
—————————————————————

—————————————————————

A Comparative Study
on the Reliability Efforts in

Component-Based Software Systems∗

Atef Mohamed and Mohammad Zulkernine

School of Computing
Queen’s University

Kingston, Ontario, Canada K7L 3N6
{atef & mzulker}@cs.queensu.ca

———————–

Technical Report No. 2009-559

c©Atef Mohamed and Mohammad Zulkernine 2009

∗
This report should be cited as follows:

A. Mohamed and M. Zulkernine, A Comparative Study on the Reliability Efforts in Component-Based Software Systems, Technical

Report No. 2009-559, School of Computing, Queen’s University, Kingston, Ontario, Canada, June 2009.

Abstract

Component-based technologies are increasingly proving efficiency in current software applications. The
enormous expansion of these applications has increased the demands for reliable component-based tech-
nologies. Depending on different viewpoints and assumptions, a component takes various definitions and
forms (e.g., class, function, module, agent, architectural component, or model-based component). As
a result, numerous reliability works that involve varieties of the underlying strategies, objectives, and
parameters are proposed for CBSS reliability. Surveying these reliability efforts is important for creating
and selecting potential solutions that handle the reliability of CBSS applications. In this paper, we pro-
vide a taxonomy of the reliability efforts in component-based software based on the following reliability
means: fault-tolerance, reliability assessment, and reliable design and operational activities. For each
of these categories, we provide a comparative study of the proposed approaches, discuss the strengths
and weaknesses, and show how do they integrate and contribute towards building dependable component
frameworks. We compare and contrast the existing techniques considering their assumptions with respect
to component definition and specification details.

ii

Contents

1 Introduction 1
1.1 Motivations and challenges . 1
1.2 Contributions . 1
1.3 Paper organization . 2

2 Classifying reliability efforts in CBSSs 2
2.1 Component models and frameworks . 2
2.2 Software system reliability . 3
2.3 Taxonomy of reliability efforts in CBSSs . 3

2.3.1 Fault-tolerant CBSSs . 4
2.3.2 Reliability assessment of CBSSs . 5
2.3.3 Reliable design and operational activities of CBSSs . 5

3 Fault-tolerant CBSSs 6
3.1 Fundamental software fault-tolerance techniques . 6
3.2 Programming paradigm-based fault-tolerance . 7

3.2.1 Intra-component fault-tolerance . 7
3.2.2 Inter-component fault-tolerance . 8
3.2.3 Comparison of programming paradigm-based fault-tolerance techniques 8

3.3 Environment-based fault-tolerance . 9
3.3.1 Decentralized fault-tolerance . 10
3.3.2 Centralized fault-tolerance . 10
3.3.3 Comparison of environment-based fault-tolerance techniques 10

3.4 Model-based fault-tolerance . 11
3.4.1 Message-based fault-tolerance . 12
3.4.2 Replica-based fault-tolerance . 13
3.4.3 Comparison of model-based fault-tolerance techniques . 13

3.5 Comparison of fault-tolerance classes of CBSSs . 15

4 CBSS reliability assessment 16
4.1 Component reliability models . 17
4.2 System reliability models . 17

4.2.1 State-based models . 17
4.2.2 Path-based models . 18
4.2.3 Propagation-based models . 18

4.3 Supplementary work for reliability assessment . 18
4.4 Comparison of reliability assessment techniques . 18

5 Reliable design and operational activities of CBSSs 20
5.1 Reliability in the design activities of CBSSs . 20
5.2 Reliability in the operational activities of CBSSs . 21
5.3 Comparison of reliable design and operational activities of CBSSs . 21

6 Conclusions and open issues 22
6.1 Conclusions . 22
6.2 Open issues . 24

iii

List of Figures

1 Taxonomy of reliability efforts in CBSSs . 3

List of Tables

1 Summary of programming paradigm-based fault-tolerance. 8
2 Summary of environment-based fault-tolerance. 11
3 Summary of model-based fault-tolerance . 14
4 Summary of fault-tolerance in CBSSs . 16
5 Summary of reliability assessment for CBSSs. 19
6 Summary of reliable design and operational activities. 22

iv

1 Introduction

Component-based Software Systems (CBSSs) revolutionized the development of software technology us-
ing a divide and conquer paradigm to distribute software complexities among smaller subsystems or
components. A CBSS is a set of interacting components. A component is a unit of composition and
deployment that complies with a component model. Depending on different viewpoints and assumptions,
a component takes various definitions and forms (e.g., class [18], function [48], module [36], agent [60],
architectural component [39], or model-based component [69]).

CBSS development is recognized as a standard paradigm for structuring large software systems. CBSS
architectures depict various architectural styles (e.g., distributed [60], mobile [44], client/server [28], peer-
to-peer [53], and event-driven [16]). Component models and frameworks provide the required prerequisites
that enable component integrations and interactions with the environments of CBSSs. Currently, several
component models and frameworks are available in the industry. Some major examples are DCOM,
COM+ [62], JavaBeans, Enterprise JavaBeans [70], and CORBA component model [79].

Component technology can increase the productivity of software systems by providing reusability,
abstraction, composition, and fast development time [4, 15, 42]. The enormous expansion of component-
based software applications has increased the demands for reliable component-based technologies. Soft-
ware system reliability is the probability that a system performs its intended function for a specified
period of time under a set of specified environmental conditions. The means to achieve software relia-
bility are fault avoidance (or prevention), fault removal, fault/failure forecasting, and fault-tolerance. A
number of approaches have been proposed for CBSSs to improve their reliabilities. Due to the diversity
of CBSS architectures and component definitions, reliability efforts involve a variety of methodologies
and viewpoints.

1.1 Motivations and challenges

Surveying reliability efforts is important for identifying and enhancing potential solutions for the reliability
of CBSSs. In this survey, our research goals are to find appropriate answers for the following questions.
What are the current research directions for CBSSs with respect to their reliability objectives? What are
the component issues, assumptions, and parameters that are exploited in the current CBSS reliability
techniques? How do the varieties of component definitions and specification details impact the current
CBSS reliability research? How does the current CBSS reliability research integrate towards building
dependable component frameworks?

The main challenges of this survey are as follows. No consensus has been reached about what a
component is and how it is specified [51]. The relations between system architecture and component
models are not precisely defined [15]. The definitions of several dependability attributes overlap with
each other. Different viewpoints, assumptions, abstraction levels, and system environments complicate
the problem of classifying reliability efforts in CBSSs.

1.2 Contributions

In this paper, we provide a taxonomy of the reliability efforts in component-based software based on the
following reliability means: fault-tolerance, reliability assessment, and reliable design and operational
activities. For each of these categories, we provide a comparative study of the underlying strategies,
research objectives, and parameters. We show the strengths and weaknesses of these techniques and

1

discuss how do they integrate and contribute towards building dependable component frameworks. We
compare and contrast the existing techniques with respect to the major assumptions of component
definition and specification details. The survey will identify a number of open issues that require more
attention in the future research.

1.3 Paper organization

The structure of this paper is as follows. In Section 2, we briefly describe basic component terminologies
and define software reliability. We describe the major reliability means in CBSSs and provide an overview
of the proposed taxonomy. Sections 3, 4, and 5 provide detailed survey about fault tolerance, reliability
assessment, and reliable design and operational activities of CBSSs, respectively. In each of these sections,
we classify the corresponding work and provide the details about each class, and finally provide summary
and related discussions. We present our conclusion and identify the limitations of the existing work and
some open research issues in Section 6.

2 Classifying reliability efforts in CBSSs

Although the concept of componentization was introduced in the late 1960’s, the practical application
of this concept was adopted during the early 1990s. Since that time, a considerable amount of research
on CBSS reliability has been proposed with different assumptions regarding component definition and
specification details. Due to the diversity of these definitions and specification details, current reliability
efforts adopt various strategies and exploit various parameters. In this section, we show our proposed
taxonomy of the reliability efforts in CBSSs. Prior to describing the taxonomy, we briefly describe basic
component terminology and define software reliability.

2.1 Component models and frameworks

A component is an independent unit within a system. Different from other software entities, the struc-
ture and behavior of a component are assumed to comply with a component model. A component is
defined as a unit of composition and deployment with contractually specified interfaces, explicit context
dependencies only, and no persistent state [15, 80]. It has one or more “provided” and/or “required”
interfaces. An interface is defined as a mean by which a component connects to other components or the
environment [71, 80]. In a CBSS, there is no limitation on the number of components, component sizes,
or the number of interface connections of each component.

Component models and frameworks provide the required prerequisites that enable component inte-
grations and interactions with the environments of CBSSs. A component model specifies the standards
and conventions that components need to follow during component composition and interaction, and
a component framework provides design time and run time infrastructure for components [7]. Cur-
rently, several component models and frameworks are available in the industry. Some major examples
are DCOM, COM+ [62], JavaBeans, Enterprise JavaBeans (EJB)[70], and CORBA Component Model
(CCM) [79]. In general, the specification of component technologies identifies a number of concepts
such as architecture1, configurations, connectors, bindings, properties, hierarchical models, style, and
behavior.

1Architecture and system architecture are used interchangeably in this paper.

2

2.2 Software system reliability

Software system reliability is the probability that a system performs its intended function for a specified
period of time under a set of specified environmental conditions [52, 74]. Faults, errors, and failures are
the main impairments to software reliability. A fault is the hypothesized cause of an error. An error is a
part of the system state which is liable to lead to subsequent failure. A failure occurs when the delivered
service does not comply with the specification. Software failures are classified from the failure domain
viewpoint into content, silent, early service delivery, performance, halt, and erratic failures.

Reliability and dependability are sometimes used interchangeably [14, 49], while most of the re-
searchers consider dependability as the combination of reliability and security. However, reliability and
security intersect in some of their sub-attributes (integrity and availability). Usually, design and opera-
tional faults are the main concerns in software reliability, while malicious faults are the main concerns in
software security. In this survey, we focus on design and operational faults as they are the main threats
to system reliability.

In general, the means to achieve software reliability are fault avoidance (or prevention), fault removal,
fault/failure forecasting, and fault-tolerance. Fault avoidance or prevention techniques are employed in
software development to reduce the number of faults introduced during construction. Fault removal tech-
niques are employed during software verification and validation for detecting existing faults and elimi-
nating them. Fault (or failure) forecasting estimates the presence of faults and their failure consequences
during the design, validation, and operational phases. Fault-tolerance provides services complying with
the specification in spite of design and operational faults by utilizing some kinds of redundancy. In our
survey, we focus on the reliability means that are exploited mainly during CBSS design and operational
phases. Particularly, our survey will involve fault-tolerance, failure forecasting, and fault avoidance efforts
for structured design and software reusability. The survey will not cover fault removal and avoidance
mechanisms based on formal methods and rigorous specification of system requirements.

2.3 Taxonomy of reliability efforts in CBSSs

Reliability
efforts

Fault
tolerance

Reliability
assessment

Reliable
design and
operational
activities

Programming paradigm-based

Environment-based

Model-based

Component reliability

System reliability

Supplementary techniques

Design activities

Operational activities

Class/subclasses Current work
Intra-component [18, 36, 38, 39, 40]
Inter-component [6, 27, 45, 53, 75]
Decentralized [3, 44, 47, 55, 56, 60, 61]
Centralized [20, 21]
Message-based [16, 24, 30, 57, 66, 68, 81]
Replica-based [12, 16, 26, 28, 58, 68, 69, 76]

Component reliability [9, 19, 41]
State-based CBSS reliability [10, 31, 32, 35]
Path-based CBSS reliability [48, 84]
Propagation-based CBSS reliability [13, 64, 73]
Supplementary techniques [31, 35]

Composition [2, 29, 50, 54, 63, 65, 78]
Configuration [17]
Deployment [5]
Upgrading [11]

Figure 1: Taxonomy of reliability efforts in CBSSs

3

We classify the existing reliability efforts for CBSSs into fault-tolerance [18, 36, 38], reliability assess-
ment [9, 19, 41], and reliable design and operational activities [2, 5, 11] (see Fig. 1). Fault-tolerance is
achieved by tailoring the fundamental and traditional fault-tolerance approaches to Suit CBSSs, mainly
by introducing software redundancy to system architecture levels. Reliability assessment involves failure
forecasting techniques that evaluate system reliability quantitatively in terms of component reliabilities.
Reliable design and operational activities are fault avoidance techniques that aim to achieve the reliability
of a system during the design and operational activities of CBSSs.

