
 
 

 
 
 
 

A Survey on Requirements and Design 
Methods for Secure Software 

Development* 
 
 

Muhammad Umair Ahmed Khan and Mohammad Zulkernine 
 
 

School of Computing 
Queen’s University 

Kingston, Ontario, Canada K7L 3N6 
{umair & mzulker}@cs.queensu.ca 

 
 

Technical Report No. 2009–562  
 
 
 
 
 
 
 
 
 

Copyright © Muhammad Umair Ahmed Khan and Mohammad Zulkernine 2009 
 
 
 

This report should be cited as follows: 
 
M. U. A. Khan and M. Zulkernine, A Survey on Requirements and Design Methods for Secure Software Development, Technical Report No. 2009 
– 562 , School of Computing, Queen’s University, Kingston, Ontario, Canada, August 2009. 
 



i 
 

ABSTRACT 
 

Traditionally, security of software is not considered from the very beginning of a software 
development life cycle, and it is only incorporated in the later stages of development as an afterthought. 
As a consequence, there are increased risks of security vulnerabilities that are introduced into software in 
various stages of development. To avoid security vulnerabilities, there are many secure software 
development efforts in the directions of secure software development life cycle processes, security 
specification languages, security requirements engineering processes, secure design languages, and secure 
design guidelines. In this paper, we compare and contrast various secure software development processes 
based on a number of characteristics that such processes should have. We also analyze security 
specification languages with respect to desirable properties of such languages. Furthermore, we identify 
activities that should be performed in a security requirements engineering process to derive 
comprehensive security requirements. We compare different security requirements engineering processes 
based on these activities. Finally, we investigate the state-of-the-art in secure design languages and secure 
design guidelines. Our analysis shows that many of the secure software requirements and design methods 
lack some of the desired properties. The comparative study presented in this paper will provide guidelines 
to software developers for selecting specific methods that will fulfill their needs in building secure 
software applications. 
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1 Introduction 
Security of software has become an important issue with the increasing integration of software in various aspects 

of human society. Software is considered to be secure if it does not allow the confidentiality, integrity, and 
availability (widely referred to as CIA) of its data, code, or service to be compromised [1]. However, most of today’s 
software are not secure and contain security vulnerabilities that can be exploited by people with malicious intent to 
cause financial and/or physical harm.  

Traditionally, security of software is not considered from the very beginning of a software development life 
cycle (SDLC), and it is only incorporated in the later stages of development as an afterthought. As a consequence, 
there are increased risks of security vulnerabilities that are introduced into software in various stages of development. 
The traditional approach to security of software has led to penetrate-and-patch approaches. In a penetrate-and-patch 
approach, security of software is assessed by attempting to break into the software from its environment by 
exploiting known security vulnerabilities. If such a penetration attempt is successful, a patch is developed and 
deployed for the vulnerability that allowed the break-in. Penetrate-and-patch approaches have many major 
drawbacks [2-6]. First, developing and deploying a patch to remove an error that causes a security vulnerability can 
be up to 200 times more expensive [7] than if the error had been removed as soon as it was introduced during 
development. Second, there is no assurance that the developed patch itself does not have any new security 
vulnerabilities (assuming that the traditional approach of software development was followed). Third, there is no 
guarantee that all the existing security vulnerabilities have been identified. Finally, major harm could have already 
occurred before a security vulnerability is even detected [6]. 

Secure software engineering aims to avoid security vulnerabilities in software by considering security aspects 
from the very beginning and throughout the SDLC. Secure software engineering is the process of designing, 
building, and testing software so that it becomes secure. Software security concerns are different from “application 
security” issues. Application security is about protecting software after it is developed and deployed. It usually 
includes input filters, intrusion detection systems, firewalls, and other protection mechanisms [2-5].  

Software security includes secure software development life cycle (SSDLC) processes and secure software 
development (SSD) methods. A SSDLC process is either a SDLC process augmented with various SSD methods or a 
set of independent SSD methods. An SSD method provides ways to incorporate security in software during its 
development. An SSD method maybe a security specification language, security requirements engineering process, 
secure design specification language, set of secure design guidelines, secure design pattern, secure coding standard, 
and software security assurance method (e.g., penetration testing, static analysis for security, and code reviews for 
security). 

In this paper, we analyze the existing SSDLC processes, requirements methods, and design methods for secure 
software development based on their strengths and weaknesses. We first identify a number of characteristics of a 
SSDLC process that make it complete and effective. These characteristics are then used to compare and contrast 
various SSDLC processes. We also present a detailed comparison of security specification languages based on a 
number of desirable properties. This comparison focuses on identifying languages that can effectively specify 
security requirements. Moreover, we identify activities that should be performed as part of any security requirements 
engineering process. Based on these activities, we compare various security requirements engineering processes and 
identify their strengths and weaknesses. Finally, we provide an analysis of the state-of-the-art of different secure 
design languages and guidelines. 

The analysis presented in this paper can be useful in a number of ways. The comparison of various SSD methods 
will help software developers in selecting a particular SSDLC process, security specification language, security 
requirements engineering process, or secure design language for their particular development scenarios. The 
identified properties of software security specification and design languages can be useful to translate one 
specification language into another. Such a translation is particularly useful when a user of one language intends to 
use security tools developed for other languages.  

The rest of this paper is organized as follows. Chapter 2 defines the software security terms used in this paper. 
Chapter 3 presents an in-depth critical analysis of SSDLC models or processes. Chapter 4 analyzes methods for 
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software security requirements engineering. Methods for secure software design are discussed in Chapter 5. Chapter 
6 concludes this paper by summarizing our findings and identifying the corresponding open research issues.  

2 Definitions Related to Software Security 
A number of terms are used in software security literature, sometimes with varying meanings. In this chapter, we 

explain the major terms used in this paper.  

Asset 

An asset can be anything considered valuable [8] and should be protected. An asset is the “target of threats, the 
possessors of exposures, or the beneficiary of countermeasures” [9]. According to Verdon and McGraw [10], an 
asset can be a system component, data, or a complete system. The National Institute of Standards and Technology 
[11] defines an asset to be “a major application, general support system, high impact program, physical plant, 
mission critical system, or a logically related group of systems”. We consider something as an asset that can be 
harmed. An asset can be code (binary or source) of the software, data or information used or stored by the software, 
and the service provided by the software. Successful exploitation of these assets can lead to financial loss, physical 
injury, and sometimes even death.  

SSD Activity 

We define an SSD activity as the use or execution of a SSD method (as defined in Chapter 1).  

Vulnerability 

Flechais et al. [12] define a vulnerability as a part of the software which is prone to undesirable action. A 
vulnerability is the result of a software defect that an attacker can exploit to cause harm [10]. More precisely, “a 
software vulnerability is an instance of an error in the specification, development, or configuration of a software such 
that its execution can violate the security policy. … a software vulnerability can result from many errors, including 
errors in the specification, design, or coding of a system, or in environmental assumptions that do not hold at 
runtime” [8]. 

Software Security Error 

The term error has been very rarely used in software security literature. Most of the authors use the term 
vulnerability and do not distinguish between vulnerability and error. Sometimes the term flaw is also used instead of 
error [13]. In software reliability engineering, the term error is defined as an incorrect or missing action by a person 
that results in a fault [14]. A software security error is a tangible manifestation of a mistake in any of the SDLC 
artifacts (requirement specifications, design, or source code) of a piece of software that leads to a vulnerability [8, 13, 
15]. A software security error can be one of the following, if it is related to security threats. 

 
a) Requirement specification error - An incorrect or missing requirement in the requirement specifications due to a 

mistake made in the requirement specification phase of the SDLC. 
b) Design error - An incorrect logical decision (the decision itself or the representation of a decision) in the design 

due to a mistake made in the design phase of the SDLC. 
c) Source code error - An incorrect representation of the design decisions in the source code due to a mistake made 

in the implementation phase of the SDLC. 

