
Mapping UML-RT State Machines to kiltera

Technical Report 2010-569

Ernesto Posse

Applied Formal Methods Group
School of Computing
Queen’s University

Kingston, Ontario, Canada

April 15, 2010

Contents

1 Introduction 2

2 Background 2
2.1 UML-RT . 2

2.1.1 Structure diagrams . 2
2.1.2 State Machines in UML-RT 3

2.2 kiltera . 4
2.2.1 πklt syntax . 5
2.2.2 Informal Semantics . 5

3 A syntax for UML-RT State Machines 7
3.1 Sequences . 7
3.2 State Machine syntax . 7

4 The map 12
4.1 Representing hierarchical state structure 12
4.2 Representing basic (sibling) transitions 14
4.3 Representing entry points and incoming transitions 16
4.4 Representing exit points . 19
4.5 Representing group transitions 21
4.6 Enabled-transition selection policy 26
4.7 History . 31
4.8 Adding actions . 37

5 Concluding remarks 41

1

1 Introduction

The goal of this report is to formally specify a mapping from UML-RT State
Machines into a process algebra called kiltera. More concretely, we define a
mapping T J·K : SM → KLT from the set SM of all syntactically valid State
Machines to the set KLT of kiltera process terms. This is, for every State Machine
s ∈ SM we want to define a corresponding kiltera term T JsK ∈ KLT.

In order to specify the mapping of State Machines onto kiltera processes we
use a textual syntax for State Machines, presented in Subsection 3.2. We also
use a subset of the kiltera language, called the πklt calculus, whose syntax is
described in Subsection 2.2.1.

This report is organized as follows: In Section 2 we present background on
UML-RT and kiltera. In Section 3 we introduce a textual syntax for UML-RT
State Machines. In Section 4 we develop the map itself. Finally 5 concludes.

Rather than presenting the map in one go, we proceed gradually. First, we
show how the hierarchical structure of State Machines is translated into kil-
tera in Subsection 4.1. In Subsection 4.2 we add basic (i.e., non-group) “sibling”
transitions to the mapping. In Subsection 4.3 we introduce entry points and
incoming transitions. In Subsection 4.4 we present exit points and outgoing
transitions. In Subsection 4.5 we extend the mapping to support group tran-
sitions. In Subsection 4.6 we introduce a protocol that imposes priorities on
conflicting transitions. We enhance the mapping with history states in Subsec-
tion 4.7. Then, in Subsection 4.8 we introduce actions abstractly and modify the
mapping to encode the proper order of execution of entry, exit and transition
actions.

2 Background

2.1 UML-RT

UML-RT is a dialect of the UML modeling language [3] used for specifying
embedded and real time software systems. The language resulted from the
combination of the Real-Time Object Oriented Modeling (ROOM) language [8]
and general-purpose UML [7]. Tools supporting UML-RT include IBM Rational
Rose Technical Developer toolkit [1], which is to be replaced by IBM Rational
Software Architect Real Time Edition (IBM RSA-RTE) [2].

2.1.1 Structure diagrams

UML-RT allows the modeling of the system structure. through a hierarchy of
capsules that are connected through typed ports. A capsule, as its name sug-
gests, is a highly encapsulated entity, which communicates with other capsules
only by sending and receiving signals through its ports. Therefore, a set of
external ports owned by a capsule defines its interface. Each port has a type
specified with a protocol, which identifies signals sent or received via the port.
Capsules are organized hierarchically and each capsule may contain a number

2

of instances of other capsules, called parts. External ports of these parts are
connected (wired) statically or can be connected at run-time. Connected ports
must implement the same protocol and be “compatible”, i.e., the send signals
of one port must be the receive signals of the other port and vice versa (in this
case, one of the ports is said to be the base port and the other the conjugate
port).

2.1.2 State Machines in UML-RT

The behaviour of a capsule is specified using UML-RT State Machines [7] which
are similar to UML State Machines [3]. A UML-RT State Machine has hier-
archical states and guarded transitions, which are triggered by signals received
on ports. Each state declares its entry and exit actions and transitions have
effects, so they can contain actions that are to be executed when the transi-
tion is fired. However, there also are some important syntactic and semantic
differences between UML-RT State Machines and UML State Machines:

1) UML-RT State Machines cannot contain “and-states” (orthogonal re-
gions). All states are “or-states”. So, during execution a given UML-RT State
Machine can be only in at most one simple state.

2) Transitions in UML-RT State Machines are not allowed to cross state
boundaries and they may have explicit entry and exit points (here collectively
called connection points). Hence, to represent a boundary-crossing transition, it
must be broken up into segments, where each segment links connection points,
either at the same level of nesting, or between a state and an immediate sub-
state. During execution, connected segments build a transition chain, which is
executed as one step.

3) In UML-RT entry points are by default connected to deep history pseudo-
states. Suppose a composite state n is the target of a transition and that the
associated entry point is not linked to a sub-state of n. If n has been visited
previously, then the last sub-state visited in n is entered. This policy is applied
recursively. Hence, entering a state can be interpreted as “resuming computation
where it previously left off”. In standard UML State Machines on the other hand,
it is possible not to connect entry points to deep history pseudo-states, in which
case an initial state is always entered, if an entry point is not explicitly connected
to a sub-state. Just like in standard UML State Machines, event handling in
UML-RT State Machines will follow a “run-to-completion” semantics: a state
machine will handle one and only one event at a time, any transition chain
enabled will be fully followed and its actions fully executed before the next
event is handled.

UML-RT supports timing requirements using a special timing protocol and
internal ports which implement this protocol. A capsule, which contains a port
that implements the timing protocol, can schedule an event by sending a signal
through this port. Scheduling can be a part of the entry or exit behavior of
a state or as an action on a transition. After a specified amount of time, the
capsule will receive a timeout event from the port which it can process as any
other signal.

3

n3

n5

n7

n6

n4

n2

n1

t1 : x

t2 : y

t3 : z

t6

t7 : x

t4

t8 : u

t5

t9 : v

t10 : x

p1q1 p2

Figure 1: A simple UML-RT State Machine.

Example 1.

Consider the State Machine in Figure 1.
Transitions are marked as ti : x where ti is the name of the transition, and

x is its trigger event. State n2 has two named entry points p1 and p2, and
a named exit point q1. There are several composite transition chains: 〈t3, t6〉,
〈t7, t4〉, 〈t9, t5〉. Transition t8 is a group transition, since its source is a composite
state rather than a basic state. If transition t10 is taken, the last active sub-
state of n2 will be entered. Initially, the machine enters n1, n2 and n5 in that
order. If for example, the sequence of events 〈y, u, x, z, v〉 arrives, execution will
proceed as follows. On y, take t2 to n7. On u, exit n2 and take t8 to n4. On
x, take t10, enter n2, and then enter n7 (the last active sub-state of n2). On z,
take t3 to q1, exit n2, take t6 to n3. Finally, on v, take t9 to p2, entering n2,
and then taking t5 to n6.

2.2 kiltera

kiltera is a language for modelling and simulating concurrent, interacting, real-
time processes with support for mobility and distributed systems.

It is directly based on the πklt calculus which is a real-time extension of the
π calculus. The semantics of πklt is given in terms of a Plotkin-style structural
operational semantics over timed-labelled transition systems. The meta theory
of πklt extends that of the π calculus by a notion of time-bounded equivalence
and a notion of timed compositionality and an associated timed congruence

4

which allow reasoning about timed processes. The implementation of kiltera’s
interpreter is based on an abstract machine which has been proven sound with
respect to πklt ’s operational semantics and uses event event scheduling as known
in discrete-event simulation [10]. The interpreter supports two modes: real-time
and simulated time. In real-time mode, the wall-clock timing of events reflects
delays and timeouts specified in the model, and thus the interpreter actually
pauses during idle periods. In simulated time, execution proceeds according
to a logical clock, and events are processed as soon as they are available, thus
avoiding idling when the model specifies events far apart in time. Consequently,
execution in simulated time mode is more efficient, while execution in real-time
mode is more reflective of the timing constraints (note that the interpreter is a
prototype implemented in Python and does not use a real-time operating system;
thus, even in real-time mode, timing constraints are only approximated).

Just like the π calculus, kiltera supports channel mobility. Furthermore, by
assigning different kiltera processes to different machines, distributed simulation
using the Time-Warp algorithm [4] is also supported. kiltera has been used
for teaching in graduate courses at McGill and Queen’s and the modelling of
complex systems such as automobile traffic simulation. kiltera is available for
download at www.kiltera.org.

Based on our experience so far, kiltera matches the features of UML-RT quite
well. Moreover, kiltera’s interpreter offers effective analysis.

2.2.1 πklt syntax

To formally define the mapping we use the core of kiltera, the πklt calculus,
which has a mathematical notation suitable to describe the mapping.

Definition 1. (Syntax) The set KLT of πklt terms is defined by the BNF
in Table 1. Here P, Pi range over process terms, x, y, ... range over the set
of (channel/event or variable) names, A ranges over the set of process
names, E ranges over expressions, and F ranges over patterns. n ranges over
floating point numbers, s ranges over strings, and f ranges over function names,
and the index set I is a subset {1, ..., n} ⊆ N.

2.2.2 Informal Semantics

We now describe informally the semantics of the πklt -calculus. For a formal
semantics of the language see [5, 6].

• Expressions E are either constants (∅ represents the null constant), vari-
ables (x), tuples of the form 〈E1, ..., Em〉 or function applications f(E1, ..., Em).
Patterns F have the same syntax as expressions, except that they do not
include function applications.