In our classification, we compare and contrast the existing techniques with respect to the major as-
sumptions of component definition and specification details. We identify three main types of components
based on their specification details: programming paradigm-based, environment-based, and model-based
components.

A programming paradigm-based component is the most common in the current component reliability
research. The programming paradigm-based component is specified based on principal programming
paradigms (e.g., function [48], module [36], and class [18]). The interface connections between them
are specified based on the interactions of these programming paradigm elements (e.g., function call).
Some programming paradigm-based techniques consider highly abstract components and specify the
interface connections among them as abstract in/out ports for data exchange [6, 39, 53]. The specification
of programming paradigm-based components and the interface connections among them do not follow
the common component definition [15, 71, 80], where, in most cases, a programming paradigm-based
component is not a unit of deployment.

An environment-based component is specified based on system paradigms (e.g., distributed agent
[21, 60] and mobile agent [61]). The interface connections between them are specified based on the inter-
actions of system paradigm elements (e.g., communication ports). In most of the work, environment-based
components are considered as black boxes and are assumed to be free from design faults. These compo-
nents are highly abstract, and they can embody components that comply with the common component
definition [15, 71, 80].

A model-based component is specified based on the component model (e.g., DCOM [62], EJB [70],
and CCM [79]). The interface connections between components are specified according to the component
model (e.g., facet and receptacle). In most of the work, CCM is the underlying component model, and
components are considered as black boxes that are free from design faults. A model-based component
is considered as a unit of composition and deployment, and it complies with the common component
definition [15, 71, 80].

2.3.1 Fault-tolerant CBSSs

Fault-tolerance is one of the major reliability means in CBSS. We classify fault-tolerance efforts for CBSSs
according to the component type into three main classes: programming paradigm-based [6, 18, 36, 53],
environment-based [21, 46, 47, 60, 61], and model-based [23, 25, 26, 69, 76]. In each of these classes, fault-
tolerance techniques address specific types of faults, use specific fault-tolerance techniques, and achieve
system reliability according to the assumptions and component specification details in each class. Fault-
tolerance techniques for programming paradigm-based CBSSs address mainly design faults and use mainly
design diversity and exception handling techniques to achieve system reliability. Both environment-based
and model-based fault-tolerance techniques address only operational faults and use various approaches,
while they mostly focus on checkpointing and replication to achieve system reliability.

4

The programming paradigm-based fault-tolerance class includes two subclasses: intra-component
[18, 36, 39] and inter-component [6, 27, 45]. Intra-component techniques tend to provide component
structures that help achieve system reliability, and inter-component techniques introduce component
group and system level techniques to achieve system reliability.

The environment-based fault-tolerance class includes decentralized [3, 44, 47, 55, 56, 60, 61] and cen-
tralized [20, 21] techniques. While decentralized techniques are mainly concerned about the problem of
where to store the control and log data, centralized techniques do not provide any efforts to overcome this
problem and rely on their underlying platform to store these data. Both centralized and decentralized
techniques include strategic solutions for adapting the replication strategy to obtain higher reliability,
distinguish between component criticalities, and impose these criticalities into the fault-tolerance tech-
niques.

The model-based fault-tolerance (precisely, CORBA-component model related) techniques are classi-
fied based on their main focus into two subclasses: message-based [24, 30, 57, 66, 81] and replica-based
[26, 28, 58, 69, 76]. Message-based techniques provide the communication protocol infrastructure for reli-
able messaging while considering object replication and contribute to replica consistency. Replica-based
techniques provide replica management, implement fault tolerance mechanisms, and support object group
invocation. The details of each of the above techniques are discussed in Section 3.

2.3.2 Reliability assessment of CBSSs

Recent research attempts in the reliability assessment of CBSSs including failure propagation [13, 64, 73]
and various supplementary [31, 35] techniques are not considered in the previous taxonomies [31, 32,
34, 35]. We consider these supplementary techniques in our taxonomy and classify current reliability
assessment techniques into three main classes: component reliability model, system reliability model, and
supplementary techniques. Obviously, component and system reliability models assess the reliabilities of
individual components [9, 19, 41] and CBSSs [10, 13, 32, 48, 64, 73, 84], respectively. Supplementary
techniques [1, 31, 33, 35, 37, 43, 77, 82, 83] provide support for the CBSS reliability assessment, while they
may not directly provide a model for reliability assessment. We further classify system reliability models
into three classes: state-based, path-based, and propagation-based. State-based models use the control
graph to represent software system architecture and predict reliability analytically. Path-based models
compute software reliability considering the possible execution paths of the program. Propagation-based
models incorporate the dependency of component failures by considering the error propagation among
system components. The details of reliability assessment efforts in CBSSs are discussed in Section 4.

2.3.3 Reliable design and operational activities of CBSSs

Reliable design and operational activities of CBSSs involve the work that addresses system reliability
during software composition [2] as a software design activity and other operational activities (deployment
[5], configuration [17], and upgrading [11]). Component composition provides a foundation for reasoning
about emergent assembly-level behaviour as well as system behaviour and their relationships to the
properties of the architectural elements. Configuration management is the task of tracking and controlling
changes in the software. Component deployment is the activity of making a component available for use
in a system. Component upgrading refers to the replacement of a component with a newer version of that
same component. The details of the reliable design and operational activities of CBSSs are discussed in
Section 5.

5

3 Fault-tolerant CBSSs

Despite rigorous software verification and validation efforts, design faults may exist and cause system
failures. Fault-tolerance is one of the most common strategies for improving reliability of CBSSs. Fault-
tolerance techniques enable a system to tolerate software faults remaining in the system after its devel-
opment (design faults) or introduced to the system during the operational phase (operational faults).
Fault-tolerance techniques achieve software system reliability through redundancy. A fault-tolerance
technique may involve four activities to avoid failures at runtime: error detection, diagnosis, isolation
or containment, and recovery [74]. The following section describes the fundamental fault-tolerance tech-
niques, and the consecutive sections discuss the fault-tolerance classes of our taxonomy shown in Fig. 1.

3.1 Fundamental software fault-tolerance techniques

Design diversity [36], exception handling [53], checkpointing [47], and replication [20] are the main fun-
damental fault-tolerance techniques in CBSSs. In the following paragraphs, we briefly explain the major
techniques used in CBSSs.

Software design diversity: Design diversity is the provision of identical services through separate
designs and implementations. The basic design diversity-based fault-tolerance techniques include recovery
blocks, consensus recovery block, n-version programming, and n-self-checking programming. In these
techniques, decision algorithms are used to adjudicate the system result and determine the system success
or failure state.

Exception handling: Exception handling is a fault-tolerance technique that handles the occurrence of
abnormal or undesired execution conditions of CBSSs. It allows software developers to define exceptional
conditions and additional code (exception handlers) that deal with those conditions. When an exception
is raised, the exception handler interrupts the normal control flow of the computation and searches for
an appropriate exceptional control flow from a set of predefined exception handlers.

Checkpointing: Checkpointing is the process of storing snapshots (recovery points) of a system’s
computational state. When a failure is detected, the checkpointed states are utilized for restoring the
previous execution state of the system. Similar mechanisms can be used to establish these recovery points
(e.g., the audit trail and the recovery cache). A checkpoint saves a complete copy of the state when a
recovery point is established. Recovery cache saves only the original state of the objects whose values
have changed after the latest recovery point. Audit trail records all the changes made to the process
state.

Replication: Replication uses redundant exact copies of software components. These exact copies are
not able to tolerate software design faults. However, replication aims to protect the application against
operational faults that may cause computer crash or communication failures. The main problem with
replication is how to make the software copies consistent with respect to their behaviors and computation
states. There are two essential replication styles: active and passive. In active replication, each replica
processes all requests from other components and returns its response back to the requester. The requester
takes the first response and ignores the other responses. In passive replication, only one primary replica

6

processes the other component requests, and returns its response to the requester. The state of the
primary replica is periodically synchronized directly to the other replicas (warm passive replication) or
periodically checkpointed to a separate data store (cold passive replication).

3.2 Programming paradigm-based fault-tolerance

In programming paradigm-based fault-tolerance, a component is viewed as a unit of composition that
interacts with other components through interface connections. The details about these interface con-
nections consider only the principal programming paradigm and disregard the architectural style of
the software system. Based on this view, fault-tolerance techniques for this class achieve reliability by
re-fabricating existing fault-tolerance techniques to Suit the CBSS architectures. For example, design
diversity techniques are used by applying diversity to the component level rather than the system level
[36]. Exception handling techniques are used at the component level rather than the language construct
level [40]. Architectural level fault-tolerance techniques aim to tolerate design faults associated with com-
ponent and connector failures, architectural mismatches, and configuration faults [53]. Design diversity
[6, 18, 36] and exception handling [27, 38, 39, 40, 53, 75] are the most widely used techniques due to their
ability to tolerate design faults.

The programming paradigm-based fault-tolerance includes two subclasses: intra-component [18, 36,
38, 39, 40] and inter-component [6, 27, 45, 53, 75]. Intra-component techniques tend to provide component
structures that help achieve system reliability, and inter-component techniques introduce component
group and system level techniques to achieve system reliability. In the following subsections, we discuss
the details of each subclass.

3.2.1 Intra-component fault-tolerance

Intra-component techniques provide component structures [18, 36, 39, 40] or wrappers [38] that help
achieve system reliability. These fault-tolerant component structures are considered as new building
blocks for CBSSs. Therefore, the proposed component structures inherit the basic characteristics of
components, particularly, composition and independence. Executive component [18] is an example of
these structures in which reusable object oriented components encapsulate some fundamental design
diversity techniques. The basic n-version programming design diversity technique is used to structure
the fault-tolerant component [36] for constructing multi-modular programming software systems. The
idealized fault-tolerant architectural component [39, 40] is structured using C2 architectural style2 to
allow component exceptions propagation through the software system architecture. The idealialized fault-
tolerant component is structured into two parts: a normal behavior part, that is, the main functional
implementation, and an abnormal behavior part, that handles the exception conditions.

Component wrapper is another approach for applying intra-component fault-tolerance. A wrapper
is a specialized component that is inserted between a component and its environment to deal with the
ingoing and outgoing data errors of the wrapped component. Component wrappers are used with black
box components (e.g., Commercial Off The Shelf (COTS) and legacy components) to provide a protective
layer in a specific operational context. By extending the idealized fault-tolerant architectural component
[39] using component wrapper, Guerra et al. [38] present an idealized fault-tolerant COTS component.

2“C2 architectural style is a component and message-based style for constructing software systems based on flexible
composition” [39].

7

In
tr

a
-c

o
m

p
o
n

en
t

a
p

p
ro

a
ch

In
te

r-
co

m
p

o
n

en
t

a
p

p
ro

a
ch

O
b

je
ct

o
ri

en
te

d
p

ro
g
ra

m
m

in
g

M
o
d

u
la

r
p

ro
g
ra

m
m

in
g

D
es

ig
n

fa
u

lt
s

O
p

er
a
ti

o
n

a
l

fa
u

lt
s

D
es

ig
n

d
iv

er
si

ty

E
x
ce

p
ti

o
n

h
a
n

d
li
n

g

C
o
m

p
o
n

en
t

h
a
n

d
le

rs

C
o
n

n
ec

to
r

h
a
n

d
le

rs

C
o
m

p
o
n

en
t

g
ro

u
p

h
a
n

d
le

rs

C
o
n

fi
g
u

ra
ti

o
n

h
a
n

d
le

rs

W
ra

p
p

er

S
tr

u
ct

u
re

d
co

m
p

o
n

en
t

Duncan et al. [18] √ √ √ √ √

Grosspietsch et al. [36] √ √ √ √ √

Guerra et al. [39] √ √ √ √ √ √ √ √

Guerra et al. [40] √ √ √ √ √ √ √ √

Guerra et al. [38] √ √ √ √

Blackmon et al. [6] √ √ √ √

Filho et al. [27] √ √ √ √ √ √

Issarny et al. [45] √ √ √ √ √ √ √ √ √

Lemos et al. [53] √ √ √ √ √ √ √

Romanovsky et al. [75] √ √ √ √ √ √ √

Table 1: Summary of programming paradigm-based fault-tolerance.