Software Security Requirement 

A software security requirement [15], sometimes also referred to as a countermeasure or safeguard [9-11], can be 
defined as a requirement needed to avoid a specific software security error during development. More specifically, a 
software security requirement is a control or constraint which if not implemented may lead to a vulnerability. As a 
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software security error can be present in any of the SDLC artifact, therefore, a software security requirement can be 
specified for any SDLC artifact [15]. 

The term security requirement has also been used as a synonym to attack scenario in the security literature [16, 
17]. However, while we believe that attack scenarios can provide a basis to derive a security requirement, they 
themselves cannot and should not be considered as a security requirement. 

Attack 

An attack is a deliberate attempt by a malicious entity or person to harm an asset of a piece of software by 
exploiting an existing vulnerability. An attack can be successful or unsuccessful. An attack is also called intrusion. 

Attack Specification 

An attack on a piece of software may consist of a single or multiple steps. An attack specification is the 
representation of the sequence of these steps defined formally using a specification language. An attack specification 
is sometimes also referred to as an attack signature, attack scenario, or intrusion scenario [11, 17, 18]. 

Risk 

The risk posed by a particular attack is the product of the probability of that attack taking place and the combined 
damage that can be caused to different assets if the attack is successful [10, 11, 15]. 

Risk Analysis 

Risk analysis is the process of calculating risk. It can be performed during any phase of software development. 
Risk analysis takes into account knowledge about existing vulnerabilities, attacks, possible impact of attacks, and 
probability of attacks [10, 15]. 

Threat Modeling 

Threat modeling [19] is a method to identify possible threats (exploitable or not) to a piece of software. It takes 
into account the assets of the software and potential attackers and their goals.  

Attack Surface 

An attack surface of a piece of software is the collection of entry or access points into that software. An entry (or 
access) point is defined as a possible way in which the user can interact with the software and possibly attack it. 
Examples of entry (access) points include user interfaces, configuration files, and data files. A large number of entry 
points indicate that the software has a large attack surface and vice versa. 

3 SSDLC Processes 
As the idea of incorporating security into software from the very beginning of development has gained 

acceptance, various secure software development (SSD) methods were suggested. However, software are still being 
developed by following the conventional SDLC models or processes, and various SSD methods are used at different 
stages as deemed fit to the developers. Many secure SSDLC processes have been proposed in the literature which we 
summarize in Section 3.1. We identify characteristics that a SSDLC process should have and provide a detailed 
comparison of the processes based on these characteristics in Section 3.2. 

3.1 Summary of Existing SSDLC Processes 
A number of SSDLC processes have been reported in the literature with varying characteristics. These are 

McGraw’s SSDLC process [2], Trustworthy Computing Security Development Life Cycle or Microsoft Software 
Development Life Cycle (MS SDL) [20, 21], Appropriate and Effective Guidance for Information Security (AEGIS) 
[12, 22], Secure Software Development Model (SSDM) [23], Aprville and Pourzandi’s Secure Software 
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Development Life Cycle Process [16], Secure Software Development Model (SecSDM) [24], Software Security 
Assessment Instrument (SSAI) [4, 25], mapping of the most prevalent vulnerabilities to various secure design and 
implementation activities [26], Comprehensive, Lightweight Application Security Process (CLASP) [27], Secure 
Software Development Process Model (S2D-ProM) [28], and Team Software Process for Secure Software 
Development (TSP-Secure) [29]. The following paragraphs summarize these SSDLC processes.  

McGraw’s Secure Software Development Life Cycle Process 

McGraw [2] proposes to augment a SDLC process (waterfall or iterative) with certain SSD activities. In essence, 
McGraw’s process focuses on incorporating security requirements, performing risk analysis during different 
development phases, and applying security assurance methods such as risk-based security testing, static analysis, and 
penetration testing. The process also suggests using risk analysis during the design phase. For the security assurance 
phase, McGraw suggests using abuse cases and security requirements to guide penetration testing.  

Microsoft Software Development Life Cycle (MS SDL)  

There are two important facets to the MS SDL [20, 21]. First, there is a policy that a security expert overlooks 
and guides the development of secure software. Second, it follows the principle of secure by design (secure software 
development), secure by default (software should run with the least necessary privileges to minimize the attack 
surface), secure by deployment (tools and guidance should accompany the software to help users in using the 
software securely), and communication (from developers to end users about vulnerabilities and patches). This 
principle is also called SD3 + C. The following paragraphs summarize the secure by design aspect as the rest of the 
aspects are beyond the scope of this paper. 

MS SDL is itself a spiral model augmented with various SSD activities. During the requirement specification 
phase, MS SDL proposes to use customer (end-user) demands to identify security objectives and required security 
features. The incorporation of these security features are guided by industry standards and certification criteria. The 
assigned security expert also specifies the exit criteria for each phase of development during this phase. MS SDL 
suggests the following activities to be performed during the design phase: identification of the components that are 
critical to security, identification of design techniques/guidelines (e.g., application of least privilege principle, 
minimization of attack surface), identification of entry or access points of the attack surface, threat modeling and risk 
analysis on a component-by-component basis, identification of security requirements to mitigate threats, 
identification of components that need special attention during testing and code reviews, and completion criteria for 
the software.  

MS SDL recommends following the secure coding standards in the implementation phase. The MS SDL process 
places emphasis on the security assurance by recommending testing, static code analysis using tools, and code 
reviews during the final stages of the implementation phase. After implementation is complete, the completed 
software is again verified for security by performing security code reviews and security testing. This security testing 
specially focuses on the security critical components of the software (e.g., entry points of the attack surface). 

Appropriate and Effective Guidance for Information Security (AEGIS) 

AEGIS [12, 22] is a SSDLC process based on the spiral model and focuses on the specification of security 
requirements by identifying assets and performing risk analysis. The requirement specification and design phases of 
AEGIS are closely related and are not separately addressed by the authors. The authors propose to have four design 
sessions between the developers and the stakeholders of the software. The first and second sessions model the 
software assets and their relationships and identify the high level confidentiality, integrity, and availability 
requirements (i.e., what security properties should be preserved for which assets) by using abuse cases. In the third 
session, risk, vulnerabilities, and threats to the software are identified. The fourth design session selects the security 
requirements to remove the identified vulnerabilities. 

AEGIS also suggests a risk analysis method to be used during the third and fourth design sessions. This risk 
analysis method has the following major steps: 
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a) Determination of vulnerabilities.  
b) Determination of cost and likelihood of an attack in the deployed environment (including roles played by people 

interacting with the software and the tasks that will be performed on the software). 
c) Selection of security requirements based on security expert’s advice. 
d) Cost-benefit assessment of the selected security requirements. 
e) Comparison between the cost and likelihood of each attack against the cost of security requirements. 
f) Selection of security requirements based on cost effectiveness. 

Secure Software Development Model (SSDM) 

SSDM [23] is a process that incorporates various security activities into a waterfall software development life 
cycle model. According to SSDM, threat modeling should be performed in the requirement specification phase. The 
threat modeling results in lists of all potential vulnerabilities and attacks. Such lists can be helpful to avoid these 
vulnerabilities throughout development.  

After threat modeling, a security policy is to be defined that should clearly state how security will be achieved. 
Such a policy, as outlined by SSDM, is a set of high level management decisions such as avoiding errors throughout 
the development process and the correction of errors as soon as they are detected. For the design phase, SSDM 
advises to follow the security policy. Penetration testing is the only SSD activity for the security assurance phase, as 
identified by SSDM. 

