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The Doctoral Symposium at MODELS’09

Juergen Dingel

Queen’s University, Canada

dingel@cs.queensu.ca

The goal of the Doctoral Symposium was to provide a forum in which PhD students can present their work
in progress and to foster the role of MODELS as a premier venue for research in model-driven engineering.
The symposium aimed to support students by providing independent and constructive feedback about their
already completed and, more importantly, planned research work. The technical scope of the symposium
coincided with that of MODELS’09. Submissions were required to describe research-in-progress that is meant
to lead to a PhD dissertation and clearly indentify:

• Problem: The technical problem the research intends to solve and why it is important and needs to be
solved.

• Related work: A review of the relevant related work with an explanation of how the proposed approach
is different and which advantages it has.

• Proposed solution: A description of the proposed solution and which other work (e.g., in the form of
methods, or tools) it depends on.

• Expected contributions: A list of the expected contributions.

• Current status: The current status of the work and how close to completion it is.

• Plan for evaluation: A description of how it will be shown that the work does indeed solve the targeted
problem.

Submissions were encouraged from PhD students who had settled on a PhD topic, but were still sufficiently
far away from completion to be able to take full advantage of the given feedback. Nineteen papers from nine
countries were submitted. Every submission was reviewed by three members of the program committee with
respect to

• Overall quality of the submission itself (e.g., clarity, precision (relative to the stage of the research),
and adequacy of the problem statement, the solution description, the expected contributions, the plan
for evaluation, and the review of related work)

• Potential quality of the (completed and proposed) research (e.g., originality of solution and its impact)
and its relevance to the MODELS community

Nine papers were accepted all of which are included in the proceedings. The program committee consisted
of

• Ruth Breu, University of Innsbruck, Austria

• Betty Cheng, Michigan State University, USA

• Juergen Dingel, Queen’s University, Canada

• Gregor Engels, University of Paderborn, Germany

• Robert France, Colorado State University, USA

• Vahid Garousi, University of Calgary, Canada

• Aniruddha Gokhale, Vanderbilt University, USA
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• Jeff Gray, University of Alabama at Birmingham, USA

• Gerti Kappel, Vienna University of Technology, Austria

• Jochen Küster, IBM Research Zürich, Switzerland

• Ingolf Krüger, University of California at San Diego, USA

• Yvan Labiche, Carleton University, Canada

• Pieter Mosterman, The MathWorks, USA

• Iulian Ober, University of Toulouse, France

• Alexander Pretschner, Fraunhofer IESE and Kaiserslautern University of Technology, Germany

• Bernhard Schätz, Munich University of Technology, Germany

• Holger Schlingloff, Humboldt University, Germany

• Michal Smialek, Warsaw University of Technology, Poland

• Stéhane Somé, University of Ottawa, Canada

• Janos Sztipanovits, Vanderbilt University, USA

The organizer would like to thank to the authors of submitted papers for giving us the reason to hold
this symposium, to the members of the program committee for their excellent work, to Alexander Pretschner
for sharing his experience from last year’s symposium, and to MODELS’09 general chairs Robert Pettit and
Sudipto Ghosh for their support.
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Application Reconfiguration Based on
Variability Transformations

Andreas Svendsen1,2

1 SINTEF, Pb. 124 Blindern, 0314 Oslo, Norway,
Andreas.Svendsen@sintef.no

2 Institute for Informatics, University of Oslo, Pb. 1080 Blindern, 0316 Oslo, Norway

Abstract. When variability is applied to a model and the model is
transformed, corresponding test-cases may also require a revision. The
Common Variability Language (CVL) can describe variability and be
executed to generate model variants. We explore the feasibility of an
approach using CVL for automatically transforming a test-case of the
original model. The transformation of a specific test-case using CVL is
walked through demonstrating the approach. Furthermore we discuss the
challenges that need to be resolved. The goal of this work is to find a
general solution for reconfiguring applications based on varying models.

1 Introduction

The Common Variability Language (CVL) is a domain specific language (DSL)
for describing variability [1]. CVL specifies variability models separated from
the base models and allows execution to transform these into various resolved
models.

When variability is applied to models, test-cases, dependent on these models,
may have to change accordingly. Based on how the original model is changed,
these test-cases can be transformed accordingly using CVL. Since CVL is a
DSL, and not a general-purpose transformation language (e.g. ATL [2]), proper
analysis can be performed to retrieve information from the variability models.

As a comparison Uzuncaova et al. [3] present an approach using incremental
test generation to test product line models. Each feature of a program is defined
as an Alloy formula, which is used to generate incremental tests. Our approach
tries to automatically retrieve the information needed from a CVL model to
transform the test-cases. In addition we look at the possibility to predict the
verdict of a transformed test.

To give a better understanding of the issues, we first give a description of the
background, including CVL, and the problem to be analyzed in section 2, before
we introduce an example to illustrate the process in section 3. We then present
proposed solutions and challenges in section 4 and a conclusion in section 5.
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2 Background and Problem

2.1 Common Variability Language

The Common Variability Language is used to specify in separate models the
variability that can be applied to a base model. There are three models of in-
terest: The base model is a model in the domain language, the variability model
describes the variability applied to the base model and the resolution model de-
scribes how the variability model can be resolved to produce a new base model.
One or more variability models can be applied to a base model, and one or more
resolution models can be applied to a variability model.

In CVL the simplest form for operation is a substitution, describing a trans-
formation of objects (model elements) in the repository:

– Value Substitution: Change a value of an object
– Reference Substitution: Change a reference between two objects
– Fragment Substitution: Substitute a group of objects (placement) for another

group of objects (replacement)

The fragment substitution allows replacing a set of objects (representing a frag-
ment of the model) with another set of objects. The variability model stores
the references into and out of the fragments to form placement and replacement
fragments. These references in the placement and replacement are matched and
changed accordingly to form a new model.

Other parts of CVL are basically just abstraction mechanisms on top of the
basic substitutions. Notice that CVL is not a general-purpose language, but
rather a DSL for expressing variability. This makes CVL more restrictive and
applicable for analysis than general-purpose transformation languages.

2.2 Problem Analysis

Assume that we want to apply variability to a model to produce a new resolved
model. Several test-cases may be based on the original model. The problem we
will investigate is whether it is possible to also transform these test-cases based
on the variability model, and if this can be performed automatically. The process
is illustrated in Fig.1.

Our starting point is a model (top left) and its test-case (top right). The first
step is to define a CVL model describing how the model can be transformed into
another model (step 1). Based on the CVL model we retrieve information about
which elements that are about to change and how (step 2). This information is
used to automatically build a new CVL model to transform the test case (step
3). The transformed test-case should apply to the transformed model.

3 Example

To illustrate the problem further, we introduce an example from the domain of
train signaling.
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3.1 Train Control Language

The Train Control Language (TCL) is a domain specific language to describe
signaling systems on train stations, which are safety-critical systems of the high-
est classification [4]. Various representations of the stations, e.g. truth tables,
functional specifications, source code, can be generated.

Fig. 1. CVL transformation of the model (left) and the test-case (right).

TCL defines several elements, such as train routes, track circuits, switches,
line segments, signals and endpoints. These elements are illustrated in Fig.2.
Train routes are routes between two main signals of the same direction, and
these routes need to be allocated before the train can enter or leave the station.
The train routes are divided into track circuits, which are further divided into
switches and line segments.
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Fig. 2. Concrete syntax of TCL.

Since this is a safety-critical system, the models and the produced represen-
tations are tested very thoroughly. The amount of time and resources needed to
run all test-cases on a specific station is enormous. Being able to configure a new
station based on a well tested one without having to rerun all the test-cases can
therefore be a huge saving.

3.2 Challenges to Be Solved

To illustrate the challenges with application reconfiguration based on TCL mod-
els, we provide a test-case scenario in TCL.

Assume that we have a two-track station as illustrated in the top left part
of Fig.1. This station has eight train routes, from left to track 1 (I), from left
to track 2 (II), etc. To be sure to avoid a train from derailing or passing onto
a wrong track each train route has to be tested for switch positions. This test
is performed on runtime and controls that the switch is actually in the position
it is supposed to be. Each switch has two positions: Normal (+) and divert (-)
position. For instance the train route “from left to track 2” requires switch V2
to be in divert position (-).

We assume that this two-track station is well tested and approved. Using CVL
we transform this two-track station into a three-track station (see the lower left
part of Fig.1.) by substituting the second track with a new two-track. Four train
routes are added, two in each direction on the third track. Our purpose is to use
CVL to transform the test-case for the two-track station to also apply for the
three-track station. However, notice that track two and three are divided by an
additional switch. The test-case presented for the two-track station is therefore
incomplete to describe the three-track station. Regarding the test-case, we have
to handle the transformation different for each track:

– Train routes to/from track 1: These train routes only include one switch
which is equivalent to the train routes in the two-track station. It is therefore
no need to update the tests of these train routes.

– Train routes to/from track 2: These train routes include another addi-
tional switch which has to be included in the tests. Consequently, the original
tests have to be extended to also test the position of the newly added switch.
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– Train routes to/from track 3: These train routes are not present in the
two-track station, and tests for them must be created. The created tests can
be based on the tests to/from track 2, with a recalculated verdict.

We will in the following examine the transformation of the test of the follow-
ing train route: “From left to track 2”. The test-case for the original two-track
station is illustrated in the top right part of Fig.1, where we get the verdict
“pass” if switch V2 is in divert position (-). The notation in this figure can
represent any testing profile, e.g. UML testing profile [5] or TTCN-3 [6].

The CVL transformation process is illustrated in Fig.1. A CVL model de-
scribes the variability applied to a two-track station to transform it to a three-
track station (step 1). The purpose of the test-case transformation is to retrieve
enough information from the CVL model (step 2) to automatically transform
the test-case to be meaningful for the three-track station (step 3).

The test-case for the three-track station requires an additional test of the po-
sition of switch V4. Transforming the test-case for the two-track station therefore
requires a substitution where an empty placement is replaced by this test. What
kind of replacement and how it is configured is based on the information from
step 2. Notice that this is a special case, but we want it to be applied to the
general case too.

This test-case also yields other parts of interest. For instance tests of train
routes to/from track 1 do not need to be retested. Since we assume that the
two-track station is well tested, and since the changes do not affect these train
routes, this should be a viable option. However, we need to be certain that other
changes cannot have cascading effects.

4 Proposed Solution and Challenges

For this scenario to be possible, we need to retrieve the elements that is exam-
ined from the test-case (i.e. train route and switch). The connection between the
original elements found in the test-case must be analyzed to gather information
about the requirements of the test-case. Then the CVL model describing the
variability must be analyzed and put in context of the original test-case to ex-
amine the impact the change will have on the test-case. Our proposed solution is
to use CVL to describe the transformations of both the model and the test-case.

Since CVL is not a general-purpose transformation language, information
about the properties of the variable elements can be identified. CVL uses no
search for patterns, but rather describes exactly where we apply a change and
how. Detailed information about which elements that vary and how they vary are
therefore available in the variability model. Accompanied by an analysis of the
domain language and the test-case, properties of these test-cases can be applied.
The purpose of CVL and application reconfiguration is to be general enough to
support many cases.

However, there are some challenges. Can this approach be fully automated,
or will there be a need for manual intervention? Even though we can retrieve
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information from the CVL model, this may not be enough to perform transfor-
mation of the test-case. Another question that is applicable is how we can be
certain about the completeness and correctness of the transformed test-case.

Another matter is whether a well tested test-case needs to be retested. If the
verdict of the transformed test can be safely derived, a rerun of the test is not
necessary. It should therefore be possible to automatically decide whether the
verdict is safely derived. However, how can we for certain decide whether we
need to rerun a test? Even though the element which is tested is not changed,
there may be cascading effects. It may be necessary to restrict and formalize
CVL and the domain language. The question is, however, if this will make the
approach more general.

If test-cases can be transformed successfully based on CVL models, it is
applicable to also transform other kinds of applications. Whether this approach
can support general application transformation is also something we would like
to investigate.

5 Conclusion

We have seen a case where transforming a model yields a need for modifying
a corresponding test-case. Based on the CVL model applied to the base model
we investigated how we can automate this process. Proposed solution and chal-
lenges concerning our approach were listed. The expected contributions of this
work is tool (based on the CVL tool) and methodology support for application
reconfiguration. This tool will be evaluated by industrial partners.
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Abstract. A common approach toward model transformation is to write 
transformation rules in a specialized language. Although such languages 
provide powerful capabilities to automate model refinements, their usage may 
present challenges to those who are unfamiliar with a specific model 
transformation language or a particular metamodel definition. The research 
described in this paper makes a contribution toward simplifying the creation of 
model transformations by recording and analyzing the operational behavior 
exhibited by an end-user. The paper presents the motivation and the current 
status of this research, followed by the project objectives, methodology and 
evaluation plan. A prototype is described that provides initial evidence of the 
benefits of the approach.

Keywords: Model transformation, code generation, by demonstration.

