
Technical Report No. 2010-567

State Complexity of Unranked Tree Automata

Xiaoxue Piao and Kai Salomaa

School of Computing, Queen’s University

Kingston, Ontario K7L 3N6, Canada

{piao,ksalomaa}@cs.queensu.ca

Abstract. We consider the representational state complexity of unranked tree automata. The bottom-

up computation of an unranked tree automaton may be either deterministic or nondeterministic, and

further variants arise depending on whether the horizontal string languages defining the transitions

are represented by a DFA or an NFA. Also, we consider for unranked tree automata the alternative

syntactic definition of determinism introduced by Cristau et al. We establish upper and lower bounds

for the state complexity of conversions between different types of unranked tree automata.

Key words: tree automata, unranked trees, state complexity, nondeterminism

1 Introduction

Descriptional complexity, or state complexity, of finite automata has been extensively studied

in recent years, see [6, 8, 12, 14] and references listed there. On the other hand, very few papers

explicitly discuss state complexity of tree automata. For classical tree automaton models

operating on ranked trees [4, 5] many state complexity results are similar to corresponding

results on string automata. For example, it is well known that determinizing an n state

nondeterministic bottom-up tree automaton gives an automaton with at most 2n states.

Similarly, for Boolean operations or the extension of concatenation and Kleene star to trees

the state complexity results would be similar to the corresponding results for ordinary finite

automata [14].

Modern applications of tree automata, such as XML document processing [10, 13], use

automata operating on unranked trees. In some work the unranked trees are first encoded

as binary trees [2], however, a more common and conceptually cleaner approach is to define

the computation of the tree automaton directly on unranked XML-trees [1, 4, 13]. The set

of transitions of an unranked tree automaton is, in general, infinite and the transitions are

usually specified in terms of a regular language. Thus, in addition to the finite set of states

used in the bottom-up computation, an unranked tree automaton needs for each state q and

input symbol σ a finite string automaton to recognize the horizontal language consisting of

strings of states defining the transitions associated to q and σ.

Here we consider bottom-up (frontier-to-root) unranked tree automata. Roughly speak-

ing, we get different models depending on whether the bottom-up computation is nondeter-

ministic or deterministic and whether the horizontal languages are recognized by an NFA or

2 X. Piao, K. Salomaa

a DFA ((non-)deterministic finite automaton). Furthermore, there are two essentially differ-

ent ways to define determinism for unranked tree automata. The more common definition [4,

13] requires that for any input symbol σ and two distinct states q1, q2, the horizontal lan-

guages associated, respectively, with q1 and σ and with q2 and σ are disjoint. The condition

guarantees that the bottom-up computation assigns a unique state to each node. To distin-

guish this from the syntactic definition of determinism of [3], we call a deterministic tree

automaton where the horizontal languages defining the transitions are specified by DFAs,

a weakly deterministic tree automaton. Note that a computation of a weakly deterministic

automaton still needs to “choose” which of the DFAs (associated with different states) is

used to process the sequence of states that the computation reached at the children of the

current node – since the intersection of distinct horizontal languages is empty the choice is

unambiguous, however, when beginning to process the sequence of states the automaton has

no way of knowing which DFA to use.

A different definition, that we call strong determinism, was introduced by Cristau, Löding

and Thomas [3].1 A strongly deterministic automaton associates to each input symbol a single

DFA Hσ equipped with an output function, and the state Hσ reaches after processing the

sequence of states corresponding to the children determines (via the output function) the

state at a parent node labeled by σ. Strongly deterministic automata can be minimized

efficiently and the minimal automaton is unique [3]. On the other hand, interestingly it

was shown by Martens and Niehren [9] that for weakly deterministic tree automata the

minimization problem is NP-complete and the minimal automaton need not be unique.

We study the state complexity of determinizing different variants of nondeterministic

tree automata, that is, we develop upper and lower bounds for the size of deterministic tree

automata that are equivalent to given nondeterministic automata. We define the size of an

unranked tree automaton as a pair of integers consisting of the number of states used in

the bottom-up computation, and the sum of the sizes of the NFAs definining the horizontal

languages. Note that the two types of states play very different roles in computations of the

tree automaton. The other possibility would be, as is done e.g. in [9], to count simply the

total number of all states in the different components.

Also, we study the state complexity of the conversions between the strongly and the

weakly deterministic tree automata. Although the former model can be viewed to be more

restricted, there exist tree languages for which the size of a strongly deterministic automaton

is smaller than the size of the minimal weakly deterministic automaton. It turns out to be

more difficult to establish lower bounds for the size of weakly deterministic automata than

is the case for strongly deterministic automata. Naturally, this can be expected due to the

intractability of the minimization of weakly deterministic automata [9].

To conclude we summarize the contents of the paper. In section 2 we recall definitions

for tree automata operating on unranked trees and introduce some notation. In section 3

1 The paper [3] refers to weak and strong determinism, respectively, as semantic and syntactic determinism.

State complexity of tree automata 3

we study the descriptional complexity of conversions between the strongly and the weakly

deterministic tree automata, and in section 4 we study the size blow-up of converting different

variants of nondeterministic tree automata to strongly and weakly deterministic automata,

respectively.

2 Preliminaries

We assume that the reader is familiar with the basics of formal languages and finite au-

tomata [7, 14]. Below we briefly recall some definitions for tree automata operating on un-

ranked trees and fix notations. More details on unranked tree automata and references can

be found in [4, 13]. A general reference on tree automata operating on ranked trees is [5].

Basic notions concerning trees, such as the root, a leaf, a subtree, the height of a tree and

children of a node are assumed to be known. The set of non-negative integers is IN. A tree

domain is a prefix-closed subset D of IN∗ such that if ui ∈ D, u ∈ IN∗, i ∈ IN then uj ∈ D for

all j < i. The set of nodes of a tree t is represented in the well-known way as a tree domain

dom(t) and t is a mapping dom(t) → Σ where Σ is a finite alphabet of symbols. Thus, we

use labeled ordered unranked trees. Each node of a tree has a finite number children with a

linear order, but there is no a priori upper bound on the number of children of a node. The

set of all Σ-labeled trees is TΣ.

We introduce following notation for trees. For i ≥ 0, a ∈ Σ and t ∈ TΣ, we denote by

ai(t) = a(a(...a(t)...)) a tree, where the nodes ε, 1, . . . , 1i−1 are labelled by a and the subtree

at node 1i is t. When a ∈ Σ, w = b1b2...bn ∈ Σ∗, bi ∈ Σ, 1 ≤ i ≤ n, we use a(w) to denote

the tree a(b1, b2, ..., bn). When L is a set of strings, a(L) = {a(w) | w ∈ L}. The set of

all Σ-trees where exactly one leaf is labelled by a special symbol x (x 6∈ Σ) is TΣ[x]. For

t ∈ TΣ[x] and t′ ∈ TΣ, t(x ← t′) denotes the tree obtained from t by replacing the unique

occurrence of variable x by t′.
A nondeterministic (unranked) tree automaton (NTA) is a tuple A = (Q,Σ, δ, F), where

Q is the finite set of states, Σ is the alphabet labeling nodes of input trees, F ⊆ Q is the

set of final states, and δ is a mapping from Q × Σ to the subsets of Q∗ which satisfies the

condition that, for each q ∈ Q, σ ∈ Σ, δ(q, σ) is a regular language. The language δ(q, σ) is

called the horizontal language associated with q and σ.

