
 

 
 
 
 
 

 
 
 
 

XML Structural Indexes 
 
 

Samir Mohammad 
Patrick Martin 

 
 
 

School of Computing 
Queen's University 

Kingston, Ontario, Canada K7L3N6 
{samir,martin}@cs.queensu.ca 

 
 
 
 

Technical report No. 2009-560 
 

June 2009 
 
 
 



 ii 
 

 
ABSTRACT  

 
Extensible Markup Language (XML), which provides a flexible way to define semistructured 
data, is a de facto standard for information exchange in the World Wide Web. XML employs a 
tree-structured data model. Therefore, an XML query typically consists of two parts: structure 
constraints and a value predicate. Furthermore, an XML query may be either a simple single-path 
query with or without a predicate, or a complex twig (branching) query with or without a 
predicate. Indexing plays a key role in improving the execution of a query. In this chapter we give 
a brief history of the creation and the development of the XML data model. Then we discuss the 
three main categories of indexes proposed in the literature to handle the XML semistructured data 
model. Finally, we discuss limitations and open problems related to the major existing indexing 
schemes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iii 
 

 
 

Report Index 
 
 
 
 
1. Introduction  ………………………………………………….……………… 1 

2. Background (Preliminary Overview) ………………….………..……………. 3 

 2.1 Data Models …………………………………………………………… 3 

  2.1.1 Edge-labeled Tree Data Model ………………………………….. 4 

  2.1.2 Node-Labeled Tree Data Model ………………………………… 4 

  2.1.3 Directed Acyclic Graph Data Model ……………………………. 5 

  2.1.4 Directed Graph with Cycles Data Model …………….…………. 6 

 2.2 X-Path Query ………………………………………………..…………. 7 

3. Structural Indexing Schemes for XML Data ……………………………….. 8 

 3.1  Criteria for Evaluation of Indexing Schemes for XML Data  …………. 9 

 3.2  Node Indexing Schemes ……………………………………………….. 10 

  3.2.1 Criteria for  Evaluation of Node Indexes  ………………………… 11  

  3.2.2  Interval Labeling Scheme  ……………………….……………… 11 

  3.2.3  Prefix Labeling Scheme ………………………..……………….. 15 

  3.2.4 Summary of Node Indexes  ……………………………………... 17 

  3.2.5 Indexes for Structural Joins  ……………………………………... 18 

 3.3 Graph Indexing Schemes ………………………………………………. 19 

  3.3.1 Deterministic Graph Indexes ..………………………………...…. 21 

   3.3.1.1 Strong Data Guide ………………………………………….. 21 

   3.3.1.2 Approximate Data Guide …………………………………...   22  

   3.3.1.3 Index Fabric ……………………………………………….. 23 

  3.3.2 Non-Deterministic Graph Indexes with Backward Bisimilarity … 24 

   3.3.2.1 (1-index) ……………….………………………………….. 24 

   3.3.2.2 A(k)-index ………………………………………………… 25 

   3.3.2.3. D(k)-index …………………………………………………. 26 



 iv 
 

  3.3.3 Non-Deterministic Graph Indexes with (Forward & Backward)  

      Bisimilarity  ……….……………………………………………..  27 

   3.3.3.1 F&B-index ……………………..………………………….. 27 

   3.3.3.2 Disk-based F&B-index ……………………………………. 28 

  3.3.4 Summary of Graph Indexes …………………………..………… 28 

 3.4 Sequence Indexing Schemes………………………….……………….. 30 

  3.4.1 Specific Comparison Criteria of Sequence Indexes …………..… 30 

  3.4.2 ViST  (Top-down Sequence Indexes) …………………………… 31 

  3.4.3 PRIX (Bottom-up Sequence Indexes) …………..…………….…. 32 

  3.4.4 Summary of Sequence Indexes………………….………………. 34 

 3.5 Structural Indexes Critique ……………………………………………. 35 

  3.5.1 Criteria for Comparison among Structural Indexing Schemes ….. 35 

  3.5.2 Comparison among Structural Indexes ………………………….. 36 

  3.5.3 Limitations and Open Problems ………………………………….. 38 

  3.5.4 Related Work …………………………………………………….. 39 

4. Conclusions …………………..…………………………………..………….. 40 

Acknowledgment ………………………………………………………………. 41 

References ……………………………………………………………………… 42 

Additional Reading …………………………………………………………….. 48  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 



 1 
 

1.  INTRODUCTION 
 

XML is becoming the dominant method of exchanging data over the Internet. It was endorsed as 
a W3C recommendation in 1998 (Bary, Paoli, & Sperberg-McQueen, 1998). Its roots go back to 
SGML (Standard Generalized Markup Language) (Bary et al., 1998). SGML is an international 
standard since 1986 (ISO 8879). SGML is a meta-language, that is, it can be used to create new 
languages in order to describe any kind of information. The differences between SGML and 
XML arise from the aim to develop a meta-language especially for the needs of the Web and to 
promote the fast establishment of this language on the Web (Sturtz Electronic Publishing [STEP], 
1998). XML’s implementation, for example, is much simpler than that of SGML and a DTD 
(Document Type Declaration) does not have to be used with XML documents.  

 
XML poses a nested hierarchical nature. An example XML document is illustrated in Figure 

1. It is based on DBLP (The DBLP Computer Science Bibliography, 2009), a popular computer 
science bibliography dataset. We use small sets of sample data in this chapter in order to keep our 
examples simple. The data-tree shape in Figure 2 represents the data in the XML document of 
Figure 1. 

 
A DTD is used to specify some restrictions on XML data such as, among other things, the 

relationship between elements and types of elements  (Bary et al., 1998). XML Schema 
(Thompson, Beech, Maloney, & Mendelsohn, 2004) is an extension to DTD and has been 
supplied with many features to overcome some of the limitations of DTDs (Carey, 2004). Both 
DTD and XML Schema are analogous to a schema in relational Database Management Systems 
(DBMS). Even with the presence of a DTD and/or an XML Schema, XML data is considered as 
semistructured. This is due to the possible use of the “any” Type of contents in DTD and the 
<any> Element in XML Schema, both of which extend an XML document with arbitrary 
elements (Carey, 2004; Kaushik, Shenoy, Bohannon, & Gudes, 2002; Thompson et al., 2004). 

 
There are many advantages to the XML data model compared with traditional data models 

like the relational model (Gou & Chirkova, 2007; Boag, Chamberlin, Fernandez, Florescu, Robie, 
& Simeon, 2007). The structure is integrated with the data in an XML document, whereas, the 
relational model relationships are represented by foreign keys. Therefore, it is easier to use XML 
as an intermediate language for exchanging data in the World Wide Web. Also, unlike the 
relational approach, the XML data model adapts easily to the evolution of the data structure in a 
database. Finally, the XML data model is flexible for querying data. This kind of flexibility does 
not exist in SQL (Structure Query Language) (Abiteboul, 1997). 

 
Nevertheless, these advantages come with a cost.  Since the repetition of data is irregular due 

to missing and/or repeated arbitrary elements, as explained above, its storage structure can be 
scattered over many different locations on the disk, which decreases the performance of XML 
queries (Chung, Min, & Shim, 2002). Furthermore, the flexibility of specifications of the XML 
queries (e.g. use of wild cards) adds to the challenge of indexing methods ( Wang, Park, Fan, & 
Yu, 2003; Zou, Liu, & Chu, 2004). Also, the fact that XML documents contain the data mixed 
with the structure imposes a huge challenge in navigating the structural relationships among 
XML element sets (Jiang, Lu, Wang & Chin Ooi, 2003).  



 2 
 

 
Since the creation of the XML Standards in 1998 (Bary et al., 1998), much research has been 

carried out to deal with these challenges. Some of them, as in the XML Lore data model 
(Goldman, McHugh, & Widom, 1999), are based on semi-structured data models such as the 
Object Exchange Model (OEM) where data in this model can be thought of as a labeled directed 
graph (Abiteboul, Quass, McHugh, Widom, & Wiener, 1997; Abiteboul, 1997; McHugh, 
Abiteboul, Goldman, Quass, & Widom, 1997). Others, such as the work by McHugh and Widom 
(1999), have explored the previous work on Object-Oriented query languages and extended it to 
permit several, possibly interrelated, path expressions in a single query (Gardarin, Gruser, & 
Tank, 1996) to be considered in the optimization instead of considering only one path. While the 
vast majority of the approaches that have been suggested to manipulate XML data are based on 
the relational data model (Zhang, Naughton, Dewitt, Luo, & Lohman, 2001; Tatarinov, Viglas, 
Beyer, Shanmugasundaram, Shekita, & Zhang, 2002; Florescu & Kossmann, 1999), other 
research efforts have explored the possibility of using Informational Retrieval (IR) technology 
(Zhang et al., 2001; Dong & Halevy, 2007; Zou et al., 2004; Guo, Shao, Botev, & 
Shanmugasundaram, 2003; Xu & Papakonstantinou, 2005; Weigel, Meuss, Bry, & Schulz, 2004), 
inverted files (Salton & McGill, 1983), and Patricia (Practical Algorithm To Retrieve Information 
Coded In Alphanumeric) Tries (Cooper, Sample, Franklin, Hjaltason, & Shadmon, 2001).  

 
It is worth mentioning here that some researchers emphasize the fact that database technology 

has to be integrated with IR technology in order to manage XML data most efficiently (Baeza-
Yates & Consens, 2004; Mariano & Baeza-Yates, 2005; Amer-Yahia, Baeza-Yates, Consens, & 
Lalmas, 2007). IR technology can be used to handle the unstructured text contents of XML 
documents, while the database technology can be used to handle the structure part of XML 
document. 

 
One of the main differences between XML data and relational data is the variety of structural 

relationships between various elements in XML data (Che, Aberer, & Ozsu, 2006). Basically, the 
most used relationships between XML elements are ancestor, parent, sibling, child, and 
descendent relationships, which can be used to infer other types of relationships. These  
relationships are required to manipulate XML data efficiently, however, they add more 
complexity to the XML data model. As a result, they make the creation of a universal structural 
index that reflects all of these relationships efficiently quite a challenging task. In the relational 
approach, on the other hand, the relationships are much more limited between different elements 
in different tables. 

 
The best way to judge the strength of an indexing technique is to compare it with other 

techniques using common criteria that are applicable for all of them and can act as a benchmark. 
The main contributions in this chapter are: 

 
• We use common criteria to summarize the characteristics of the most popular indexing 

techniques used for XML databases. 



 3 
 

• We classify graph indexes is a novel way. Our classification is based on the presence/degree 
of determinism and the bisimilarity direction(s) of indexing, which control the size of an 
index and its query answering power, respectively. 

 
In the remainder of this chapter we discuss a number of approaches to XML indexing. We first 

review the XML data models, which are used throughout this chapter, and XPath query language, 
which is one of the dominant query languages for XML. We next explain the three major 
indexing techniques used for XML data, namely, Node index scheme, Graph index scheme, and 
Sequence index scheme. We conclude our chapter in section 4. Comparative evaluations of these 
approaches are included in the context of the discussion of each approach. We divide the 
comparison criteria into four basic groups:  

 
• Retrieval power, which includes the precision and completeness of the result, and the type 

of queries supported.  
• Processing complexity, which covers topics related to the need to compute the relationship 

between elements (such as the parent/child and the ancestor/descendent relationships), the 
need for structural joins to answer a query, and the need for additional refinement steps to 
fine-tune answers. 

• Scalability of the index and its adaptability to queries with different path lengths. 
• Update cost, which is measured by the number of nodes that are touched during update.     
 
 
 

2.  BACKGROUND 
 

XML documents can be represented as directed graphs, which consist of vertices and edges. For 
example, the directed graph in Figure 2 is an instance of a graph data model that represents the 
XML document in Figure 1. The “mapping” of an XML document to a graph may result in an 
acyclic graph (e.g. Figure 2), which is tree shaped, or it may result in a cyclic graph (e.g. Figure 
7). While some indexes support all graph data (cyclic and acyclic graphs), others support only the 
tree-shaped data (acyclic graphs). In this section, we first review the main models for 
semistructured documents. These models are used throughout this chapter to illustrate the 
forthcoming concepts in XML indexing. We then review the XPath query language, which is 
used in this chapter to illustrate the characteristics of XML indexes, and how they can be used to 
query XML databases. 

 
 
 

2.1  Data Models 
Gou and Chirkova (2007) identify four basic data models to represent the hierarchical structure of 
XML documents: edge-labeled tree data model, node-labeled tree shaped data model, directed 
acyclic graph (DAG) data model, and directed graph with cycles.  

 
 
 



 4 
 

2.1.1  Edge-Labeled Tree Data Model 
 

Figure 2 is an example of an edge-labeled model for the XML document in Figure 1. Each edge 
represents an element or an attribute in the XML document. For example “author” is an element, 
and “@reviewer” is an attribute. The leaf nodes represent the values of the elements or attributes. 
For example “Ahmad” and “Wang” are values for the “@reviewer” attribute and “author” 
element, respectively. The same attribute name can not be repeated under the same element. 
Attributes are unordered and can not be nested as in elements. The element in the fifth line in 
Figure 1 is an example of an empty element.  

 

 

 

Figure 1.  DBLP like XML document 
 
Note that in a tree structure an element can not have more than one parent. The same tag name 

can be repeated along a path (i.e. an element may have a child/descendent element and/or a 
parent/ancestor element with the same tag name(s)). This is known as recursion, which requires 
special attention during the evaluation processes of an XML query.  

 

 
 

Figure 2.  Edge-labeled data-tree 
 
 

2.1.2  Node-Labeled Tree Data Model 
 

Figure 3 is an example of a node-labeled data-tree for the XML document in Figure 1. As in the 
edge-labeled model, it contains three main components: elements, attributes and values. The main 

<Bib>
<book>

<author>Tim</author>
</book>
<paper> </paper>
<paper>

<author>Sarah</author>
</paper>
<paper @reviewer=“Ahmad”>

<author>Wang</author>
</paper>

</Bib>

1

4 5 7

9

book

6 8

2

3

author

paper
paper

paper

author
reviewer author

Bib

0

Tim Sarah WangAhmad



 5 
 

difference is that a node in the node-labeled tree represents an element as opposed to an edge in 
the edge-labeled model. For both edge-labeled and node-labeled models the hierarchal and 
nesting structure is self-evident in the trees that they represent.  

 

 
 

 Figure 3.  Node-labeled data-tree 
 
 
 

2.1.3  Directed Acyclic Graph Data Model 
 

Generally, the directed acyclic graph data model uses ID/IDREF tokens to identify an attribute 
type of an element. The ID/IDREF tokens are provided by the XML language via DTD. Figure 4 
is a modified version of the XML document in Figure 1. Note the use of ID/IDREF and its effect 
on the corresponding DAG in Figure 5 (the dashed arrow from node 4 to node 2). Unlike the tree 
structure, a single node can be referred to by two or more elements in the DAG model (e.g. node 
number 2 in Figure 5).  ID/IDREF is similar to the key/foreign key relationship in the relational 
data model.   
 

 

 
 

Figure 4.  DBLP like XML document with ID/IDREF 
 

1

5 6 9

12

book

7 10

2

3
author

paper paperpaper

author
reviewer author

Bib

WangAhmad
84

Tim Sarah
1311

<Bib>
<book ID=1>

<author>Tim</author>
</book>
<paper reference=1> </paper>
<paper>

<author>Sarah</author>
</paper>
<paper @reviewer=“Ahmad”>

<author>Wang</author>
</paper>

</Bib>



 6 
 

 
 

Figure 5.  Directed acyclic graph data model 
 
 

2.1.4  Directed Graph with Cycles Data Model 
 

If we add an IDREF from the “book” element (“recommend=2”, line number 2 in Figure 6) to the 
“paper” element (“ID=2”, line number 5), a cycle is formed. This is also popular in XML, but it 
adds more complexity in query processing of XML data. The result is a directed cyclic graph as 
illustrated in Figure 7.  
 

 

 
 

Figure 6.  DBLP like XML document with ID/IDREF 
 

 
 

Figure 7.  DBLP Directed graph with cycles data model 

1

4 5 7

9

book

6 8

2

3

author

paper paper

paper

author reviewer author

Bib

0

Tim Sarah WangAhmad

reference

<Bib>
<book ID=1 recommend=2>

<author>Tim</author>
</book>
<paper ID=2 reference=1> </paper>
<paper>

<author>Sarah</author>
</paper>
<paper @reviewer=“Ahmad”>

<author>Wang</author>
</paper>

</Bib>

1

4 5 7

9

book

6 8

2

3

author

paper paper

paper

author
reviewer author

Bib

0

Tim Sarah WangAhmad

reference

recommend



 7 
 

 
 

2.2  X-Path  
Many APIs (Application Program Interfaces) have been proposed to access XML data, such as 
the standard Document Object Model (DOM) (Goldman, McHugh, et al., 1999) and Simple API 
for XML (SAX) (Megginson & Brownell, 2004). DOM XML has been defined to enable XML to 
be manipulated by software (Goldman, McHugh, et al., 1999). The DOM defines how to translate 
an XML document into data structures and thus can serve as a starting point for any XML data 
model. DOM and SAX are language-independent programmatic APIs (Freire & Benedikt, 2004). 
Whereas DOM creates an in-memory representation of an XML document, SAX provides 
stream-based access to documents. As a document is parsed, events are fired for each open and 
close tag encountered. Thus, in contrast to DOM, SAX only supports read-once processing of 
documents. 
 

However, neither one of these APIs provides enough capabilities to manipulate and query 
XML data. Motivated by this fact, a more flexible query language, named XPath (XML Path 
Language) (Clark & DeRose, 1999) was proposed. Unlike other XML query languages, XPath, in 
addition to being able to support the main child axis “/” and the descendant axis “//”, defines and 
supports another eleven types of axes: parent, ancestor, ancestor-or-self, descendant-or-self, 
following, following-sibling, preceding, preceding-sibling, attribute, self, and namespace. In this 
chapter we concentrate on the child “/” and descendent “//” axes. 