1 Background and Motivation

Model transformation has emerged as a core part of Model-Driven Engineering 
(MDE). Examples of model transformation include code generation from models, 
model synchronization and mapping, model evolution, and reverse engineering [1].
Several approaches have been developed to perform model transformations, such as:
direct model manipulation, intermediate representation, and transformation language 
support [2].

Direct model manipulation accesses the internal structure of a model instance using 
an API provided by a host modeling tool, and encodes the transformation procedures 
in a general-purpose programming language (GPL), such as Java or C++. This 
approach may be used by software developers who are familiar with programming 
languages, but is not feasible for end-users who do not have programming experience.
The power of a transformation is often restricted by the supported API within the 
modeling tool. Furthermore, GPLs lack the high-level abstractions that are needed by 
end-users to specify transformations, making the transformations more challenging to 
write, understand, and maintain.

Many modeling tools support importing and exporting model instances in the form 
of XMI (a standard interchange format for UML models). It is possible to use existing 
                                                           
1 This work is supported in part by an NSF CAREER award (CCF-0643725).
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XML tools (e.g., XSLT) to perform model transformations outside of a modeling tool
using XMI as an intermediate representation. Although XSLT is specifically used to 
transform models, it is tightly coupled to XML, requiring experience to define the 
transformations using concepts at a lower level of abstraction.

A more common and popular approach toward implementing model 
transformations is to specify the transformation rules by using a model transformation 
language. Although most of these languages are powerful, they are not perfect, still 
presenting several challenges to users, particularly those domain experts and non-
programmers who are unfamiliar with a specific transformation language. Even
though declarative expressions are supported in most model transformation languages, 
they may not be at the proper level of abstraction for an end-user, and may result in a 
steep learning curve and high training cost. Furthermore, the transformation rules are 
usually defined at the metamodel level, which requires a clear and deep understanding 
about the abstract syntax and semantic interrelationships between the source and 
target models. In some cases, domain concepts may be hidden in the metamodel and 
difficult to unveil [3][4] (e.g., some concepts are hidden in attributes, association ends 
or enumerations, rather than being represented as first-class entities). These implicit 
concepts make writing transformation rules challenging. Thus, the difficulty of 
specifying metamodel-level rules and the associated learning curve may prevent 
domain experts from contributing to model transformation tasks from which they 
have much domain experience.

The research described in this paper contributes a new approach to simplify the 
realization of model transformations, enabling general users (e.g., domain experts and 
non-programmers) to specify model transformations without knowledge of a specific
model transformation language or metamodel definition.

2 Related Work

Model Transformation By Example (MTBE) is an innovative approach to address the 
challenges inherent from using model transformation languages. Instead of writing 
transformation rules manually, MTBE enables users to define a prototypical set of 
interrelated mappings between the source and target model instances. From those 
mappings, the metamodel-level transformation rules can be inferred and generated 
semi-automatically. In this context, users work directly at the model instance level 
and configure the mappings without knowing any details about the metamodel 
definition or the hidden concepts. With the semi-automatically generated rules, the 
simplicity of specifying model transformations may be improved.

MTBE was first introduced by Varró [5], where the prototypical transformation 
rules were partially generated from the user-defined mappings by conducting source 
and target model context analysis. Varró later proposed a more practical and efficient 
way to realize MTBE by using inductive logic programming [6][7]. The basic idea is 
to represent the initial mappings in the form of logic clauses and then infer the 
transformation rules using a logic programming engine.

Similarly, Strommer and Wimmer implemented an Eclipse prototype to enable 
generation of transformation rules from the semantic mappings between domain 
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models [3][8]. Instead of using a logic programming engine, their inference and 
reasoning process was based on pattern matching and was applied to business process 
modeling languages [9].

However, the current state of MTBE research still has several limitations that 
prevent it from being a widely used model transformation approach. The semi-
automatic generation often leads to an iterative manual refinement of the generated 
rules; therefore, the model transformation designers are not isolated completely from 
knowing the transformation languages and the metamodel definitions. In addition, the 
inference of transformation rules depends on the given sets of mapping examples (i.e., 
the model inference is only as good as the seeded examples). In order to get a
complete and precise inference result, one or more representative examples must be 
available for users to setup the prototypical mappings, but seeding the process with 
such examples is not always an easy task in practice. Furthermore, current MTBE 
approaches focus on mapping the corresponding domain concepts between two 
different metamodels without handling complex attribute transformations. For 
instance, in practice, it is quite common to transform an attribute in the source model 
to another in the target model with some arithmetic or string operations, which is 
expressed by imperative transformation rules in a transformation language. 
Unfortunately, these imperative expressions can only be added manually to the 
generated rules using current MTBE approaches. The related work mentioned here 
primarily has been applied to exogenous model transformation (i.e., transformation of 
model instances from different metamodels), but they are not as beneficial for 
inferring the refinements that are typical of endogenous model transformations where 
the source and target models are from the same metamodel.

3 Goals and Objectives

The Model Transformation By Demonstration (MTBD) research described in this 
paper further simplifies the model transformation process initiated by MTBE. The 
contribution of MTBD is a technique that will enable all model users (i.e., not only 
model experts and programmers, but also domain experts and non-programmers) to 
specify the desired model transformations, without knowing any model 
transformation language or metamodel definition. The realization of MTBD has the 
potential to provide fully automatic generation of transformation rules without manual
refinement of a transformation specification. MTBD will also be applicable to both 
exogenous and endogenous model transformations, enabling complex attribute 
computations. In addition, MTBD can be applied to any model instance without being 
restricted by the availability of appropriate source and target models.

4 Proposed Methodology

Figure 1 provides an overview of the scope of the research on MTBD. The core idea 
is a new technique that records user interactions within a modeling tool and infers a 
representative model transformation specification. Instead of inferring the rules from 
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a prototypical set of mappings (as done in MTBE), users are asked to demonstrate 
how the model transformation should be done by directly editing (e.g., add, delete, 
connect, update) the model instance to simulate the model transformation process step 
by step. The user transforms a source model to the target model during the 
demonstration process. A recording and inference engine will capture all user 
operations and infer a user’s intention in a model transformation task. A
transformation pattern will be generated from the inference, specifying the 
precondition of the transformation (i.e., where the transformation should be done) and 
the sequence of actions needed to realize the transformation (i.e., how the 
transformation should be done). This pattern serves as an intermediate transformation 
representation, which can be used to generate different model transformation rules, 
code, data and other necessary transformation artifacts. The final generated rules and 
code can be reused in any model instance at any time.

 

Fig. 1. Overview of research scope

5 Experimental Evaluation

The goal of MTBD is to provide transparency of a model transformation language to 
allow end-users to specify the essence of the operational behavior of a desired 
transformation. Therefore, this approach must be as powerful as using a general 
model transformation language; i.e., it must have the capability to correctly realize the 
same kinds of model transformation tasks that can be done by applying a general 
model transformation language.

The evaluation of MTBD will be based on three criteria – completeness, 
correctness and simplicity. Regarding the first two criteria, for each kind of model 
transformation (i.e., exogenous and endogenous model transformations), some 
existing transformations written in a specific model transformation language will be
selected. For instance, the ATL transformation zoo [10] provides a list of model 
transformation scenarios that have been implemented by ATL, such as Class to 
Relational, UML to OWL, among others. MTBD will be used to automatically 
generate the transformation rules. Given the same set of source models, we can finally 
compare the target models produced by executing the selected existing transformation 
rules and those produced by applying the transformation rules generated by our 
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approach. The similarity between the two sets of target models reflects the 
completeness and correctness of our approach.

The simplicity of MTBD will be evaluated by observing the time and procedure for 
applying a model transformation by demonstration and the scale of the transformation 
rules to realize the same task. For example, the size and complexity of an ATL 
transformation will be compared to the relative effort (in terms of mouse clicks and 
time) to specify the same transformation by demonstration.

6 Current Results

The current focus of this work is the implementation of endogenous model 
transformation by demonstration. Since both the source and target models conform to 
the same metamodel, they can be presented in the same model editor, which facilitates 
the demonstration process and operation recording. Our work is implemented in the 
Eclipse-based domain-specific modeling tool – GEMS (Generic Eclipse Modeling 
System) [11]. An Eclipse plug-in has been developed, which partially realizes the 
MTBD idea in endogenous model transformations. More specifically, the current 
status of the MTBD prototype includes: (1) a recording engine to completely capture 
all user operations and related context; (2) an algorithm to optimize the recorded 
operations, eliminating meaningless operations (e.g., an add operation followed by a 
delete operation are both meaningless if they operate on the same object); (3) the 
inference and generation of a transformation pattern from the recorded operations that 
describe the weakest precondition and the transformation actions; (4) an algorithm to 
automatically match a transformation precondition in any model instance, and execute 
the necessary transformation actions; (5) support to infer transformations with 
attribute operations; (6) a correctness checking and undo mechanism to guarantee the 
correctness of the transformation process; (7) fully automatic generation of a 
transformation pattern, without iterative manual refinement.

We have applied our approach successfully to complete some model refactoring 
tasks in sample domains, demonstrating transformation correctness and simplicity 
improvement. More information (e.g., video demonstrations) about the capabilities of 
the current MTBD prototype is available on the project’s web site at: 
http://www.cis.uab.edu/softcom/mtbd.

7 Overall Contributions

The current work has led to an initial prototype of MTBD that provides initial 
evidence that the approach can assist end-users in specifying comparatively simple
endogenous model transformation tasks that do not require complex preconditions.
Such evidence suggests that MTBD is possible without learning any model 
transformation language and the metamodel definition of the domain. Future
contributions are expected to improve the specification of more complex 
transformation preconditions and more powerful actions so that large-scale and 
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complex model transformations could be supported. In addition, implementing the 
MTBD idea in exogenous model transformations will be our next focus.

With a complete realization of the MTBD technique, a number of important model 
engineering applications that are currently defined by model transformation languages 
may be improved. For example, MTBD can be used to demonstrate the transformation 
process to generate ATL codes to transform, map and synchronize two domains; 
MTBD can demonstrate the process of weaving a crosscutting concern to the base 
model so that Aspect-Oriented Modeling (AOM) is simplified; some commonly used 
refactoring rules such as Extract Class, Move Method can also be demonstrated, 
automatically generating the model refactoring rules; some traditionally complex 
model evolution tasks such as model scalability can be simplified as well through 
demonstrating the scaling process.
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Abstract. Collaborative software development is nowadays inconceiv-
able without optimistic version control systems (VCSs). Without such
systems the parallel modification of one artifact by multiple users is im-
practicable. VCSs have proved successfully in the versioning of code, but
they are only conditionally appropriate to the management of model
versions. Hence, much research effort is currently spent in the develop-
ment of dedicated model versioning systems. Whereas those approaches
mainly focus on an accurate detection of conflicts which may occur when
two versions of one model are merged, the actual conflict resolution is
hardly considered. Conflict resolution constitutes the phase in the merge
process which involves the most human interaction and in which very
little automatic support is provided by the current versioning systems.
In this proposal, we present research objectives as roadmap towards en-
hanced user support in conflict resolution for model versioning systems.

Key words: model versioning, conflict resolution, model merging

1 Background

The development of software systems without version control systems (VCSs)
is nowadays unimaginable. Especially optimistic VCSs are of particular impor-
tance because such systems effectively manage concurrent modifications on one
artifact performed by multiple developers at the same time. Besides appropriate
infrastructural means like versioning systems for the management of software
artifacts, abstraction mechanisms in terms of model-driven engineering (MDE)
are required to handle the complexity of modern software systems. Hence soft-
ware models nowadays are an indispensable source of information for software
engineering—either traditionally for documentation purpose or now for MDE
(cf. [5]) where code is automatically generated from models. Like other software
artifacts, models are developed in teams and evolve over time, consequently they
also have to be put under version control.

Standard VCSs for code usually work on file-level and perform conflict detec-
tion by line-oriented text comparison. When applied on the textual serialization
? This work has been partly funded by the Austrian Federal Ministry of Transport,

Innovation and Technology (BMVIT) and FFG under grant FIT-IT-819584.
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Fig. 1. Motivating Example.

of models, the result is unsatisfactory because the information stemming from
the graph-based structure is destroyed and the associated syntactic and seman-
tic information is lost. Consequently, dedicated VCSs for model versioning have
been proposed which realize model specific comparison, conflict detection, con-
flict resolution, and merge components.

Especially when resolving complex conflicts between two versions of a model,
user interaction is required. A high degree of automation would enable an effec-
tive and time-saving development of software models [7]. However, a pantheon
of conflicts exists, where automation is currently at its limit (cf. [15]) and only
advanced user support in terms of proper presentation and visualization of the
conflicts (e.g., by grouping the conflicts) make the manual resolution practicable.