• The process
√

simply terminates.

• The process x!E is a trigger ; it triggers an event x with the value of E.
Alternatively, we can say that it sends the value of E over a channel x.
The expression E is optional: x! is shorthand for x!∅.

5

P ::=
√

Null
| x!E Trigger/Output
|

∑
i∈I xi?Fi@yi.Pi Listener/Input

| new x in P New/Hide
| waitE.P Delay/Timer
| if E then P1 else P2 Conditionals
| P1 ‖ P2 Parallel
| P1;P2 Sequential composition
| def {D1; ...;Dn} in P Local definitions
| A(x1, ..., xn) Instantiation/Call

D ::= proc A(x1, ..., xn) = P Process definition
| func f(x1, ..., xn) = E Function definition

E ::= ∅ | n | true | false | “s” | x
| 〈E1, ..., Em〉 | f(E1, ..., Em)

F ::= ∅ | n | true | false | “s” | x
| 〈F1, ..., Fm〉

Table 1: πklt syntax

• A process of the form
∑

i∈I xi?Fi@yi.Pi is a listener. This process listens
to all channels (or events) xi, and when xi is triggered with a value v that
matches the pattern Fi, the corresponding process Pi is executed with yi

bound to the amount of time the listener waited, and the alternatives are
discarded1. The suffixes Fi and @yi are optional: x?.P is equivalent to
x?y@z.P for some fresh names y and z.

• The process new x in P hides the name x from the environment, so that
it is private to P . Alternatively, new x in P can be seen as the creation
of a new name, i.e., a new event or channel, whose scope is P . We write
new x1, ..., xn in P for the process term new x1 in ... new xn in P .

• The process wait E.P is a delay : it delays the execution of process P by
an amount of time equal to the value of the expression E.2

1Note that to enable an input guard it is not enough for the channel to be triggered: the
message must match the guard's pattern as well. Pattern-matching of inputs means that
the input value must have the same �shape� as the pattern, and if successful, the free names
in the pattern are bound to the corresponding values of the input. For example, the value
〈3, true, 7〉 matches the pattern 〈3, x, y〉 with the resulting binding {true/x, 7/y}. The scope of
these bindings is the corresponding Pi.

2The value of E is expected to be a non-negative real number. If the value of E is negative,
∆E.P cannot perform any action. Similarly, terms with unde�ned values (e.g., ∆(1/0).P)
or with incorrectly typed expressions (e.g., ∆true.P) cause the process to stop. Since the

6

• The process ifE thenP1 elseP2 is a conditional with the standard meaning.

• The process P1 ‖ P2 is the parallel composition of P1 and P2.

• The term P1;P2 is the sequential composition of P1 and P2.

• The term def {D1; ...;Dn} in P declares definitions Di and executes P .
The scope of these definitions is the entire term (so they can be invoked
in P and in other definitions).

• The process A(y1, ..., yn) creates a new instance of a process defined by
proc A(x1, ..., xn) = P , defined in some enclosing scope, where the ports
x1, ..., xn are substituted in the body P by the channels (or values) y1, ..., yn.

3 A syntax for UML-RT State Machines

3.1 Sequences

In the sequel we use several operations on sequences. In this Subsection we
define the notation for these operations.

Notation 1. We write 1..k for the set {1, 2, ..., k}. Sequences will be enclosed
in 〈 and 〉. A sequence name will be denoted with an arrow on top, and its
elements subscripted with their index, beginning from 1: ~x = 〈x1, x2, x3, ...〉. A
finite sequence 〈a1, ..., ak〉 will be abbreviated as a1..k. The empty sequence is
denoted 〈〉, or ε.

Sequence concatenation will be denoted ·, so

〈a1, ..., ak〉 · 〈b1, ..., bl〉
def
= 〈a1, ..., ak, b1, ..., bk〉

3.2 State Machine syntax

We use a mathematical notation for State Machines, adapted from [9], which
allows us to define the mapping compositionally.

In the sequel we will use the following sets:

• NS : the set of all possible state names; we use n, n1, n2, ...,m, ... for ele-
ments in NS ;

• NA: the set of all possible entry point names; we use p, p1, p2, ... for ele-
ments in NA;

• NB : the set of all possible exit point names; we use q, q1, q2, ... for elements
in NB;

• NC
def
= NA ∪NB : the set of all connection point names;

language is untyped we do not enforce these constraints statically.

7

• E : the set of all possible trigger events; we use x, x1, x2, ..., y, y1, y2, ..., z, z1, z2, ...
for elements in E ;

• E⊥
def
= E ∪ {⊥}: the set of events including the “non-event” ⊥, used to

mark transitions without a trigger;

• A: the set of all possible actions; we use a, a1, a2, ... for transition actions,
en for entry actions and ex for exit actions in A;

• A⊥
def
= A ∪ {⊥}: the set of actions including the “non-action” ⊥, i.e. the

action that does nothing;

• B def
= {false, true} the set of boolean values;

• N: the set of natural numbers

Furthermore, we make the following assumptions about these sets:

• Every state and connection point is labelled with a unique name3;

• For every state name n ∈ NS , there is an entry point name denn ∈ NA

and an exit point name dexn ∈ NB . These denote the default entry and
exit points of a state respectively, this is, when state n is the target of a
transition, but the transition is not connected to any named entry point, it
is assumed to be connected to the default entry point denn. Analogously,
when n is the source of a transition, and the transition doesn’t leave the
state from a named exit point, it is assumed to begin at the default exit
point dexn.

Before we define State Machine terms, we define the encoding of transitions,
which link connection points. We distinguish between three kinds of transition:
incoming, outgoing and sibling. Incoming transitions are transitions from an
entry point to some sub-state. Outgoing transitions are transitions from a sub-
state to an exit point. Sibling transitions are transitions between sub-states.

Definition 2. (Transitions) Let K = {in, out, sib} represent the set of transi-
tion kinds, (respectively in for incoming, out for outgoing, and sib for sibling).
The set of all possible transitions is TR

def
= K×B×NC ×NC ×E⊥×A⊥. Given

3If this is not the case, a simple traversal of the State Machine can give unique names, for
example by providing fully quali�ed names or attaching a unique id.

8

a transition t = (k, f, o, d, e, a) ∈ TR we define the following functions:4

kind(t)
def
= k The kind of transition

firstinchain(t)
def
= f Whether tis the first in a chain

src(t)
def
= o The source of the transition

trg(t)
def
= d The target of the transition

evt(t)
def
= e The trigger event of the transition

act(t)
def
= a The action of the transition

Now we can define State Machine terms.

Definition 3. (State Machine terms) The set SM of State Machine terms
is defined according to the following BNF:

s ::= [n,A,B, en, ex] Basic-state
| [n,A,B, S, d, T, en, ex] Composite state

Here n ∈ NS is the name of a state, A ⊆ NA and B ⊆ NB are the sets of entry
and exit points where A ∩B = ∅ and denn ∈ A and dexn ∈ B, en, ex ∈ A⊥ are
the entry and exit actions, S is a sequence 〈s1, ..., sk〉 of sub-states with each
si ∈ SM, d is the index, in the sequence, of the default sub-state sd, and T ⊆ TR
is a set of transitions subject to the conditions stated below.

We first define the following useful functions for a given basic state s =
[n,A,B, ex, en]:

name(s)
def
= n The name of the state

entries(s)
def
= A The set of entry points of the state

exits(s)
def
= B The set of exit points of the state

enact(s)
def
= en The set of entry actions of the state

exact(s)
def
= ex The set of exit actions of the state

Analogously, for a composite state s = [n,A,B, S, d, T, en, ex] with S = s1..k,
4Note that since we assume unique names for all connection points, the source and target

of a transition are well-de�ned.

9

we define

name(s)
def
= n The name of the state

entries(s)
def
= A The set of entry points of the state

exits(s)
def
= B The set of exit points of the state

substates(s)
def
= S The set of substates of the state

transitions(s)
def
= T The set of transitions of the state

default(s)
def
= sd The default (initial) substate of the state

enact(s)
def
= en The set of entry actions of the state

exact(s)
def
= ex The set of exit actions of the state

and all transitions t ∈ T must satisfy the following conditions:

1. If firstinchain(t) = false then evt(t) = ⊥

2. kind(t) = sib if and only if there are sub-states si and sj in S such that
src(t) ∈ exits(si) and trg(t) ∈ entries(sj).

3. kind(t) = in if and only if there is a sub-state si in S such that src(t) ∈ A
and trg(t) ∈ entries(si).

4. kind(t) = out if and only if there is a sub-state si in S such that src(t) ∈
exits(si) and trg(t) ∈ B.

Notation 2. In the remainder we will omit the entry and exit actions when
en = ⊥ and ex = ⊥.

Example 2. Consider the State Machine depicted in Figure 2.5 In our syntax
this State Machine is described by the term s1 where:

s1
def
= [n1, {denn1 , p1}, {dexn1 , q1}, 〈s2, s3〉, 1, {t1, t2, t3}]

s2
def
= [n2, {denn2}, {dexn2 , q2}]

s3
def
= [n3, {denn3 , p2, p3}, {dexn3 , q3}]

with transitions

t1
def
= (sib, true, q2, p2, y, a1)

t2
def
= (in, false, p1, p3,⊥,⊥)

t3
def
= (out, true, q3, q1, x,⊥)

Example 3. The State Machine in Figure 3 shows another example.
5In State Machine diagrams we label transitions ti : xi/ai where ti is the name of the

transition, xi is the trigger event and ai is the action. Each of these items can be omitted
from the transition.