 
XQuery is the other dominant language for querying XML data (Vakali, Catania, & 

Maddalena, 2005). Both XQuery and XPath were developed and recommended by the W3C. 
Furthermore, a version of XQuery (Version 1.0, 1997) is based on XPath (Boag et al., 2007).  

 
XPath provides operators for path traversals in an XML tree-shaped document. Path traversals 

result in a collection of subtrees (forests), which may be repeatedly traversed until a designated 
destination node is reached. Starting from a specific node, an XPath query navigates its input 
document using a number of location steps. For each step, an axis describes which document 
nodes (and the subtrees below these nodes) form the intermediate result forest for this step using 
one of the above mentioned 13 axes. 

 
As was mentioned in the introduction, an XML query may be either a simple single-path 

query with or without a predicate, or a complex twig query with or without a predicate. A 
complex twig query with a predicate specifies patterns of selection on multiple elements related 
to one another by a tree structure. For example, “q1” below is a simple path query.  

 
q1: /Bib/paper/author 
 
If we run this query against the XML document in Figure 3 above, it returns the texts “Sarah” 

and “Wang” which are the values of the “author” elements under the “paper” elements under the 
“Bib” element. Query “q2” illustrates the use of the descendent axis. 

 
q2: /Bib//author 
 



 8 
 

This query returns {“Tim”, “Sarah”, “Wang”}, which represents all author elements under the 
top-level “Bib” element. Query “q3” is an example of a complex twig query.  

 
q3: //paper[/reviewer=“Ahmad”]/author  
 
This query asks for the author of a paper that has a reviewer “Ahmad,” and the query returns 

the author “Wang.” It demonstrates the flexibility that XPath provides which is not available with 
the relational data model. It allows us to query about a paper without concern for where the paper 
is located within the tree structure. However, it adds more complexity to the query language 
where an effort has to be made to locate the “paper” element through some indexing scheme, or 
else an exhaustive search has to take place if an index is not available. 

 
In “q3” we also see an example of using a predicate in an XPath query. Multiple predicates 

could be used in an XPath query. Path patterns for the above three XPath queries are shown in 
Figure 8. In this figure, a circle represents an element, the edges between elements represent the 
parent/child relations, the edges that are marked with an “=” sign represent the 
ancestor/descendent relationships, and the nodes with the question marks are the output nodes. 
(Gou & Chirkova, 2007).    

 

 
 

Figure 8.  Schematic representation of XPath queries. 
 
 

3.  STRUCTURAL INDEXING SCHEMES FOR XML DATA 
 

The structural index of an XML database is analogous to the schema of a relational database. 
Both of them reflect the relationship between different parts of the data, and they are used to 
validate the legitimacy of a query before executing it. For example, in the case of XML structural 
indexes, some index types such as a graph index are used to determine if an XML path exists, 
before going any further in the query processing for both simple path queries and complex path 
queries (with branching elements). In this section, structural indexes for XML are analyzed in 
detail.    

Generally, structural indexes can be grouped into three categories:  
 

authorreviewer

paper

Bib

author

paper

author

Ahmad

Bib

?

q 1 q 2 q 3

?

?



 9 
 

• Node indexes  (Li & Moon, 2001; Zhang et al., 2001; Grust, 2002): These schemes depend 
on many labeling approaches including interval labeling (Dietz, 1982), and prefix labeling 
(Tatarinov et al., 2002; Online Computer Library Centre, 2008; Yang, Fontoura, Shekita, 
Rajagopalan, & Beyer, 2004; Lu, Ling, Chan, & Chen, 2005). Both of these labeling 
approaches are best suited for tree shaped data.  

• Graph indexes: These schemes contain indexes that cover either path queries only 
(Polyzotis, Garofalakis, & Ioannidis, 2004; Chung et al., 2002; Cooper et al., 2001; 
Goldman & Widom, 1997), or both path and twig queries (Kaushik, Bohannon, Naughton, 
& Korth, 2002; Wang, Wang, Lu, Jiang, Lin, & Li, 2005). We divide graph indexes in this 
chapter into three types depending on their deterministic property and bisimilarity 
direction(s) (see Graph Indexing Schemes section). 

• Sequence indexes ( Rao& Moon, 2004; Wang, Park, et al. 2003; Wang & Meng, 2005): 
They interpret the whole query as structured series of sequences and search for a match in 
the structured encoded sequence of an XML document.   

 
Please note that the term “path indexes” is used in the literature to refer to different things. 

Sometimes it refers to graph indexes in general or to specific types of graph indexes (the 
deterministic graph indexes and the non-deterministic backward bisimilar indexes), and 
sometimes it may refer to some types of node indexes (prefix indexes). In this chapter we prefer 
not to use the term “path indexes” and use the specific terms above in order to eliminate any 
ambiguity.  

 
 

3.1  Criteria for Evaluation of Structural Indexing Schemes  
We evaluate the indexing schemes according to a common set of criteria. These criteria are 
chosen in a way to help users decide which indexes are most suitable for their needs by 
identifying the characteristics that these indexes support, such as accuracy, completeness, 
response time, scalability, and adaptability. We use the following criteria:  

 
• Precision: When a query is evaluated, the returned answer is dealt with in one of the 

following two ways: (1) We consider this answer complete, precise, and the final one; (2) 
We consider this answer as a primary answer and pass it to further post-processing stage(s) 
to double-check the precision of the initial returned answer before approving it. Obviously, 
the first option is more efficient if the measurements of time taken to produce the initial 
answer for the two options are approximately equal. A structural index is precise if and only 
if it does not return any false answers. In other words, the returned answer does not contain 
any incorrect answers, among the correct answers. Precision is considered for both path 
queries and twig queries.  

• Recall: This is the probability that all relevant documents are retrieved by the query. If the 
recall achieved is 100%, we say that the result is complete. A structural index supports a 
complete answer if it guarantees that the returned answer for a given query contains a 
complete set of all possible answers. In other words, the returned answer may be a superset 
of the correct answer. This criterion is important, because we do not want to miss any part 
of the correct answer. The surplus parts of the result can be eliminated by some post-
validation step. Recall is considered for both path queries and twig queries. 



 10 
 

• Processing complexity: This criterion covers different kinds of complexity depending on the 
type of indexing scheme that is used. It covers topics such as the primary processing 
procedure and the additional processing cost of required joins. 

• (A) Scalability: Large indexes may involve many I/O accesses. These accesses increase the 
processing time of a query. Some indexes expand linearly with the size of the source data, 
while others increase exponentially with the size of the data. The second type imposes 
restrictions on the data growth.  
(B)- Adaptability: Graphical indexes partition the data into equivalence classes based on 
their determinism and bisimilarity (backward bisimilarity or forward and backward 
bisimilarity). Two nodes are backward bisimilar if they share the same incoming paths. The 
bisimilarity can be specified by a factor “k”. Two nodes are backward k-bisimilar if they 
share the same incoming paths of a length = “k.” Setting the value of “k” to a small value 
results in a small index, while a large value of “k” results in a large index.  The length of the 
path in queries varies depending on the users’ needs. If a graph index is used regularly to 
evaluate short-path queries, then a small k-value index is sufficient. In contrast, long-path 
queries need a large k-value index. Based on these observations, and depending on the 
queries, it would be useful if the size of the index could be adjusted by a given parameter 
“k” that represents the length of bisimilarity according to the users’ need.  

• Type of queries supported:  The two types of XML queries are path queries and twig 
queries. 

• Update cost of insertion of a node or a subtree: The nodes in a given tree index have to be 
maintained in a certain organization in order to reflect ancestor/descendent, parent/child, 
and sibling relationships. When a new node is inserted into the tree, these relationships have 
to be preserved. Consequently, the index has to reflect its position with regard to these 
relationships, which adds more complexity, especially if there are no gaps in the numbering 
scheme that is used to label nodes. We study two types of updates: (1) the insertion of a 
node, which represents a small incremental change for an edge addition (for all indexing 
schemes); (2) the insertion of a subtree, which represents the addition of a new file (for 
some indexing schemes).  
 

 
3.2  Node Indexing Schemes 
Node indexes hold values that reflect the nodes’ positions within the structure of an XML tree. 
They can be used to find a given node’s parent, child, sibling, ancestor, and descendent nodes. 
These numbers can be used to solve simple path and twig path queries. Paths are solved through 
many steps. At each step a structural join is performed between two nodes starting from one end 
of the path and finishing at the other end (Al-Khalifa, Jagadish, Koudas, Patel, Srivastava, & Wu, 
2002; Bruno, Koudas, & Srivastava, 2002; Chien, Vagena, Zang, Tsotras, & Zaniolo, 2002; Li & 
Moon, 2001; Zhang et al., 2001). Structural joins are explained in Index for Structural Joins 
section. 

 
Labeling (numbering) schemes were used prior to the creation of XML to reproduce the 

structure of a tree (Dietz, 1982). Two of the most widely used types of schemes are interval 
(a.k.a. region) labeling and prefix (a.k.a. path) labeling. In the following, we take the (Beg, End) 



 11 
 

labeling scheme as an example of the first type and the Dewey labeling scheme as an example of 
the second type.  

 
 

3.2.1  Criteria for Evaluation of Node Indexes  
 

In addition to the evaluation criteria listed in Criteria for Evaluation of Structural Indexing 
Schemes section, we refine the processing complexity criterion into the following criteria that are 
applicable specifically to node indexing schemes. 

 
Processing complexity: 
• Relationship computation: To confirm a relationship between two given nodes, certain 

operations have to be performed. These operations depend on the type of the relationship. 
They also depend on the type of the labeling scheme that is used. 

• Relationships supported: Basically there are three types of relationships: 
o  Ancestor/descendent relationship: This relationship is needed to solve queries with 

the “//” axis. 
o  Parent/child relationship: It is useful to solve queries with the “/” axis. 
o Sibling relationship: In some cases, a group of sibling nodes form an answer for a twig 

query. For example, finding the name of the author of the paper with 
reviewer = “Ahmad” in Figure 3. 

•  Ability to infer parent/ancestor and child/descendent nodes: There are two approaches for 
solving queries, especially the ones with predicates, that is, top-down and bottom-up. A 
bottom-up approach is useful when the parent/ancestor nodes of a matched leaf node, for a 
given query, can be inferred from the matched leaf node. Also, identifying child/descendent 
nodes is helpful when the top-down approach is used to solve a query. 

• Data type used in indexing scheme: Comparing different data types involve different 
algorithms with different operations. As an illustration, comparing two numbers usually 
requires less time than comparing two sequences of strings.   

 
 

3.2.2  Interval Labeling Scheme  
 

The (Beg,End) and (Pre,Post) labeling schemes are examples of interval labeling scheme. Zhang 
et al. (2001) introduce the (Pre,Post) labeling scheme – which was invented by Dietz in 1982 – to 
index the elements in a document. They assign a pair of numbers to each node that represents the 
pre-order and post-order traversal number of an XML tree. The (Beg,End) labeling scheme is 
basically the same. It assigns a pair of numbers to each node in an XML document according to 
its sequential traversal order as follows. Starting from the root element, each element, attribute of 
an element, value of an attribute, and value of an element is given a “Beg” number according to 
its sequential position in the document. When we reach the end of an attribute or an attribute 
value, we assign to that attribute or attribute value an “End” number (which is equal to the next 
available sequential number) before moving to a new element in the XML document. When we 
reach the ending tag of an element, we assign the “End” number for it (which is equal to the next 
available sequential number). Since the value of an element is a leaf node, the “Beg” number of 
this value is equal to the “End” number. Figure 9 is an example of (Beg,End) labeling scheme for 



 12 
 

the XML document in Figure 1. The beginning and the ending numbers imply the positions of the 
opening tag (<..>) and the closing tag (</..>), respectively, in an XML document. 

 

 
 

Figure 9.  (Beg,End) Labeling Scheme 
 
This labeling scheme enables us to find the ancestor-descendant relationship as indicated in 

“property 1” below. A “Level” is added to the (Beg,End) label to form a node-triplet 
identification label (Beg,End,Level) for each node in the tree, where “Level” represents the depth 
of an element in the tree (Zhang et al., 2001). This triplet identification label is used to infer the 
parent-child relationship as indicated in “property 2.” 

 
Property 1 (Ancestor-descendant relationship): In a given data-tree, node “x” is an ancestor 
of node “y” iff x.Beg < y.Beg < x.End.  
For example, in Figure 9, node (1,22) is an ancestor of the node (3,5). 

 
Property 2 (Parent-child relationship): In a given data-tree, node “x” is a parent of node “y” 
iff (x.Beg < y.Beg < x.End and y.Level = x.Level + 1.  
For example, in Figure 9, node (1,22,1) is a parent to the node (2,6,2). 

 
The interval labeling scheme (Beg,End) can be used to solve a twig query by leveraging the 

power of relational DBMS technology, and by using “structural joins” (shortly “joins”). Zhang et 
al. (2001) use inverted lists of a node-shaped data-tree to solve XML queries. They shred XML 
documents into relational tables with the fixed schema (Label, Beg, End, Level, Flag, Value) 
(Gou & Chirkova, 2007). Table 1 is an example that represents the relational table of the 
shredded XML document of the node-label tree in Figure 9. Instead of storing all shredded tuples 
in the same table, we can extend this approach to a binary approach in which shredded tuples are 
grouped in separate tables that are based on “Label” types.  

 
 

1

5 6 9

12

book

7 10

2

3author

paper

paper

paper

author

authorreviewer

Bib

WangAhmad
84

Tim Sarah
1311

(1,22)

(2,6)

(3,5)

(4,4)

(7,8) (9,13)

(10,12)

(11,11)

(15,17)

(14,21)

(18,20)

(19,19)(16,16)



 13 
 

 
 

Table 1.  A node table of the XML data in Figure 9 
 
Figure 10 shows the SQL transformation of the query “q3” below. This transformation is 

based on the binary approach of the node-labeled tree data. Because this approach is based on 
(Beg,End) labeling scheme, it uses inequality comparisons to find the Ancestor/Descendent and 
the Parent/Child (containment) relationships.  

 
q3: //paper[/reviewer=“Ahmad”]/author  
 

 

 
Figure 10.  SQL equivalence of  “q3”  using binary approach of node-labeled tree 

 
 
The relations that are supported by the node approach are the parent/child (“/”) and the 

ancestor/parent (“//”) relationships. The (Beg,End,Level) labeling scheme, in Table 1, is used to 
infer the relationship between only two nodes at a time. It requires only a single comparison to 
infer any of these two relations; however, the number of joins required to evaluate an XML query 
by using the previous relational node approach is equal to the number of nodes in the query minus 
one, which is high for large twig queries. Furthermore, the inequality operator that is used in the 
join operations is designed for relational DBMSs, and is unsuitable for the joining of XML 
elements. Motivated by these shortcomings of the relational approach, many native approaches 
have been developed to query an XML document more effectively(Gou & Chirkova, 2007; Zhang 
et al., 2001; Al-Khalifa et al., 2002; McHugh & Widom, 1999).  

 
The (Beg,End) labeling scheme is used to solve both path queries and twig queries. For a 

given query, the relationship between any two nodes within a path in the query is investigated 
separately because this indexing scheme’s granularity is defined at the level of each node and 
hence the answer for a given query will be precise and complete.  

Label (Tag) Beg End Level Flag (Type) Value

book 2 6 2 Element Null

author 3 5 3 Value Tim

paper 7 8 2 Element Null

… … … … … …

paper 14 21 2 Element Null

reviewer 15 17 3 Attribute Ahmad

Select author.Value
From   paper,reviewer,author 
Where  paper.level=2                and

paper.start<reviewer.start   and 
reviewer.start<paper.end     and
paper.level+1=reviewer.level and
paper.start<author.start     and
author.start<paper.end       and
paper.level+1=author.level   and
reviewer.Value=“AHMAD”



 14 
 

 
Since the nodes’ index numbers are chosen sequentially, or randomly in an increasing order, 

and the tree is not necessarily balanced, there is no way to locate the siblings of a given node, 
using only the knowledge of its index numbers. Furthermore, the exact ancestor and descendent 
index numbers of a node can not be inferred. It is possible to know the range within which the 
parent/ancestor or the child/descendent nodes are located, but the exact number of these nodes 
can not be determined. 

 
Temporal XML databases are based on persistent (immutable) labeling schemes. Once a node 

is given an index number (e.g. “Beg,End” numbers), it remains unchanged throughout its lifetime. 
Persistent labeling is useful for examining changes to the contents of a data source over time by 
reviewing historical data. The paper by Cohen, Kaplan, and Milo (2002) is an example of the 
early work in this area. 

 
Unlike a prefix labeling scheme, which we explain in the next section, the interval labeling 

scheme is best used for immutable encoding. Some “durable” schemes, for example Li and Moon 
(2001), suggest leaving gaps between the interval values for new nodes to be inserted. These 
durable approaches may provide intervals for a certain number of new nodes equal to the gap 
size. After filling these gaps, renumbering or other solutions become inevitable. Cohen et al. 
(2002) proved immutable (persistent) labeling, which preserves the order of an XML tree, 
requires O(n) bits per label where “n” is the size of the tree. The complexity is measured in the 
size of the interval labels because this size determines the total size of the index. It is desirable to 
keep the used number of bits small enough so that the index can fit in memory. Several 
researchers including Silberstein, He, Yi, and Yang (2005) and Chen, Mihaila, Bordawekar, and 
Padmanabhan (2004) have designed dynamic labeling structures for interval indexes that allow 
relabeling by using only O(log n) bits per label.  