Aprville and Pourzandi’s Secure Software Development Life Cycle Process 

Aprville and Pourzandi [16] propose a SSDLC process based on their experience while developing an instant 
messaging software. According to their process, the first step in the requirements specifications phase is to identify 
the high level security objectives (confidentiality, integrity, and availability) of the software being developed by 
considering its deployment environment. For low level security objectives, threat modeling should be used to help in 
building a set of security requirements. These security requirements can then be prioritized according to the results of 
risk analysis. In the design phase, the authors recommend using UMLsec [6] to represent design decisions and 
security design patterns. For the implementation phase, the authors suggest to choose a programming language that 
best fulfills their security objectives. In addition, special emphasis should be placed on avoiding buffer overflow and 
format string vulnerabilities. They also point out that already verified algorithms should be used, especially for 
cryptography. For the security assurance phase, code reviews, static vulnerability code scanners, ad-hoc unit and 
system security testing, fuzz testing, and various testing tools should be used. 

Secure Software Development Model (SecSDM) 

SecSDM [24] uses risk analysis in the requirement specification phase to prioritize threats to the software. High 
level security objectives such as confidentiality, integrity, and availability are then identified based on these threats. 
In the design phase, security features are selected that can mitigate threats and achieve security objectives. SecSDM 
proposes following secure coding standards in the implementation phase. 

Software Security Assessment Instrument (SSAI) 

SSAI [4, 25] is a set of activities which use certain resources and tools to help in developing secure software. 
The first resource SSAI provides is an online vulnerability database [30] containing information about various 
vulnerabilities and their exploits and mitigations. The second SSAI resource is a security checklist that can be used to 
guide development in a secure fashion. Authors present details on how to develop such a checklist and potential 
items that can be included [4]. The third resource is a list of publicly available static code scanning tools. SSAI also 
provides flexible modeling framework (FMF) which is a modeling tool. The FMF can be used to develop models and 
verify them for desired properties using model checking. The authors claim that this tool can “delay” the effects of 
state space explosion problem as it verifies the desired properties first on individual components and then on the 
strategic combinations of these components. Lastly, SSAI provides a property-based testing tool (PBT) which uses 
the security properties specified in the security checklist or FMF as a basis to test the software.  
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Hadawi’s Set of Secure Development Activities 

Hadawi [26] identifies 25 common vulnerabilities to avoid during development. He also proposes a number of 
design and implementation security requirements that, if incorporated, would help in avoiding these vulnerabilities. 
During the implementation phase, the only SSD activity is the selection of an appropriate (secure) programming 
language. For the security assurance phase, Hadawi recommends using security code reviews and static code analysis 
tools.  

Comprehensive, Lightweight Application Security Process (CLASP) 

Comprehensive, Lightweight Application Security Process (CLASP) [27] is a set of SSD activities which are 
categorized according to the roles performed during development. CLASP also suggests the assignment of a security 
expert from the beginning of development. For the requirement specification phase, CLASP advocates performing 
risk analysis and threat modeling. An attacker profile should also be developed based on the potential attacker and 
their resources. Moreover, the attack surface and security features that need to be implemented should be identified. 

According to CLASP, risk analysis and threat modeling should be performed again during the design phase. 
CLASP proposes to annotate class diagrams with security information. In the security assurance phase, CLASP 
recommends performing security code reviews, security code scanning, and security testing. CLASP also provides a 
list of common vulnerabilities with comprehensive information about how and when they can be introduced during 
development and how to avoid them. 

Secure Software Development Process Model (S2D-ProM) 

S2D-ProM [28] specifies multiple possible strategies to advance from one development phase to another. The 
main idea behind this process is to provide developers with flexible options. These strategies always result in an SSD 
activity. The process proposes to conduct risk analysis during requirement specification, design, and implementation 
phases. Risk analysis, according to S2D-ProM, can be performed in different ways for each development phase. For 
example, error checklists or personal experience can be used in the requirement specification phase, model checking 
or design reviews can be used in the design phase, and testing or code reviews can be used in the implementation 
phase. The identified risks can then be mitigated using various strategies (e.g., defining security rules, using security 
mechanisms).  

S2D-ProM also provides multiple options while advancing from one development phase to another. For 
example, security standards or personal experience can be used to develop requirement specifications, a security 
modeling language or security patterns can be used to construct design from requirements, and secure coding rules or 
personal experiences can used to develop source code from design. S2D-ProM does not specify whether only one 
strategy should be used while moving from one phase to another or multiple strategies can be used at the same time. 

Team Software Process for Secure Software Development (TSP Secure) 

TSP-Secure [29] addresses security in the following three ways: planning for security, managing quality and 
security throughout the development life cycle, and educating developers about security related aspects. During the 
planning phase the team identifies security goals and produces a detailed plan to guide development. Development 
activities in the plan may include, but are not limited to, identifying security risks, eliciting security requirements, 
secure design, code reviews, unit testing, fuzz testing, and static code analysis. The team may choose any SSD 
activity as deemed necessary. According to TSP-Secure, one team member performs the role of a security manager 
who is responsible to ensure that all security related activities are taking place.  

3.2 Detailed Comparison of Existing SSDLC Processes 

Each of the proposed SSDLC processes has its strengths and weaknesses. Gregoire et al. [31] have compared MS 
SDL and CLASP based on the structure of the process, the resources provided by the process, and the SSD activities 
performed during different phases of the software life cycle (project inception, education, analysis, design, 
implementation, testing, verification, deployment, and support phases). Modifying the comparison criteria used by 
Gregoire et al. [31], we propose that an SSDLC process should have the following characteristics: specification of 
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SSD activities for requirements engineering, design, implementation, and security assurance phases, resources 
available to the developers, use of artifacts of an SSD activity in the later phases of development, and usage in the 
industry. We further elaborate these characteristics and compare and contrast various SSDLC processes based on 
these characteristics in the following subsections. Table 1 presents a comparison of these SSDLC processes.  

3.2.1 SSD Activities for Requirements Engineering 

Every SSDLC process should explicitly specify the use of certain SSD activities for each of the development 
phases (i.e., requirements engineering, design, implementation, and security assurance). Gregoire et al. [31] have 
only provided a comparison of activities performed in MS SDL and CLASP. We, however, identify SSD activities 
that must be performed during requirements engineering, design, implementation, and testing phases to develop more 
secure software. These SSD activities are based on the ones proposed by different SSDLC processes. In the 
requirements engineering phase, the following activities should be included: 

  
a) Threat modeling to identify possible threats to the software so that appropriate security features and mechanisms 

can be specified. 
b) Requirements specification review/inspection to find security errors by possibly using a checklist of potential 

requirements specification security errors. 
c) Security requirements specification using a security requirements specification language to remove the identified 

errors. 
d) Risk analysis to prioritize the identified security requirements and security assessment to evaluate the security 

state of the requirement specifications [2, 15]. 
  
Almost all the SSDLC processes (except SSAI [4, 25], MS SDL [20, 21], and set of SSD activities by Hadawi 

[26]) perform threat modeling and/or risk analysis during the requirements specification phase. Moreover, all 
processes except SSAI, SSDM [23], and Hadawi’s set of activities recommend defining security features to mitigate 
identified threats. A formal review of the specified requirement specifications is only advocated by SSAI which uses 
model checking. None of the processes propose the use of any security requirements specification language. Note 
that we do not consider abuse cases used by McGraw [2] as a security requirements specification language. In 
summary, many processes recommend a similar set of SSD methods to be used during requirements engineering. 