10

n1

n2

n3

t1 : y/a1

q2

p2

p3 q3

p1
q1

t2 t3 : x

Figure 2: A simple State Machine.

n1

n2

n3

t2 : y

t1

p1

p2

q1

t3 : x

n4

n5

t4 : z

t5

Figure 3: A State Machine with composite states.

This is encoded in our syntax as follows:

s1
def
= [n1, {denn1}, {dexn1}, 〈s2, s5〉, 1, {t1, t2}]

s2
def
= [n2, {denn2 , p1}, {dexn2 , q1}, 〈s3, s4〉, 1, {t3, t4, t5}]

s3
def
= [n3, {denn3}, {dexn3}]

s4
def
= [n4, {denn4 , p2}, {dexn4}]

s5
def
= [n5, {denn5}, {dexn5}]

11

n2

n1

n3

n4

t1 : x/a1

t2 : y/a2

t3 : x/a3

Figure 4: A simple State Machine.

with transitions

t1
def
= (sib, false, q1, denn5 ,⊥,⊥)

t2
def
= (sib, true, dexn5 , p1, y,⊥)

t3
def
= (out, true, dexn3 , q1, x,⊥)

t4
def
= (sib, true, dexn3 , denn4 , z,⊥)

t5
def
= (in, false, p1, p2,⊥,⊥)

4 The map

We begin assuming that states and transitions have no actions. We will incor-
porate actions later in Subsection 4.8.

In the remaining we will write SM> for SM]{>} where > denotes the “root”,
this is, the parent of the topmost state.

4.1 Representing hierarchical state structure

We begin by describing how the nesting order of a State Machine is represented
in πklt . The essence of the idea is to encode states as process definitions and we
obtain the hierarchical structure via nested process definitions. Each state ni

will be encoded as a process definition named Sni.
For now we will ignore transitions in a State Machine, and basic states will

have no behaviour and therefore will be mapped to the null process
√
. The

main body of a process representing a composite state will simply invoke the
process which corresponds to its default state.

We first show some examples and then the formalization of the map.

Example 4. Consider the State Machine from Figure 4. In our State Machine

12

syntax this would be written as:

s1
def
= [n1, {denn1}, {dexn1}, 〈s2, s3, s4〉, 1, {t1, t2, t3}]

s2
def
= [n2, {denn2}, {dexn2}]

s3
def
= [n3, {denn3}, {dexn3}]

s4
def
= [n4, {denn4}, {dexn4}]

with transitions

t1
def
= (sib, true, dexn2 , denn3 , x, a1)

t2
def
= (sib, true, dexn2 , denn4 , y, a2)

t1
def
= (sib, true, dexn4 , denn4 , x, a3)

This would be represented as the following πklt definition:

proc Sn1() = def {
proc Sn2() =

√
;

proc Sn3() =
√

;
proc Sn4() =

√

} in Sn2()

Here we have a process definition for the State Machine with a nested defi-
nition for each sub-state. The body of the main state invokes the process which
corresponds to the default sub-state Sn2.

Example 5. Now consider the State Machine from Figure 5. In our State
Machine syntax this would be written as:

s1
def
= [n1, {denn1}, {dexn1}, 〈s2, s3〉, 1, {t1}]

s2
def
= [n2, {denn2}, {dexn2}]

s3
def
= [n3, {denn3}, {dexn3}, 〈s4, s5〉, 1, {t2}]

s4
def
= [n4, {denn4}, {dexn4}]

s5
def
= [n5, {denn5}, {dexn5}]

with transitions

t1
def
= (sib, true, dexn2 , denn3 , x, a1)

t2
def
= (sib, true, dexn4 , denn5 , y, a2)

This would be represented as the following πklt definition:

13

n2

n1

n3

n4t1 : x/a1

t2 : y/a2

n5

Figure 5: A simple State Machine.

proc Sn1() = def {
proc Sn2() =

√
;

proc Sn3() = def {
proc Sn4() =

√
;

proc Sn5() =
√

} in Sn4();
} in Sn2()

We now define a mapping T0J·K : SM→ KLT for this encoding.

Definition 4. (Encoding nesting order)
T0J[n,A,B, en, ex]K

def
= proc Sn() =

√

T0J[n,A,B, S, d, T, en, ex]K
def
= proc Sn() = def {D1; ...;Dk} in Snd()

where each Di is T0JsiK for each si in S = s1..k, and nd = name(sd) is the
name of the default sub-state.

4.2 Representing basic (sibling) transitions

The concept of a transition in a State Machine represents the notion of state
change when an event occurs. Since we represent states as processes, a state with
transitions coming out of it is naturally represented by a listener process which
waits for the appropriate events, and then becomes the process corresponding
to the target of the transition.

In order to do this, the process definition of a state needs to know to which
events it can respond. Such events would be encoded in the process interface (its
ports), but because of lexical scoping in πklt we only need to specify such events
at the top level of the State Machine. In fact, we will later define a “wrapper” for
the whole State Machine, which specifies its events. This allows us to simplify

14

the encoding as all process definitions will have access to those events from the
enclosing scope. For the time being we will not show the wrapper process, to
simplify the presentation.

At this point we will consider only non-group transitions, this is, transitions
whose source state is a basic state. Furthermore, we also ignore actions for now.

Example 6. Consider again the State Machine from Figure 4. This would be
represented as the following πklt definition:

proc Sn1() = def {
proc Sn2() = x?.Sn3() + y?.Sn4();
proc Sn3() =

√
;

proc Sn4() = x?.Sn4()
} in Sn2()

Here the machine can go from state n2 to n3 when event x is triggered,
and to n4 when event y is triggered. This is naturally represented by a listener
process x?.Sn3() + y?.Sn4() which provides those choices. In state n4 it can go
back to itself when x is triggered, hence the definition Sn4 is recursive.

Example 7. Now consider the State Machine from Figure 5. This would be
represented as the following πklt definition:

proc Sn1() = def {
proc Sn2() = x?.Sn3();
proc Sn3() = def {

proc Sn4() = y?.Sn5();
proc Sn5() =

√

} in Sn4();
} in Sn2()

We now define a map T1J·K : SM → SM> → KLT, which takes as input the
State Machine term, and its enclosing state and returns the corresponding πklt

term.

Definition 5. (Encoding basic transitions)

• For a basic state s def
= [n,A,B, en, ex] its translation is given by:

T1JsKs′
def
= proc Sn() =

∑
ti∈T ′′

xi?.Sni()

where s’s enclosing state is

s′ = [n′, A′, B′, S′, d′, T ′, en′, ex′]

and
T ′′

def
= {t ∈ T ′ | ∃q ∈ B. q = src(t)}

15

n2

n1

n3

n4t1 : x/a1

t2 : y/a2

n6

n5 t3 : z/a3

t4 : u/a4

p1

p2

t5

t6

Figure 6: A State Machine with entry points.

is the set of transitions from T ′ whose source (q) is an exit point of state
n;

xi
def
= evt(ti)

is the trigger event of transition ti in the set T ′′; and

ni = name(si)

is the name of the target state si ∈ S′ with trg(ti) ∈ entries(si) (the target
of the transition must be an entry point of the target state si).

• For a composite state s = [n,A,B, S, d, T, en, ex] (with enclosing state s′):

T1JsKs′
def
= proc Sn() = def {D1; ...;Dk} in Snd()

where each Di is T1JsiKs for each si in S = s1..k and nd = name(sd). Note
that in this case the parameter passed to the translation of the sub-states
is s, the composite state being translated. It is not necessary to pass the
enclosing state s′, since in UML-RT, transitions cannot cross boundaries.
The state s′ will be used later when we deal with group transitions.

4.3 Representing entry points and incoming transitions

We represent entry points of a state via a parameter of the process definition
for that state. When the state is entered, this parameter is used to invoke the
sub-state connected to the corresponding entry point.

Example 8. Consider the State Machine from Figure 6. In our syntax, this is

16

written as:

s1
def
= [n1, {denn1}, {dexn1}, 〈s2, s3〉, 1, {t1, t2}]

s2
def
= [n2, {denn2}, {dexn2}]

s3
def
= [n3, {denn3 , p1, p2}, {dexn3}, 〈s4, s5, s6〉, 1, {t3, t4, t5, t6}]

s4
def
= [n4, {denn4}, {dexn4}]

s5
def
= [n5, {denn5}, {dexn5}]

s6
def
= [n6, {denn6}, {dexn6}]

with transitions

t1
def
= (sib, true, dexn2 , p1, x, a1)

t2
def
= (sib, true, dexn2 , p2, y, a2)

t3
def
= (sib, true, dexn4 , denn5 , z, a3)

t4
def
= (sib, true, dexn4 , denn6 , u, a4)

t5
def
= (in, false, p1, denn5 ,⊥,⊥)

t6
def
= (in, false, p2, denn6 ,⊥,⊥)

We encode this State Machine as follows:
proc Sn1(enp) = def {

proc Sn2(enp) = x?.Sn3(p1) + y?.Sn3(p2);
proc Sn3(enp) = def {

proc Sn4(enp) = z?.Sn5(denn5) + u?.Sn6(denn6);
proc Sn5(enp) =

√
;

proc Sn6(enp) =
√

proc C(enp) =
if enp = p1 then Sn5(denn5)
else if enp = p2 then Sn6(denn6)
else Sn4(denn4)

} in
C(enp)

} in Sn2(denn2)

We see that all definitions have a parameter enp which represents the entry
point. The body of the definition Sn3 contains a “dispatcher” C which makes
the decision of which sub-state must be activated depending on the value of
this parameter. If the parameter is none of the named entry points, it executed
the process of the default sub-state. Note that transitions whose target is not a
named entry point simply pass as parameter the default entry point denni

.