 
Fortunately, interval labeling schemes require modest storage space. Regardless of the depth 

of the data-tree, each node is represented by only two numbers, and we can determine the 
relationship between any two nodes in constant time by using a comparison operation between 
the index numbers. Nevertheless, updating the labeling (numbering) scheme of these types of 
indexes is costly. When a new node is inserted into the tree, then all the nodes in the tree, except 
the left sibling subtrees of the inserted node, have to be updated.   

 
Surveying all the variations of interval labeling is beyond the scope of this chapter. In the 

following, we list a few of the variations. Dietz (1982) pioneered the labeling of an ordered tree 
(Gou & Chirkova, 2007; Li & Moon, 2001). He used (Pre-order, Post-order) numbers to label 
(index) the nodes of a data-tree. Pre-order sequence is based on traversing the tree recursively 
from the root “R” to subtrees rooted at “R” in a depth-first direction. Post-order sequence is based 
on traversing the tree in an opposite direction to that given in preorder sequence. A vertex “x” is 
an ancestor of “y” iff “x” occurs before “y” in the pre-order traversal of the tree and after “y” in 
the post-order traversal. Li and Moon (2001) propose the (Order,Size) labeling scheme. The 
“Order” part is based on a preorder traversal, and the “Size” part is an estimate of the number of 
the child/descendent nodes for a given node. This labeling scheme leaves room for expansion in 



 15 
 

order to avoid re-labeling of the data-tree in case of insertion. Re-labeling may be delayed, but 
eventually it is required. It occurs more often if the data distribution in the tree is skewed. 

 
Tatarinov et al. (2002) discuss the possibility of using real numbers instead of integers to 

represent a position in their proposed Global order of XML trees and discarded this idea because 
there is a finite number of values between any two real values stored in the computer and using 
real values instead of integers does not make any difference. Later, Amagasa, Yoshikawa, and 
Uemrua (2003) used real numbers instead of integers to represent a region (interval) in node 
indexing. Similar to the (Order,Size) labeling scheme (Li & Moon, 2001), the real numbers 
approach only avoids node re-labeling as much as possible. If the number of insertions exceeds a 
specific limit, the nodes have to be re-labeled. Wu, Lee, and Hsu (2004) propose a novel labeling 
scheme that uses prime numbers to label nodes in an XML tree. In this approach, each node label 
can only be divided exactly (without remainder) by its own ancestor(s). 

 
 

3.2.3  Prefix Labeling Scheme 
 

Dewey labeling, which is an example of a prefix labeling scheme, is another coding scheme that 
was originally made for general knowledge classification (Online Computer Library Centre, 
2008). Tatarinov et al. (2002) introduce it to XML tree-shaped data. Each node is associated with 
a vector of numbers that represents the node-ID path from the root to the designated node. In 
addition to being classified here as a node index type, it can also be considered as a path labeling 
index since each node is represented as a complete path from the root to the indexed node.  
 

Figure 11 is an example of the Dewey labeling scheme for the XML document in Figure 1. 
Each node label represents the node location within a path by including its ancestors’ coding as a 
prefix (vertical coordinate), and it also includes the node number within its siblings of the same 
parent (horizontal coordinate). The level is implicitly included by counting the number of 
segments that are separated by a delimiter (dot in our example in Figure 11) in the Dewey label. 
 

 
 

Figure 11.  Dewey labeling scheme 
 

1

5 6 9

12

book

7 10

2

3author

paper

paper
paper

author

authorreviewer`

Bib

WangAhmad
84

Tim Sarah
1311

(0)

(0.0)

(0.0.0)

(0.0.0.0)

(0.1)
(0.2)

(0.2.0)

(0.2.0.0)

(0.3.0)

(0,3)

(0.3.1)

(0.3.1.0)(0.3.0.0)



 16 
 

To decide if a parent/child or an ancestor/descendent relationship exists, we perform a prefix 
matching operation on the index string. In a given data-tree, node “x” is an ancestor of node “y” if 
the label of node “x” is a substring of the label of node “y.” For example, node (0.3) is an 
ancestor of node (0.3.1.0). Unlike the (Beg,End) labeling scheme, the Dewey labeling scheme 
does not require any additional information in order to evaluate the parent/child relationship. For 
example, it is easy to see that node (0.3) is the parent of node (0.3.1). 

 
The sibling relationship can be computed in the same way without the need for any additional 

information (e.g. level number or parent ID). The Dewey label provides direct support for the 
sibling relationship. In a given tree, node “x” and node “y” are siblings iff nodes “x” and “y” have 
the same number of fragments in their labels (call it “n”) and  x.prefix = y.prefix (where the 
prefix length equal to “n” minus one). For example, node (0.3.0) and node (0.3.1) are siblings. 

 
Dewey labels are much easier to update than (Beg,End) labels. When a new node is inserted, 

only the nodes in the subtree rooted at the following sibling need to be updated (Tatarinov et al., 
2002). However, its storage size increases tremendously as the depth of the tree increases. 
Furthermore, as the depth increases, it becomes more costly to infer the parent/child or the 
ancestor/descendent relationship between any two arbitrary nodes because the string prefix 
matching becomes longer. 

 
Fisher, Lam, Shui, and Wong (2006) propose a dynamic labeling approach that can be applied 

to Dewey labels with identifiers of size O(log n) when there is type information in the form of 
DTD or Schema, where “n” is the size of the database. Similar to all labeling schemes, immutable 
Dewey labeling requires O(n) bits per label (Cohen et al., 2002). 

 
It is easy to infer the exact ancestor or descendent of a given node in Dewey labeling scheme 

indexes. For example, in Figure 11 the ancestors of the node (0.3.1) are the nodes that start with 
(0.3) or (0) prefix, and the descendents are the nodes that start with the (0.3.1) prefix such as node 
(0.3.1.0). Since the complete path is recorded within a node index, Dewey labeling scheme 
indexes return a precise and a complete answer for both path queries and twig queries. Path and 
twig queries need join operations in order to be solved, which is equal to the number of nodes in 
the query minus one.  

 
Many variants of prefix labels are proposed in the literature. O’Neil, O’Neil, Pal, Cseri, 

Schaller, & Westbury (2004) propose the ORDPATH labeling scheme that is similar to the 
Dewey labeling scheme, except that the child nodes of a given parent node are labeled by using 
odd numbers, and even numbers are used later for new insertion. In GRoup base Prefix (GRP)  
labeling scheme (Lu & Ling, 2004) the labels consist of two parts, namely, group ID and group 
prefix. Doung and Zhang (2005) propose Labeling Scheme for Dynamic XML data (LSDX), 
where the labels are a combination of numbers and letters. LSDX support the ancestor/descendent 
relationship as well as the sibling relationship between nodes. GRP and LSDX labeling schemes 
are persistent (immutable), therefore their label sizes can reach O(n) bits per label in the worst 
case. 

 
 



 17 
 

3.2.4  Summary of Node Indexes 
 

Table 2 below contains a summary of the two types of labeling schemes. The precision of an 
index scheme could be either precise (does not return any false answers) or imprecise (may 
contain some false answers along with the correct answers). If the recall achieved is 100% then 
the result is complete, otherwise it is incomplete. Relationship computation is constant if we can 
determine the relationship between any two arbitrary nodes in constant time, regardless of the 
depth of the data-tree. The relationships that are supported could be ancestor/descendent, 
parent/child, and sibling relationships. The data type could be either a number or a string. The 
types of queries that are supported by these node indexing schemes are path and twig queries. The 
evaluation of these queries may require join operations. The maintenance cost of the indexes 
depends on the number of elements and whether or not the index is mutable or immutable.   

 

 
Table 2.  Comparison of interval labeling scheme  and prefix labeling scheme  

 
 

Both types are equivalent with respect to precision, completeness (recall), and maintainability. 
However, they differ with respect to the other characteristics (computation complexity, and  
size/scalability). We notice that each type’s advantages are the disadvantage of the other. The 
(Beg,End) labeling scheme requires constant time to compute a relationship between any two 
arbitrary nodes for two reasons. First, it uses numerical values to index the nodes. Second, the 
size of the label that is used to index each node is fixed regardless of the level (depth) at which 
each node is located. On the contrary, in Dewey labeling schemes, the time that is required to 
compute the relationship between any two arbitrary nodes is directly proportional to the depth of 
the nodes for two reasons. First, Dewey labeling schemes use strings to represent labels instead of 

No. Criteria Interval Labeling
(Beg,End)

Prefix Labeling
(Dewey)

1 Precision Precise Precise

2 Recall Complete Complete

3 Computation    
Complexity

Relationship 
Computation Constant Directly proportional 

to depth increase

Relationship  
supported 

- Ancestor/Descendent
- Child/Parent (if “Level” 

is available)
All

Can infer exact  
ancestor &  
descendent nodes

No Yes

Data type Numerical String

4 Size/Scalability  
for increasing depth Linear Exponential

5 Type of queries Supported 
efficiently None None

6 Maintenance 
cost

Mutable O ( log n ) O ( log n ) 

Immutable O ( n ) O ( n )



 18 
 

integers. Second, the labels’ size increases as the depth increases. Unlike (Beg,End) labels, each 
Dewey label contains the root path (the path from the root to the designated node) information. 
Therefore, with Dewey labels, we can infer any node’s parent/child or ancestor/descendent from 
the label of the node. Finally, prefix labels are often easier to update than interval labels, 
although, the cost of maintaining prefix labels can be the same as the cost of maintaining interval 
labels in the worst case.   

 
 

3.2.5  Indexes for Structural Joins 
 

Using an appropriate labeling scheme to reflect the structure and the contents of XML data is 
known as node indexing, that is, indexing an XML tree based on its node granularity. Structural 
join indexes further provide an efficient access to these node indexes. Structural joins of elements 
in an XML data-tree that uses interval coding have received much attention in the research 
community (Zhang et al., 2001; Li & Moon, 2001; Al-Khalifa et al., 2002; Bruno et al., 2002; 
Chien et al., 2002; Jiang et al., 2003; Li, Lee, Hsu, & Chen, 2004). Structural joins are performed 
between the inverted lists (which are basically node indexes) of two elements to establish a 
parent/child or ancestor/descendent relationship. This is analogous to joining two tables in the 
relational approach. In XML, however, the advancing mechanisms of the join or loop cursor(s) 
are modified in accordance with the index values of the interval for the elements under inquiry. 
For example, assume that the “paper” and “author” elements in Figure 9 are stored in the node 
indexes shown in Figure 12. To evaluate the query “//paper/author” against these indexes, a 
skipping mechanism should match node (9,13) only with node (10,12) and skip nodes (3,5) and 
(18,20). Similarly, node (14,21) should be matched only with node (18,20) and the first two nodes 
in the “author” list should be skipped. Such an intelligent skipping mechanism reduces the 
number of I/O accesses and improves the query evaluation.  

 

 

 
Figure 12.  inverted lists of “paper” and “author” elements in Figure 9 

 
The earliest works in structural joins using interval coding are the Multiple Predicate MerGe 

JoiN (MPMGJN) by Zhang et al. (2001) and XISS by Li and Moon (2001). Both of these 
approaches require, in the worst case, an element set to be scanned multiple times during the join 
operations of two elements. As an improvement, Al-Khalifa et al. (2002) propose a primitive data 
structure called a Stack-Tree. Their approach is based on scanning two inverted indexes 
completely only once in order to explore the existing relationships between the elements of these 
indexes. Chien et al. (2002) further improve the scanning of the indexes. To investigate the 
descendent relation, their approach examines only the related nodes and skips nodes that do not 
have a match. The ancestor skipping mechanism, however, only skips small parts of the nodes 
that do not have a match. Approaches that skip descendents as well as ancestors include the 
Holistic twig join approach (Bruno et al., 2002) and XR-stack (Jiang et al., 2003).   

( 7, 8 ) ( 3 , 5 )
( 9,13) (10,12)
(14,21) (18,20)

(A) paper (B) author



 19 
 

 
The query evaluation plan that uses structural joins is based on sets of nodes, which are 

merged together to infer a structure. Thus, it is referred to in the literature as a set-based query 
process (Jiang et al., 2003; Moro, Vagena, & Tsotras, 2005).  

 
 

3.3  Graph Indexing Schemes 
A Graph index (a.k.a. Summary Index) is a structural path summary that can be used to improve 
query efficiency, especially for single path queries. It is also capable of solving twig queries but 
with an additional cost of multiple join operations. Examples of graph indexes are DataGuides 
(Goldman & Widom, 1997; Goldman & Widom, 1999), Index Fabric (Cooper et al., 2001), 
APEX (Chung et al., 2002), D(k)-index (Chen, Lim, & Ong, 2003), (F+B)k-index (Kaushik, 
Bohannon, Naughton, & Korth, 2002),  and F&B-index ( Abiteboul, Buneman, & Suciu, 2002; 
Gou & Chirkova, 2007).  

 
Graph indexes consider paths, during query evaluation, as a whole path instead of dealing with 

each node in the path separately (such as the node indexing scheme). A subsequent step is needed 
to join simple paths together in order to solve a twig query. In contrast to the node scheme, the 
number of joins is reduced during query processing, and consequently query performance is 
improved.  

 
Graph indexes have been categorized according to many criteria. For example, Gou and 

Chirkova (2007) classify them into two classes, path indexes (P-indexes), which are able to cover 
simple path queries (such as DataGuides and 1-index), and twig indexes (T-indexes), which are 
able to cover twig queries (such as F&B-index). Graph indexes can also be categorized according 
to their path exactness (Polyzotis & Garofalakis, 2002). Some schemes are exact such as strong 
Data Guide, Index Fabric, 1-index, F&B-index, and disk-based F&B-index, while others are 
approximate such as approximate Data Guide, A(k)-index, D(k)-index, and (F+B)k-index.  

 
Our classification, in this chapter, is based on path determinism and bisimilarity.  
 
Path determinism: If the index tree is a Deterministic Finite Automata, then the paths of the 

tree are considered to be deterministic paths. This feature assures that every distinct path in an 
index graph is represented only once. Otherwise, multiple identical paths may exist in the index 
which may add to the complexity of query evaluation. 

 
Bisimilarity: There are two types of bisimilarity, namely, forward and backward bisimilarity. 

Two nodes are backward bisimilar if they share the same incoming paths. Similarly, two nodes 
are forward bisimilar if they share the same outgoing paths. Partitioning of all elements in a data-
tree based on their forward and backward bisimilarity is much better than having them partitioned 
based only on their backward bisimilarity, because forward and backward bisimilarity provides 
efficient and precise support for twig queries. 

 
Based on the path determinism and the bisimilarity, we classify graph indexes as follows: 
 



 20 
 

• Deterministic graph indexes: This includes DataGuides (Goldman & Widom,1997), 
approximate Data Guide (Goldman & Widom, 1999), and Index Fabrics (Cooper et al., 
2001). 

• Non-deterministic graph indexes with backward bisimilarity: This includes 1-index  (Milo 
& Suciu, 1999), A(k)-index (Kaushik, Shenoy, et al., 2002), and D(k)-index (Chen, Lim, et 
al., 2003). 

• Non-deterministic graph indexes with forward and backward bisimilarity: This includes 
F&B-index (Gou & Chirkova, 2007; Wang, Wang, et al., 2005; Abiteboul, Buneman, et al., 
2002), (F+B)k-index (Kaushik, Bohannon, Naughton, & Korth, 2002), and disk-based F&B-
index (Wang, Wang, et al., 2005). 

 
Gou and Chirkova (2007) classification combines our first two groups into one that covers 

simple path queries. Their classification for graph indexes is based on the type of queries (path or 
twig) an index covers, while our classification of XML graph indexes is based on their 
deterministic property, in addition to forward and backward bisimilarity.  Deterministic indexes 
guarantee uniqueness of paths, and non-deterministic indexes guarantee the uniqueness of 
elements. Therefore, deterministic indexes are suitable for simple path queries (where the 
complete path is known). For example, to evaluate the query “/P/A” over the deterministic strong 
Data Guide index in Figure 13(B) we have to traverse one path only. In contrast, non-
deterministic graph indexes may lead to traversing more than one index path to solve a simple 
path query. For example, to evaluate the same query as described above over the non-
deterministic 1-index in Figure 13(C) we have to traverse more than one path that satisfies the 
query. On the contrary, non-deterministic graph indexes represent every value in the source data 
only once in the index tree, while deterministic graph indexes may have the same value in the 
source data repeated in more than one location in the index tree. For example, node “9” in the 
deterministic strong Data Guide index in Figure 13(B) is listed twice, while the non-deterministic 
1-index in Figure 13(C) has it listed only once. Furthermore, deterministic indexes may grow 
exponentially in the size of the original data (due to repetition of nodes), while non-deterministic 
indexes grow linearly (Milo & Suciu, 1999). Based on this discussion, in addition to fact that the 
term “path indexes” are used ambiguously in the literature to refer to absolutely different types of 
indexes, we use determinism as one criterion to classify graph indexes.  

 
The other criterion that we use to classify graph indexes is the direction of bisimilarity. This 

criterion further subdivides the non-deterministic indexes into backward, and forward and 
backward bisimilar indexes. The direction of bisimilarity significantly affects the size of an index 
and the answering power of an index to a given query. Non-deterministic graph indexes with only 
backward bisimilarity tend to have lower accuracy (which is corrected by some post processing 
steps) but their sizes are minimal. In contrast, graph indexes with forward and backward 
bisimilarity have higher accuracy and cover twig queries, but their sizes are larger than those of 
backward bisimilar indexes.  

 
In the following sections, we elaborate the development of graph index schemes of these three 

classes. The evaluation criteria listed in Criteria for Evaluation of Structural Indexing Schemes 
section will be used to analyze each indexing scheme. Please note that all graph indexing schemes 
provide a complete answer for both path queries and twig queries. They do not require extra joins 
to evaluate the path queries but they require join operations to solve the twig queries.  



 21 
 

 
 

3.3.1  Deterministic Graph Indexes 
 

In deterministic graph indexes, each unique path in a data-graph is listed only once in the 
summary graph, and every path in a summary graph has at least one matching path in the data-
graph. Three indexing schemes are reviewed in this section, namely, strong DataGuides, 
approximate DataGuides, and Index Fabrics.  