3.2.2 SSD Activities for Design  

For the design phase, the following SSD activities should be performed to have a more secure design: 
  

a) Secure design guidelines and principles should be followed while developing the initial design. Secure design 
patterns should either be followed or used for guidance. Secure design decisions should be specified using a 
secure design specification language. 

b) Threat modeling should be performed on the initial design to identify possible threats to the software. It should 
be noted that the results of threat modeling during requirements specification and design phase would be 
different due to the additional information present in the design. 

c) Design reviews should be performed to identify security errors. It is possible that an error found in the design is 
due to an error in the requirements specification. In such a case, the error in the requirements specification 
should be fixed. 

d) The identified threats and errors should be used as a basis to specify security requirements for the design.  
e) Risk analysis should be performed to prioritize the security requirements and for design. Security of design 

should also be assessed [2, 15]. 
 
Most of the processes pay very little or no attention to SSD activities in the design phase. For example, SSAI [4, 

25] does not propose any specific SSD method, McGraw [2] only advises performing risk analysis, Hadawi [26] only 
outlines a set of secure design guidelines to be followed, Apvrille and Pourzandi [16] only recommend the use of 
UMLsec [6] and security patterns, and so on. S2D-ProM [28] does suggest multiple SSD activities to be performed 
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to develop a secure design, however, each of these activities are related to a unique strategy. Only MS SDL [20, 21] 
and CLASP [27] provide a comprehensive set of SSD methods for the design phase. Both of these processes do not 
explicitly propose the use of a specific security design language, however, they do advise to incorporate security 
decisions in the design. MS SDL recommends identifying security critical components so that these can receive 
additional attention. 

3.2.3 SSD Activities for Implementation 

For the implementation phase, a secure programming language should be selected to minimize security errors. 
Moreover, secure coding standards and guidelines should be followed. Apvrille and Pourzandi [16], Hadawi [26], 
and S2D-ProM [28] suggest that an implementation language that is secure should be used for development. MS 
SDL [20, 21], SecSDM [24], McGraw’s SSDLC process [2], S2D-ProM, CLASP [27], and Hadawi propose to 
follow secure coding standards and/or guidelines. MS SDL goes further and suggests that certain security assurance 
activities should be performed during implementation. 

3.2.4 SSD Activities for Security Assurance 

Many different SSD activities can be performed during the security assurance phase. These activities include 
security testing (e.g., penetration testing [2]), security static analysis using code scanning tools, security code 
reviews, risk analysis, and security assessment. These activities do not guarantee security of the software but identify 
errors and vulnerabilities. Moreover, these activities complement each other. We propose that all of the above 
mentioned SSD activities for security assurance should be performed to achieve greater assurance regarding the 
security of software. With the exception of AEGIS [12, 22], SSDM [23], and SecSDM [24], all the processes 
recommend using multiple security assurance methods such as security testing, code reviews, static code analysis, 
and so on. 

3.2.5 Resources 

Certain secure development resources should be available to the developers. Such resources can be lists of 
potential errors, vulnerabilities, and possible mitigations for each error or vulnerability. This knowledge is helpful in 
avoiding the errors that may lead to vulnerabilities in the first place [31]. Knowledge about possible errors and 
vulnerabilities is also helpful in assessing the security state of an SSDLC artifact [15] and deciding when to move to 
the next phase of development.  

Many online databases, such as Common Vulnerabilities and Exposures [32] with over 32,000 reported 
vulnerabilities, are maintained to provide information about reported vulnerabilities. Vulnerabilities have also been 
categorized with their possible mitigations [27, 30, 32-35]. However, this available knowledge is not organized with 
respect to the criticality of vulnerabilities, time of introduction during development, and software application 
domain. As is evident from Table 1, only CLASP [27], SSAI [4, 25], and Hadawi [26] provide developers with any 
resources. These three SSDLC processes present potential vulnerabilities, their mitigations, and development 
guidelines. However, resources provided by CLASP are more extensive. Moreover, MS SDL [20, 21] and McGraw 
[2] provide secure design guidelines. 

3.2.6 Use of Artifacts of an SSD Activity in the Later Phases of Development 

The purpose of performing any SSD activity is to increase the security posture of the SDLC artifact on which the 
activity is performed. However, if the product of any SSD activity can also be used in later phases of development, it 
would increase the effectiveness of that particular SSD activity. For example, if the abuse cases derived by the abuse 
case specification activity (SSD activity for the requirement specification phase) can be used to generate test cases in 
the testing phase, it would mean that this SSD activity is more effective as compared to other SSD activities whose 
artifacts are not or cannot be used in the later phases. Both AEGIS [12, 22] and McGraw’s SSDLC process [2] 
specify abuse cases without explicitly mentioning their future use within the SDLC. Nevertheless, abuse cases have 
been used to generate test cases [36, 37]. CLASP [27] uses security requirements to guide testing. 
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    SDLC 
Processes 

 
 

Characteristics 

McGraw 
SDL [2] MS SDL [20, 21] AEGIS [12, 

22] SSDM [23] Apvrille & Pourzandi
[16] SecSDM [24] SSAI [4, 25] Hadawi [26] CLASP [27] S2D-ProM [28] TSP Secure 

[29] 

SSD Activities 
for 
Requirements 
Engineering  

Specification 
of abuse 
cases and 
security 

requirement. 
Risk 

analysis. 

Identification of 
interfaces, security 

objectives and 
required security 

features. Definition of 
exit criteria.  

Risk analysis.
Identification 

of assets, 
abuse case 
and high 

level security 
requirements.

Threat 
modeling. 

Specification 
of security 

policy. 

Identification of high 
level security 

objectives. Threat 
modeling. Specification 

of security 
requirements. Risk 

analysis. 

Risk analysis. 
Identification 

of security 
objectives. 

Modeling using 
flexible modeling 
framework (FMF). 
Model checking for 

security. 

None 
 

Risk analysis. Threat 
Modeling. 

Identification of 
attackers and attack 

surface. Specification 
of misuse cases with 

their mitigations, 
security features. 

Following 
security 

standards. Risk 
analysis. 

Identification of 
errors. 

Specification of 
security 
features. 

Threat 
modeling. 

Specification 
of abuse 

cases. Risk 
Analysis. 

SSD Activities 
for Design 

Risk 
analysis. 

Identification of 
critical components, 

attack surface, design 
methods, and 

completion criteria. 
Threat modeling. Risk 
analysis. Definition of 

secure architecture. 

Design 
decisions 
based on 
security 

requirements.

Following 
the security 

policy. 

Use of UMLsec and 
security patterns. 

Identification 
of security 
features to 

fulfill security 
objectives. 

None 
Following 

design 
guidelines. 

Following design 
guidelines. Annotation 
of class diagrams with 
security information. 

Threat modeling. Risk 
analysis. 

Using security 
modeling 
language, 
security 

patterns. Risk 
analysis. Design 
reviews. Model 

checking. 

Design 
patterns. 

State 
machine 

design and 
verification.

SSD Activities 
for 
Implementation 

None 

Following secure 
coding standards. 

Code reviews. Use of 
testing and static code 

analysis tools. 

None None 

Use of a secure 
programming language. 

Use of established 
security algorithms. 

Avoiding buffer 
overflow and format 
string vulnerabilities. 

Following 
secure coding 

standards. 
None 

Use of a secure 
programming 

language. 
Following 

secure coding 
standards and 

guidelines. 

Following secure 
coding guidelines. 

Following 
secure coding 
standards. Use 

of a secure 
programming 

language. 

Following 
secure 

programming 
standards and 

guidelines. 

SSD Activities 
for Security 
Assurance 

Risk-based 
and 

penetration 
testing. Use 

of static 
code 

analysis 
tools.  

Code reviews. 
Security testing. None Penetration 

testing. 

Code reviews. Ad-hoc 
unit and system security 

testing. Fuzz testing. 
Use of static code 

analysis tools. 

None 

Use of static code 
analysis tools. 
Property-based 

testing using the 
PBT tool. 

Code reviews. 
Use of static 
code analysis 

tools. 