Further difficulties in merging software models arise from the fact that they
express aspects of a software system at a very high level of abstraction and,
therefore, reveal a high amount of semantics, domain specific knowledge, and
modeling experience. A concrete example in the context of UML Class Diagram
is depicted in Figure 1. This example shows that concurrent changes of the same
model motivated by different but partly overlapping intentions need manual in-
terventions by the modelers for resolving conflicts. After checking out the actual
version of the origin model V0 consisting of the classes Car and Engine and the
association has, the modeler Sally replaces the association with a composition
in her working copy V0’. Hence, she defines an Engine instance as part of one
Car instance. In parallel, the modeler Harry increases the multiplicities in his
working copy in a different way to unbound in order to declare that more than
one car may use the same type of an engine (e.g., an engine of the type Diesel).
Both versions express different understandings of the class Engine and therefore
an automatic merge is not possible. A naive merge including both variants would
lead to a semantically incorrect model as the upper bound for the multiplicity
of the composition is restricted to one. A collaborative interaction of both mod-
elers is necessary to find a solution combining both intentions. This exchange
of information between the modelers leads to a merged model V1 covering both
aspects by introducing a third class named EngineType (or maybe even a class
CarType) and consequently result in a model of higher semantics and quality.
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Graphical Automatic Dependency Collaborative Model
Approaches

Visualization
Grouping

Resolution Detection Merge Verification

Subversion1 × × × × × ×
EMF Comp.2 X × × × × ×

Alanen & Porres[1] × × × × × ∼
Unicase[12] X × × × × ∼

Oda & Saeki[17] n.a. n.a. × × × ×
CoObRA[19] × × × × × ×

Cicchetti et al.[8] × × ∼ × × ×
Odyssey-VCS[16] n.a. n.a. × × × ×

SMoVer[2] × X × × × ×
Ohst et al.[18] X × × × × ×

Küster et al.[13] X × × ∼ × ×

Table 1. Evaluation of Existing VCS Approaches. (X...feature is provided, ×...not
provided, ∼...partly provided , n.a....not available)

In this research proposal methods focusing on the resolution of conflicts to
fulfill the user’s requirements of effectively developing software models in a col-
laborative manner are elaborated. Therefore we review the conflict resolution
support in state-of-the-art versioning systems in Section 2 which allows us to
formulate six research objectives in Section 3. These objectives will be addressed
in the context of the PhD work.

2 Related Work

In the last decades a lot of research approaches in the domain of software ver-
sioning have been published which are profoundly outlined in [9] and [15]. Most
of them mainly focus on versioning of source code, e.g., Subversion1, as they deal
with software artifacts in a textual manner. Still, dedicated approaches, depicted
in Table 1, exist aiming at the comparison and conflict detection for software
models. In our evaluation we focused on the features offered for conflict resolu-
tion. Some systems provide a graphical visualization of conflicts to support the
user in understanding and resolving them. For instance, EMF Compare2 presents
both versions of the model in a tree-based manner linking the modified and con-
flicting elements by colored lines. Furthermore, in the approach of Ohst et al. [18]
the differences are illustrated in the actual model using the concrete syntax of
the modeling language. Common model elements in both versions are painted
gray whereas differences of interest are highlighted.

To increase the understandability the differences and conflicts may be grouped
by certain categories. The versioning system SMoVer [2] groups conflicts by their
type.

1 http://subversion.tigris.org
2 http://www.eclipse.org/modeling/emft/?project=compare
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Besides a dedicated conflict presentation the key challenges for an advanced
user support are automatic resolution, detection of conflict dependencies as well
as collaborative merging. However, these features are hardly provided by any
approach of our evaluation. Only Cicchetti at al.[8] presents an idea by one
example on how to resolve conflicts automatically and Küster et al.[13] presents
an approach for detecting dependencies and conflicts between changes in process
models.

Model verification is only partly considered by the approaches of [12] and [1].
In Unicase, for instance, a verification of the conformance to the metamodel is
executed before the versions are merged.

3 Research Objectives

The overall goal of the thesis is the development of methods which improve user
support during the conflict resolution phase in model versioning systems. In the
following, the concrete research objectives addressed in the thesis are shortly
presented including the current status of the work as well as a short discussion
of the expected contributions.

Evaluation of Existing Versioning Approaches. In a first step we started to
review existing model versioning systems based on a literature study (cf. the
overview given in the previous section). In the next steps we will extend this
work by considering even more approaches from related fields like systems dedi-
cated to ontologies or certain programming languages. Furthermore, we will also
perform a comprehensive practical evaluation for which we currently develop a
benchmark set consisting of various problems arising in model versioning. We
plan to create a repository consisting of conflicting and non-conflicting versions
of models which we will provide to the research community working in this area.

Analysis of Status Quo and Requirements Arising from Practice. In order to
better understand the requirements on versioning systems and in particular on
model versioning systems arising from practice, we developed a questionnaire
(available on our project page3) which will give a first impression how versioning
systems are applied. In this questionnaire the questions are kept quite general
with the intention to capture a wide range of developers and project managers.
In expert interviews we will capture specific requirements on model versioning
systems.

Classification of Conflicts. Although numerous work (cf. [9] and [15]) discuss
conflicts in versioning in general, to the best of our knowledge no systematic
investigations and classification on the kind of conflicts has been performed so
far in the area of model versioning. In the context of data integration, a lot of
research has been conducted to classify heterogeneities many years ago [11] but
also in recent years [14]. Based on the findings from literature including works
3 http://www.modelversioning.org
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from this field and other related fields, the experiences from our evaluation and
hopefully also from the expert interviews we will establish a detailed survey
on the identified types of conflicts, which occur when two different versions of
one model are merged, and on how different conflicts are related. Based on this
classification, we hope to get a better understanding how to resolve conflicts.

Reduction of Conflict Resolution Effort. Based on the assumption that conflicts
will never be completely resolved automatically, we will develop techniques to
support the user during the merge process. This includes on the one hand in-
vestigations how to present and graphically visualize conflicts in a well-arranged
manner by, e.g., grouping the conflicts. On the other hand, we expect that a
concise classification of conflicts will help us to better understand the relations
and dependencies between different conflicts. This will allow to assign resolution
priorities to the conflicts as the resolution of one conflict may automatically re-
duce the total number of unresolved conflicts, whereas the resolution of another
conflict will introduce several new problems.

Verification of the Merged Version. After performing the merge, the following
two aspects concerning the quality of the merged model have to be considered.

– The first aspect is the provision of the possible different user intentions, when
merging two different versions of a model. In standard versioning systems,
the developer who performs the later commit is sole responsible for the
often time-consuming, error-prone task of resolving the conflicts. If he has
a different understanding of, e.g., the domain, the danger is very high that
he destroys the work of the other modeler resulting in unintended models.
Recently, collaborative merge approaches for code versioning systems have
been proposed to minimize this risk [10]. In [6], we proposed to apply similar
techniques in the context of model versioning where the challenge of merging
two versions is even more formidable due to their graph-structure and their
rich semantics.

– The other quality aspect of a merged model is consistency, i.e., the confor-
mance to its metamodel. This aspect has to be considered also during the
merge process [4] and not after the new version is checked into the repository.

Implementation of a Prototype and Evaluation. The research results will finally
be integrated within the model versioning framework AMOR [3] and imple-
mented as a plug-in for Enterprise Architect4, a well-known UML modeling
environment developed by our industry partner Sparx Systems. In this context
we will perform an extensive evaluation. Test users will be on the one hand
our numerous students as we plan to integrate AMOR in our model engineering
course. On the other hand we plan to conduct case studies in cooperation with
Sparx Systems.

4 http://www.sparxsystems.com.au
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Abstract. Model transformation languages are crucial for the success of
Model-Driven Engineering (MDE), being comparable to the importance
of compilers for high-level programming languages. The support of large
transformation scenarios, however, is still in its infancy since the develop-
ment of transformations currently takes place on a low-level of abstrac-
tion, lacking appropriate reuse mechanisms. We propose a framework
called TROPIC (Transformations on Petri Nets in Color) for developing
model transformations which tackles these limitations. Firstly, TROPIC
allows to specify model transformations on different abstraction levels
by providing an abstract mapping view and a concrete transformation
view. Secondly, TROPIC facilitates reusability by providing an extensi-
ble library of reusable transformation components leading to increased
productivity of model transformation development and to higher quality
of the resulting model transformations.

Key words: Generic Model Transformations, Reuse, Abstraction

1 Introduction and Problem Description

Model-Driven Engineering (MDE) places models as first-class artifacts through-
out the software lifecycle, leading to a change from the “everything is an object”
paradigm to the “everything is a model” paradigm [1]. In this respect, model
transformations play a vital role, representing the key mechanism for vertical
transformations like the generation of code or documentations and horizontal
transformations like translations, augmentations and alignments of models, to
mention just a few. Several kinds of dedicated model transformation languages
have emerged (see [2] for a comparison), which allow specifying and executing
transformations between source and target metamodels and their correspond-
ing models, respectively. None of these languages, however, not even the QVT-
standard [3] proposed by the OMG, became generally accepted as a state-of-the-
art approach. This rare adoption of model transformation languages in practice
seems to be, among others, due to the following reasons. Firstly, existing model
transformation languages do not provide appropriate abstraction mechanisms to
deal with the complexity of overcoming structural heterogeneities between dif-
ferent metamodels, a form of heterogeneity well known in the area of database

?
This work has been partly funded by the Austrian Science Fund (FWF) under grant P21374-N13.
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2 A. Kusel

systems when creating mappings between different schemata [4]. Secondly, cur-
rent approaches lack suitable reuse mechanisms in order to reduce the high and
error-prone effort of specifying recurring transformations.

2 Proposed Solution

To alleviate the above mentioned problems, a framework for building reusable
transformation components is proposed (denoted as mapping operators in the
following) which are used to resolve recurring transformation problems in model
translation scenarios (cf. Figure 1 (a)). The framework provides two views on a
transformation problem, namely an abstract mapping view which declaratively
describes the semantic correspondences on a high-level of abstraction and a
transformation view which reveals all details of the transformation logic.

Class AClass A Class XClass X

Class BClass B Class YClass Y

attr cols

Class

Attribute

Table

type:String

Column

Source Metamodel

Target Metamodel

Transformation NetTransformation Net

Source PlacesSource Places Target PlacesTarget PlacesTransformation LogicTransformation Logic

Class Table

attr

Attribute
Column

cols

C2C

R2R

generate
generate

Source Model Target Model

conforms to conforms to

import export
NameID NameID

Table Person

ID:Integer

Name:String

Person

ID:Integer

Name:String

Person

Class Person

C2CC2C

R2RR2R

Legend

LHS RHS
Mapping Model

One Colored Place

Two Colored Place

One Colored Token

Two Colored Token

Transition

C2CC2C Mapping Operator

Required Interface

Provided Interface

name:String

Type

type

C2CC2CC2C

C2AC2A

type

Type

name

type

C2C

C2A

TROPIC Development
Environment

Class AClass A Class XClass X

Class BClass B Class YClass Y

attr cols

Class

Attribute

Table

type:String

Column

Source Metamodel

Target Metamodel

C2CC2C

R2RR2R

name:String

Type

type

C2CC2CC2C

C2AC2A

Class AClass A Class XClass X

Class BClass B Class YClass Y

attr cols

Class

Attribute

Table

type:String

Column

Source Metamodel

Target Metamodel

C2CC2C

R2RR2R

name:String

Type

type

C2CC2CC2C

C2AC2A

R2RR2R

C2CC2CC2C

C2AC2A

Extensible Mapping 
Operator Library

Pattern Language

C2C

A2C

R2C
R2A

C2A

Transformation Scenarios

usesextends

derive

describesmay extend

(b)(a)

Fig. 1. (a) Mapping Framework (b) Multiple Views on a Transformation Problem

Mapping View. The mapping view level comprises mapping operators
which connect source metamodel elements to target metamodel elements. These
mapping operators encapsulate recurring transformation logic and are offered to
a transformation designer by means of an extensible library. As a representation
formalism, we intend to use a subset of the UML 2 component diagram con-
cepts due to the following reasons. Firstly, this formalism supports a declarative
description of mappings. Secondly, a black-box view for transformation logic is
provided. And finally, the component’s provided and required interfaces enable
the composition of mapping operators in order to resolve complex structural
heterogeneities. These interfaces are typed by the meta-metamodel datatypes
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(i.e. in Ecore EClass, EReference and EAttribute), allowing mapping operators
to be bound to arbitrary metamodels.

In order to exemplify our approach, Figure 1 (b) illustrates the overall idea
from a user’s point of view. For this, a simple example is used, transforming
some basic object-oriented concepts (Classes, Attributes and Types) into
corresponding relational concepts (Tables and Columns). In order to resolve
the occurring structural heterogeneities, three different mapping operators are
used, namely a C2C-component (transforming class instances, e.g., of the class
Attribute into instances of the class Column), a R2R-component (transforming
reference instances, e.g., of the reference attr into instances of the reference
cols) and a C2A-component (transforming class instances into attribute in-
stances, e.g., of the class Type into instances of the attribute type).

