result of using event names which are long and carry redundant information.
The subject considered the controllability of each event as they introduced it in their models.
They used a different graphical notation for controllable events. At one point the subject
also considered the observability of events but it was only a brief appreciation that all events
are observable.

The subject recognized that the models of machine 1 and 2 have the same structure. After
finishing the model of machine 1, they replicated it and only used event names with different
indexes. The subject chose to include extra behavior in their models for the machines and the
testing unit. In the problem description, there is no mention of machines breaking down or
of failing to process a part. However, the subject created models where the machines can fail
(or break down) and get fixed. This appears to be an influence from the problem discussed
in the ELEC843 course, where machines can break down and, subsequently, fail to process
a part. It was observed that similar design decisions were made by another subject as well.
The introduction of this functionality in the model was regretted by the subject a number of
times during the problem solving as it made the solution much more complicated. However,
every deliberation about whether the new functionality was necessary resulted in the subject
concluding that, indeed, it is necessary since it does not make sense to have machines which
never break down.

After preparing the models of the system components, the subject moved onto the de-
sign of supervisors. They did not formalize the control specifications—neither by creating
models nor by using equations. The construction of supervisors proceeded relatively fast,
however, the subject frequently redesigned their models and changed their approach. Their
first attempt at a supervisor for buffer 1 did not work out since they did not consider the
breakdown and repair of machines. The subject decided to instead build the supervisor for

76

the interaction between machine 1 and buffer 1 and then for the interaction of machine 2
with buffer 1. While designing the latter supervisor, they discovered that it is very similar
to, if not the same as, the first supervisor they had created for buffer 1 and then discarded.
They re-evaluated their supervisors and determined that one of them prevents overflow and
the other prevents underflow of the buffer. They continued by considering the supervisor
for buffer 2. Mid-way the subject realized that their supervisor for the overflow of buffer 1
was incorrect; namely, it did not allow for parts to be taken out once they are deposited.
In fixing the problem, they decided to “incorporate” the two supervisors for buffer 1 into a
single one. Afterwards, they returned to working on the supervisor for buffer 2. The purpose
of the two supervisors—for buffer 1 and for buffer 2—was the same except that they work
on different buffers. One can hypothesize that working on the same problem a second time
might have given an additional insight which the subject had realized can be generalized and
applied to the first solution. The work on buffer 2 soon brought another realization by the
subject. They reviewed the dynamics of the testing unit and realized that an unsuccessful
test of a part results in the part being deposited into buffer 1, that is, something they had
not considered in their solution thus far. The subject did not ponder this fact too long and
instead chose to finish the supervisor for buffer 2, announcing that it is simple as it does not
deal with feedback.

After the subject finished modelling the supervisor for buffer 2, they again focused their
attention on the supervisor for buffer 1. They started building a new model but soon dis-
carded it saying that they need to split the supervisor into more parts as the model had
become cluttered. They produced two supervisors for buffer 1, one preventing overflow and
the other preventing underflow. However, the subject appeared to have had difficulty decid-
ing how exactly to achieve these goals. There are several indicators of that. First, the specific
task of the supervisor for the prevention of underflow seemed to emerge as a result of the
other supervisor not solving all problems. Second, the subject needed to remodel one of the
supervisors. Third, they did not name the supervisors according to their tasks (prevention of
overflow and underflow) but according to a more superficial feature: which event they control
(the deposit or removal of a part). A further issue with their solution was the fact that the
model for the underflow control was only sketched out, with much detail missing.

An examination of the supervisors created by the subject reveals that they did not use
the conventional approach of “implicit” supervision. In implicit supervision, at each state
of the supervisor there has to be a transition for each event which is not disabled, even if
it does not change the state. In other words, if there is no transition for a given event at a
given state, it is assumed that the supervisor disables this event at this state. As a result, all
events which the supervisor does not control (i.e., the irrelevant events) appear in self-looped
transitions in all states of the supervisor. The subject used a different, “explicit” approach
in their supervisor models. They did not create any transitions for irrelevant events. In
other words, if there is no transition for a given event at a given state, it is assumed that the
supervisor enables the event. In order to indicate that certain events are disabled at certain
states, the subject kept a separate list of disablement specifications.

When the models of the system components and the supervisors were ready, the subject
briefly reviewed all of them and then proceeded to input them into the software. The subject

77

recognized that a copy operation would be helpful when creating the models for machine
2 and for the testing unit as their structure is identical with that of machine 1. However,
the subject did not know if this function is available and they did not want to venture in
exploring the software functionality. When inputting the model for the testing unit, the
subject forgot to create the event for the case when a part fails the test and the unit deposits
it into buffer 1. They discovered this problem later, when they were inputting the model of
one of the supervisors. We speculate that this omission was due to the similarity of the event
names for a part failing the test and for the breakdown of the testing unit: “TU Fail B2”
and “TU Fail”, respectively.

The subject had a different approach to naming the states of the models in the software
compared to the naming on the paper. The states in the models on paper were labelled
with integers, consecutively, starting with 1. Thus, the names of the states did not bear any
significance beyond the purpose of distinction. In fact, the subject had to add additional
labels on some states to indicate important information (such as “two parts in buffer 1”). On
the other hand, the subject labelled the states of the models in the software quite descriptively,
e.g., “M2-Working” and “B1-Two” (meaning B1 contains two parts). When modelling with
pen and paper, the subject had not considered marking in their solution. However, when
they started inputting the model of one of the supervisors, they realized they had forgotten
to make any states in the computer models initial or marked, and they went back to fix all
input models. Another difference from modelling with pen and paper was the fact that the
subject was very conscious of the naming of events. They mentioned that they are trying to
come up with a good scheme since they are planning on composing the modules—and having
consistent event names is essential for this algorithm. When inputting the supervisor model,
they wanted to copy the events from the system models already input. This functionality
was not available in the interface, however, it seemed to be very important to the subject
since they spent some time examining the online documentation provided with IDES. When
they could not discover how to copy events, the subject appeared greatly disappointed.
Nevertheless, they evaluated positively the online documentation, noting that the included
tutorials were easy to follow. The subject started copying the events manually and at that
time the session expired.

The experience of the subject with the software interface was mostly positive. The ability
to create events in bulk was important for them, apparently since this is a convenient feature
when inputting existing models. They enjoyed the easy creation of new modules and the
interface for naming them. As well, they found the labels on the transition aesthetically
pleasing. The biggest stumbling block for the subject was the lack of indication in the inter-
face how to start inputting the data for a model once it is created. In fact, the experimenter
had to step in and help them out. They also had some trouble locating the interface elements
for the creation of events.

During the interview, the subject explained briefly their problem solving. The subject
mentioned that throughout the modelling, they were trying to figure out when it is advanta-
geous to split, or to lump, components of their supervisory solution, thus having a solution
with a higher, or lower, degree of modularity. They modelled the system in a modular way
as well, which seemed natural to them. Then, they tried to identify the supervision tasks

78

and to model them one by one. The subject noted that they did not start with the easiest
task, as the supervision of buffer 2 was easier than that of buffer 1. They recognized that it
took significant effort before they were happy with their solution for the control of buffer 1.
Having the current solution, the subject indicated that as future steps in the problem solving
they would like to finish inputting all models and then verify their solution. More specifi-
cally, they would follow a set of steps. First, they would compute the parallel composition
all system components to obtain a monolithic model of the system. Then, they would obtain
the intersection of all supervisors. Lastly, they would “apply” the supervisor to the system
to get model of the supervised system. By “apply”, we believe the subject meant obtaining
the intersection of the monolithic system and the model of the monolithic supervisor, since
this is the standard approach. However, it could also refer to the operation of parallel com-
position which is the correct one to use in this case, as the supervisors are “explicit” and do
not have self-looped irrelevant events. When the subject described how they would intend
to verify the final solution, they mentioned that they would inspect the model visually and
they would follow traces of events. For example, they would try to determine if machine 2
takes a piece from buffer 1 more than three times in a row. The subject pointed out that the
descriptive state labels they used would be of help. For example, if the event for the testing
unit picking up a part occurs at a state when the second buffer is empty, that would indicate
an error in the supervisors. Overall, the use of DES operations discussed by the subject
was correct. However, they designed the supervisors manually and their solution does not
come with the guarantee of “correctness by design” provided by the algorithm for automatic
supervisor construction. It seems that their hypothetical procedure for verification is not
comprehensive; and the subject recognized its drawback if the model is large.

4.5.2 Hospital problem

The strategy used to solve the problem can be seen graphically in Fig. 4.18. The subject
modelled the system in a modular way and then designed modular supervisors to enforce
the control requirements. All modelling was done manually. At the end the subject started
inputting their models into the IDES software to verify their solution. However, the time for
the session expired before they could complete their work.

The subject started by reading the description of the problem and and then taking notes,
summarizing the points they found important. They focused their attention roughly in
the following order: patient, nurse, doctor, candy, equipment, computer, equipment, grand-
mother, blood sugar level, information system, report.

The subject started modelling by drawing a model for the patient. The first version was
unsatisfactory to them. Instead, they drew a model of the specification for the acceptable
levels of blood sugar. The subject then became uncertain what to do, noting that there
are many entities to model. Their next steps involved creating models for the patient and
the grandmother. The subject considered modelling the doctor next, however, they con-
cluded they need to split their models according to two aspects: models dealing with candy
and models dealing with insulin. To this end, they remodelled the modules they already
had considered and created new models for the rest. Under the heading of models dealing
with candy, they created models for the patient, the grandmother and the doctor. Under

79

The following abbreviations are used in the chart: GM – grandmother, PT – patient, PC – patient behavior

in terms of candy, PI – patient behavior in terms of insulin, DR – doctor, EQ – prototype equipment, CP –

computer, HIS – Hospital Information System, SBSL – supervisor for the blood sugar level, SRP – supervisor

for the report.

Figure 4.18: Flowchart of the strategy used by subject 5 when solving the hospital problem.

80

the heading of models dealing with insulin, they created models for the patient, prototype
equipment, computer and information system. Indeed, the subject created two models for
the patient, however, they were complementary. In the first, the patient’s intake of glucose
(candy) is modelled; in the second, the patient’s intake of insulin is modelled. When the
subject started modelling the behavior of the equipment, they experienced difficulty deciding
what the role of the nurse is and what the role of the equipment is. Finally, and correctly,
they concluded that the nurse need not be modelled as a part of the system. During the
modelling of the equipment, the computer and the information system it appeared that the
subject was paying specific attention to the event names used in the different models. They
frequently went back and forth between the models and adjusted event names. They made
sure that the shared events had the same names in all models, e.g., the “connection” event in
the equipment and computer models was called the same. The maintenance of compatibility
between modules was later confirmed in the interview. An interesting observation was that
in the model of the information system the subject included extra behavior. They modelled
the event of data becoming garbled and the subsequent fixing of the system. While such be-
havior is not described in the problem description, it is similar to the breakdown and repair
of machines in the factory problem shown in the ELEC843 course. After finishing the models
dealing with insulin, the subject tried to discover what the specific role of the prescription
of medication is: does it have any impact on the level of sugar in the blood of the patient?
They complained that the problem description was vague and incomplete; apparently they
did not manage to arrive at an informed decision. The subject made copies of all models and
made further adjustments to reconcile the names of shared events. Making copies presumably
served as a way to review and verify the existing modules before continuing problem solving.

In the next step, the subject proceeded by modelling the supervisors for the system.
They did not formalize the control specifications; they only wrote down remarks which were
marginally more succinct than the text in the problem description. The supervisor for the
limits to the blood sugar level necessitated reconsideration of the event for the reception of
candy by the patient. The subject modified all relevant models to distinguish between candy
given by the grandmother and candy given by the doctor. While this distinction is technically
necessary, the function and controllability of both events is the same. However, the subject
interpreted the problem description in a different way and they believed the two events have
different controllability (more specifically, the grandmother giving candy is uncontrollable and
the doctor giving candy is controllable). The subject created two supervisors to guarantee
that the reports in the hospital information system are dealt with properly: one preventing
the generation of multiple reports before the doctor reads any of them, and one preventing an
attempt by the doctor to read a report before it is generated. The subject needed to consider
event controllability in depth since their first attempt at designing a feasible supervisor was
unsuccessful. The last problem the subject tried to resolve before completing the stage of
modelling was the impact of the medication on the rest of the system. They examined the
dynamics of all components and considered the controllability of events, verbally. At the end,
they concluded, correctly, that the prescription of medication is irrelevant to the functioning
of the rest of the system.

During the modelling, the subject did not make any notes about what events are used in

81

the models besides the occurrences of the events as labels of transitions. The event names were
based on the verbal descriptions of the events, even if at times not very obvious. For example,
the event when the child receives a candy from the grandmother was called “gr candy”, the
event when the computer transmits the information to the hospital information system was
called “info”, the event when the doctor read the report was called “report taken”, etc. We
observed that initially the subject did not always use completely consistent event names in
their models but, as their models matured, the naming scheme stabilized. As the subject
discussed in the follow-up interview, they found it particularly difficult to understand the
impact of the medication prescribed by the doctor on the system. For example, they wondered
if the medication results in the drop of the blood sugar level to zero grams. The problem
description does not mention any specific impact and the prescription of medication is more
or less irrelevant to the problem. The subject eventually made this conclusion, but not before
considering this event on a number of occasions. The subject did not normally consider the
controllability of the events during the modelling of system components, however, the design
of supervisors required an extensive overview of event controllability. Generally, the subject
identified the relevant events and specified their controllability correctly. However there were
some problems nevertheless. It seemed that in a number of models the subject used higher
than necessary event granularity. For example, they had two events, “connection” and “info”,
to denote the transmission of information from the prototype equipment to the computer.
This separation into two parts is not relevant to the problem and a single event would have
been sufficient. Furthermore, a similar situation had larger implications for the solution of
the problem. The subject chose to use two events, “result good” and “dr candy”, to describe
what happens if the report lists a good blood reading (and consequently the doctor gives
a candy to the child). Using a higher granularity let the subject specify that the event
describing the outcome of the reading is uncontrollable, however, the doctor giving candy is
controllable. While, from the doctor’s perspective, the event is, indeed, controllable, within
the context of the problem, it is not. The doctor’s expert opinion cannot be superseded
by that of an automatic controller. Had the subject used lower granularity for the events,
they might have avoided this problem. The correct way to model the reception of candy
by the patient was another difficulty experienced by the subject, however, this problem was
gradually resolved as the modelling of the system advanced.

The subject created a large number of models, most of them newer versions of existing
models. In general, the newer models were evolutionary refinements of older models, rather
than complete overhauls. Overall, the models produced by the subject approach the correct
solution. The subject made some mistakes with the assignment of controllability of events.
As well, there was a lot of redundancy in their models. Besides the unnecessarily high event
granularity, more models were created than needed. For example, the subject did not realize
that the functionality of the equipment and computer modules can be conveniently described
by a single, and much simpler, model. Another redundant model was that of the hospital
information system. This system was mentioned in the problem description only for the
purpose of providing context, and it is not necessary to model it as a separate entity. Lastly,
the model of the patient is also redundant, for the same reasons as the the information
system—even more so because the model created by the subject consists of a single state

82

with all events self-looped. In other words, such a model does not contribute any dynamics
to the overall system model.

In the last stage of problem solving which was observed, the subject started inputting the
models into the software, presumably to verify their solution. The models they input differed
a little from the corresponding models on paper. For example, the subject used meaningful
state labels, such as “Sending info” and “Good”, as opposed to labelling states with integers
in most of their models on paper. Furthermore, the subject made some modifications to
the models, which seemed to be driven, at least in part, by the software interface. First, the
subject explicitly considered and specified the controllability of all events. Second, during the
modelling with pen and paper, they did not consider marking at all. However, in all computer
models they specified which states are marked. The specifying of marking coincided with the
setting of the initial state of a model. Apparently, the subject was reminded about marking
when they set the initial state since the menu they used lists the two commands next to each
other. The subject had to stop inputting models and did not manage to complete their work
because the time for the session expired.

When using the software, the subject was most upset by the constant reminder that the
latest changes to models need to be saved to disk. However, they did not seem to find the
software problematic overall.

During the interview, the subject explained briefly their problem solving. The subject
mentioned that they started by trying to get an overview of the situation described in the
problem. More specifically, they were interested in learning who all the players are, who the
supervisors are and what the control requirements are. They also tried to figure out all the
actions of the players and what the effect of each action is. The subject elaborated that the
system modules, such as the equipment and the doctor, were relatively easy. However, the
model for the blood sugar level was difficult. For example, they could not understand what
the level of blood sugar was in the beginning. If the patient starts with a level of zero grams,
then the injection of insulin is detrimental. The subject explained that, overall, they tried
to model what all entities from the problem do when no control is applied. It was important
to match all events necessary for the interaction of entities. Afterwards, they created the
supervisors. They discovered that the nurse should be viewed as a supervisor since it is the
personnel who control the visit of the grandmother and initiate the injection of insulin. The
subject did not express significant confidence in their solution, however, they believed that,
in the unlikely case that their models of the system are correct, the supervisors would work.
As future, hypothetical steps the subject mentioned that they would like to input all models
in the software, do the necessary computations and then verify their result, e.g., if the level
of blood sugar goes above twenty-four grams. The subject did not elaborate on what the
computations would subsume. The subject expected that there could be deadlock in the
system since, according to the supervisors, the doctor must read a report before insulin can
be administered, and the administration of insulin is required in order to obtain a report.
They also noticed that they had not considered the fact that the patient could store candy
for later use—apparently, only at the end they noticed the issue with the wording of the
problem (described in Section 3.4).

83

4.5.3 Within-subject analysis

For this subject, the factory problem was administered before the hospital problem. No con-
scious transfer of knowledge between the two problems was observed and the subject did not
mention noticing a degree of similarity between the two during the interviews. However, it
seems that solving the factory problem first did, at least minimally, influence the solution of
the hospital problem. As discussed, the model of the hospital information system included
behavior which was not mentioned in the problem description, namely, the failure and sub-
sequent fixing of the system when too many reports are recorded in the information system.
While the problem description mentions that there would be a failure in the system, this
information is provided only as context and no fixing is mentioned.

In the interview, the subject expressed a positive attitude towards the study. However,
they wished that the problems were smaller so that they could be completed in one hour.
In particular, they found the input of models into the software a very tedious and time-
consuming process which does not constitute progress in the problem solving. The subject
also discussed why they started modelling with pen and paper in the beginning, instead of
using the software. They explained that it is their personal preference. Further on, having
the stack of paper in front of them at the start of the session was very inviting for them.
They did not discuss the reason why they switched to using the software during problem
solving. However, given the explanations of their intentions, it can be concluded that they
wanted to take advantage of the DES algorithms implemented in the software.

In general, the subject used a similar problem-solving strategy for both problems. First,
they modelled all components of the system in a modular way. They did not formalize the
control requirements at all, instead proceeding directly to the design of supervisors. The
supervisors were also designed in a modular way, where there would be a separate supervisor
for every aspect of the requirements. As a conclusion of their work, the subject intended to
use the algorithms in the software to help with the verification of their work. They planned to
compose the corresponding models into a monolithic system and a monolithic supervisor and
then to manually verify that the supervisor satisfies the control requirements when acting on
the system. This approach to finding a solution suffers from two major drawbacks. First, the
manual verification of a DES solution is, in most cases, infeasible, especially if verification
is done by checking traces (or strings) of events. For non-trivial models, there would be
more traces to be checked than a person would normally have the patience (and/or time)
to check. Second, the solution may be sub-optimal as constructing a the most permissive
supervisor manually is a daunting task, similar to that of manual verification. The subject
also mentioned a different method of verification, where states with certain properties would
be looked up (e.g., where a buffer is empty) and then all outgoing transitions would be
examined to see if undesired event occurrences are possible (e.g., a machine attempting to
pick up a part when the buffer is empty). This method of manual verification is more feasible
(and closer to what DES verification algorithms do). However, it is not sufficient to guarantee
the lack of errors in the solution. Furthermore, the optimality of the solution would still have
be determined separately.

The speed and confidence which the subject manifested was approximately the same
during the solving of both problems; and the subject advanced almost equally. The amount

84

of verbalization was, however, significantly lower during the hospital problem. Furthermore,
they seemed to be much more irritable while solving the hospital problem. This could be
a result of temporary disposition or a result of the subject experiencing higher cognitive
demands. Unfortunately, the subject did not give indication which interpretation is more
correct. The quality of the solutions of the two problems was roughly the same, with the
exception that the models for the hospital problem had more redundancy. The models of
the system components were correct, or close to correct. In the hospital problem the subject
misjudged the controllability of some events. The supervisors for the control specifications,
unlike the models of the components, were not correct. Some of them had the quality
of sketches rather than complete formal models. Also, due to the approach of building
“explicit” supervisors, more attention had to be be taken regarding the specification of control
decisions. Especially in the hospital problem, the subject seemed to use something in between
the “explicit” and “implicit” approaches, where they would assume that the events relevant
for the control need to explicitly enabled at the states of a model, while the rest of the
events need to be explicitly disabled (which does not happen, since they are irrelevant for the
requirements). In this way, the subject avoided both having to create a separate list of control
decisions and having to self-loop all irrelevant events at all states in a model. Unfortunately,
this mixed approach is not consistent, as it is, with any DES theoretical framework and, even
if it were, it would require the explicit enumeration of the events which are “relevant” and
the ones which are “irrelevant”. Thus, the supervisors which the subject created, cannot be
considered formally acceptable. The biggest problem with the supervisors, however, was that
the control decisions encoded in the designs were insufficient to satisfy the requirements set
forth in the problem description.