Code reviews. Use of 
static code analysis 

tools. Security testing.

Risk analysis. 
Code reviews. 
Use of static 
code analysis 

tools. 

Fuzz testing. 
Penetration 
testing. Use 

of static code 
analysis 

tools. Code 
reviews. 

Resources 
Secure 
design 

guidelines. 

Secure design 
guidelines. None None None None 

Vulnerabilities and 
their mitigations, a 
list of security code 
scanning tools, and 
potential items for 
a security checklist 

to guide 
development. 

Common 
vulnerabilities 
to avoid and 
secure design 

and 
implementation 

guidelines. 

Secure design and 
implementation 
guidelines. A 

comprehensive list of 
more than 200 types of 

vulnerabilities with 
their possible 
mitigations. 

None None 

Use of Artifacts 
of an SSD 
Activity in the 
Later Phases of 
Development 

Abuse cases 
can be used 
to derive test 

cases. 

None 

Abuse cases 
can be used 
to derive test 

cases. 

None None None None None Security testing is 
based on requirements. None None 

Usage in the 
Industry Reported Reported Not Reported Not 

Reported Not Reported Not Reported Not Reported  Reported Not Reported Not reported 

Table 1. Comparison of SSDLC Processes 
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3.2.7 Usage in the Industry 

A crucial test for the applicability of any SSDLC process is its usage in the industry. A model or process which 
fulfills the needs of the industry would be more widely used. Although many of the existing processes might have 
been applied in industrial practice, only MS SDL [20, 21], McGraw’s SSDLC process [2], and CLASP [27] have 
been reportedly used in industry. MS SDL has a slight edge over CLASP and McGraw’s SSDLC process as it was 
developed based on the experiences gained from previously developed commercial software. 

4 Software Security Requirements Engineering 
Requirements engineering is the foundation of developing quality software. It has been estimated that an error 

introduced in the requirements specification phase, if not removed immediately, can cost up to 200 times more to 
correct in later stages of development [7]. The main objective of software security requirements is to specify that the 
confidentiality, integrity, and availability of the software should be preserved. Usually, these requirements specify 
the security features needed for the software system. However, such requirements are not precise enough and need to 
be more explicit about who can do what and when [38].  

Research reported in the field of security requirements engineering are primarily on security specification 
languages and security requirements engineering processes. In Section 4.1, we first summarize existing security 
specification languages and then compare them based on the desirable properties of these languages. In Section 4.2, 
we compare and contrast various security requirements engineering processes based on a set of activities that should 
be part of such a process. 

4.1 Security Specification Languages 

Many different languages (or notations) have been proposed in the literature to represent security specifications 
(security requirements or attack specifications). Some authors use the term security requirement as a synonym to 
attack specification [17, 39]. However, a security requirement [2, 8, 9, 11, 15] is different from an attack 
specification in that a security requirement is a control or constraint which if not implemented may lead to a 
vulnerability. On the other hand, an attack specification represents the sequence of the steps of an attack. 
Nevertheless, it is true that attack specifications can form a basis to identify vulnerabilities in software. Moreover, 
attack scenarios are also helpful in developing intrusion-aware software [40]. 

 A security specification language can be a software specification language used to specify attacks (AsmL [41] 
and UML state charts [18]), an extension of a software specification language to represent attacks (Misuse Cases 
[42], Abuse Cases [43], AsmLSec [39], and UMLintr [44]) and security requirements (UMLsec [6], SecureUML 
[45], Secure Tropos [46], and Misuse Cases [42]), or an attack specification language (e.g., STATL [47] and Snort 
Rules [48]).  

In this section, we first summarize (Section 4.1.1) and then compare (Section 4.1.2) the software specification 
languages and their extensions that have been used in the context of security. Similarly, from the various attack 
specification languages reported in the literature [17], we analyze only those that have been employed with software 
specification languages. 

4.1.1 Summary of Existing Security Specification Languages 

UMLsec 

UMLsec [6] is an extension of UML for secure systems development and uses stereotypes, tags, and constraints 
to specify security requirements. Stereotypes serve as labels for UML model elements to introduce information to the 
model and specify constraints that have to be met by the model. Tags are associated with stereotypes and are used to 
explicitly specify a simple property of a model element. UMLsec defines 21 stereotypes to be used to represent the 
following security requirements: fair exchange (no cheating between parties), non-repudiation (an action cannot be 
denied), role-based access control, secure communication link, confidentiality, integrity, authenticity, freshness of a 
message (e.g., nonce), secure information flow among components, and guarded access (use of guards to enforce 
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access control). Seven of these stereotypes have associated tags and nine stereotypes have constraints. These 
stereotypes can be used for use case diagrams, class diagrams, state charts, activity diagrams, sequence diagrams, 
and deployments diagrams to specify security requirements in a UML model (for both requirement specifications and 
design). Tools have also been developed that allow the developer to model using UMLsec and then verify these 
models (using model checking) [49]. 

SecureUML 

SecureUML [45] is another extension of UML that focuses on specifying role-based access control policies 
(these policies can be considered as security requirements) in a model. SecureUML proposes nine stereotypes that 
can be used to annotate a class diagram with role-based access control information. SecureUML uses the Object 
Constraint Language (OCL) to specify constraints for resources, actions, and permissions. Contrary to UMLsec, 
these constraints can be specified according to the individual software’s requirements.         

Secure Tropos 

Secure Tropos [46] can be used for developing secure software and is an extension of the Tropos development 
methodology [50]. Secure Tropos uses the notions of actor (person(s), organization(s), or software), goal (objectives 
which actors want to achieve), soft goal (a goal whose fulfillment cannot be explicitly determined), task (a particular 
way to accomplish a goal), resource (physical or data), security constraint (specified as high level statements), secure 
goal (used to fulfill a security constraint), secure task (a particular way to achieve a secure goal), and secure resource 
(a resource that is related to a security constraints, secure goal, secure task, or another secure resource). An actor can 
depend on another actor to accomplish a goal or soft goal, perform a task, or deliver a resource. The SecureTropos 
notation can be used to represent security constraints (requirements) on interactions between actors during the 
requirement specification phase. 

Misuse Cases 

A misuse case [42] is a special kind of UML use case that describes undesirable behavior of the software. A 
misuse case is initiated by a special kind of actor called mis-actor (e.g., actor with malicious intent, bad luck, and 
honest actor performing a mistake). Misuse cases and mis-actors can be used to elicit more use cases to neutralize the 
threats posed by misuse cases. Misuse cases and mis-actors are represented in solid black color to distinguish them 
from use cases and actors, respectively. Two special relations called “prevents” and “detects” relate use cases and 
misuse cases. The authors provide a stepwise process to develop a use case diagram (including misuse cases). This 
process can also be used iteratively, if needed. According to this process, first use cases and actors and then misuse 
cases and mis-actors should be specified. After this, the potential “include” relationships between misuse and use 
cases should be identified because often the software’s functionality is used to attack it. Next, new use cases should 
be specified to detect or prevent misuse cases. These new use cases form the high level security requirements of the 
software and they are called as “security use cases” by Firesmith [51]. 

Abuse Cases 

Another way to specify undesirable behavior of a piece of software using UML use case diagrams is to develop 
an abuse case [43] model. An abuse case model specifies harmful interactions using actors and abuse cases. There is 
no notational difference between the components of a UML use case diagram and an abuse case model. The authors 
propose that all the potential harmful interactions should be specified e.g., different potential approaches to perform a 
denial of service attack should be specified as separate abuse cases. The authors recommend using a tree structure to 
elicit these multiple approaches. This adds more detail to the model and allows in identifying all possible security 
measures. Details about actors such as their resources, skills, and objective should also be included as text. 
According to the authors, abuse cases can be used to guide design and testing. 
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UMLintr 

UMLintr [44] is an extension of UML that uses stereotypes and tags to specify intrusions (attacks) using use 
case diagrams, class diagrams, state charts, and package diagrams. Authors divide attacks into four different types. 
Each type is represented as a stereotyped package. There are three stereotypes defined for classes and twelve for the 
use case diagram. Stereotypes for classes also have tags. 