Transformation View. On basis of this mapping view, an executable trans-
formation view is generated. For this, each mapping operator of the mapping
view must have a well-defined operational semantics in the form of some exe-
cutable piece of transformation logic. For realizing the transformation view, we
are planning to use a modified form of Coloured Petri Nets [5], in the following
denoted as Transformation Nets [6] due to the following reasons. Firstly, Trans-
formation Nets enable the execution of the transformation without introducing
an impedance mismatch between the mapping view and the transformation view
as each mapping operator can be realized by an independent set of transitions
and places without the need for an explicit control flow between the mapping
operators. Secondly, this formalism allows for a homogenous representation of
all artifacts involved in a model transformation, thus being especially suited for
gaining an understanding of the intricacies of a specific model transformation.
Finally, since Transformation Nets are already executable, an explicit runtime
model is provided facilitating the debugging of model transformations [7].

3 Expected Contributions

Three main contributions are expected which foster reuse and abstraction allow-
ing for larger transformation scenarios. Firstly, abstract reuse will be supported
by the development of a pattern language for model transformations. Subse-
quently, concrete reuse will be supported by offering an extensible mapping op-
erator library. Finally, abstraction will be facilitated through a development
environment, that can be used to realize a mapping view on a concrete transfor-
mation problem and generate the corresponding exeutable transformation logic.

Pattern Language for Model Transformations. A major task will be
the investigation of existing model transformations to build up a catalog of
transformation patterns for recurring transformation problems in the form of
a textual description comprising the standard parts of a design pattern, i.e.,
name, description as well as concrete implementation. For identifying these
patterns, different sources will be investigated like (1) existing lists of pat-
terns for resolving structural heterogeneities [8], [9], (2) existing model transfor-
mations in the ATL model transformation zoo (www.eclipse.org/m2m/atl/atl-
Transformations/), and (3) transformation scenarios between metamodels for
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structural domains (e.g., ER models and UML class models) as well as for be-
havioral domains (e.g., BPMN models and BPEL models). Finally, common
problems in the area of information integration will be investigated since the
mapping of schemas is closely related to the mapping of metamodels whereby,
[10] and [11] provide starting points. On top of the resulting list of found pat-
terns, a useful categorization will be established resulting in a pattern language.

Extensible Mapping Operator Library. It goes without saying, that
the resulting library of mapping operators being part of the pattern language
can not be complete with regard to solving arbitrary transformation problems.
Therefore, the transformation designer must be able to define his/her own map-
ping operators leading to the need of a mapping operator editor which allows to
extend the library of existing mapping operators by user-defined ones and thus
potentially extending the pattern language. User-defined mapping operators can
be defined from scratch or by reusing existing ones. In this respect, different
reuse mechanisms should be possible like building a new operator by (1) black-
box reuse comprising the sequencing and/or nesting of existing ones or by (2)
white-box reuse, i.e. inheriting from an existing one and further refining it.

Development Environment. Finally, mapping operators must be applica-
ble in concrete model transformation scenarios representing the mapping view
of a transformation problem. Therefore, a development environment is needed,
which allows first, to build a mapping model consisting of mapping operators
between a concrete source metamodel and a concrete target metamodel and
second, to generate the corresponding executable transformation view.

4 Related Work
Related Work is discussed along three dimensions: abstraction, abstract reuse
and concrete reuse.

Abstraction. The ATLAS Model Weaver (AMW) [12] offers abstraction
mechanisms by the definition of simple correspondences (denoted as weaving
operators) between two metamodels. The operational semantics of the weaving
operators is determined by a higher-order transformation that takes a weaving
model as input and generates model transformation code. The weaving models
are compiled into low-level transformation code in terms of ATL which is in
fact a mixture of declarative and imperative language constructs. Thus, it is
difficult to debug a weaving model in terms of weaving operators, because they
do not explicitly remain in the model transformation code. Moreover, although
it is possible to add new weaving operators, the specification of the operational
semantics thereof is cumbersome, since the whole higher-order transformation
must be adapted. Finally, a weaving operator always connects source metamodel
elements to target metamodel elements, so it is not possible to realize complex
transformation logic by the composition of operators.

Abstract Reuse. Abstract reuse in the form of transformation patterns is
still in its infancy. A first list of patterns in the context of graph transformations
has been proposed by Agrawal et al. [8]. Another initial list of patterns origi-
nating from QVT Relations specifications has been collected by Iacob et al. [9].
These two lists can act as an initial input for our pattern language.
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Concrete Reuse. Typically, model transformation languages, e.g., ATL [13]
and QVT [3], allow to define transformation rules based on types of the corre-
sponding metamodels. Consequently, model transformations are not reusable
and must be defined from scratch again and again. One exception is the ap-
proach of Varró et al. [14] who define a notion of generic transformations within
their VIATRA2 framework, which in fact resembles the concept of templates in
C++ or generics in Java. Another approach which is now integrating the idea of
genericity are TGGs [15]. Therefore, VIATRA2 as well as TGGs also provide a
way to implement reusable model transformations and could be principally used
to implement our mapping operators. Nevertheless, they do not foster an easy
to debug execution model as is the case with our proposed Transformation Nets.

5 Evaluation

The evaluation of our approach is based on the following four research questions:
Question 1: Are the found patterns useful/applicable in diverse scenarios?

Concerning this question, the following strategy will be applied. The case studies
consisting of numerous transformation examples as described in Section 3 will
be divided into a training set and a test set. The training set will be taken
for finding recurring transformation patterns. Afterwards the test set will be
realized with the found patterns in the training set and evaluated on the basis
of corresponding reuse metrics [16].

Question 2: Does the approach lead to a better understanding of large sce-
narios? Regarding this issue, an empirical study will be conducted with students
from our model engineering courses (around 200 master students every year).
The aim of this empirical study is to evaluate whether the abstract mapping view
leads to a better understanding of a large problem. Therefore, the students will
be divided into two subgroups, whereby one subgroup gets the transformation
definition in our proposed formalism and the other subgroup gets the transfor-
mation definition in a low-level transformation language. The understandability
will then be evaluated based on questionnaires.

Question 3: Is productivity of the development process increased by the usage
of reusable components? Concerning this point, again an empirical study will be
conducted. Thereby, three distinct transformation approaches will be presented,
including our proposed approach. Afterwards the students will have to solve a
certain problem with each of these approaches. The productivity will then be
evaluated based on corresponding metrics.

Question 4: Is the quality in the sense of correctness of the resulting model
transformations increased by the usage of the reusable components? Regarding
the correctness of the resulting model transformations, also an empirical study
will be conducted in conjunction with the study evaluating question 3. Thereby
also the quality in terms of freedom from errors will be measured.

6 Current Status

This research effort is still in an initial stage comprising one publication [17]
which describes a first set of mapping operators. Furthermore, a complementing
research effort realizing the transformation view is currently conducted by [18].
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Abstract. Model-Driven Engineering places models as first-class arti-
facts throughout the software lifecycle requiring the availability of proper
transformation languages. Although numerous approaches are available,
they lack convenient facilities for supporting debugging and understand-
ing of the transformation logic. This is not least because transformation
engines operate on a low level of abstraction, hide the operational seman-
tics of a transformation and scatter metamodels, models, transformation
logic, and trace information across different artifacts. To tackle these
problems, we propose a DSL on top of Colored Petri Nets (CPNs)—called
Transformation Nets—for the development, execution and debugging of
model transformations on a high level of abstraction. This formalism
makes the afore hidden operational semantics explicit by providing a
runtime model in terms of places, transitions and tokens, and ensures a
homogenous view on transformations by representing them on the basis
of the runtime model.

Key words: Model Transformation, Debugging, CPN, Runtime Model

1 Introduction and Problem Description
The availability of proper model transformation languages is the crucial factor in
MDE, since transformation languages are as important for MDE as compilers are
for high-level programming languages. Several kinds of dedicated transformation
languages have been proposed (see [1] for an overview), comprising imperative,
declarative and hybrid ones. Imperative approaches allow to specify complex
transformations more easily but induce more overhead code as many issues have
to be accomplished in an explicit way, e.g., specification of the execution order.
Although hybrid and declarative model transformation languages relieve trans-
formation designers from these burdens, specification of transformation logic is
still a tedious and error prone task due to the following reasons.

First, transformation engines used for executing model transformations op-
erate on a considerably lower level of abstraction than the transformation logic
itself. This leads to an impedance mismatch between specification and execution,
thus hampering understandability and debuggabilty. Second, declarative and hy-
brid approaches use black-box transformation engines hiding the actual opera-
tional semantics, e.g., the Atlas Transformation Language (ATL) uses a stack
? This work has been funded by the Austrian Science Fund (FWF) under grant

P21374-N13.
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machine [2]. As a consequence, debugging of model transformations is limited to
the information provided by the transformation engine, most often just consist-
ing of variable values and logging messages, but missing important information
e.g., why certain parts of a transformation are actually executed or not. Finally,
comprehensibility of transformation logic is hampered as current transformation
languages provide a limited view on the execution of model transformations,
since metamodels, models, transformation specification, and trace information
are scattered across different artifacts.

What is needed is a declarative approach that integrates all artifacts in a
common view thereby providing a runtime model that makes the operational
semantics of a transformation specification explicit. Based on this runtime model,
debugging on the level of transformation specifications should be enabled rather
than just forcing transformation designers to interpret low-level error messages.

2 Proposed Solution

The conceptual architecture of our approach tackling the aforementioned limita-
tions is shown in Fig. 1. The Transformation Net formalism [3], a DSL on top of
CPNs [4], follows a process-oriented view towards model transformations making
the operational semantics of the transformation logic explicit. Transformation
Nets form a runtime model that provides the explicit statefulness of imperative
approaches through tokens contained within places. The abstraction of control
flow known from declarative approaches is achieved as the net’s transitions can
fire autonomously, thus making use of implicit, data-driven control flow.
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Fig. 1. Conceptual Architecture of Transformation Nets

Furthermore, Transformation Nets provide a uniform formalism not only for
representing the transformation logic together with the metamodels and the
models themselves, but also for executing the transformations. In particular,
places in Transformation Nets are derived from elements of metamodels, whereby
a place is created for every class, attribute and reference in a metamodel. Tokens
are created from elements of models and then put into the according places.
Finally, transitions represent the actual transformation logic. The existence of
certain model elements (i.e., tokens) allows transitions to fire and thus stream
these tokens from source places to target places finally representing instances of
the target metamodel to be created and thereby establishing trace information in
terms of tokens within trace places. The abstract syntax of the Transformation
Net language is formalized by means of a metamodel (see [3]) conforming to the
Ecore meta-metamodel, the Eclipse realization of OMG’s MOF standard.
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3 Expected Contributions

By the proposed solution we expect three main contributions: (1) a runtime
model based on CPNs being the prerequisite for both, (2) debugging of trans-
formation languages and (3) an environment to specify and to debug Transfor-
mation Nets.

Runtime Model for Model Transformation Languages. The runtime
model based on CPNs allows transformation designers to gain an explicit, inte-
grated representation of the semantics of model transformations which partic-
ularly favors debugging and understanding. The runtime might act as a trans-
formation engine for various declarative transformation languages, e.g., QVT
Relations, to benefit from our debugging features. As Petri Nets provide formal
definitions of concurrent operations, parallel execution of transformation logic is
possible to increase efficiency of the execution phase. To ensure valid target mod-
els it should be possible to specify different levels of integrity constraints, i.e., an
optimistic approach, where conformance will be checked after transformation or
a pessimistic approach, where conformance is ensured during transformation.

Debugging of Model Transformations. The runtime model supports
transformation designers in debugging transformation logic along the three main
phases of debugging: (1) observing facts, (2) tracking origins and (3) fixing bugs.
Observing facts and tracking origins can be achieved using appropriate mecha-
nisms before (i.e., static debugging), during (i.e., life debugging) or transforma-
tion execution (i.e., forensic debugging).

Observing facts. Formal properties of CPNs [5] such as Reachability, Liveness
or Persistence can be exploited for static debugging. Reachability allows to check
if the desired final state (i.e., the expected output model) is reachable from the
initial state (i.e., the given input model) with the defined transformation logic.
Liveness properties can be applied to detect “dead” transformation logic (L0-
liveness) or for defining test cases, e.g., to check if a transition fires as many
times as expected (L2-liveness). Finally, the persistence property can be used
to detect non-determinism or erroneous race conditions. Besides live debugging
(simulation) also forensic debugging is supported in that the resulting target
model can be compared to an expected target model to identify wrong target
tokens similar to unit-based testing of software.

Tracking origins. The transformation process can be executed stepwise re-
vealing which tokens enable a certain transition and which tokens get produced
by firing this transition, enabling live debugging. This is possible because Trans-
formation Nets provide a white-box view on model transformation execution, i.e.,
the specification does not need to be translated into some low-level executable
artifact but can be executed right away. Additionally, the runtime metamodel
also allows to employ MDE standards for debugging such as OCL to define con-
ditional breakpoints or to explore the execution state by using queries on the
runtime model to reason backwards in time. Additionally, forensic debugging
is enabled by tokens in the corresponding trace places indicating which source
elements were used to create specific target elements.
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Fixing Bugs. Since model transformations can be “simulated” on the basis
of CPNs, a bug can be fixed right away without interruption of the simulation.