Wrappers are employed to protect the system against the erroneous behavior of the COTS components.
They also protect COTS components against the erroneous requests from the rest of the system.

3.2.2 Inter-component fault-tolerance

Inter-component fault-tolerance techniques focus on fault-tolerant component integration rather than
construction. Fault-tolerance support is embedded at the system level [6, 27, 45] or at a component
group level [53, 75]. Exception handling at the system level provides fault-tolerance for system config-
uration components. In addition, it enables changing the system’s running configuration according to
the occurrence of configuration exceptions to prevent further failures. Exception handling at the compo-
nent group level assumes that, if components collaborate to deliver a specified service, they should also
collaborate to handle particular failure scenarios based on the specified service [45].

Blackmon et al. [6] apply component variants (design diversity) based on the different component
criticalities. These criticalities are assessed through component interface complexity or granularity. In
their multi-level exception handlers, Filho et al. [27] and Issarny et al. [45] attach exception handlers
to the system configuration components and use the exception propagation to notify these configuration
handlers. Exception flow in a software system architecture helps to enable changing the system’s run-
ning configuration according to these unresolved exceptions to prevent further error exceptions. Other
exception handlers are attached as wrappers for a group of components that collaborate in any specific
operation [53] or atomic action [75].

3.2.3 Comparison of programming paradigm-based fault-tolerance techniques

Table 1 summarizes the existing programming paradigm-based fault-tolerance techniques and shows
the subclasses (intra-component and inter-component), programming paradigms (object oriented and
modular), fault types (design and operational), fault tolerance mechanisms (design diversity and exception

8

handling), types of exception handlers (component, connector, component group, and configuration level),
and other mechanisms (wrapper and structured component) of these techniques.

Most programming paradigm-based CBSSs consider component as object [18, 27, 39, 40, 45, 53],
module [36], or highly abstract component [6, 38, 75]. Component design faults [6, 18, 27, 36, 39, 40, 45,
53, 75] are tolerated through design diversity [6, 18, 36] or through exception handlers [38, 39, 45, 43, 75]
at the component level. Component level design diversity can help to tolerate design faults within
components. Design diversity in traditional software systems is applied at the system level, while in
CBSSs, it is applied at the component level. Applying design diversity at the component level allows
earlier detection and recovery of component errors before they become system failures. However, design
diversity is expensive and real diversity is hard to obtain.

In CBSSs, exception handling is applied at different architectural levels from component [39, 40] to
system configuration levels [6, 27, 45, 75]. Traditional exception handling at the language construct
level strengthens the ability of detecting and recovering execution errors inside component code, while
exception handling at the component or at higher levels can handle these errors only after the component
produces an output. Therefore, by the time an error is detected at the component level, handling that
error may be too complicated and hard to achieve. While exception handling at the system architec-
ture level may gain benefits of masking failures that are caused by interface design faults or operational
faults, it may loose the advantage of early detecting errors based on component design faults. Therefore,
architectural level exception handling is not a sufficient solution for achieving system reliability, and is
considered as a complementary solution for exception handling at the language construct level (i.e., inside
component code).

Exception handling is also used at the connector level [39, 40, 45] to tolerate operational faults
that may cause communication and message delivery errors. Exception handling is also applied at the
component group level [53, 75] and at the system configuration level [6, 27, 45, 75]. This multi-level
exception handlers aim to detect and handle system errors at different architectural levels. Exception
handling at component group levels assumes collaborative handling of more complicated failure scenarios.
This group level exception handling can be considered as an extra failure protection in case individual
components are not able to mask their failures. Configuration level exception handling is considered as
a solution that provides adaptive strategy to adjust system running configuration where all handlers fail
to stop exception propagation.

Component wrappers [38, 75] are applied at the individual component level [38] and at the component
group level [75] to provide extra protective layer for components in specified contexts. These wrappers
can be an effective solution for COTS and legacy components where heterogeneity is assumed. However,
wrappers may introduce additional complexity when they are applied simultaneously with component
and connector level exception handling. Most of the intra-component techniques provide component
structures [18, 27, 36, 38, 39, 45] that can be building blocks for fault-tolerant CBSSs. However, applying
these component structures may require further tailoring to comply with any specific computational
environment or architectural style.

3.3 Environment-based fault-tolerance

The environment-based fault-tolerance techniques consider components as black boxes and disregard
their software design faults, while they focus mainly on the operational faults that may cause crash and
communication failures. To avoid these failures, fault-tolerant multi-agent systems employ replication or

9

exception handling strategies. In case of a host crash or communication loss, other replicas on different
hosts may take control, or an exception can be raised to avoid a system failure. Fault-tolerance strategies
are applied based on whether a system architecture is decentralized (i.e., ad-hoc components) or cen-
tralized (i.e., platform-based). We classify environment-based fault-tolerance techniques based on their
underlying architectures into decentralized [3, 44, 47, 55, 56, 60, 61] and centralized [20, 21] techniques
as described in the following subsections.

3.3.1 Decentralized fault-tolerance

In decentralized fault-tolerance, a system construction depends on decentralized architectures and uses
ad-hoc communication schemes. Decentralized fault-tolerance aims to facilitate the fault-tolerance strat-
egy in a decentralized manner. Marin et al. [60] introduce a framework called DARX, for building fault-
tolerant decentralized multi-agent software applications using an adaptive replication strategy based on
agent criticality. Almeida et al. [55, 56] extend DARX [60] by introducing an adaptive and predic-
tive replication policy for critical agents based on their plan criticalities. Instead of using replication,
Aliasov et al. [3, 44] use exception handling to support system error recovery. Meng et al. [61] provide
pragmatic framework for agent execution to support system fault-tolerance by deploying independent
checkpointing with passive replication strategy. Khokhar et al. [47] use a concept of antecedence graphs
for checkpointing the agent communication messages.

3.3.2 Centralized fault-tolerance

Centralized techniques rely on the underlying platform to store the replication data based on different
criticality measures for system components. Faci et al. [21] extend DARX [60] for building a fault-
tolerant platform (called DimaX) for centralized multi-agent architectures using adaptive replication
strategy based on agent role criticality. Gatti et al. [20] extend DimaX [21] by improving the capability
of critically calculation using an enhanced XMLaw scheme. The XMLaw scheme implements a mechanism
for agent interaction called law enforcement as an object oriented framework.

3.3.3 Comparison of environment-based fault-tolerance techniques

In distributed multi-agent systems [3, 20, 21, 44, 47, 55, 56, 60, 61], host crash and communication failures
are major threats to system reliability. Mobile-agent systems [44, 61] are also prone to these failures during
their migration process. To mask these failures, fault-tolerant multi-agent systems employ replication
[20, 21, 47, 55, 56, 60, 61] or exception handling [3, 44] techniques. Table 2 summarizes the existing
environment-based fault-tolerance techniques and shows the subclasses (decentralized and centralized),
system paradigms (distributed agents and mobile agents), fault tolerance mechanisms (replication and
exception handling), storage location of the replicated data (component, middleware, and platform), and
other parameters (agent criticality and supportive activities) of these techniques.

Both replication and exception handling techniques are able to tolerate operational faults. However,
replication strategy has a number of advantages. Replica distribution among different hosts avoids a
host from being a single point of failure. It also helps the load balancing among the available system
resources. Replication allows minimizing the resource utilization of multi-agent systems using passive
replication. Minimizing the resource utilization includes decreasing the workload and consequently, it
helps decrease crash failures. However, by disregarding active replication, a system may be prone to
more performance failures. Furthermore, by using a replication strategy, a fault-tolerant multi-agent

10

D
ec

en
tr

a
li
ze

d
te

ch
n

iq
u

es

C
en

tr
a
li
ze

d
te

ch
n

iq
u

es

D
is

tr
ib

u
te

d
a
g
en

ts

M
o
b

il
e

a
g
en

ts

R
ep

li
ca

ti
o
n

E
x
ce

p
ti

o
n

h
a
n

d
li
n

g

C
o
m

p
o
n

en
t

d
a
ta

st
o
re

M
id

d
le

w
a
re

d
a
ta

st
o
re

P
la

tf
o
rm

d
a
ta

st
o
re

A
g
en

t
cr

it
ic

a
li
ty

S
u

p
p

o
rt

iv
e

a
ct

iv
it

ie
s

Marin et al. [60] √ √ √ √ √

Almeida et al. [55] √ √ √ √ √

Almeida et al. [56] √ √ √ √ √

Batista et al. [3] √ √ √

Iliasov et al. [44] √ √ √ √

Meng et al. [61] √ √ √ √ √ √

Khokhar et al. [47] √ √ √ √ √

Faci et al. [21] √ √ √ √ √

Gatti et al. [20] √ √ √ √ √

Table 2: Summary of environment-based fault-tolerance.

system disregards content failures. Exception handling techniques provide architectural traps [3, 44] for
agent failures in general. Therefore, these techniques can also tolerate some content failures based on the
operational faults of agent communications.

Storing replication data is one of the main concerns of a replication strategy. Most of the decen-
tralized techniques store component information at other system components [47, 61] or at middleware
components [3, 44], while other decentralized techniques adopt an exception handling strategy at the
component level to avoid the decentralization problem. In centralized techniques replication data are
stored at the underlying platform [20, 21]. Consequently, centralized techniques do not require additional
effort to create replicated data stores, while they only focus on managing these data efficiently.

Most of the environment-based fault-tolerance techniques choose the replication style and manage-
ment based on component criticality measures [20, 21, 55, 56, 60]. Criticality measures are computed
based on component role [20, 60] or component plan [55, 56]. Other techniques conduct supportive or
supplementary activities [47, 61] for the replication strategy. Examples of these activities are execution
management [61] and checkpointing methodology [47].

With respect to software failure, environment-based fault-tolerance techniques can mask only silent
failures, while they cannot mask content failures or performance failures. Moreover, by considering agents
as black boxes, software failures caused by design faults of these agents are not considered in the existing
fault-tolerance techniques.

3.4 Model-based fault-tolerance

The model-based fault-tolerance represents fault-tolerance techniques that include component models
and frameworks. The model-based component is specified based on component model (e.g., DCOM [62],
EJB [70], and CCM [79]). The interface connections between them are specified in details according to
the component model (e.g., CCM facet and receptacle ports). In most of the work, CCM is the underlying
component model and components are considered black boxes that are free from design faults. These
components comply with the widely accepted component definition [15, 71, 80].

In general, model-based component specification identifies a number of concepts such as architecture,

11

configurations, connectors, bindings, properties, hierarchical models, style, and behavior. Component
models are also supported by frameworks that provide design time and run time infrastructure for CBSSs
[16, 69]. In addition to these concepts, CCM provides transparent distribution3 of the application objects
[72]. The CORBA component model works above the Object Request Broker (ORB)4 and thus allows
building distributed and heterogeneous software applications. CCM provides language and operating
system independent features, while other component models are usually language (EJB) or platform
(DCOM) dependent [28]. Because of these advantages, almost all existing reliability efforts for component
models are tailored for CCM.