Abstract State Machine Language (AsmL) 

AsmL is an extended finite state machine-based executable software specification language which has also 
been used to specify attack scenarios [41]. The authors argue that due to the extended finite state machine-based 
nature of AsmL, attacks with multiple steps can be specified in AsmL. Such attack scenarios can be automatically 
translated into Snort rules which can then be used with an extension of the IDS Snort [41]. Such attack scenarios are 
able to capture more attacks with multiple steps using context information. Snort rules, the standard input for Snort, 
cannot represent attacks with multiple steps. 

AsmLSec 

AsmLSec [39] is an extension of AsmL that was developed to specify attack scenarios [43]. AsmLSec uses 
states, events, and transitions to represent attacks. Each transition has a source and a destination state, a set of 
conditions to be met to fire the transition, and actions to be performed in case a transition is fired. The attack 
scenarios represented in AsmLSec can be automatically translated into AsmL through a specially developed 
compiler. An IDS has also been developed that takes the translated attack scenarios as input. 

UML State Charts for Security 

UML state charts (without any extension) have been used to specify attacks [18]. The authors have related the 
attacks specified in state charts to Snort rules. These state charts can be manually translated into Snort rules and then 
used with an extension of the IDS Snort. By using state charts, they are able to represent complex multiple step 
attacks which are not possible to be represented in an ordinary Snort rule. 

Snort Rules 

Snort is a widely used network intrusion detection system (IDS). It uses attacks scenarios specified as rules [48] 
to detect attacks over the network. A Snort rule specifies what action should be taken if the rule is matched to a 
network packet, the source and destination IP addresses and ports, the protocol of the observed network, and 
direction of network packet. A number of options can also be specified. These options range from logging a message 
to searching for a particular string in the packet.  

STATL 

STATL [47] is an extended finite state machine-based executable attack specification language. STATL uses 
two main constructs to specify an attack: state and transition. Each transition must have an associated event which 
when occurs fires the transition. Transitions also have optional actions that are performed once a transition is fired. 
State and transition specifications can also have executable code within them. A development environment for 
STATL is also available which can be used to, among other things, visualize the specified attack scenario as a state 
machine. 

4.1.2 Detailed Comparison of Existing Security Specification Languages 

Different security specification languages have different properties. In the following subsections, we identify 
desired properties of these languages and then use these properties to compare the languages. These properties are as 
follows: mandatory requirements for a security requirements specification language [6], similarity with software 
specification languages, use of specified security requirements or attack scenarios in later phases, and tool support. 
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The following paragraphs present a comparison of various security specification languages based on these properties, 
while Table 2 summarizes this comparative study. 

Mandatory Requirements for a Security Requirements Specification Language 

Juerjens [6] proposes seven “mandatory” requirements that must be met by any security requirements 
specification language based on UML. Based on these requirements, we use the following three requirements as a 
basis to compare the existing security specification languages (see column 2 in Table 2). 

 
a) Ability to formulate basic security requirements such as confidentiality, integrity, and availability (high level 

security requirements). 
b) Ability to consider various situations that may lead to different possibilities of attacks (usage scenarios and 

potential attack scenarios). 
c) Ability to represent security mechanisms such as access control and low level security requirements such as 

constraints. 
 
Our analysis shows that only UMLsec [6] and Secure Tropos [46] fulfill all three requirements. Misuse cases 

[42] only lack low level details. 

Similarity with Software Specification Languages 

To integrate security concerns during software development seamlessly, it is essential that security specification 
languages are as close as possible to the software specification languages. The major reason for this is that 
developers would have to spend very little time in becoming well versed in these languages. For example, all the 
languages based on UML (such as Abuse cases [43], Misuse cases [42], UMLsec [6], SecureUML [45], and 
UMLintr [44]) would be much easier to learn for the software practitioners who know UML. The languages based on 
the notion of extended finite state machine and the ones with syntax close to existing programming languages (e.g., 
STATL [47]) may gain popularity more quickly among developers. 

 
 

   Desired Properties 
 
 
 
Security 
Specification 
Languages 

Mandatory Requirements by Juerjens [6] 

Similarity with 
Software 

Specification 
Language (Yes/No)

Use of Specified Security 
Requirements and Attack 

Specifications in a Later Phase 
(Name of the Phase) 

Tool 
Support 
(Yes/No) 

Ability to Formulate 
Basic Security 
Requirements 

(Yes/No) 
 

Ability to 
Represent Usage 

Scenarios 
(Yes/No) 

 

Ability to Represent 
Security Mechanisms 

and Low Level Security 
Requirements 

(Yes/No) 
 

UMLsec [6] Yes Yes Yes Yes Testing [53] Yes [6, 49]

SecureUML [45] No No Yes (RBAC Policy only) Yes Model Checking and Testing [54] Yes [55] 

Secure Tropos [46] Yes Yes Yes (Constraints) Yes No Yes [56] 

Misuse Cases [42] Yes Yes No Yes Testing [36, 37] No 

Abuse Cases [43] No Yes No Yes Testing [36, 37] No 

UMLintr [44] No Yes No Yes Intrusion Detection [44] Yes [52] 

AsmL [41] No Yes No Yes Intrusion Detection [41] Yes [41] 

AsmLSec [39] No Yes No Yes Intrusion Detection [39] Yes [39] 
UML State Charts 
for Security [18] No Yes No Yes Intrusion Detection [18] Yes [18] 

Snort Rules [48] No Yes No No Intrusion Detection [48] Yes [48] 

STATL [47] No Yes No No Intrusion Detection [47] Yes [47] 

Table 2. Comparison of Security Specification Languages  
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Use of Specified Security Requirements or Attack Specifications in a Later Phase 

The main purpose of specifying attack scenarios and security requirements is to ensure the incorporation of 
security concerns in the software being developed. However, their effectiveness would increase if they can also be 
used later. For example, security requirements can be used to derive test cases, and attack scenarios can be used with 
intrusion detection systems. Abuse cases [36, 37], Misuse cases [36, 37], UMLsec [53], and SecureUML [54] have 
been reported to be helpful in guiding testing. If attack scenarios are specified using attack specification languages in 
the requirements specification phase, they can be used as input for intrusion detection systems. While intrusion 
detection is not a part of software development, it plays an important role in the security of software. 

Tool Support 

Another concern with respect to various security specification languages is the availability of supporting tools. 
Languages with tool support are more likely to be used in the industry. Nearly all of the languages have some kind of 
tool support. This can be a design environment (for UMLintr [52], UMLsec [6, 49], SecureUML [55], UML state 
charts [18], and Secure Tropos [56]) or an intrusion detection system (for AsmL [41], UML state charts [18], Snort 
rules [48], AsmLSec [39], and STATL [47]). 

4.2 Security Requirements Engineering Processes  

Security requirements specification languages are used to specify security requirements. However, a process is 
needed to derive these requirements. Such a process is usually called a security requirements engineering process and 
has multiple activities. Some major activities are identification of threats, analysis of risk due to these threats, 
specification of security mechanisms to be used, requirement inspections to identify security requirement errors, and 
elicitation and prioritization of low level security requirements (to remove errors). To derive precise security 
requirements, such activities are necessary because the level of security required is different from software to 
software (depending on user requirements and software domain).  