A computation of A on a tree t ∈ TΣ is a mapping C : dom(t) → Q such that for u ∈
dom(t), if u ·1, . . . u ·m, m ≥ 0, are the children of u then C(u ·1) · · ·C(u ·m) ∈ δ(C(u), t(u)).

In case u is a leaf the condition means that m = 0 and ε ∈ δ(C(u), t(u)).

Intuitively, if a computation of A has reached the children of a σ-labelled node u in a

sequence of states q1, q2, . . . , qm, the computation may nondeterministically assign a state q

to the node u provided that q1q2 · · · qm ∈ δ(q, σ). For t ∈ TΣ, tA ⊆ Q denotes the set of

states that in some bottom-up computation A may reach at the root of t. The tree language

recognized by A is defined as L(A) = {t ∈ TΣ | tA ∩ F 6= ∅}.

4 X. Piao, K. Salomaa

For a tree automaton A = (Q,Σ, δ, F), we denote by HA
q,σ, q ∈ Q, σ ∈ Σ, a nondetermin-

istic finite automaton (NFA) on strings recognizing the horizontal language δ(q, σ). The NFA

HA
q,σ is called a horizontal automaton, and states of different horizontal automata are called

collectively horizontal states. We refer to the states of Q that are used in the bottom-up

computation as vertical states.

A tree automaton A = (Q,Σ, δ, F) is said to be (semantically) deterministic (a DTA) if

for σ ∈ Σ and any two states q1 6= q2, δ(q1, σ) ∩ δ(q2, σ) = ∅.
We get a further refinement of classes of automata depending on whether the horizontal

languages are defined using DFAs or NFAs. We use NTA(M) or DTA(M), respectively, to

denote (the class of) nondeterministic or deterministic tree automata where the horizontal

languages are recognized by the elements in class M . For example, NTA(DFA) denotes the

tree automata where the horizontal languages are recognized by a DFA.

Note that when referring to a tree automaton A = (Q,Σ, δ, F) it is always assumed that

the relation δ is specified in terms of automata HA
q,σ, q ∈ Q, σ ∈ Σ, and by saying that

A is an NTA(DFA) we indicate that each HA
q,σ is a DFA. We refer to DTA(DFA)’s also

as weakly deterministic tree automata to distinguish them from the below notion of strong

determinism.

If A is a DTA(NFA), for any tree t ∈ TΣ the bottom-up computation of A assigns a

unique vertical state to the root of t, that is, tA is a singleton set or empty. If the horizontal

automata HA
q,σ are DFAs, furthermore, for each transition the sequence of horizontal states

is processed deterministically. However, as discussed in section 1, a computation that has

reached children of a σ-labeled node in a sequence of states w ∈ Q∗ still needs to make the

choice which of the DFAs HA
q,σ, q ∈ Q, is used to process w. For this reason we consider also

the following notion introduced in [3] that we call strong determinism.

A tree automaton A = (Q,Σ, δ, F) is said to be strongly deterministic if for each σ ∈ Σ,

the transitions are defined by a single DFA augmented with an output function as follows.

For σ ∈ Σ define

HA
σ = (Sσ, Q, s0

σ, Fσ, γσ, λσ), (1)

where (Sσ, Q, s0
σ, Fσ, γσ) is a DFA with set of states Sσ (s0

σ ∈ Sσ is the start state, Fσ ⊆ Sσ

is the set of final states and γσ : Sσ×Q → Sσ is the transition function) and λσ is a function

Fσ → Q. Then we require that for all q ∈ Q and σ ∈ Σ: δ(q, σ) = {w ∈ Q∗ | λσ(γσ(s0
σ, w)) =

q}.2 Note that the definition guarantees that δ(q1, σ)∩δ(q2, σ) = ∅ for any distinct q1, q2 ∈ Q,

σ ∈ Σ. The class of strongly deterministic tree automata is denoted as SDTA.

By the size of an NFA B, denoted size(B), we mean the number of states of B. Because

the roles played by vertical and horizontal states, respectively, in the computations of a tree

automaton are essentially different, when measuring the size of an automaton we count the

2 Strictly speaking, δ is superfluous in the tuple specifying an SDTA and the original definition of [3] gives instead

the automata HA
σ , σ ∈ Σ. We use δ in order to make the notation compatible with our other models, and to avoid

having to define bottom-up computations of SDTAs separately.

State complexity of tree automata 5

two types of states separately. The size of an NTA(NFA) A = (Q,Σ, δ, F) is defined as

size(A) = [|Q|;
∑

q∈Q,σ∈Σ

size(HA
q,σ)] (∈ IN× IN).

Using notations of (1), the size of an SDTA A is defined as the pair of integers size(A) =

[|Q|; ∑
σ∈Σ |Sσ|].

We make the following notational convention that allows us to use symbols of Σ in

the definition of horizontal languages. Unless otherwise mentioned, we assume that a tree

automaton always assigns to each leaf symbol labeled σ a state σ that is not used anywhere

else in the computation. That is, for σ ∈ Σ and q ∈ Q, ε ∈ δ(q, σ) only if q = σ, δ(σ, σ) = {ε}
and δ(τ , σ) = ∅ for all σ, τ ∈ Σ, σ 6= τ . When there is no confusion, we denote also σ simply

by σ. When the alphabet Σ is fixed, there is only a constant number of the special states σ

and since, furthermore, the special states have the same function in all types of tree automata,

for simplicity, we do not include them when counting the vertical states. The purpose of this

convention is to improve readability: many of our constructions become more transparent

when alphabet symbols can be used explicitly to define horizontal languages. The convention

does not change our state complexity bounds that are generally given within a multiplicative

constant.

To conclude this section we give two lemmas that provide lower bound estimates for

vertical and horizontal states of SDTAs, respectively. The lower bound condition for ver-

tical states applies, more generally, for DTA(NFA)’s, however, obtaining lower bounds for

the number of horizontal states of weakly deterministic automata turns out to be more

problematic.

Lemma 1. Let A be an SDTA or a DTA(NFA) with a set of vertical states Q recognizing

a tree language L. Assume R = {t1, . . . , tm} ⊆ TΣ where for any 1 ≤ i < j ≤ m there exists

t ∈ TΣ[x] such that t(x ← ti) ∈ L iff t(x ← tj) 6∈ L. Then |Q| ≥ |R| − 1.