Now define a map T2J·K : SM→ SM> → KLT, which takes as input the State
Machine term, and its enclosing state, and returns the corresponding πklt term.

17

For simplicity and uniformity we give all states a parameter enp. In he case of
basic states we simply ignore it.

Definition 6. (Encoding entry points)

• For a basic state s def
= [n,A,B, en, ex] its translation is given by:

T2JsKs′
def
= proc Sn(enp) =

∑
ti∈T ′′

xi?.Sni(pi)

where s’s enclosing state is

s′ = [n′, A′, B′, S′, d′, T ′, en′, ex′]

and
T ′′

def
= {t ∈ T ′ | ∃q ∈ B. q = src(t)}

is the set of transitions from T ′ whose source (q) is an exit point of state
n;

xi
def
= evt(ti)

is the trigger event of transition ti in the set T ′′; and

ni = name(si)

is the name of the target state si ∈ S′ with trg(ti) ∈ entries(si) (the target
of the transition must be an entry point of the target state si); and

pi
def
= trg(ti)

is the (name of the) entry point of the transition’s target.

• For a composite state s = [n,A,B, S, d, T, en, ex] (with enclosing state s′):

T2JsKs′
def
= proc Sn(enp) = def {D1; ...;Dk;Cdef} in C(enp)

where each Di is T2JsiKs for each si in S = s1..k and Cdef is the dispatcher
defined as follows:

proc C(enp) =
if enp = p1 then Sn1(p′1)
else if enp = p2 then Sn2(p′2)
· · ·
else if enp = pm then Snm(p′m)
else Snd(p′d).

where each pi ∈ A is a named entry point of s connected to the entry point
p′i of a sub-state ni via an incoming transition ti = (in, false, pi, p

′
i,⊥,⊥) ∈ T .

Here we assume that the default state is nd, with the initial transition connected
to the entry point p′d.

18

n2

n1

n3

t1

t2
n5

n4

q1

q2

t4 : y

t5 : z

t3 : x

Figure 7: A State Machine with exit points.

4.4 Representing exit points

Exit points are simpler to represent than entry points. For basic states we don’t
need to represent them at all. For composite states, we represent them if there
is an outgoing transition from some sub-state to the exit point. The exit point
acts as a pseudo-state, an intermediate point between the actual source of the
transition chain and its actual target. Hence, in our representation we create a
simple process that immediately jumps to the destination.We use the convention
of naming the definition for an exit point q as Bq. Strictly speaking we could
avoid this definition, but having them explicitly makes the generated πklt term
easier to read.

Example 9. Consider the State Machine in Figure 7. Its representation is:

s1
def
= [n1, {denn1}, {dexn1}, 〈s2, s3〉, 2, {t1, t2}]

s2
def
= [n2, {denn2}, {dexn2}]

s3
def
= [n3, {denn3}, {dexn3}, 〈s4, s5〉, 1, {t3, t4, t5}]

s4
def
= [n4, {denn4}, {dexn4}]

s5
def
= [n5, {denn5}, {dexn5}]

19

with transitions

t1
def
= (sib, false, q1, denn2 ,⊥,⊥)

t2
def
= (sib, false, q2, denn2 ,⊥,⊥)

t3
def
= (sib, true, dexn4 , denn5 , x,⊥)

t4
def
= (out, true, dexn4 , q1, y,⊥)

t5
def
= (out, true, dexn5 , q2, z,⊥)

In πklt this is represented as:6

proc Sn1(enp) = def {
proc Sn2(enp) =

√
;

proc Sn3(enp) = def {
proc Sn4(enp) = x?.Sn5(denn5) + y?.Bq1();
proc Sn5(enp) = z?.Bq2();
proc Bq1() = Sn2(denn2);
proc Bq2() = Sn2(denn2)

} in Sn4(denn4)
} in Sn3(denn3)

Now define a map T3J·K : SM→ SM> → KLT, which takes as input the State
Machine term, and its enclosing state, and returns the corresponding πklt term.
For simplicity and uniformity we give all states a parameter enp. In he case of
basic states we simply ignore it.

Definition 7. (Encoding exit points)

• For a basic state s def
= [n,A,B, en, ex] its translation is given by:

T3JsKs′
def
= proc Sn(enp) =

∑
ti∈T ′′

xi?.Qi

where s’s enclosing state is

s′ = [n′, A′, B′, S′, d′, T ′, en′, ex′]

and
T ′′

def
= {t ∈ T ′ | ∃q ∈ B. q = src(t)}

is the set of transitions from T ′ whose source (q) is an exit point of state
n;

xi
def
= evt(ti)

6In the remainder we will obviate the dispatcher C of a composite state if it only has the
default entry point and no named entry points.

20

is the trigger event of transition ti in the set T ′′; and Qi is the target of
the transition, defined as

Qi
def
=

Sni(pi) if kind(ti) = sib, trg(ti) = pi

and ∃si ∈ S′. pi ∈ entries(si) and ni = name(si)
Bqi() if kind(ti) = out and trg(ti) = qi ∈ B′

• For a composite state s = [n,A,B, S, d, T, en, ex] (with enclosing state s′):

T3JsKs′
def
= proc Sn(enp) = def {D1; ...;Dk;B1; ...;Bm;Cdef} in C(enp)

where each Di is T3JsiKs for each si in S = s1..k , each Bi is a process
definition for exit point qi ∈ B, given by

Bi
def
= proc Bqi() = Qj

where Qj is the target of the exit point, and is defined as above, and Cdef

is the dispatcher defined as follows:

proc C(enp) =
if enp = p1 then Sn1(p′1)
else if enp = p2 then Sn2(p′2)
· · ·
else if enp = pm then Snm(p′m)
else Snd(p′d).

where each pi ∈ A is a named entry point of s connected to the entry point
p′i of a sub-state ni via an incoming transition ti = (in, false, pi, p

′
i,⊥,⊥) ∈ T .

Here we assume that the default state is nd, with the initial transition connected
to the entry point p′d.

4.5 Representing group transitions

Group transitions are transitions whose source state is a composite state. When
a group transition is triggered, the source state and all its sub-states are exited.
Hence, in a sense, a group transition acts as an interrupt on the current state.

Traditionally, group transitions are interpreted by flattening the State Ma-
chine and adding a corresponding transition to every sub-state of the group
transition’s source. We take a different approach to preserve modularity. First,
we add in every sub-state a pair of events exit and exack, which are used,
respectively, to tell the state to exit, and to acknowledge the exit from that
state. Second, in the composite state that is the source of the group transition
we add an event handler, whose job is to listen for events (the triggers of the
group transitions) and whenever one such event occurs, tells its currently active
sub-state to exit and then waits for the sub-state to acknowledge the exit before
jumping to the actual destination. Waiting for the sub-state to exit ensures that
the sequence of exit actions will be executed in the correct order.

21

n3

n1

n2

n4 t1 : x

t2 : y

n5

Figure 8: A State Machine with a group transition.

Example 10. Consider the State Machine from Figure 8. This is represented
as:

s1
def
= [n1, {denn1}, {dexn1}, 〈s2, s3〉, 1, {t1}]

s2
def
= [n2, {denn2}, {dexn2}, 〈s4, s5〉, 1, {t2}]

s3
def
= [n3, {denn3}, {dexn3}]

s4
def
= [n4, {denn4}, {dexn4}]

s5
def
= [n5, {denn5}, {dexn5}]

with transitions

t1
def
= (sib, true, dexn2 , denn3 , x,⊥)

t2
def
= (sib, true, dexn4 , denn5 , y,⊥)

In πklt this would be represented as:

proc Sn1(enp) = def {
proc Sn2(enp) = def {

proc Sn4(enp, exit, exack) = y?.Sn5(denn5 , exit, exack) + exit?.exack!;
proc Sn5(enp, exit, exack) = exit?.exack!;
proc H(exit′, exack′) = x?.exit′!.exack′?.Sn3(denn3)

} in new exit′, exack′ in (Sn4(denn4 , exit
′, exack′) ‖ H(exit′, exack′));

proc Sn3(enp) =
√

;
} in Sn2(denn2)

Note that we have added ports exit and exack to the process definitions
for sub-states n4 and n5, and in their bodies, the event listener has a branch

22

n5

n2

n4

n6 t2 : y

t3 : z

n7

n3t1 : x

n1

n8
q1

t4 : u t5

Figure 9: A State Machine with a group transition.

exit?.exack!, which when it receives an exit event from the containing state,
answers with exack (exit acknowledgment) and stops. In addition to these sub-
states, Sn2 contains a definition for the event handler H with ports exit′ and
exack′ which are the events linking it to the current sub-state: when the event
x of the group transition t1 is triggered, H tells its current sub-state to exit
by triggering exit′ and waits for the acknowledgment exack′. Once it gets the
acknowledgment, it can jump to the destination Sn3. The main body of Sn2

is new exit′, exack′ in (Sn4(denn4 , exit
′, exack′) ‖ H(exit′, exack′)). Here Sn2

creates two local events exit′ and exack′ to communicate with its currently
active sub-state. Then it launches its default sub-state and the event handler.
Note that the sub-states Sn4 and Sn5 are both passed the events exit′ and
exack′ when invoked. This way, the sub-states are connected to their container’s
event handler H.