Development Environment for Transformation Nets. The runtime
model as well as the debugging techniques will be integrated in a development
environment supporting the creation, execution and debugging of Transforma-
tion Nets. We will additionally provide mappings from declarative transforma-
tion languages to Transformation Nets for debugging purposes, e.g., for QVT
Relations [6] as shown in Fig. 2. The editor toolbar provides common debug-
ging functionalities such as enabling stepwise debugging to figure out the opera-
tional semantics by firing transitions including an undo/redo mechanism. Besides
these standard debugging functionalities, there are additional debugging features
which result as a benefit of using a dedicated runtime model, e.g., an Interactive
OCL Console to explore and to understand the history of a transformation by
determining and tracking paths of produced tokens [7].

Interactive DebuggerInteractive Debugger

Interactive Debugger Console

QVT Relations

transformation umlToRdbms(uml:SimpleUML, 
rdbms:SimpleRDBMS){

top relation ClassToTable{
cn: String;
checkonly domain uml 
c:Class{ name=cn,
kind=’Persistent’};

enforce domain rdbms 
t:Table{name=cn};

where {
AttributeToColumn(c,t);

}
}
relation AttributeToColumn{

an, pn :String;
checkonly domain uml c:Class{

attribute=
a:Attribute {
name=an,
type=
p:PrimitiveDataType{
name=pn}}};

enforce domain rdbms 
t:Table{
column=
cl:Column {
name=an,
type=pn}};

where{
SuperAttributeToColumn(c,t);

}
}

relation SuperAttributeToColumn{
checkonly domain uml c:Class{

generalOpposite=
sc:Class {}};

enforce domain rdbms 
t:Table {};

where{
AttributeToColumn(sc, t);

}
}

a

TROPIC

selectedElement().getCreator()
result: Transition (d)
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Fig. 2. Development Environment for Transformation Nets.

4 Related Work
Related work regarding the use of Petri Nets for model transformations and
debugging support of transformation languages is presented in the following.

Petri Nets and Model Transformations. In the area of graph transfor-
mations, some work has been conducted that uses Petri Nets to check formal
properties of graph production rules. Thereby, the approach proposed in [8]
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translates individual graph rules into a place/transition net and checks for its
termination. Another approach is described in [9], which applies a transition
system for modeling the dynamic behavior of a metamodel.

Compared to these two approaches, our intention to use Petri nets is entirely
different, i.e., not just using them as a back-end for automatically analyzing
properties of transformations, but additionally use them as a front-end for fos-
tering debuggability and understandability.

Debugging Support for Model Transformations. In the Fujaba envi-
ronment, a plugin called MoTE [10] compiles TGG rules [11] into Fujaba story
diagrams that are implemented in Java, which obstructs a direct debugging on
the level of TGG rules. Furthermore, approaches like VIATRA [12] produce de-
bug reports that trace an execution, only, but do not allow to debug certain
transformation rules. Debugging of ATL [2] is based on the step-wise execu-
tion of a stack-machine that interprets ATL byte-code. In contrast to the above
language-specific debugging facilities, Hibberd et al. [13] present forensic de-
bugging techniques by utilizing trace information of model transformations for
localizing bugs. In addition, they present a technique based on program slicing
for further narrowing the area where a bug might be located.

While Hibberd focuses only on forensic debugging, Transformation Nets ad-
ditionally enable live debugging. What sets our approach apart from these ap-
proaches is that all debugging activities are carried out on a higher level of
abstraction and on a single formalism. Current approaches do not provide an
integrated view on the whole transformation process in terms of the past state,
i.e., which rules fired already, the current state, and the prospective future state,
i.e., which rules are now enabled to fire. Therefore, these approaches only pro-
vide snapshots of the current transformation state. Furthermore, our approach
is unique in allowing interactive execution.i.e., fixing bugs during execution.

5 Plan for Evaluation

The plan for evaluating our approach builds on empirical studies and on applying
case studies.

Empirical studies. To evaluate usability and applicability of Transforma-
tion Nets we intend to conduct empirical studies with students from our model
engineering courses (around 200 master students every year) based on question-
naires. Additionally, we will use the debugging questions of Hibberd et al. [13]
and let students answer those questions with our approach to verify the debug-
ging support.

Case Studies. Case studies for transforming models will be set up and
implemented with distinct existing model transformation languages, including
Transformation Nets. The results will be evaluated on the basis of a suitable
subset of the ISO 9126 software quality model [14]. We intend to use a repre-
sentative selection of metamodels defining structural and behavioral languages.
For this, we aim to use the well-known Class2Relational example [15] and the
CSP2ActivityDiagrams example [16]. These case studies will also be used to
evaluate to what extent concurrent execution of transformation logic improves
the performance of model transformations.
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6 Current Status
Currently a first prototype to specify and execute Transformation Nets is avail-
able which is applied in several case studies to verify the basic approach, as the
research is in it’s initial state. Additionally, a complementing research focuses on
how Transformation Nets can be employed in reusable mapping operators [17].
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Abstract. This paper presents an approach of using ontology technolo-
gies together with domain-specific languages (DSLs). After identifica-
tion of some issues and challenges in the development and use of DSLs,
we propose a solution that allows the specification of DSLs with seam-
less integrated ontologies. The specified DSL can be used to build sev-
eral domain-specific models. Simultaneously reasoning services can be
invoked to support the modeling by suggestions and debugging. Further-
more we comment on future work of this approach and on related work.

1 Introduction

Domain-Specific Languages (DSL) are used to model and develop systems of
different application domains. DSLs are high-level languages and provide ab-
stractions and notations for better understanding and easier modeling. To de-
velop large software systems different domain-specific languages, respectively
fragments of them, may be used. Each DSL focuses on a different problem do-
main and as far as possible on automatic code generation [1].

DSL designers are dealing with developing domain-specific languages. They
specify such languages by defining abstract and concrete syntax and semantics.
The new designed DSL is provided to the DSL user. He uses the language to
create domain models.

Figure 1 (a) and (b) depict two domain models which conform to the DSL
metamodel (partially depicted in figure 1 (c), defined by using a KM3 syntax
[2] extended by description logics). In figure 1 (a) a DSL user describes a Cisco
device by defining a configuration which in the example has three slots with three
inserted cards, namely Supervisor, HotSwappable and SPAInterface. At some point
in the domain modeling phase he requires without accomplishing any extra effort
suggestions of concepts to be used or wants to validate or refine his domain
model. In the example he classifies the Configuration element to find its most
specific type, for instance Configuration7603. Thus he refines his domain model.

? This work is supported by EU STReP-216691 MOST.
?? Under supervision of Prof. Dr. Jürgen Ebert1 and Prof. Dr. Steffen Staab2
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To define precisely DSLs and to provide services to the DSL user the DSL
designer has to enrich the DSL by additional formal constraints. In figure 1 (c)
he defines very simple constraints which are integrated and embedded within the
DSL metamodel. For instance he defines that a Configuration7603 is equivalent
with an anonymous concept which has exactly 3 Slots whereas in one of them
either a HotSwappable card or an SPAInterface card is plugged in.

refineTo

Configuration extends hasSlot some 
              (Slot and hasCard some Supervisor) {
   reference hasSlot [1..*]: Slot;
}
Configuration7603 extends Configuration,
                  equivalentWith (hasSlot some 
                    (Slot and hasCard some
                      (HotSwappable or SPAInterface)))
                   and (hasSlot exactly 3 Slot) {
}
...

(a) (b) (c)

Fig. 1. (a), (b): Domain Models in concrete Syntax, (c): Excerpt of a Metamodel
specifying a DSL

1.1 Problems and Challenges
Although the usage of DSLs provides many advantages there are some problems
and challenges to be considered. We differ between problems and challenges for
DSL designers and DSL users. The following ones are issues of DSL designers:
1. Constraint Definition: To check the consistency of domain models it is essen-

tial for the DSL designer to define constraints during the definition of DSL
metamodels, which have to be fulfilled by elements in the domain models
which are created by the DSL user.

Considering the example above the DSL designer for instance wants to restrict
the use of concept Configuration7603 by defining an equivalent, anonymous con-
cept. The additional constraint allows only to use the concept if and only if a
valid combination of slots and plugged in cards is given.

The following ones are problems and challenges of DSL users:
2. Incomplete Knowledge: DSL users sometimes do not have complete knowl-

edge about all domain concepts. They require suggestions of domain concepts
to be used.

3. Debugging : For many DSL tools debuggers are missing. For DSL designers
and users it might be useful to see the consequences of applying different
constructs.
Considering again the example above the DSL user for instance wants to

specialize his domain model by requiring suggestions of more specific concepts
like the Configuration7603. Or he wants to check the consistency of his domain
model with regard to the DSL metamodel and gets some debugging information,
if the model is inconsistent.

The remaining sections at first present the proposed solution (cf. section 2)
based on the above mentioned problems and challenges. Here we give the idea of
a development environment for DSLs, where an instantiable DSL, in the follow-
ing KM3 [2], is combined with an ontology language to define linguistic instan-
tiable DSLs. In our future work beside DSLs with linguistic instantiation, also
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the design and use of DSLs with ontological instantiation and non-instantiable
DSLs [3] will be considered. In section 3 we discuss the solution by comparing it
with related work. Furthermore we present a workplan which also contains the
current status and a plan for evaluation.

2 Proposed Solution

We suggest defining DSLs in a way that makes use of ontology technologies, in
particular description logics [4]. Description logic is a family of logics for con-
cept definitions that allows for joint as well as for separate sound and complete
reasoning at the model and at the instance level given the definition of domain
concepts.

OWL2, the Web ontology language, is a W3C recommendation with a very
comprehensive set of constructs for concept definitions [5]. Nevertheless, OWL2
has not been designed to act as a metamodel for defining DSL models. Hence, we
propose to build an integrated language by combining a pure DSL metamodel
and an OWL metamodel in order to benefit from both and thereby tackle the
above mentioned problems.

In the following we explain some relevant parts of an environment where
KM3 [2], an instantiable DSL, is combined with OWL2. Result of the combina-
tion is an integrated metamodel which is used to design further DSLs. In our
example we are designing instantiable DSLs with embedded constraints and ax-
ioms. Instead of KM3 also other metamodels of languages could be used to be
combined with OWL.

In the environment which is depicted in figure 2, we consider different roles.
A DSL designer creates DSLs by defining an abstract syntax model which con-
sists of abstract instances of the integrated metamodel, a concrete syntax model
(which again could be instantiable and thus could act as a metamodel) and the
semantics of the new language. The concrete syntax model is provided to the
DSL user. He builds domain models and wants for example only by pressing one
button within the environment to check the consistency and debug his domain
model or wants to be guided through the modeling process.

In the following we consider metamodel hierarchies to describe the specifica-
tion and the use of DSLs. At the M2 layer the language is specified by defining
a metamodel. At the M1 layer the specified language can be used by creating
an abstract syntax model, which is an instance of the DSL metamodel.

Integrated Metamodel 

:M2

:M1
Integrated Model 
(Abstract Syntax)

Domain Model

(Abstract Syntax)

instanceOf

instanceOf

KM3 Metamodel OWL Metamodel

DSL 

Designer

DSL 

User

Constraints
OWL

Ontology

instanceOf

ABox

TBox

Reasoning 

Service

M2':

M1':

Domain Definition 
Metamodel

(Concrete Syntax)

Development Environment

Visualization

Domain Model

(Concrete Syntax)
Visualization

extracted

extracted

Fig. 2. Overview of Integration Approach
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2.1 Combining DSLs and Ontology Languages
As we see in figure 2 the metamodel of the DSL KM3 and the one of OWL are
integrated at the M2 layer in the middle column. To accomplish the integrated
metamodel, we want to provide an integration approach, which exactly defines
how concepts of DSL metamodels and the ones of an OWL metamodel can be
combined [6].

Result of the integration is an integrated metamodel. One part of the in-
tegrated metamodel consists of the KM3 metamodel, another part consists of
OWL constructs. This new metamodel is used by the DSL designer to define
integrated abstract syntax models with embedded constraints at the M1-layer
simultaneously in a seamless manner (problem 1).

It is important for the integration that the combination of different meta-
models is loss-free. Especially it must be possible to automatically extract the
integrated ontology language OWL from the integrated model at the M1 layer.

2.2 Designing Domain-Specific Languages
The DSL designer is able to define an integrated model that consists of abstract
instances conforming to the KM3 part in the integrated metamodel and - to the
extent possible - consists of semantics and constraints for the M1’-layer defined
by the OWL part of the integrated metamodel. The additional semantics are
useful to discuss the meaning of the domain model (M1’ layer) as well as to
indicate constraints that apply at the level of the language itself (M2’ layer).
Figure 1 (c) depicts an example of an integrated language.

The newly created abstract syntax is visualized by a concrete syntax. If it
is instantiable it can act as a domain definition metamodel of the new specified
DSL. This DSL is provided to the DSL user and lies relatively on an M2’ layer.