Natarajan et al. [69] and Felber et al. [25] provide taxonomies on CORBA fault-tolerance techniques
by classifying them based on their relative location to the ORB into integration [57, 81], interception
[16, 68], and service [16, 22, 30, 58, 66, 69] approaches. An integration approach incorporates repli-
cation into the core ORB. The interception approach uses interception objects underneath the ORB,
i.e., between the ORB and the operating system. The service approach provides fault-tolerance support
primarily through collections of objects above the ORB, i.e., between the ORB and the CORBA appli-
cation. However, their taxonomy classifies fault-tolerance techniques based on the CORBA anatomy and
mainly explains the exploited parts of CORBA architecture and the impacts on CORBA interoperabil-
ity5, transparency6, ORB compliance, among other infrastructure related factors. The taxonomy does
not differentiate among fault-tolerance techniques from reliability viewpoint and does not discuss their
sufficiency for reliable CORBA applications.

We classify model-based techniques based on their strategic architectural element into two subclasses:
message-based [24, 30, 57, 66, 81] and replica-based [26, 28, 58, 69, 76]. Message-based techniques pro-
vide the communication protocol infrastructure for reliable messaging while considering object replication.
Message-based techniques support fault-tolerance by achieving replica consistency. Replica-based tech-
niques provide replica management and implement fault tolerance mechanisms. Replica-based techniques
support fault-tolerance by achieving object group invocation. Some work extends the two subclasses to
provide integrated fault-tolerance solutions for model-based CBSSs [16, 68]. In the following sections, we
explain the details of these subclasses.

3.4.1 Message-based fault-tolerance

The underlying strategy for message-based techniques is based on a group communication mechanism
that assumes that replicas are distributed among the system architecture and extends the object com-
munication mechanism provided by the ORB to handle groups of replicas. These techniques are also
concerned about state replication and aim to perform the replication in a reliable way. The main goals of
these techniques are to achieve replica consistency and allow group invocation through message multicas-
ting. Maestro [81] is an integration approach that supports replica consistency by providing object group
communication tools and client/object interoperability tools while assuring reliable and safe message

3Transparent distribution implies that application services can invoke server objects without additional efforts regarding
the actual locations of the server objects [68].

4Object Request Broker (ORB) provides communication infrastructure for distributed and heterogeneous CORBA ap-
plications.

5Interoperability of CORBA ensures that the system can be used by the clients and servers that are running on the ORBs
from different vendors [23].

6In CCM, transparency dictates the hiding of the use of replication from the application programmer by viewing a group
of server replicas as a single object.

12

delivery through a layered implementation of state machine replication. Electra [57] is an integration
approach that consists of a modified ORB. The ORB maintains replica consistency and invocation using
a reliable group communication mechanism by converting the application’s/ORB’s messages into mul-
ticast messages. Object Group Service (OGS) [24] is a group communication framework that provides
support for replica consistency and group invocation by enabling the view of a group of CORBA objects
as a single entity despite concurrent invocations or replica failures. Newtop [66] is an object group man-
agement framework. However, it differs from OGS [24] in that it allows objects to belong to multiple
object groups. FTS [30] provides a lightweight CORBA service for fault-tolerance by combining intercep-
tion and service approaches using an extended object adapter implemented on top of standard Portable
Object Adapter (POA). Aquarius ([12]) provides a data-centric approach for object replication and in-
vocation using a shared server object that can be manipulated by clients while hiding object replicas at
independent servers.

3.4.2 Replica-based fault-tolerance

Replica-based techniques focus on the replica management duties (creation and destruction), fault man-
agement (error detection and recovery mechanisms), and property management (replica distribution and
system configuration) to achieve reliable group invocation. Proteus [76] provides fault-tolerance in AQuA
[16] by dynamically managing the replicated distributed objects and configuring the system in response
to faults and changes in desired dependability levels. Fraga et al. [28] present an adaptive fault-tolerant
component model (Afault-tolerant CCM) based on CORBA by introducing a set of components that
monitors the failure occurrences in the application. The Distributed Object-Oriented Reliable Service
(DOORS) [69] is a part of fault-tolerant CORBA standard that exploits CORBA service approach to
provide replication management, failure detection and recovery as service objects above the ORB. The
Interoperable Replication Logic (IRL) [58] exploits the service approach by providing a set of protocols,
mechanisms, and services that offer interoperable ORB compliant architecture and allow a CORBA sys-
tem to handle object replication. Lightweight fault-tolerance [26] aims to avoid unnecessary complexities
of the standard fault-tolerant CORBA for applications that do not require strong data consistency.

Some work [16, 68] integrates message-based and replica-based fault tolerance techniques. Eternal,
[68] is a part of fault-tolerant CORBA standard that implements a number of techniques as ORB portable
interceptors to provide replication management and strong replica consistency without requiring modifi-
cations to the application or to the ORB. AQuA [16] integrates the dependability management of Proteus
[76] with Maestro [81] as the underlying group communication system that provides reliable multicast,
total ordering, and virtual synchrony.

3.4.3 Comparison of model-based fault-tolerance techniques

The model-based fault tolerance is mainly concerned about two objectives: achieving replica consistency
[30, 58] and allowing group invocation [26, 28, 69, 76] or both [12, 16, 24, 57, 66, 68, 81]. The majority
of message-based [16, 24, 30, 57, 66, 68, 81] techniques aim to achieve replica consistency, while the
majority of replica-based [12, 16, 26, 28, 58, 68, 69, 76] techniques aim to allow group invocation. Table 3
summarizes the existing model-based fault-tolerance techniques and shows the subclasses (message-based
and replica-based), previous taxonomies [25, 69] (integration, interception, and Service), work objectives
(consistency and invocation), CCM reliability means (reliable messaging, state replication, replica man-
agement, replica distribution, error detection, and error recovery), and other features (adaptive, light

13

M
es

sa
g
e-

b
a
se

d

R
ep

li
ca

-b
a
se

d

In
te

g
ra

ti
o
n

a
p

ro
a
ch

In
te

rc
ep

ti
o
n

a
p

ro
a
ch

S
er

v
ic

e
a
p

ro
a
ch

C
o
n

si
st

en
cy

In
v
o
ca

ti
o
n

R
el

ia
b

le
m

es
sa

g
in

g

S
ta

te
re

p
li
ca

ti
o
n

R
ep

li
ca

m
a
n

a
g
em

en
t

R
ep

li
ca

d
is

tr
ib

u
ti

o
n

E
rr

o
r

d
et

ec
ti

o
n

E
rr

o
r

re
co

v
er

y

A
d

a
p

ti
v
e

L
ig

h
t

w
ei

g
h
t

C
o
n
te

n
t

fa
il
u

re

Vaysburd et al. [81] (Maestro) √ √ √ √ √ √

Maffeis et al. [57] (Electra) √ √ √ √ √ √

Felber et al. [24] (OGS) √ √ √ √ √ √ √ √

Morgan et al. [66] (Newtop) √ √ √ √ √ √

Friedman et al. [30] (FTS) √ √ √ √ √ √ √ √

Chockler et al. [12] (Aquerius) √ √ √ √ √ √ √

Sabnis et al. [76] (Proteus) √ √ √ √ √ √ √ √ √

Fraga et al. [28] √ √ √ √ √

Natarajan et al. [69] (Doors) √ √ √ √ √ √ √

Marchetti et al. [58] (IRL) √ √ √ √ √ √ √

Felber et al. [26] √ √ √ √ √ √

Narasimhamn et al. [68] (Eternal) √ √ √ √ √ √ √ √ √ √ √ √ √

Ren et al. [16] (Aqua) √ √ √ √ √ √ √ √ √ √ √ √ √

Table 3: Summary of model-based fault-tolerance

weight, and consideration of content failures) of these techniques.
The means to achieve a fault-tolerant CORBA application are reliable messaging, state replication,

replication management, replica distribution, error detection and notification, and error recovery. In
general, the first two means are achieved by the message-based techniques, while the last four are ad-
dressed by the replica-based techniques. Message-based techniques provide an important infrastructure
for reliable messaging and contribute to replica consistency. Replica-based techniques implement the
fault-tolerance technique and support group invocation. Both message-based and replica-based tech-
niques are required for a complete fault-tolerance solution [16, 68].

Reliable messaging [16, 24, 30, 57, 68, 81] includes checking for duplicate messages, dropped mes-
sages, and total message ordering for system objects. State replication [12, 16, 24, 57, 68, 81] involves
multicasting object messages into the group of replicas corresponding to such object. Replication man-
agement [12, 16, 26, 30, 58, 66, 68, 69, 76] is concerned mainly with creating and deleting replicas,
issuing the Interoperable Object References (IORs), controlling the replication style and other settings.
Replica distribution [12, 16, 58, 68, 76] is concerned about the location of object replicas. Error detection
[16, 24, 28, 30, 58, 66, 68, 69, 76] is mainly achieved by using heartbeat messages or time out mecha-
nisms. Error notification is usually considered as part of the error detection mechanism that provides
information to the error recovery [16, 24, 26, 30, 58, 68, 69, 76] and replica management to respond for
the detected error. Depending on the replication style (active or passive), error recovery either selects
another replica to provide a response or it performs voting among the active replicas to select the correct
response.

Some model-based techniques incorporate adaptive fault tolerance strategies [16, 28, 68, 69, 76], in
which they dynamically manage replicated objects and configure the system in response to faults and
changes for desired dependability levels. Management and configuration choices include the number and
type of faults an application intends to tolerate (crash, value, and time), the performance expected, the
styles of replication, the types of voting, the degrees of replication to use, and the location of the replicas,

14

among other factors. Lightweight fault-tolerance [26, 30] in CORBA avoids unnecessary complexities of
the standard fault-tolerant CORBA for applications that do not require strong data consistency.

The model-based fault-tolerance techniques focus mainly on masking crash and communication loss
failures. Some model-based fault-tolerance techniques tolerate content failures [16, 68, 76] by using a
voting algorithm to adjudicate the result among a number of replica outputs (messages). However,
voting among these replicas cannot mask content failures that are based on component design faults.
By disregarding content failures based on design faults, fault-tolerant CORBA assumes that the system
components are bugs free.

3.5 Comparison of fault-tolerance classes of CBSSs

Table 4 summarizes the existing fault-tolerance classes of CBSSs and shows the fault tolerance mechanisms
(design diversity, exception handling, replication, and checkpointing), fault types (design and operational
faults), failure types (silent, performance, and content), major software architectural styles (distributed,
client/server, event driven, and peer-to-peer), and the other existing work of these classes.

Different classes of fault-tolerance techniques for CBSSs adopt strategies and goals according to com-
ponent viewpoints and specification details. Design diversity [6, 18, 36] and exception handling [38, 39, 45,
43, 75] are used in the programming paradigm-based techniques to tolerate design faults, while few works
in this class address operational faults using component wrapper approaches [38, 75]. The environment-
based and model-based techniques depend on checkpointing and replication [20, 21, 47, 55, 56, 60, 61]
as main strategies for their sufficiency for tolerating operational faults based on the assumption that the
components are design fault free. The reason for addressing mainly design faults at the programming
paradigm-based techniques is the unavailability of the knowledge about operational environment. The
reason for addressing only operational faults at the environment-based and model-based techniques is
the consideration of components as fault free.

By tolerating component design faults, programming paradigm-based techniques are able to tolerate
all types of component failures. The environment-based and model-based techniques tolerate opera-
tional faults by masking communication failures such as message corruption and link disconnection, and
crash failures such as computer and process crash. However, errors that may cause the aforementioned
failures are detected when a component stops responding and appears silent (silent failures). There-
fore, environment-based and model-based techniques can tolerate only silent failures that are caused by
operational faults, while they tolerate neither content failures nor performance failures.

Few environment-based techniques address content failures by using exception handling [3, 44]. How-
ever, by using the component wrapper approach, they only focus on component interfaces, i.e., they only
tolerate content failures that are caused by operational faults or interface design faults. In other words,
these techniques also disregard content failures that are caused by component design faults.