The lower-level activities of the subject indicate patterns of similarity and difference in the
problem solving. Comparing the two problems, the subject created modules using different
steps when working with pen and paper (see Fig. 4.19). However, when using the software,
they worked in an almost identical way for each of the two problems (see Fig. 4.20). This
may be explained by the fact that the subject used software only to input their models;
that is, this was a well-defined procedure. Modelling with pen and paper, however, was a
more “creative” process where there are no prescriptions about what specific activities to
use and in what order to use them. The results of the n-gram analysis show that when
modelling with pen and paper, the subject worked on events without interruptions more
frequently in the hospital problem. The relative ratio of the bigram ‘EE’ is highest of all
event-related bigrams, while, in the factory problem, the bigrams ‘ES’ and ‘ET’ have higher
relative ratios. Examining also the ratios of the bigrams ‘SE’ and ‘TE’, one can conclude
that during the factory problem, events were considered by the subject during the drawing of
modules, while in the hospital problem, the subject considered events in separate “sessions”.
This corresponds well with the observations made during the problem solving. During the
factory problem, the subject made decisions about the controllability of events throughout
the process of modelling. During the hospital problem, on the other hand, the subject would
interrupt the process of modelling to deliberate over the significance of an event or about the
controllability of events. The higher relative ratio of the bigram ‘EM’ in the hospital problem
also indicates that the subject would consider events before starting work on a module, rather

85

than during work on a module. Lastly, the subject considered events much less frequently,
overall, during the hospital problem. The absolute ratios of the event-related bigrams are
smaller in the hospital problem than in the factory problem. Again, this is consistent with the
observations made during the problem solving. It is important to note that even though the
subject exercised considerable effort in maintaining compatible event names in the hospital
problem, most of the actions were encoded as labelling transitions (i.e., their bigrams contain
a ‘T’ instead of an ‘E’).

Opposite to the results for the event-related bigrams, the data show that, when consid-
ering modules (bigrams containing ‘M’), the subject tended to do that without interruption
more frequently in the factory problem. The relative ratio of the bigram ‘MM’ is higher in
the factory problem, while, in the hospital problem, the bigram ‘MS’ has a higher relative
ratio. This data is consistent with the observations. During the factory problem, the sub-
ject spent most of the time designing the supervisors and they were experiencing difficulty.
Thus, they spent more time thinking about how to proceed before starting to draw a model.
During the hospital problem, the subject spent most of the time on the system components,
remodelling or copying models. Thus, after considering the model they would work on, they
simply started modelling by drawing a state.

Aside from the differences in the actions of the subject, there is also a stable pattern of
similarity. In both problems, both when using pen and paper and when using the software,
the subject was likely to continue working on the same aspect of the model, e.g., when
working on transitions they were likely to continue working on transitions. This is visible in
the high absolute and relative ratios of the bigrams ‘TT’, ‘SS’ and ‘MM’—and ‘EE’, in the
case of working with the software. The bigram ‘MS’ has a very high relative ratio as well,
compared to other bigrams. This means that, after considering a module, the subject very
reliably proceeded working on the states of a model.

When comparing the results of the of the n-gram analysis for each method of problem-
solving, fewer differences stand out (see Figs. 4.21 and 4.22 for the factory problem and
the hospital problem, respectively). During the factory problem, as already discussed, the
subject considered events throughout modelling with pen and paper. The software interface,
on the other hand, encourages the bulk entry of events. For the subject that was not a
problem, since they were inputting already existing modules and all events were already
known. Thus, naturally, the bigram ‘EE’ had very high relative and absolute ratios when the
subject used the software, at the expense of the ratios for the bigrams ‘ES’, ‘ET’ and ‘TE’.
During the hospital problem, a similar effect can be observed, especially in the absolute ratios
of the bigram ‘EE’. As discussed, the subject did not consider events very frequently while
modelling with pen and paper. However, the inputting of models in the software requires
the formal specifications of all events. The specific way in which events are dealt with in the
software resulted in another difference in the data as well. In order to label a transition in the
software, the relevant events have to have been specified. Thus, a user of the software needs
to enter the events in the beginning of modelling, before they start labelling transitions. As
a result, when using the software, the ratios of the bigram ‘ET’ are higher than the ratios of
the bigram ‘EM’, while the opposite is true when using pen and paper.

The attention of the subject throughout the problem solving was analysed as described in

86

Figure 4.19: The absolute and relative ratios of bigrams for pen-and-paper problem solving
during factory problem (FP) and the hospital problem (HP). Data are sorted according to
the ratios in the factory problem.

Section 3.7. The verbalizations of this subject were, overall, infrequent and not very elaborate.
Thus, it was hard to establish specific patterns of data discovery according to what the subject
voiced. During the factory problem, the verbalizations concerning perceptually-triggered data
discovery were insufficient to reveal any trend. Cognitively-driven data discovery concerned
predominantly the user interface of the software (such as trying to discover how to create
events) and the process of problem solving (such as trying to understand why modelling the
supervisor for buffer 1 is so hard). In terms of low-level elements, the most common interest
for the subject was the events. During the hospital problem, both kinds of data discovery
concerned most frequently the dynamics of the modules. Cognitively-driven data discovery
also concerned the process of problem solving, the models, and the problem description.
Furthermore, the subject indicated on two occasions that they were interested in obtaining
the count of modules and of events. The context of cognitively-driven data discovery indicated
that, not surprisingly, when working on the modules for the patient and for the doctor, the
subject was interested in information concerning the level of blood sugar. When working on
the supervisors for the report, the subject consulted the problem description and the dynamics
of the module for the computer. Finally, as already discussed, during the modelling of the
equipment, the subject considered the purpose of the nurse in the problem. There was little
indication of cross-context perceptually-triggered data discovery.

The analysis of the visual attention of the subject revealed the following facts. During the
factory problem, the problem description was the most common target of visual attention,
especially during the modelling of the system components. The following other patterns

87

Figure 4.20: The absolute and relative ratios of bigrams for solving using software during
the factory problem (FC) and the hospital problem (HC). Data are sorted according to the
ratios in the factory problem.

emerged. When modelling the supervisor for the second buffer, the subject paid attention
also to the sheet of paper with the models of the supervisors for buffer 1. When modelling the
initial supervisor for buffer 1, they paid attention to the sheet with the models of the system
components: the two machines and the testing unit. When remodelling the supervisors
for the underflow and overflow control of buffer 1, the subject paid mostly attention to
the sheets with the supervisor models they had already created. Only in the last iteration
of remodelling of the supervisors of buffer 1 did the subject also attend to the sheet with
the models of the system components. This could be a result of a decision to verify the
supervisor models against all models created up to that point. During the hospital problem,
the subject’s attention was, again, attracted most by the problem description, while working
on all of the models. The following other patterns emerged. When remodelling the module
of the patient, the subject frequently also paid attention to the sheet of paper with the initial
models of the patient and the blood sugar level specification, the summary of the problem
description, and the model of the grandmother. The same sheet of paper was also attended to
when remodelling the modules for the doctor and computer, when considering the role of the
nurse, and when modelling the supervisor for the blood sugar level and one of the supervisors
for the report. When remodelling the computer module, the subject also attended to the
sheet with the candy- and insulin-related models (patient, grandmother, doctor, prototype
equipment and computer). When modifying the initial model of the doctor, the subject
paid attention to the sheet with the model of the hospital information system and, later,
when remodelling the module of the doctor, they also paid attention to the sheet with the

88

Figure 4.21: The absolute and relative ratios of bigrams for pen-and-paper problem solving
(FP) and solving using software (FC) during the factory problem. Data are sorted according
to the ratios in pen-and-paper solving.

candy- and insulin-related models (patient, grandmother, doctor, prototype equipment and
computer). The same sheet also attracted the subject’s attention when modelling the hospital
information system. When considering the role of the nurse, the subject paid attention to the
sheet with all the proper models of the system components: the hospital information system,
patient, grandmother, doctor, equipment and computer. The same observation was made
when the subject modelled the supervisors for the blood sugar level and the report—they
also looked at the sheet with the proper models of the system components.

89

Figure 4.22: The absolute and relative ratios of bigrams for pen-and-paper problem solving
(HP) and solving using software (HC) during the hospital problem. Data are sorted according
to the ratios in pen-and-paper solving.

90

Chapter 5

Interviews with experts

Two experts were interviewed about the strategies they use to solve DES control problems.
Both interviewees are Control Engineers and have been working in the field of DES educa-
tion for multiple years. Their insights are valuable in the evaluation of the problem-solving
strategies employed by the subjects in our observational study. The experts have differ-
ent backgrounds and come from different schools of Control Engineering. Thus, collecting
one-sided opinion is avoided.

The experts were asked to describe what steps they would follow to solve a hypothetical
DES problem. Questions to clarify their exposition were asked.

5.1 Expert 1

The first expert explained their problem-solving approach as follows. The overarching strat-
egy they follow consists of first modelling the given system, then modelling the control spec-
ifications and then using software to compute the corresponding supervisors. They would
not attempt to produce a solution manually. The theoretical framework they use is based on
the classic work by Ramadge and Wonham [45] and on decentralized control, as proposed by
Rudie and Wonham [52]. Unless the problem calls for this explicitly, the expert would not
consider other frameworks, such as hierarchical or timed DESs.

Initially, the expert reads the problem description and tries to break the problem into
modules, separating the system components from the control requirements. They model all
system components first, before they move on to the control specifications. They draw the
components as finite-state automata, creating new events as needed. The expert uses the
finest granularity for the events that they consider, moving to coarser events only if the detail
is impractical. The event names they use are descriptive of what they signify. On the other
hand usually states are not labelled, except if DES operations will be invoked on the model.
The expert refers to the problem description while modelling to get cues about the actions of
the system components. If they notice any discrepancy between the model being drawn and
the description, they correct the model right away. The expert does not normally maintain
a list of the events they use, nor do they use diagrams to guide their understanding of the
problem.

91

When they are satisfied with modelling the system, the expert moves on to the design
of the models for the control specifications. They re-read the problem description to remind
themselves what the requirements are. During the design, they keep in mind the model of
the system—the specifics of the behavior of the system components may be used to simplify
the control specifications: it is not necessary to provide control for system behavior which
cannot occur. The expert uses the events to link the control specifications to the components
where control has to be exercised. During the design of the control specifications is also the
time when they would normally consider for the first time the controllability of events and
the marking of states (both in the models of the system components and in the models of the
control specifications). Since the expert works within the framework of decentralized control,
they need to consider which agents exercise control over which events and, respectively, the
event observability. When done with the model of the control specifications, the expert would
normally go back to the models of the system components and refine them if necessary and/or
reduce their complexity if possible. That is, the expert modifies the models according to the
requirements of the control specifications.

When all models are ready, the expert proceeds with the invocation of the DES algorithm
for automatic construction of supervisors. To that end, they have to first input all models
in the software. Since the models in the software have to be formal and rigorous, e.g.,
controllability of events and marking of states has to be specified, this may be the time when
the expert remembers to specify controllability and marking.

If the result of the algorithm is obviously wrong, e.g., empty or too small (compared to the
expected size), the expert will check if all marking is correct and if the names of the events
in the models are consistent. If the result seems correct at first glance, the expert will verify
it using two main approaches. First, they will trace sequences of events starting in the initial
state of the result and check if they lead to the expected states (when the sequences should
be allowed) or if the occurrence of these strings is at all possible (when the sequences should
not be allowed). These event sequences will be chosen arbitrarily, unless the answer to the
problem is known. Second, the expert will select sequences from the control specifications
and check if they appear in the same way in the result. Such a check would be purely
syntactic, without trying to discover if such sequences “make sense” according to the overall
goals in the problem. Checking for these sequences, according to the expert, is especially
important in modular control where different specifications may block each other. As a result,
fewer occurrences of the sequences would be allowed. This may indicate a problem with the
composition of models.

If the expert checks multiple arbitrary sequences and all of them are handled correctly
by the supervisors, the expert would consider the solution successful. As a last check before
submitting the solution, they may draw a diagram of the system components to clarify if
the solution makes sense. When submitting their solution, they would hand back all the
finite-state automata models, a list of the events used with a description of what they mean,
and potentially an informal description of how the functionality of the supervisors maps to
the problem.

92

5.2 Expert 2

The interview with the second expert was not as extensive. Thus, their explanations were
not as detailed. The explained that, when solving DES problems, they start by trying to
identify the “resources” and the “servers” in problem. For example, in a hospital setting,
rooms and beds would be resources, while nurses would be servers. Then, the expert would
try to identify all the events in the system. When they have gained some understanding of
the problem, they would consider what is part of the system and what is part of the control
requirements. In their experience, usually the “servers” are the system components, while
the “resources” are the control specifications. As a side note, the expert mentioned that it
is a frequent mistake to assume that a control requirement is a part of the system, e.g., the
buffers in a factory problem. However, once the supervisor is computed, there is no need to
distinguish between the two concepts, as the effect of the control is demonstrated by simply
composing all models.

The control specifications, according to the expert, are similar to the “supervisors”, in the
sense that their states have meaning and it is possible to identify where events are disabled.
Thus, the expert believes that control specifications should also be verified, e.g., by tracing
sequences of events.

The expert works within the framework of local modular supervision [11], where there is
a separate supervisor for each specification. After generating the supervisors with software,
to further decrease the complexity of the solution, they normally apply supervisor reduction
techniques [63]. Afterwards, they try to understand the result. The two main techniques the
expert uses are checking which events are disabled at which states, and tracing sequences
of events in the controlled system. If problems are discovered, the expert would normally
attempt to correct them by changing the control specifications, leaving the system compo-
nents intact. They also check the marked states in the result against their expectation of the
marking. In the case of discrepancy, they use the event tracing technique to figure out why
the states have incorrect marking.

The expert summarized their problem-solving steps as follows:

1. Identify servers and resources and what is the input/output of the system

2. Identify the relevant components (modules)

3. Identify the events—already doing some of point 6

4. Determine what is a component of the system and what is a part of the control speci-
fications (could be done after or during point 5)

5. Create automaton models, first for the system components and then for the control
specifications (could be done before or during point 4. The meaning of the states of
the automata has to be determined.

6. Determine which events are controllable

7. Compute the monolithic system using parallel composition of all components

93

8. Compute the supervisors using the DES algorithm for automatic supervisor generation,
trying to obtain modular supervisors for the different specifications

9. Apply the reduction algorithm to the supervisors

10. Verify the supervisors, e.g., by looking at disable events at different states and by
tracing event sequences

11. If a supervisor blocks all events, check for missing self-looped events in the control
specifications

12. If there is a problem with the control, analyse it by tracing targeted event sequences

13. Attempt to correct problems first by modifying the control specifications, only after
looking at the system components

At the end, the expert also shared their understanding of what is missing in DES theory
and in the software available to DES Control Engineers. According to the expert, in industry
there are good programmers to design controllers. People there are interested in using DES
theory mainly to verify their solutions, rather than to generate them. If DES is to be used, it
should work “undercover”, allowing for the use of traditional model representations. To that
end, in the expert’s experience, it is important to be able to specify control decisions based
on variables with thresholds and conditions on them. An example of a condition frequently
used in practice, but impossible to model in standard DES theory, is the expiration of a
timer. To the expert, the DES solutions—the supervisors—should be available as code or
event sequences, to allow for traditional analysis. However, it is most important to let the
users simulate the performance of a supervisor visually.

The expert agrees that every new piece of software may be “scary” in the beginning.
Thus, a good set of tutorial examples may come a long way in helping users benefit from
the advanced functionality. As well, the software should allow users to examine the history
of their activities. This would help in the replication of successful strategies. If the software
supports scripting, then it would even be possible to encapsulate these strategies in accessible
scripts. Taking this even further, it would be nice to be able to encode the experience of
users into “templates”, or standard parts of problems.

After using the IDES software package, the expert listed a number of suggestions for
improvement:

• Let users write Matlab-style scripts (including the nesting of scripts),

• Display the disabled events in each state of a supervisor,

• Facilitate the animation of event sequences,

• Provide a number of algorithms for the automatic layout of models, and

• Allow the selection of multiple input models for DES operations which support this
(such as parallel composition).

94

Chapter 6

Comparative analysis

6.1 Measure of progress in DES problem solving

The progress of a person towards the completion of a DES problem is very hard to eval-
uate. Such problems fall naturally in the category of ill-structured problems as defined in
[54]. Most non-trivial DES problems could have a variety of valid solutions, depending on
the interpretations of the problem-solver. Furthermore, a number of different theoretical
approaches to the problem solving could be taken. For example, let us consider the factory
problem described in Appendix A.1. It could have different solutions depending on whether
the problem solver decides to model the potential breakdown of the machines. In this case
it could be argued that breakdown is not mentioned in the problem description so it must
not be modelled. However, with problems which are harder to describe rigorously (e.g., the
interactions between personnerl in a hospital) it becomes infeasible to avoid ambiguity, and
thus the multitude of potential solutions. Furthermore, depending on the background and
condition of the problem solver, they may decide to model a problem either in a monolithic
or a modular way, they may decide to use centralized or decentralized control, they may
choose to model supervisors manually or to use the appropriate DES algorithm to generate
the supervisors automatically. All these variations and the relative ease with which one could
switch between different strategies during the problem solving makes evaluation unreliable.
However, despite all the issues mentioned above, it is desirable to be able to give at least
some estimate of the progress in DES problem solving.

Looking at the results of problem solving, one has some intuitive feeling about the amount
of progress. In order to evaluate the progress of the subjects in our study, we sought to replace
this intuitive measurement with a more rigorously defined measure of progress. One natural
measure which comes to mind is very simple. If the expected solution involves the models
A, B and C, identify if possible the corresponding models A′, B′ and C′ in the solution of
the individual and, for each model which is close enough to the expected version, allot 33%
worth of progress. However, our belief is that such a method of evaluation is inconsistent
with the aforementioned intuitive evaluation. For example, in the factory problem, a subject
may only focus on modelling the system components and may produce correct models for the
two machines and for the testing unit. Thus, they would achieve 3 units of progress (here,

95

we assume an imaginary measure where each correct model is awarded a unit of progress).
Another subject may model the machines and the testing unit, the control specifications for
the buffers, and start working on the supervisor for the system. However, if they make a
small mistake in the models of the machines and of one of the buffers—a mistake they might
discover and correct later on—they would achieve only 2 units of progress (one for the testing
unit and one for the correct buffer model). This contradicts our intuitive observation that
the second subject advanced much further in problem solving.

In order to address the discrepancy between intuitive evaluation and evaluation using a
simple measure of correctly modelled entities, we developed a new measurement methodology
suitable for the problems considered in this study. We identified which elements of a solution
are essential, accommodating a variety of modelling approaches. A solution is evaluated in
the following categories:

• Models at least one system component,

• Models the complete system,

• Models at least one control specification,

• Models all control specifications,

• Specifies event controllability,

• Models the supervisor for at least one control specification,

• Models supervisors enforcing all control specifications,

• Some aspect of the supervisors has been verified, and

• The total control enacted by the supervisors has been verified.

For each of the first five categories, one point will be awarded if the solution satisfies the
given condition, and a second point will be awarded if the condition is implemented correctly.
For each of the last four categories two points will be awarded, if the solution satisfies the
condition. The correctness of the supervisors is not examined separately since it depends
very strongly on the correctness of the models of the system components and the control
specifications. Furthermore, when supervisors are generated automatically, they are correct
by construction (given that the other models are correct). Instead of rewarding the correct-
ness of supervisors by comparing to an expected solution, two points are awarded if some
aspect of the supervisory solution has been verified and two more if the complete solution has
been verified. The method of verification is intentionally unspecified since different problem-
solving approaches may require different methods of verification. Since any aspect of a DES
problem may be modelled in a modular way, points are awarded both for modelling at least
one entity and for modelling all entities. A centralized (not modular) model would satisfy
both conditions and thus not be disadvantaged against modular models.

The proposed model deemphasizes the specific number of correct models produced by
the problem solver. For example, if there are five system components, the same level of

96

progress will be noted when only one or when four components are modelled. In DES
problems, the exact number of incorrect models has the same impact on the incorrectness
of the final solution. On the other hand, the higher diversity of problem-solving activities
is rewarded even if no correct models are produced. I.e., points can be collected under each
category even if the model is incorrect. Such points are awarded since work in a variety of
categories demonstrates that the problem solver is aware of the different aspects which need
to be considered to obtain a solution. Two points per category are awarded for work on the
supervisors, to counter-balance the points accumulated by work on the system modules and
the control specifications. The production of supervisors is the most important aspect of a
solution and, at least theoretically, it is possible to design the correct supervisors without
modelling any aspect of the system. Thus, the weight of working on supervisors has to be
greater.