4.2.1 Summary of Existing Security Requirements Engineering Processs 

Secure Tropos 

The major activities to elicit security requirements in Secure Tropos [46] can be summarized as follows: 
a) Actors, goals, soft goals, their dependencies, and their security constraints (requirements) are identified.  
b) An in-depth analysis of security constraints imposed on goals is performed. There might be many alternative 

ways to achieve a goal and there could be many sub goals to accomplish a goal. The objective of such analysis is 
to identify further goals and soft goals. 

c) Based on the newly identified goals, new security constraints are identified. 
d) Tasks are defined to achieve sub goals (goals at the leaf nodes). 

 
In Secure Tropos, security constraints are the security requirements imposed on the operation of the software. 

After the completion of the above mentioned four activities, one would have identified the goals of the software, how 
it will achieve them, and what are the constraints that need to be respected while accomplishing these goals. Si* is a 
modeling tool for Secure Tropos [56]. 

Security Quality Requirements Engineering (SQUARE)  

SQUARE [57] is a process for eliciting, categorizing, and prioritizing security requirements. SQUARE has the 
following nine activities.  
a) Agree on security definitions. 
b) Identify safety and security goals. 
c) Select requirement elicitation techniques. 
d) Document architectural diagrams, use cases, misuse cases, attack trees, assets, and services. 
e) Elicit safety and security requirements. 
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f) Categorize safety and security requirements. 
g) Perform risk analysis (assessment). 
h) Prioritize requirements based on their importance to the software. 
i) Perform requirement inspections. 

Comprehensive, Lightweight Application Security Process (CLASP) 

CLASP [27] also proposes a security requirements engineering process to formulate security requirements. 
Viega [58] elaborates on this process and suggests that for each security service a set of specific, measurable, 
attainable, and traceable requirements should be defined. The security requirements engineering processes within 
CLASP has four activities which are outlined as follows. 

 
a) Resources and/or assets and roles (owners and users of resources/assets) are identified. 
b) Resources and assets are categorized into classes according to the level of security required. 
c) The interactions that a resource or asset will have over its lifetime are identified. 
d) Based on the interactions of resources/assets, different security services are identified. CLASP recommends 

authorization, authentication and integrity, confidentiality, availability, and accountability as possible security 
services. 

Process by Haley et al. 

Haley et al. [38] propose a process for security requirements engineering. The activities to be performed in this 
process are as follows: 
a) Functional requirements are identified. 
b) Security goals are identified. 
c) Assets that can be harmed are identified. 
d) Threats to assets are identified.  
e) Organizational policies are applied to the functionality and assets of the system. The result is a set of goals that 

should be achieved to accomplish the security goals identified in Activity b. 
f) Based on the goals identified in Activity e, security requirements (constraints on functionality) are identified. 
g) Structured formal and informal argumentations are used to verify that the software’s security goals are met. 

Otherwise, the stakeholders may decide to use a weaker constraint, intrusion detection, and attack recovery. 

Security Requirements Engineering Process (SREP) 

SREP [59] is a process that defines activities and roles to develop security requirements. The authors also 
recommend having a security resources repository (SRR) to store all reusable security requirements elements. The 
activities of SREP are as follows: 
a) Agree on security definitions. 
b) Identify vulnerable and/or critical assets (SRR can be used). 
c) Identify security objectives based on the organizational policy (SRR can be used). 
d) Identify threats using misuse cases or attack trees (SRR can be used). 
e) Assess risk. 
f) Elicit security requirements (SRR can be used). 
g) Categorize and prioritize requirements. 
h) Requirements inspection. 
i) Adding reusable components to SRR. 

 
The roles defined by SREP roles are business modeler, security requirement engineer, risk expert, security 

expert, security developer, quality assurer, and the inspection team. 
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4.2.2 Detailed Comparison of Existing Security Requirements Engineering Processs  

The main objective of any security requirements engineering process is to identify security requirements that can 
reasonably ensure security of the developed software. A security requirements engineering process should have the 
following activities (A1 to A23). This set of activities is based on the activities suggested by various security 
requirements engineering processes (except for A20 which is suggested by us) [27, 38, 46, 57, 58, 59]. Each of these 
activities results in information that can help in identifying security requirements. Performing all of these activities 
might not be absolutely essential and the sequence of these activities is also flexible. We propose that activities A17 
to A23 should be performed iteratively till a satisfactory level of security for the requirement specifications is 
attained.  
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Secure Tropos [46] X X X X X X X 

SQUARE [57] X X X X X X X X X X X X X X X X 
CLASP [27, 58] X X X X X X X X 
Haley et al. [38] X X X X X X X X 
SREP [59] X X X X X X X X X

Table 3. Comparison of Security Requirements Engineering Processes 

A1 Specification of high level functional requirements (services provided by the software). 
A2 Identification of the deployment environment of the software (including interactions with other software). 
A3 Identification of assets and resources of the software. 
A4 Valuation of assets and resources of the software. 
A5 Identification of users of the software. 
A6  Identification of potential attackers of the software. 
A7 Identification of attacker’s interest in the resources/assets of a piece of software. 
A8 Identification of attacker’s capabilities and resources. 
A9 Specification of use cases. 
A10 Specification of misuse scenarios. 
A11 Identification of potential threats to the software (attack trees [60-62] or anti-models [63] can be used to 

decompose threats into smaller ones). 
A12 Identification of security goals (derived through discussion with the stakeholders). 
A13 Specification of high level security requirements such as security mechanisms to be incorporated. 
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A14 Specification of security policy and constraints on the working of the software derived by discussing with the 
stakeholders (e.g., access control policy). 

A15 Specification of low level functional requirements (including requirements of security mechanisms e.g., 
password length). 

A16 Definition of exit criteria depending on the security state of the requirement specifications (the security state 
can be calculated by using security index [15]). 

A17 Requirements inspection to identify security errors. 
A18 Risk analysis. 
A19 Performing security assessment of the requirement specifications (if the assessment meets the exit criteria 

then exit). 
A20 Specification of low level security requirements to remove security errors. 
A21 Cost/benefit analysis (security errors vs. security requirements). 
A22 Categorization and prioritization of low level security requirements. 

A23 Inclusion of selected low level security requirements in the requirement specifications. 

5. Secure Software Design 
Software design represents the static structure and dynamic behavior of software. It is necessary to make design 

decisions that are secure and do not introduce any security vulnerabilities in the completed software. Many secure 
design languages have been proposed to help the developer represent secure design decisions [6, 45, 46]. A few 
works have also been reported in the literature providing developers with secure design guidelines [64-67]. These 
guidelines provide guidance to avoid design flaws that led to security vulnerabilities in previously developed 
software. In this chapter, we first briefly discuss existing secure software design languages. Then we compare 
various sets of secure design guidelines. 

5.1 Secure Design Languages 

Many of the languages for specifying security requirements are also used for specifying design. This is due to the 
fact that low level requirements are very close to static and dynamic design. These languages (e.g., UMLsec [6], 
SecureUML [45], and Secure Tropos [46]) have already been discussed in Section 4.1. There are two major concerns 
that should be considered in selecting a secure design language. These concerns are the variety of diagrams available 
to represent a design from various aspects and levels of abstraction and the availability of tools. UMLsec provides a 
variety of diagrams and has tools available. SecureUML can also be used for secure software design; however, it is 
limited to representing only role-based access control notions in a UML class diagram. Secure Tropos proposes to 
use Agent UML capability diagrams, plan diagrams, and agent interaction diagrams [68]. These diagrams are similar 
to UML activity diagrams (plan and capability) and sequence diagrams (agent interaction).  