Now we extend this example further to show how composite states them-
selves should handle exit messages.

Example 11. Consider the State Machine from Figure 9. This example is as
the previous one, with state n4 changed from a basic state to a composite state
containing sub-states n6 and n7, and adding an additional transition chain t4, t5

23

to state n8. This is represented as:

s1
def
= [n1, {denn1}, {dexn1}, 〈s2, s3, s8〉, 1, {t1, t5}]

s2
def
= [n2, {denn2}, {dexn2 , q1}, 〈s4, s5〉, 1, {t2, t4}]

s3
def
= [n3, {denn3}, {dexn3}]

s4
def
= [n4, {denn4}, {dexn4}, 〈s6, s7〉, 1, {t3}]

s5
def
= [n5, {denn5}, {dexn5}]

s6
def
= [n6, {denn6}, {dexn6}]

s7
def
= [n7, {denn7}, {dexn7}]

s8
def
= [n8, {denn8}, {dexn8}]

with transitions

t1
def
= (sib, true, dexn2 , denn3 , x,⊥)

t2
def
= (sib, true, dexn4 , denn5 , y,⊥)

t3
def
= (sib, true, dexn6 , denn7 , z,⊥)

t4
def
= (out, true, dexn4 , q1, u,⊥)

t5
def
= (sib, false, q1, denn8 ,⊥,⊥)

In πklt this would be represented as:

proc Sn1(enp) = def {
proc Sn2(enp) = def {

proc Sn4(enp, exit, exack, sh) = def {
proc Sn6(enp, exit, exack) =
z?.Sn7(denn7 , exit, exack) + exit?.exack!;

proc Sn7(enp, exit, exack) = exit?.exack!;
proc H(exit′, exack′) =
y?.exit′!.exack′?.Sn5(denn5 , exit, exack, sh)
+u?.exit′.exack′?.Bq1(sh)
+exit?.exit′!.exack′?.exack!

} in new exit′, exack′ in (Sn6(denn6 , exit
′, exack′) ‖ H(exit′, exack′));

proc Sn5(enp, exit, exack, sh) = exit?.exack!;
proc Bq1(sh′) = sh′! ‖ Sn8(denn8);
proc H(exit′, exack′, sh′) = x?.exit′!.exack′?.Sn3(denn3) + sh′?.

√

} in
new exit′, exack′, sh′ in

(Sn4(denn4 , exit
′, exack′, sh′) ‖ H(exit′, exack′, sh′));

proc Sn3(enp) =
√

;
proc Sn8(enp) =

√
;

} in Sn3(denn3)

24

Here we have the same concept, but the main difference is in the event
handler H of Sn4. This event handler can receive either a y event, a u event or
an exit request from the containing state’s handler (Sn2’s handler). Hence, if
the machine is in state Sn4 (and therefore in state Sn2 as well), and an event x
arrives, Sn2’s handler sends an exit request to Sn4, which is received by its own
handler, which in turn sends an exit request to its currently active sub-state
(Sn6 or Sn7). When the sub-state acknowledges, Sn4’s handler itself sends an
exit acknowledgment to Sn2’s handler, which then jumps to Sn3.

Note how in this example it is possible to exit from state n2 via either the
group transition t1, or via the transition chain t4, t5 through exit point q1. If
the latter route is taken, then the handler H for Sn2 must be terminated before
exiting. In order to do this, the handler H has a port sh (stop handler) to stop
it. The channel to connect this port to the sub-states is called sh′ in Sn2, and
it is passed between sub-states, so that when exit point Bq1 is executed, the
event sh′ is triggered, stopping the handler.

Now define a map T4J·K : SM→ SM> → KLT, which takes as input the State
Machine term, and its enclosing state, and returns the corresponding πklt term.
For simplicity and uniformity we give all states parameters enp, exit, exack.

Definition 8. (Encoding group transitions)

• For a basic state s def
= [n,A,B, en, ex] its translation is given by:

T4JsKs′
def
= proc Sn(enp, exit, exack) =

∑
ti∈T ′′

xi?.Qi + exit?.exack!

where s’s enclosing state is

s′ = [n′, A′, B′, S′, d′, T ′, en′, ex′]

and
T ′′

def
= {t ∈ T ′ | ∃q ∈ B. q = src(t)}

is the set of transitions from T ′ whose source (q) is an exit point of state
n;

xi
def
= evt(ti)

is the trigger event of transition ti in the set T ′′; and Qi is the target of
the transition, defined as

Qi
def
=

Sni(pi, exit, exack, sh) if kind(ti) = sib, trg(ti) = pi

and ∃si ∈ S′. pi ∈ entries(si) and ni = name(si)
Bqi(sh) if kind(ti) = out and trg(ti) = qi ∈ B′

• For a composite state s = [n,A,B, S, d, T, en, ex] (with enclosing state s′):

25

T JsKs′
def
=

proc Sn(enp, exit, exack, sh) =
def {D1; ...;Dk;B1; ...;Bl;Cdef ;Hdef} in

new exit′, exack′, sh′ in
(C(enp, exit′, exack′, sh′)
‖ H(exit′, exack′, sh′)).

where each Di is T JsiKs for each si in S ; each Bi is a process definition
for exit point qi ∈ B, given by

Bi
def
= proc Bqi(sh′) = (sh′! ‖ Qj).

where Qj is the target of the exit point, and is defined as above; Cdef is
the dispatcher defined as follows:

proc C(enp, exit, exack, sh) =
if enp = p1 then Sn1(p′1, exit

′, exack′, sh′)
else if enp = p2 then Sn2(p′2, exit

′, exack′, sh′)
· · ·
else if enp = pm then Snm(p′m, exit

′, exack′, sh′)
else Snd(p′d, exit

′, exack′, sh′).

where each pi ∈ A is a named entry point of s connected to the entry point
p′i of a sub-state ni via an incoming transition ti = (in, false, pi, p

′
i,⊥,⊥) ∈

T . Here we assume that the default state is nd, with the initial transition
connected to the entry point p′d. Finally, Hdef is the definition of the event
handler H, as follows:

proc H(exit′, exack′, sh′) =∑
ti∈T ′′ xi?.exit′!.exack′?.Qi

+ exit?.exit′!.exack′?.exack! + sh′?.
√
.

where T ′′ and Qi are defined as for basic states. 7

4.6 Enabled-transition selection policy

It is possible that two transitions are simultaneously enabled if their source is
the currently active state and they share the same trigger event. In this case
the transitions are said to be in conflict. If the source of one such transition

7Note that in Hdef and Cdef the (non-primed) exit and exack events are those which are
used to interact with the containing state, while the (primed) exit′ and exack′ events are used
to interact with the currently active sub-state. Also note that it is not necessary for H to
have explicit parameters for exit and exack due to the lexical scoping rules of πklt , as Hdef

is inside the de�nition of its containing state. This allows the handler itself to receive exit
requests from its own containing state.

26

n3

n1

n2

n4 t1 : v

t2 : v

n5

Figure 10: A State Machine with a group transition.

is a sub-state of the source of the other transition, then the conflict is resolved
by giving priority to the former, inner transition. In this section we implement
such priority scheme.8

The main idea is as follows. For each composite state n, the handler receives
the incoming event and before it compares it with the triggers of the transitions
from n, it forwards the event “down” to its currently active sub-state n′. If n′
(or a sub-state) has a transition with this event then it handles the event and
sends an “accepted” message back to n’s handler. On the other hand, if n′ (or
a sub-state) didn’t have such a transition, then it sends a “rejected” message
back to n’s handler. If n’s handler receives from n′ an “accepted” message, it
in turn sends an “accepted” message to its containing state. If it receives a
“rejected” message, it compares the event with the triggers of n’s transitions. If
one trigger matches, an “accepted” message is sent to the containing state of n
and the transition is taken. Otherwise, a “rejected” message is sent.

In order to implement this, we modify our current translation so that instead
of treating State Machine events as πklt events, we give each process definition
a port inp where the input event will arrive. Hence, rather than representing a
basic transition with trigger x and target ni as x?.Sni(...), we will represent it
as inp?“x”.Sni(...). We also add an acc and a rej port to inform the containing
state of acceptance or rejection of events.

Example 12. Consider the State Machine from Figure 10. where if the current
state is n4 we have that on event v, both transitions t1 and t2 are enabled and
therefore in conflict.

In πklt this example would be represented as follows9:
8Note that this �priority� is di�erent from the priority of events in the event queue. Such

event priorities will be addressed later.
9In this example we are abstracting the handler for n1 for the sake of simplicity, but it

27

proc Sn1(inp, acc, rej, enp) = def {
proc Sn2(inp, acc, rej, enp) = def {

proc Sn4(inp, acc, rej, enp, exit, exack) =
inp?x.if x = “v” then acc!.Sn5(inp, acc, rej, denn5 , exit, exack)

else rej!.Sn4(inp, acc, rej, enp, exit, exack)
+exit?.exack!;

proc Sn5(inp, acc, rej, enp, exit, exack) =
inp?x.rej!.Sn5(inp, acc, rej, enp, exit, exack) + exit?.exack!;

proc H(inp′, acc′, rej′, exit′, exack′) =
inp?x.inp′!x.(acc′?.acc!.H(inp′, acc′, rej′, exit′, exack′)

+ rej′?.
if x = “v”

then exit′!.exack′?.acc!.Sn3(inp, acc, rej, enp)
else rej!.H(inp′, acc′, rej′, exit′, exack′))

+exit?.exit!.exack′?.exack!;
}

in
new inp′, acc′, rej′, exit′, exack′ in

(Sn4(inp′, acc′, rej′, denn4 , exit
′, exack′)

‖ H(inp′acc′, rej′, exit′, exack′));
proc Sn3(inp, acc, rej, enp) =

√
;

} in Sn2(inp, acc, rej, denn2)

Here, each process definition is extended with three additional ports, inp,
acc and rej, as explained above. Each composite process (such as Sn2) creates
channels inp′, acc′ and rej′ to interact with its sub-states (as well as exit′
and exack′ as explained in Subsection 4.5). These are then passed to both the
current sub-state and the handler H.