In model-based techniques, inconsistent replicas may produce different message contents in response
to a service request. Content failures are also addressed in these techniques by using voting algorithms
among the inconsistent groups of replicas [16, 68, 76]. However, the causes of these content failures
are the operational faults that lead to the replica group inconsistency. Therefore, these techniques also
disregard content failures based on design faults.

Among the CBSS architectural styles, distributed architectures [28, 30, 57, 58, 66, 68, 69, 76, 81] are
the most commonly used for the multi-agent and mobile agent system paradigms of the environment-
based techniques, and for the CCM of the model-based techniques [12, 16, 24, 26]. Client/server [28]

15

D
es

ig
n

d
iv

er
si

ty

E
x
ce

p
ti

o
n

h
a
n

d
li
n

g

R
ep

li
ca

ti
o
n

C
h

ec
k
p

o
in

ti
n

g

D
es

ig
n

fa
u

lt
s

O
p

er
a
ti

o
n

a
l

fa
u
lt

s

S
il
en

t
fa

il
u

re
s

P
er

fo
rm

a
n

ce
fa

il
u

re
s

C
o
n
te

n
t

fa
il
u

re
s

D
is

tr
ib

u
te

d

C
li
en

t/
S

er
v
er

E
v
en

t
d

ri
v
en

p
ee

r-
to

-p
ee

r

Existing work

Programming paradigm-based

Intra-component techniques √ √ √ √ √ √ √ [18, 36, 38, 39, 40]
Inter-component techniques √ √ √ √ √ √ [6, 27, 45, 53, 75]
Environment-based
Decentralized techniques √ √ √ √ √ √ √ [3, 44, 47, 55, 56, 60, 61]
Centralized techniques √ √ √ √ √ [20, 21]
Model-based
Message-based techniques √ √ √ √ √ √ √ [16, 24, 30, 57, 66, 68, 81]
Replica-based techniques √ √ √ √ √ √ √ √ [12, 16, 26, 28, 58, 68, 69, 76]

Table 4: Summary of fault-tolerance in CBSSs

and event-driven [16] architectures are considered as native environments for CCM, and very few works
address the peer-to-peer [53] architectures in the environment-based techniques class.

4 CBSS reliability assessment

Reliability assessment involves failure forecasting techniques that evaluate system reliability quantita-
tively in terms of component reliabilities. These techniques can be used at the operational phase and at
the early design stages of software systems. Applying these techniques in the early design stages supports
the appropriate design decisions that affect the artifacts of the later development stages. Reliability as-
sessment based on system architectures has a number of advantages over the prevalent software reliability
assessment which is black box-based, i.e., a software system is treated as a whole, and only its interac-
tions with outside world are considered [31]. Some example advantages [32] are the ability to compare
alternative architectures with respect to their reliabilities, the ability to relate system reliability to its
structure and individual component reliabilities, and the ability to assess the reliability of operational
systems to identify components which provide maximum potential for reliability improvement.

Few attempts to classify CBSS reliability models have been proposed [31, 32, 34, 35] and broadly
accepted. However, it is argued that, “without exception, all the existing models assume that failure
processes associated across different components are mutually independent” [34]. Recently, some work
considers the dependence of component failures [13, 64, 73] and some others provide supplementary tech-
niques to indirectly support CBSSs reliability models. In addition to the existing reliability assessment
techniques, we also consider these recent research attempts in our taxonomy.

We classify reliability assessment techniques into three main classes: component reliability model,
system reliability model, and supplementary techniques. Obviously, component and system reliability
models assess the reliabilities of individual components [9, 19, 41] and CBSSs [10, 13, 32, 48, 64, 73, 84],
respectively. Supplementary techniques [1, 31, 33, 35, 37, 43, 77, 82, 83] provide support for CBSS
reliability assessment, while they may not directly provide a model for reliability assessment. We further
classify system reliability models into three classes: state-based, path-based, and propagation-based.

16

State-based models use control graphs to represent software system architecture and predict reliability
analytically. Path-based models compute software reliability considering the possible execution paths of
the program. Propagation-based models incorporate the dependency of component failures by considering
the error propagation among system components. In the following subsections, we provide the details
about each class of CBSS reliability assessment.

4.1 Component reliability models

Component reliability models exploit design and/or operational information of an individual component
to evaluate its reliability. If a component is developed as part of a system, then both design and opera-
tional information are available and can be used for evaluating the component reliability [19]. However,
with respect to COTS components, design information may not be available for the user (or customer)
and operational information of the integrated system and the deployment environment at the user site
is not available for the component vendor. In this case, the component can be evaluated as a black
box at the user site [41] or without the operational profile at the vendor site [9, 41]. Everett [19] esti-
mates individual component reliability by using an Extended Execution Time (EET) model that walks
through a stepwise procedure for performing the reliability analysis. Cheung et al. [9] provides a stepwise
framework for reliability prediction of components by identifying important parameters of the reliability
modeling process and studying their effects on component reliability. Hamlet et al. [41] provide indi-
vidual component reliability prediction by introducing a mapping from operational profiles to reliability
parameters and relating operational profiles to component functional sub-domains.

4.2 System reliability models

System reliability models aim to aggregate component failure behaviors to reason about the whole system
failure behavior. These models exploit information about software system architecture and individual
components. The information includes component failure behavior, control flow, transition probabilities
between components, component usage stress, and component failure dependencies. Based on the model
view of software system architecture and architectural dynamics, system reliability models are classified
into three types: state-based, path-based, and propagation-based.

4.2.1 State-based models

State-based models for CBSS reliability represent a system architecture using control flow graph and
assume that the transfer of control (transition) follows the Markov property7. One of the main assump-
tions of these models is that the summation of transition probabilities from a component to all other
component equals to 1. The architecture of a software system has been modeled with a Discrete Time
Markov Chain (DTMC) or a Continuous Time Markov Chain (CTMC) [31]. Cheung [10] provide a
DTMC model for multi-modular software reliability based on the reliability of the components and the
probabilistic distribution of the utilization of the components. Gokhale and Lyu [32] develop simulation
procedures to assess the impact of individual components on the reliability of the whole system in the
presence of fault detection and repair strategies that may be employed during testing.

7Markov property assumes that, given the present control state, future transition states are independent of the past
transition states.

17

4.2.2 Path-based models

Path-based models compute system reliability by considering the possible execution paths. An execution
path is a sequence of components executed consecutively based on a test input. Krishnamurthy and
Mathur [48] provide a path-based method for estimating software system reliability using reliabilities
of its components and the sequences of components executed during system run. Yacoub, Cukic, and
Ammar [84] introduce a Scenario-Based Reliability Analysis (SBRA) for CBSS architectures based on
execution scenarios, i.e., sets of component interactions triggered by specific input stimulus.

4.2.3 Propagation-based models

Propagation-based models aim to incorporate component failure dependency in the reliability assessment
of CBSSs. In propagation-based models, a component failure may impact other components and does
not always lead to a system failure. Cortellessa and Grassi [13] analyze the reliability of a CBSS based
on error propagation probability by exploiting information about the component reliabilities and the
transition probability among the error propagation paths of each component. Mohamed and Zulkernine
[64] evaluate system reliability in terms of failure propagation between components by introducing the
concept of Architectural Service Routes (ASRs) and incorporating architectural attributes based on
these ASRs into the reliability analysis of CBSSs. Popic et al. [73] evaluate software system reliability
by viewing interface connectors between components as a set of connector elements and deriving the
error propagation probabilities between components as the probabilities of any changes among connector
elements.

4.3 Supplementary work for reliability assessment

The majority of the recent work for CBSS reliability assessment provides supplementary support for
reliability assessment, while they do not propose new reliability models. Some of the goals of these
supplementary techniques include error propagation analysis based on fault injection [43, 82, 83] or using
stochastic approaches [1]. The goals also include importing other quality attribute models to assess
the reliability and vice versa [37, 77]. Some work provides survey [34], framework unification [31], and
empirical case study [32, 35] on existing reliability models.

4.4 Comparison of reliability assessment techniques

Table 5 summarizes the existing reliability assessment techniques and shows the main classes (compo-
nent reliability assessment, state-based, path-based, propagation-based, and supplementary techniques),
software development phases (design, testing, and operation), failure behaviours (component failure prob-
ability, constant failure rate, and reliability growth model), major parameters (flow control and compo-
nent usage stress), and other features (component failure dependency and architectural loops) of these
techniques. Based on the model parameters, a component or a system reliability model is used either
during the early design [9, 41, 64, 73], testing [19, 31, 32, 48], or operational phases [13, 31, 35, 41, 48, 84].

Component failure behavior is used to incorporate the impact of individual components on the whole
system reliability. This failure behaviour can be specified by using failure probability [10, 13, 31, 48, 46,
84], constant failure rate [31], or reliability growth model [19, 31, 32]. A component failure probability is

18

C
o
m

p
o
n

en
t

re
li
a
b

il
it

y
a
ss

es
sm

en
t

S
ta

te
-b

a
se

d
a
p

p
ro

a
ch

P
a
th

-b
a
se

d
a
p

p
ro

a
ch

P
ro

p
a
g
a
ti

o
n

-b
a
se

d
a
p

p
ro

a
ch

S
u

p
p

le
m

en
ta

ry
a
p

p
ro

a
ch

D
es

ig
n

p
h

a
se

T
es

ti
n

g
p

h
a
se

O
p

er
a
ti

o
n

a
l

p
h

a
se

C
o
m

p
o
n

en
t

fa
il
u

re
p

ro
b

a
b

il
it

y

C
o
n

st
a
n
t

fa
il
u

re
ra

te

R
el

ia
b

il
it

y
g
ro

w
th

m
o
d

el

F
lo

w
co

n
tr

o
l

C
o
m

p
o
n

en
t

u
sa

g
e

st
re

ss

C
o
m

p
o
n

en
t

fa
il
u

re
d

ep
en

d
en

cy

A
rc

h
it

ec
tu

ra
l

lo
o
p

s

Everett [19] √ √ √ √

Leslie Cheung et al. [9] √ √

Hamlet et al. [41] √ √ √

Cheung [10] √ √ √ √

Gokhale and Lyu [32] √ √ √ √

Krishnamurthy and Mathur [48] √ √ √ √ √ √

Yacoub, Cukic, and Ammar [84] √ √ √ √

Cortellessa and Grassi [13] √ √ √ √ √

Mohamed and Zulkernine [64] √ √ √ √

Popic et al. [73] √ √ √ √

Gokhale and Trivedi [31] √ √ √ √ √ √ √

Goseva et al. [35] √ √

Table 5: Summary of reliability assessment for CBSSs.

the probability of its failing during a single execution. The use of component failure probability in sys-
tem reliability is based on the assumption that the knowledge about component reliabilities is available.
However, most of system reliability models ignore how to determine these component reliabilities. Con-
stant failure rate is the frequency of component failures. Reliability growth model (or failure intensity)
is the change in the frequency of component failures over time. Reliability growth models allow assessing
system reliability during the testing phase.

Besides component failure behavior, control flow [10, 13, 31, 48, 84] and usage stress [10, 19, 32, 73]
are major parameters for most of the reliability models, since they incorporate the dynamic behavior of
component interactions in system reliability. Flow control is expressed by transition graphs and transition
probabilities among components. Transition probabilities are considered based on sequential processing,
where the control leaves a component to only one other component. Usage stress is the average amount
of execution time a component takes per visit multiplied by the number of visits in a single system run.
Most state-based and path-based techniques consider flow control and usage stress in their computation,
while most of the propagation-based techniques disregard these parameters.

With respect to component failure dependency, both state-based and path-based reliability mod-
els assume that components fail independently, while propagation-based models [10, 64, 73] incorporate
component failure dependency in the reliability measure through the error propagation analysis. By disre-
garding component failure dependency, state-based and path-based techniques assume that a component
failure does not affect any other component and it directly causes a system failure.

Most of the existing system reliability models consider only simple architectures with no loops8.
8Architectural loops exist when a component is dependent on itself or mutually dependent on another component, directly,

or through other components.