Proof. The condition of the lemma guarantees that the state of A can be undefined at the

root of at most one of the trees of R. If Q has less than |R| − 1 states, then A must reach in

the same state the root of two distinct trees t1, t2 ∈ R. According to the lemma, there exists

t ∈ T [x] such that t(x ← t1) if and only if t(x ← t2). This is a contradiction. ¥

Lemma 2. Let A be an SDTA with a set of vertical states Q recognizing a tree language

L. Let S be a finite set of tuples of Σ-trees and b ∈ Σ. Assume that for any distinct tuples

(r1, . . . , rm), (s1, . . . , sn) ∈ S there exists t ∈ TΣ[x] and a sequence of trees u1, . . . , uk such

that

t(x ← b(r1, . . . , rm, u1, . . . , uk)) ∈ L iff t(x ← b(s1, . . . , sn, u1, . . . , uk)) 6∈ L (2)

Then the horizontal automaton HA
b needs at least |S| − 1 states.

6 X. Piao, K. Salomaa

Proof. If HA
b has less than |S|−1 states, then for two distinct tuples (r1, . . . , rm), (s1, . . . , sn)

of S the automaton HA
b must be in the same state after reading the strings rA

1 · · · rA
m and

sA
1 · · · sA

n (∈ Q∗). Note that the condition (2) guarantees that at most one tuple of S can

contain a tree r for which rA is undefined. Now A reaches the same vertical state at roots of

t(x ← b(r1, . . . , rm, u1, . . . , uk)) and t(x ← b(s1, . . . , sn, u1, . . . , uk)). This contradicts (2). ¥

3 Size comparison of the strongly and weakly deterministic tree

automata

Here we give upper and lower bounds for the size of a weakly deterministic automaton

(a DTA(DFA)) simulating a strongly deterministic one (an SDTA), and vice versa. The

computation of a DTA(DFA) can, in some sense, nondeterministically choose which of the

horizontal DFAs it uses at each transition. An SDTA does not have this capability and it

can be expected that, in the worst case, an SDTA may need considerably more states than

an equivalent DTA(DFA). However, there exist also tree languages for which an SDTA can

be considerably more succinct than a DTA(DFA).

3.1 Converting an SDTA to a DTA(DFA)

First we give an upper bound for the conversion. In the below lemma (and afterwards) we use

“≤” to compare pairs of integers componentwise. As introduced in section 2, for an SDTA

A we denote the deterministic automata for the corresponsing horizontal languages by HA
σ ,

σ ∈ Σ.

Lemma 3. Let A = (Q,Σ, δ, F) be an arbitrary SDTA.

We can construct an equivalent DTA(DFA) A′ where

size(A′) ≤ [|Q|; |Q| ×
∑
σ∈Σ

size(HA
σ)]. (3)

Proof. For σ ∈ Σ denote components of HA
σ as in (1). Construct an equivalent DTA(DFA)

A′ = (Q,Σ, δ′, F), where for each σ ∈ Σ, q ∈ Q, δ′(q, σ) = {w ∈ Q∗ | λσ(γσ(s0
σ, w)) = q}.

The languages δ′(q1, σ) and δ′(q2, σ), q1 6= q2 are always disjoint, and δ′(q, σ) is recognized

by a DFA obtained from HA
σ by choosing as the set of final states λ−1

σ (q), q ∈ Q, σ ∈ Σ. The

construction does not change the number of vertical states and (3) holds. ¥
Next we establish a lower bound for the conversion.

Lemma 4. Let n, z ∈ IN and choose Σ = {a, b, 0, 1}. There exists an SDTA B with input

alphabet Σ, n vertical states and z + 4n horizontal states, such that any DTA(DFA) for the

tree language L(B) has at least n vertical states and n(blog nc+ 2 + z) horizontal states.

State complexity of tree automata 7

Proof. Let n, z ≥ 1 be arbitrary but fixed. For 1 ≤ i ≤ n, yi ∈ {0, 1}∗ is the binary

representation of i. Define L = {ai(bzyi) | n ≥ i ≥ 1}.
The tree language L is recognized by an SDTA B = (Q,Σ, δ, F), where Q = {q1, ..., qn},

F = {q1}, δ(a, qi) = bz · yi + qi+1, when 1 ≤ i ≤ n− 1, and, δ(a, qn) = bz · yn.3

Clearly the bottom-up computations of B recognize the tree language L and it remains

to estimate the size of the DFA with output HB
a that defines transitions at a-labeled nodes.

The DFA needs z + 1 states to process the prefix bz and at most 2(2+blog nc) − 1 states to

remember the suffix of length 1 + blog nc and output the correct vertical state using the

λ-function. Thus, B can be constructed with z + 4n horizontal states.

Consider an arbitrary DTA(DFA) B′ = (Q′, Σ, δ′, F ′) accepting L. First using Lemma 1

we see that |Q′| ≥ n. Choose R = {a(bzyi) | 1 ≤ i ≤ n}∪{a(bz+1)}. Clearly for any t1, t2 ∈ R

there exists t ∈ TΣ[x] such that t(x ← t1) ∈ L if and only if t(x ← t2) 6∈ L.

Denote by pi the state that B′ assigns to the root of a(bzyi), 1 ≤ i ≤ n. It is easy to

verify (as in Lemma 1) that pi 6= pj when i 6= j. Now δ′(pi, a) ∩ Σ∗ = {bzyi}. (If δ′(pi, a)

were to contain some other string over Σ, B′ will accept trees not in L.) Thus the DFA HB′
pi,a

recognizing δ′(pi, a) has at least |bzyi|+ 1 = z + blog nc+ 2 states.

Since the above holds for all 1 ≤ i ≤ n, a lower bound for the numbers of vertical and

horizontal states of B′ is size(B′) ≥ [n; n · (blog nc+ 2 + z)] ¥
Using Lemma 4 with z = n− blog nc, we see that the upper bound of Lemma 3 is tight

within a multiplicative contant. This is stated as:

Theorem 1. An SDTA with n vertical and m horizontal states can be simulated by a

DTA(DFA) having n vertical and n ·m horizontal states.

For n ≥ 1, there exists a tree language Ln recognized by an SDTA with n vertical and

O(n) horizontal states such that any DTA(DFA) recognizing Ln has n vertical and Ω(n2)

horizontal states.

It can be viewed as expected that in the conversion of Theorem 1 the number of vertical

states does not change. However as will be discussed later, in general, for a DTA(DFA) it may

be possible to reduce the number of horizontal states by increasing the number of vertical

states.

3.2 Converting a DTA(DFA) to an SDTA

Again we give first an upper bound for the simulation.

Lemma 5. Let B = (Q,Σ, δ, F) be an arbitrary DTA(DFA), where |Q| = n. Let HB
q,σ =

(Sq,σ, Q, s0
q,σ, Fq,σ, γq,σ) be a DFA for the horizontal language δ(q, σ), q ∈ Q, σ ∈ Σ.

3 As explained in section 2, we use notation where an alphabet symbol σ occuring in strings of a horizontal language

is interpreted as a leaf node labeled by σ.

8 X. Piao, K. Salomaa

We can construct an equivalent SDTA B′ where

size(B′) ≤ [|Q|;
∑
σ∈Σ

(
∏
q∈Q

(|Sq,σ| − |Fq,σ|) +
∑
q∈Q

|Fq,σ| ·
∏

p∈Q,p6=q

(|Sp,σ| − |Fp,σ|))]

.