The application of the proposed measure of progress to the solutions in our observational
study resulted in evaluations which were much more consistent with our intuitive under-
standing of the progress of the subjects. The proposed measure is, to some extent, tailored
for the observations in our study, however, the ideas used in its design can be easily applied
to the evaluation of solutions in other situations. It is important to note, however, that this
is a measure of the progress towards a DES solution; it is not a measure of the correctness
of a solution.

6.2 Rate of errors in incomplete DES problems, per-

ceived mistakes

The determination of error in DES problem solving is, due to reasons similar to the ones
discussed above in Section 6.1, very difficult. In our observational study only one subject
advanced far enough in the problem solving to perform a more substantial verification of
their solution, for only one of the problems. In all other cases, the subjects did not manage
to produce a solution before the expiry of the sessions. Thus, for us it was not possible to
evaluate solution correctness using the standard approach, namely, via simulations or testing
[4]. Furthermore, variations in the interpretation of the problem description created enough
variation in the solutions (e.g., the addition of machine failure and repair) to render them
impossible to compare directly with the reference solutions (see Section 3.8). In some cases
it was relatively easy to classify certain problem-solving steps as incorrect, however, this was
not always possible. Furthermore, the subjects did not have the opportunity to complete the
problems and thus mistakes early on could not be used as reliable indicators of errors in the
final solutions. It could well be that the subjects would have recognized mistakes later on
and would have corrected them. Subject 1, for example, discovered a mistake in one of their
models when verifying their solution.

It seems that an objective evaluation of the correctness of incomplete solutions is not
possible. Thus, in order to evaluate the solutions in our study, we decided to use a method
relying on subjective perspectives. We counted the perception of mistakes as demonstrated
by the subjects during their problem solving, i.e., the occasions they took corrective measure.

97

Indeed, this approach cannot be used to estimate the, objective, correctness of an incomplete
solution. For example, subject 4 determined incorrectly the controllability of events in the
hospital problem but they did not perceive their choices as incorrect. Thus, subjectively,
their solution was correct. However, the proposed evaluation of perceived mistakes is useful
to estimate the difficulty a subject experiences with the problem solving. The more per-
ceived mistakes they make, the more demanding the problem solving would be subjectively.
Furthermore, the count of perceived mistakes gives an insight into the efficiency of problem
solving.

In our analysis, we do not examine if the perceived mistakes are real errors or not. We
only observe if the subject takes a corrective action (be it necessary or not)—thus using the
subject’s subjective judgment of errors. We distinguish three types of perceived mistakes,
going from trivial to more substantial.

Type 1 These are perceived mistakes indicated by small and brief corrective actions by the
subjects. For example, the subject may correct the name of the event on a transition.

Type 2 These are perceived mistakes indicated by more substantial amounts of time spent
by the subject correcting a model. For example, the subject may decide to split a single
event into finer-grained events and they have to go back and accommodate this change
in existing models where the old event is used.

Type 3 These are perceived mistakes indicated by complete overhaul of a model by the
subject. For example, the subject may decide that their model of one of the system
components is so out of line with the rest of their models that they have to remodel it
from scratch.

If a subject is confident and knows what to do, they are less likely to make many subjective
mistakes. Inattentive problem solving would result in mostly type 1 mistakes, but mistakes
of type 2 and 3 would not be common. On the other hand, subjects who are uncertain in
their problem solving would exhibit more type 2 and type 3 mistakes.

6.3 Factory problem

The strategies the subjects employed in solving the factory problem varied in certain aspects,
but they were also quite similar. This could be attributed, at least in some extent, to the
fact that most subjects had seen the solution to the same problem in the ELEC843 course.
Four out of the five subjects explicitly mentioned that they recognized the problem, while the
activities of subject 5 indicated that they implicitly used information related to the problem
from the course.

All subjects, except one, assumed a modular approach to modelling right from the be-
ginning. The subject who did not take a modular approach recognized fast that creating a
centralized model of the system is very difficult and also proceeded by modelling modules
separately. Thus, all subjects eventually ended up with models of the system components.
Afterwards, different approaches were observed. Subject 3 did not seem to differentiate be-
tween system components and control specifications, so they created models indiscriminately.

98

Figure 6.1: Top level of the generalized flowchart of the problem-solving strategies used by
subjects during the factory problem. The full flowchart is included in Appendix C.1.

While the ultimate goal of their strategy was not clear, they indicated that eventually they
would have liked to compose all modules. Subjects 1 and 4 made distinction between system
components and control specifications. They modelled the control specifications in a mod-
ular way. Subject 1 modelled all system components first, while subject 4 modelled system
components and control specifications approximately in the order parts are transferred in
the factory. Subjects 2 and 5 did not model the control specifications at all. After modelling
all modules, subject 1 computed the centralized models of the system and control specifica-
tions. Then, the subject used the DES algorithm for automatic construction of a supervisor.
Subjects 2, 4 and 5 had a different approach. They designed modular supervisors manually,
and they planned to verify their supervisors using the software. Subject 2 planned only to
compose the system components into a monolithic model and to keep the supervisors sepa-
rate, while subjects 4 and 5 planned also to compose the supervisors into a monolithic model.
The top level of the hierarchical flowchart showing the different problem-solving strategies is
shown in Fig. 6.1.

During modelling, all subjects used pen and paper. Only when it was necessary to do
computations with the models, such as performing composition, did the subjects choose to
use the software. Subject 3 attempted to derive the composition of two modules manually
before deciding to use the software. They were also the only subject who, at one point, used
both the software and pen and paper simultaneously to work on their models.

The progress of the subjects was different. Only subject 1 managed to complete the
problem in the allotted time (one hour). Subjects 2 and 5 started using the software to verify
their solution but did not manage to complete the task. Subjects 3 and 4 did not manage to
complete the modelling of all components. Subject 3 gave up solving the problem before the
allotted time expired. The progress of the subjects is summarized in Table 6.1 according to
the evaluation methodology described in Section 6.1.

The difficulties experienced by the subjects while solving the factory problem can be
summarized as follows. The most problematic task appeared to be the design of the control
specifications and/or the supervisors, especially for buffer 1. That included issues such as

99

S1 S2 S3 S4 S5
Models at least one system component 2 2 1 2 2

Models the complete system 2 2 0 2 2
Models at least one control specification 2 0 1 1 0

Models all control specifications 1 0 1 1 0
Specifies event controllability 2 1 0 2 2

Models the supervisor for at least one control specification 2 2 0 2 2
Models supervisors enforcing all control specifications 2 2 0 0 2

Some aspect of the supervisors has been verified 2 2 0 0 0
The total control enacted by the supervisors has been verified 2 0 0 0 0

Total points 17 11 3 10 10

Table 6.1: The progress of subjects 1 to 5 (S1 to S5) in solving the factory problem

how to interpret the buffers, if and how to split the specifications into underflow and overflow
prevention, which events to use for the purpose of control, what is the controllability of events,
should irrelevant events be self-looped at all states, which states should be marked, what is
deadlock and how to express it in the DES framework. For subject 5, the work was further
complicated due to the additional behavior of the machines (failure and repair) which they
modelled. Subject 4 mentioned that they had to pay extra attention to distinguishing the
system components from the control requirements. Furthermore, they experienced difficulty
designing the supervisor for buffer 1 from the formal control requirements they came up
with. The approach subject 3 used for problem-solving did not appear to have the potential
to lead to a correct solution and, incidentally, the subject struggled with modelling correctly
the modules from the problem. Subjectively, they experienced the greatest difficulty with
the modelling of the testing unit and in deciding how to “tie” it with the rest of the system.
Except for subject 3, the subjects did not seem to experience significant difficulties modelling
the system components (the machines and the testing unit).

The results of the bigram analysis for all subjects were plotted together to compare the
patterns of low-level actions across subjects. While it is difficult to interpret the resulting
charts, the following trends can be recognized. During work with pen and paper, the different
subjects had different patterns of activities (see Fig. 6.2). For example, subjects 1, 3 and 4
worked on events in continuous sessions (see the ratios for the bigram ‘EE’). Subjects 2 and
5, on the other hand, did not consider events in bulk. Incidentally, these were the subjects
who did not create separate legends of the used events either. Subject 5 worked on events
intermittently (high relative ratios of ‘ES’ and ‘ET’). The way subjects drew models also
varied. Looking at the data, especially at the relative ratios, it seems that subjects 2 and
3 tended to work on states or transitions in bigger chunks (e.g., drawing all states first and
then drawing all transitions). This is indicated by the higher relative ratios of the bigrams
‘SS’ and ‘TT’ and the lower relative ratios of ‘ST’ and ‘TS’, compared to the ratios when
subjects 1, 4 and 5 drew models. Finally, subjects 4 and 5 seem to consider modules for
longer before starting to model them—as indicated by the relatively higher relative ratio of
‘MM’ at the expense of the relative ratio for ‘MS’. It seems that all subjects preferred to

100

start drawing a model by creating a state instead of a transition (high ratios of ‘MS’, lower
ratios of ‘MT’). This is only natural, since states are the starting points and ending points
for transitions.

Contrary to the varied strategies used when modelling using pen and paper, the charts
with the results of the N-gram analysis of the work with software show consistent patterns
(see Fig. 6.3). There are two noticeable differences in the ratios of the bigrams. The relative
ratio of the bigram ‘MM’ is lower for subject 1 in comparison with the other subjects. This
is compensated, however, with the higher relative ratios of the bigrams ‘ME’ and ‘MC’. This
means that the subject, after considering the modules, tended to work on events or invoke
algorithms. We believe this can be explained by the fact that, unlike all other subjects,
subject 1 managed to advance further in the problem solving and they spent relatively more
time verifying and trouble-shooting their models. The second noticeable difference in the
ratios is when one considers the activities of the subjects after executing a DES operation
(the bigrams starting with ‘C’). Subject 3 most frequently continued working on the level
of modules (higher relative ratio of the bigram ‘CM’). This indicates that the results of the
operations did not usually, in their opinion, necessitate specific changes to the elements of
the models. This is consistent with the general lack of understanding of how to advance
in solving the problem which the subject demonstrated. If they worked on elements of the
models, they would work on the events (the bigrams ‘CE’). On the other hand, subjects 1
and 2 worked on the states (‘CS’) and the transitions (‘CT’), respectively, of the models if
necessary after the performance of an operation.

Figure 6.2: The absolute and relative ratios of bigrams for pen-and-paper problem solving
during Factory problem for subjects 1 to 5 (FP1 to FP5). Data are sorted according to the
average ratios for all subjects.

101

Figure 6.3: The absolute and relative ratios of bigrams for solving using software during the
Factory problem for subjects 1, 2, 3 and 5 (FC1, FC2, FC3 and FC5). Subject 4 did not
use software during problem solving. Data are sorted according to the average ratios for all
subjects.

The analysis described in Section 3.7 did not reveal any consistent patterns of cross-
context data discovery. The data discovery verbalized by subject 3 indicates that for them
the testing unit and the models of the two buffers formed a unit of interest, where attention
would frequently shift between these models. On the other hand, these were the only models
which the subject created and, furthermore, the subject was struggling to find a way to
advance in the problem solving. Thus, one could speculate that these results do not show
any specific association between the given models. The verbalization of data discovery by
subject 4, however, also points out to a connection between the models of the buffers, the
control requirements and the testing unit.

When the information from the visual context is included in the analysis, however, some
patterns start to emerge. In Fig. 6.4 it is clear that the subjects were most engaged with other
modules when working on the supervisor(s) for buffer 1. Indeed, the heart of the problem lies
in determining the correct control strategy so that a part rejected by the testing unit does not
cause an overflow in buffer 1. In the figure, the thickest edges are between the supervisor(s)
for buffer 1 and the machines, buffer 1 and the testing unit. While working on the supervision
of buffer 1, the subjects also made frequent overviews of all models (ALL) and they referred
to the problem description (DESC). The subjects often referred to the problem description
also when modelling the machines and the testing unit. Another strong connection exists
between buffer 2 and the testing unit. From the graph it can be observed that there is not as
much interaction between the system components (machines and testing unit), nor between

102

the control specifications (buffer 1 and buffer 2) and between the supervisors. Reference to
previous versions of models were not common since few modules (except the supervisor for
buffer 1) were remodelled by the subjects in this problem.

Figure 6.4: A graph of the frequency with which the subjects switched attention between
different components of the factory problem. The nodes signify the following components:
machines (M), testing unit (TU), buffer 1 (B1), buffer 2 (B2), supervisor for buffer 1 (SB1),
supervisor for buffer 2 (SB2), all models (ALL), previous versions of a model (PREV), and
problem description (DESC). The width of the edges signifies the relative frequency of switch-
ing attention between the given components (thicker line means higher frequency). The fre-
quency is computed from the weighted aggregation of the data for visual attention and for
verbally announced data discovery. The frequency was adjusted with an exponential function
to allow easier visual differentiation.

6.4 Hospital problem

The strategies the subjects employed in solving the hospital problem were varied, especially
in the order in which modules were modelled. No subject expressed explicitly that they
recognized the problem as similar to the factory problem or to what they remember from
the ELEC843 course. Only subjects 2, 4 and 5 through their activities indicated that they
implicitly use information related to the factory problem (or to the problem from the course).

All subjects assumed a modular approach to modelling right from the beginning. First,
they modelled the components of the system. Subject 4 started with the model of the
patient and then determined the relevant control specifications before continuing with the
other system models. Subject 1 modelled the control specifications only after completing
the models of the system components. Then, the subject requested the use of the software
to continue their work. Subjects 2 and 5 did not model the control specifications at all.
Instead, they started modelling the supervisors manually and, when done, requested the use

103

Figure 6.5: Top level of the generalized flowchart of the problem-solving strategies used by
subjects during the hospital problem. The full flowchart is included in Appendix C.2.

of the software to verify their solution. Subject 4 also designed the modular supervisors for
the control specifications manually. When subjects described what they would plan to do
to complete their solutions, consulting with external sources emerged as a common theme.
Subjects 1, 3 and 4 mentioned they would like to review their course notes or talk to an
expert to verify their approach. Subjects 2 and 4 planned to compose their models and check
if the supervisors are controllable and if there is conflict between the supervisors (i.e., if there
could be a deadlock or a livelock when the supervisors operate concurrently). Subject 3 did
not explicitly mention the check for lack of conflict, however, they mentioned checking for
controllability and lack of deadlock. Subject 5 also referred to composition of the models and
then verifying the supervisors, however, they were not specific on the method they planned
to use. A flowchart showing the different problem-solving strategies is shown in Fig. 6.5.

During modelling, all subjects used pen and paper. Only when it was necessary to do
computations with the models, such as performing composition, did the subjects choose to
use the software. Subject 1 attempted to derive the composition of two modules manually
before giving up and requesting the use of the software. Subject 4 did not appear to plan
on the use of the software at all. They did all composition operations manually and they
justified their lack of interest in using the software with the fact that the models are relatively
small. However, they did not reject the possibility that they might use the software in the
hypothetical future steps in solving the problem.

No subject managed to complete the problem in the alloted time (one hour) but the
progress of the subjects was different. Subjects 2, 4 and 5 modelled the supervisors for the
system manually, however, they ran out of time to verify their solutions. Subject 1 modelled
the control specification and apparently planned to apply the DES algorithm for automatic
generation of supervisors, but also ran out of time. Subject 3 gave up solving the problem
before the allotted time expired. The progress of the subjects is summarized in Table 6.2

104

according to the evaluation methodology described in Section 6.1.

S1 S2 S3 S4 S5
Models at least one system component 2 2 1 2 2

Models the complete system 1 1 0 0 1
Models at least one control specification 2 0 0 2 0

Models all control specifications 1 0 0 0 0
Specifies event controllability 0 1 0 1 1

Models the supervisor for at least one control specification 0 2 0 2 2
Models supervisors enforcing all control specifications 0 0 0 2 2

Some aspect of the supervisors has been verified 0 0 0 0 0
The total control enacted by the supervisors has been verified 0 0 0 0 0

Total points 6 6 1 9 8

Table 6.2: The progress of subjects 1 to 5 (S1 to S5) in solving the hospital problem

The difficulties, experienced by the subjects while solving the factory problem can be
summarized as follows. A common theme in the comments of all subjects was that there
was too much information in the problem description. Subjects complained about the fact
that they had to consider too many entities and detail, and that all information is scattered
throughout the description. Subject 3 complained that they even forgot other parts of the
description by the time they finished dealing with a specific part. Subjects also pointed
out the fact that the information is incomplete, e.g., it is not clear what the effect is of the
medicine which the doctor prescribes to the patient and what the initial level of sugar in
the blood of the patient is. One of the biggest problems in modelling was caused by the
incorrect formulation of the problem (see Section 3.4). Subjects 1 and 2 were confused about
how to model the modulations in the level of sugar in the patient’s blood. Subject 5 also
experienced similar problems but the difficulty did not seem to stem from confusion about
the description. The other two difficulties experienced by the subjects involved establishing
the interaction between the prototype equipment and the computer system, and modelling of
the module for the grandmother. Subjects 1 and 2 eventually realized that there is no need to
distinguish between the equipment and the computer, while the other subjects proceeded to
model them as components with distinguishable functionality. Subject 5 also had to dedicate
more attention to determine the roles of the equipment and the nurse and how these modules
interact. Subjects did not find it easy to determine the controllability of events (especially the
events pertaining to the increase of the blood sugar level), however, this task posed greatest
difficulty to subject 2.

The results of the bigram analysis for all subjects were plotted together to compare the
patterns of low-level actions across subjects. The following trends can be recognized. During
work with pen and paper, the different subjects had different patterns of activities (see
Fig. 6.6). For example, subject 4 worked on events in continuous sessions more consistently
than the other subjects (see the high relative ratio for the bigram ‘EE’). Subject 1, on the
other hand considered events in bulk less frequently than the other subjects (see lower relative
ratio of the bigram ‘EE’ and higher relative ratios of ‘ES’ and ‘ET’). This distribution does not

105

correlate to the creation of legends of events by the subjects. Subject 1 did maintain a legend,
however, they entered events in the legend “on the go”. Subjects 2 and 5, on the other hand,
did not create legends of the events they used in their models, but the relative ratio of the
bigram ‘EE’ is average. Only a look at the absolute ratio of event-related bigrams (bigrams
containing ‘E’) reveals that these subjects did not work on events much. The absolute ratios
of event-related bigrams for subject 3 are overall higher than for the other subjects. This
indicates that subject 3 considered events frequently during problem solving; this is consistent
with the observations in the study. The way subjects drew models also varied. Looking at
the data, especially at the relative ratios, it seems that subject 2 tended to work on states or
transitions in bigger chunks (e.g., drawing all states first and then drawing all transitions).
This is indicated by the higher relative ratios of the bigrams ‘SS’ and ‘TT’ and the lower
relative ratios of ‘ST’ and ‘TS’. The opposite is true for the subjects 1 and 4, where the
tendency to alternate drawing states and transitions is more pronounced. Finally, subject 1
did not seem to consider modules for extended periods before starting to model them—as
indicated by the relatively lower relative ratio of ‘MM’. Instead, the subject more frequently
launched into modelling immediately after considering a module—as indicated by the higher
absolute and relative ratios of the bigrams ‘ME’, ‘MT’ and ‘MS’. It seems that all subjects
preferred to start drawing a model by creating a state instead of a transition (high ratios of
‘MS’, lower ratios of ‘MT’). This could be explained by the fact that states are the starting
points and ending points for transitions.

Figure 6.6: The absolute and relative ratios of bigrams for pen-and-paper problem solving
during Hospital problem for subjects 1 to 5 (H1 to H5). Data are sorted according to the
average ratios for all subjects.

The analysis described in Section 3.7 shows that on a few occasions there was cross-

106

context data discovery. Most cases of data discovery occurred when working on the modules
for the patient and the doctor. Besides the general interest in other modules, work on the
module for the patient triggered more specific interest in the modules for the grandmother,
the doctor, and the blood sugar level. Similarly, work on the module for the doctor triggered
more specific interest in the modules for the hospital information system, the nurse, and the
level of blood sugar. When working on the module for the computer, discovery concerned the
modules for the prototype equipment and the doctor. When working on the control for the
report of the blood reading, subject 5 referred also to the the model of the computer and to
the problem description. Furthermore, working on the module for the prototype equipment,
they also considered the module for the nurse. These results lead to the conjecture that
possibly entities representing people are more likely than inanimate entities to serve as the
“center nodes” of attention (e.g., the patient and the doctor) in relation to which the behavior
of other system components is considered. On the other hand, in the hospital problem most
of the entities represent people, thus such a conjecture is very tenuous. Other than this, the
results do not seem to indicate any specific pattern of cross-context data discovery, except
the natural and expected observation that discovery concerns mutually-related components
of the system.