19

Among the works listed in Table 5, only one model [48] addresses this problem. However, the model
considers only component self dependency and disregards architectural loops based on a number of
components.

Most reliability assessment techniques consider programming paradigm-based components. A small
number of works consider model-based components in the reliability assessment techniques. For example,
Cecchet et al. [8] evaluate the performance and scalability of EJB applications. Marsden et al. [59] eval-
uate CORBA system dependability by using a fault injection mechanism. Yi-Min et al. [85] discuss the
reliability and availability issues in DCOM. However, these techniques involve different model parameters
and quality attributes and consequently, they are different from the majority of the techniques surveyed
in this category.

5 Reliable design and operational activities of CBSSs

Reliable design and operational activities focus on the techniques that improve the reliability of the system
during the design and operational phases of CBSSs. We focus on composition [2] as a design activity, and
deployment [5], configuration [17], and upgrading [11] as operational activities. Component composition
provides a foundation for reasoning about emergent assembly-level behaviour as well as system behaviour
and their relationships to the properties of the architectural elements. Configuration management is the
task of tracking and controlling changes in software components. Component deployment is the activity
of making a component available for use in a system. Component upgrading refers to the replacement of
a component with a newer version of that same component.

Many research works address the component activities and their issues in general while disregarding
the system quality and in particular system reliability. Only a few works consider the reliability of the
system during these activities and most of those works consider composition activity. We classify the
work in this category based on the CBSS activities into reliable design [2, 29, 50, 54, 65, 78] and operation
[5, 11, 17]. The details of these classes are explained in the following subsections.

5.1 Reliability in the design activities of CBSSs

A number of composition approaches consider system reliability as a main design goal. Consequently, they
provide reasoning about assembly-level and system reliabilities and their relationships to the properties
of the architectural elements. The main differences that distinguish these approaches from fault-tolerant
CBSS are the underlying strategies and objectives. Unlike fault-tolerance techniques, reliability in the
composition approaches disregard the details of fault-tolerance, while they aim to achieve reliability
by enhancing system design [2, 78], component placement [54], component ranking [29], and level of
decomposition [50, 65].

Arora and Kulkarni [2] present a component-based method for designing fault-tolerant systems that
are able to tolerate multiple fault-classes independently by employing two types of components, namely
detectors and correctors. Freixas and Pons [29] investigate the problem of finding the component(s) that
have the biggest effect on system reliability (referred as the most important components) by introducing
a number of ranking relations between components. Laprie et al. [50] refer to the significance of the level
of decomposition with respect to the reliabilities of the software systems when applying design diver-
sity. They propose a trade-off between smaller components that allow a better mastering of the decision
algorithms and larger components that aid the degree of diversity. Lipton and Gokhale [54] present

20

an optimization approach that produces a desirable deployment configuration of the application com-
ponents given the application architecture, component reliabilities, and interface reliabilities. Mohamed
and Zulkernine [63] provide an approach for trading off among the components’ abilities of masking
different failures with respect to component criticalities and optimal software fault-tolerance configura-
tions. Mohamed and Zulkernine [65] also study the level of decomposition of CBSSs with respect to its
impact on system reliability based on various component failure criticalities. Sotirovski [78] present some
architectural properties that they consider as important parameters for achieving high reliability.

5.2 Reliability in the operational activities of CBSSs

In CBSS, each component is a unit of deployment that has its own requirements from the system resources.
The allocation of these resources to different components may be a complex task especially in the CBSS
applications where the resources are distributed and heterogeneous. Due to the resource allocation and the
integration issues, the deployment of components in a system may compromise its reliability. Therefore,
reliability must be ensured by guaranteeing the appropriate functionalities and the correctness of the
system after the deployment activity of CBSSs. Belguidoum and Dagnat [5] provide a generic model and
architecture for a dependable deployment.

Software upgrading introduces new versions of system components. Although, these new versions
may involve better functionalities, they are not guaranteed to be more reliable. With regular mainte-
nance activities of installing fixes and repairs, new versions of components may introduce new errors
to the system. Reliability of the upgrading activities assures the system functionality according to the
specification by avoiding the new errors that may be introduced by the new versions. Cook and Dage
[11] provide a framework called HERCULES, for upgrading system components. Instead of removing the
old version of a component, the framework keeps it running along with the new component.

CBSSs are usually modified or reconfigured during operational phase to control software functionalities
or behaviours. This reconfiguration is often conducted while the system is not in use. The availability
of the software system is a critical reliability sub-attribute for some mission-critical systems, especially,
when these reconfigurations are dynamic and frequent. David et al. [17] present an end-to-end solution
to define and execute reliable dynamic reconfigurations of component-based systems while guaranteeing
their continuity of service.

5.3 Comparison of reliable design and operational activities of CBSSs

Table 6 summarizes the existing reliable design and operational activities and shows the main classes or
activities (composition, configuration, deployment, and upgrading) and the major research goals (com-
ponent placement, component ranking, component criticality, level of decomposition, multi-failure types,
and post-activity reliability assurance) of these techniques. Most of the works focus on increasing system
reliability by enhancing the composition among system components [2, 29, 50, 54, 63, 65, 78], while few
works aim to incorporate reliability guarantees in the CBSS operation activities [5, 11, 17]. The main ob-
jectives of the composition approaches involve determining appropriate component placement [54] among
distributed computers, identifying a component’s rank [29, 78] among system components with respect
to component importance, identifying and incorporating component criticality in the architectural design
decisions [29, 63, 65], selecting the level of decomposition [50, 65] which involves system granularity and
component sizes, enabling the system to tolerate multiple types of failures [2, 63], and finally ensuring
system reliability during and after the operational activity [5, 11, 17].

21

C
o
m

p
o
si

ti
o
n

C
o
n

fi
g
u

ra
ti

o
n

D
ep

lo
y
m

en
t

U
p

g
ra

d
in

g

C
o
m

p
o
n

en
t

p
la

ce
m

en
t

C
o
m

p
o
n

en
t

ra
n

k
in

g

C
o
m

p
o
n

en
t

cr
it

ic
a
li
ty

L
ev

el
o
f

d
ec

o
m

p
o
si

ti
o
n

M
u

lt
i-

fa
il
u

re
ty

p
es

P
o
st

-a
ct

iv
it

y
re

li
a
b

il
it

y
a
ss

u
ra

n
ce

Arora and Kulkarni [2] √ √

Freixas and Pons [29] √ √ √

Laprie et al. [50] √ √

Lipton and Gokhale [54] √ √

Mohamed and Zulkernine [63] √ √ √

Mohamed and Zulkernine [65] √ √ √

Sotirovski [78] √ √

Belguidoum and Dagnat [5] √ √

Cook and Dage [11] √ √

David et al. [17] √ √

Table 6: Summary of reliable design and operational activities.

6 Conclusions and open issues

CBSS development is recognized as a useful paradigm for structuring large software systems. Compo-
nent technology can increase the productivity of software systems by providing reusability, abstraction,
composition, and fast development time. Ensuring reliability in CBSSs is important for their effective
applications in large scale and safety critical systems. In this paper, we survey the reliability efforts of
CBSSs. Our survey will help the appropriate selection of CBSS reliability techniques from the exist-
ing ones, and it will serve as a stage for proposing novel or improved techniques. In this section, we
summarize our survey and discuss a number of open issues.

6.1 Conclusions

In this paper, we classify reliability efforts in CBSSs based on the reliability means (fault-tolerance,
reliability assessment, and reliable design and operational activities). We compare and contrast the
existing techniques according to various component definitions and specification details.

In our taxonomy, fault-tolerance techniques for CBSSs are classified into programming-paradigm-
based, environment-based, and model-based techniques. The programming paradigm-based fault toler-
ance includes inter-component and intra-component techniques. The environment-based fault-tolerance is
either decentralized or centralized. The model-based fault-tolerance includes message-based and replica-
based techniques. CBSS reliability assessment techniques are classified into component reliability models,
system reliability models, and other supplementary techniques. We further classify system reliability
models into state-based, path-based, and propagation-based models. Reliable design and operational
activities are classified into reliable design activities and reliable operational activities.

In programming paradigm-based fault-tolerance, design diversity and exception handling are used to
tolerate component and interface design faults. Intra-component techniques provide component struc-

22

tures or wrappers that help achieve system reliability. Inter-component techniques provide fault-tolerant
component integration at the architectural level. Exception handling is applied at various levels of
system architecture: component, connector, component group, and system configuration. Most of the
intra-component techniques provide component structures that can be used as building blocks for fault-
tolerant CBSSs.

The environment-based fault-tolerance approaches employ checkpointing and replication strategies
to tolerate operational faults by assuming that components are design fault free. Decentralized fault-
tolerance techniques facilitate the fault-tolerance strategy in a decentralized manner. Centralized tech-
niques rely on their underlying platforms to store the replication data based on different criticality
measures for system components. Most of the environment-based fault-tolerance techniques choose the
replication style and management based on component criticality measures. The environment-based
fault-tolerance techniques can mask only silent failures due to host crash and communication errors,
while they cannot mask content failures or performance failures.

In model-based fault-tolerance, message-based techniques support fault-tolerance by achieving replica
consistency and group invocation. Replica-based techniques support fault-tolerance using failure detec-
tion and error recovery mechanisms. The means to achieve model-based fault-tolerance are reliable
messaging, state replication, replication management, replica distribution, error detection and notifica-
tion, and error recovery. The model-based fault-tolerance techniques focus mainly on masking crash and
communication loss failures.

In CBSS reliability assessment, component and system reliability models assess the reliabilities of
individual components and CBSSs, respectively. Supplementary techniques provide support for CBSS
reliability assessment, while they may not directly provide a reliability model. State-based models use
control graph to represent software system architecture and predict reliability analytically. Path-based
models compute software reliability considering the possible execution paths of a program. Propagation-
based models incorporate the dependency of component failures by considering the error propagation
among system components.

CBSS reliability techniques can be used during the early design, testing, and operational phases.
Component failure behavior, flow control, and usage stress are the major parameters for most of these
techniques. Unlike propagation-based models, state-based and path-based reliability models assume that
components fail independently. Most of the propagation-based models disregard transition probabilities
and usage stress in their computation and focus only on the corruptions (content failures) among data
flows through component interfaces. Most of the existing reliability models cannot assess complicated
architectures with loops and do not consider concurrent processing in their transition probabilities.

Most of the reliable activity efforts focus on increasing system reliability by enhancing the composition
among system components. Few reliable activity works aim to incorporate reliability guarantees in
CBSS operational activities. The main objectives of the composition approaches involve determining
appropriate component placement among distributed computers, identifying component ranking among
system components with respect to component importance, identifying and incorporating component
criticality in the architectural design decisions, selecting the level of decomposition which involves system
granularity and component sizes, enabling the system to tolerate multiple types of failures, and ensuring
system reliability during and after the component activity.

23

6.2 Open issues

Like other researchers in this area, we also observe the lack of reliability efforts in CBSSs. In the following
paragraphs, we discuss some open issues of CBSS reliability research.

Integration of CBSS fault-tolerance techniques: Each CBSS fault-tolerance class can handle cer-
tain types of faults or failures. Design diversity and exception handling are employed in the programming
paradigm-based techniques for their abilities to tolerate design faults since they can be tailored to mask
all types of failures. The environment-based and model-based techniques employ replication strategies
for their abilities to tolerate operational faults by assuming that the components are design fault free.
Fault-tolerance techniques in each class are not considered as complete solutions for tolerating all failures
based on both design and operational faults. Therefore, these techniques can be integrated into more
comprehensive fault-tolerance solutions that are able to address most reliability impairments. The other
approach is to propose customized fault-tolerance solutions that are able to mask only the critical failures
of our choice.