 
 

3.3.1.1  Strong Data Guide 
 

Goldman and Widom (1997) presented one of the early structure summaries called a strong Data 
Guide. In this scheme, the nodes in the source data are partitioned based on their root path, that is, 
the path from the root to the indexed node.  

 
An example of the strong Data Guide is shown in Figure 13(B), which represents the summary 

of the data in Figure 13(A). To simplify the comparison between different schemes in Figure 13, 
we assume an edge-labeled graph structure, use numbers inside the nodes to represent the node 
IDs, and use letters to represent the elements (tag types) of the source XML data. The letters 
(B,P,A, and R) in Figure 13(B) stand for book, paper, author, and reviewer in Figure 13(A), 
respectively. Figure 13 (A) is a modified version of the edge-labeled data-tree in Figure 2. The 
difference is that two edges are inserted (represented by the dashed lines in Figure 13 (A)). The 
first edge connects nodes “4” and “3”, and the second edge connects nodes “5” and “9”. These 
edges transform the tree-shaped data in Figure 2 into directed acyclic graph-shaped data. Unlike 
node indexes, graph indexes are capable of supporting the directed acyclic graph data model.   

 

 
 

Figure 13.  XML data-tree and its corresponding graph indexes 
 

The graph index (a.k.a. structure summary) of an XML data-graph is a strong Data Guide if it 
fulfills two conditions: 

(A) XML Data Graph

1

457

PB

69

2

3

A R A

(B) Strong DataGuide

398

1

8

R

P
B

6 9

A

2

3

A
R A R

(C) 1-index

457

1

8

R

P
B

6

2

A
R A

(D) A(1)-index

457

39

1

8

R

P
B

6 9

A

2

3

A
R A R

(E) A(2)-index

457

1

8

R

P
B

6 9

A

2

3

A
R A R

(F) F&B

574

P

1

4 5 7

8

book

6 9

2

3

author

paper
paper

paper

author reviewer
author

Tim Sarah Wang Ahmad

reviewer

reviewer



 22 
 

 
• Every distinct root path in the source data appears only once in the graph index. 
• All the paths in the graph index have at least one matching root path in the original source 

data. In other words, there are no invalid paths in the graph index.    
 
The graph index in Figure 13(B) is a strong Data Guide for the data in Figure 13(A). Note that 

node number 3 occurs in both the “/B/A” and “/P/R” paths. Node number “9” occurs in both the 
“/P/R” and “/P/A” paths. One may argue that being deterministic is an advantage of the strong 
Data Guide structure index. Nevertheless, a node’s repetition is directly proportional to the 
existence of multiple parent nodes and cycles in the source data. In the worst case the structural 
index size may exceed the original size of the data and hence it may lose its essential 
characteristic of a summary. In the case of DAG data, the size may be exponential in the size of 
the original data. The case of tree-shaped XML data, on the other hand, requires storage space, in 
the worst case, equal to the size of the data itself. 

 
Strong DataGuides are capable of giving a complete and precise result for simple parent/child 

path queries (Kaushik, Bohannon, Naughton, & Korth, 2002) such as “/B/A” in our example, 
which returns the node {3}.  They are also complete and precise for ancestor/descendent path 
queries. For instance, the query “//R” in our example returns the nodes {3,8,9}. 

 
Strong DataGuides are complete for twig queries but not precise (Kaushik, Bohannon, 

Naughton, & Korth, 2002). For example, evaluating “/P[/A]/R” query – which returns an “R” 
node that has a “P” parent node and  an “A” sibling node – over the strong Data Guide index in 
Figure 13(B) returns index nodes {3,8,9}. This answer is complete because the returned set 
includes the correct answer {8,9}, but it is not precise as node {3} does not belong to the correct 
answer. 

 
The complexity of maintaining strong DataGuides depends on the structural effect of the 

updates. Updating strong DataGuides could be as simple as inserting a new leaf into tree-
structured data, which requires only one target set to be recomputed and one new object to be 
added to the strong Data Guide. In the worst case, updating a tree with a subgraph of structured 
data that has loops and sharing may incur recomputation to a large portion of the strong Data 
Guide. Both types of updates, namely, edge and subgraph additions are supported by the strong 
Data Guide scheme. An edge insertion update requires touching a number of nodes and edges that 
is equal to O(n + m) in the worst case, where “n” is the number of nodes (objects) and “m” is the 
number of edges of a strong Data Guide. 

 
 

3.3.1.2  Approximate Data Guide  
 

Experiments have shown, in general, that the strong Data Guide size is much smaller than the 
original database. There are cases, however, where the size of the strong Data Guide is 
unreasonably large (e.g., for cyclic data). To overcome this disadvantage, an Approximate Data 
Guide (ADG) is proposed by Goldman & Widom (1999). ADG ignores the second requirement 
of the strong Data Guide, but maintains the first one. Therefore, it ensures that every distinct root 
path in the data source appears exactly once in the ADG, but it does not ensure that all ADG 



 23 
 

paths exist in the original data. Hence, an ADG may have false-positives but never false-
negatives, so that all correct paths are guaranteed to exist in addition to some false paths. 
Experiments demonstrate that there is a trade-off between the size of ADG and its accuracy. In 
general, strong Data Guide characteristics are applicable for ADG, except that the size of the 
ADG is often smaller. 

 
 

3.3.1.3  Index Fabric 
 

Index Fabric was proposed by Cooper et al. (2001) as a solution for very large indexes that may 
not fit in memory. Index Fabric utilizes its paging capabilities to solve the size problem. It uses 
prefix-encoding to represent paths as strings. These strings are classified and sorted by a special 
index called the Index Fabric which is based on Patricia tries (Knuth, 1998). The index structure 
is designed specifically for complete path queries that start from the document root node. Other 
paths such as descendent path queries “//” require a post-processing stage and many expensive 
index lookups. The notion of refined paths (template paths) is proposed by the authors to solve 
this problem. However, the refined paths are not dynamic and need to be determined prior to 
index creation and loading time.  

 
The Index Fabric indexes both paths and values in a tree. As an illustration, each edge of the 

data-tree in Figure 14(A) (which is the same as the XML data-tree in Figure 2) is given a 
designator as illustrated in Figure 14 (B). The edge labels along with the content of the data-tree 
are combined at the leaf nodes to form a path index for each value in the tree. Note that 
compression is used to minimize the size of the tree as follows. In Figure 14(C), since “book” 
edges are followed by an “author” edge, the bold capital “B” designates the path “/B/A” (book 
and author), instead of “/B” alone.  

 
A major contribution of the Index Fabric is its layered-based paging strategy to index large 

data. This feature makes it possible to handle very large indexes. The index structure is stored on 
disk and divided into multiple blocks of approximately equal size, each of which holds a small 
sub-Trie. The Tries of the lower levels are referenced by higher level Tries in the Index Fabric, 
and so forth until we reach the root Trie which can fit in one block. The number of the Index 
Fabric levels is based on the size of the original data.  

 
Note that the Index Fabric in Figure 14 (C) is similar to the strong Data Guide in Figure 13 

(B). Index Fabric is conceptually similar to strong Data Guide ( Wang, Park, et al., 2003; Chung 
et al., 2002; Weigel et al., 2004), so it is deterministic and its size may grow exponentially in the 
size of the original data for the DAG data, and linearly for the tree-shaped data. Furthermore, it is 
complete and precise for path queries, and complete for twig queries but not precise. DAG data 
can be indexed by an Index Fabric, but Index Fabric is more efficient when it is used to index 
tree-shaped data. 

 



 24 
 

 
 

Figure 14.  Index Fabric of the data-tree in Figure 2 
 
The Index Fabric is a balanced structure tree like a B-tree. Updating an Index Fabric may 

include a deletion of one record and an insertion of another. The insertion may cause one block 
per level of the tree to split in the worst case. The update algorithm for subgraph addition to the 
Index Fabric is not published to the best of our knowledge. 

 
 

3.3.2  Non-Deterministic Graph Indexes with Backward Bisimilarity 
  

The 1-index, the A(k)-index, and the D(k)-index are based on backward bisimilarity partitioning. 
While the 1-index backward bisimilarity length is equal to the length of the longest path in the 
data-graph, the A(k)-index and the D(k)-index backward bisimilarity lengths are set by a value 
“k.” The “k” value in the A(k)-index is set manually, and the “k” value in the D(k)-index is set 
automatically. 

 
 

3.3.2.1   (1-index) 
 

Milo and Suciu (1999) propose 1-index as an attempt to reduce the size of a structural summary 
to less than that of a strong Data Guide by relaxing the determinism constraint. Figure 13(C) is an 
example of 1-index for the data in Figure 13(A). The 1-index partitions the data nodes of a 
document into equivalence classes based on their backward bisimilarity from the root node to the 
indexed node. Both strong Data Guide and 1-index are identical in the case of simple XML data-
trees. In the case of DAG data, however, a 1-index may contain similar root paths, but represents 
each node in the source data-graph only once, and hence it is possible for a node to be reachable 
by multiple paths (see nodes “3” and “9” in Figure 13(C) for example). Based on this fact, we can 
say that the 1-index scheme is non-deterministic in nature. In the worst case, the size of 1-index 
will never exceed the size of the original data regardless of whether the data source is a basic tree 
or a graph. Nevertheless, 1-index structural summaries are often too large, and are considered 
inefficient when the original source data is large and irregular (Chen, Lim, et al., 2003). 

 

1

4 5 7

9

book

6 8

2

3

author

paper
paper

paper

author reviewer author

Tim Sarah WangAhmad

(A) Data-tree (B) Designator dictionary

B book

P paper

A author

R reviewer

B A Tim

PB

(C) Index Fabric

P R Ahmad

R

P A WangP A Sarah

S

A

W



 25 
 

While a 1-index represents every value in the source data only once in the index tree, a strong 
Data Guide may have the same value in the source data repeated in more than one location in the 
index tree. Hence, a 1-index is more node centric in its partition. Inversely, similar paths in the 
source data could be represented by multiple similar paths in 1-index scheme, while strong Data 
Guide represents all similar paths in the source data by only one path in the index. Therefore, 
strong Data Guide is more path centric in its partition.  

 
It is easy to see from Figure 13(C) that 1-index is complete and precise for evaluating path 

queries such as “/B/A” and “//R”, and it is complete, but not precise for evaluating twig queries 
like “/P[/A]/R”. In General, 1-index is always complete, but not necessarily precise (Kaushik, 
Shenoy, et al., 2002).  

 
Kaushik, Bohannon, Naughton, and Shenoy (2002) reviewed two kinds of updates for the 

1-index, namely, the addition of a subgraph, and the addition of an edge. Let the data-graph 
before the addition of the new file be G, the 1-index be IG, H is a new subgraph, and the 1-index 
for H  be IH. Let the number of nodes in IG, H and IH be nIG, nH and nIH respectively, and the 
number of edges be mIG, mH, mIH respectively. The time taken by the subgraph addition is O( 
mHlog(nH) + (mIH +mIG)log(nIH + nIG) ). Note that this is independent of the size of G, but 
dependent on the size of IG, which is usually smaller than the size of the data-graph. 

 
The update algorithm for edge addition is called propagate. The complexity of the algorithm 

for edge addition is measured by two factors. First, by the difference between the refined 
propagated index and the original 1-index. This difference can be as large as O(n) in the worst 
case, where n is the number of nodes in G. Second, the complexity is measured by the number of 
nodes and edges touched in the data-graph during propagation, which can be O(n + m) in the 
worst case scenario, where m is the number of edges in G (Kaushik, Bohannon, Naughton, & 
Shenoy, 2002).  

 
 

3.3.2.2  A(k)-index 
 

The dominant disadvantage of strong Data Guide and 1-index is the size of their indexes when the 
source data is large and irregular. A(k)-index is proposed by Kaushik, Shenoy, et al. (2002), 
mainly to overcome the size problem. Similar to 1-index, A(k)-index (Figure 13 (D & E)) is 
based on backward bisimilarity. A(k)-index is also a non-deterministic node centric index. A(k)-
index uses a mechanism to minimize the size of the graph indexes by specifying a factor “k” that 
is used to decide the length of the backward bisimilarity of the indexed nodes. Two nodes are 
backward k-bisimilar if they share the same incoming paths of a length = “k.” For example, an 
A(3)-index is an index for nodes that share the same incoming labeled (tagged) paths of length 
three.  

 
The size of an A(k)-index are generally smaller than that of a strong Data Guide and a 1-

index. Similar to the 1-index scheme, A(k)-index grows linearly in the size of the source data 
regardless of the shape of the data. A smaller value of “k” results in a smaller index. A(k)-index 



 26 
 

gains the advantage of having a smaller size at the expense of precision since the index does not 
necessarily reflect the complete path from the root node.  

 
Since the A(k)-index is based on equivalence-class partitioning of nodes in a data-graph, it is 

usually complete but not necessarily precise (Kaushik, Shenoy, et al., 2002). Let us take an A(1)-
index for the data in Figure 13(A), which is illustrated in Figure 13(D), as an example. For path 
queries such as “//R”, A(1)- index is complete and precise as it will return the node set {3,8,9}. 
Although, it is complete for the path queries such as “/B/A”, as it will return {3,9}, which is a 
superset of the correct answer {3}, it is not precise as the answer set contains the wrong answer 
“9”. A(k)-index partitioning is based on backward bisimilarity. It is only precise for path queries 
with a length that is less than or equal to the length set by the “k” value. For example, an A(2)-
index, as illustrated in Figure 13(E), is complete and precise for both “/B/A” and “//R” queries. 
Note that Figure 13(E) is identical to the 1-index in Figure 13(C). Actually, a 1-index is a special 
case of A(k)-index where “k” value is equal to the depth of a data-tree (the longest path in a tree). 
A(k)-index is complete but not precise for twig queries like “/P[/A]/R”.   

 
The subgraph addition algorithm of 1-index extends to the A(k)-index. Unfortunately, the 

edge insertion algorithm does not extend and hence the edge insertion for the A(k)-index remains 
an open problem (Kaushik, Bohannon, Naughton, & Shenoy, 2002).  

 
 

3.3.2.3  D(k)-index  
 

Choosing the correct value of “k” in the A(k)-index scheme is the biggest challenge. Large values 
may create a larger size index that may negatively affect the query processing for both short path 
and long path queries. Low “k” values, on the other hands, may produce smaller indexes and thus 
more efficient, but less precise, query processing. Chen, Lim, et al. (2003) propose D(k)-index to 
choose the most suitable value of “k” dynamically based on the workload. Therefore, D(k)-index 
is more efficient than A(k)-index with regard to processing time and storage space. In general, 
with regard to the rest of the above listed evaluation criteria, both D(k)-index and A(k)-index 
schemes share the same levels of precision, completeness, and scalability. For both D(k)-index 
and A(k)-index, if the length of the path in a query is longer than the value of “k”, then a post-
evaluation step might be necessary to double check the correctness of the answer, which may be 
costly.  

 
The D(k)-index is considered for two types of updates: the addition of a new file (subgraph), 

and the addition of a new edge. The update algorithm for a subgraph addition is based on the 
update algorithm of 1-index by Kaushik, Bohannon, Naughton, and Shenoy (2002). On the other 
hand, the edge addition algorithm is novel and performs better than the one presented by Kaushik 
et al. Assume that a new edge is added to the D(k)-index IG from X to Y, and Y’s local similarity 
(identical structure) is equal to Ky. While the Kaushik algorithm, in the worst case, needs to touch 
O(n + m) nodes and edges in the data-graph, the update algorithm for the edge addition with the 
D(k)-index can touch nodes and edges in a distance less than or equal to Ky in the index graph IG 
(Chen, Lim, et al., 2003). 

 



 27 
 

3.3.3   Non-deterministic Graph Indexes with (Forward & Backward) 
Bisimilarity 

 
We review three types of indexing schemes under this class of graph indexes: the F&B-index, the 
(F+B)k-index, and the disk based F&B-index. They are non-deterministic like the above type of 
graph indexes (1-index, A(k)-index, and D(k)-index), but they differ with respect to size and 
query answering power as they are larger and they cover twig queries as well as simple path 
queries. 

 
 

3.3.3.1 F&B-index 
 

The F&B-index was introduced by Abiteboul, Buneman, et al. (2002). Unlike 1-index, A(k)-
index, and D(k)-index which are based only on the incoming (backward) paths bisimilarity, this 
index scheme is based on the incoming and the outgoing (forward and backward) paths 
bisimilarity of all nodes in the source data-tree or graph. Therefore, it is considered to be a twig 
structural index scheme. It can be used as a covering index for the set of all branching path 
queries that can be expressed over a tree or graph of data.  
 

To demonstrate the benefits of this indexing scheme, consider the twig query “/P[/A]/R”, 
which returns the “R” nodes that are children of “P” nodes and siblings of “A” nodes. Evaluating 
this query over strong Data Guide (Figure 13(B)), 1-index (Figure 13(C)), or A(2)-index (Figure 
13(E)), returns a set of “R” nodes {3,8,9}. We see that “R” node “3” does not contribute to the 
correct answer, yet it is returned in the initial steps by all previous graph indexes. Eventually, it is 
eliminated from the final answer after performing some additional join steps. In contrast, as 
illustrated in Figure 13(F), the F&B-index detects this mismatch early and is able to exclude “R” 
node “3”, therefore avoiding the additional joins and improving efficiency. F&B-index therefore 
is complete and precise for twig queries as well as for path queries. 

 
The F&B-index is non-deterministic. The size of the index grows linearly in the size of the 

source data document, and in the worst case does not exceed the original data size for both data 
shapes (tree and graph). However, insufficient memory problems may arise for very large size 
indexes. Kaushik, Bohannon, Naughton, and Korth ( 2002) proved that F&B-index is the smallest 
index covering all branches of a given XML graph. However, the size of an F&B-index is often 
too large to fit in memory. To update the F&B-index when a subgraph or an edge is added to the 
data-graph, approaches similar to those used for updating the 1-Index by Kaushik, Bohannon, 
Naughton, and Shenoy (2002) can be adopted. 