Proof. We construct an equivalent SDTA B′ = (Q,Σ, δ′, F) as follows. Denote Q = {q1, . . . , qn}.
For each σ ∈ Σ, we define a DFA with output

HB′
σ = (

∏
q∈Q

Sq,σ, Q, (s0
q1,σ, . . . , s

0
qn,σ), Eσ, ∆σ, λσ),

where for pi ∈ Sqi,σ, 1 ≤ i ≤ n,

∆σ((p1, p2, . . . , pn), q) = (γq1,σ(p1, q), . . . , γqn,σ(pn, q)),

λσ((p1, . . . , pn)) =

{
qj if min{k | pk ∈ Fqk,σ} = j ≥ 1,

undefined, otherwise.

and Eσ consists of elements of
∏

q∈Q Sq,σ for which λσ is defined. The output function λσ

assigns to a tuple (p1, . . . , pn) ∈ Eσ the vertical state qj where j is the smallest index such

that pj is a final state of the DFA HB
qj ,σ. The choice may seem arbitrary, however, the

construction works because, since B is a DTA(DFA) the horizontal languages δ(qj1 , σ) and

δ(qj2 , σ), j1 6= j2, are always disjoint and hence in any tuple (p1, . . . , pn) ∈ ∏
q∈Q Sq,σ that

the computation of HB′
σ may actually reach at most one of the components pi can be a final

state of the corresponding horizontal DFA HB
qi,σ

.

Above we have noted that computations of HB′
σ use as states only tuples (p1, . . . , pn)

where either, for all 1 ≤ j ≤ n, pj ∈ Sqj ,σ −Fqj ,σ, or there exists exactly one 1 ≤ j ≤ n, such

that pj ∈ Fqj ,σ. Eliminating the unnecessary tuples and taking the sum over all σ ∈ Σ, gives

for the total number of horizontal states of B′,
∑

σ∈Σ size(HB′
σ), the upper bound claimed in

the statement of the lemma. The number of vertical states of B′ is n. ¥
If B has m horizontal states, Lemma 5 gives for the number of horizontal states of B′

a worst-case upper bound that is less than 2m but is not polynomial in m. Next we give a

lower bound construction.

Lemma 6. Let Σ = {a, b, 0, 1}. For any m ∈ IN and relatively prime numbers 2 ≤ k1 <

k2 < ... < km, there exists a tree language L over Σ recognized by a DTA(DFA) B with

size(B) = [m;
∑m

i=1 ki + O(m log m)] such that any SDTA recognizing L has at least m

vertical states and Πm
i=1ki horizontal states.

Proof. Let yi ∈ {0, 1}∗ be the binary representation of i ≥ 1. We define L =
⋃

1≤i≤m ai((bki)
∗
yi).

We define for L a DTA(DFA) B = (Q,Σ, δ, F), where Q = {q1, ..., qm}, F = {q1},
δ(a, qi) = (bki)

∗ · yi + qi+1, for 1 ≤ i ≤ m − 1, and δ(a, qm) = (bkm)
∗ · ym. Note that

State complexity of tree automata 9

the bottom-up computation of B is deterministic because different horizontal languages are

marked by distinct binary strings yi.

Each horizontal language (bki)
∗ ·yi +qi+1 can be recognized by a DFA with ki +blog ic+3

states, and in total B has
∑m

i=1 ki +
∑m

i=1(blog ic) + 3m horizontal states (and m vertical

states).

Let B′ = (Q′, Σ, δ′, F ′) be an arbitrary SDTA recognizing L. By choosing R = {a(bkiyi) |
1 ≤ i ≤ m} ∪ {a(b)}, Lemma 1 gives |Q′| ≥ m.

We show that the DFA HB′
a , with notations as in (1), defining transitions corresponding

to symbol a needs at least
∏m

i=1 ki states. Suppose that HB′
a has less than

∏m
i=1 ki states.

Then there exist 0 ≤ j < s <
∏m

i=1 ki such that HB′
a reaches the same state after reading

strings bj and bs, respectively. There must exist 1 ≤ r ≤ m such that kr does not divide s−j.

Let z = j+(kr−j mod kr). Since HB′
a reaches the same state on bj and bs, it follows that HB′

a

reaches the same state also on bz · yr and bz+s−j · yr, respectively. This means that akr(bzyr)

is accepted by B′ if and only if akr(bz+s−j · yr) is accepted by B′, which is a constradiction

because kr divides z and does not divide z + s− j. ¥
In the above proof, using a mode detailed analysis it could be shown that HB′

a needs

Ω(m · log m) additional states to process the strings yi, however, this would not change the

worst-case lower bound.

Now we establish that the upper and lower bounds for the DTA(DFA)-to-SDTA conver-

sion are within a multiplicative constant, at least when the sizes of the horizontal DFAs are

large compared to the number of vertical states.

Theorem 2. An arbitrary DTA(DFA) B = (Q,Σ, δ, F) has an equivalent SDTA B′ with

size(B′) ≤ [|Q|;
∑
σ∈Σ

∏
q∈Q

size(HB
q,σ)], (4)

and, for an arbitrary m ≥ 1 there exists a DTA(DFA) B = (Q,Σ, δ, F) with |Q| = m such

that for any equivalent SDTA B′ the size of B′ has a lower bound within a multiplicative

constant of (4).

Proof. The upper bound follows from Lemma 5. We get the lower bound from Lemma 6 by

choosing each ki to be at least m · log m, i = 1, . . . , m. ¥
We note that when converting a DTA(DFA) B = (Q,Σ, δ, F) to an equivalent SDTA A,

for each σ ∈ Σ the horizontal DFA HA
σ needs at least as many states as a DFA recognizing

LB,σ =
⋃

q∈Q δ(q, σ). Note that from HA
σ we obtain a DFA for LB,σ simply by ignoring the

output function. However, HA
σ needs to provide more detailed information for a given input

string than a DFA simply recognizing LB,σ, and in fact HA
σ recognizes the marked union, as

formalized below, of the languages δ(q, σ).

We say that a DFA A = (Q,Σ, s0, F, γ) equipped with an output function λ : F →
{1, . . . , m} recognizes the marked union of pairwise disjoint regular languages L1, . . . , Lm,

10 X. Piao, K. Salomaa

if Li = {w ∈ Σ∗ | λ(γ(s0, w)) = i}, i = 1, . . . , m. The following result establishes that, at

least for variable sized alphabets, the state complexity of marked union may be exponentially

larger than the state complexity of union.

Proposition 1. Let A = (Q,Σ, s0, F, γ, λ) be a DFA with output function λ : F → {1, . . .m}
that recognizes the marked union of disjoint languages Li, i = 1, . . . , m, and let B be the min-

imal DFA for
⋃m

i=1 Li.

Then size(A) ≥ size(B), and there exist disjoint regular languages Li, 1 ≤ i ≤ 2n − 1,

(with m = 2n − 1) over an alphabet of size n, such that size(B) = n + 1 and the size of A is

at least 2n − 1.

Proof. The inequality size(A) ≥ size(B) follows from the observation that we obtain B from

A simply by ignoring the output function.