State Sn4 waits for an event x (inp?x) and when it arrives, it compares it
with its outgoing transitions (only one in this case). For each possible matching
trigger, it triggers the accept event (acc!) and then performs the transition to
its target. The last case of the conditional is when there is no matching trigger,
in which case it triggers the reject event (rej!) and remains in the same state.
Additionally if an exit event arrives, it acknowledges it and stops (exit?.exack!).

The behaviour of state Sn5 is similar to Sn4, except that all events arriving
on the inp port are rejected as this state has no outgoing transitions.

The handler for Sn2, like any other state, either accepts an input event
(inp?x) or an exit request (exit?). If it is an input request, it forwards it
down to its currently active sub-state (inp′!) and waits for the sub-state to
accept it (acc′?) or reject it (rej′?). If it was accepted, it forwards an accept
to the enclosing state (acc!). If it was rejected, then, as with Sn4, the event is
matched against the trigger of each transition whose source is n2, which in this
example is only one. For each matching transition, an exit event is sent to the
currently active sub-state (exit′!) and an acknowledgment is expected (exack′?),
then an accept signal is sent to the containing state (acc!) and the transition

would be analogous to that of n2.

28

is performed. If no transition matched, a reject signal is sent to the containing
state (rej!) and the handler goes back to waiting. Finally, if the handler received
an exit request from its containing state, it sends an exit request to the currently
active sub-state (exit′!) and an acknowledgment is expected (exack′?),ending
with an acknowledgment to the containing state (exack!).

Now define a map T5J·K : SM → SM> → KLT, which takes as input
the State Machine term, and its enclosing state, and returns the correspond-
ing πklt term. For simplicity and uniformity we give all states parameters
inp, acc, rej, enp, exit, exack, sh.

Definition 9. (Encoding group transitions with priorities)

• For a basic state s def
= [n,A,B, en, ex] its translation is given by:

T5JsKs′
def
=

proc Sn(inp, acc, rej, enp, exit, exack, sh) =
inp?x.

if x = “x1” then acc!.Q1

else if x = “x2” then acc!.Q2

· · ·
else if x = “xm” then acc!.Qm

else rej!.Sn(inp, acc, rej, enp, exit, exack, sh)
+exit?.exack!

where s’s enclosing state is

s′ = [n′, A′, B′, S′, d′, T ′, en′, ex′]

and
T ′′

def
= {t ∈ T ′ | ∃q ∈ B. q = src(t)}

is the set of transitions from T ′ whose source (q) is an exit point of state
n; each

xi
def
= evt(ti)

is the trigger event of transition ti in the set T ′′; and Qi is the target of
the transition, defined as

Qi
def
=

Sni(inp, acc, rej, pi, exit, exack, sh) if kind(ti) = sib, trg(ti) = pi,

∃si ∈ S′. pi ∈ entries(si),
and ni = name(si)

Bqi(sh) if kind(ti) = out

and trg(ti) = qi ∈ B′

• For a composite state s = [n,A,B, S, d, T, en, ex] (with enclosing state s′):

29

T5JsKs′
def
=

proc Sn(inp, acc, rej, enp, exit, exack, sh) =
def {D1; ...;Dk;B1; ...;Bl;Cdef ;Hdef} in

new inp′, acc′, rej′, exit′, exack′, sh′ in
(C(inp′, acc′, rej′, enp, exit′, exack′, sh′)
‖ H(inp′, acc′, rej′, exit′, exack′, sh′))

where each Di is T5JsiKs for each si in S = s1..k ; each Bi is a process
definition for exit point qi ∈ B, given by10

Bi
def
= proc Bqi(sh′) = sh′! ‖ Qj

where Qj is the target of the exit point, and is defined as above, and Cdef

is the dispatcher defined as follows:

proc C(inp′, acc′, rej′, enp, exit′, exack′, sh′) =
if enp = p1 then Sn1(inp′, acc′, rej′, p′1, exit

′, exack′, sh′)
else if enp = p2 then Sn2(inp′, acc′, rej′, p′2, exit

′, exack′, sh′)
· · ·
else if enp = pm then Snm(inp′, acc′, rej′, p′m, exit

′, exack′, sh′)
else Snd(inp′, acc′, rej′, p′d, exit

′, exack′, sh′).

where each pi ∈ A is a named entry point of s connected to the entry point
p′i of a sub-state ni via an incoming transition ti = (in, false, pi, p

′
i,⊥,⊥) ∈

T . Here we assume that the default state is nd, with the initial transition
connected to the entry point p′d. Finally, Hdef is the definition of the event
handler H, as follows:

proc H(inp′, acc′, rej′, exit′, exack′, sh′) =
inp?x.inp′!x.

(acc′?.acc!.H(inp′, acc′, rej′, exit′, exack′, sh′)
+rej′?.

if x = “x1” then exit′!.exack′?.acc!.Q1

else if x = “x2” then exit′!.exack′?.acc!.Q2

· · ·
else if x = “xm” then exit′!.exack′?.acc!.Qm

else rej!.H(inp′, acc′, rej′, exit′, exack′, sh′))
+exit?.exit′!.exack′?.exack!
+sh′?.

√

where T ′′ and Qi are defined as for basic states.
10Note that in the de�nition of Bqi the parameter is sh′ and not sh. This is because if qi

is connected through an out transition to some qj in the enclosing state, then the process Qj

will be Bqj(sh) where sh is the signal to stop the parent's handler. Hence we must distinguish
between the two.

30

4.7 History

Whenever a composite state is entered for the first time, its initial sub-state
is entered. If, however, the composite state was previously visited, and the
composite state is entered through an entry point not explicitly connected to
any sub-state, it enters the last visited sub-state, i.e. the sub-state which was
active when the composite state exited. This behaviour is called history. The
policy applies recursively for the sub-state, resulting in what is known as deep
history.

Our mapping so far ignores history so when a composite state is entered
through an entry point not connected to a sub-state, the initial sub-state is
entered, in other words, up until now, the default is the initial sub-state. In order
to implement history we need to record the active sub-state when we exit the
composite state so that we reactivate it the next time we enter. To implement
this kind of memory we need operations to store data in some “memory cell”
and to retrieve it later. We can model such operations in our calculus, using
some syntactic sugar for readability:

setx := v
def
= x?a.a!v

This stores the value v in a “memory cell” x. This cell expects a message on
x which provides a channel a where the answer (the contents of the cell) is to
be sent. Note that the cell is ephemeral: once it is read, its contents are lost.

let v = getx in P
def
= νa.x!a.a?v.P

This process retrieves the value v stored in cell x, by creating a private
response channel a and sending it to the cell which provides the contents v
which can be used in process P .

Now, to model history, every composite state n will have for each sub-state
ni, a pair of channels hi (history) and ri (reenter or reactivate). The channel
hi will be the memory cell which stores the last sub-state of ni when ni last
exited.11 The channel ri represents the event of “reentering” state ni. In fact,
the value stored in hi will be the rk corresponding to to the sub-state nk of ni

when ni exited. Hence, when state ni is reentered, it will retrieve from hi the
link rk which will be used to reactivate the sub-state nk. Since this policy is
executed by nk as well (if it is composite), the end result corresponds to the
deep history policy of UML-RT.

More precisely, whenever we exit a sub-state nk of a composite state ni we
do the following in the definition of process Snk:

sethi := rk ‖ rk?(enp, ...).Snk(enp, ...)

This is, first store the reactivation signal rk in the parent’s memory cell hi.
Then we set a “frozen” process which listens to the reactivation signal rk, which
expects the appropriate entry parameters.

11If ni is a basic state, then hi will be unused.

31

n3

n1

n2

n4

t2 : x

t1 : y
n5

t4 : zn6

t3 : y

q1 t5

Figure 11: History

When we enter state ni, if it is not a named entry point, or the initial “init”
point, then we retrieve the signal stored in hi and trigger it:

let r = gethi in r!(“hist”, ...)

The “hist” entry point passed tells the sub-state to recursively apply the
same policy. Note that entering a state ni, providing its default entry point
denni

has the same effect as providing “hist” as entry point. Also note that, if
we replace this by “init” we would obtain the so called shallow-history policy.

Example 13. Consider the State Machine in Figure 11. In this example, if
the active sub-state is n5 when an x event arrives, the transition chain t2, t5 is
taken to n3. If this is followed by a z event, transition t4 is taken back to n2

and into n5, since it was the last active sub-state of n2 when it was exited.
This is represented as:

s1
def
= [n1, {denn1}, {dexn1}, 〈s2, s3〉, 1, {t4, t5}]

s2
def
= [n2, {denn2}, {dexn2 , q1}, 〈s4, s5, s6〉, 1, {t1, t2, t3}]

s3
def
= [n3, {denn3}, {dexn3}]

s4
def
= [n4, {denn4}, {dexn4}]

s5
def
= [n5, {denn5}, {dexn5}]

s6
def
= [n6, {denn6}, {dexn6}]

32

with transitions

t1
def
= (sib, true, dexn4 , denn5 , y,⊥)

t2
def
= (out, true, dexn5 , q1, x,⊥)

t3
def
= (sib, true, dexn5 , denn6 , y,⊥)

t4
def
= (sib, true, dexn3 , denn2 , z,⊥)

t5
def
= (sib, false, q1, denn3 ,⊥,⊥)

In this example, the State Machine first enters n1, then n2 and then n4. On
an input sequence y, x, z, y, it goes from n4 to n5, to n3 then enters n2 again
and goes back to n5, and finally to n6.