2.3 Using Domain-Specific Languages
Having an instantiable DSL specified by the DSL designer the DSL user is able
to build different domain models (cf. figure 1 (a) and (b)). During the domain
modeling the DSL user gets different benefits for free.

In the development environment these benefits are represented by reasoning
services, which a DSL user can invoke. Furthermore he needs no background
information how the reasoning services work and how they are bound with on-
tologies. The OWL reasoning engine returns suggestions and explanations to the
DSL user. All services are provided to the DSL user without any extra effort.

To allow such services the ABox and TBox of an ontology are extracted from
the domain model (M1’ layer) and the integrated abstract syntax model (M1
layer), respectively.

Thus, for example some of the following services can be automatically pro-
vided to the DSL user, covering the above mentioned problems of DSL users.

– Dynamic Classification: A DSL user might not have the complete knowledge
of all concepts a DSL provides. Hence he often creates instances of general
concepts in his domain model. Invoking the dynamic classification service a
DSL user is able to find the most specific concept of elements in the domain
model with regard to all other elements (problem (2)).
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– Consistency Checking: DSL users emphasize to have consistent domain mod-
els and instances and thus want to check them (problem (3)).

3 Discussion
In this section we want to discuss the above presented solution based on related
work and to provide an overview of the ongoing work.

3.1 Related Work
Today there are many model-based development environments for DSLs available
in the market like for example MetaEdit+ [7], XMF (eXecutable modeling frame-
work) [8] or ATLAS Model Management Architecture (AMMA) [9]. These envi-
ronments are aligned with the OMG four-layer metamodel architecture. Some of
them provide support for specifying queries and constraints, e.g. with OCL-like
languages. Here checking constraints and executing queries takes place on one
single layer. Our logic-based approach instead allows defining constraints that
cover model and instance layer (e.g. M2’ and M1’ layer) and provides querying
and reasoning simultaneously on both of them. We provide constructs based on
Description Logics like equivalence, class descriptions to DSL designers. Thus
our environment allows us to support DSL users by guidance and suggestions.

Several approaches describe transformations of MOF-based models to knowl-
edge representation languages where reasoning and querying is adopted. For
example [10] presents transformations from MOF-based models to Alloy, [11]
presents an approach to describe semantics of MOF-based models with F-Logic.
Instead of these approaches, where the expressiveness available for DSL designers
is limited to MOF (plus OCL), we provide integrated modeling. Thus the de-
signer benefits from the expressiveness of OWL additionally to the one of MOF.

3.2 Workplan
At first we present the current work status and the constitutive future work.
Finally we give a plan for evaluation of the work.

Current Status. Up to now we have considered different usage scenarios pre-
sented by industrial partners in the MOST project3. The studies of their internal
approaches have shown that a large part of domain-related knowledge is specified
in natural language, by annotating the models, or even in external documents.
Thus we developed an integration approach presented in [6] which combines
DSLs and ontology languages at the M2 layer. Beside the research of different
metamodel integration approaches we started developing an ontology-based DSL
framework called OntoDSL[12].

Future Work and Expected Contribution. The work in the future should
cover at least the following points with corresponding contributions:
1. Formalization of metamodel integration approaches (at the M2 layer).
2. Consideration of different language and instantiation paradigms, e.g. the

design and use of DSLs with ontological or linguistic instantiations and the
design and use of non-instantiable DSLs at the M2’- and M1’ layer [3].

3 http://www.most-project.eu
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3. Identification of more reasoning services for DSL designers and DSL users.
4. Implementation of a developement environment for designing and using

ontology-enriched DSLs.
5. Evaluation of all approaches.

Plan for Evaluation. The evaluation of the approach concerning the meta-
model integration of DSLs and ontologies together with its applications is based
on usage scenarios and case studies. These scenarios come from industrial part-
ners of the MOST project, namely Comarch4 and SAP5. The evaluations consist
of the deployment of the implemented ontology-enriched modeling approaches
to the industrial partners. Thus detailed tests and validations are possible which
result information of adaptability and benefits of the integrated use of ontologies.
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Abstract. Domain-Specific Modeling Languages (DSML) enable domain 
experts to participate in software development tasks and to specify their own 
programs using domain abstractions. To define programs using domain 
concepts, rather than programming language concepts, tools should provide 
model-based syntax and semantic specification techniques. However, many 
Model-Driven Engineering (MDE) platforms primarily concentrate on 
structural aspects of DSMLs and only provide techniques to define abstract and 
concrete syntax. A few platforms provide built-in support for specification of 
dynamic semantics. The purpose of the research described in this paper is to 
provide a semantic framework that can be used visually by DSML designers, 
yet has formal underpinnings (transparent to the end-user) such that 
interoperation with verification tools is possible to realize model checking 
tasks. This research is focused on a visual technique based on activity diagrams 
and graph transformation rules to define the semantics of DSMLs. 

Keywords: domain-specific languages, operational semantics, graph 
transformation systems, activity diagram, model checking. 

1   Introduction 

Model-Driven Engineering (MDE) has been shown to increase productivity and 
reduce development costs [1]. The concepts advocated by MDE focus on abstractions 
tied to a specific domain that provide tailored modeling languages for domain experts. 
Domain-Specific Modeling Languages (DSML), used within the MDE context, 
enable end-users who are domain experts to participate in software development tasks 
and to specify their own programs using domain concepts in the problem space, rather 
than programming language concepts in the technical solution space. However, there 
remain several challenges that drive new research in DSMLs. For example, 
simulation, code generation, model checking and different kinds of analysis require a 
precise definition of the semantics of a DSML that is not provided sufficiently in 
many modeling toolsets. 

DSMLs, like any other language, consist of definitions that specify the abstract 
syntax, concrete syntax, static semantics and dynamic semantics of the language. 
Specification of abstract syntax includes the concepts that are represented in the 
language, and the relationships between those concepts. In the MDE context, domain 
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metamodels are often used to define the structural rules for the abstract syntax. 
Concrete syntax definition provides a mapping between meta-elements and their 
textual or graphical representations. Well-formedness rules, which represent the static 
semantics of a language, can be defined to check model consistency. Such rules are 
often specified in constraint languages (e.g., OCL) that enforce rules among 
metamodel elements. The runtime behavior of each syntactical meta-element defined 
in the DSML represents the dynamic semantics of the language, which is often more 
challenging to specify. Each part of a DSML specification may be formulated at 
various degrees of preciseness and formality. MDE platforms mainly concentrate on 
the structural aspects of a DSML specification and provide techniques to define the 
abstract and concrete syntax of a DSML. Very few platforms provide a systematic 
means toward specifying the dynamic semantics of a modeling language [2]. 

The purpose of the research described in this paper is an investigation into the 
design of a semantic framework that enables DSML designers to define semantic 
specifications using visual models. The proposed framework also addresses issues of 
model verification and model analysis by defining the verification tasks that are 
specific to a particular domain. 

2   Related Work 

Current platforms and toolsets that have provided a means for specifying the 
behavioral semantics of a modeling language often rely on some formalism based on 
operational semantics. A common approach is to map the metamodel concepts of a 
DSML to a mature and well-known existing target semantic domain (e.g., Abstract 
State Machines (ASM) [3], and Petri Nets [4]). In this context, Agrawal et al. [5] and 
Chen et al. [6] utilize what they call a semantic anchoring technique to map abstract 
syntax models to existing ASM semantic domains in the GME platform. Ruscio et al. 
[7] propose a similar technique, except the ASM mapping is integrated within the 
AMMA platform. In these approaches, the dynamic behavior of a specific DSML 
element is modeled as a sequence of ASM state transitions. Although these kinds of 
definitions enable the adoption of model checking and simulation activities using the 
target semantic domain, it is challenging for DSML designers to use such approaches 
(because of unfamiliar formalisms in the target model concepts).  

Rivera et al. [8] specified the dynamic semantics of DSML in Maude in terms of 
rewrite rules. Although these rules are similar to graph transformation rules, 
specifications are represented as Maude objects which requires mapping from the 
MDE domain to the Maude domain. Scheidgen [9] combine MOF metamodels with 
an action language based on UML activities to provide a human comprehensible 
language. However, fine-grained actions, such as create, add, remove, and call, in the 
language prevent the designer from specifying semantics in a more abstract way.  

Muller et al. [10] extended an abstract syntax metalayer with an action language to 
weave a semantic definition within a metamodel. Kermeta [10] contains constructs for 
specifying operations of metamodel elements. This built-in support for specification 
of operational semantics enables the simulation and testing of metamodels. However, 
the necessity of defining the behavior of each concept in an imperative way results in 
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code that is written in the style of a general-purpose programming language. Engels 
[11] provides operational semantics of diagrams by means of collaboration and graph 
transformations. Knapp [12] uses temporal logic; Overgaard [13] advocates the �-
calculus to define semantics. Although the formal structures of these related works are 
suitable for usage with model verification and simulation tools, the specific 
approaches require expertise in notations and formalisms that are not generally within 
the skillsets of most designers.  

3   Research Goals 

The research described in this paper proposes a semantic framework that can be used 
by DSML designers in a visual manner, yet has a formal foundation that will permit 
interoperation with model verification tools. Because designers are familiar with 
domain concepts, the proposed technique enables them to define semantic 
specifications using visual models. Non-ambiguous and well-defined DSMLs 
amenable to various verification and analysis tasks may also permit automatic 
generation of compilers/interpreters and other language based tools. Each domain also 
has its own set of verification tasks that must be specified in some manner. A key 
research question addresses the feasibility of designing a general visual language that 
can be used to define the dynamic semantics of a modeling language, which can 
interoperate with analysis tools to allow designers to verify the correctness of their 
models with respect to domain-specific verification tasks. 

4   Approach and Methodology 

Existing approaches for defining the formal semantics of programming languages can 
be used to specify the semantics of DSMLs. However, a critical point of this proposed 
work is an investigation of the benefits that visual models offer to DSML designers in 
terms of specifying semantics of a new language. To fulfill this objective and 
accomplish the project goal of transparency of low-level formalisms, three steps will 
be followed in this project. The first step focuses on the methodology to specify state 
transitions to show dynamic behavior of meta-elements. The second step concerns the 
visual language to control the sequence of the defined state transitions and runtime 
configurations. The third step includes specification of verification tasks and 
execution of model analysis tools. The combination of all outcomes of these steps will 
form the semantic framework. 

Figure 1 shows an outline of the approach. The first part of the figure demonstrates 
abstract syntax and static semantic definitions; current platforms (e.g., Amma [7]) 
provide a means for specifying them. The second part depicts the dynamic semantics 
specification technique based on activity diagrams and graph grammars. These tools 
are used to define a sequence of state transitions. The last part shows specification of 
verification properties within domain boundaries. Finally, all these specifications can 
be transformed into existing verification tools (e.g., Alloy [18]) to accomplish model 
analysis.  

J. Dingel (Ed.). Doctoral Symposium, MODELS'09. Oct. 5, 2009. 42



MetaElem1 MetaElem2

MetaElem4

-End1

1

-End2

*

MetaElem3

-End3

*

-End4*

MetaElem5

MetaElem6

-End51

-End6

*

{OCL}
End1
End2

MetaElem2

MetaElem5

{OCL}
End1
End2

Abstract Syntax & Static Semantics

Model Verification Tools

Dynamic Semantics Verification Properties

ActionState1

ActionState3 ActionState4

ActionState5

NAC LHS RHS
MetaElem1 Meta2 Meta3-End7

1

-End8

*

Meta2 Meta3

Meta4 -End91

-End10

*

 
Fig. 1. An outline of the approach 

A first step of this project is to investigate a technique for representing state 
transitions. Behavior semantics of DSMLs can be represented by a sequence of state 
transition rules. This approach divides all semantic concerns into discrete states and 
transition relations. In particular, in-place model transformations [14] represent an 
approach for designing state transitions. This technique is similar to the Structural 
Operational Semantics (SOS) defined by Plotkin [15], who proposed SOS to give 
computational state transitions by means of the abstract syntax of a language. 
Therefore, SOS defines an abstract behavior for an abstract syntax that allows model 
checking, correction of proofs and other verification activities. 

One of the main characteristics of the in-place model transformation is that target 
and source models are always instances of the same metamodel. An in-place model 
transformation rule is defined as L: [NAC]*LHS->RHS, where L is the rule label, 
LHS denotes the left-hand side rule stating the precondition pattern to trigger the rule; 
the RHS represents the right-hand side rule that specifies the final model part after 
execution of a rule. NAC is the optional negative condition that disables the rule if it 
is satisfied. Graph grammars [4] provide visual rules to specify in-place 
transformations based on precondition actions and postcondition steps. The notation 
proposed by AGG [16] to model graph transformations can be used to define these 
rules visually. AGG is a rule-based visual language supporting an algebraic approach 
to graph transformation. Available tools associated with AGG (e.g., Graph 
Transformation Engine, Efficient Graph Pattern Matching, and AGG’s analysis 
techniques for consistency checking) make AGG an attractive candidate for the 
definition of state translation rules.  