Consider an alphabet Σ = {a1, a2, ..., an}. There are 2n−1 nonempty subsets of Σ. Denote

each subset by Si, 1 ≤ i ≤ 2n − 1. For each Si = {ai1 , . . . , aim}, 1 ≤ i1 < i2 < · · · < im ≤ n,

define xi = ai1ai2 · · · aim . Note that in this way we get one uniquely defined string xi for each

set ∅ 6= Si ⊆ {a1, . . . , an}.
A DFA recognizing the marked union of {xi}, 1 ≤ i ≤ 2n − 1, needs at least as many

states as the number of components {xi}.
We construct a DFA B with n + 1 states for the language L0 = {xi | 1 ≤ i ≤ 2n − 1}.

Choose B = (Q,Σ, 0, Q − {0}, γ) where Q = {0, 1, . . . , n} and the transition function γ is

defined by setting for 0 ≤ i ≤ n, 1 ≤ j ≤ n,

γ(i, aj) =

{
j if i < j,

undefined, if i ≥ j.

Since all states of B except the start state are final, it is easy to verify that B recognizes L0.

The construction in the case n = 4 is illustrated in Example 1. ¥

Example 1. We consider an example with Σ = {a, b, c, d}. Definte L1 = {a}, L2 = {b},
L3 = {c}, L4 = {d}, L5 = {ab}, L6 = {ac}, L7 = {ad}, L8 = {bc}, L9 = {bd}, L10 = {cd},
L11 = {abc}, L12 = {abd}, L13 = {acd}, L14 = {bcd}, L15 = {abcd}. The DFA that recognizes

the union of the languages L1, . . . , L15, is shown in Figure 1.

4 Converting nondeterministic tree automata to deterministic

automata

In this section we consider conversions of different variants of nondeterministic automata

into equivalent strongly and weakly deterministic automata.

State complexity of tree automata 11

Fig. 1. A DFA recognizing
⋃15

i=1 Li

4.1 Converting a nondeterministic automaton to an SDTA

We begin by giving upper bounds.

Lemma 7. Let A = (Q,Σ, δ, F) be an NTA(NFA) and for q ∈ Q, σ ∈ Σ denote size(HA
q,σ) =

mq,σ.

(i) We can construct an equivalent SDTA B where

size(B) ≤ [2|Q|;
∑
σ∈Σ

2
(

∑
q∈Q

mq,σ)

]. (5)

(ii) If A is a DTA(NFA), in the upper bound (5) the number of vertical states is at most

|Q|.

Proof. First we consider the case (i) where A is an arbitrary NTA(NFA). Denote Q =

{q1, . . . , qn} and HA
qi,a

= (Ca,i, Q, q0
a,i, Fa,i, γa,i) is the horizontal NFA corresponding to qi ∈ Q

and a ∈ Σ.

We define an SDTA B = (P(Q), Σ, η, FB) where FB = {X ⊆ Q | X ∩ F 6= ∅} and

η-transitions corresponding to a ∈ Σ are determined by a DFA with output function:

HB
a = (P(Ca,1)× · · · × P(Ca,n),P(Q), ({q0

a,1}, . . . , {q0
a,n}), Ea, µa, λa), (6)

where µa and λa are defined below, and Ea consists of all tuples (Y1, . . . , Yn), Yi ⊆ Ca,i,

i = 1, . . . , n, such that λa(Y1, . . . , Yn) 6= ∅. Note that since B uses P(Q) as the set of states,

this is also the input alphabet for HB
a . For X ⊆ Q and Yi ⊆ Ca,i, i = 1, . . . , n,

µa((Y1, . . . , Yn), X) = (
⋃
x∈X

γa,1(Y1, x), . . . ,
⋃
x∈X

γa,n(Yn, x)).

Here γa,i(Yi, x) stands for
⋃

z∈Yi
γa,i(z, x). For Yi ⊆ Ca,i, i = 1, . . . , n,

λa((Y1, . . . , Yn)) = {qi | Yi ∩ Fa,i 6= ∅}.

12 X. Piao, K. Salomaa

The computation of HB
a on a string w = w1 · · ·wk, wj ∈ P(Q), j = 1, . . . , k, roughly

speaking, simulates the computation of each NFA HA
qi,a

, 1 ≤ i ≤ n, on each string u =

u1 · · ·uk ∈ Q∗, ui ∈ wi, i = 1, . . . , k. With above notations, we say that u ∈ Q∗ is a

projection of the string w ∈ (P(Q))∗. Assume that the computation of HB
a on w reaches a

state (Y1, . . . , Yn), Yi ⊆ Ca,i, i = 1, . . . , n. Then λa maps (Y1, . . . , Yn) to the set P (⊆ Q)

consisting of exactly those elements q ∈ Q such that HA
q,a accepts some projection string of

the string w. These conditions guarantee that if the nondeterministic computation of A can

reach the children of a node v labeled by a in states determined by the string w ∈ (P(Q))∗,
the possible states at node v are exactly the states of P . Note that this property relies

strongly on the fact that computations in subtrees corresponding to different children of

v are independent. It follows that L(B) = L(A). The SDTA B has 2n vertical states and∑
a∈Σ 2

∑n
i=1 |Ca,i| horizontal states.

(ii) Now assume that A is a DTA(NFA). Analogously, as in (i) above we define an equiv-

alent SDTA B = (Q,Σ, η, FB). Now for the horizontal DFA HB
a the input alphabet is just

Q, however, because the automata HA
qi,a

remain nondeterministic the set of states of HB
a is,

in general, as in (6) and the upper bound for the total number of horizontal states is the

same as in (i). ¥
We do not require the automata be complete and, naturally, in (5) the number of vertical

states of B could be reduced to 2|Q| − 1. A similar small improvement could be made to the

number horizontal states, but it would make the formula look rather complicated.

Also, in Lemma 7 (ii) the upper bound for the number of horizontal states could be

slightly reduced using a more detailed analysis, as in the proof of Lemma 5, that takes into

account that at most one of the NFAs defining the horizontal languages associated with a

fixed input symbol σ can accept simultaneously.

Lemma 7 did not discuss the case where the bottom-up computation is nondetermin-

istic but the horizontal languages are represented in terms of DFAs. We note that for an

NTA(DFA) A = (Q,Σ, δ, F) the construction used in the proof of Lemma 7 gives for the

size of an equivalent SDTA only the upper bound (5). Although the horizontal languages of

A are defined using DFAs, the horizontal languages of the equivalent SDTA B are over the

alphabet P(Q), and this means that the upper bound for the number of horizontal states

would not be improved.

Next we state two lower bound results.

Lemma 8. Let Σ = {a, b}. For any relatively prime numbers m1,m2, ..., mn, there exists

a tree language L over Σ such that L is recognized by an NTA(DFA) A with size(A) ≤
[n; (

n∑
i=1

mi) + 2n − 2], and any SDTA for L needs at least 2n − 1 vertical states and

(
n∏

i=1

mi)− 1 horizontal states.

Proof. We choose L = {ai((bmi)∗) | 1 ≤ i ≤ n}.