Component design faults in fault-tolerant CBSSs: The environment-based fault-tolerance tech-
niques focus mainly on masking crash and communication loss failures. Few environment-based tech-
niques address content failures by using exception handling. However, the techniques only tolerate content
failures that are caused by operational faults or interface design faults. In other words, these techniques
also disregard content failures based on component design faults. The model-based techniques mask com-
munication failures such as message corruption and link disconnection, and halt failures such as computer
and process crash. By considering inconsistent replicas as object variants, content failures are sometimes
addressed and masked by using voting algorithm to adjudicate the results among a number of replica
outputs (messages). However, the causes of these content failures are also the operational faults that lead
to replica group inconsistency. Therefore, these techniques also disregard content failures based on com-
ponent design faults. In both environment-based and model-based techniques, errors are detected using
watchdog, heartbeat messages, or timer mechanisms by detecting when a component appears silent and
stops responding. Therefore, environment-based and model-based techniques mainly focus on tolerating
operational faults and interface design faults by masking only silent failures and disregarding component
design faults.

Component failure dependency in system reliability models: State-based and path-based relia-
bility models assume that components fail independently. By disregarding component failure dependency,
state-based and path-based techniques assume a component failure does not affect any other component
and it causes directly a system failure. However, in practice, a component failure may affect other com-
ponents, while it may or may not cause a system failure. Therefore, component failure dependency needs
to be considered in system reliability model.

Failure types in propagation-based system reliability models: Most of the propagation-based
techniques for CBSS reliability assessment focus only on the corruptions (content failures) among data
flows through component interfaces. Therefore, evaluating system architectures based on the existing
propagation-based techniques disregard the impacts of other types of failures (e.g., performance and
silent failures) on system reliability. For example, if data transferred between two components are correct,
while they are late in delivery, existing techniques may not consider this case as a failure.

24

Architectural loops in system reliability models: One limitation of the existing reliability assess-
ment techniques is the inability to assess complicated architectures with loops. With the current software
complexity, most software system architectures includes complicated architectural loops. Therefore, sys-
tem reliability models need to incorporate architectural loops in the computation of system reliability.

Concurrency in system reliability models: With respect to system control flow and component
usage stress, the existing system reliability models either do not incorporate them or only consider them
based on sequential processing, where control transfers from a component to only one other component.
To apply these techniques in concurrent and distributed systems, component failure behaviors and op-
erational profiles should consider concurrent processing with respect to the transition probabilities of
system control flow and component usage stress measures.

Lack of reliability assessment work based on component models: Most of the reliability assess-
ment techniques consider programming paradigm-based components. A small number of works consider
model-based components in their reliability assessment techniques. However, the lack of reliability assess-
ment research that involve component models and architectural styles obstructs the effective application
of these component models in mission critical and large scale software systems.

Level of decomposition: Software designers need to decide about the level of decomposition which
involves component sizes and the number of components. In fault-tolerant CBSSs, decomposition level
affects the architectural level fault-tolerance mechanisms and their parameters (e.g., the size of variants
and decision points of design diversity techniques and component level exception handling). However,
the basis to choose the decomposition level of a CBSS has not been addressed adequately in the existing
research. Decomposition level is important due to its major impact on reliability. By disregarding this im-
pact, current software fault-tolerance techniques are prone to reliability decrease due to the inappropriate
selection of the level of decomposition.

Nondeterminism in fault-tolerant CORBA applications: Only a few fault-tolerant CORBA tech-
niques address the case of inconsistent replicas by using voting algorithm to adjudicate the correct message
response of this group of replicas [16]. Consequently, the majority of fault-tolerant CORBA techniques
are limited to deterministic application behaviors9. Nondeterminism can arise from sources such as
multithreading, shared I/O, and error exceptions. Moreover, CORBA implementations from vendors
are themselves multi-threaded and thus, nondeterministic [67]. Therefore, the majority of fault-tolerant
CORBA techniques need more support for non-determinism, in particular, the techniques need either to
achieve strong consistency with the multi-threaded implementations or to adopt solutions (e.g., voting)
that handle the cases of inconsistent replicas.

9Determinism suggests that, if two replicas of an object start from the same initial state and receive the same set of input
invocations, they will reach the same final state and output the same responses.

25

References

[1] W. Abdelmoez, D.M. Nassar, M. Shereshevsky, N. Gradetsky, R. Gunnalan, H.H. Ammar, B. Yu, and A. Mili,
“Error propagation in software architectures,” Proc. of the 10-th IEEE International Symposium on Software
Metrics (METRICS’04). Sep 2004, Morgantown, WV, pp. 384-393.

[2] A. Arora and S.S. Kulkarni, “Component based design of multitolerant systems,” IEEE Transactions Software
Engineering, Jan 1998, vol. 24 pp. 63-78.

[3] A. Iliasov, A. Romanovsky, B. Arief, L. Laibinis, and E. Troubitsyna, “On Rigorous Design and Implementation
of Fault Tolerant Ambient Systems,” IEEE 10-th Int’l Symp. on Object and Component-Oriented Real-Time
Distributed Computing, 2007. (ISORC’07), 2007, pp. 141-145.

[4] M. Behnam, I. Shin, T. Notle, and M. Nolin, “An Overrun Method to Support Composition of Semi-independent
Real-Time Components,” IEEE Proc. of the Int’l Conference on Computer Software and Applications (COMP-
SAC08), Vasteras, Aug 2008, pp. 1347-1352.

[5] M. Belguidoum and F. Dagnat, “Dependability in Software Component Deployment,” Proc. of the 2-nd Int’l
Conference on Dependability of Computer Systems (DepCoS-RELCOMEX’07). Jun 2007, Szklarska, pp. 223-
230.

[6] C.L. Blackmon and M.-L. Yin, “A design tool for large scale fault-tolerant software systems,” Reliability and
Maintainability (RAMS), Annual Symp., Jan 2004, Page(s): 256-260.

[7] H.P. Breivol.d and M. Larsson, “Component-Based and Service-Oriented Software Engineering: Key Con-
cepts and Principles,” Proc. of the 33-rd EUROMICRO Conference on Software Engineering and Advanced
Applications., Lubeck, Aug 2007, pp. 13-20.

[8] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Performance and scalability of EJB applications,” Proc. of
the 17-th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications,
2002, pp. 246-261.

[9] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, “Early Prediction of Software Component Re-
liability,” Proc. of the 30-th International conference on Software engineering (ICSE’08), China, 2008, pp.
111-120.

[10] R.C. Cheung, “A user-oriented software reliability model,” IEEE Trans. Software Engineering, vol. SE-6, no.
2, pp. 118125, March 1980.

[11] J.E. Cook and J.A. Dage, “Highly Reliable Upgrading of Components,” Proc. of the Int’l Conference on
Software Engineering, 1999, Los Angeles, CA, USA, pp. 203-212.

[12] G. Chockler, D. Malkhi, B. Merimovich, and D. Rabinowitz, “Aquarius: A Data-Centric approach to CORBA
Fault-Tolerance,” Proc. of The workshop on Reliable and Secure Middleware, in the 2003 Int’l Conference on
Distributed Objects and Applications, Sicily, Italy (November 2003)

[13] V. Cortellessa and V. Grassi, “A Modeling Approach to Analyze the Impact of Error Propagation on Reliability
of Component-Based Systems,” Proc. of the 10-th International Symposium on Component Based Software
Engineering (CBSE’07), pp: 140-156, LNCS4608, Nov 2007, doi:10.1007/978-3-540-73551-9 10.

[14] D. Cotroneo a, N. Mazzocca b, L. Romano a, and S. Russo a, “Building a Dependable System from a Legacy
Application with CORBA,” EUROMICRO Journal of Systems Architecture, Sep 2002, vol. 48 pp. 81-98.

[15] I. Crnkovic and M. Larsson, “Building reliable component-based software systems,” Artech House, 2002
[16] M. Cukier, J. Ren, C. Sabnis, W.H. Sanders, D.E. Bakken, M.E. Berman, D.A. Karr, and R. Schantz, “AQuA:

An Adaptive Architecture that Provides Dependable Distributed Objects,” Proc. IEEE 17-th Symp. Reliable
Distributed Systems, pp. 245-253, Oct. 1998.

[17] P.C. David, M. Lger, H. Grall, T. Ledoux, and T. Coupaye, “A Multi-stage Approach for Reliable Dynamic Re-
configurations of Component-Based Systems,” Proc. of the International Federation for Information Processing
(IFIP’08), 2008, LNCS 5053, pp: 106111.

[18] R.V. Duncan and L. L. Pullum, “Object-oriented executives and components for fault tolerance,” IEEE Proc.
of Aerospace Conference, 2001, vol. 6, pp. 2849-2855.

[19] W.W. Everett, “Software component reliability analysis,” Proc. of the 1999 IEEE Symposium on Application
- Specific Systems and Software Engineering and Technology. 1999, p. 204.

26

[20] M.A. de C. Gatti, C.J.P. de Lucena, and J-P. Briot, “On Fault Tolerance in Law-Governed Multi-agent
Systems,” Springer Berlin/Heidelberg, 2007, LNCS 4408 pp. 1-20.

[21] N. Faci, Z. Guessoum, and O. Marin, “DimaX: A Fault Tolerant Multi-Agent Platform,” Proc. of the 2006
Int’l workshop on Software engineering for large-scale multi-agent systems, 2006, pp. 13-20.

[22] J.C. Fabre and T. Perennou, “A Metaobject Architecture for Fault-Tolerant Distributed Systems: The
FRIENDS Approach,” IEEE Trans. Computers, vol. 47, no. 1, pp. 78-95, Jan. 1998.

[23] M. Fahad, A. Nadeem, and M.R. Lyu, “A Survey of Fault Tolerant CORBA Systems,” Springer
Berlin/Heidelberg, 2007, LNCS 4803 pp. 505-521.

[24] P. Felber, “The CORBA Object Group Service: A Service Approach to Object Groups in CORBA,” PhD
thesis, Swiss Federal Inst. of Technology, Lausanne (1998).

[25] P. Felber and P. Narasimhan, “Experiences, Strategies, and Challenges in Building Fault-Tolerant CORBA
Systems,” IEEE Transactions on Computers, 2004, pp. 497-511.

[26] P. Felber, “Lightweight Fault Tolerance in CORBA,” Proc. Int’l Symp. Distributed Objects and Applications
(DOA ’01), Sep 2001, pp. 239-247.

[27] F.C. Filho, P.A. de C. Guerra, and C.M.F. Rubira, “An Architectural-Level Exception-Handling System for
Component-Based Applications,” Springer Berlin/ Heidelberg, 2003, LNCS 2847, pp. 321-340.

[28] J. Fraga, F. Siqueira, and F. Favarim, “An Adaptive Fault-Tolerant Component Model,” Proc. of the 9-th
IEEE Int’l Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’03), 2003, pp. 179-186.

[29] J. Freixas and M. Pons, “Identifying Optimal Components in a Reliability System,” IEEE Transactions on
Reliability, Mar 2008, vol. 57, pp. 163-170.

[30] R. Friedman and E. Hadad, “FTS: A High Performance CORBA Fault Tolerance Service,” Proc. of IEEE
Workshop Object-Oriented Realtime Dependable Systems, Jan. 2002.

[31] S.S. Gokhale and K.S. Trivedi, , “Analytical Models for Architecture-Based Software Reliability Prediction:
A Unification Framework,” IEEE Transactions on Reliability, vol. 55, Dec 2006, pp. 578-590.

[32] S.S. Gokhale and M.R. Lyu, “A Simulation Approach to Structure-Based Software Reliability Analysis,” IEEE
Transactions on Software Engineering. 2005, vol. 31, pp. 643-656.

[33] S.S. Gokhale, M.R. Lyu, and K.S. Trivedi, “Reliability Simulation of Component-Based Software Systems,”
Proc. of the 9-th IEEE International Symposium on Software Reliability Engineering (ISSRE98), Paderborn,
Germany, 1998, pp. 192-201.

[34] K. Goseva-Popstojanova and K.S. Trivedi, “Architecture based approach to reliability assessment of software
systems,” Int’l Journal on Performance Evaluation. 2001, vol. 45, pp. 179-204.