The sequence of modules receiving attention when the subjects formed their understand-
ing of the problem is another source of information on how subjects mentally group the
entities. Only two stable units of attention were noticed. The most stable unit is formed
by the prototype equipment and the computer. The subjects always discussed these two
entities together. The other apparent unit of attention concerned the report generated by
the computer, the level of blood sugar, and the hospital information system.

When the information from the visual context is included in the analysis, however, more
patterns start to emerge. In Fig. 6.7 it becomes apparent that the module for the prototype
equipment (EQ) was most demanding to model. The subjects frequently referred to the
problem description (DESC), to previous versions of the model (PREV), and to all other
models (ALL). Similarly, it seems that the module of the patient and the supervisor for the
report necessitated much reference to the problem description. Two significant groups of
components stand out: 1) the patient and the specification for the blood sugar level, and 2)
the doctor, nurse, computer, and hospital information system. Surprisingly, the interaction
between the modules for the computer and the equipment is not as dominant. A potential
explanation could be found in the fact that in most cases the two modules were modelled on
the same sheet of paper. Thus, no change of attention could be recorded since the subjects
did not need to look at a different sheet. Another surprising observation is the relatively
weak connection between the supervisors and the corresponding specifications. However, it
should be noted that the subjects had very little time remaining, if any at all, to work on
the supervisors. Furthermore, most subjects chose to design either the control specifications
(and then compute the supervisors) or the supervisors (and altogether omit modelling the
specifications). The requirements for the supervisor for the report seemed to be less clear
than for the other supervisor, since the subjects tended to refer to the problem description
more frequently. Overall, it is hard to establish an overarching regularity in the graph of
attention. There are many interactions and, ultimately, most components are connected to

107

each other.

Figure 6.7: A graph of the frequency with which the subjects switched attention between
different components of the hospital problem. The nodes signify the following components:
patient (PT), doctor (DR), nurse (NR), grandmother (GM), prototype equipment (EQ),
computer (CP), hospital information system (HIS), specifications for the blood sugar level
(BSL), specifications for the flow of the report through the system (RP), supervisor for the
blood sugar level (SBSL), supervisor for the report (SRP), all models (ALL), previous versions
of a model (PREV), and problem description (DESC). The width of the edges signifies the
relative frequency of switching attention between the given components (thicker line means
higher frequency). The frequency is computed from the weighted aggregation of the data
for visual attention and for verbally announced data discovery. The frequency was adjusted
with an exponential function to allow easier visual differentiation.

6.5 Overall observations

The problem-solving activities of the subjects also have aspects which are not necessarily
problem-specific or which can be compared better when considered across problems. These
aspects include the way subjects modelled events and states, the use of diagrams, the factors
that demonstrate the different levels of difficulty of the problems, the verification techniques
the subjects applied, and the experience of the subjects with the software package.

All subjects, except subject 3, seemed to have a good understanding of the significance of
events in discrete-event systems. Especially in the factory problem, subjects did not have any
trouble deciding on how to extrapolate the relevant events from the description of the system
behavior. In the hospital problem, this task seemed a bit more problematic since subjects
were occasionally confused about what event granularity they should use (e.g., subject 4
used unnecessarily high event granularity) and which events should be used to synchronize
the system components (e.g., subject 2 failed to recognize how the model of the grandmother
interacts with the rest of the models).

108

In addition to choosing what events to use to discretize and model the behavior of the
system, one also has to choose the controllability of the events—that is, which events the
supervisor(s) for the system will be able to disable or enable as necessary. The distinc-
tion between these two tasks (choosing events and deciding on their controllability) is also
demonstrated by the activities of the subjects. Only subjects 4 and 5 seemed to consider
event controllability concurrently with the extrapolation of events from the problem descrip-
tion; and they did not do this consistently throughout problem solving. Subject 2 discussed
event controllability even more sporadically. Subject 1 did not consider event controllability
during modelling and in the factory problem, they decided on the controllability only when
inputting models into the software where it is more or less unavoidable to specify this prop-
erty of the events. Subject 3 did not consider event controllability at all. Thus, it is possible
to conclude that the considerations of event controllability do not always go hand in hand
with modelling of DES modules. In some cases, these decisions are delayed until one starts
to consider the supervision of the system.

When naming events and states, the subjects exhibited different approaches. We dis-
tinguished four kinds of names (or labels): no name, abstract name, derived name and
unabbreviated name. Abstract names are more or less arbitrary and they do not provide any
insight into the semantics of the named entity. For example, the event for the administration
of insulin may be called “θ” and the label for the state when there is one report in the hospital
information system may be “6”. Derived names are labels derived from the description of
the names entity and could be interpreted once the naming scheme is known. For example,
the event for the administration of insulin may be called “i” and the label for the state when
there is one report in the hospital information system may be “1”. Unabbreviated names
are names which are descriptive enough to allow recognition of the named entity without
knowledge of an encoding scheme. For example, the event for the administration of insulin
may be called “admin insulin” and the label for the state when there is one report in the
hospital information system may be “1 report”. The types of names used by the subjects
are shown in Table 6.3. Only subject 5 used unabbreviated event names in both problems,
while the majority of subjects used either abstract or derived event names. The predomi-
nant use of non-unabbreviated event names in the factory problem may be influenced also
by the previous experience of the subjects since such names are used in the related problem
in the ELEC843 course. Subject 4 mentioned that they tried to choose easy-to remember
event names in the factory problem. The event names they invented consisted of indexed
Greek symbols (such as α3). Apparently, these scheme was not entirely intuitive to them
either, since they explained that they “got used” to the naming scheme half-way through
the problem. Subject 3 discussed the type of event names as well. They explained that
short (and abstract) event names should be used to reduce clutter in models. However, they
recognized arbitrary event names may pose a problem when trying to read the models, so
the subject proposed that DES software provides a way to examine the descriptions of events
when needed, e.g., by displaying a short description when the mouse cursor hovers above an
event name. During problem solving subjects (including subject 3) sometimes maintained a
legend of all events used with their description (when non-unabbreviated) and their control-
lability (when considered). In a sense, this is an implementation of the suggestion of subject

109

3, albeit using pen and paper. Subject 5 used unabbreviated event names and did not create
legends. Subject 4 used unabbreviated event names in the hospital problem and they created
a legend, however, the legend listed only the controllability of the events. While on most
occasions it did not seem that the use of abstract event names posed any difficulty for the
subjects, in the case of subject 3, as mentioned in Section 4.3.3, the event naming scheme
may have contributed to their inability to advance in solving the problems.

S1-F S1-H S2-F S2-H S3-F S3-H S4-F S4-H S5-F S5-H
State names D A,D D D,U U U N,D N,U A,U A,U
Event names D D D U A A A U U U
Event legend D L N N L L L L N N

Table 6.3: The types of names used by subjects 1 to 5 (S1 to S5) in the factory and hospital
problems (F and H) for states and events (N – no name, A – abstract name, D – derived
name, U – unabbreviated name); and the use of event legends (N – none, D – denoting events
on a diagram, L – creating a list of used events)

The naming of states seemed, in general, less important to subjects than the naming of
events. Most of the time, states were either not named or given non-unabbreviated labels.
Subjects tended to reconsider their state naming scheme, and make it more explanatory,
only when faced with the composition of models. Having distinguishable state labels may
significantly simplify the verification and understanding of such compositions. Nevertheless,
states were usually given unabbreviated labels only when the states could be easily described
verbally. For example, machines in the factory problem could be in two states, “idle” and
“working”. The number of parts in a buffer could easily be used to label the corresponding
states (e.g., the state where there are two parts in the buffer could be labelled “2”). States
which do not have an obvious short description, such as the state where the doctor examines
the results of the readings from the patient and makes a decision about the treatment were
usually named using an abstract label.

The creation of diagrams to visualize the structure of a system is a common way to help
with the understanding of a system. A simple diagram was provided with the description of
the factory problem. However, there was no diagram provided with the description of the
hospital problem. We did not provide a diagram for two reasons. First, we did not wish to
introduce a bias in the problem solving of the subjects. Second, a diagram may have revealed
the similarity of the two problems. During the study, we observed that the the subjects did
not, at least explicitly, use much the diagram in the factory problem. Only subjects 1 and 4
made notes on the diagram, while subject 2 looked at it but did not like it. In the hospital
problem it was more apparent that the subjects actually used diagrams to help with the
understanding of the problem. Subjects 1, 2 and 3 created graphical representations of the
entities in the problem and the relations between them. Subjects 1 and 2 made especially
elaborate drawings of the entities (see Fig. 6.8). Additionally, subjects 3 and 5 compiled a
summary of the information in the problem. Subject 4 did not create separate diagrams or
summaries, instead preferring to underline important points in the problem description. The
use of extra tools to help understand and reason about a particular problem seemed to be

110

much more important to subjects when they experienced greater difficulty.
The analysis of the shifts of attention of subjects during problem solving is shown in

Figs. 6.4 and 6.7 for the factory and hospital problems, respectively. Additional information
about the visual attention of subjects is shown in Table 6.4. Even though subjects did
not voice all the shifts of attention—the analysis of data discovery (see Section 3.7) did
not reveal much—it is clear that the subjects are very active in seeking information. Some
subjects shifted their gaze between sheets of paper more than 500 times during the one-hour
session! The more sheets of paper subjects used, the higher would be the expectancy of shifts
of attention between sheets. Thus, Table 6.4 also contains the normalized data to account
for this effect. It seems that most subjects were seeking information more actively during the
hospital problem, however, the increase is not very significant and, furthermore, others (e.g.,
subject 2) seemed less active during the hospital problem. Similarly, no pattern is apparent in
the frequency of reference to the problem description between the two problems. However, it
is clear that the problem description was one of the most important element subjects referred
to. The minimal proportion of attention shift to the problem description was about twenty
percent, while the maximum was more than sixty percent. In particular, during the factory
problem, more than two thirds of the time that subject 4 looked away from the model they
worked on, they referred to the problem description. Obviously, any system designed to help
with the problem solving should keep the problem description easily accessible to subjects.

S1-F S1-H S2-F S2-H S3-F S3-H S4-F S4-H S5-F S5-H

Shifts of visual attention context
139 504 260 147 193 315 490 519 191 295
Number of sheets used

2 6 2 3 3 5 3 3 4 4
Shifts of context per sheet
69.5 84 130 49 64.33 63 163.33 173 47.75 73.75
Attention to the problem description
40% 25% 39% 50% 18% 22% 68% 45% 30% 38%

Table 6.4: Shifts of the context of visual attention by subjects 1 to 5 (S1 to S5) in the factory
and hospital problems (F and H). A shift occurs when the subject moves their sight onto a
new sheet of paper or when the subject activates a new model in the software.

When examining the performance of subjects individually, it was noticed that all of them
except subject 4 found the hospital problem more difficult than the factory problem. (The
relative ease of the hospital problem for subject 4 was due to their (faulty) interpretation of
event controllability. Considering some key events controllable results in a trivial solution of
the problem.) A number of aspects of the subjects’ problem solving support this conclusion.
The most obvious aspect is the progress of the subjects. Looking at Tables 6.1 and 6.2, it is
easy to see that each subject advanced further during the factory problem. However, there
are other indicators as well.

It can be argued that the time spent solving a problem is an indicator of the relative
difficulty of the problem, given the disposition of the subject. As Simon argues [53], subjects

111

Figure 6.8: Reproductions of some of the diagrams created by subjects when solving the
hospital problem.

112

use satisficing when solving problems. That is, a subject would not continue problem solving
after their solution reaches a degree of quality. Thus, if a subject has the same disposition,
the longer process of problem solving indicates longer time to reach the same degree of
quality of their solution, i.e., the problem is more difficult for the subject. In our study, only
subject 1 managed to complete their problem solving, and only of the factory problem. In
the other cases, subjects ran out of time. Thus we could not look at the total time taken by
subjects to complete their problem solving. As most of them, with the exception of subject
3, completed at least the modeling of the system components and the control specifications
(where applicable), we decided to examine the time taken to complete this part of the problem
solving. In the case of subject 3, we examine the time before the subject gave up problem
solving. The results are shown in Table 6.5. All subjects, except subject 3, spent more
time modelling the DES modules during the hospital problem. It is true that a part of this
increase is due to the higher number of modules the subjects modelled. While the structure
underlying the two problems is the same, subjects invariably modelled more modules in the
hospital problem. The factor of increase of the number of modules is also shown in Table 6.5.
It can be seen that it is lower than the factor of the increase of time for modelling. Thus,
even when taking into account the higher number of modules, there was an increase of the
time subjects spent modelling. The higher difficulty of the hospital problem is also indicated
by the fact that they spent a smaller proportion of the modelling time actually performing
modelling activities (such as drawing models, labelling diagrams, creating legends for the
events, etc.), as seen in Table 6.5. If we assume that the subjects were completely engaged
by the problem, a larger portion of their time was taken by considerations of what to do
rather than by doing things. The only exception in these data is subject 3. Their data
is contrary to the data for the other subjects. While their performance can be considered
an outlier, there is an additional explanation of the result. Subject 3 was administered the
hospital problem first and they gave up fast because they did not know how to proceed.
When solving the second, factory problem, the subject seemed to put more effort into the
solution. They recognized they had already seen the problem and apparently they did not
feel comfortable with the thought of failing to solve a second problem, especially since it is a
known problem.

S1-F S1-H S2-F S2-H S3-F S3-H S4-F S4-H S5-F S5-H

Total time modelling
12:16 49:28 15:57 46:59 46:06 34:36 22:42 39:40 8:24 46:09
Factor of increase (time)

4.05 2.99 0.75 1.76 5.59
Factor of increase (number of models)

2.5 1.8 1.33 1 3
Proportion of time performing actions
20% 17% 28% 17% 7% 18% 15% 10% 44% 29%

Table 6.5: Data about the DES modelling by subjects 1 to 5 (S1 to S5) in the factory and
hospital problems (F and H). Time is in minutes and seconds.

113

The number of perceived mistakes, as described in Section 6.2, can also be used as an
evaluation of the difficulty subjects experience with a problem. The data collected from
the observational study are shown in Table 6.6. Surprisingly, type 1 mistakes are much more
common during the solving of the, supposedly, easier factory problem. Type 2 mistakes do not
form a stable trend. Some subjects made more type 2 mistakes during the factory problem,
other made more during the hospital problem, while yet others made the same number of type
2 mistakes in both problems. Type 3 mistakes, on the other hand, were clearly more common
during the hospital problem (with subject 4 being the only exception). This fact supports
the conclusion that the hospital problem was more difficult for the subjects. However, it also
contradicts the results for the type 1 mistakes. Three potential explanations are as follows:

• During the more difficult problem, the subjects focused on higher-level problem solving;

• Since the subjects were more uncertain of the correct solution during the more difficult
problem, small mistakes in the models were harder to recognize;

• During the more difficult problem, the incorrect models more frequently required too
many corrections and the subjects chose to remodel them instead of applying small
corrections.

S1-F S1-H S2-F S2-H S3-F S3-H S4-F S4-H S5-F S5-H
Type 1 26 19 18 12 28 7 12 5 40 31
Type 2 9 9 4 4 7 0 4 1 4 13
Type 3 0 0 0 5 0 4 1 0 4 9

Table 6.6: Number of perceived mistakes according to type during problem solving by sub-
jects 1 to 5 (S1 to S5) in the factory and hospital problems (F and H). See Section 6.2 for
explanation of types.

A more objective examination of the errors in the solutions of the subjects reveals an
interesting trend. Most of the errors were caused by incorrect reasoning about events. These
errors can be grouped into four categories.

• Incomplete description of the dynamics of a module, missing events;

• Problems with event granularity, either superfluous or insufficient granularity prevent-
ing the design of a solution;

• Mismatched events, the interaction of modules is incorrectly modelled due to improper
event coupling; and

• Incorrect event controllability, the subject’s interpretation of the problem description
is incorrect and the controllability of events is not determined properly.

All subjects made one or more of these errors at some point in their problem solving, with
the incorrect determination of event controllability being the most frequent one. In fact, only

114

subject 3 did not commit a controllability error, however, they did not consider controllability
at all during the problem solving. Other, less common, errors which did not involve events
were not so universal. Subject 1 made errors in determining the marking of states and the
granularity of states. Subject 3, as described in Section 4.3.3, did not apply the conventional
approach to using finite-state automata and their models could not be interpreted within
the DES framework. Subject 4 did not model the control specifications correctly. Instead of
modelling what the desired system behavior should be, they modelled the physically possible
system behavior. The last two errors are indicative more of a lack of knowledge rather than
of problems with interpretation. Thus, it is possible to conclude that the greatest cause of
incorrect solutions are errors related to events.

Most subjects did not manage to advance far enough with their solutions to go through
extensive verification. During the few times the subjects did perform verification or discussed
their verification techniques, the following observations were made. The most common tech-
nique of verification was tracing of sequences of events in the finite-state automata of the
models. The subjects would start at the initial state or at a known state and then follow
the transitions in the model sequentially according to a sequence of events they had in mind
(the sequence could also be constructed during the tracing). This verification could uncover
a number of problems. These include

• The chosen sequence of events should not occur if the model is correct, but there are
transitions that make it possible,

• The chosen sequence of events should be possible, but there is no sequence of corre-
sponding transitions, and

• The chosen sequence of events leads to the wrong state in the model.

Two subjects pointed out that visual inspection of the model, and visual tracing is very im-
portant to them. For example, it would allow them to see if there is a general pattern in the
transitions and if they “flow” in the expected direction. Other verification techniques em-
ployed or mentioned by the subject include checking if the transitions exiting different states
are consistent with the expectation (which is a variation of tracing), checking the number
of states and/or transitions against the expectations, checking the controllability of a super-
vised system and performing black-box testing. Subject 1 mentioned that, when checking
the behavior of a controlled system, it is important to try to relate it to the corresponding
real-world system and to answer the question if it makes sense in the real settings. The
subject also mentioned that, in their opinion, an exhaustive manual analysis of models with
more than thirty states seems infeasible.

Even with the application of the above verification techniques, it is impossible to predict
how many errors or what type of errors would be discovered and corrected before the com-
pletion of the problem. However, it is reasonable to assume that many of the errors would
remain undetected, since they are the result of incorrect interpretations of the problem de-
scriptions. For example, the incorrect determination of event controllability does not result
in any specific conditions which would hint at this type of error. A subject could produce a
complete solution, all the while not being aware that they have determined the controllability
of events incorrectly.

115

The subjects were able to use the IDES package if they chose to use software for their
problem solving. Feedback on the software was not extensive, however, subjects seemed to
have an overall positive experience with it. Some features won praise, e.g., the ease of creating
and naming models, the ability to drag elements on the drawing canvas, the option to enter
events in bulk, and the aesthetics of the rendered labels. On the other hand, there seemed
to be also a general reluctance among the subjects to use the software if they could complete
the tasks with pen and paper. No subject started problem-solving using the computer.
Only subject 3 used pen and paper and the software in a seamless fashion. The subjects
who commented on the topic said that they have a personal preference for pen-and-paper
modelling and that they consider the use of software only when it is necessary, e.g., when
the system is too large and complex. On the other hand, the threshold of complexity could
be quite low. Subject 2 mentioned that they would consider using software even for a system
with only eight states. According to the subjects, other deterrents from the use of software
are the facts that it requires preparation, e.g., events have to be input first, and that the input
of models is tedious and time consuming. The subjects also mentioned their dissatisfaction
with the lack of certain features in this version of IDES. A list of these features is given here:

• Duplication of events across models, or a central repository of events which can be used
in multiple models,

• Better automatic layout of models, or a selection of different layout algorithms,

• Duplication of finite-state automaton models (this feature was available, but the subject
did not recognize it in the user interface),

• Algorithms for “self-looping” (or inverse projection) and checking two controllers for
conflict,

• Selection of multiple (more than two) models with multiple-input algorithms, e.g.,
parallel composition,

• Printing of models,

• Display of detailed information about (e.g., description of) events when requested, and

• Support for diagrams in the software.

One of the concerns the subjects had was the quality of the automatic layout of models.
In order to understand the importance of better visual representation of information, we
examined the number of times the subjects corrected the automatic layout of the models
or the layout of the user interface. The results are shown in Table 6.7. It can be observed
that normally subjects did not adjust the visual layout very frequently. Using an estimation
of two seconds per adjustment action, it can be computed that subjects spent well below
ten percent of the total time of software use adjusting the layout. The only exception is
subject 1, who spent about a quarter of the total time—a very significant part, indeed.
Through the observation of this subject’s actions, it can be seen that the majority of their

116

layout adjustment occurred during the verification of newly computed models, and most
prominently, during the verification of the final supervisory solution. The other subjects
did not go through this stage of problem solving. It is important to note, however, that
the time spent to make adjustments does not necessarily mean that the subject’s attention
is exclusively dedicated to this task. As observed in the performance of subject 1, layout
adjustment usually occurred concurrently with the process of verification, e.g., with event
sequence tracing. Thus, there is some indication that layout adjustment is tied to other tasks.
It could be that different kinds of layout are necessary for different verification techniques.