State complexity of tree automata 13

The tree language L is accepted by an NTA(DFA) A = (Q, {a, b}, δ, {q1}), where Q =

{q1, q2, ..., qn}, δ(a, qi) = (bmi)∗ + qi+1, 1 ≤ i ≤ n − 1, δ(a, qn) = (bmn)∗. Each horizontal

language δ(a, qi) can be recognized by a DFA with mi + 2 states, 1 ≤ i ≤ n− 1, and δ(a, qn)

is recognized by a DFA with mn states. Note that since A is an NTA(DFA) there is no

requirement that different horizontal languages associated with a would need to be disjoint.

Let B = (Q′, Σ, δ′, F ′) be an arbitrary SDTA recognizing L. For r ⊆ {1, . . . , n}, define

sr = a(bΠi∈rmi). Denote

R = {sr | ∅ 6= r ⊆ {1, . . . , n} } ∪ {a(b(Πn
i=1mi)+1)}.

We show that R satisfies the conditions of Lemma 1. First consider any two distinct

nonempty sets r1, r2 ⊆ {1, . . . , n}. Choose k ∈ r1 − r2. The other case where r1 − r2 6= ∅ is

completely symmetric. Now for t = ak−1(x) ∈ TΣ[x], t(x ← sr1) ∈ L and t(x ← sr2) 6∈ L.

Second, for any ∅ 6= r there exists t ∈ TΣ[x] such that t(x ← sr) ∈ L. On the other

hand, for any t ∈ TΣ[x], t(x ← a(b(Πn
i=1mi)+1) 6∈ L because no mi, 1 ≤ i ≤ n, can divide

(Πn
i=1mi) + 1.

Thus, we have verified that the set R satisfies the conditions of the statement of Lemma 1.

Since |R| = 2n it follows that B needs at least 2n − 1 vertical states.

It remains to establish the lower bound for the number of horizontal states of B. Let K =

Πn
i=1mi and define S = {bj | 1 ≤ j ≤ K}. 4 Consider any distinct integers 1 ≤ x < y ≤ K.

Since all the mj’s are pairwise relatively prime, there exists 1 ≤ i ≤ n such that mi does not

divide y− x. Choose 0 ≤ z < mi such that y + z ≡ 0 (mod mi). Also let t = ai−1[x] ∈ TΣ[x].

Now t(x ← a(by+z)) ∈ L and t(x ← a(bx+z)) /∈ L. Note that because mi divides y + z and

mi does not divide y− x, mi does not divide x + z. According to Lemma 2, B needs at least

|S| − 1 horizontal states. ¥

Lemma 9. For n ≥ 1, there exists a tree language Ln recognized by a DTA(NFA) A with n

vertical and less than n log n horizontal states such that for any SDTA B for Ln, size(B) ≥
[n; 2n].

Proof. Let Σ = {a, b, c, 0, 1} and yi denotes the binary representation of i ≥ 1 (without

leading zeros). Let L0 be the language defined by the NFA in Figure 2. Define

T = {ci(yi) | 1 ≤ i ≤ n− 1} ∪ {cn(w) | w ∈ L0}.
The tree language T is recognized by a DTA(NFA) A = (Q,Σ, δ, {q1}), where Q =

{q1, q2, . . . , qn}, δ(c, qi) = {yi, qi+1}, 1 ≤ i ≤ n− 1, δ(c, qn) = L0.

Each δ(c, qi) can be recognized by an NFA with blog ic + 2 states, 1 ≤ i ≤ n − 1, and

δ(c, qn) = L0 is recognized by an NFA with n states.

Let B = {Q′, Σ, δ′, F ′} be an arbitrary SDTA recognizing T . Define R = {c(yi) | 1 ≤ i ≤
n − 1} ∪ {c(an−1), c(b)}. Let t ∈ TΣ[x] be arbitrary. For 1 ≤ i ≤ n − 1, t(x ← c(yi)) ∈ T if

4 To be consistent with notations of Lemma 2, we view the elements of S as tuples of trees each having one node.

14 X. Piao, K. Salomaa

Fig. 2. An NFA for the language L0.

and only if t = ci−1(x). Also, t(x ← c(an−1)) ∈ T if and only if t = cn−1(x) and t(x ← c(b))

is never in T . Thus, R satisfies the conditions of Lemma 1, and it follows that |Q′| ≥ n.

Let HB
c = (Sc, Q

′, s0
c , Fc, γc, λc) be the DFA with output that determines the transitions of

B at symbol c.5 Denote P = {q ∈ Q′ | B accepts cn−1(q)}. Define E = (Sc, Q
′, s0

c , λ
−1
c (P), γc).

Now L(E) = L0 and we know by [11] that size(E) ≥ 2n, which means that also HB
c has at

least 2n states. ¥
Using a more detailed analysis of how the horizontal automata process the strings yi,

in the above proof we could slightly improve the lower bound for the number of horizontal

states of B.

The lower bounds given by the above two lemmas are far removed from the correspond-

ing upper bounds in Lemma 7. Furthermore, we do not have a worst-case construction for

general NTA(NFA)’s that would provably give an essentially better lower bound than the

one obtained for NTA(DFA)’s in Lemma 8.

4.2 Converting a nondeterministic automaton to a DTA(DFA)

We begin with a simulation result establishing an upper bound.

Lemma 10. Let A = (Q,Σ, δ, F) be an NTA(NFA) and for q ∈ Q, σ ∈ Σ denote size(HA
q,σ) =

mq,σ.

(i) There exists a DTA(DFA) B equivalent to A where

size(B) ≤ [2|Q|; 2|Q| · (
∑
σ∈Σ

2(
∑

q∈Q mq,σ))]. (7)

(ii) If A is a DTA(NFA), it has an equivalent DTA(DFA) B where

size(B) ≤ [|Q|;
∑
q∈Q

∑
σ∈Σ

2mq,σ].

Proof. Let Q = {q1, . . . , qn} and as usual denote by HA
q,σ = (Sq,σ, Q, s0

q,σ, Fq,σ, γq,σ) the hori-

zontal DFA corresponding to q ∈ Q and σ ∈ Σ.

We use the following notation. For P = {qi1 , . . . , qim} ⊆ Q, 1 ≤ i1 < i2 < · · · < im ≤ n, we

denote by IP = {i1, . . . , im} the index set of P . We define a DTA(DFA) B = (P(Q), Σ, η, FB)

5 Recall that according to our notational conventions elements of Σ are used also as states of Q′.

State complexity of tree automata 15

where FB = {X ⊆ Q | X ∩ F 6= ∅} and for P ⊆ Q and σ ∈ Σ, the horizontal language

η(P, σ) is recognized by a DFA

HB
P,σ = (P(Sq1,σ)× · · · × P(Sqn,σ)), P(Q), (s0

q1,σ, . . . , s
0
qn,σ),HP , βσ),

where the set of final states is

HP = {X1 × · · · ×Xn |Xi ⊆ Sqi,σ, i = 1, . . . , m, (∀i ∈ IP) Xi ∩ Fpi,σ 6= ∅
and (∀i ∈ {1, . . . , n} − IP) Xi ∩ Fpi,σ = ∅},

and the transitions are defined by setting for Xi ⊆ Sqi,σ, 1 ≤ i ≤ n, Y ⊆ Q,

βσ(X1 × · · · ×Xn, Y) = (
⋃
y∈Y

γq1,σ(X1, y), . . . ,
⋃
y∈Y

γqn,σ(Xm, y)).