[35] K. Goseva-Popstojanova, M. Hamill, and R. Perugupalli, “Large Empirical Case Study of Architecture-based
Software Reliability,” Proc. of 16th IEEE International Symposium on Software Reliability Engineering (IS-
SRE’05), Nov 2005, Morgantown, WV, pp. 10 pp.

[36] K.E. Groosspietsch, “Optimizing the reliability of component-based n-version approaches,” Proc. of the Int’l
Parallel and Distributed Processing Symp. (IPDPS’02), Florida, Apr 2002, pp. 138-145.

[37] L. Grunske, “Early quality prediction of component-based systems A generic framework,” The Journal of
Systems and Software, 2007, vol. 80, pp. 678-686.

[38] P.A. de C. Guerra, C. Rubira, A. Romanovsky, and R. de Lemos, “Integrating COTS Software Components
into Dependable Software Architectures,” Proc. of the 6-th IEEE Int’l Symp. on Object-Oriented Real-Time
Distributed Computing (ISORC’03). Hokaido, Japan. May 2003.

[39] P.A. de C. Guerra, C. Rubira, and R. de Lemos, “An Idealized Fault-Tolerant Architectural Component,”
Proc. of the ICSE 2002 Workshop on Architecting Dependable Systems (WADS’02), May 2002.

[40] P.A. de C. Guerra, C. Rubira, and R. de Lemos, “A Fault-Tolerant Software Architecture for Component-
Based Systems,” Springer Berlin/Heidelberg, 2003, LNCS 2677, pp. 129-149.

[41] D. Hamlet, D. Mason, and D. Woitm, “Theory of software reliability based on components,” Proc. of the 23-rd
International Conference on Software Engineering (ICSE’01). May 2001, pp. 361-370.

[42] H. Hansson, M. Akerholm, I. Crnkovic, and M. Torngren, “SaveCCM: a Component Model for Safety-Critical
Real-Time Systems,” Proc. of 30-th Euromicro Conference, Special Session Component Models for Dependable
Systems, September 2004, pp. 627-635.

27

[43] M. Hiller, A. Jhumka, and N. Suri, “An Approach for Analysing the Propagation of Data Errors in Software,”
IEEE Proc. of the International Conference on Dependable Systems and Networks (DSN’01), Goteborg, Sweden,
Jul 2001, pp. 161-170.

[44] A.Iliasov and A.Romanovsky, “CAMA: Structured Coordination Space and Exception Propagation,” Springer
Berlin/Heidelberg, 2006, LNCS 4119 pp. 181-199.

[45] V. Issarny and J-P. Banatre, “Architecture-based exception handling,” Proc. of the 34-th Annual Hawaii Int’l
Conference on System Sciences (HICSS’34). 2001.

[46] Z.A. Khan, S. Shahid, H.F. Ahmad, A. Ali, and H. Suguri, “Decentralized architecture for fault tolerant multi
agent system,” Proc. of Autonomous Decentralized Systems (ISADS 2005), 2005, pp. 167-174.

[47] M.M. Khokhar, A. Nadeem, and O.M. Paracha, “An Antecedence Graph Approach for Fault Tolerance in a
Multi-Agent System,” Proc. of the 7-th IEEE Int’l Conference on Mobile Data Management (MDM’06), 2006,
pp. 137-141.

[48] S. Krishnamurt and A.P. Mathur, “On the estimation of reliability of a software system using reliabilities of
its components,” Proc. of the 8-th International Symposium On Software Reliability Engineering (ISSRE’97).
Nov 1997, pp. 146-155.

[49] A. Lanoix, D. Hatebur, M. Heisel, and J. Souquieres, “Enhancing Dependability of Component-Based Sys-
tems,” Springer-Verlag Berlin Heidelberg. 2007, LNCS 4498, pp. 4154.

[50] J.C. Laprie, J. Arlat, C. Beounes, and K. Kanoun, “Definition and Analysis of Hardware-and-Software Fault-
Tolerant Architectures,” IEEE Computer, vol. 26, no. 7, pp. 39-51, Jul 1990, doi:10.1109/2.56851.

[51] M. Larsson, “Predicting Quality Attributes in Component-based Software Systems,” Mlardalen University
Press, Arkitektkopia, Vsters, Sweden, 2004, ISBN: 91-88834-33-6.

[52] N.G. Leveson, “Software safety: why, what, and how,” ACM Computing Surveys (CSUR) archive, Jun 1986,
vol. 18, pp. 125-163.

[53] R. de Lemos, P.A. de Guerra, and C.M.F. Rubira, “A fault-tolerant architectural approach for dependable
systems,” IEEE Sotware. Mar 2006, vol. 23, pp. 80-87.

[54] M.W. Lipton and S.S. Gokhale, “Heuristic Component Placement for Maximizing Software Reliability,”
Springer Series in Reliability Engineering, Recent Advances in Reliability and Quality in Design., 2008, pp. 309-
330.

[55] A. de Luna Almeida, S. Aknine, J-P. Briot, and J. Malenfant, “Plan-based replication for fault-tolerant multi-
agent systems,” Proc. of the 20-th Int’l Parallel and Distributed Processing Symp.. (IPDPS‘06), 2006, pp. 7
pages.

[56] A. de Luna Almeida, S. Aknine, J-P. Briot, and J. Malenfant, “A Predictive Method for Providing Fault
Tolerance in Multi-agent Systems,” Proc. of Int’l Conference on Intelligent Agent Technology, (IAT ’06), 2006,
pp. 226-232.

[57] S. Maffeis, “Run-Time Support for Object-Oriented Distributed Programming,” PhD thesis, Univ. of Zurich,
Feb. 1995.

[58] C. Marchetti, M. Mecella, A. Virgillito, and R. Baldoni, “An Interoperable Replication Logic for CORBA
Systems,” Proc. 2-nd Int’l Symp. Distributed Objects and Applications (DOA ’00), pp. 7-16, Feb. 2000.

[59] E. Marsden, J.C.Fabre, and J. Arlat, “Dependability of CORBA systems-service characterization by fault
injection,” Proc. of 21-st IEEE Symp. on Reliable Distributed Systems, 2002, pp. 276-285.

[60] O. Marin, M. Bertier, and P. Sens, “DARX-a framework for the fault-tolerant support of agent software,”
Proc. of the 14-th IEEE Int’l Symp. on Software Reliability Engineering (ISSRE’03), Havre, France, Nov 2003,
pp. 406-416.

[61] M.M. X. Meng and H. Zhang, “An efficient fault-tolerant scheme for mobile agent execution,” Proc. of 1st
Int’l Symp. on Systems and Control in Aerospace and Astronautics. (ISSCAA‘06), 2006, pp. 1306-1310.

[62] Microsoft, “The Component Object Model Specication,” Microsoft Standards, Report v0.99, Redmond, WA:
Microsoft, 1996.

[63] A. Mohamed and M. Zulkernine, “Improving Reliability and Safety by Trading Off Software Failure Criti-
calities,” Proc. of the 10-th IEEE Int’l Symp. on High Assurance System Engineering (HASE’07). Nov 2007,
Dallas, Texas, pp. 267-274.

28

[64] A. Mohamed and M. Zulkernine, “On Failure Propagation in Component-Based Software Systems,” Proc. of
the 8-th IEEE Int’l Conference on Quality Software (QSIC’08), IEEE CS Press, Oxford, UK, August 2008,
pp.402-411.

[65] A. Mohamed and M. Zulkernine, “At What Level of Granularity Should We be Componentizing for Software
Reliability?,” Proc. of the 11-th IEEE Int’l Symp. on High Assurance System Engineering (HASE’08). Dec
2008, Najing, China, pp.273-282.

[66] G. Morgan, S. Shrivastava, P. Ezhilchelvan, and M. Little, “Design and Implementation of a CORBA Fault-
Tolerant Object Group Service,” Proc. of the 2-nd IFIP WG 6.1 Int’l Working Conf. Distributed Applications
and Interoperable Systems, June 1999.

[67] P. Narasimhan, “Fault-Tolerant CORBA: From Specification to Reality,” IEEE Transactions on Computers,
2007, pp. 110-102.

[68] P. Narasimhan, “Transparent Fault Tolerance for CORBA,” PhD thesis, Dept. of Electrical and Computer
Eng., Univ. of California, Santa Barbara, Dec. 1999.

[69] B. Natarajan, A. Gokhale, S. Yajnik, and D.C. Schmidt, “Doors: Towards High-Performance Fault Tolerant
CORBA,” Proc. 2nd Int’l Symp. Distributed Objects and Applications (DOA ’00), Feb. 2000, pp. 39-48.

[70] Object Management Group, “The Common Object Request Broker: Architecture and Specification,” OMG
Standards Collection, Report v2.4, 2000.

[71] Object Management Group, “OMG Unified Modeling Language (OMG UML),” Superstructure, Version 2.1.2,
OMG Available Specification without Change Bars, formal/2007-02-05, Nov 2007.

[72] Object Management Group, “CORBA Component Model Specification,” OMG, Version 4.0 formal/06-04-01,
Apr 2001.

[73] P. Popic, D. Desovski, W. Abdelmoez, and B. Cukic, “Error propagation in the reliability analysis of
component-based systems,” Proc. of 16-th IEEE International Symposium on Software Reliability Engineering
(ISSRE’05). Nov 2005, Morgantown, WV, (10)pages.

[74] L.L. Pullum, “Fault tolerance techniques and implementation,” Artech House, 2001, ISBN 1-58053-470-8.
[75] A. Romanovsky, “Exception Handling in Component-Based System Development,” Proc. of the 25-th Int’l

Computer Software and Application Conference (COMPSAC 2001), Chicago, IL, October, 2001. pp. 580-586.
[76] C. Sabnis, M. Cukier, J. Ren, P. Rubel, W.H. Sanders, D.E. Bakken and D.A. Karr, “Proteus: A Flexible

Infrastructure to Implement Adaptive Fault Tolerance in AQuA,” Proc. of Dependable Computing for Critical
Applications, 1999, Page(s): 149-168.

[77] V.S. Sharma a and K.S. Trivedi, “Quantifying software performance, reliability and security: An architecture-
based approach,” The Journal of Systems and Software, 2007, vol. 80, pp. 493-509.

[78] D. Sotirovski, “Towards fault-tolerant software architectures,” Proc. of the Working IEEE/IFIP Conference
on Software Architecture, Amsterdam, Netherlands, 2001, pp. 7-13.

[79] Sun Microsystems, “Enterprise JavaBeans Specication,” Sun Microsystems, Inc., Report v2.0, California, Oct
2000.

[80] C. Szyperski, “Component software: beyond object-oriented programming,” Addison-Wesley, 1998, ISBN
0-201-17888-5.

[81] A. Vaysburd and K. Birman, “The Maestro Approach to Building Reliable Interoperable Distributed Ap-
plications with Multiple Execution Styles,” Theory and Practice of Object Systems, vol. 4, no. 2, pp. 73-80,
1998.

[82] J. Voas, “Error propagation analysis for COTS system,” Journal of Computing and Control Engineering, Dec
1997, vol. 8, pp. 269-272.

[83] J. Voas, G. McGraw, A. Ghosh, and K. Miller, “Glueing Together Software Components: How Good Is Your
Glue?,” Proc. of the Pacific Northwest Software Quality Conference, oct 1996, pp. 338-349.

[84] S.M. Yacoub, B. Cukic, and H.H. Ammar, “Scenario-Based Reliability Analysis of Component-Based Soft-
ware,” Proc. of the 10-th International Symposium on Software Reliability Engineering (ISSRE’99). 1999,
pp. 22-31.

[85] W. Yi-Min, O.P. Damani, and L. Woei-Jyh, “Reliability and availability issues in distributed component object
model (DCOM),” Fourth International Workshop on Community Networking Proceedings, 1997, pp. 59-63.

29