Although each AGG transformation shows one of the state transitions of the 
runtime behavior, to give complete semantics of DSMLs, the sequences of state 
changes must be defined. These sequence definitions control what state transition is to 
be fired, in what order, and what condition. Therefore, the second step of this project 
is to develop a technique for specification of state transition sequences. An activity 
diagram is an appropriate state machine to define these transition sequences. It 
enables the design of simple and compound states, branches, forks, and joins. When 
the activity of a state completes, a transition enables the flow to pass to the next 
activity. Although flow may continue as sequential transitions, branches can alternate 
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paths. In the proposed framework, each state transition will be mapped with an 
activity in the activity diagram. Therefore, each activity diagram will depict state 
transition configurations.  

The final step of this project is to facilitate model checking functions by 
interoperating existing model checking tools with the syntax and semantics of a new 
modeling language. To enable this capability, an instance model specified in a 
metamodel must be converted into the formalism expected by an underlying model 
checking tool. Next, the properties that the model must satisfy need to be stated by a 
logical formalism expressed in the format expected by the verification tool. For 
example, Baresi et al. [17] demonstrate how the Alloy tools can be used in graph 
transformation systems. Alloy [18] is a structural language based on first-order logic. 
The Alloy analysis tool allows users to prove important properties of a system. 
Moreover, Alloy can also provide a capability to check the conflict between rules. 
Graph transformations (described using AGG) can be transformed into an Alloy 
Model [17]. This transformation can be utilized to map higher level abstractions down 
to Alloy. Therefore, DSML programs and verification tasks, which are defined by 
AGG at the domain level, can be transformed into the lower level model needed by 
Alloy. As a result, the proposed semantic framework can interoperate with the 
verification tool using transformation between abstraction levels of the different 
representations.  

The current status of this work is represented by a set of formalisms that define the 
initial approach for specifying the semantics of a modeling language. As a 
preliminary work, we presented a case study for the verification of simple models 
using Alloy [19]. Although we introduced the transformation steps from DSML 
specifications to Alloy models by an example, our objective is to formalize and 
generalize the mapping rules for integrating analysis tools with a DSML environment. 
Tool support does not yet exist, but is a focus of near-term future work in order to 
extend the investigation. At first, an integrated visual editor which provides activity 
diagram and graph grammar facilities will be completed. After this, integration of 
analysis tools with the environment will be developed in a PhD thesis.  

5   Evaluation 

A research question that will be addressed concerns the key issue of whether semantic 
specification can be defined visually by DSML designers with model concepts, and 
whether model verification tools can be instantly executed within domain boundaries. 
This question will be considered in the research evaluation by using several unique 
domains that each have a representative DSML. Specification complexities of state 
transition, sequence of transitions, and verification task definitions, will be checked in 
detail for each domain. An additional step will be needed to compare the proposed 
semantic framework with other operational semantics techniques. Visual modeling, 
comprehensibility, ease of use, amount of time to design a new DSML, and 
compatibility with verification tools will be used as comparison criteria. 
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Abstract. A continuous trend in computing is the demand for increas-
ing computing performance. With the advent of multicore processors in
the consumer market, parallel systems moved out of the scientific niche
and became commodity. This raises the need to exploit concurrency in
software of all kinds and domains. Unfortunately, the majority of soft-
ware developers today are short on parallel programming experience, and
at least in the near future tools and techniques will not be able to fully
exploit concurrency in application development automatically.
In this position paper we propose to regard the coordination model of
parallel systems as the first development artifact, focusing on top-down
application development. To address the need for higher abstractions
and to facilitate reuse, we propose a model-driven software development
approach based on a visual domain-specific language that hierarchically
separates coordination from computation.

1 Introduction

To continue to improve processor performance, companies such as Intel and AMD
turned to hyperthreading and multicore architectures since physical limitations
impede further performance gains that base on increasing clock speed and op-
timizing execution flow [1]. These new performance drivers require to explicitly
consider concurrency. Unfortunately, after years of sequential programming prac-
tice the majority of software developers today are short on parallel programming
experience, and at least in the near future there will be no tools and techniques
to fully exploit concurrency automatically.

Concurrency has now to be exploited in applications of all kinds and domains.
The challenge is not solely software performance and speedup, but to provide a
convenient way to participate in the new performance drivers in general. Reuse
and portability may turn out to be of major importance because of the high de-
velopment costs of (re-)developing failure-safe parallel software. In the following,
we present related work in Sec. 2. In Sec. 3 we present our model-driven solution
and the expected contributions. Finally, we describe our plans for evaluation in
Sec. 4 and conclude the paper in Sec. 5.
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2 Related work

Lee argues that most of the difficulties in parallel programming are a consequence
of our concurrency abstractions [2]. He shows that the threading model, although
being a minor syntactical extension to existing languages, implies severe conse-
quences to programming since it is enormously nondeterministic and requires
to cut away unwanted nondeterminism by means of synchronization. This is
because the immense number of possible interleavings of thread instructions
makes it extremely difficult to reason about the actual behavior of an applica-
tion. Coordination languages can provide a solution, since they are orthogonal to
established programming languages and focus on deterministic communication
and cooperation between the computational parts of a program.

Pankratius et al. present a case study on parallelizing the open source com-
pression program BZip2 for multicore systems [3]. At least in the context of this
study, it is shown that considerable speedup can be gained by exploiting con-
currency on higher abstraction levels, and that parallel patterns turned out to
be more significant to speedup than fine-grained loop parallelization. It is also
noted that industry often propagates the feasibility of inserting parallelization
constructs in existing sequential code, thus limiting the amount of exploitable
concurrency.

Lee speculates that most existing multithreaded programs have concurrency
bugs that do not show up only because the underlying computer architectures
and operating systems currently provide modest parallelism, so that only a small
percentage of possible interleavings of thread instructions occurs [2]. Also, even
if a programmer’s code never creates a thread, frameworks may create threads
on behalf of the programmer, and thus require the code that is called from these
threads to be thread-safe [4]. Expert systems can support and train programmers
both in selecting parallel programming paradigms on the architecture level and
in selecting thread-safe design patterns.

There are few approaches in model-driven parallel program development.
IBM alphaWorks provides a tool that generates parallel code from UML mod-
els and supports concurrent patterns for multicore environments [5]. Using the
tool involves different activities such as the creation of concurrency patterns by
pattern developers and serial computing kernels by C++ developers. There is
few information available and the current status of the project is to the best
of our knowledge unclear. Pllana et al. propose an intelligent programming en-
vironment that targets multi-core systems and proactively supports a user in
program composition, design space exploration, and resource usage optimiza-
tion [6]. This environment is envisioned to combine model-driven development
with software agents and high-level parallel building blocks to automatize time-
consuming tasks such as performance tuning. UML extension are proposed for
graphical program composition. Both works seem promising and will be watched
closely, especially regarding the actual method and DSL, and how software engi-
neers are supported in parallel pattern application and in ensuring thread-safety.

J. Dingel (Ed.). Doctoral Symposium, MODELS'09. Oct. 5, 2009. 47



3 Solution approach

We propose a model-driven method that regards the overall coordination model
of parallel programs as the first development artifact, based upon the following
aspects: (1) Top-down problem decomposition is facilitated. (2) Nondeterminism
is introduced when needed instead of being cut away when not needed, preserv-
ing an overall deterministic program behavior. (3) Mapping high-level units of
execution to low-level processing entities is left for model-driven development or
run-time scheduling. (4) The development of large-scale parallel programs of all
kinds and domains is facilitated. (5) Ordinary software developers are supported
in developing parallel applications with considerable effort.

Hypotheses. (1) An explicit coordination metamodel can be developed that
combines data sharing for intra-process coordination and message-passing for
inter-process communication. (2) Using such a model for the model-driven gen-
eration of the coordinational framework of a software product ultimately results
in a product that (a) is more performant than a functionally equivalent sequen-
tial version of the software (speedup > 0) and (b) is not less performant than
a functionally equivalent parallel version of the software, that is developed by
using the target platform technologies directly (speedup ≥ 0). (3) Using the
coordination metamodel for the model driven generation ultimately results in
software that is scalable and maintainable.

Domain analysis. We define our target domain as parallel systems software
engineering. Basic stakeholder roles are system architects, application domain
experts, software developers, and customers. Regarding the software develop-
ment stages construction, debugging, and performance tuning (cf. [7]), we focus
on program construction. We further focus on the behavioral view, regarding
the behavior of a software system as concurrent processes within a coordination
model, where each process possesses its own address space. Stakeholders are thus
encouraged to decompose their problem in terms of processes that consists of
tasks (nodes of computation) and sub-processes (a partition of a process in the
same address space) to be performed sequentially or in parallel, and control flows
between them. Although emphasizing control flows, data flows and objects may
also be parts of the model.

DSL. Developing parallel applications using traditional programming lan-
guages can be tedious and error-prone due to the linearity of textual source
code. Visual DSLs are multi-dimensional, thus able to present multiple con-
current control flows naturally, while fine-grained concurrency control may be
encapsulated in appropriate language feature semantics [8, 9]. We regard the
threading model as the primary technology underlying our (therefore horizontal)
DSL. We may also consider the message passing model, which can be regarded
as the most widely-used model for inter-process communication in distributed
computing. Orthogonality to existing programming languages is required since
it provides an understandable large-scale overview of program structure, cf. [8].
We require the DSL to be visual (RQ-1) and graph-based (RQ-2). Language
constructs must conform to domain concepts, ideally providing distinct con-
structs for each distinct concept (RQ-3). The vocabulary of the language shall
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be as small as possible (RQ-4) and the constructs shall facilitate model quality
(RQ-5). The language must be scalable (RQ-6) and hierarchically composable
(RQ-7, cf. Fig. 1). Concurrency must be expressed explicitly as the coordina-
tion of tasks and (sub-) processes (RQ-8). Thereby, tasks represent computation
and sub-processes represent further compositions of coordinated tasks and sub-
processes. Both should be instantiable to represent concurrent execution of the
same computation (RQ-9). Also, the language should be control-driven (RQ-10)
[10], implying that computational nodes are almost completely separated from
coordination since they are regarded as black boxes with defined in- and outputs.

Method . System architects use a DSL to construct an explicit coordination
model for the overall behavior of a parallel system. From this model, there may
be subsequent model-to-model transformations before code is generated that
represents the coordinational framework of the parallel system. Transformations
are created by transformation developers (special domain architects), while func-
tional implementation is left for complementing modeling stages or manual im-
plementation. This method scenario is presented in Fig. 2. The benefits of the
method are: (1) Knowledge capture. Models provide a basis for communication
between domain experts, system architects, and software developers. (2) Reuse
and portability. Reference models and transformations can be reused, providing
a basis for software product lining; different target platform transformation sets
can be applied to the same coordination model. (3) Quality. Model bugs, as
well as the respective responsibilities, are separated from implementation bugs –
the former having to be corrected only once in the transformation descriptions
instead of multiple times in the source code. (4) Information Hiding. Trans-
formations encapsulate platform-specific implementation. (5) Development time
reduction. Reusing models and transformations saves development time.
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Contributions. (1) DSL. A coordination metamodel and a domain-specific
concrete syntax that abstracts from the underlying low-level technologies, in
particular, from the threading model. Existing DSLs may be reused if match-
ing the DSL requirements. (2) Method. An appropriate method to employ the
DSL, resulting in a formally specified model as a basis for model-driven devel-
opment. (3) Tooling. Tool support that integrates with existing technologies and
complementary tooling. This may comprise a modeling environment, transfor-
mation sets to transform coordination models to source code, and support tools
for pattern selection and application.

4 Plans for Evaluation and Future Work

Domain model . To refine the domain model, relevant concepts, their (shared
and differentiating) features, and additional requirements have to be further
identified or revised. This can be done by analyzing reference applications for
repetitive patterns [9]. Case studies. We intend to perform case studies on
developing an exemplary parallel application, focusing on speedup and scalabil-
ity. Possible scenarios are: (a) develop the example application based upon a
sequential version of the application, (b) if no sequential version is available, de-
velop the example application by using the target platform technologies directly,
then re-develop using the proposed method with subsequent domain-specific
functional implementation, then compare. Thereby, the case studies have to be
carefully designed regarding, for example, knowledge level, learning effects, and
favouritism. Also, the application has to be selected carefully considering, for
example, source code and documentation availability, implementation language,
application size, algorithm complexity, and estimated concurrency, cf. [3]. An
application candidate currently regarded is the Desmo-J3 discrete-event simula-
tion framework. The regarded target platform is Java since it is widely used in
industry, supposed to be the first exposure to parallel programming for many
programmers, and provides JVM-supported low-level thread management.