S1-F S2-F S3-F S5-F S5-H
Number of corrections 257 38 40 16 17

Time taken by corrections (estimate) 8:34 1:16 1:20 0:32 0:34
Time using software 34:49 28:58 20:11 16:31 9:11

Percent of time taken by corrections 25% 4% 7% 3% 6%

Table 6.7: Data about the corrections of the layout of models and the user interface done
by subjects 1 to 5 (S1 to S5) in the factory and hospital problems (F and H). There are
data only when the subjects used software in their problem solving. The time taken to make
corrections is estimated, assuming each correction took two seconds. Time is in minutes and
seconds.

117

Chapter 7

Discussion

The observational study of problem solving in control of discrete-event systems resulted in
large quantities of data which allow the examination of many aspects of the task. The
small sample of subjects does not make statistical tests of hypotheses possible. Indeed, this
study can be interpreted more as a exploratory study which should provide the information
needed to create other, targeted examinations. However, for our purposes, i.e., discovering
patterns and strategies of problem solving, the study bore much fruit. In this chapter, we
will summarize some of the analysis from the previous chapters and discuss the observations
in light of our goals.

7.1 Global strategies

Global strategies are the high-level, overarching approaches subjects take in solving a prob-
lem. The global strategies employed by the subjects in this study were varied and did not,
in general, follow the strategies described by the experts. Only subject 1 seemed to follow
closely the traditional (advocated) sequence of steps: model system, model specifications,
apply algorithm for automatic generation of supervisor. All other subjects deviated in one or
more ways from this procedure. In the well-known factory problem, the traditional strategy
seemed advantageous, i.e., subject 1 was the only subject who managed to complete the
problem. However, in the novel hospital problem, this did not seem to be the case. In fact,
subjects 4 and 5 advanced further in the problem solving within the allotted time.

All subjects adopted a modular approach to their solution, i.e., they modelled components
separately. Some subjects even considered modular supervision, where separate supervisors
deal with separate aspects of control. These approaches are in line with the strategies used
by the two experts (see Chapter 5). Furthermore, subjects, just as the experts, attempted to
make a distinction between system components and components of the control requirements.
For example, in the factory problem, the buffers need not be modelled as system components;
it is sufficient to model the control requirements for prevention of overflow and underflow.

Beyond the above similarities, the strategies of subjects generally differed from the strate-
gies of experts. Two of the most important differences are in the ways subjects deal with
control specifications and with supervisors.

118

One of the most surprising conclusions from our study is that most subjects did not
consider it necessary to formally model the control specifications. Only subject 1 (in both
problems) and subject 4 (in the factory problem) modelled the control specifications rigor-
ously. At the heels of this observation comes the fact that most subjects did not attempt to
make use of the algorithm for automatic generation of supervisors from models of the system
components and models of the control specifications. It is not entirely clear if specifications
were not modelled formally because there were no plans to use the algorithm, or if the algo-
rithm was not used because the specifications were not formally modelled. It can be pointed
out, however, that subject 4 did not use the algorithm even after they modelled the specifica-
tions in the factory problem. Instead of generating supervisors automatically, most subjects
designed the supervisors manually. Subject 2 did not even seem to be able to distinguish
between models of specifications and models of supervisors. These results contradict what
both experts who were interviewed explained as their strategies, namely, the reliance on the
automatic generation of supervisors.

The above observation leads to the conclusion that one of the most central aspects of DES
control theory—the existence of an algorithm for the automatic generation of supervisors—
was not taken advantage of by the subjects in our study. This realization makes us ask,
“why is this the case?” Were subjects not aware of the existence of this algorithm? This
seems highly unlikely as the explanation of the algorithm is an essential part of the ELEC843
course which all subjects had taken. This course includes also assignments which require the
application of the algorithm. Furthermore, at the time of the study, a few of the subjects were
actively pursuing research interests in the field. Apparently, the reason for this reluctance
to use the algorithm lies elsewhere. Based on this study and on a number of other personal
observations and experiences, we attempt to provide some plausible hypotheses:

• The problems were relatively small in size and the subjects believed they could construct
the correct supervisors manually.

• The subjects were more comfortable using pen and paper rather than software in the
process of problem solving and they tried to minimize the time and effort in obtaining
a solution (especially as the time of the session was limited).

• The automatic construction of a supervisor results in an “unknown” model where a sig-
nificant amount of effort has to be invested for understanding it and verifying it. The
manual construction of a supervisor results in a model which is already understood
(since it was constructed by the subject) and is verified to some extent (since its con-
struction requires cross-referencing with the existing models and comparison against
the control requirements).

• The formal modelling of specifications as finite-state automata may be contrived and
not natural in some cases, thus subjects were reluctant to expend the effort.

• The phrase “control specification” is ambiguous in the sense that it may either signify
the requirements for the operation of a system or the specific control decisions made
to satisfy the requirements. Subject 2, in particular, seemed to have this confusion.

119

• The phrasing of the problem description, namely, the statements “Provide a control so-
lution...” and “You should use pen and paper for your modeling. You may use the IDES
software for computationally demanding tasks.” (see Appendices A.1 and A.2), might
have misled the subjects into believing they must construct the supervisors manually
and only use the algorithm when a manual solution is infeasible.

The manual construction of supervisors is not, in itself, a “bad” strategy. After all, this
is how most controllers had been designed before automated methods became available to
industry. Even now it seems that this is a widely used methodology [14, 10]. The automated
construction of DES supervisors, however, provides an advantage over manual work in the
fact that it not only guarantees correctness of the supervisors (i.e., that all requirements are
satisfied), but also the generation of optimal supervisors (i.e., that all requirements are satis-
fied in the most permissive way). Normally it is not hard, for small projects, to create correct
supervisors manually. However, the construction of optimal supervisors is frequently an in-
feasible task, given the size of the space of potential solutions. Psychological research, [65],
indicates that this task may be even harder for humans. Human decision making seems to be
biased towards direct implications and regularly fails to consider the reverse of such impli-
cations. Correctness can be naturally determined using direct implications (modus ponens),
e.g., “if the buffer is full and the machine deposits a new part, then the buffer overflows”.
On the other hand, optimality frequently requires reverse implications (modus tollens), e.g.,
“if the buffer does not overflow (is not full), then the machine need not be prevented from
depositing a new part”. The second type of conclusion may be significantly harder for con-
trol engineers to make. In our study there was no observation leading us to conclude that a
subject was considering the optimality of their manually-designed supervisors. On the other
hand, subjects frequently engaged in verifying the correctness of their solutions. Arguably,
the use of the algorithm for automated generation of supervisors in DES is preferable not so
much because it guarantees correctness but because of the optimality of the solution.

In order to understand which factor (or combination of factors) contributed to the re-
luctance of subjects to employ automatic generation of supervisors, further studies will be
necessary. Nevertheless, some recommendations can be made from our current observations.
First, the benefits of the algorithm for automatic construction of supervisors have to be
emphasized more in teaching DES control theory. Examples in class should employ the algo-
rithm rather than use substitute solutions by hand. In relation to this, DES software should
make the application of the algorithm as simple as possible. Second, strategies to understand
and make use of automatically generated supervisor models need to be an essential part of
a DES control course. In relation to this, DES software should make generated control so-
lutions more transparent. For example, the representation of a supervisor could make the
relation between the supervisor and the system components more obvious, e.g., by highlight-
ing the relevant parts of system components when a specific control decision is examined by
the user. Third, the purpose of control specifications has to be explained in detail to prac-
titioners of DES control. The ambiguity of the terminology has to be dispelled. The formal
models used for all entities—system models, control specifications and supervisors—are the
same (i.e., finite-state automata). Thus, confusion as experienced by subject 2 (mistaking
supervisors for control specifications) and subject 4 (assuming control specifications need to

120

represent the unrestricted behavior of a component) is natural. An in-depth examination of
the specific purposes of the different kind of entities could help clarify the difference.

7.2 Local strategies

Problem solving does not depend only on global strategies. Simpler strategies applied at
individual steps of the process are also very important. These strategies, which we call
“local”, will be discussed next.

One of the problem-solving strategies we observed can be described as “easy first”. Using
this strategy, the subject would first concentrate on completing the tasks they know how to
complete and only after they would look into more difficult tasks. Based on our observations,
we believe that this strategy was employed by most subjects implicitly. It was most apparent,
and explicitly mentioned, during the problem solving of subject 2. In the hospital problem,
they experienced difficulty modelling the module for the grandmother. They repeatedly
postponed this task until they finished modelling all easier components.

Another strategy employed by subjects was “divide and conquer”. Using this strategy, the
subject would break down hard tasks into easier-to-complete components of the tasks. This
was most apparent in the problem solving of subject 5. In the factory problem, they started
by trying to create a monolithic model for the whole system. As the model became larger
and more difficult to model, they chose instead to model each system component separately.
In a similar fashion, after failing to produce a single supervisor for the first buffer, the
subject chose to construct two separate supervisors: one for prevention of underflow and
one for prevention of overflow. At the same time, they did not break down the supervisor
for the second buffer; and it can be argued that its control task is much simpler. A similar
observation can be made in the problem solving of subject 2: they constructed two separate
supervisors for buffer 1 but a single one for buffer 2. All other subjects employed the “divide
and conquer” strategy to some extent as well. Even the basic choice to model a system in a
modular rather than a monolithic way is an application of this strategy. It is interesting to
note that analogical reasoning seems to be one of the main factors guiding the application
of this strategy for the subjects in this study. They were aware of the similarity between the
factory problem and the problem they had seen in the ELEC843 course. In breaking down
difficult control tasks, they broke them down in the same way that they had seen in class.
Furthermore, during the hospital problem some subjects used the same way of breaking down
the tasks. They used terminology suitable for the factory problem and which is not, however,
natural within the new context.

During problem solving, especially in the hospital problem, subjects complained that
they had to deal with too much information. While this was not made explicit, one could
hypothesize that the subjects complained when they found that the information they needed
to consider was larger than the capacity of their working memory. The strategies subjects
used to cope with the amount of information are listed next from least demanding to most
demanding:

• Underline (or otherwise mark) specific sections of the problem description. Such mark-
ers make it easier to locate relevant information as the visual attention is automatically

121

attracted to the sections deemed important by the subjects.

• Create a summary of all the information given in the problem description. Such sum-
maries are much shorter than the full text. Furthermore, subjects can organize the
information in a “personalized” way; as shown in human memory research, [37], differ-
ent people may use unique cues to remember and recall a given piece of information.

• Draw diagrams representing the entities in the problem and the relations between
them. Such diagrams seem to be most helpful since they provide both an overview of
the situation in the problem and immediately-accessible information about the context
of any component.

All the above approaches show that, usually, the organization, and accessibility of information
in a problem description is not suitable for the building of an overall understanding of the
problem or for the referencing needed during problem solving. Subject 2 made this most
explicit by commenting that they did not like how the information was organized in the
description of the hospital problem.

Our recommendations for DES software are as follows. First, it is clear that users must
not be forced to follow a specific order of steps in modelling unless the completion of these
steps is necessary for the application of an algorithm or otherwise for advancement in the
problem solving. For example, a user should be able to compute a supervisor for a part of the
system components if all relevant components have been modelled—even if not all compo-
nents are complete. Second, users should be given the option to customize the organization
of information about a problem. The most natural way to achieve this is outside of software,
using pen and paper. However, in environments where the use of paper is infeasible, or if
documentation about all design steps has to be retained, the software should provide a way
for annotations of models and, if feasible, for the creation of free-form diagrams. If lists of
items are used, the user should be able to re-order these lists in custom ways.

Our recommendation for teachers of applied DES control theory is to keep in mind the
“easy first” and “divide and conquer” strategies, and to make them more explicit in their
teaching. Knowing that the successful application of the “divide and conquer” strategy is
highly dependent on previous experience, teachers should aim to show a wide range of cases
when breaking down hard tasks can be used and to give examples that show how it is done.
This will give students a richer set of cases from which to borrow ideas when solving other
complex problems.

7.3 Human factors

The specific problem-solving strategy chosen by an individual depends not only on objective
properties such as problem size or difficulty. Human factors, such as previous experience and
attitude, also play a role.

In the observational study we noticed many occasions where previous knowledge and
experience shaped the way subjects solved the problems. As already discussed, knowledge
of the problems solved in the ELEC843 course had an effect on the form of the solutions for

122

the factory problem, and even, on some occasions, for the hospital problem. However, there
were influences also from previous knowledge which is not as specific. Subjects 1 and 5, for
example, decided to introduce into their models of the machines the additional behavior of
breakdown. Apparently, this was done because it made sense to them that machines can fail,
and not because this behavior was mandated anywhere. Looking at an even larger scale, the
unconventional, in DES, interpretation of finite-state models by subject 3 can be explained
to some extent by their research background. At the time of the observational study, the
subject used in their research the same type of models, however, in a completely different
setting. The interpretation they demonstrated seems to be conventional in this other field.
Thus, it appears that previous experience played a large role in the failure of that subject’s
problem solving.

A person’s attitude to the problem solving may influence the process as well. In our study
we could observe two diametrically different attitudes. Subject 4 was very deliberate. Their
problem solving was slow and cautious. It seemed that they wanted to make sure that every
action was correct. In the hospital problem, they modelled the smallest number of models (5)
and they made the smallest number of corrections to the models (5). Subject 5 was, on the
other hand, very prolific. Their problem solving was fast and experimental. It seemed that
they want to offset all the mistakes they committed by quick introduction of new variations—
leading to a gradual conversion to a correct solution. In the hospital problem, they modelled
the largest number of models (20) and they made the second largest number of corrections
to the models (31). The latter number is rivaled only by the number of corrections the same
subject made during the factory problem. Even though the two approaches were completely
different, both subjects advanced at a very similar rate during the sessions (see Tables 6.1
and 6.2). Thus, based on our observations, there is no ground to recommend one of the
approaches over the other.

Human factors can vary along a very large scale, thus, it is hard, if at all possible, to
recommend anything specific in order to accommodate different personalities and levels of
experience. To teachers of DES modelling, we recommend training students to recognize
when design ideas come from their personal experiences and when the ideas are based on
the hard information in the description of a problem. Students must not be discouraged
from using previous experiences, however, we believe the ability to differentiate between
background knowledge and hard information may lead to better designs with less confusion
about design decisions. To developers of DES software, we recommend keeping in mind that
every user may have a unique approach to problem solving. The software should be flexible in
order to accommodate this variation. Furthermore, different users may have different levels
of DES knowledge. Scalable degree of simplicity in the interface, with simple interaction for
novices, and up to full representation of the complexity for experts, is a desirable property
of software systems [12].

7.4 Events

Events, one could argue, form the essence of discrete-event models. The choice of events when
modelling (i.e., granularity, controllability, synchronization, naming, etc.), thus, is critical for

123

the success of a supervisory solution. As discussed in [68], the event set has immense influence
on the form of a solution. Furthermore, direct observations during this study showed that
just as systematic errors may lead to a lack of success (subject 3, poor synchronization of
modules), a single incorrect choice could throw the solution off track (subject 4, incorrect
choice of event controllability). It is thus unfortunate that, in our observations, problem
solvers experience the most difficulty with the determination of what events to use and how
to use them. When working with events, the major problems experienced can be summarized
as problems with the determination of

• Granularity of events,

• Synchronization of models, and

• Controllability of events.

The granularity of events stands for the level of detail used in the modelling of the
behavior of a system. For example, the work of the computer in the hospital problem could
be described as the acquisition of data from the prototype equipment and the subsequent
preparation of a report, or simply as a single event combining the acquisition of data and
preparation of a report. In general, the greater granularity, i.e., the more detailed description,
is not detrimental to the correct solution of a problem. As well, some experts advocate a
detailed description (see Section 5.1). However, such detailed descriptions are not always
needed. The models become much larger and more difficult to understand and manipulate.
In some cases they may even cause the formation of computationally infeasible solutions.
Subject 1 mentioned that they tried to use the smallest models possible specifically for this
reason. Greater granularity also implies that more choices will have to be made about the
controllability of events and the correct synchronization of DES components. This creates
more opportunities for making mistakes.

Events are used also to accomplish the synchronization of DES models. For example, the
output of a part by a machine in the factory problem has to be synchronized with the accep-
tance of a part by the corresponding output buffer. In order to achieve this synchronization,
the models of the machine and the buffer have to use the same event for the same “action”
(that is, the names of the events have to be identical). Then, the DES algorithms will be
able to recognize properly how the modules interact. Subject 3 did not realize this essential
proposition and their models were not usable with the available mathematical tools. Other
subjects knew about this fact, however, they occasionally struggled to determine which events
had to be used for the purpose of synchronization. To some extent, this problem is related to
the problem of choosing the right granularity of events. Detailed component models do not
contribute to a correct solution unless the detail lets one discern component states (or event
sequences) at which different control decisions have to be made or unless it allows the correct
establishment of synchronization between models. The greater the choice for synchronization
points, the more opportunities for making a mistake.

Our recommendation is that models be modelled using the lowest possible granularity
first, with subsequent granularity refinement as needed. Each model may be viewed as a
black box which has a number of input/output events, or events which are used to interact

124

(synchronize) with the environment and the rest of the models. The model itself, then, only
needs to specify in what sequences these events may occur. For example, a machine in the
factory problem interacts with the rest of the world only through the input of an unprocessed
part and the output of a processed part. The sequence of such events need only describe
that an output cannot happen unless there is a corresponding input and, once there is an
input, another one cannot occur until there in an output. In this case, it is not necessary
to describe exactly what operations the machine performs to convert an unprocessed part
into a processed part. In some sense, this approach is similar to that of hierarchical DESs,
e.g., [64]. Thus, it could find potential use also when modelling systems for different levels
of control.

The situation with the controllability of events is not that simple. In the initial proposal
for DES control, [45], it was assumed that events are inherently controllable or uncontrollable.
When centralized control is used (a single omnipotent supervisor), this is a valid assumption.
Controllable events would be the ones which the supervisor would be able to disable (i.e., pre-
vent from occurring). All other events would be uncontrollable. This is also the way in which
DES control is introduced in teaching—tying controllability to the events. However, this as-
sumption is fundamentally wrong when one considers a system controlled by a number of
entities. For example, even at the most trivial level, most machines have an “emergency stop”
button accessible to human operators. This button can override all functionality (all events)
of a system and prevent the further progress of operation. However, the microcontroller of
a system usually does not have a similar capability. When one considers all microcontrollers
in a given system, a similar observation holds. The microcontroller for machine 1 may not
be able control the operation of machine 2, while all activites of machine 2 may be perfectly
“controllable” for its own dedicated controller. Thus, the controllability property is not an
inherent property of events. Rather, it depends on the agent who performs the control [52].
In this sense, the modelling of the behavior of a system and the relevant specifications does
not require the determination of the controllability of events; this is an independent process.
Only when the proper supervisor will be designed, is it necessary to determine which events
will be controllable by the supervisor. The performance of the subjects in our study shows
that for many of them the determination of controllability of events is a separate process
from the modelling of behavior. However, in other cases, this was not so. Especially when
using the software, the interface for event entry urges the users to associate the controllability
with a model rather than with the supervisory solution. Experts also seem to occasionally
consider event controllability concurrently with the modelling of components.

Our recommendation is to emphasize the fact that event controllability is not an inher-
ent property of events and that it completely depends on the point of view of the entity
exercising control. This will be helpful especially in situations when event controllability is
not apparent—such as in verbal descriptions of complex systems. In the hospital problem,
subjects occasionally determined controllability of events based on the point of view of the
entity described with the events. For example, subject 4 determined that the events pre-
scribing candy or medicine to the patient are controllable since the doctor has control over
which decision they make. However, from the point of view of a computerized supervisor,
these events are uncontrollable. In a hospital, the doctor has ultimate authority (and re-

125

sponsibility) for the treatment of a patient. Thus, a supervisor must not have the ability
to prevent or enforce an alternative treatment method. The mistake of subject 4 (and the
subsequent erroneous problem solution) could have been avoided if the proper point of view
were assumed. Software interfaces should decouple controllability of events from models and
associate it with the corresponding supervisors.

The naming of events is, theoretically, not relevant to the construction of DES solutions.
As long as different events have different identifiers, and the same events have identical
identifiers, the form of the identifier is irrelevant. However, practical applications of the theory
require the choice of a specific naming strategy. The subjects demonstrated three different
naming strategies, as discussed in Section 6.5. The observations show that, in general, using
arbitrary event names did not cause confusion in the process of problem solving. Subject 4
mentioned that they tried to choose a scheme which “made sense” but their naming scheme
was apparently arbitrary. They also said that it took them some time before they became
comfortable with the event names. Thus, it may be conjectured that arbitrary naming
schemes will be disadvantaged compared to a naming scheme where event names reflect in
some way the meaning of events. Descriptive event names did not cause confusion either,
however, it was observed that very elaborate names tended not to be replicated identically
in all instances. A further conjecture, then, is that very elaborate names may lead to naming
inconsistencies (as observed with subject 5 on one occasion). The subjects did not always
maintain a list of the events that were used—and it may not be necessary for such a small
problem. Expert 1 also does not normally use events lists. However, based on personal
observations, more complex systems place extra demand on the creation of meaningful naming
schemes. Keeping all event names in memory may not be possible, and further complication
occurs when models have to be interpreted by individuals different from the model creators.
Lastly, as discussed previously, synchronization of models and specifications is done through
identical events. Inconsistencies in the naming of events may result in hard-to-find errors in
the synchronization of components. This problem is exacerbated with the growing number
of events to be considered in complex problems.