 
Kaushik, Bohannon, Naughton, and Korth (2002) propose (F+B)k-index, which is a modified 

version of the F&B-index. They manage the size of the F&B-index by specifying the value of “k” 
(Gou & Chirkova, 2007). A low value of “k” results in an index that can cover limited classes of 
branching path queries, but the index size is often small. A high value of “k,” on the other hand, 
can cover a wide range of classes of branching path queries at the expense of the size since the 
size of the index is often large. With regard to the rest of the comparison criteria, both F&B-index 
and (F+B)k-index have the same features. The idea of (F+B)k-index as an extension to F&B-index 
is analogous to A(k)-index as an extension to 1-index. 



 28 
 

 
 

3.3.3.2  Disk-based F&B-index 
 

The main shortcoming of the F&B-index and the (F+B)k-index is often their large sizes, because 
they have more details about each node. They, therefore, often do not fit in memory. To 
overcome this weakness, Wang, Wang, et al. (2005) proposed a disk-based F&B-index with 
various clustering properties and criteria. They integrate 1-index with F&B-index in a new 
clustered disk-based F&B-index and store the index on the disk which can be dealt with 
efficiently as needed. In this indexing scheme, only relevant chunks of the index are returned 
from disk to main memory in order to be processed, which is similar to paging utilities that are 
available in some other indexing approaches (e.g. Index Fabric).  
 

With regard to the other comparison criteria, in general, the disk-based F&B-index has the 
same characteristics and features as the regular F&B-index, in addition to the improvement in 
dealing with large size data. The authors of disk-based F&B-index (Wang, Wang, et al., 2005) did 
not discuss or present any updating algorithm for their indexing scheme. 

 
 

3.3.4  Summary of Graph Indexes 
 

Note that 1-index and strong Data Guide indexes are suitable for small to medium size data while 
disk-based F&B-index and Index Fabric are more appropriate for very large data sources. Both 
1-index and F&B-index are considered to be exact indexes. While A(k)-index and D(k)-index 
could be approximate indexes if the value of “k” for the used indexes is smaller than the length of 
the query path. Moreover, 1-index, A(k)-index, and D(k)-index are based on backward 
bisimilarity and they cover all simple path queries. F&B-index and disk-based F&B-index, on the 
other hand, are based on forward and backward bisimilarity and they cover all branching queries 
for a given data set. 

 
Table 3 contains a summary of the graph indexing schemes. The precision of an index scheme 

could be either precise (does not return any false answers) or imprecise (may contain some false 
answers along with the correct answers). If the recall achieved is 100% then the result is 
complete, otherwise it is incomplete. The initial size (when it is first created) of a graph index for 
both tree-shaped and graph-shaped data could be either the same as the size of the data or 
exponential in the size of the data, in the worst case. The scalability (growing size) could be 
either linear or exponential in the size of data. The type of queries that are supported efficiently 
could be path, twig, or both.  

 
Non-deterministic forward and backward bisimilar indexes (the third type) are the only type of 

graph indexes that are capable of supporting twig queries if the index is exact (i.e. F&B-index or 
disk-based F&B-index). Note that the size of a deterministic index grows linearly in the original 
size of the source data if the shape of the source data is tree, and it grows exponentially if the 
shape of the source data is graph. 



 29 
 

 
 

Table 3.  Comparison between the three categories of graph indexing approaches 

Deterministic Non-deterministic
Backward Bisimilar

Non-deterministic 
Forward & Backward Bisimilar

Criteria strong DataGuide, Approximate
DataGuide, Index Fabric 1-index, A(k)-index, D(k)-index F&B-index, (F+B)k-index, 

Disk-based F&B-index

1-Precision
Path Precise Precise Precise

Twig Not Precise Not Precise Precise

2-Recall
Path Complete Complete Complete

Twig Complete Complete Complete

3- Complexity
(joins required)

Path No No No

Twig Yes Yes Yes

4-Size (initial,  worst)
Tree Same Same Same

Graph Exponential Same Same

4-Size ( scalability, growing) Linearly (for tree data),
Exponentially (for cyclic data) Linearly Linearly

5- Query supported efficiently Path Path
Path

(Twig by F&B-index and disk-
based F&B-index)

6- Maintain ability  (Edge 
insertion) O ( n + m ) O ( n + m ) O (  n + m )

Notes

- Path queries are precise for 
k ≥ path  length

- Edge addition to A(k)-index is not 
available (open for research)

- Path & twig queries precision depends 
on “k” value for (F+B)k-index

- Maintainability of disk-based is not
available  (open for research)



30 
 

Before moving into the third type of structural indexes, it is worth mentioning here that graph 
indexes, in addition to being used as structural path summaries, can facilitate use of statistics and 
other features that can aid query processing and optimization. For example, it can hold sample 
values for each node or statistics about the extended data such as fan-in and fan-out of each node. 

 
 

3.4  Sequence Indexing Schemes  
Sequence indexes (Wang, Park, et al., 2003; Rao & Moon, 2004) transform XML documents and 
queries into structure-encoded sequences. Answering a query requires sequence string matching 
between the encoded sequences of the data and the query. This eliminates the need for joins to 
evaluate twig queries. However, we should be careful when a query is answered by matching the 
sequences, since the sequence may not necessarily reflect a structural tree match (see 
“Refinement step” in Specific Comparison Criteria of Sequence Indexes section below). 
Sequence indexes combine the structure and the values of  XML data into an integrated index 
structure. They are used to efficiently evaluate path queries as well as twig queries with keyword 
components without any extra join operations with some tables that may hold the values.  

 
 

3.4.1  Specific Comparison Criteria of Sequence Indexes 
 

In addition to the comparison criteria listed in section 3.1, we include the following comparison 
criteria for this type of indexes. 
 

• Computation complexity, indexing direction. 
The shape of an XML graph is similar to a triangle. At the top there is only one root element 
and at the bottom there may be several hundreds, thousands, or more leaf nodes. Leaf nodes 
are usually value nodes. We have two ways to map XML elements in a tree, namely, in a 
top-down direction or a bottom-up direction. A top-down search for a value in a data-tree 
has to start from the root element then go down the tree according to a given query path 
specification. In contrast, a bottom-up approach starts the search from the values at the leaf 
nodes. Since the selectivity of value nodes (at the bottom) is higher than that of the element 
nodes in the top and the middle of the tree (i.e., the value labels at the bottom of the tree 
may occur less frequently than the element labels found in the higher levels), bottom-up 
search results in fewer paths in the tree that need to be examined. Therefore, the indexing 
direction has an effect on the efficiency of a query evaluation.  

• Refinement step. 
Sequence schemes suffer from two anomalies, namely, false alarms (a.k.a. false positives or 
imprecise result) and false dismissals (a.k.a. false-negatives or incomplete result). 
Refinement steps are added to the evaluation process of a query to overcome these 
problems. On the one hand, the fact that these anomalies exist in the encoded sequence is an 
issue by itself. On the other hand, the way that these anomalies are dealt with is another 
issue. With regard to this criterion, we are only concerned with how efficiently these 
problems are resolved. 

 
Based on the importance of tree mapping direction, we divided sequence indexes into two 

types, namely, top-down sequence indexing schemes and bottom-up sequence indexing schemes. 



31 
 

ViST and PRIX are discussed in the next two sections, as examples of top-down and bottom-up 
types, respectively.  

 
 

3.4.2  ViST  (Top-down Sequence Indexes) 
 

The ViST (Virtual Suffix Tree) index structure is proposed by Wang, Park, et al. (2003). Before 
we illustrate an example of ViST, please note that the data-tree in Figure 15 (B) is an encoded 
form of the data-tree in Figure 15 (A) by substituting the edge labels Bib File, book, author, 
paper, and reviewer with the letters F, B, A, P, and R, respectively. Furthermore, Figure 15 (A) is 
the same as the example edge-labeled data-tree in Figure 2. As an example of ViST, consider the 
data-tree in Figure 15 (B) and the query tree in Figure 15 (D). Both trees are transformed into 
structure-encoded sequences as illustrated below. Note that each bracket contains two parts. The 
first part contains the elements’ tag. The second part contains the root path of the parent node of 
the node listed in the first part. 

 
     Data Tree 2 (D2) : (F,0) (B,F) (A,FB) (P,F) (P,F) (A,FP) (P,F) (R,FP) (A,FP) 
     Query          (Q)   :   (F,0) (P,F) (R,FP) (A,FP) 
 
The underlined subsequences of “D2” match the underlined subsequence of “Q”. So, we 

return the matched subsequence in the data-tree as an answer to the query. Nevertheless, we 
should be aware of any existing false-positives (a.k.a. false alarm) in the solution that may take 
place. For example, consider the data-tree 3 in Figure 15 (C), the sequence of this tree is 
illustrated below. 

 
     Data Tree 3 (D3)  :  (F,0)  (P,F)  (R,FP)  (P,F)  (A,FP)   
 
To evaluate the above query “Q” over the “D3” data, we notice that the underlined sequence 

forms an answer for the query “Q” above, however, it is not a correct answer for the given query 
because the “R” and the “A” child nodes do not have the same parent “P” node. This is an 
example of a false-positive answer. 

 

 
 

Figure 15.  Data trees and a query 
 
 

book

author

paper
paper

paper

author reviewer author

Tim Sarah WangAhmad

F

P P P

AA R

B

A

F

P P

R A

F

P

AR

Bib File

(C) Data Tree 3(A) Data Tree 1, from Figure 2 (B) Data Tree 2 (D) Query



32 
 

In addition to false-positives, the sequence schemes also have the problem of false-negatives 
(a.k.a. false dismissals), which is caused by the isomorphic tree problem. It occurs when a branch 
node has multiple identical child nodes. For example, the two tree combinations which are 
illustrated in Figure 16, have the following structural sequences. 

 
     Data Tree 1    :  (F,0)  (P,F)  (A,FP)  (P,F)  (R,FP)   
     Data Tree 2  :  (F,0)  (P,F)  (R,FP)  (P,F)  (A,FP)   
 
If we run any one of these two trees as a query over the other tree, we will not find a match as 

can be seen from the translated sequences. However, logically both trees have the same structure 
and same number and types of elements. To solve this problem in ViST, which occurs when there 
are similar tag siblings in a query, we have to rewrite the given query into all possible 
combinations of sequence order. After that, we solve each query separately, and then union the 
result of all queries. In the worst case, permutations of the query sequence are exponential in the 
number of the similar siblings.   

 

 
 

Figure 16.  Example of false dismissal 
 
ViST, as we noticed above, is based on top-down traversal tree. As a result, for deep and large 

XML documents, the size of the index becomes a problem as it does not scale well with an 
increase in data size because the top elements have to be included within the sequence of the 
newly inserted elements. As the paths in XML data get longer, the sequence length will increase 
and hence the size of the index will increase exponentially in the size of data. 

 
The false-positives problem is resolved by disassembling the query tree at the branch into 

multiple trees, and using join operations to combine their result. This solution is definitely 
expensive, since it involves additional join operations. ViST is based on B+-tree (Wang, Park, et 
al., 2003), which is physically implemented as two levels of B+-trees (Gou & Chirkova, 2007). If 
we assume that the fan-out of the used B+-tree is equal to “b,” then O(b logb n) nodes are touched 
during a sequence index update at each level.  

 
 

3.4.3  PRIX (Bottom-up Sequence Indexes) 
 

ViST’s top-down transformation approach weakens the query processing because it results in a 
large number of nodes (paths) being examined during subsequence matching for commonly 
occurring non-contiguous tag names. Motivated by this fact, Rao and Moon (2004) propose 
another approach that implements bottom-up transformation instead. This approach is called 
PRIX (Prufer sequences for Indexing XML). It is based on Prufer Sequences as indicated by the 

F

P P

R A

(B) Data Tree 2

F

P P

A R

(A) Data Tree 1



33 
 

name. The bottom-up transformation of XML data-trees in PRIX plays a crucial role in reducing 
the query processing time.  

 
Basically, the top-level elements of an XML tree are shared with lower-level elements by 

being their parent or ancestor nodes. Thus, if we index a tree starting from the top, the chances 
are high of having a large number of elements that share the same starting tags in a given query 
path. In contrast, indexing a tree starting from the bottom and moving upward to the top of the 
tree reduces the chance of having a large number of shared elements for a given query path as the 
selectivity gets higher at the bottom. That is why it is more efficient to index a tree using the 
bottom-up traversal direction instead of using the top-down traversal direction. PRIX’s bottom-up 
indexing scheme is a major source of improvement over ViST schemes (Rao & Moon,2004). 

 
PRIX is based on Prufer sequences. To illustrate how a Prufer sequence is used to denote a 

graph tree, we use the data-tree in Figure 17, which is the same as the data-tree in Figure 15 (B). 
The letters inside the node circles represent the tag types (names) and the numbers shown beside 
the nodes represent the post-order numbering of the tree. To encode the tree in Figure 17 with a 
Prufer sequence, we repeatedly delete the leaf node that has the smallest label and append the 
label of its parent to the sequence.  

 

 
 

Figure 17.  An example of Prufer sequence 
 
 
As we can see in Figure 17, the smallest label number is “1” so we delete it and add “2” to the 

sequence, so it becomes {2}. We delete the node numbered “2” and add its parent “9” to the 
sequence to become {2,9}. We then delete label number “3” and add label “9” to the sequence, so 
the sequence will change to {2,9,9} and so forth. At the end of this process, we have the sequence 
{2,9,9,5,9,8,8,9}, which represents the following tag sequence {B,F,F,P,F,P,P,F}. 

 
In PRIX the string/character data in the XML document tree are extended by adding dummy 

child nodes before the transformation process so it can be indexed using the Prufer sequence. 
Similarly, query twigs are also extended before transforming them into sequences. Indexing 
extended-Prufer sequences is useful for processing twig queries with values. Since queries with 
value nodes usually have high selectivity, they will be processed more efficiently and faster than 
those without values. 

 
The size of a PRIX grows linearly in the total length of the sequences stored in it because an 

increase in the path length will result in a sequence addition which is equal to the amount of the 
increase. In the PRIX approach, the length of a Prufer sequence, as we noticed from the above 

F

P P P

AA R

B

A1

2 3 5

4 6

8

7

9



34 
 

example, is linear in the number of nodes in the tree. Hence, the index size is linear in the total 
number of tree nodes regardless of the depth of the tree.  

 
PRIX uses a complex four-phase refinement process to deal with the false-positives and the 

false-negatives that are associated with sequence index schemes. Basically, PRIX overcomes the 
false-positives problem by using document by document post-processing which is time 
consuming process. 

 
PRIX is based on the B+tree, and it is built in a way similar to ViST (Rao & Moon, 2004). It 

is mainly implemented as two levels of B+-trees. If we assume that the fan-out of the used B+-
tree is equal to “b,” then O(b logb n) nodes are touched during a sequence index update at each 
level. 

 
 

3.4.4  Summary of Sequence Indexes 
 

Table 4 includes a summary of the sequence indexing schemes. The precision of an index scheme 
could be either precise (does not return any false answers) or imprecise (may contain some false 
answers along with the correct answers). If the recall achieved is 100% then the result is 
complete, otherwise it is incomplete. Indexing can be implemented in either a top-down direction 
or bottom-up direction. The types of queries that are supported efficiently by these sequence 
indexes are both path and twig queries. 

 

 
 

Table 4.  Comparison between Top-down (ViST) and Bottom-up (PRIX) sequencing schemes. 

 
 

No Criteria Top-down
(ViST)

Bottom-up
(PRIX)

1 Precision False-positives
(imprecise)

False-positives
(imprecise)

2 Recall False-negatives
(incomplete)

False-negatives
(incomplete)

3 Computation
Complexity 

Refinement
step Expensive Joins Complicated four-

phase process
Indexing

direction Top-down Bottom-up

4 Scaling/Size Exponential Linear

5 Type of queries supported
efficiently Path & Twig Path & Twig

6 Maintainability O(blogb n) O(blogb n)



35 
 

3.5  Structural Indexes Critique 
As is always the case with indexing schemes, there is a trade-off between the size and the 
precision of the index in the one hand, and between the size and the efficiency of the index in 
answering a query on the other hand. The advantages of one index scheme can be the 
disadvantages of another, and vice versa. In this section we compare the three categories of 
structural indexes, namely, node index schemes, graph index schemes, and sequence index 
schemes. 

 
 

3.5.1  Criteria for Comparison among Structural Indexing Schemes 
 

In addition to the criteria listed in Criteria for Comparison among Structural Indexing Schemes 
section, the following criteria are used for comparison between the above three types of structural 
indexing schemes. 

 
• (A) Computation complexity: Does it require structural joins? 

Structural joins are considered for path queries and twig queries. In general, to achieve high 
performance for a query execution, we need to minimize the number of joins.   
(B) Computation complexity: Granularity of usage to evaluate a query. 
The granularity of an XML index depends on the type of the indexing scheme. For example, 
the granularity could be at the node level, the path level, or the twig level (for twig queries). 
As the granularity of the index that is used to evaluate a query increases, the execution time 
becomes shorter. 

• Data supported.  
The types of data supported by the XML indexing schemes are mainly tree-shaped data and 
graph-shaped data. The main difference between them is that the graph-shaped data can be 
represented by an XML document with the ID/IDREF attribute tokens. The tree-shaped data 
can be considered as a subclass of the graph-shaped data where a node can not have more 
than one parent. The indexing schemes that are capable of supporting the graph-shaped data 
are more powerful than the ones that support only the tree-shaped data. 