Our future work includes: (1) Language research . There are a number of
coordination languages that target to reduce complexity by representing paral-
lel program behavior visually [8, 10, 11]. We will examine them for applicability
as a DSL. We also suppose that (stereotyped) UML activity diagrams and the
Business Process Modeling Notation (BPMN) meet many of the DSL require-
ments. Both are well-known and may provide a basis for the visual DSL with
prospect of broad dissemination, provided that the underlying semantics remain
fundamentally intact. (2) Model Extension . We will examine the possibility
to extend the domain model to also abstract from the message passing model
for distributed computation. (3) Tool development . Tooling may comprise
a modeling environment based on the Eclipse Modeling Tools4 and the ope-
nArchitectureWare MDA/MDD generator framework5, and appropriate model
3 http://desmoj.sourceforge.net/
4 http://www.eclipse.org
5 http://www.openarchitectureware.org/
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transformations. Also, expert systems may provide assistance for the selection
of parallel programming patterns and patterns for thread-safety [12, 13].

5 Conclusion

In this position paper we discussed the need for higher abstractions in parallel
software development. This need is motivated by the inappropriateness of the
threading model since it requires to tame nondeterminism, the lack of parallel
programming experience, and the supposed impact of higher-level abstractions
on application performance. To satisfy this need, we proposed a model-driven
method that regards the coordination model of parallel programs as the first
development artifact, and an adequate visual DSL.
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Abstract. Using evidence-based guidelines to standardize the care of patients 

with complex medical problems is a difficult challenge in healthcare. 

Computerized support for implementing such guidelines as formalized patient 

management protocols has tremendous potential, but two hurdles seem to 

impede the success of most efforts in doing so. 1) Healthcare professionals 

usually lack the time to learn a mathematical language thus the formalization 

becomes a tedious process and 2) most of the guideline modeling languages are 

simply not flexible enough to handle exceptions that real-life situations 

introduce in execution time. The use of model-integrated techniques for 

specifying and implementing guidelines as coordinated asynchronous processes 

is a promising new methodology for tackling the above mentioned two 

problems and providing advanced clinical decision support. 

Keywords: Executable medical guidelines, Model-based development, Design 

languages, Domain-specific architectures, Medical information systems, 

Modeling 

1 Introduction 

Clinical Information Systems (CIS) are increasingly used by HealthCare 

Organizations (HCO) to improve the quality and decrease the cost of health care 

delivery. One of the most desired functionalities of a CIS is to support guideline-

based health care delivery, a direction that provides treatment for common illnesses 

by progressing along standardized, but customizable protocols. 

Although using these evidence-based guidelines (GLs) to standardize the care of 

patients with complex medical problems seems to be a promising approach, their 

implementation poses great challenges in healthcare. One of the main problems is that 

treatment protocols are hard to capture. There are three reasons why this is a complex 

problem. Firstly, it is because the operation protocols, policies and GLs of healthcare 

organizations are hardly ever phrased in a mathematically sound manner, which 

makes them difficult to translate to well-formed computer languages. Secondly, it is 

because they refer to many interdependent aspects of patient care, which makes it 

difficult to find the proper abstractions to represent them. These abstractions extend to 

organizational, human behavioral, security and privacy policy, coordination, 

deployment and document structure concepts. Thirdly, using the abstractions of well-
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known formal languages, like the coordination abstractions of the Service-Oriented 

Architecture (SOA) workflow languages, is not an option for healthcare professionals. 

They are not used to express treatment logic in the form of business processes. 

As shown in Section 2, there are several approaches that have attempted to tackle 

the challenges mentioned above and recommended formalizations for patient 

management protocols. It seems though that most of the approaches have not been 

able to address at least one of the following two hurdles, which, at the end, impede 

their wide acceptance: 1) Domain specificity: healthcare professionals usually lack the 

time to learn a mathematical language thus the formalization becomes a tedious 

process that involves the healthcare professionals (the domain experts) and the 

computer scientists who actually perform the implementation. 2) Expressiveness: 

most of the GL modeling languages are simply not flexible enough to handle 

exceptions that real-life situations introduce in execution time. As a consequence they 

need a long test period and can usually only be used in a restricted environment. 

Our research focuses on the model-based development of Clinical Information 

Systems (CIS). The specific problems we investigate are modeling, validation, 

verification and deployment of treatment protocols using the examples of sepsis and 

congestive heart failure management. 

2 Related work 

Formalization of medical knowledge has been an active area of research since the 

1960s. Early efforts were focused on creating systems that mapped signs, symptoms 

and laboratory results to probabilistic estimates of different diagnoses [1]. These 

systems did not prove to be practical for the everyday practice of medicine. Only with 

the development of the Electronic Medical Record (EMR) have knowledge-based 

systems proven to be practical and been adopted by practitioners [2]. 

Medical knowledge-based systems today focus on Computerized Physician Order 

Entry (CPOE) and clinical decision support advisory systems [3][4]. CPOE systems 

depend on comprehensive EMRs to provide means to physicians and nurses to create 

and execute orders for tests, procedures and medications. A system such as WizOrder, 

contains multiple advisors that help physicians with issues such as identifying 

potential adverse drug interactions or determining which combination of medicines 

might be best for a particular patient [5]. 

Another area being actively explored is the use of computer-generated alerts. By 

utilizing rule engines through publish/subscribe models to actively monitor the 

patient’s real time status specified problems trigger alerts [6]. 

The next area of application of knowledge-based systems is process management. 

One of the approaches in this category is called Digital Electronic Guideline Library 

(DeGeL) [7]. DeGeL is a Web-based framework and a set of distributed tools that 

facilitate gradual conversion of clinical GLs from free text, through semi-structured 

text, to a fully structured, executable representation. The final representations in 

DeGeL build on two GL ontologies (Asbru [8] and GEM [9]), both of which are 

formalized textual languages. Though formal and unambiguous, neither [8] nor [9] are 

suitable for reading. 
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AsbruView [10] uses two views, including a Gantt chart-like representation, to 

overcome the readability issue. Proposed views provide a better overview of the 

therapy steps than one could have from looking at decision tables. Also the precise 

temporal constraints of plans become visible, which they do not with flow-charts. 

Unfortunately their paper does not go into a discussion on how nontrivial examples 

(ones with not only one single thread) would look like using their formalisms. 

Quaglini et. al. in [11] provide a classification of exceptions that might occur 

during the execution of medical processes, but their approach of defining GLs with 

the help of Petri Nets does not seem to allow easy GL modeling and fails to avoid 

state explosion in case of complex protocols. 

Serban et. al. [12] and Bäumler et. al. [13] both perform protocol verification by 

translating Asbru-based GLs to SMV. 

3 Proposed Solution 

Our goal is to satisfy the heterogeneous and conflicting requirements stated in 

Section 1. For this, we are proposing to show that the management of complex 

medical processes, operational policies and GLs of HCOs can be translated to a set of 

semantically well founded and explicitly defined protocols, and by doing this the 

formal analysis (validation and verification) and execution of these protocols by a 

computer become feasible. The use of a formal, well defined representation also 

promotes maintainability and reusability of the software, as the temporal structure and 

coordination of the tasks will be captured explicitly. This is in sharp contrast to 

traditional approaches where this information is hidden in the code. It is also required 

that the domain experts, the health care professionals (and potentially privacy analysts 

and system integrators) can understand and adopt these domain specific models. 

We believe that by using the Model-Integrated Computing (MIC) [14] approach 

we will be able to capture modeling abstractions in a form of a domain-specific 

modeling language (DSML), which will help in satisfying the aforementioned 

requirements.  Facilitating the open-source MIC tool suite – built around the Generic 

Modeling Environment (GME) [15] – enables layered, graphical, multiple-view 

system modeling, model transformation, model analysis, execution, and design 

evolution. 

The application of MIC principles and tools casts the creation of clinical decision 

support and process management systems in the following framework: 1) Design of 

modeling language for treatment protocols. In MIC, modeling languages are formally 

defined by metamodels [15]. The MIC metaprogrammable tools – designed for 

modeling, model management and model transformation – are automatically 

customized by the metamodels. 2) Modeling treatment protocols. Using the modeling 

language defined in Step 1, models of specific treatment protocols are created. These 

models are a formal representation of GLs that drive the management of clinical 

processes. The precise semantic foundation of the MIC modeling infrastructure and 

related tools enable the iterative development (the evolution) of modeling language 

and represented models as well as the validation and verification of the models 

against a range of safety, privacy and security related criteria defined as constraints or 
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policies. 3) Generation of process management systems. Using the MIC model 

transformation infrastructure, the verified models are translated into configuration 

files that customize the generic run-time components of the process management 

system. 

As a plan for setting up a pragmatic evaluation of our approach and in an effort to 

maximize the impact of our system, we sought a clinical paradigm that was common, 

clinically important, expensive, and had accepted evidence-based treatment GLs. We 

found sepsis to be an ideal candidate for our intervention. Sepsis treatment is a 

complex and extremely information-intensive process performed in intensive care 

units (ICUs) and emergency departments. Application of GLs that can evolve with 

accumulated experience and can be customized to the needs of individual patients has 

important implications in the quality and cost of sepsis care, making sepsis 

management an attractive initial application target. 

We expect our contributions to include i) a formal DSML – called Clinical Process 

Modeling Language (CPML) – that follows the cognitive path physicians take when 

dealing with clinical problems, ii) an intuitive, graphical modeling environment for 

healthcare professionals to capture patient management protocols, iii) an 

implementation of the sepsis treatment GLs using CPML, iv) translators to the our 

DSML to simulation and verification tools, v) a generated graphical user interface 

(GUI) that allows healthcare professionals to follow and control the protocol 

execution while treating the patient, and vi) an execution engine that implements the 

operational semantics of CPML and the interfaces to other components (e.g.: live 

patient data feed). For executing the protocol in a clinical environment our team is 

also developing a tool configured to manage the treatment of sepsis, called Sepsis 

Treatment Enhanced through Electronic Protocolization (STEEP) [16]. 

4 Conclusion – Evaluation and Current Status 

The use of evidence-based GLs for managing complex clinical problems has 

become the standard of practice, but GLs are protocols and not patient care plans. To 

be truly effective, protocols must be deployed as customized, individualized clinical 

care plans (protocol instances). Our approach inherently supports this idea by 

allowing tailoring of the protocol models on a per patient basis if necessary as well as 

customizing the treatment via the graphical interface of STEEP at the bedside. 

We believe it was necessary to develop a DSML since there are no widely accepted 

visual languages for capturing treatment protocols, and generic software modeling 

languages, such as UML, were not designed for representing medical knowledge. The 

use of model-integrated techniques provides several tangible benefits. The protocol 

models capture medical knowledge explicitly and avoid any ambiguity. The models 

are easily comprehensible by medical professionals and there is no need for IT 

personnel to act as intermediaries between the medical and the computer fields.  

Furthermore, the protocol models enable knowledge transfer since they are based 

on the best practice available at the time. Medical students and residents using the tool 

thereby learn expert knowledge in actual practice. Moreover, the models are expected 

to be updated on a regular basis as new findings emerge in the medical literature. 
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Finally, the system facilitates the tracking of protocol execution helping to increase 

compliance, and improve the protocols themselves by enabling the analysis of the 

outcomes. 

While the medical benefits of our approach are clear, it also presents several 

advantages from a software development perspective. The software architecture is 

generic and it is expected to work just as well for other illnesses as it does for sepsis. 

In fact, we have already begun modeling a new condition, congestive heart failure 

(CHF), a completely different problem. CHF is a chronic condition with patients 

typically living at home, as opposed to the acute sepsis where treatment is 

administered in the ICU. We do not expect any software changes to the main 

components of the system as we attack different illnesses, just as there are no software 

changes when the protocols are updated based on new medical knowledge. 

Treatment protocols, even if they serve only as GLs in patient management, are 

safety critical and their validation and verification is an essential part of the protocol 

specification process. We are currently evaluating the expressiveness of the CPML 

language by experimenting with the semantics. We believe that finding the proper 

behavioral semantics is crucial, as it will not only allow a comparison with other 

languages, but define what properties can be verified, how well combined protocols 

behave when executed parallel, and also how well can the bounded tracking 

(exception handling) of protocols be implemented. 

The project started in 2007 as a collaborative effort between Vanderbilt School of 

Engineering and Vanderbilt Medical Center to apply advanced model-integrated 

computing techniques to the management of complex clinical processes. The team has 

completed the beta version of the generic software infrastructure and the sepsis 

treatment protocol models resulting in the STEEP toolset. We are in the process of 

performing a carefully coordinated, multi-phase experiment to evaluate the presented 

approach in terms of usability and effectiveness, which will involve evaluation of the 

protocol logic, the patient management interface, and the effects of the altered clinical 

workflow. Phase one of the clinical tests has already started in two ICUs at Vanderbilt 

to establish the baseline for the comparative study. The entire STEEP toolset will be 

introduced later this year. We anticipate showing that the application will 1) decrease 

time to detection of patients with developing sepsis, 2) improve physician compliance 

with evidence-based standards, and 3) result in improved clinical outcomes for 

patients, including ICU and total inpatient length of stay, number of organ system 

failures, and mortality rate. Once the approach is validated for sepsis, the technology 

and corresponding tools will be applied to the treatment of other serious illnesses. 
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