Our recommendation is to use concise names of events, derived from the meaning of the
events, whenever possible. A list of events used with their descriptions should be maintained.
This will help in cases when a sizable number of events is used and/or when models have to be
interpreted by other people. This idea can be advanced further using the appropriate software
interfaces. Research in information visualization [55] advocates the use of an overview+detail
paradigm. Design software for DES may easily support such a visualization. A list of all
events used in a model or a number of models can provide the overview—and it can be
always current if the software maintains it dynamically while users work. The details about
events (such as a verbal description), as per subject 3’s recommendations, could appear when
the user chooses to see it. This could be both in the event list and within usage context,
where the event appears in a model. Further support can be offered for the synchronization
of models. If the user has access to the list of events from all models, they could choose a
specific event for use in their current model without having to recall the exact name. Also,
when the synchronization of different events from existing models is necessary, manual event
renaming can be avoided. Instead, an automated event transformation could be available to

126

the user.

7.5 Control specifications

As discussed in the earlier sections, the subjects in our study experienced confusion about the
use of control specifications in problem solving. In some cases this was apparently due to the
lack of sufficient knowledge. However, arguably the form of control specifications proposed
in the seminal work of Ramadge and Wonham, [45], has many drawbacks.

In systems control, controllers have to guarantee two types of requirements: the controlled
system must not exhibit undesired behavior, and it must exhibit desired behavior. In our
opinion, DES control theory is very well suited for the first type of requirement. In DES,
control is exercised by preventing the occurrence of of events, i.e., by preventing the exhibition
of undesired behavior. However, the theory is not suitable for the second type of requirements.
It is not instrumented to effect a specific behavior—event occurrences are purely spontaneous.
The only tool control engineers have to specify desired behavior is the use of marked states.
When states are marked, any acceptable supervisor must ensure that no matter what sequence
of events occurs in the system, the system is able to return to a marked state. In this sense,
states signifying the completion of tasks can be marked and, consequently, imply control
which guarantees the completion of tasks. Theoretically, this is not a significant drawback.
However, the practical application of the theory is quite demanding. As seen in this study, and
in our personal experiences, it is difficult to decide which states exactly need to be marked to
“enforce” the desired behavior. Real systems usually include both spontaneous events (e.g.,
the completion of the processing of a part) and enforced events (e.g., the command for the
start of part processing). Standard DES control specifications require a very significant shift
of the control paradigm: from an active/reactive paradigm to a passive paradigm. Not only
does this contradict the traditional way of thinking in control engineering, but it also leads
to the issue of thinking with direct versus reverse implications, i.e., specifying what should
happen by using prevention (see Section 7.1 and [65]). Naturally then, in DES, designing
specifications to prevent undesired behavior is much simpler than designing specifications to
ensure desired behavior. It is a frequent experience of practitioners (and experienced both
by the subjects in the study and by the interviewed experts) that initially the marking of
states is incorrect or altogether forgotten.

The mathematical construct for formal modelling of control specifications—the finite-state
automaton—is not always easily used in practice. This fact came to light more prominently
during the hospital problem. A number of subjects summarized the control requirements
from the verbal description using inequalities, giving the limits on the number of occurrences
of certain events. This way of expression is much simpler than the use of FSAs and, at the
same time, can be just as rigorous. In the factory problem, subject 4 actually attempted to
define the requirements formally using inequalities rather than FSA models. Furthermore,
DES researchers sometimes also use this method, e.g., in [8]. Our personal experiences show
as well that in many cases inequalities are a very easy tool to define formally the control
requirements for a system. Research in other areas, such as formal verification [30], regularly
makes use of temporal logic to formally define specifications, especially ones relating to the

127

21

3

close

open, start remove, finish deposit

finish remove

open, start remove, finish deposit, close

start deposit

open, start remove, finish deposit

Figure 7.1: Specification for the process flow in a factory cell with a robotic arm and a press.
Notice the large number of self-looped transitions with all the events irrelevant for the process
flow.

liveness of a system (or the making sure that a system accomplishes something). Use of
temporal logic is not common in DES even if the idea has been entertained, [61, 32], since
it is not as convenient as FSAs for the definition of safety specifications (remember that in
DES supervisors exercise control by preventing the execution of events) and because check-
ing certain properties is more difficult in temporal logic. However, it seems that temporal
logic may provide a complementary power when used together with FSAs to define control
specifications.

Our recommendation is to examine alternative formal methods of defining control specifi-
cations. In many cases the use of finite-state automata is convenient and justified. However,
this is not always the most natural method of expressing specifications. When the number
of occurrences of events has to be maintained with a certain range, inequalities may be more
suitable. When the desired behavior of a system has to be defined, temporal logic may be
more suitable. Teachers of DES should explain the rationale behind using FSAs to model
control requirements and should give examples of how other formal methods can be used
instead. Software for DES should also be designed so that alternative formal methods can
be used by the users. For this purpose, it may be necessary to develop new algorithms for
checking controllability and for supervisor generation. However, the basic theory for DES
control does not preclude the use of alternative models. For example, in [1] Extended Finite
Automata can be used in the software interface. In this case, however, there is no need for
extensions to compute supervisors as the models are automatically converted to standard
FSAs before applying computational algorithms.

The use of FSAs for the definition of control specifications, as proposed in [45], suffers one
other drawback. Within the classical framework, specifications need to be explicit. I.e., all
events allowed to occur in a given situation have to be mentioned explicitly, otherwise they
are assumed to be prevented from occurring. As a result, FSA models of specifications usually
contain a large number of what are referred to as “self-loops” (see Fig. 7.1). These self-loops
list at every state the events which are irrelevant to the specification (i.e., events about which
the specification does not care and which it enables by default). The observations from this
study show that, when modelling control specifications, subjects rarely included these self-

128

loops in the models. For example, subject 1 modelled only the “essential” part of the control
specifications (i.e., using only the relevant events) and then simply wrote

+ selfloops.

next to the model to indicate that irrelevant events have to be included as self-loops. Fur-
thermore, subjects occasionally forgot to include these self-loops even in the rigorous DES
models in the software—leading to incorrect computations. This behavior is not unique to
the subjects in our study. Teachers of DES theory report similar observations about their
students [19].

Our recommendation, based on a suggestion of Fabian [19], is to consider the use of im-
plicit specifications. In these specifications, events which are not mentioned in the FSA model
are assumed to be permitted. This new kind of specifications can be incorporated very easily
in the existing DES framework. The only difference is in the operation for the combination
of specifications. Instead of using intersection, it is necessary to use synchronous product.
If the use of implicit specifications is assumed in the teaching of DES control theory, the
students will find the application of the theory much simpler. Furthermore, many potential
errors due to missing or incorrect self-loops can be avoided. Software for DES should be
designed to either work with implicit specifications directly (i.e., to use synchronous product
for the composition of specifications), or to automatically convert implicit specifications into
explicit ones (i.e., to introduce all necessary self-loops automatically).

7.6 Supervisors

The subjects in this study usually chose to model supervisors manually. Thus, the exact form
of the models is not dictated by the algorithm used for automatic generation of supervisors. It
was interesting to observe the approaches the subjects took when designing the supervisors.
Similar to the control specifications, two main alternatives where identified: implicit and
explicit supervisors. Implicit supervisors are supervisors where all events which are not
prevented from occurring at a certain state have to be assigned to transitions at the state
(even if only as self-looping transitions). In other words, the events disabled at a state are
specified implicitly—by omission. The drawback of this approach is that numerous transitions
may need to be modelled at each state and the clarity of the model deteriorates, while its
complexity increases. The benefit of the approach is that all information relevant for the
control is included with the model and it can be used in DES operations directly. Explicit
supervisors are supervisors where the disabled events at every state have to be listed explicitly,
in a separate data structure. The drawback of this approach is that a separate data structure
has to be maintained and the models are not directly compatible with the DES algorithms.
The advantage is in the clarity of the models and in the greater ease in creating them.

It seems that implicit supervisors are more suited for algorithmic manipulation while
explicit supervisors are more suitable for human understanding. Thus, neither type can be
said to have a definite advantage over the other one. While observing the work of subject 5
during the hospital problem, it became apparent that they were using a “mixed” approach
to supervisor construction. With this approach, events are divided into two types: relevant

129

and irrelevant for control. Relevant events are the events which are disabled at at least
one state of the supervisor. Irrelevant events are the rest, i.e., the events which are always
enabled by the supervisor. In the model of the supervisor, it is necessary to explicitly enable
only the relevant events. I.e., if at a state there is no transition with a relevant event, it
is assumed that the event is disabled at the state. On the other hand, all irrelevant events
are assumed to be always enabled. If at a state there is no transition with an irrelevant
event, it is assumed that the occurrence of the event does not change the state (i.e., there
is an imaginary self-loop with the events). This approach seems to lead to very clear (and
“intuitive”) models. However, it also requires the maintenance of extra information about
the partitioning of events into relevant and irrelevant.

From our study it becomes apparent that different styles of supervisor modelling are used
by subjects. Our recommendation is that flexible DES software support both implicit and
explicit supervisor models. Furthermore, since the relation between the two is trivial and
well-defined mathematically, we recommend that software offer users the option to view a
single supervisor model using either of the two alternatives. Further research is necessary to
reveal if there are significant benefits to using the “mixed” style of supervisors in modelling.
However, we believe that a simplified version of this style could be beneficial. Instead of
requiring a separate partitioning of events into relevant and irrelevant, it is easier to assume
that the existing partitioning into controllable and uncontrollable is sufficient. Uncontrollable
events are always enabled by the supervisors, thus all uncontrollable events are also irrelevant
by definition. This simplification may still lead to more clear models (all self-loops with
uncontrollable events may be omitted), while at the same time removes the necessity for
additional data structures. Furthermore, the implementation in software should not be very
difficult. Including this option for the way a supervisor is represented may help subjects
understand supervisor models faster and better: clutter is reduced, control decisions stand
out, and there is no need to reference other information.

7.7 Computations

In our observational study there were very few occasions where subjects applied the DES
algorithms from the IDES software package. In most of the sessions the subjects either did
not advance far enough in their problem solving to need to apply the algorithms or they
decided to model the supervisors manually and thus did not need to apply the algorithms.
From the few cases when algorithms were applied, the following conclusions were made.

First, the user interface for algorithm invocation did not seem to pose a problem to the
subjects. The only registered complaint was that theoretically some DES operations support
unlimited number of inputs, however, the interface limited the number of inputs to only two
at a time. This limitation was only perceived. In fact, it is possible to use more than two
inputs at a time, however, the interface does not make it obvious how to accomplish this.
Our recommendation for DES software is not only to allow users to apply relevant operations
(such as “synchronous product”) on multiple inputs at a time but also to make the procedure
obvious in the user interface. One potential solution could be to let the user select the inputs
for an operation from a list of all available models. During the interview with expert 2

130

(see Section 5.2), they proposed an alternative to the graphical user interface available in
IDES. Instead of invoking DES algorithms graphically, they proposed the introduction of a
text-based command line, similar to what is available in the Matlab R© environment. Users
would then be able to type in which operations they would like to invoke. If the command
line supports nesting of operational expressions and the use of user-written command scripts,
DES problem solving may be simplified (and accelerated) significantly. For example, in the
factory problem, after modelling the two machines, the testing unit and the specifications for
the two buffers, one could create the supervisor by issuing a single command,

supcon(sync(M1,M2,TU),intersect(B1,B2)),

instead of selecting each operation separately using the graphical interface. Furthermore, if
this command is saved as a user script named, e.g., “factory”, after a modification to one of
the models, it would be sufficient to type only

factory

in the command line to repeat all operations necessary to regenerate the supervisor. It could
be argued that the context of use of Matlab R© is very different from the context of DES.
For example, in DES it is not sufficient to produce only numerical results; graphical models
(FSAs) are used extensively. However, similar user interaction is also available in highly-
visual CAD environments such Autodesk AutoCAD R©. The result of a text-based command
can be immediately reflected in the visual representation of a model. E.g., the supervisor
generated by the invocation of operations from the command line can be displayed visually
in the same fashion as when the user invokes the operations through the graphical interface.
The key advantage of user scripts is, in our opinion, in the support of analogical problem
solving [60, 29]. If the user determines a successful strategy for the solution of a problem
and saves the sequence of operations as a script, they (or their colleagues) will be able to
use the same script to solve analogous problems. In the case of minor differences between
the problems, it might be simpler to modify the existing script rather to reinvent the global
strategy for solving the problem. Similar are the considerations motivating the introduction
of case-based reasoning in other fields [34]. Lastly, the pre-packaging of successful strategies,
e.g., in the forms of “wizards” where the user only needs to select basic input parameters,
may simplify the application of DES by non-experts.

The second observation in our study is that, in the case of an incorrect (or unexpected)
result of an operation, the subjects engaged in what we call a “recursive” search for the
reason of the inconsistency. Usually they would first invoke the algorithm again, presumably
to discard the possibility that they had performed the wrong action by mistake. Then, they
would check the inputs to the operation, and then the inputs to the operations producing
these inputs, etc. For example, in the factory problem, if the output of the supervisor
construction algorithm is unexpected, the subject might first invoke the same algorithm
again. If the result is the same, they would examine the monolithic models of the system and
the control specifications (which serve as inputs to the algorithm). Then, in case that the
monolithic model of the system seems to have an error, they would invoke the DES operation
for the composition of the system modules. If the error persists, the subject would proceed

131

to examine each of the models for the machines and the testing unit. If they find an error
in one of the models, they would correct it and back-track by re-composing the modules and
then re-computing the supervisor. It is clear that such a process can benefit from two things:

• Information on what operations were performed. If the subject can verify which op-
erations they had performed and which inputs they had used, they would not need to
repeat operations to discard the possibility of incorrect operation invocations.

• Ability to repeat the sequence of operations automatically after a change to one of the
inputs. If the subject identifies an error in one of the system modules, for example,
and they correct it, they then need to manually recompute all aspects of their solution
which rely on the given module. If the software remembers what sequence of operations
are applied to obtain the solution, it would be possible to automatically repeat them
after the correction of the given module.

Our recommendation is that DES software include a journal (or history) of the sequence
of operations and their inputs, similar to what is available in Adobe Photoshop R©. This
should help not only with the recall and verification of which operations have been invoked,
but also allow the “replay” of the operations in the case of a modification in a model. A
further improvement could be the implementation of automatic maintenance of consistency
for computed models. For example, a supervisor may be generated from a system model
and a specifications model. The specifications model may be computed by composing a
number of smaller specifications. Then, a change to one of the smaller specifications would
automatically trigger the update to the composed specification to reflect the change. This,
in turn, would trigger the re-generation of the supervisor to make it consistent with the
new models. Such updates would not only speed-up problem solving when modifications to
the basic models are needed. It would also provide support for prototyping of solutions, as
users would be able to see the changes to their solutions introduced by any modification they
consider.

Lastly, during the n-gram analysis of the activities of the subjects (see Section 3.6) it be-
came apparent that subjects most frequently apply computational algorithms while working
at the high level of modules. In Fig. 6.3 it can be seen that the bigrams ‘CM’, ‘CC’ and ‘MC’
have the highest absolute and relative ratios from all bigrams which involve computations
(i.e., which contain the code ‘C’). This implies that, usually, subjects do not need to consider
low-level details of models, such as specific transitions, when applying algorithms. Thus, the
interface of DES software need not offer detailed displays of models when the user wishes to
apply algorithmic computations. Instead, it should focus on displaying the relations between
modules.

7.8 Verification

In this study, on very few occasions did subjects engage in elaborate verification of their
models and solutions. This is mostly due to the fact that they could not advance far enough
in the process of problem solving within the limited time, and thus their solution was not

132

developed enough to merit extensive verification. Using the performance of subject 1 during
the factory problem, the comments of subjects 3 and 5, and the comments of the experts, it is
possible nevertheless to conclude that the most likely technique subjects would use for verifi-
cation is event tracing (see Section 6.5 for a discussion of tracing). Some subjects mentioned
explicitly that visual examination and tracing is very important for them. However, in large
and complex solutions it might be even infeasible to display visually the computed models
(e.g., models with tens of thousands of states and hundreds of thousands of transitions).

Our recommendation is to provide a facility in DES software to pose questions relevant
to tracing, e.g.,

1. Is this sequence of events possible starting at the initial state? Which state does it lead
to?

2. Is this sequence of events possible starting at a given state? Which state does it lead
to?

3. Is this sequence of events possible starting at any state? In how many cases is the
sequence possible? Which are the starting states and which states does it lead to?

Such a facility would make it possible to perform verification even when models are too large
for visual inspection. Answers to the last question would most probably allow verification
which is infeasible in most non-trivial cases, if it has to be done manually. Questions of
the second type will require an additional facility; the user must be able to select a state of
interest. Thus, even in large models, the interface must provide a way to select states, e.g.,
by showing a list of all states in a model. In conjunction with state selection, DES software
should also display detailed information about states if requested. However common, tracing
is not the only verification technique used by the subjects and the experts. Other techniques
involve, for example, checking which events are possible at a given state or what the control
decisions at a given state are. This information could easily be displayed when the user
selects a state from the list of states in a model. In the case where the model is displayed
graphically, control decisions can be visualized as well.

Visual inspection of models was mentioned a number of times as important in verification
tasks. Though not always possible due to model size, sometimes it is feasible to generate
graphical representations of computed models. Unfortunately, computed models do not come
with a pre-determined graphical layout. For finite-state machines, it is necessary to apply
a graph layout algorithm to the structural description of the model to obtain a description
suitable for visualization. A number of layout algorithms exist but the consensus is that there
is no algorithm which produces “nice” layouts for all possible inputs (graph structures). In
our study, it was observed that subjects usually adjusted manually the automatic layout of
computed models. It seems that this will not be avoidable in the general case, however, there
are two features which, if implemented in DES software, we believe will contribute to easier
visual inspections: the availability of a deterministic layout algorithm, and the availability
of a number of different layout algorithms. A deterministic layout algorithm will be helpful
in cases when certain computations are repeated—the user will not have to hunt for the
initial state each time, for example. However, the true significance of deterministic layouts

133

is that they allow the direct comparison between model dynamics. I.e., if two models appear
the same, this means that they have the same structure. Users would also benefit from
the availability of different layout algorithms since different layouts may emphasize different
visual aspects of a model (e.g., symmetry, modularity, etc.) Furthermore, if a given layout
algorithm performs particularly poorly for a given input model, the user would be able to
select a different layout algorithm for the model.

If solving of a DES problem follows the traditional steps, verification should focus most
on the basic models from which a solution is derived (as supervisors are generated automati-
cally using an algorithm). However, as already discussed in Section 7.1, subjects in this study
frequently chose to design supervisors manually. Thus, the main focus in the process of ver-
ification becomes, naturally, the models of the supervisors. Of course, the control policies of
manual models can (and should) be verified using all the strategies employed with generated
models—but there are additional checks that need to be performed since the correctness and
optimality of the solutions is not guaranteed when they are designed by hand. Unfortunately,
only subject 2 advanced far enough in their problem solving to start the verification of their
manually designed supervisors. However, from the short interviews at the end of each ses-
sion it was possible to collect information about the potential strategies of other subjects as
well. The most basic test is for the controllability of the supervisor model, in other words, if
the control policy enforced by the supervisor is feasible. If this test fails, the control policy
includes an attempt to block the occurrence of an uncontrollable event and thus has to be
corrected. The other tests are more advanced and are necessary when more than one supervi-
sor will concurrently control a system (this was the approach taken by subjects who designed
supervisors manually). If the subject decides to compose all supervisors into a monolithic
solution, then they can test the deadlock/livelock properties of the resulting model (simply
by checking if the model is trim). If the subject decides to keep the supervisors separately,
they can verify the same properties by checking if the supervisors are non-conflicting.

Usually, DES software is designed with the idea that supervisors will be automatically
generated. Thus, an automated test suite for “unknown” supervisors is not available even if
all individual operations are. (As a side note, in our study we used a version of IDES where
the check for conflict was not available.) In view of the fact that solutions to DES problems
may not always be derived algorithmically, our recommendation is to include a comprehensive
package of tests for supervisors introduced manually. Such tests should allow for verification
of single supervisors as well as modular supervisors, both when all participating supervisors
are designed manually and when some of them have been generated automatically. Such a
package becomes especially important if the observations of expert 2 are correct. According
to them, the main interest in industry is in the verification of controllers rather than in the
construction of controllers.