• Ability to facilitate the use of statistics and other features.  
The ability to facilitate the use of statistics, such as the fan-in and the fan-out of nodes, helps 
to provide query optimization with the capability to choose the most efficient evaluation 
plan for a given query. 

• Values integrated into the index structure. 
If the values of the elements and attributes are indexed separately from the structure, and a 
query with some predicates needs to be evaluated over that data, then joins between the 
structural index and the value indexes are necessary and hence significantly increases the 
complexity of the XML query evaluation process. In contrast, we can have the values 
integrated into the structural index. This integration not only saves some additional joins, 
but it also narrows down the matching procedure during the evaluation process, since the 
selectivity of the values are always higher than that of the elements in a structural index. 

• Main role in answering a query. 
Each indexing scheme has a different role in the query evaluation process. Some indexes, 
for example, are used only for joining the elements, while others are used to find a path. 



36 
 

Therefore, different indexing schemes are used for different needs in the query evaluation 
process.   
 

 
3.5.2  Comparison among Structural Indexes 

 
Generally, the sequence indexes may initially produce a wrong answer to a query then correct it 
at a later stage in the evaluation process. The deterministic graph indexes and non-deterministic 
graph indexes with backward bisimilarity may produce some wrong initial answers. The non-
deterministic graph indexes that are based on forward and backward bisimilarity, on the contrary, 
are more accurate and often return only the correct answers. Finally, since the node indexes are 
used for binary joins, they do not produce any initial wrong answers. 

 
Without some extra post-processing steps, false-negatives may occur when we use the 

sequence indexing scheme to evaluate a query. On the contrary, the node and the graph index 
always return a complete answer because the order of the nodes is not encoded within the 
structure of the index as opposed to the sequence index. 

 
The number of structural joins that are required to evaluate a path or a twig query varies 

among the different schemes. It has a significant impact on the query processing time. Node 
indexes are the least efficient with respect to structural joins since they require joins for both path 
and twig queries. Graph indexes support the path queries without the need for structural joins, but 
in order to evaluate the twig queries, structural joins are required at the branching node. Finally, 
the sequence indexes are the best because the structure is encoded within the sequence. Therefore, 
they do not require any structural joins for path queries or twig queries.  

 
There are three levels of granularity used to evaluate a twig query: the pair-wise, path, and 

twig levels. For illustration, in order to evaluate a twig query using a node index, we break the 
query into nodes, then join nodes a pair at a time until all nodes are joined together for the 
complete twig paths to solve the query. On the other hand, to evaluate a twig query using a graph 
index, we break the query into several paths and solve each path separately, then join the results 
of all paths to form the answer to the query. Finally, to evaluate a twig query by using a sequence 
index, we process the twig query as a whole. 

 
Node indexes can only support tree-shape data because of the containment rule that is used to 

specify the relationship between two nodes in a data-tree. In order for node “a” to be an ancestor 
of node “b”, a’s interval code has to contain b’s interval code, and not vice versa which may be 
caused by a graph-shaped data. In contrast, graph indexes support the graph-shaped data well. 
Like node indexes, sequences indexes only support tree-shaped data. 

 
Some indexes, in addition to providing a structural summary, provide valuable utilities for the 

query optimization. For example, strong DataGuides (Goldman & Widom, 1997) are used in Lore 
(Abiteboul, Quass, et al., 1997; McHugh, Abiteboul, et al., 1997) to facilitate annotation of 
sample values and statistical data. The annotated information is associated with the Data Guide 
objects (nodes). The sample values are used in Lore to provide users with samples of possible 
values of an element. The number of incoming and outgoing edges for a specific node in a Data 



37 
 

Guide is an example of statistical information that can be annotated. This information assists in 
estimating the cost of the evaluation plans for a given query. The node and the sequence indexes 
do not facilitate these kinds of supporting information. 

 
There are some attempts to integrate values into graph indexes (Cooper et al., 2001; Weigel et 

al., 2004), although, graph indexes are not designed to carry any values within the structural 
summary. Node indexes can not contain values, and values have to be indexed separately. The 
only indexing schemes that are designed to efficiently integrate values into the structural index 
are the sequence indexing schemes. 

 
We observe that node indexes are mainly used for path joining, graph indexes for path 

selection, and sequence indexes for complete query evaluation. We summarize our comparison of 
the three categories of structural indexing schemes in Table 5. The granularity of usage to 
evaluate a query could be at the node level, the path level, or the twig level. The types of queries 
that are supported efficiently by these indexing schemes could be path, twig, or both. The 
maintainability of graph and sequence indexes are measured by the number of nodes that are 
needed to be touched during the update process. On the other hand, the maintainability of node 
indexes are measured by the size of used labels. The supported data could be a tree-shaped or a 
graph-shaped. Tree-shaped data is considered a subset of graph-shaped data. 

 
   

 
 

Table 5.  Summary of comparison among the 3 categories of structural indexing schemes. 
 

Criteria Node Indexes Graph Indexes Sequence Indexes
1- Precision (wrong initial

answer, false positive) No Yes/No Yes

2- Recall (missing initially
correct  answer,  false negative) No No Yes

3- Computation
complexity
(structural

join required)

Path Yes No No

Twig Yes Yes No

3- Computation complexity
(granularity of usage to

evaluate a query)

Nodes Pair-wised
Evaluation

Path
Evaluation

Twig
Evaluation

4- Size / Scalability Linear-Exponential Linear-Exponential Linear-Exponential

5- Type of queries supported 
efficiently None

Path
(Twig by exact (F&B)

indexes)
Path & Twig

6- Maintainability for
adding an edge

O(n)  immutable
O(log n) mutable O (n + m) O(blogb n)

7- Data supported Tree Graph Tree
8- Can facilitate the use of statistics No Yes No
9- Hold value No Yes/No Yes
10- Main role in answering 

XML query Path joining Path selection Complete query evaluation



38 
 

 
3.5.3  Limitations and Open Problems  

 
Despite the extensive research in structural indexes for XML data, there are still many limitations 
and open problems. XML data can be categorized as semistructured data (Buneman, 1997), which 
is data that may be irregular or incomplete, and whose structure may change rapidly or 
unpredictably (McHugh & Widom, 1999). The main challenge in indexing XML data therefore, 
is the irregularity of data and structure. Value-based queries can be evaluated by using traditional 
indexing schemes, such as B+-trees or inverted lists. However, efficient support for the structural 
part is a challenging task. The semistructured nature of XML data and the flexibility of the 
queries that are used to query XML data pose another distinctive concern for deriving or selecting 
proper indexing methods. Designing representations for efficient storage of semistructured data is 
also a difficult task.  

 
Making the existing numbering index schemes dynamic so that they adapt gracefully to 

deletion and insertion of new nodes is not an easy task. Node indexes require the highest number 
of joins among the three indexing schemes to solve an XML query. In order to reduce this 
shortcoming, it is useful to explore a proper method to optimally use node indexes together with 
graph indexes to solve XML queries. Each type of index plays a different role. A graph index is 
used for path selection, whereas a node index is used for path joining (Gou & Chirkova, 2007). In 
this case, the graph index reflects the structure of data and partitions the data nodes into sets of 
nodes that share the same structure’ characteristics. Then, the node index is used later to reflect 
the relationship (parent/child and ancestor/descendent) between the individual nodes within these 
sets. Since the graph index already covers the structure of the indexed data-trees, the node index 
that can be integrated with the graph index does not have to reflect the structure too. It is 
sufficient for the integrated node index to maintain a unique identity for each and every node in 
the indexed data-trees. We can associate these identities with the graph index nodes and then use 
the graph index along with these identities in the node index to identify the relationship between 
any two arbitrary nodes. The anticipated node indexing scheme should overcome or minimize the 
present problems in the existing node schemes.   

 
Node indexes are implemented by two dominant labeling schemes: the prefix (e.g. Dewey) 

and the interval (e.g., Beg, End) labeling schemes. Each one of these schemes has its own 
advantages and disadvantages. The size of the interval indexes grows constantly regardless of the 
data-tree depth, while it grows exponentially in the prefix indexes. Processing time of interval 
indexes is shorter than that of prefix indexes, because the range labeling scheme is based on 
numbers while the latter is based on strings. The information of a data-tree paths are included 
within the prefix labels, while it is not included within the interval labels and require extra 
processing step to be computed. Prefix indexes are relatively easy to update while interval 
indexes are harder. A possible research area would be to investigate integrating these two node 
indexing schemes into one indexing scheme that retains all the desired characteristics in an index. 
The integrated scheme may have, but should not be limited to, the following characteristics: a 
small reasonable size; based on numbers (not string); a path can be calculated within a relatively 
small cost; and easy to be updated. 

 



39 
 

Backward bisimilar graph indexes can solve simple path queries efficiently. The branching, 
however, has to be dismantled into multiple sub-queries, where each sub-query is equivalent to a 
single path in the twig. Expensive join operations are then used to combine these results to create 
final answers. This problem is solved in forward and backward bisimilar graph indexes as the 
branching queries are solved as one complete query. Choosing an appropriate index definition 
that covers a given query workload is an open problem for (F+B)k-index. Also, efficient index 
building and updating algorithms are needed for non-deterministic forward and backward 
bisimilar indexes. Efficient integration of graph indexes with value indexes is another interesting 
area. This will minimize the I/O accesses by eliminating the need to access two different indexes 
to solve an XML query with a predicate. Identifying a suitable set of statistics for given graph-
based data that can be efficiently computed and stored without having a fixed graph index is an 
open problem (McHugh & Widom, 1999). A hierarchy of graph covering indexes is yet another 
open area of research (Kaushik, Bohannon, Naughton, & Korth, 2002). The hierarchies could be 
defined in terms of summary tables, where higher level summaries could be extracted from lower 
level summary tables.  

 
Sequence indexes support solving a twig query only in a certain order. If the query order does 

not match the index order it will return an incorrect answer. To run a query against a sequence 
index all possible orders of the query nodes have to be tested in order to get an accurate result. 
The node and graph indexes do not have this problem. Another limitation of sequence indexes is 
that they may require a large number of accesses to the index, consequently, it might result in 
expensive random I/O accesses (Gou & Chirkova, 2007). The overhead of the false-positives 
problem is a major drawback of sequence indexes. Finally, the skipping mechanism needs to be 
improved as it visits many data nodes needlessly during a query evaluation. 

 
 

3.5.4  Related Work 
 

Indexing and querying XML data have been active research areas in recent years. Many previous 
research efforts in the field of information technology have been adapted to index XML data. For 
example, IR has been used for text-dense XML documents (Xu et al., 2005; Guo et al., 2003). A 
Suffix Tree has been used by Wang, Park, et al. (2003) to develop dynamic indexes. The Index 
Fabric by Cooper et al. (2001) is based on the Patricia trie (Knuth, 1998) (a string indexing 
scheme). The research on optimization of path expressions in object-oriented database systems 
(Gardarin et al., 1996) and the graph-based semistructured data models (Abiteboul, 1997; 
Abiteboul, Quass, et al., 1997 ), have been adapted by McHugh and Widom (1999) in developing 
Lore (an XML DBMS). Inverted indexes (Salton & McGill, 1983) have been used to support 
containment queries (Zhang et al., 2001), and to build XML indexes (Dong & Halevy, 2007; 
Kaushik, Krishnamurthy, Naughton, & Ramakrishnan, 2004 ). Anatomy of a native XML 
databases have been discussed by Feinberg (2004). 
 

Many systems have been proposed in the academic and commercial fields to provide either a 
query engine for XML data or a complete XML database management system. For example, 
some systems are designed to handle semistructured data (Buneman, 1997) in general, including 
XML documents  (Abiteboul, Quass, et al., 1997; Buneman, Davidson, Hillebrand, & Suciu, 



40 
 

1996; Fernandez, Florescu, Kang, Levy, & Suciu,1998; Bertino, Rabitti, & Gibbs, 1998). Other 
systems are designed specifically for XML data (Schoning, 2001; Fiebig et al., 2002; Paparizos et 
al., 2003; Barta, Consens, & Mendelzon, 2004; Che et al., 2006; Wang, Liu, et al., 2003), or have 
migrated to a fully XML-based data model (McHugh, Abiteboul, et al., 1997; Goldman, 
McHugh, et al., 1999; McHugh & Widom, 1999). Finally, there are languages that are designed 
to query only XML data (Chamberlain, Robie, & Florescu, 2000; Boag et al., 2007; Deutsch, 
Fernandez, Florescu, Levy, & Suciu, 1998; University of Washington, 2001; Naughton et al., 
2001; Robie et al., 1999).  

 
 
4.  CONCLUSIONS 
 

XML database systems, including the query optimization engine, do not have the advantage of 
being founded on several decades of scientific research as do relational DBMSs. In contrast to the 
query optimization in the relational databases, XML query optimization is a comparatively new 
research area. An XML query passes through several stages before it gets completely evaluated. 
The evaluation process starts with the parsing stage, where the query is converted to a logical 
query (high level execution strategy query). It is then transformed into several physical plans 
where most of the optimization is carried out (McHugh & Widom, 1999; De Aguiar, Filho, & 
Harder, 2006). These plans’ costs are estimated by the optimizer and the cheapest plan is 
executed by the low-level query execution engine.  

 
A key factor in improving the XML queries is indexing (Zou et al., 2004). Indexes are used 

during most of the optimization stages. Indexing the XML data has to reflect the structure in 
order to be able to support the path queries as well as the twig queries. A twig query consists of 
two parts: (1) the structural part, which is specified by the twig branches; (2) the values that are 
associated with the branches.  

 
Our classification of XML graph indexes is novel. It is based on their deterministic property in 

addition to forward and backward bisimilarity, which determines the possible size and accuracy 
of an index. Deterministic indexes may grow exponentially in the worst case, while non-
deterministic indexes grow linearly. Forward and backward bisimilar indexes are more accurate 
than backward bisimilar indexes. Deterministic indexes guarantee uniqueness of paths, and are 
suitable for simple path queries. They evaluate a simple path query by traversing one path only. 
In contrast, non-deterministic graph indexes may traverse more than one index path to solve a 
simple path query. Our classification of XML sequence indexes is also novel. It is based on the 
mapping direction of data-trees, because the mapping direction is the main factor that drastically 
affects the size of sequence indexes. We use common criteria to analyze the characteristics of the 
most common types of structural indexes.   

 
Our analysis of structural indexes is based on the following key issues: retrieval power, which 

covers the precision and the completeness of an index; processing complexity, which 



41 
 

demonstrates how efficient an index can be used to answer a query; scalability of the index and 
its adaptability to queries with different path lengths; and finally update cost of the index. 

 
We observe that no single indexing scheme is capable of satisfying all users’ needs; deciding 

which index scheme to use depends on the users’ preferences. There is a trade-off between the 
size of the structural index and its precision. For example, graph indexes with only backward 
bisimilarity tend to have lower accuracy (which is corrected by some post processing steps) but 
their sizes are minimal. In contrast, graph indexes with forward and backward bisimilarity tend to 
have high accuracy, but at the expense of the size. Node and sequence indexes can be used only 
for tree-shaped data, while graph indexes can be used for both tree-shaped and graph-shaped data. 
Graph indexes can be used to efficiently facilitate additional information such as some statistical 
information, which can be used during a query optimization process. Some indexes cover twig 
and path queries, while others cover only path queries.   

 
Finally, the ultimate goal of researchers is to create an indexing scheme that will occupy 

minimal storage without compromising the precision, if possible, or at least improve the trade-off 
in favor of precision (i.e. have a small increase in the size to achieve higher precision).□ 
 
 
 
ACKNOWLEDGMENT  

 
This work was supported by the Natural Science and Engineering Research Council of Canada 

(NSERC). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



42 
 

REFERENCES 
 

Abiteboul. S. (1997, January 8-10). Querying semistructured data. In F.N. Afrati, P.G. Kolaitis 
(Eds.), Proceedings of the International Conference on Database Theory, ICDT’97, Delphi, 
Greece (LNCS 1186, pp.1–18). London, UK: Springer-Verlag. 

Abiteboul, S., Buneman, P., & Suciu, D. (2002) Data on the Web: From Relations to 
Semistructured Data and XML., San Francisco, California, USA: Morgan Kaufmann 
Publishers. 

Abiteboul, S., Quass, D., McHugh, J., Widom, J., &.Wiener. J. (1997, April). The Lorel query 
language for semistructured data. International Journal on Digital Libraries, 1(1), 68-88. 

Al-Khalifa, S., Jagadish, H. V., Koudas,  N., Patel, J. M., Srivastava, D., & Wu, Y. (2002, 
February 26-March 1). Structural Joins: A Primitive for Efficient XML Query Pattern 
Matching. In R. Agrawal, K. Dittrich, & A.H.H. Ngu (Eds.), Proceedings of the 18th 
International Conference on Data Engineering, San Jose, CA, USA (pp.141-154). Los 
Alamitos, CA, USA: IEEE Computer Society. 

Amagasa, T., Yoshikawa, M., & Uemrua, S. (2003, March 5-8). QRS: A Robust Numbering 
Scheme for XML Documents. In U. Dayal, K. Ramamritham, & T.M. Vijayaraman (Eds.), 
Proceedings of the 19th International Conference on Data Engineering. Bangalore, India 
(pp. 705-707). IEEE Computer Society. 

Amer-Yahia, S., Baeza-Yates, R., Consens, M., & Lalmas, M. (2007, September 23-27). XML 
Retrieval: DB/IR in Theory, Web in practice. In C. Koch, J. Gehrke, M. Garofalakls, D. 
Srlvastava, K. Aberer, A. Deshpande, et al. (Eds.). Proceeding of the 33rd International 
Conference on Very Large Data Bases, Vienna, Austria (pp. 1437-1438). VLDB 
Endowment. 

Baeza-Yates, R., Consens, M. (2004, August 31 - September 3). The Continued Saga of DB-IR 
Integration. In M.A. Nascimento, M.T. Ozsu, D. Kossmann,   R.J. Miller, J.A. Blakeley, & 
K.B. Schiefer (Eds.). Proceedings of the 30th VLDB Conference. Toronto, Canada (pp. 
1245-1246). San Fransisco, CA, USA: Morgan Kaufmann. 