We will first present the πklt representation, for the sake of simplicity, with-
out the mechanism for handling group transitions from Subsection 4.5 or con-
flicting transition resolution from Subsection 4.6:12

new h1, h2, h3, h4, h5, h6, r1, r2, r3, r4, r5, r6 in def {
proc Sn1(enp) = def {

proc Sn2(enp) = def {
proc Sn4(enp) = y?.Sn5(denn5);
proc Sn5(enp) =
x?.(seth2 := r5 ‖ r5?enp.Sn5(enp) ‖ Bq1())
+y?.Sn6(denn6);

proc Bq1() = Sn3(denn3);
proc Sn6(enp) =

√
;

} in
if enp = “init” then Sn4(“init”)
else let r = geth2 in r!(“hist”);

proc Sn3(enp) = z?.Sn2(denn2);
} in Sn2(“init”)

} in Sn1(“init”)

Now we extend the example to see the effect of deep history by making state
n5 a composite state as shown in Figure 12. This is represented as:

12We also ignore history of the top-level state n1 for the sake of simplicity.

33

n3

n1

n2

n4

t2 : x

t1 : y

n5

t4 : z

q1

n7

n8

t6 : x

t7

t5

q2

Figure 12: Deep history.

s1
def
= [n1, {denn1}, {dexn1}, 〈s2, s3〉, 1, {t4, t5}]

s2
def
= [n2, {denn2}, {dexn2 , q1}, 〈s4, s5, s6〉, 1, {t1, t3, t7}]

s3
def
= [n3, {denn3}, {dexn3}]

s4
def
= [n4, {denn4}, {dexn4}]

s5
def
= [n5, {denn5}, {dexn5 , q2}, 〈s7, s8〉, 1, {t2, t6}]

s6
def
= [n6, {denn6}, {dexn6}]

s7
def
= [n7, {denn7}, {dexn7}]

s8
def
= [n8, {denn8}, {dexn8}]

with transitions

t1
def
= (sib, true, dexn4 , denn5 , y,⊥)

t2
def
= (out, true, dexn8 , q2, x,⊥)

t3
def
= (sib, true, dexn5 , denn6 , y,⊥)

t4
def
= (sib, true, dexn3 , denn2 , z,⊥)

t5
def
= (sib, false, q1, denn3 ,⊥,⊥)

t6
def
= (sib, true, dexn7 , denn8 , x,⊥)

t7
def
= (out, false, q2, q1,⊥,⊥)

34

In πklt , it is as follows:

new h1, h2, h3, h4, h5, h6, h7, h8, r1, r2, r3, r4, r5, r6, r7, r8 in def {
proc Sn1(enp) = def {

proc Sn2(enp) = def {
proc Sn4(enp) = y?.Sn5(denn5);
proc Sn5(enp) = def {

proc Sn7(enp) = x?.Sn8(denn8);
proc Sn8(enp) =
x?.(seth5 := r8 ‖ r8?enp.Sn8(enp) ‖ Bq2());

proc Bq2() = (seth2 := r5 ‖ r5?enp.Sn5(enp) ‖ Bq1())
} in

if enp = “init” then Sn7(“init”)
else let r = geth5 in r!(“hist”);

proc Bq1() = Sn3(denn3);
proc Sn6(enp) =

√
;

} in
if enp = “init” then Sn4(“init”)
else let r = geth2 in r!(“hist”);

proc Sn3(enp) = z?.Sn2(denn2);
} in Sn2(“init”)

} in Sn1(“init”)

Now define a map T̂ J·K : SM → KLT in terms of a recursive map T6J·K :
SM → SM> → KLT, which takes as input the State Machine term, and its
enclosing state, and returns the corresponding πklt term. For simplicity and
uniformity we give all states parameters inp, acc, rej, enp, exit, exack, sh. The
map T̂ is intended to be applied at the top level, i.e. to a full State Machine, not
enclosed within another State Machine. In this mapping we explicitly associate
an index k with each state nk so that the corresponding history cell is denoted
hk and reentry signal is rk.

Definition 10. (Encoding history)

• Given s ∈ SM, let T̂ JsK ∈ KLT be defined as:

T̂ JsK def
= new h1, ..., hM , r1, ..., rM in T6JsK⊥

where M is the number of states, and where T6 is defined as follows:

• For a basic state s def
= [nk, A,B, en, ex] its translation is given by:

35

T6JsKs′
def
=

proc Snk(inp, acc, rej, enp, exit, exack, sh) =
inp?x.

if x = “x1” then acc!.Q1

else if x = “x2” then acc!.Q2

· · ·
else if x = “xm” then acc!.Qm

else rej!.Snk(inp, acc, rej, enp, exit, exack, sh)
+exit?.exack!

where s’s enclosing state is

s′ = [n′k′ , A′, B′, S′, d′, T ′, en′, ex′]

and
T ′′

def
= {t ∈ T ′ | ∃q ∈ B. q = src(t)}

is the set of transitions from T ′ whose source (q) is an exit point of state
n; each

xi
def
= evt(ti)

is the trigger event of transition ti in the set T ′′; and Qi is the process
that exists and goes to the target of the transition, defined as

Qi
def
=

Lk,k′ ‖ Sni(inp, acc, rej, pi, exit, exack, sh) if kind(ti) = sib, trg(ti) = pi,

∃si ∈ S′. pi ∈ entries(si),
and ni = name(si)

Lk,k′ ‖ Bqi(sh) if kind(ti) = out

and trg(ti) = qi ∈ B′

where

Lk,k′
def
= sethk′ := rk

‖ rk?(inp, acc, rej, pi, exit, exack, sh).Snk(inp, acc, rej, pi, exit, exack, sh)

• For a composite state s = [n,A,B, S, d, T, en, ex] (with enclosing state s′):

T6JsKs′
def
=

proc Snk(inp, acc, rej, enp, exit, exack, sh) =
def {D1; ...;Dk;B1; ...;Bl;Cdef ;Hdef} in

new inp′, acc′, rej′, exit′, exack′, sh′ in
(C(inp′, acc′, rej′, enp, exit′, exack′, sh′)
‖ H(inp′, acc′, rej′, exit′, exack′, sh′))

36

where each Di is T6JsiKs for each si in S = s1..k ; each Bi is a process
definition for exit point qi ∈ B, given by

Bi
def
= proc Bqi(sh′) = sh′! ‖ Qj

where Qj is the target of the exit point, and is defined as above, and Cdef

is the dispatcher defined as follows:

proc C(inp′, acc′, rej′, enp, exit′, exack′, sh′) =
if enp = p1 then Sn1(inp′, acc′, rej′, p′1, exit

′, exack′, sh′)
else if enp = p2 then Sn2(inp′, acc′, rej′, p′2, exit

′, exack′, sh′)
· · ·
else if enp = pm then Snm(inp′, acc′, rej′, p′m, exit

′, exack′, sh′)
else if enp = “init′′ then Snd(inp′, acc′, rej′, p′d, exit

′, exack′, sh′)
else let r = gethk in r!(inp′, acc′, rej′, “hist′′, exit′, exack′, sh′)

where each pi ∈ A is a named entry point of s connected to the entry point
p′i of a sub-state ni via an incoming transition ti = (in, false, pi, p

′
i,⊥,⊥) ∈

T . Here we assume that the default state is nd, with the initial transition
connected to the entry point p′d. Finally, Hdef is the definition of the event
handler H, as follows:

proc H(inp′, acc′, rej′, exit′, exack′, sh′) =
inp?x.inp′!x.

(acc′?.acc!.H(inp′, acc′, rej′, exit′, exack′, sh′)
+rej′?.

if x = “x1” then exit′!.exack′?.acc!.Q1

else if x = “x2” then exit′!.exack′?.acc!.Q2

· · ·
else if x = “xm” then exit′!.exack′?.acc!.Qm

else rej!.H(inp′, acc′, rej′, exit′, exack′, sh′))
+exit?.exit′!.exack′?.exack!
+sh′?.

√

where T ′′ and Qi are defined as for basic states.

4.8 Adding actions

So far we have not dealt with actions. There are two main issues to be addressed
in order to support actions: first, how are individual actions encoded in πklt and
second, where should the be executed.

To address the first question, we considered an existing set of actions A
without specifying what exactly are these actions. Normally these actions would
be given in some action language. However, the order of execution (the second
issue) is independent of such action language, and therefore it is useful to keep

37

this set abstract, and assume that we have a translation α : A⊥ → KLT which
maps each action to the corresponding πklt term.

Once we assume the action translation, we can focus on where to put the
resulting translations. We have three kinds of action: entry actions, exit actions
and transition actions. Entry actions must be executed whenever we enter a
state. Similarly for exit actions. Transition actions are executed whenever the
transition is taking place, after exiting the source state and before entering the
target state.13 This means that the process Sn for a state [n, ..., en, ex] must
begin by executing α(en) and that α(ex) must be executed when leaving the
state, this is in the process Bq for each exit point q.