A common comment of subjects when discussing their verification strategies was that they
would like to consult external literature for information on specific algorithms and strategies.
This indicates that their proficiency with the theoretical background was not fluent. In such
cases, it would be helpful if a short reference guide is included with the DES software. It is
clear that experts would rarely need to refer to such a guide. However, the learnability of the
software and the DES methodologies will be improved in this way, simplifying the transition

134

of users from novices to experts.

7.9 Low-level modelling

Even though our study focused mostly on the high-level aspects of DES problem solving, we
also briefly looked at the low-level actions of users when modelling. We performed n-gram
analysis of the collected data, as well as analysis of the visual attention and the mistakes
committed by subjects.

The n-gram analysis revealed that there is a dominant trend in modelling to perform
separate kinds of activity in chunks rather than to alternate between activities. For example,
once a subject starts work on the states of a model, they tend to continue working on the
states before switching to transitions or events. However, the degree to which this trend is
manifested varies between subjects. Some subjects prefer to work in larger chunks, while
others switch between working on states and transitions more frequently. Such differences
are most pronounced when modelling with pen and paper is considered. When subjects use
the software to input their models, the differences all but disappear. The version of the IDES
package used in the study mandates a more rigid modelling environment. For example, events
have to be defined in order to be used in a model. Such rigidity, we believe, contributed to
the greater similarity in the modelling activities of subjects. However, one must also keep
in mind that, in the study, subjects did not use the software to design their models. The
primary function of the software was to perform computations. Thus, subjects used the
modelling environment only to input models which already exist. As a result, one cannot
make a direct comparison between activities during the modelling with pen and paper and
the modelling with the software.

Our recommendation is that DES software support a wide variety of modelling styles. In
many software packages there are separate tools for the creation of states and transitions.
Such environments make it difficult to alternate between the two main elements of FSAs. We
believe that the interface in the IDES package is more flexible since a single “creation” tool
is used to create all types of entities [51]. The user can use the tool more naturally, similar
to pen and paper, and apply any style of input with the same ease.

The analysis of attention during the problem solving allowed us to make the following
conclusions:

• The problem description is referenced very frequently. It attracted the most attention,
overall.

• The amount of attention shift between models appears to form groups of highly related
modules, while attention does not shift as much between these groups.

• Previous versions of a model are referenced more frequently when the user experiences
more difficulty with the design of the model.

Based on these observations, we recommend that the following features be implemented in
DES software. First, in case the problem description is available electronically, it should be

135

easily accessible from the software. For the case when this is feasible, it should be viewable
concurrently with the workspace of the user—so as to allow direct comparisons between
requirements and models. Second, referencing other models while working on a given model
should be simple. Many graphical DES software packages, including IDES, allow for the
simultaneous work on a number of models. However, only one model can be “active” at a
time, i.e., be displayed in the software environment and allow the user to modify it. Quick
referencing does not require the full activation of another model since the referenced model
will not be modified. Thus, we believe it may be sufficient to include a feature in the
interface where a model may be selected for a brief read-only preview. For example, moving
the mouse over an icon next to the name of a model may cause the model to appear in the
main workspace and, subsequently to disappear when the mouse is moved away from the icon.
In such an interaction, the user will be minimally distracted from their workflow. The third
feature we recommend for DES software is the ability to store multiple versions of models.
Such a feature may be simulated to some extent via the use of the undo/redo facility found
in most software, however, this process is not only inconvenient, but also infeasible in some
situations. Multiple model versions would allow users to experiment with their designs as
they will be able to take “snapshots” and then easily return to them if they are not satisfied
with the additional modifications they make. Furthermore, even if users are not satisfied
with old versions, as seen in our study, referencing older versions is a common activity when
experiencing difficulty with modelling.

The mistakes committed by subjects during problem solving were only infrequently the
result of poorly executed actions. Furthermore, most of the time subjects used pen and paper
modelling, thus there was less opportunity to observe mistakes in the use of the software. In
general, most of the observed mistakes were made due to poor understanding of what needs
to be done (e.g., poor design choice, or incorrect understanding of the problem description).
Thus, not much can be done in DES software to prevent these mistakes, except to gear
the features of the interface towards making understanding of the problem and the models
simpler. The only opportunity we see is in the prevention of a specific kind of mistake,
frequently committed by subjects. We observed in many cases that subjects forgot to denote
the initial and marked sates of models when inputting them into software. It is possible to
introduce a very simple automatic test which would warn the users if a model does not have
initial and marked states. However, the application of this test should be very judgmental
as users may be experimenting and/or intentionally creating incomplete design. Such a test
should be applied only when absolutely needed (e.g., before calling a DES operation) or as a
non-intrusive reminder, in the background.

7.10 Software for DES

The subjects in our study occasionally used the IDES software package during problem
solving. They made explicit comments regarding their experience with the software and they
expressed some wishes about adding extra functionality. These requests are summarized in
Section 6.5. The two most important features missing from (or hard to find in) the version
of IDES used in the study are, according to our opinion, the duplication of models and the

136

printing facility.
The ability to duplicate models is very important because it supports analogical problem

solving. If a successful model has been constructed for a component of the solution, then a
similar component could be modelled by using the existing model as a base and making only
the necessary changes. For example, in the factory problem the only difference between the
models of the two machines lies in the events used; the structure of the models is the same.
Similarly, the model for the testing unit can be derived from the model of a machine with
minor modifications.

The lack of printing facility was the primary concern of the subject who complained
about it. However, we feel this is indicative of a larger problem shared by most DES soft-
ware: the lack of facility for interaction between the software and the outside environment.
Discrete-event system control solutions have very little value if they must remain within the
confinement of the software which computes them. The least DES software should allow is
the use of the solutions in other software tools (e.g., simulators, code generators, or program-
ming environments). Users of DES software may want to print their models, include their
models in manuscripts, reports, or presentations, simulate the behavior of their models, or
apply the control solutions for the control of a real system. None of this can be achieved if the
software package they use only supports displaying models on the screen and storing them in
a proprietary format. Conversely, users may also wish to use models coming from external
sources (e.g., a different modelling tool). If the software package does not allow the import of
external models, the usefulness for the user would be reduced. Thus, our recommendations
are as follows. Software for DES should be designed with interoperability in mind. Especially
in a research environment, normally there would not be any trade secrets which necessitate
a lock-in of the users. Different software distributions inevitably have different strengths and
the ability to reuse their work across different packages would simplify the work of users.
Teachers of applied DES should not only ask students to compute supervisors with the soft-
ware used in the course. Assignments should require also the reuse of the solutions in realistic
contexts, e.g., in the preparation of a report about the performance of the solutions or in
the control of a real hardware system. In this way, students will gain understanding about
methods for using computed solutions outside the environment of the DES software.

137

Chapter 8

Conclusions

The observational study which we described was an initial effort in understanding the cog-
nitive aspects and human factors in solving DES control problems. The study was designed
as a primarily qualitative investigation, however, numerical data were used to support some
conclusions. The study is the first part of larger research with the ultimate goal of improv-
ing the methodologies and software used in the area of DES control. As such, there were a
number of specific questions which motivated the development of this study (see Chapter 1).

Five subjects were asked to solve two DES problems each. The problems were crafted
to be of similar structure and complexity. The subjects were asked to voice their thoughts
as they proceed in problem solving. Their performance was recorded with a video camera.
Additionally, two experts were interviewed about their problem-solving strategies.

The amount of data collected was big and thus required the judicious use of different
techniques of analysis. For this purpose, we developed a typology which can be used to
encode activities in DES problem solving. Furthermore, we defined novel methods for the
measurement of progress and of error rate in DES problem solving. We used both low-
level data (such as individual actions of subjects) and high-level data (such as the overall
problem-solving strategies of subjects). We compared different aspects of the data, such as
the duration and count of selected activities or processes. We also used N-gram analysis to
discover patterns of activity.

The results of the analysis were very disparate, motivating a number of recommendations
for the design of DES software and for the teaching of DES theory. Not all questions which
motivated this study could be answered with the desired depth and certainty, however, the
study served its main purpose: to give insights into the cognitive aspects of DES problem
solving and provide the basis for further investigation on this topic. In light of the discussion
in the introduction of this work, our observations can be summarized as follows.

There is a difference between problem solving using pen and paper and using software.
Pen and paper gives more flexibility in expression, while software is more rigid. None of
the subjects in our study preferred to use the software when designing their models. They
appeared reluctant to use the software at all and used it only for computational tasks which
were too difficult to do manually given the size of the problem. Thus, the modelling environ-
ment in the software was used predominantly simply as a tool to input the models designed
on paper.

138

The strategies used in solving DES problems were varied. There were many alternative
approaches and different subjects made different choices. It was observed that only one
subject followed the approach advocated by the experts. Most subjects chose to design
supervisors manually instead of using the algorithm for automatic generation of supervisors.
In this way, they forfeited the guarantee of correctness and optimality of the solution. On
the other hand, they did not need to create formal models of the control requirements, and
the verification of the solution was cognitively less demanding.

The exact information produced and consumed by subjects was not reliably qualified.
However, patterns of shifts in attention were discovered, and the type of mistakes committed
were described. It was determined that the most frequently referenced item is the problem
description. Furthermore, both other models and other versions of the same model are
referenced during problem solving. The mistakes committed by subjects were mostly the
result of incorrect understanding or reasoning, rather than due to incorrect execution of
actions. It was discovered that even a simple error may render the solution completely
incorrect.

These observations, and many others, served to recommend many changes to the way DES
software is designed traditionally. Similarly, we believe that the way DES theory is taught
may be improved following some suggestions. Most importantly, it is necessary revisit

• the role of control specifications and supervisors,

• the selection of events and the significance of controllability,

• the representation of DES elements and relations in the interface of DES software,

• the flexibility necessary for different styles of problem solving, and

• the techniques for verification of solutions.

Advanced research in DES software design may include topics such as trying to implement
software which has the desirable properties of pen and paper, and the development of adaptive
interfaces. Different users have different preferences and different styles of interaction with
a software system. If the software system is able to identify these styles and preferences
automatically, e.g., through the analysis of the actions of users, it would be able to adapt
automatically and improve the experience of the user. For this purpose, further in-depth
investigation of the low-level actions of subjects is necessary.

Future investigation of human problem-solving in DES may use this study as a base and
target specific aspects of the process. We would nevertheless recommend that a mini-pilot
study always be done before the real observational study is administered. This would help in
discovering minor glitches which may end up having a more significant impact on the problem
solving of the subjects. In our study, we discovered that the wording of the problems we gave
to the subjects was confusing in some cases. The angle of the video camera was not optimal
and some of the activities of the subjects were not captured. We also recommend that
experimenters weigh carefully the amount of structure they build into the study design. The
more structured the study is, the more reliable data can be collected. However, this comes
at the price of less freedom in the activities of the subjects and, ultimately, to a reduction in
the validity of the data.

139

Appendix A

Problem definitions

A.1 Problem 1: Factory problem

Provide a discrete-event control solution to the problem of “Two machines and

a test unit”.

The problem is described as follows. There is a factory that needs to be controlled. A
diagram of the factory is displayed above. There are two machines, M1 and M2, which process
parts. M1 takes a part from an input bin and delivers it to a 3-slot buffer, B1. M2 picks up
a part from B1 and when it is done processing, delivers it to a 1-slot buffer, B2. At the end
of the processing line there is a testing unit, TU, which takes a part from B2 and tests if it
meets the quality standards. If the test is positive, the part is delivered to an output bin.
Otherwise, the part is delivered to B1 for reprocessing by M2. There is a microcontroller in
each of M1, M2 and TU which can control when a part is picked up for processing by the
machine/testing unit. However, once the part is taken, the rest of the process is automatic
and there is no control over when and if the part is delivered to its destination (buffer or
output).

Model the system described above as a discrete-event system (DES) and use standard su-
pervisory control theory (Ramdage&Wonham) to provide a control solution which guarantees
that the buffers do not overflow or underflow.

You should use pen and paper for your modeling. You may use the IDES software for
computationally demanding tasks.

140

A.2 Problem 2: Hospital problem

Provide a discrete-event control solution to the problem of “Sick patient”.

The problem is described as follows. There is a child patient at a hospital. He suffers
from a disease related to diabetes. Unfortunately, the child likes candies very much. There
is a nurse and a doctor who take care of the young patient. The nurse is responsible for the
administration of insulin into the patients bloodstream to keep the level of glucose down.
The standardized dose is supposed to complement the intake of 8 g of sugar (approximately
as much as that found in a candy). The equipment used to inject the insulin is a research
prototype which also automatically takes readings from the blood and sends them wirelessly
to a computer. The computer processes the data and then sends it to the hospital infor-
mation system. While the data is processed, the computer does not accept more data from
the insulin injection equipment. The equipment, due to a flaw in the initial design, remains
non-responding while it waits for a connection with the computer, thus allowing the adminis-
tration of more insulin only after the last reading has been processed. The doctor can use the
hospital information system to access and review the latest data collected with the research
equipment. If the results in the report are not good, the doctor will prescribe medication
for the child. However, if the results are good enough, the doctor will give the child a candy
to make him happier because it is safe to do so. The child doesn’t miss his candies that
much, since, when the hospital personnel allows it, his grandmother comes for a visit and she
always manages to sneak in a candy for him which he sometimes eats right away, or saves for
later, depending on his mood. Fortunately, the hospital personnel are aware of the cheating
grandmother and they keep this fact in mind during the treatment.

Your job is to model the described situation as a discrete-event system (DES). Then,
use standard supervisory control theory (Ramadge&Wonham) to provide a control solution
which ensures safety for the patient. More specifically, the level of glucose in the bloodstream
should be controlled. It is dangerous if there is intake of more than 25 g of sugar without
any insulin to counter the effect. As well, insulin must not be administered unless there
is a buildup of glucose in the blood (e.g., after consuming sugar). Furthermore, a problem
has been identified in interface between the research computer and the hospital information
system. If the blood reading report is not retrieved for review before another report is
generated by the computer, the data in the system becomes garbled. It is important to
guarantee that this does not occur. As well, the doctor should not request a report from the
system prematurely (before a new report has been generated) since this causes her terminal
to get stuck and she cannot use it for other purposes.

You should use pen and paper for your modeling. You may use the IDES software for
computationally demanding tasks.

141

Appendix B

Encoding typology

Encoding of visual attention The events in this “stream” were encoded with the prefix
‘L’. The following suffixes were used to describe where attention is directed:

O The sheet of paper with the description of the problem,

P A specific sheet of paper used for problem solving. All sheets of paper handed to the
subjects were marked with unique graphical symbols to allow identification from the
video footage. The symbol for the sheet which attracts the subject’s visual attention
is given as a parameter in the code. As the sheets of papers which the subjects used
were retained, it is possible to deduce which parts of their models they were attending
to.

Q One of the sheets of paper used for problem solving. This code is used when it is not
possible to determine which specific sheet the subject is attending to.

Y The computer display. The software has two views: one showing the graph of a DES
module and the other showing a table of the events used in a DES module. The view
which is active when the subject looks at the display is given as the first parameter of
the code: ‘G’ and ’E’ for the graph end events, respectively. The second parameter
specifies which DES module is active in the software (i.e., whose graph or events are
being displayed).

K The keyboard,

A Away (none of the other listed targets). This code is used for events such as the subject
looking away from all tools, e.g., looking at the experimenter or staring at the wall.

This “stream” was chosen (arbitrarily) to also include information about interruptions in
the process of problem solving. For example, when a bug in the software package manifested
itself, it was necessary to temporarily pause the observational study in order to resolve the
issue. The code used for such events consists solely of the prefix ‘I’. There is no code for “re-
suming” the observational session. Instead, the first encoded event following an interruption
event is assumed to signify the end of the interruption.

142

Examples of event encoding are listed below.

shifting gaze to the sheet marked with a square LP(SQR)
looking at the screen where the graph the ‘Machine 2’ module is shown LY(G,M2)

reaching for one’s cup of coffee and shifting gaze towards it LA
shifting gaze to the keyboard to type up a label LK

the software stops responding and intervention is required I
spreading three sheets of paper on the table and observing them LQ

Encoding of physical activity The events in this “stream” were encoded with the fol-
lowing two prefixes: ‘P’ and ‘C’. These two prefixes stand for, respectively, actions involving
the use of pen and paper and actions involving the use of the software. Suffixes were used to
describe each action in more detail. Each suffix starts with the type of entity providing the
context of action, namely,

O Description of the problem,

G DES control theory,

N Solution or solution approach,

F Figure/drawing,

R Relationship between modules/parts of the system,

D Dynamics of the system,

M DES module,

S State in an FSA,

T Transition in an FSA,

E DES event,

C DES computational algorithm,

I Functionality of the software,

U Software interface and

B FSA layout.

A letter was appended to encode the specific action as follows:

C Create,

N Name (create a label),

P Create copy (e.g., using the “copy” command in the software),

143

R Remove. If using pen and paper, this means either erasing or crossing-out. If using
software, this means deleting the entity.

I Modify the “initial” property of an FSA state,

M Modify the “marked” property of an FSA state,

O Change controllability of a DES event,

B Modify layout of an FSA (when using software),

E Write down an explanatory note,

S Write down a (more formal) specification,

T Mark an entity (circle, underline, etc.) This does not refer to making a state in an
FSA “marked”.

D Draw a figure.

Additionally, codes can be appended with ‘F’ to signify that the action was performed to
correct (fix) a similar previous action. For example, “CSN” is used when the subject names
an FSA state in the software for the first time (even if they use “backspace” while typing the
name). If they decide to change the label at a later, separate time, “CSNF” is used.

Parameters are used to specify within the context of which DES module the subject
performs each activity. For example, “CSN(M1)” is used when the subject names a state of
the FSA model of ‘Machine 1’ in the computer. As each subject created and worked with a
unique set of modules, with each data file we included a separate legend of all the module
IDs used to encode the data in the file. However, some standard parameters, common to all
subjects were also used. They are listed next.

PREV Previous knowledge or experience, including knowledge and experience acquired dur-
ing the problem solving,

* All modules,

- Nothing,

O Problem description,

L The plant (controlled system). This symbol may have a more specific meaning in the
encoding for some subjects.

K The legal language (control specifications). This symbol may have a more specific meaning
in the encoding for some subjects.

H The IDES help site.

Additional standardized parameters are used when a subject executes a DES operation
(codes starting with “CC”). The first parameter signifies the algorithm used. The algorithms
are encoded as follows:

TR Trim,

144

MT Intersection (meet),

SP Synchronous product,

CC Check controllability of a specification (second parameter) with respect to a system
(third parameter),

SU Compute supremal controllable sublanguage of a specification (second parameter) with
respect to a system (third parameter).

During the encoding, the following conventions were observed. When subjects created a
new DES event implicitly by using it to label a transition, the action was encoded as “PTN”
(in the software, implicit event creation is not possible). The code “PEC” was used only
when a subject created a DES event by explicitly listing it separately from the FSA model.
In that case, the code “PEN” was not used as the event creation actually encompasses its
naming. When using the software, event creation and event naming requires two separate
actions, thus the codes “CEC” and “CEN” were both used. The control decision to enable
or disable a transition in a supervisor (when modelling supervisors manually) was encoded
with “PDS”. In the software, the enablement or disablement of a transition is done implicitly
and thus there is no activity to be encoded. The addition of a new event to a transition
constitutes, strictly speaking, a modification to the labelling of the transition. However, the
‘F’ suffix is used only if there is reasonable grounds to assume that the subject had to do so
in order to correct their model (as opposed to being in the stage of creating the model and
labeling transitions incrementally). The movement of the label of a transition when using
the software is encoded as “CTB”.

Examples of event encoding are listed below.

underline part of text in problem description POT
write down specification of supervisor PDS(S)

draw a diagram of different parts of the
system and how they connect

PRD

write down the title for the ‘Testing unit’ module PMN(TU)
erase the marking of a state in the ‘Machine 1’ module PSMF(M1)

cross out the model for the ‘Doctor’ module PMR(DR)
rename an event in the ‘Computer’ module PENF(CP)

using the software, create a new state in the ‘Buffer 1’ module CSC(B1)
adjust the width of the left pane in the software CUB

make an event controllable in the computer
model for the ‘Report’ module

CEO(RP)

apply the “check controllability” operation to
the ‘Report’ module and the system

CC(CC,RP,L)

invoke the “copy” command in the software
to copy the ‘Machine 1’ module

CMP(M1)

145

Encoding of verbalization In this “stream” the verbalizations of the experimenter and
the subjects were encoded. The encoding includes an interpretation of the cognitive activities
of the subjects, based on their outward behavior (e.g., verbalizations, physical activities, etc.)

The verbalizations of the experimenter were encoded with the prefix ‘E’. The suffixes
used were

J the reminder “Keep talking” and

H the answer to a question or concern, or the provision of information.

No parametrization of the codes was used.
The verbalizations of a subject were encoded with the prefix ‘A’. The suffixes and param-

eters were the same as the ones used to encode physical activities. For example, “AD(M1)”
is used when the subject discusses the dynamics of the ‘Machine 1’ module. Two additional
suffixes were introduced.

Z irrelevant verbalization, e.g., “okay”, “wow”, etc.