Barta, A., Consens, M., & Mendelzon, A. (2004, June 11-18). XML Query Optimization Using 
Path Indexes. In I. Manolescu, & Y. Papakonstantinou (Eds.),  Proceedings of the First 
International Workshop on XQuery Implementation, Experience, and Perspectives, in 
cooperation with ACM SIGMOD, Paris, France (pp.43-48). 

Bary, T., Paoli, J., & Sperberg-McQueen, C.M. (Eds.). (1998, February 10). Extensible Markup 
language (XML) 1.0. Retrieved January 22, 2009, from http://www.w3.org/TR/1998/REC-
xml-19980210.html. 

Bertino, E., Rabitti, F., & Gibbs. S. (1998, January). Query processing in a multimedia document 
system. ACM Transactions on Office Information Systems, 6(1), 1–41. 

Boag, S., Chamberlin, D., Fernandez, M., Florescu, D., Robie, J., & Simeon, J. (Eds.). (2007). 
XQuery 1.0: An XML Query Language. Retrieved January 19, 2009, from  
http://www.w3.org/TR/xquery. 

Bruno, N., Koudas, N., & Srivastava, D. (2002, June 3-6). Holistic Twig Joins: Optimal XML 
Pattern Matching. In Proceedings of the ACM SIGMOD International Conference on 
Management of Data, Madison, Wisconsin, USA (pp.310-321). New York, NY, USA: 
ACM Press. 

Buneman, P. (1997, May 11-15). Semistructured data.  In Proceedings of the sixteenth ACM 
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, Tucson, 
Arizona, USA (pp. 117–121). New York, NY, USA: ACM Press. 

Buneman, P., Davidson, S., Hillebrand, G., & Suciu. D. (1996, June 4-6). A query language and 
optimization techniques for unstructured data. In J. Widom (Ed.), Proceedings of the ACM 
SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada 
(pp.505-516). New York, NY, USA: ACM Press. 



43 
 

Carey, P. (2004). New Perspective on XML-Comprehensive. Boston, Massachusetts, USA: 
Course Technology. 

Chamberlain, D., Robie, J., & Florescu, D. (2000, May 18-19). Quilt: An XML query language 
for heterogeneous data sources. In G. Goos, J. Hartmanis, & J. van Leeuwen (Eds.), The 
World Wide Web and Databases, Third International Workshop, WebDB 2000, Dallas, 
Texas, USA (LNCS 1997,pp.1-25) Berlin, Germany: Springer. 

Che, D., Aberer, K., & Ozsu, M.T. (2006, September). Query optimization in XML structured-
document databases. The VLDB Journal, 15(3), 263-289. 

Chen, Q., Lim, A., & Ong, K. (2003, June 9-12). D(k)-Index: An adaptive Structural summary for 
graph-structured data. In Proceedings of the ACM SIGMOD International Conference on 
Management of Data, San Diego, California, USA (pp.134-144). New York, NY, USA: 
ACM Press. 

Chen, Y., Mihaila, G.A., Bordawekar, R., & Padmanabhan, S. (2004, March 14-18).  L-Tree: a 
Dynamic Labeling Structure for Ordered XML Data. In W. Lindner, M. Mesiti, C. Turker, 
Y. Tzizikas, & A. Vakali (Eds.). Current Trends in Database Technology - EDBT 2004 
Workshops, Herakleion, Greece (LNCS 3268, pp. 209-218). Germany, Berlin: Springer. 

Chien, S., Vagena, Z., Zhang, D., Tsotras, V., & Zaniolo, C. (2002, August 20-23). Efficient 
structural joins on indexed XML documents. In P.A. Bernstein, Y.E. Ioannidis, R. 
Ramakrishnan, & D. Papadias (Eds.), Proceedings of 28th International Conference on 
Very Large Data Bases, Hong Kong, China (pp.263-274). San Fransisco, CA, USA: 
Morgan Kaufmann. 

Chung, C., Min, J., & Shim, K. (2002, June 3-6). APEX: An Adaptive Path Index for XML data. 
In Proceedings of the ACM SIGMOD International Conference on Management of Data, 
Madison, Wisconsin, USA (pp.121-132). New York, NY, USA: ACM Press. 

Clark, J., & DeRose, S. (Eds.). (1999, November 16). XML Path Language (XPath) Version 1.0.  
Retrieved January 22, 2009, from http://www.w3.org/TR/xpath. 

Cohen, E., Kaplan, H., & Milo, T. (2002, June 3-5). Labeling Dynamic XML Trees. Proceedings 
of the 21st ACM SIGMOD-SIGACT-SIGART symposium on Principles of Database 
Systems, Madison, Wisconsin, USA (pp. 271-281) New York, NY, USA: ACM Press. 

Cooper, B.,Sample, N., Franklin, M., Hjaltason, G., & Shadmon. M. (2001, September 11-14). A 
Fast Index for Semistructured Data. In P.M.G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. 
Ramamohanarao, & R.T. Snodgrass (Eds.), Proceedings of 27th International Conference 
on Very Large Data Bases VLDB, Roma, Italy (pp.341-350). San Francisco, CA, USA: 
Morgan Kaufmann Publishers Inc. 

de Aguiar, J., Filho, M., & Harder, T. (2006, June 6-9). Statistics for Cost-Based XML Query 
Optimization. In S. Brass, & A. Hinneburg (Eds.), 18th GI-Workshop on the Foundations 
of Databases ( Tagungsband zum 18. GI-Workshop über Grundlagen von Datenbanken), 
Wittenberg, Sachsen-Anhalt (pp. 110-114). Germany: Institute of Computer Science, 
Martin-Luther-University. 

Deutsch, A., Fernandez, M., Florescu, D., Levy, A., & Suciu, D. (1998, August 19). XML-QL: A 
query language for XML. Retrieved January 20, 2009, from http://www.w3.org/TR/NOTE-
xml-ql. 

Dietz.P. (1982, May 5-7). Maintaining order in a linked list. In Proceedings of the fourteenth 
annual ACM symposium on Theory of Computing, San Francisco, California, USA (pp.122 
–127). New York, NY, USA: ACM Press. 

Dong, X., & Halevy, A. (2007, June 11-14). Indexing Dataspaces. In C.Y. Chan, B.C. Ooi, & A. 
Zhou (Eds.), Proceedings of the ACM SIGMOD International Conference on Management 
of Data, Beijing, China (pp.43-54). New York, NY, USA: ACM Press. 

Duong, M., & Zhang, Y. (2005, January 31 – February 3). LSDX: A New Labeling Scheme for 
Dynamically Updating XML Data. In H.E. Williams, & G. Dobbie (Eds.), Database 



44 
 

Technologies 2005, Proceedings of 16th Australasian Database Conference, Newcastle, 
Australia (Vol.39, pp. 185-193). Melbourne, Australia: Victoria University.  

Feinberg, G. (2004, November 15-19). Anatomy of a Native XML database. In XML 2004 
Conference & Exhibition, Washington, D.C., USA. Retrieved January 13, 2009 from 
http://www.idealliance.org/proceedings/xml04/abstracts/paper170.html. 

Fernandez, M., Florescu, D., Kang, J., Levy, A., & Suciu. D. (1998, June 2-4). Catching the boat 
with Strudel: Experiences with a website management system. In A. Tiwary, & M. 
Franklin, Proceedings ACM SIGMOD International Conference on Management of Data, 
Seattle, Washington, USA (pp.414– 425). New York, NY, USA: ACM Press. 

Fiebig, T., Helmer, S., Kanne, C., Moerkotte, G., Neumann, J., Schiele, R., et al. (2002, 
November). Anatomy of a native XML base management system. The VLDB Journal, 
11(4), 292-314. 

Fisher, D.K., Lam, F., Shui, W.M., & Wong, R.K..  (2006, January 16-19). Dynamic Labeling 
Schemes for Ordered XML Based on Type Information. In G. Dobbie, & J. Bailey (Eds.), 
Proceedings of the 17th Australasian Database Conference, Hobart, Australia (Vol. 49, pp. 
59-68). Darlinghurst, Australia: Australian computer Society, Inc. 

Florescu, D., & Kossmann, D. (1999, September). Storing and querying XML data using an 
RDMBS. Bulletin of the Technical Committee on Data Engineering (IEEE-CS), 22(3), 27-
34. 

Freire, J., & Benedikt, M. (2004, July). Managing XML Data: An Abridged Overview. 
Computing in Science & Engineering, IEEE, 6(4), 12-19. 

Gardarin, G., Gruser, J., & Tang, Z. ( 1996, September 3-6). Cost-based selection of path 
expression processing algorithms in object-oriented databases. T.M. Vijayaraman, A.P. 
Buchmann, C. Mohan, and N.L. Sarda (Eds.), Proceedings of the Twenty-Second 
International Conference on Very Large Data Base, Bombay, India (pp. 390–401). San 
Fransisco, CA, USA: Morgan Kaufmann. 

Goldman, R., McHugh, J., & Widom, J. (1999, June 3-4). From semistructured data to XML: 
Migrating the Lore data model and query language. In S. Cluet, & T. Milo (Eds.), 
Proceedings of  the 2nd International Workshop on the Web and Databases, ACM 
SIGMOD Workshop, Philadelphia, Pennsylvania, USA (pp. 25-30). 

Goldman, R., & Widom, J. (1997,  August 25-29). DataGuides: Enabling query formulation and 
optimization in semistructured databases. In M. Jarke, M.J. Carey, K.R. Dittrich, F.H. 
Lochovsky, P.  Loucopoulos, & M.A. Jeusfeld (Eds.), Proceedings of 23rd International 
Conference on Very Large Data Bases, VLDB’97, Athens, Greece (pp.436-445). San 
Fransisco, CA, USA: Morgan Kaufmann Publishers Inc. 

Goldman, R., & Widom, J. (1999, January 13). Approximate Data Guide. In Proceedings of the 
Workshop on Query Processing for Semistructured Data and Non-Standard Data Formats, 
Jerusalem, Israel. 

Gou, G., & Chirkova, R. (2007, October). Efficiently Querying Large XML Data Repositories: A 
Survey. Transactions on Knowledge and Data Engineering, 19(10), 1381-1403. 

Grust, T. (2002, June 3-6). Accelerating XPath location steps. In Proceedings of the ACM 
SIGMOD International Conference on Management of Data, Madison. Wisconsin, USA 
(pp. 109-120). New York, NY, USA: ACM Press. 

Guo, L., Shao, F., Botev, C., & Shanmugasundaram, J. (2003, June 9-12). XRANK: Ranked 
keyword search over XML documents. In Proceedings of the ACM SIGMOD International 
Conference on Management of Data. San Diego, California, USA (pp.16-27). New York, 
NY, USA: ACM Press. 

Jiang, H., Lu, H., Wang, W., & Chin Ooi, B. (2003, March 5-8). XR-tree: Indexing XML data for 
efficient structural joins. In U. Dayal, K. Ramamritham, & T.M. Vijayaraman (Eds.), 
Proceedings of the 19th International Conference on Data Engineering. Bangalore, India 
(pp.253-263). IEEE Computer Society. 



45 
 

Kaushik, R., Bohannon, P., Naughton, J., & Korth, H. (2002, June 3-6). Covering indexes for 
branching path queries. In Proceedings of the ACM SIGMOD International Conference on 
Management of Data, Madison, Wisconsin, USA (pp.133-144). New York, NY, USA: 
ACM Press. 

Kaushik, R., Bohannon, P., Naughton, J.,  & Shenoy, P. (2002, August 20-23). Updates for 
Structure Indexes. In P.A. Bernstein, Y.E. Ioannidis, R. Ramakrishnan, & D. Papadias 
(Eds.), Proceedings of 28th International Conference on Very Large Data Bases, Hong 
Kong, China (pp.239-250). San Fransisco, CA, USA: Morgan Kaufmann. 

Kaushik, R., Krishnamurthy, R., Naughton, J., & Ramakrishnan, R. (2004 June 13-18). On the 
integration of structure indexes and inverted lists. In G. Welkum, A.C. Konig, & S. 
Dessloch (Eds.), Proceedings of the ACM SIGMOD International Conference on 
Management of Data, Paris, France (pp.779-790). New York, NY, USA: ACM Press. 

Kaushik, R., Shenoy, P., Bohannon, P., & Gudes, E. (2002, 26 February - 1 March). Exploiting 
local similarity for indexing paths in graph-structured data. In A.D. Williams, & S. Kawada 
(Eds.), Proceedings of 18th International Conference on Data Engineering, San Jose, 
California, USA (pp. 129-140). Los Alamitos, CA, USA: IEEE Computer Society.   

Knuth. D. (1998). The Art of Computer Programming: Vol. III. Sorting and Searching (3rd ed., 
pp. 492-507). Reading, MA., USA: Addison-Wesley. 

Li, H., Lee, M.L., Hsu, W., & Chen, C. (2004, September). An Evaluation of XML Indexes For 
Structural Join.  ACM SIGMOD Record, 33(3), 28-33. 

Li, Q., & Moon, B. (2001, September 11-14). Indexing and querying XML data for regular path 
expressions. In P.M.G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, & 
R.T. Snodgrass (Eds.), Proceedings of 27th International Conference on Very Large Data 
Bases, Roma, Italy (pp.361-370). San Fransisco, CA, USA: Morgan Kaufmann. 

Lu, J., Ling, T., Chan, C., & Chen, T. (2005, August 30-September 2). From region encoding to 
extended Dewey: On efficient processing of XML twig pattern matching. In K. Bohm, C.S. 
Jensen, L.M. Haas, M.L. Kersten, P. Larson, & B.C. Chin (Eds.), Proceedings of the 31st 
International Conference on Very Large Data Bases. VLDB, Trondheim, Norway (pp. 193-
204). New York: ACM Press. 

Lu, J., & Ling, W. (2004, April 14-17). Labeling and Querying Dynamic XML Trees. In J. Xu 
Yu, X. Lin, H. Lu, & Y. Zhang (Eds.), Advanced Web Technologies and Applications, 6th 
Asia-Pacific Web Conference, Hangzhou, China (LNCS 3007, pp. 180-189). Berlin, 
Germany: Springer.  

Mariano, P., & Baeza-Yates, R. (2005, December 7-9). Database and Information retrieval 
Techniques for XML. In S. Grumbach, L. Sui, & V. Vianu (Eds.). Advances in Computer 
Science-ASIAN 2005, Data Management on the Web, 10th Asian Computing Science 
Conference, Kunming, China (LNCS 1318, pp. 22-27). Berlin, Germany: Springer. 

McHugh, J., Abiteboul, S., Goldman, R., Quass, D., & Widom, J. (1997, September). Lore: A 
database management system for semistructured data. ACM SIGMOD Record, 26(3), 54–
66. 

McHugh, J., & Widom, J. (1999, September 7-10). Query Optimization for XML. In M.P. 
Atkinson, M.E. Orlowska, P. Valduriez, S.B. Zdonik, & M.L. Brodie (Eds.), Proceedings 
of 25th International Conference on Very Large Data Bases, VLDB’99,  Edinburgh, 
Scotland, UK (pp.315-326). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. 

Megginson, D., & Brownell, D. (2004, April 27). Simple API for XML (SAX).  Retrieved January 
22, 2009, from http://www.saxproject.org/. 

Milo, T., & Suciu, D. (1999, January 10-12). Index Structures for Path Expressions. In C. Beeri, 
& P. Buneman (Eds.), Database Theory –ICDT’99, Proceedings of 7th International 
Conference on Database Theory, Jerusalem, Israel (LNCS 1540, pp.277-295). Berlin, 
Germany: Springer. 



46 
 

Moro, M., Vagena, Z., & Tsotras, V. (2005, August 30 - September 2). Tree-Pattern Queries on a 
Lightweight XML Processor. In K. Bohm, C.S. Jensen, L.M. Haas, M.L. Kersten, P. 
Larson, & B.C. Chin (Eds.), Proceedings of the 31st International Conference on Very 
Large Data Bases. VLDB, Trondheim, Norway (pp. 205-216). New York: ACM Press. 

Naughton, J., DeWitt, D., Maier, D., Aboulnaga, A., Chen, J., Galanis, L., et al. (2001 June). The 
Niagara Internet Query System. Bulletin of the Technical Committee on Data Engineering 
(IEEE-CS),  24(2), 27-33.  

O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., & Westbury, N. (2004, June 13-18). 
ORDPATHs: Insert-Friendly XML Node Labels. In G. Welkum, A.C. Konig, & S. 
Dessloch (Eds.), Proceedings of the ACM SIGMOD International Conference on 
Management of Data, Paris, France (pp. 903-908). New York, NY, USA: ACM Press.  

Online Computer Library Center. (2008). Dewey decimal classification. Retrieved January 13, 
2009, from http://www.oclc.org/dewey/versions/ddc22print/intro.pdf. 

Paparizos, S., Jagadis, H., Patel, J., Al-Khalifa, S., Ladshmanan, L., Srivastava, D., et al. (2003, 
June 9-12). TIMBER: A native system for querying XML. In Proceedings of the ACM 
SIGMOD International Conference on Management of Data, San Diego, California, USA. 
(pp. 672-672). New York, NY, USA: ACM Press. 

Polyzotis, N., & Garofalakis, M. (2002, August 20-23). Structure and Value Synopses for XML 
Data Graphs. In P.A. Bernstein, Y.E. Ioannidis, R. Ramakrishnan, & D. Papadias (Eds.), 
Proceedings of 28th International Conference on Very Large Data Bases, Hong Kong, 
China (pp. 466-477). San Fransisco, CA, USA: Morgan Kaufmann. 