5.2 Secure Design Guidelines 

Secure design guidelines are suggestions and principles based on the experience the developers have gained 
while solving recurring software security problems. Presumably, the first set of such guidelines were proposed by 
Saltzer and Schroeder [65]. Bishop [1] has elaborated on these guidelines by providing examples. Viega and 
McGraw [66] and Howard and LeBlanc [67] have also proposed sets of secure design guidelines. There are many 
guidelines that are common among these sets. Peine [64] has analyzed the aforementioned sets of guidelines and 
suggested a consolidated set of guidelines, adding a few new ones, and removing some existing ones. These four sets 
of guidelines are summarized in Table 4 following Peine’s work. 

Each of the sets has some unique guidelines. In his work, Peine did not include three guidelines recommended 
each by Saltzer and Schroeder and by Howard and LeBlanc (listed in the first and third columns in Table 4 with grey 
background). Moreover, we disagree with Peine’s analysis of the guideline “Remember that security features != 
secure features” proposed by Howard and LeBlanc (represented in italics in the third column of Table 4) as 
equivalent to “secure the weakest link not the easiest and most obvious one”. Hence, we have added the meaning not 
considered by Peine in the remarks column.  
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Saltzer & Schroeder 
[65] 

Viega & McGraw 
[66] 

Howard & LeBlanc [67] Peine [64] Remarks about Guidelines 

Economy of 
mechanism. 

Keep it simple.   Do not be more general than 
necessary. 

Keep the design as simple and small as possible. 

  Minimize attack surface. Minimize attack surface. Minimize attack surface. 
Psychological 
acceptability. 

  Make the secure way the easy 
way. 

The security mechanisms should be easy to use. 

Fail-safe defaults. Fail securely.  Fail to a secure mode. Stay secure in case of failures. In case of software failure, access should be denied. 
Complete mediation.    Every access to every object must be checked for authority. 
Open design.  Never depend on security 

through obscurity alone. 
Do not depend on attacker’s 
ignorance. 

The design should not depend on being a secret. 

Separation of 
privilege. 

Practice defense in 
depth. 

Use defense in depth. Use several layers of defense. Having multiple conditions or mechanisms to access an object 
(more secure as compared to a single condition e.g., two 
passwords). 

Least privilege. Follow the principle 
of least privilege. 

Use least privilege. Use the least possible privilege. Every program and user should operate using the least set of 
privileges needed to complete the job. 

Least common 
mechanism. 

   Use of mechanisms common among different users should be 
minimized. 

Work factor.    A security mechanism for which the cost of bypassing is greater 
than the resources of an attacker should be used. 

Compromise 
recording. 

   Sometimes it might be feasible to implement a security mechanism 
that records a compromise. This information can be used to render 
the stolen data useless. 

 Secure the weakest 
link. 

Remember that security 
features != secure 
features. 

Secure the weakest link not the 
easiest and most obvious ones. 

Secure the easiest to exploit vulnerability (not easiest to fix). 
Implementation of security features might have vulnerabilities of 
their own.

 Compartmentalize.  Make components with 
differing privileges. 

Break the software into components and isolate them as much as 
possible to contain the effects of security failure. 

 Promote privacy.  Do not reveal more than 
necessary. 

Inform on a need to know basis. 

 Remember that 
hiding secrets is hard. 

 Be careful when storing 
secrets. 

Secret data should be carefully stored in the software. 

 Be reluctant to trust. Assume external systems 
are insecure. 

Validate all data from lower-
privileged sources. 

Data from all sources, internal or external should be validated. 

 Use your community 
resources. 

  Use available security resources. 

  Do not mix code and 
data. 

Separate code and data. Code and data might need different levels of security (e.g., if code is 
compromised then all data might be at risk). 

  Fix security issues 
correctly.  

 No more security issues should arise due to fixing the existing ones.

  Learn from mistakes.  Learn from experience (own & others). 
  Plan on failure.  What should be done in case of failure? 
  Employ secure defaults. Employ secure defaults. Default software configuration should be secure to the maximum 

extent. 
  Remember that backward 

compatibility will always 
give you grief. 

Beware of backward 
compatibility. 

Backward compatibility in a piece of software might lead to 
difficulties in making it secure. 

   Assess your threats. Threat assessment can help in avoidance. 
   Beware of components with 

conflicting security 
assumptions. 

Especially true for components that are reused. Components being 
reused might have been developed with different security 
assumptions. 

   Recognize and answer attacks. Software should be aware of intrusions. 
   Use only publicly scrutinized 

cryptography. 
Encryption algorithms and cryptographic protocols are not easy to 
devise. Established ones should be used. 

   Use a truly random source to 
create secrets. 

Using true random number generators guarantees added security. 

  Establish a security 
process 

 Follow a secure software development life cycle. 

  Define the product’s 
security goals 

 Determine the threats to the product and derive the security 
objective. 

  Consider security as a 
product feature 

 Consider security features as an integral part of the software and 
incorporate them from the beginning of development life cycle.  

Table 4. Comparison of Secure Design Guidelines based on Peine’s Work [64] 
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5. Summary and Future Research Directions 
Software security has become an important concern in today’s software dependent society. Secure software are 

achieved by employing various secure software development methods. This paper analyzes the current SSDLC 
processes, software security requirements methods (security specification languages and security requirements 
engineering processes), and secure design methods (secure design languages and guidelines).  

The major contributions of this paper are as follows. First, this paper presents a comparison of various SSDLC 
processes and SSD methods for requirements and design. Such a comparison can be helpful for software developers 
in selecting a SSDLC process, security specification language, security requirements engineering process, and secure 
design language according to their needs. The properties identified to compare various software security 
requirements specification and design languages can be used to choose a particular language depending on the 
application requirements. Second, the identified properties can guide software developers in designing a mechanism 
for translating one language into another. Translating one specification language to another language is useful as the 
tools developed for the target language can also be used to for the source language (after translation). Finally, this 
work also presents a summary of the state-of-the-art of secure design guidelines. The following paragraphs 
summarize our analysis on various SSDLC processes, SSD methods for requirements, and SSD methods for design 
along with the related open issues. 

This paper first presents a survey of various SSDLC processes and proposes seven desirable characteristics of a 
SSDLC process. These characteristics are then used to compare and contrast the existing SSDLC processes. The 
analysis of SSDLC processes shows that many of them do not incorporate SSD methods to address security concerns 
throughout the development cycles (only in some phases). Among the processes, MS SDL and CLASP cover more 
aspects of secure software development.  

We also analyzed many security specification languages and proposed properties that should be present in any 
effective security specification language. These properties were used to analyze security specification languages. Our 
findings indicate that UMLsec has most of the identified desirable properties of a security specification language.  

As mentioned before, a security requirements engineering process specifies the activities that need to be 
followed to derive security requirements. We have identified 23 activities that are essential to engineer complete and 
detailed security requirements. We use these 23 activities as a basis to compare five different requirements 
engineering processes. Our analysis shows that SQUARE incorporates more of these activities than other processes. 
However, none of the existing processes includes all the activities. It is true that many of these activities are 
sometimes implicitly performed, and their results are incorporated in the process. However, as with other SSD 
methods, clear guidance should be provided to the developers, most of whom are not well versed in security issues. 
As a future work, we recommend to design an improved security requirements engineering process based on the 23 
proposed activities. This would ensure that all the relevant information has been considered and precise security 
requirements have been defined (both high and low level). 

We have observed that security requirements specification languages have also been used for secure software 
design. However, there is a need to further develop security requirements and secure design specification languages. 
We compared many secure design guidelines reported in the literature. It is expected that these guidelines will be 
enhanced, and they will grow in number as more security issues are encountered in practice.  

The analysis performed in this paper only covers the requirements and design methods for secure software 
development. It does not include secure design patterns, secure coding standards, software security assurance 
methods such as security testing (e.g., penetration testing), static analysis, model checking, and code reviews for 
security. It also does not discuss security standards and criteria, organizational processes for developing secure 
software, and the specification of other related issues such as trust, reliability, and privacy.  
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