X unintelligible verbalization

The following conventions were used. When the subject comments on the specification of
the behavior for a DES supervisor (e.g., ‘S’), the code suffix used is “DS(S)”. For example,
this will be used if the subject says “so we have to prevent the event ‘take’ from happening”.
If, instead, the subject comments on the natural behavior of the supervisor, e.g., “we can’t
disable any of these events here”, the suffix used is “D(S)”. When the subject mentions the
controllability of a language, e.g., for ‘Buffer 2’, the suffix used is “MO(B2)”. When the
subject talks about actions unrelated to the problem solving (e.g., about choosing a folder to
save a file), the code used was “AZ”. As well, characterizations of elements of the problem
with no significance to the process (such as sarcastic remarks) were encoded as “AZ”. Non-
word verbalizations were not encoded.

Finally, interpretations of the subjects’ cognitive activities were encoded with the prefix
‘X’. The suffixes are listed and explained next.

D Data collection (cognition-driven perception). E.g., “let me see. . . ”. The following codes
may be appended:

W Read written text (usually that is the problem definition),

V Perceive visually,

T Ask experimenter,

D Determine using software,

U Count. The type of entity counted is appended (see entities for encoding physical
activities). For example, when counting states, ‘S’ will be appended and the code
will be “XDU-S”.

P Perception (visual). E.g., “apparently. . . ”, “it seems. . . ”, “so. . . ”, etc.

146

R Recollection. The following codes may be appended:

K Background knowledge or previous experience. E.g., “I’m thinking. . . ” (trying to
remember).

A Analogy. The parameters identify which entities are analogous. This code focuses
on recognizing similarity based on memories. However, encoders may confuse it
with the code “XCL” below. Thus, a more reliable typology may consolidate the
two codes.

C Classification. The following codes may be appended:

L Determine similarity or relation between entities. The parameters identify which
entities are compared. This code focuses on recognizing similarity based on per-
ception. However, encoders may confuse it with the code “XRA”. Thus, a more
reliable typology may consolidate the two codes.

R Rate entities,

P Positively,

N Negatively,

L As large/many,

F As small/few,

C As complex/difficult,

E As simple/easy,

S According to a specific property of the entity.

H Hypothesis. The following codes may be appended:

B Belief. E.g., “I think. . . ”, “must be. . . ”, “should be. . . ”, “. . . I guess. . . ”, etc. This
code focuses on the expression of some understanding. However, encoders may
confuse it with the code “XHE” below. Thus, a more reliable typology may
consolidate the two codes.

Q Formation of a question or a hypothesis to test. E.g., “I wonder. . . ”, “I’m not
sure. . . ”, “I don’t know. . . ”, “could be. . . ”.

S Resolution or outcome of testing.

E Expectation. E.g., “probably. . . ”. This code focuses on the expression of prediction.
However, encoders may confuse it with the code “XHB”. Thus, a more reliable
typology may consolidate the two codes.

I Induction. E.g., “so. . . ”.

J Justification or rationalization. E.g., “since. . . ”, “as. . . ”, “because. . . ”, etc. The following
codes may be appended:

K Using background knowledge or previous experience. E.g., “it’s always. . . ”.

147

F Using currently determined facts.

G Planning (considering goals). The following codes may be appended:

O Ordering of goals. E.g., “first. . . ”, “. . . then. . . ”, “. . . later. . . ”, “I’ll start with. . . ”,
etc.

I Intention. E.g., “I will. . . ”, “let’s. . . ”, “I’m going to. . . ”, “I want to. . . ”, etc.

Y Plan analysis/evaluation. E.g., “I need to. . . ”, “I should. . . ”, “I’d better. . . ”, “I
have to. . . ”, “once [something]. . . ”, etc.

The codes are extended with the code for the planned activity. The activity may be
either a physical activity (encoded as described earlier) or a cognitive activity (encoded
with the respective “X. . . ” code). For example, When the subject says that first
they have to model the ‘Doctor’ module, the code will be “XGO-MC(DR)”. When the
subject justifies their decision to model ‘Machine 1’ and ‘Machine 2’ in the same way
because they are similar, the code will be “XJF-XCL(M1,M2)”.

The context of the cognitive activities, when clear, is given as parameters. For example,
when counting the number of states in the ‘Buffer 1’ model, the code will be “XDUS(B1)”.
When there are two codes, “X. . . ” and “A. . . ”, with the same suffix, e.g., “XGI-SI(B1)” and
“ASI(B1)”, only the “X. . . ” code is used to avoid redundancy—the code for the cognitive
activity is derived from the verbalization.

One common feature of verbal discourse, especially prominent in thinking aloud, is the
fact that one semantic unit may be spread across a number of verbalizations with potentially
non-trivial gaps between them. For example, a subject may say: “To see the graph freshly
laid out by the software instead of. . . more or less destroyed by myself,” where there is a five-
second pause in place of the ellipses. To capture such situations, we introduced ellipses as a
special code. If this code is used, it indicates that the encoded verbalization is a continuation
of the thought expressed in the verbalization encoded immediately preceding the current one.
For example, assuming the discourse shown above refers to the graph of the module ‘M’, it
will be encoded with the two (consecutive) codes “XDV” and “...” in between them.

Examples of verbalization encoding are listed below.

148

keep talking [pronounced by the experimenter] EJ
ahem. . . yeah, well AZ

takes a part from the input buffer and delivers it to. . . AD
so we have state “0”, initial state ASI

then the administration of insulin. . . from
state “8” to state “0” [module ‘CH’ is the

context]
XGO-D(CH) & ...,AS(CH)

so we have, I’ll start, this may be more
transitions than we need [module ’EQ’ is the

context]
XI-T(EQ)

oh I see, that problem we solved in class XRA(O,PREV)

oh, I guess I kind of model that twice then
[modules ‘B1U’ and ‘B1O’ are the context]

XCL-N(B1U,B1O)

so that’s the main, sort of, constraint XCRS(K)

and now I’m just going to look at the three
different systems I sort of devised, sorry

automatons, and see if they actually do relate
to one another

XGI-XDV(*),XHQ-R(*)

have I considered buffer underflow or overflow? XHQ-N(K)

apparently, the kid’s only behavior is eating
candy [model ’CH’ is the context]

XP-D(CH)

OK, these, the way I’ve set it up with two
supervisors is not gonna work because these’s
no way to get back, you put like one thing in

the buffer and. . . that’s it [modules ‘S’ and ’B’
are the context]

XCRN-N(S),XJF-D(B) & ...

I should just probably mark these two
[modules ‘M’ and ‘TU’ are the context]

XGY-SM(M,TU)

149

Appendix C

Flowcharts of problem-solving

strategies

This appendix contains the generalized flowcharts for problem solving during the Factory
and Hospital problems. See Section 3.5.2 for more explanation.

C.1 Factory problem

The abbreviations used in the following flowcharts are as follows: M – machines 1 and 2, TU
– testing unit, L – monolithic system, B1 – buffer 1, B2 – buffer 2, K – monolithic control
specification, SB1 – supervisor for buffer 1, SB2 – supervisor for buffer 2, S – monolithic
supervisor, SL – composition of testing unit with monolithic control specification.

Figure C.1: The top-level flowchart for the Factory problem.

150

Figure C.2: Flowchart for the “Model all components” box.

Figure C.3: Flowchart for the “Model only subsystems” box.

Figure C.4: Flowchart for the “Model supervisors” box.

151

Figure C.5: Flowchart for the “Compute supervisors” box.

Figure C.6: Flowchart for the “Uncertain problem solving” box.

Figure C.7: Flowchart for the “Model [SB*]” boxes. Here the star can be replaced by either
‘1’ or ‘2’.

Figure C.8: Flowchart for the “Understand problem” boxes.

152

Figure C.9: Flowchart for the “Model *”, “Remodel *” and “Modify *” boxes. Here the star
can be replaced by any module name.

Figure C.10: Flowchart for the “Verify *” boxes. Here the star can be replaced by any module
name.

153

C.2 Hospital problem

The abbreviations used in the following flowcharts are as follows: GM – grandmother, PT –
patient, PC – patient behavior in terms of candy, PI – patient behavior in terms of insulin,
NR – nurse, DR – doctor, DN – personnel (doctor and nurse), EQ – prototype equipment,
CP – computer, HIS – Hospital Information System, CE – composition of computer and
prototype equipment, BSL – blood sugar level, RP – report, SBSL – supervisor for the blood
sugar level, SRP – supervisor for the report.

Figure C.11: The top-level flowchart for the Hospital problem.

Figure C.12: Flowchart for the “Model all components” box.

154

Figure C.13: Flowchart for the “Model only subsystems” box.

Figure C.14: Flowchart for the “Model supervisors” box.

Figure C.15: Flowchart for the “Model reading-centric” and “Remodel reading-centric”
boxes.

155

Figure C.16: Flowchart for the “Model intake-centric” and “Remodel intake-centric” boxes.

Figure C.17: Flowchart for the “Model [S*]” boxes. Here the star can be replaced by either
‘BSL’ or ‘RP’.

Figure C.18: Flowchart for the “Understand problem” boxes.

156

Figure C.19: Flowchart for the “Model *”, “Remodel *”, “Modify *”, and “Prototype *”,
boxes. Here the star can be replaced by any module name.

Figure C.20: Flowchart for the “Verify *” boxes. Here the star can be replaced by any module
name.

157

Bibliography

[1] K. Åkesson, M. Fabian, H. Flordal, and R. Malik. Supremica – an integrated environment
for verification, synthesis and simulation of discrete event systems. In Proceedings of the
8th International Workshop on Discrete Event Systems, pages 384–385, Ann Arbor, MI,
USA, July 2006.

[2] K. Åkesson, M. Fabian, H. Flordal, and A. Vahidi. Supremica – a tool for verification
and synthesis of discrete event supervisors. In Proceedings of the 11th Mediterranean
Conference on Control and Automation, Rhodos, Greece, 2003.

[3] C. J. Atman, J. R. Chimka, K. M. Bursic, and H. L. Nachtmann. A comparison of
freshman and senior engineering design processes. Design Studies, 20(2):131–152, 1999.

[4] J. Banks, J. C. II, B. L. Nelson, and D. M. Nicol. Discrete-Event System Simulation.
Pearson Prentice Hall, Upper Saddle River, NJ, USA, fourth edition, 2005.

[5] M. T. Boren and J. Ramey. Thinking aloud: Reconciling theory and practice. IEEE
Transactions on Professional Communication, 43(3):261–278, 2000.

[6] X.-R. Cao, G. Cohen, A. Giua, W. M. Wonham, and J. H. van Schuppen. Unity in
diversity, diversity in unity: Retrospective and prospective views on control of discrete
event systems. Discrete Event Dynamic Systems, 12(3):253–264, 2002.

[7] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer
Academic Publishers, Norwell, Massachusetts, USA, 1999.

[8] S.-L. Chung, S. Lafortune, and F. Lin. Limited lookahead policies in supervisory control
of discrete event systems. IEEE Transactions on Automatic Control, 37(12):1921–1935,
1992.

[9] CTCT software. Department of Electrical and Computer Engineering, University of
Toronto, Canada. Available at http://www.control.toronto.edu/DES/.

[10] A. E. C. da Cunha. private communication, March 2007.

[11] M. H. de Queiroz and J. E. R. Cury. Modular control of composed systems. In Pro-
ceedings of the 2000 American Control Conference, volume 6, pages 4051–4055, June
2000.

158

[12] A. J. Dix, J. E. Finlay, G. D. Abowd, and R. Beale. Human-Computer Interaction.
Prentice Hall Europe, second edition, 1998.

[13] K. Duncker. On Problem Solving. Number 58 in Psychological Monographs. American
Psychological Association, 1945.

[14] G. Ekberg and B. H. Krogh. Programming discrete control systems using state machine
templates. In Proceedings of the 8th International Workshop on Discrete Event Systems,
pages 194–200, Ann Arbor, MI, USA, July 2006.

[15] L. ellin Datta. A pragmatic basis for mixed-method designs. In Advances in Mixed-
Method Evaluation: The Challenges and Benefits of Integrating Diverse Paradigms,
number 74 in New Directions for Evaluation, pages 33–46. Jossey-Bass Publishers, 1997.

[16] C. M. Enright and M. Barbeau. An evaluation of the TCT tool for the synthesis of con-
trollers of discrete event systems. In Canadian Conference on Electrical and Computer
Engineering, volume 1, pages 241–244, Vancouver, BC, Canada, September 1993.

[17] K. A. Ericsson and H. A. Simon. Protocol Analysis. The MIT Press, Cambridge, Mas-
sachusetts, USA, revised edition, 1993.

[18] K. A. Ericsson and H. A. Simon. How to study thinking in everyday life: Contrasting
think-aloud protocols with descriptions and explanations of thinking. Mind, Culture,
and Activity, 5(3):178–186, 1998.

[19] M. Fabian. private communication, March 2008.

[20] M. Fabian and A. Hellgren. Desco – a tool for education and control of discrete event
systems. In Discrete Event Systems: Analysis and Control (Proceedings of the 5th Work-
shop on Discrete Event Systems), pages 471–472, Ghent, Belgium, August 2000.

[21] J. Flochová, R. Lipták, and P. Bachratý. An on line course for supervisory control
teaching. In Proceedings of the 6th IFAC Symposium on Advances in Control Education,
Oulu, Finland, June 2003.

[22] M. E. Fonteyn, B. Kuipers, and S. J. Grobe. A description of think aloud method and
protocol analysis. Qualitative Health Research, 3(4):430–441, 1993.

[23] J. S. Gero and T. Mc Neill. An approach to the analysis of design protocols. Design
Studies, 19(1):21–61, 1998.

[24] F. Gobet and I. Oliver. A simulation of memory for computer programs. Technical
Report 74, ESRC Centre for Research in Development, Instruction and Training, School
of Psychology, University of Nottingham, Nottingham, United Kingdom, 2002.

[25] P. Gray. Psychology. Worth Publishers, New York, NY, USA, fourth edition, 2001.

159

[26] J. C. Greene and V. J. Caracelli. Defining and describing the paradigm issue in mixed-
method evaluation. In Advances in Mixed-Method Evaluation: The Challenges and Ben-
efits of Integrating Diverse Paradigms, number 74 in New Directions for Evaluation,
pages 5–17. Jossey-Bass Publishers, 1997.

[27] L. Grigorov and K. Rudie. Problem solving in control of discrete-event systems. In
Proceedings of the European Control Conference 2007, pages 5500–5507, Kos, Greece,
July 2007.

[28] R. Guindon. Knowledge exploited by experts during software system design. Interna-
tional Journal of Man-Machine Studies, 33(3):279–304, 1990.

[29] D. Hofstadter and the Fluid Analogies Research Group. Fluid Concepts and Creative
Analogies. Basic Books, New York, USA, 1995.

[30] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, second edition, 2004.

[31] IDES software. Department of Electrical and Computer Engineering, Queen’s University,
Canada. Available at http://www.ece.queensu.ca/directory/faculty/Rudie.html.

[32] S. Jiang and R. Kumar. Supervisory control of discrete event systems with CTL* tem-
poral logic specications. In Proceedings of the 40th IEEE Conference on Decision and
Control, volume 5, pages 4122–4127, Orlando, Florida, USA, December 2001.

[33] A. Kalnins, J. Barzdins, and E. Celms. UML business modeling profile. In Proceedings of
the 13th International Conference on Information Systems Development, pages 182–194,
Vilnius, Lithuania, September 2004.

[34] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, Inc., San Mateo,
California, USA, 1993.

[35] F. Lin and W. M. Wonham. On observability of discrete-event systems. Information
Sciences, 44(2):173–198, 1988.

[36] A. S. Luchins and E. H. Luchins. Rigidity of Behavior: A Variational Approach to the
Effect of Einstellung. University of Oregon Books, Eugene, Oregon, USA, 1959.

[37] T. Mäntylä. Optimizing cue effectiveness: Recall of 500 and 600 incidentally learned
words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12:66–
71, 1986.

[38] J. L. McClelland and D. E. Rumelhart. An interactive model of context effects in letter
perception: I. An account of basic findings. Psychological Review, 88:375–407, 1981.

[39] A. Newell and H. Simon. GPS, a program that simulates human thought. In E. A.
Feigenbaum and J. Feldman, editors, Computers and Thought, pages 279–293. MIT
Press, Cambridge, MA, USA, 1963.

160

[40] D. A. Norman. The Design of Everyday Things. Currency, New York, New York, USA,
1990.

[41] OMG Unified Modeling Language: Superstructure, chapter Activities. Object Manage-
ment Group, Inc., http://www.uml.org/, 2007.

[42] S. Owen, P. Brereton, and D. Budgen. Protocol analysis: a neglected practice. Com-
munications of the ACM, 49(2):117–122, 2006.

[43] M. Q. Patton. Qualitative Research and Evaluation Methods. Sage Publications, Inc.,
Thousand Oaks, CA, USA, 3 edition, 2002.

[44] Y. Qin and H. Simon. Imagery and mental models. In Diagrammatic Reasoning, pages
403–434. The AAAI Press and MIT Press, 1995.

[45] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization, 25(1):206–230, 1987.

[46] E. Rogers. A cognitive theory of visual interaction. In Diagrammatic Reasoning, pages
481–500. The AAAI Press and MIT Press, 1995.

[47] E. Rogers. VIA-RAD: a blackboard-based system for diagnostic radiology. Artificial
Intelligence in Medicine, 7:343–360, 1995.

[48] E. Rogers and R. C. Arkin. Visual interaction: A link between perception and problem
solving. In Proceedings of the 1991 IEEE International Conference on Systems, Man,
and Cybernetics, ‘Decision Aiding for Complex Systems’, volume 2, pages 1265–1270,
Charlottesville, VA, USA, October 1991.

[49] E. Rogers, R. C. Arkin, and M. Baron. Visual interaction in diagnostic radiology. In Pro-
ceedings of the Fourth Annual IEEE Symposium on Computer-Based Medical Systems,
pages 170–177, Baltimore, Maryland, USA, May 1991.

[50] E. Rogers, R. C. Arkin, M. Baron, N. Ezquerra, and E. Garcia. Visual protocol collection
for the enhancement of the radiological diagnostic process. In Proceedings of the First
Conference on Visualization in Biomedical Computing, pages 208–215, Atlanta, Georgia,
USA, May 1990.

[51] K. Rudie. The integrated discrete-event systems tool. In Proceedings of the 8th Interna-
tional Workshop on Discrete Event Systems, pages 394–395, Ann Arbor, MI, USA, July
2006.

[52] K. Rudie and W. M. Wonham. Think globally, act locally: decentralized supervisory
control. IEEE Transactions on Automatic Control, 37(11):1692–1708, 1992.

[53] H. A. Simon. Models of Man: Social and Rational. John Wiley and Sons, New York,
NY, USA, 1957.

161

[54] H. A. Simon. The structure of ill structured problems. Artificial Intelligence, 4(3–4):181–
201, 1973.

[55] R. Spence. Information Visualization. Addison-Wesley, 2000.

[56] Subtitle workshop. URUWorks. Available at http://www.urusoft.net/.

[57] C. Y. Suen. N-gram statistics for natural language understanding and text processing.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2):164–172,
1979.

[58] H. J. M. Tabachneck-Schijf, A. M. Leonardo, and H. A. Simon. CaMeRa: A computa-
tional model of multiple representations. Cognitive Science, 21(3):305–350, 1997.

[59] H. J. M. Tabachneck-Schijf and H. A. Simon. Alternative representations of instructional
material. In D. Peterson, editor, Forms of representation, pages 28–46. Intellect Books,
Exeter EX2 6AS, UK, 1996.

[60] P. Thagard. Mind: Introduction to Cognitive Science. The MIT Press, Cambridge,
Massachusetts, USA, second edition, 2005.

[61] J. G. Thistle and W. M. Wonham. Control problems in a temporal logic framework.
International Journal of Control, 44(4):943–976, 1986.

[62] UMDES software library. Department of Electrical Engineering and Computer Science,
University of Michigan, USA. Available at http://www.eecs.umich.edu/umdes/.

[63] A. F. Vaz and W. M. Wonham. On supervisor reduction in discrete-event systems.
International Journal of Control, 44(2):475–491, 1986.

[64] B. Wang. Top-down design for RW supervisory control. Master’s thesis, Department of
Electrical and Computer Engineering, University of Toronto, 1995.

[65] P. C. Wason and P. N. Johnson-Laird. Psychology of Reasoning: Structure and Content.
Harvard University Press, Cambridge, MA, USA, 1972.

[66] W. M. Wonham. Notes on supervisory control of discrete-event systems. Available at
http://www.control.toronto.edu/DES/, July 2004.

[67] W. M. Wonham and P. J. Ramadge. Modular supervisory control of discrete-event
systems. Mathematics of Control, Signals, and Systems, 1:13–30, 1988.

[68] M. M. Wood. Application, implementation and integration of discrete-event systems
control theory. Master’s thesis, Department of Electrical and Computer Engineering,
Queen’s University, 2005.

162