The above construction and the argument justifying that B correctly simulates A are similar

to ones used in the proof of Lemma 7.

We note here just the following. In the above construction HB
P,σ simulates also the com-

putation of each NFA HA
q,σ, q ∈ Q − P . This is necessary,6 in order to guarantee that the

bottom-up computation of B is deterministic, i.e., that all horizontal languages η(P, σ),

P ⊆ Q, are pairwise disjoint. In fact, the definition of the DFA HB
P,σ depends on P only in

the choice of the set of final states HP .

The above construction of the DFAs HB
P,σ, P ⊆ Q, σ ∈ Σ, gives the upper bound for the

number of horizontal states in (i).

Finally, the upper bound for (ii) follows from the observation that it is sufficient deter-

minize the NFA HA
q,σ separately for each q ∈ Q and σ ∈ Σ. ¥

Roughly speaking, the simulation uses a subset construction for the set of vertical states,

and in order to guarantee that the bottom-up computation remains deterministic the DFA

for the horizontal language corresponding to P ⊆ Q, σ ∈ Σ, needs to simulate each hori-

zontal NFA of A corresponding to σ. In the case where A is an NTA(DFA) we do not have

a significantly better bound than (7), because the horizontal languages of the DTA(DFA)

consist of strings of subsets of Q, which means that we again have to simulate multiple com-

putations of each horizontal DFA of A. In the below lower bound construction of Theorem 3

we, in fact, use an NTA(DFA).

We do not have a lower bound that would match the bound of Lemma 10. Recall that

strongly deterministic automata can be minimized efficiently and the minimal automaton

is unique [3], however, minimal DTA(DFA)’s are, in general, not unique and minimiza-

tion is intractable [9]. When trying to establish lower bounds for the size of a DTA(DFA)

A = (Q,Σ, δ, F) there is the difficulty that by adding more vertical states, and hence more

horizontal languages, it may still be possible that the total number of horizontal states is

6 That is, at least there seems to be no obvious way to avoid simulating all the NFAs HA
q,σ.

16 X. Piao, K. Salomaa

reduced. For example, suppose that A has a horizontal language δ(q, σ) = (a + b)∗b(a + b)7,

where the minimal DFA has 256 states.7 This language can be represented as a disjoint union

of 8 languages where the sum of the sizes of the minimal DFAs is only 176. (Details are given

in Example 2.) Thus, by replacing the state q by 8 distinct vertical states (that could be

equivalent in terms of the bottom-up computation) we could reduce the size of A.

Example 2. We denote the state complexity of a regular language L as sc(L). Consider the

language

L0 = (a + b)∗b(a + b)7.

The minimal DFA for L0 has 256 states and L0 can be represented as a disjoint union of

languages Li, 1 ≤ i ≤ 8, that are listed in Table 1 together with the state complexity of each

language. From the table we see that
∑8

i=1 sc(Li) = 176.

Table 1. State complexity of disjoint union

Language (Li) sc(Li) Language (Li) sc(Li)

L1 = (a + b)∗bbbb(a + b)4 29 L2 = (a + b)∗babb(a + b)4 23

L3 = (a + b)∗bbab(a + b)4 23 L4 = (a + b)∗bbba(a + b)4 19

L5 = (a + b)∗baab(a + b)4 22 L6 = (a + b)∗baba(a + b)4 22

L7 = (a + b)∗bbaa(a + b)4 19 L8 = (a + b)∗baaa(a + b)4 19

In fact, we do not have a general lower bound condition, analogous to Lemma 2, for the

number of horizontal states of DTA(DFA)’s and the below lower bound result relies on an

ad hoc proof.

Let Σ = {a, b}. Let p1, . . . , pn be the first n primes. Define the tree language

Tn = {ai(bk) | i ≥ 1, k ≥ 0, (8)

(∃1 ≤ j ≤ n)[k ≡ 0 (mod pj) and i ≡ j (mod n)]}.

Theorem 3. The tree language Tn can be recognized by an NTA(DFA) A with size(A) =

[n; (
∑n

i=1 pi) + 2n], and for any DTA(DFA) B recognizing Tn,

size(B) ≥ [2n − 1; (2n − 1) ·
n∏

i=1

pi].

For the proof of Theorem 3 below we need Lemma 11. First we recall some notation

concerning unary DFAs. An arbitrary unary DFA can be written as a tuple

A = ({a}, Q, q0, F, δ) (9)

7 Note that δ(q, σ) is a typical example of a language where the NFA-to-DFA size blow-up is large.

State complexity of tree automata 17

where Q = {q0, . . . , qh+k−1}, h ≥ 0, k ≥ 1, F ⊆ Q and δ(qi, a) = qi+1, 0 ≤ i < h + k − 1,

δ(qh+k−1, a) = qh. The states q0, . . . , qh−1 are called the tail of A and the states qh, . . . , qh+k−1

are called the cycle of A.

Lemma 11. Let p1, . . . , pn be the first n primes. Suppose that {1, . . . , n} = R1 ∪R2 where

R1 ∩R2 = ∅. Define

L0 = {ak | [(∀r ∈ R1)k ≡ 0 (mod pr)] and [(∀r′ ∈ R2)k 6≡ 0 (mod pr′)]}.
Assume L1 is a regular infinite subset of L0. If A is a DFA recognizing L1 then the cycle

of A has length at least Πn
i=1pi.

Proof. We use for A notations as in (9). Now the claim can be written as k ≥ Πn
i=1pi.

Since L1 is infinite, the cycle of A has an accepting state qh−1+x, 1 ≤ x ≤ k.

First consider an arbitrary r ∈ R1. Now ah−1+x ∈ L1 and ah−1+x+k ∈ L1. Hence h−1+x ≡
0 (mod pr) and h− 1 + x + k ≡ 0 (mod pr), which implies that pr divides k.

Next consider an arbitrary r′ ∈ R2 and for the sake of contradiction assume that k 6≡
0 (mod pr′). This means that the equation u ·k ≡ 1 (mod pr′) has a solution u0 for u. Choose

y ∈ {0, . . . , pr′ − 1} such that h− 1 + x ≡ y (mod pr′).

Since ah−1+x ∈ L1 and k is the length of the cycle of A, it follows that also ah−1+x+(pr′−y)u0k ∈
L1. This is a contradiction because, by the choice of u0 and y, we have h−1+x+(pr′−y)u0k ≡
0 (mod pr′). ¥

Proof of Theorem 3. The tree language Tn can be recognized by an NTA(DFA) A =

(Q, {a, b}, δ, {q1}), where Q = {q1, q2, ..., qn}, δ(a, qi) = (bpi)∗+ qi+1, 1 ≤ i ≤ n−1, δ(a, qn) =

(bpn)∗+q1. Each language δ(a, qi) can be recognized by a DFA with pi+2 states, i = 1, . . . , n.