Polyzotis, N., Garofalakis, M., & Ioannidis, Y. (2004, June 13-18). Approximate XML Query 
Answers. In G. Welkum, A.C. Konig, & S. Dessloch (Eds.), Proceedings of the ACM 
SIGMOD International Conference on Management of Data, Paris, France (pp.263-274). 
New York, NY, USA: ACM Press. 

Rao, P., & Moon. B. (2004, March 30-April 2). PRIX: Indexing and querying XML  using Prufer 
sequences. In Proceedings of the 20th International Conference on Data Engineering, 
ICDE 2004, Boston, MA, USA (pp.288-300). IEEE Computer Society. 

Robie, J. (Ed.), Derksen, E., Fankhauser, P., Howland, E., Huck, G., Macherius, I., et al. (1999, 
August). XML query language (XQL). Retrieved January 20, 2009, from 
http://www.ibiblio.org/xql/xql-proposal.html. 

Salton, G., & McGill, M.J. (1983). Introduction to Modern Information Retrieval  (pp. 16-21). 
New York, NY, USA: McGraw-Hill. 

Schoning, H. (2001, April 2-6). Tamino – a DBMS Designed for XML. In D.C. Young (Eds.), 
Proceedings of  the 17th International Conference on Data Engineering, Heidelberg, 
Germany (pp. 149-154). Los Alamitos, CA, USA: IEEE Computer Society. 

Silberstein, A., He, H., Yi, K., & Yang, J. (2005, April 5-8). BOXes: Efficient Maintenance of 
Order-Based Labeling for Dynamic XML Data. In Proceeding of the 21st International 
Conference on Data Engineering, ICDE 2005, Tokyo, Japan (pp.285-296). Washington, 
DC, USA: IEEE Computer Society. 

Sturtz Electronic Publishing (STEP). (1998). Introduction to XML [White paper]. Retrieved 
January 22, 2009, from http://www.xml.org/xml/step_intro_to_XML.shtml 

Tatarinov, I., Viglas, S., Beyer, K., Shanmugasundaram, J., Shekita, E., & Zhang. C. (2002, June 
3-6). Storing and Querying Ordered XML Using a relational Database System. In 
Proceedings of the ACM SIGMOD International Conference on Management of Data,. 
Madison, Wisconsin, USA (pp.204-215). New York, NY, USA: ACM Press. 

The DBLP Computer Science Bibliography. (2009, January). DBLP XML records [Data file]. 
Retrieved January 22, 2009, from http://www.informatik.uni-trier.de/~ley/db/. 

Thompson, H.S., Beech, D., Maloney, M., & Mendelsohn, N. (Eds.). (2004, October 28). XML 
Schema Part 1: Structures Second Edition. Retrieved January 26, 2009, from 
http://www.w3.org/TR/xmlschema-1/.   



47 
 

University of Washington. (2001, May 10). The Tukwila system. Retrieved January 14, 2009, 
from http://xml.coverpages.org/tukwila.html. 

Vakali, A., Catania, B., & Maddalena, A. (2005, March-April). XML Data Stores: Emerging 
Practices. Internet Computing, IEEE. 9(2),62-69. 

Wang, G., Liu, M., Sun, B., Yu, G., Lv, J., Xu Yu, J., et al. (2003, July 16-18). Effective Schema-
Based XML Query Optimization Techniques. In B.C. Desai, & W. Ng (Eds.), Proceedings 
of the 7th International Database Engineering and Applications Symposium. IDEAS’03,  
Hong Kong, China (pp. 230-235). Los Alamitos, CA, USA: IEEE Computer Society. 

Wang, H., & Meng, X. (2005, April 5-8). On the sequencing of tree structures for XML indexing. 
In Proceeding of the 21st International Conference on Data Engineering, ICDE 2005, 
Tokyo, Japan (pp. 372-383). Washington, DC, USA: IEEE Computer Society.  

Wang, H., Park, S., Fan, W., & Yu., P. (2003, June 9-12). ViST: A Dynamic Index Method for 
Querying XML Data by Tree Structures. In Proceedings of the ACM SIGMOD 
International Conference on Management of Data, San Diego, California, USA (pp.110-
121) . New York, NY, USA: ACM Press. 

Wang, W., Wang, H., Lu, H., Jiang, H., Lin, X., & Li, J. (2005, August 30-September 2). 
Efficient Processing of XML Path Queries Using the Disk-based F&B Index. In K. Bohm, 
C.S. Jensen, L.M. Haas, M.L. Kersten, P. Larson, & B.C. Chin (Eds.), Proceedings of the 
31st International Conference on Very Large Data Bases. VLDB, Trondheim, Norway (pp. 
145-156). New York: ACM Press. 

Weigel, F., Meuss, H., Bry, F., & Schulz, K.U. (2004, April 5-7). Content-Aware DataGuides: 
Interleaving IR and DB Indexing Techniques for Efficient Retrieval of Textual XML Data. 
In S. McDonald, & J. Tait (Eds.), Advances in Information Retrieval, Proceedings of 26th 
European Conference on Information Retrieval, ECIR 2004. Sunderlank, UK. (LNCS 
2997, pp. 378-393). Berlin, Germany: Springer. 

Wu, X., Lee, M., & Hsu, W. (2004, March 30-April 2). A Prime Number Labeling Schemes for 
Dynamic Ordered XML Trees. In Proceedings of the 20th International Conference on 
Data Engineering, ICDE 2004, Boston, MA, USA (pp.66-78). IEEE Computer Society. 

Xu, Y., & Papakonstantinou, Y. (2005, June 14-16). Efficient keyword search for smallest LCAs 
in XML databases. In Proceedings of the ACM SIGMOD International Conference on 
Management of Data, Baltimore, Maryland, USA (pp. 527–538). New York, NY, USA: 
ACM press. 

Yang, B., Fontoura, M., Shekita, M., Rajagopalan, S., & Beyer, K. (2004, November 8-13). 
Virtual Cursors for XML Joins. In D.A. Evans, L. Gravano, O. Herzog, C. Zhai, & M. 
Ronthaler, (Eds.), Proceedings of the thirteenth ACM International Conference on 
Information and Knowledge Management,CIKM 2004, Washington, DC, USA (pp.523-
532). New York, NY, USA: ACM Press. 

Zhang, C., Naughton, R., Dewitt, D., Luo, Q., & Lohman, G. (2001, May 21-24). On Supporting 
containment Queries in Relational Database Management Systems. In T. Sellis (Ed.), 
Proceedings of ACM SIGMOD International Conference on Management of Data, Santa 
Barbara, California, USA (pp.425-436). New York, NY, USA: ACM Press. 

Zou, Q., Liu, S., & Chu, W. (2004, November 12-13). Ctree : A Compact Tree for Indexing XML 
Data. In A.H.F. Laender, D. Lee, & M. Ronthaler (Eds.), Proceedings of the 6th annual 
ACM international workshop on Web Information and Data Management,WIDM 2004, 
Washington, DC, USA (pp.39-46). New York, NY, USA: ACM Press. 

 
 
 
 
 



48 
 

ADDITIONAL READING 
 

Ali, M.S., Consens, M., Gu, X., Kanza, Y., rizzolo, F., & Stasiu, R. ( 2007, August). Efficient, 
Effective and Flexible XML Retrieval Using Summaries. In N. Fuhr, M. Lalmas, & A. 
Trotman (Eds.), Comparative Evaluation of XML Information Retrieval Systems (LNCS 
4518, pp. 89-103). Berlin: Germany: Springer. 

Alstrup, S., Bille, P., & Rauhe, T. (2003, January 12-13). Labeling Schemes for Small Distances 
in Trees. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete 
Mathematics, Baltimore, Maryland, USA (pp. 689-698). Society for Industrial and Applied 
Mathematics. 

Angles, R., Gutierrez, C. (2008, February). Survey of Graph Database Models. ACM Computing 
Surveys, 40(1), Article No.1. 

Barta, A., Consens, m. Mendelzon, A. (2005, August 30-September 2). Benefits of Path 
Summaries in an XML Query Optimizer Supporting Multiple Access methods. In K. 
Bohm, C. Jensen, L. Hass, M. Kersten, P. Larson, & B. Ooi (Eds.), Proceedings of 31st 
International Conference on Very Large Data Bases, Tondheim, Norway (pp.133-144). 
VLDB Endowment.  

Bonifati, A., Ceri, S. (2000, March). Comparative Analysis of Five XML Query Languages. 
ACM SIGMOD Record, 29(1), 68-79. 

Catania, B., Maddalena, A., & Vakali, A. (2005, September-October). XML Document Indexes: 
A Classification. IEEE Internet Computing, 9(5), 64-71. 

Catania, B., Ooi, B., Wang, W., & Wang, X. (2005, June 14-16). Lazy XML Updates: Laziness 
as a Virtue of Update and Structural Join Efficiency. In Proceedings of the 2005 ACM 
SIGMOD International Conference on Management of Data, Baltimore, Maryland, USA 
(pp. 515-526). New York, NY, USA: ACM Press. 

Christophides, V., Plexousakis, D., Scholl, M., & Tourtounis, S. (2003 May 20-24). On Labeling 
Schemes for the Semantic Web. In Proceedings of the 12th International conference on 
World Wide Web, Budapest, Hungary (pp. 544-555). New York, NY, USA: ACM Press 

Consens, M., Rizzolo, F., & Vaisman, A. (2008, April 7-12). AxPRE Summaries: Exploring the 
(Semi-)Structure of XML Web Collections. In Proceedings of the 24th International 
Conference on Data Engineering (ICDE’08), Cancun, Mexico (pp. 1519-1521). IEEE. 

Elghandour, I., Aboulnaga, A., Zilio, D.C., Chiang, F., Balmin, A., Beyer, K., & Zuzarte, C. 
(2008, June 9-12). An XML Index Advisor for DB2. In J.T. Wang (Ed.), Proceedings of 
the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, 
BC, Canada (pp. 1267-1270). New York, NY, USA: ACM Press. 

Halverson, A., Burger, J., Galanis, L., Kini, A., Krishnamurthy, R., Rao, A.N., Tian, F., et al. 
(2003, September 9-12). Mixed Mode XML Query Processing. In J.C. Freytag, P.C. 
Lockemann, S. Abiteboul, M.J. Carey, P.G. Selinger, & A. Heuer (Eds.), Proceedings of 
the 29th International Conference on Very Large Data Bases, Berlin, Germany (pp. 225-
236). San Fransisco, CA, USA: Morgan Kaufmann Publishers Inc. 

Harder, T., Haustein, M., Mathis, C., & Wagner, M. (2007, January). Node labeling schemes for 
dynamic XML documents reconsidered. Data & Knowledge Engineering, 60(1), 126-149. 

Harding, P.J., Li, Q., & Moon, B. (2003, September 9-12). XISS/R: XML Indexing and Storage 
system Using RDBMS. In J.C. Freytag, P.C. Lockemann, S. Abiteboul, M.J. Carey, P.G. 
Selinger, & A. Heuer (Eds.), Proceedings of the 29th International Conference on Very 
Large Data Bases, Berlin, Germany (pp. 1073-1076). San Fransisco, CA, USA: Morgan 
Kaufmann Publishers Inc. 

Haw, S., Lee, C. (2008, February 17-20). Evolution of Structural Path Indexing Techniques in 
XML Databases: A Survey and Open Discussion. In Proceedings of International 
Conference on Advanced Communication Technology (ICACT’08), Phoenix Park, Korea 
(Vol. 3, pp. 2054-2059). Piscataway, NJ, USA: IEEE Computer Society. 



49 
 

Kaplan, H., Milo, T., & Shabo, R. (2002, January 6-8). A comparison of labeling schemes for 
ancestor queries. In Proceedings of the 13th annual ACM-SIAM Symposium on Discrete 
Algorithms, San Fransisco, CA, USA (pp. 954-963). Philadelphia, PA, USA: Society for 
Industrial and Applied Mathematics.  

Kha, D., Yoshikawa, M., & Uemura, S. (2001, April 2-6). An XML Indexing Structure with 
Relative Region Coordinate. In Proceedings of  the 17th International Conference on Data 
Engineering, Heidelberg, Germany (pp. 313-320). Los Alamitos, CA, USA: IEEE 
Computer Society. 

Kobayashi, M. & Takeda, K. (2000, June). Information Retrieval on the Web. ACM Computer 
Surveys, 32(2), 144-173. 

Krishnamurthy, R., Kaushik, R., & Naughton, J.F. (2003, ). XML-to-SQL Query Translation 
Literature: The State of the Art and Open Problems. In Z. Bellahsene, A.B. Chaudhri, E. 
Rahm, M. Rys, & R. Unland (Eds.), Database and XML Technologies, First International 
XML Database Symposium, XSym 2003, Berlin, Germany (LNCS. 2824, pp. 1-18). Berlin, 
Germany: Springer. 

Li, C., & Ling T.W. (2005, October 31-November 5). QED: A Novel Quaternary Encoding to 
completely Avoid Re-labeling in XML Updates. In O. Herzog, H. Schek, N. Fuhr, A. 
Chowdhury, & W. Teiken (Eds.), Proceedings of the 14th ACM International Conference 
on Information and Knowledge Management (CIKM), Bermen, Germany (pp. 501-508). 
New York, NY, USA: ACM Press.  

Li, Y., Yi, P., & Li, Q. (2005, October 12-18). Optimizing Path Expression Queries of XML 
Data. In Proceedings of 2005 IEEE International conference on e-Business Engineering 
(ICEBE’05), Beijing, China (pp. 497-504). Los Alamitos, CA, USA: IEEE Computer 
Society. 

Luk, R., Leong, H., Dillon, T., Chan, A., Bruce, W., & Allan, J. (2002, May). A Survey in 
Indexing and Searching XML Documents. Journal of the American society for Information 
Science and Technology, 53(6), 415-437. 

Lv, J., Wang, G., Yu, J., & Yu, G. (2002, August 11-13). Performance Evaluation of a DOM-
Based XML Database: Storage, Indexing, and Query Optimization. In X. Meng, J. Su, & 
Y. Wang (Eds.), Advances in Web-Age Information Management, Third International 
Conference, WAIM 2002, Beijing, China (LNCS 2419, pp. 13-24). Berlin, Germany: 
Springer. 

Mendelzon, A., Rizzolo, F., & Vaisman, A. (2004, August 31-September 3). Indexing Temporal 
XML Documents. In M.A. Nascimento, M.T. Ozsu, D. Kossmann,   R.J. Miller, J.A. 
Blakeley, & K.B. Schiefer (Eds.). Proceedings of the 30th VLDB Conference. Toronto, 
Canada (pp. 216-227). San Fransisco, CA, USA: Morgan Kaufmann. 

Miler, J., & Sheth, S. (2000, February-March). Querying XML Documents. IEEE Potentials 
Magazine, 19(1), 24-26. 

Sahuguet, A. (2000). Kweelt, the Making-of: Mistakes Made and Lessons Learned (Tech. Rep. 
No. MS-CIS-00-23). Pennsylvania, USA: University of Pennsylvania, Department of 
Computer and Information Science. 

Shalem, M., & Bar-Yossef, Z. (2008, April 7-12). The Space complexity of Processing XML 
Twig Queries Over Indexed Documents. In Proceedings of the 24th International 
Conference on Data Engineering (ICDE’08), Cancun, Mexico (pp. 824-832). IEEE. 

Vagena, Z., Moro, M., & Tsotras, V. (2004, June 17-18). Twig Query Processing over Graph-
Structured XML Data. In S. Amer-Yahia, & L. Gravano (Eds.), Proceedings of the Seventh 
International workshop on the Web and Databases (WebDB 2004), Paris, France (pp. 43-
48). New York, NY, USA: ACM Press. 

Vianu, V. (2003, June). A Web Odyssey: from Codd to XML. ACM SIGMOD Record, 32(2), 68-
77. 



50 
 

Weigel, F., Schulz, K.U., & Meuss, H. (2005, November 5). Exploiting Native XML Indexing 
Techniques for XML Retrieval in relational Database Systems. In A. Bonifi, D. Lee, & M. 
Rotnthaler (Eds.), Proceedings of the Seventh ACM International Workshop on Web 
Information and Data Management, Bremen, Germany (pp. 23-30). New York, NY, USA: 
ACM Press 

Yi, K., He, H., Stanoi, I., & Yang, J. (2004, June 13-18). Incremental maintenance of XML 
Structural Indexes. In G. Weikum, A.C. Konig, & S. DeBloch (Eds.), Proceedings of the 
2004 ACM SIGMOD International Conference on Management of Data, Paris, France (pp. 
491-502). New York, NY, USA: ACM Press. 

Zhang, N. (2004, March 14-18). XML Query Processing and Optimization. In W. Lindner, M. 
Mesiti, C. Turker, Y. Tzizikas, & A. Vakali (Eds.). Current Trends in Database 
Technology - EDBT 2004 Workshops, Herakleion, Greece (LNCS 3268, pp. 121-132). 
Germany, Berlin: Springer. 

Zhang, B., Wang, W., Wang, X., & Zhou, A. (2007, April 9-12). AB-Index: An Efficient 
Adaptive Index for Branching XML Queries. In Advances in Databases: Concepts, 
Systems and Applications, Proceedings on the 12th International Conference on Database 
Systems for Advanced applications, DASFAA 2007, Bangkok, Thailand,.(LNCS 4443, pp. 
988-993). Berlin, Germany: Springer. 

Zhang, N., Kacholia, V., & Ozsu, M.T. (2004, March 30-April 2). A Succinct Physical Storage 
Scheme for Efficient Evaluation of Path Queries in XML. In Proceedings of the 20th 
International Conference on Data Engineering, ICDE 2004, Boston, MA, USA (pp.54-
65). IEEE Computer Society. 

Zuopeng, L., Kongfa, H., Ning, Y., & Yisheng, D. (2005, October 6). An Efficient Index 
structure for XML Based on Generalized Suffix tree. Information Systems, 32(2), 283-294. 

 