Let B = (R,Σ, r0, RF , δB) be an arbitrary DTA(DFA) for Tn. Recall that for a Σ-tree t

we denote by tB the state of B reached at the root of t.

We establish a lower bound for the number of vertical and horizontal states of B. It would

be fairly easy to establish directly that |R| ≥ 2n − 1. We derive this as a consequence of

the more general Claim 1 that is useful for a lower bound for the total number of horizontal

states.

Define H1 = {a(bm) | m ≥ 0}. For t = a(bm) ∈ H1 we define

PRIMESt = {1 ≤ j ≤ n | m ≡ 0 (mod pj)} (⊆ {1, . . . , n}).
Then for S ⊆ {1, . . . , n} we define

TREESS = {t ∈ H1 | PRIMESt = S}.
TREESS consists of elements of H1 where the number of leaves labelled by b is divided by

exactly those pj’s where j ∈ S. Furthermore, we define

(TREESS)B = {tB | t ∈ TREESS}.

18 X. Piao, K. Salomaa

(TREESS)B consists of states that B reaches at roots of elements of TREESS.

Claim 1. For any S1, S2 ⊆ {1, . . . , n}, S1 6= S2, we have

(TREESS1)B ∩ (TREESS2)B = ∅.

Proof. For the sake of contradiction assume that

r ∈ (TREESS1)B ∩ (TREESS2)B. (10)

Without loss of generality, we can choose j ∈ S1−S2. The other possibility where S2−S1 6= ∅
is completely symmetric.

By (10), there exist ti = a(bmi) ∈ TREESSi
, i = 1, 2, such that (t1)

B = (t2)
B = r. By the

definition of the sets TREESSi
it follows that m1 ≡ 0 (mod pj) and m2 6≡ 0 (mod pj).

Choose u = aj−1(x) ∈ TΣ[x]. Since B reaches the same state at the roots of t1 and t2,

respectively, it follows that

u(x ← t1) is accepted by B iff u(x ← t2) is accepted by B.

This is a contradiction because u(x ← t1) ∈ Tn and u(x ← t2) 6∈ Tn. ¥
As a consequence of Claim 1 it follows that R contains 2n − 1 nonempty disjoint sets of

states, each of which consists of states reached at the root of elements of TREESS for some

∅ 6= S ⊆ {1, . . . , n}. In particular, |R| ≥ 2n − 1.

For S ⊆ {1, . . . , n} define the unary language

UNARYS = {bm | a(bm) ∈ TREESS}.

By Claim 1,

UNARYS =
⋃

r∈(TREESS)B

δB(r, a). (11)

If (TREESS)B = {r0} is a singleton set, the minimal DFA for the horizontal language

δB(r0, a) = UNARYS has exactly Πn
i=1pi states.

More generally, UNARYS can be a finite union of horizontal languages corresponding

to states of (TREESS)B as in (11). In this case, one of the languages δB(r1, a) has to be

infinite, and by Lemma 11, the minimal DFA for δB(r1, a) has a cycle of length at least

Πn
i=1pi. In all cases, for any nonempty set S (⊆ {1, . . . , n}) the DFAs for the horizontal

languages δB(r, a), r ∈ (TREESS)B, have in total at least Πn
i=1pi states. Since S is an

arbitrary nonempty subset of {1, . . . , n}, we have established the required lower bound for

the number of horizontal states of any DTA(DFA) for Tn. ¥
Theorem 3 gives a construction where converting an NTA(DFA) to a DTA(DFA) causes

an exponential blow-up in the number of vertical states, and additionally the size of each of

State complexity of tree automata 19

the (exponentially many) horizontal DFAs is considerably larger than the original DFA. How-

ever, the size blow-up of the horizontal DFAs does not match the upper bound of Lemma 10.

In the proof of Theorem 3, roughly speaking, we use particular type of unary horizontal lan-

guages in order to be able to (provably) establish that there cannot be a trade-off between

the numbers of vertical and horizontal states, and with this type of constructions it seems

difficult to approach the worst-case size blow-up of Lemma 10.

5 Conclusion

We have initiated the study of state complexity of conversions between different models

of tree automata operating on unranked trees. For the conversion of weakly deterministic

automata into strongly deterministic automata, and vice versa, we established lower bounds

that are within a multiplicative constant of the corresponding upper bound. However, for the

size blow-up of converting nondeterministic automata to (strongly and weakly) deterministic

automata the upper and lower bounds remain far apart, and this is a topic for further

research.

Since a minimal weakly deterministic automaton need not be unique [9], it is, in general,

hard to establish lower bounds for weakly deterministic automata and we do not have tools

like Lemma 2 that can be used for strongly deterministic automata. Weakly deterministic

automata can have trade-offs between the numbers of vertical and horizontal states, respec-

tively, and it would be useful to establish some upper bounds, for example, for how much

the number of horizontal states can be reduced by introducing additional vertical states.

References

1. Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge languages over unranked alpha-

bets, HKUST Technical report (2001)

2. Carme, J., Niehren, J., Tommasi, M.: Querying unranked trees with stepwise tree automata, Proc. of RTA’04,

105–118 (2004)

3. Cristau, J., Löding, C., Thomas, W.: Deterministic automata on unranked trees, Proc. of FCT’05, Lect. Notes

Comput. Sci. 3623, Springer, 68–79 (2005)

4. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata

Techniques and Applications, electronic book available at www.grappa.univ-lille3.fr/tata, (2002)

5. Gécseg, F., Steinby, M.: Tree languages, in: Rozenberg, G., Salomaa, A. (eds.), Handbook of Formal Languages,

vol. III, Springer, Berlin, pp. 1–68 (1997)

6. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata, Proc. of LATA’09, Lect.

Notes Comput. Sci. 5457, Springer, 23–42 (2009)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, Addison Wesley

(1979)

8. Liu, G., Martin-Vide, C., Salomaa, A., Yu, S.: State complexity of basic language operations combined with

reversal, Inform. Comput. 206, 1178–1186 (2008)

9. Martens, W., Niehren, J.: On the minimization of XML schemas and tree automata for unranked trees, J.

Comput. System Sci. 73, 550–583 (2007)

10. Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers, J. Comput. System Sci. 66, 66–97 (2003)

20 X. Piao, K. Salomaa

11. Moore, F. R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic,

and two-way finite automata, IEEE Transactions on Computers 20, 1211–1214 (1971)

12. Salomaa, K.: Descriptional complexity of nondeterministic finite automata, Proc. DLT’07, Lect. Notes Comput.

Sci. 4588, Springer, 31–35 (2007)

13. Schwentick, T.: Automata for XML — a survey, J. Comput. System Sci. 73, 289–315 (2007)

14. Yu, S.: Regular languages, in: Rozenberg, G., Salomaa, A. (eds.), Handbook of Formal Languages, vol. I, Springer,

Berlin, pp. 41–110 (1997)