Example 14. Let us extend Example 11 with actions as follows:

s1
def
= [n1, {denn1}, {dexn1}, 〈s2, s3〉, 1, {t1}, en1, ex1]

s2
def
= [n2, {denn2}, {dexn2}, 〈s4, s5〉, 1, {t2}, en2, ex2]

s3
def
= [n3, {denn3}, {dexn3}, en3, ex3]

s4
def
= [n4, {denn4}, {dexn4}, 〈s6, s7〉, 1, {t3}, en4, ex4]

s5
def
= [n5, {denn5}, {dexn5}, en5, ex5]

s6
def
= [n6, {denn6}, {dexn6}, en6, ex6]

s7
def
= [n7, {denn7}, {dexn7}, en7, ex7]

with transitions

t1
def
= (sib, true, dexn2 , denn3 , x, a1)

t2
def
= (sib, true, dexn4 , denn5 , y, a2)

t3
def
= (sib, true, dexn6 , denn7 , z, a3)

In πklt this would be represented as:
13There are some exceptions to this rule, namely the so-called internal transitions, but we

do not address these at this point.

38

proc Sn1(enp) = {
proc Sn2(enp) = {

proc Sn4(enp, exit, exack) = {
proc Sn6(enp, exit, exack) =
α(en6); (z?.α(ex6);α(a3);Sn7(denn7 , exit, exack) + exit?.α(ex6); exack!);

proc Sn7(enp, exit, exack) = α(en7); exit?.α(ex7); exack!;
proc H(exit′, exack′) =
y?.exit′!.exack′?.α(ex4);α(a2);Sn5(denn5 , exit, exack)
+exit?.exit′!.exack′?.α(ex4); exack!

} in new exit′, exack′ in
α(en4); (Sn6(denn6 , exit

′, exack′) ‖ H(exit′, exack′));
proc Sn5(enp, exit, exack) = α(en5); exit?.α(ex5); exack!;
proc H(exit′, exack′) = x?.exit′!.exack′?.α(ex2);α(a1);Sn3(denn3)

} in new exit′, exack′ in α(en1); (Sn4(denn4 , exit
′, exack′) ‖ H(exit′, exack′));

proc Sn3(enp) =
√

;
} in Sn3(denn3)

Suppose for example that the machine is in state n6 (and therefore in states n4

and n2 as well), and then an event y arrives.

Now define a map T̂ J·K : SM→ KLT in terms of a recursive map T7J·K : SM→
SM> → KLT, which takes as input the State Machine term, and its enclosing
state, and returns the corresponding πklt term. For simplicity and uniformity
we give all states parameters inp, acc, rej, enp, exit, exack, sh. The map T̂ is
intended to be applied at the top level, i.e. to a full State Machine, not enclosed
within another State Machine. In this mapping we explicitly associate an index
k with each state nk so that the corresponding history cell is denoted hk and
reentry signal is rk. The map also depends on a translation α : A⊥ → KLT from
the set of actions to the set of πklt -terms.

Definition 11. (Encoding actions)

• Given s ∈ SM, let T̂ JsK ∈ KLT be defined as:

T̂ JsK def
= new h1, ..., hM , r1, ..., rM in T7JsK⊥

where M is the number of states, and where T7 is defined as follows:

• For a basic state s def
= [nk, A,B, en, ex] its translation is given by:14

14This de�nition adds an auxiliary internal de�nition K(). This is because, if the state
cannot handle a transition it must trigger a reject signal (rej!) and go back to waiting,
without executing the entry action again.

39

T7JsKs′
def
=

proc Snk(inp, acc, rej, enp, exit, exack, sh) = def {
proc K() =
inp?x.

if x = “x1” then acc!.Q1

else if x = “x2” then acc!.Q2

· · ·
else if x = “xm” then acc!.Qm

else rej!.K()
+exit?.α(ex); exack!

} in α(en);K()

where s’s enclosing state is

s′ = [n′k′ , A′, B′, S′, d′, T ′, en′, ex′]

and
T ′′

def
= {t ∈ T ′ | ∃q ∈ B. q = src(t)}

is the set of transitions from T ′ whose source (q) is an exit point of state
n; each

xi
def
= evt(ti)

is the trigger event of transition ti in the set T ′′; and Qi is the process
that exists and goes to the target of the transition, defined as

Qi
def
=

Lk,k′ ‖ Ei;Sni(inp, acc, rej, pi, exit, exack, sh) if kind(ti) = sib, trg(ti) = pi,

∃si ∈ S′. pi ∈ entries(si),
and ni = name(si)

Lk,k′ ‖ Ei;Bqi(sh) if kind(ti) = out

and trg(ti) = qi ∈ B′

where

Lk,k′
def
= sethk′ := rk

‖ rk?(inp, acc, rej, pi, exit, exack, sh).Snk(inp, acc, rej, pi, exit, exack, sh)

Ei
def
= α(ex);α(act(ti))

• For a composite state s = [n,A,B, S, d, T, en, ex] (with enclosing state s′):

T7JsKs′
def
=

proc Snk(inp, acc, rej, enp, exit, exack, sh) =
def {D1; ...;Dk;B1; ...;Bl;Cdef ;Hdef} in

new inp′, acc′, rej′, exit′, exack′, sh′ in
α(en);
(C(inp′, acc′, rej′, enp, exit′, exack′, sh′)
‖ H(inp′, acc′, rej′, exit′, exack′, sh′))

40

where each Di is T7JsiKs for each si in S = s1..k ; each Bi is a process
definition for exit point qi ∈ B, given by

Bi
def
= proc Bqi(sh′) = sh′! ‖ Qj

where Qj is the target of the exit point, and is defined as above, and Cdef

is the dispatcher defined as follows:

proc C(inp′, acc′, rej′, enp, exit′, exack′, sh′) =
if enp = p1 then α(act(t1));Sn1(inp′, acc′, rej′, p′1, exit

′, exack′, sh′)
else if enp = p2 then α(act(t2));Sn2(inp′, acc′, rej′, p′2, exit

′, exack′, sh′)
· · ·
else if enp = pl then α(act(tl));Snl(inp′, acc′, rej′, p′l, exit

′, exack′, sh′)
else if enp = “init′′ then α(act(td));Snd(inp′, acc′, rej′, p′d, exit

′, exack′, sh′)
else let r = gethk in r!(inp′, acc′, rej′, “hist′′, exit′, exack′, sh′)

where each pi ∈ A is a named entry point of s connected to the entry point
p′i of a sub-state ni via an incoming transition ti = (in, false, pi, p

′
i,⊥,⊥) ∈

T . Here we assume that the default state is nd, with the initial transition
connected to the entry point p′d. Finally, Hdef is the definition of the event
handler H, as follows:

proc H(inp′, acc′, rej′, exit′, exack′, sh′) =
inp?x.inp′!x.

(acc′?.acc!.H(inp′, acc′, rej′, exit′, exack′, sh′)
+rej′?.

if x = “x1” then exit′!.exack′?.acc!.Q1

else if x = “x2” then exit′!.exack′?.acc!.Q2

· · ·
else if x = “xm” then exit′!.exack′?.acc!.Qm

else rej!.H(inp′, acc′, rej′, exit′, exack′, sh′))
+exit?.exit′!.exack′?.α(ex); exack!
+sh′?.

√

where T ′′ and Qi are defined as for basic states.

5 Concluding remarks

We have presented a map from UML-RT State Machines into the kiltera lan-
guage which preserves the machine’s hierarchical structure. By preserving this
structure we can easily recognize elements of the original machine in the en-
coded representation. Furthermore, the encoding’s modular structure includes
specific components (the handler and the dispatcher) which address the par-
ticular semantics of UML-RT State Machines. This results in a separation of

41

concerns where alternative semantics and policies could be put in place with
minimal effect on the rest of the structure.

Our goal is to be comprehensive in the treatment of UML-RT semantics.
Nevertheless, the present mapping still lacks support for some features, in par-
ticular choice and junction points, and internal transitions.

This work is part of our effort to give a formal semantics and develop anal-
ysis tools and techniques for UML-RT as a whole, not only State Machines.
Therefore as part of this effort, we are also working towards encoding structure
diagrams, including capsules and objects in general, in kiltera. The mapping
provided here will be used in such encoding.

References

[1] IBM Rational Rose Technical Developer, Version 7.0. www-01.ibm.com/
software/awdtools/developer/technical.

[2] IBM Rational Software Architect, RealTime Edition, Version 7.5.2.
publib.boulder.ibm.com/infocenter/rsarthlp/v7r5m1.

[3] Unified Modeling Language (UML), UML 2.2 Spec.

[4] D. R. Jefferson. Virtual Time. ACM-TOPLAS, 7(3):404–425, July 1985.

[5] E. Posse. A real-time extension to the π-calculus. Tech. Report 2009-
557, School of Computing – Queen’s University, http://www.cs.queensu.ca,
2009.

[6] E. Posse and J. Dingel. Theory and implementation of a real-time extension
to the π-calculus. In Proc. Int. Conf. on Formal Techniques for Distributed
Systems (FMOODS&FORTE’10), LNCS, 2010. Accepted.

[7] B. Selic. Using UML for modeling complex real time systems. In Languages,
Compilers, and Tools for Embedded Systems (LCTES’98), volume 1474 of
LNCS, 1998.

[8] B. Selic, G. Gullekson, and P.T. Ward. Real-time Object Oriented Modeling
and Design. J. Wiley & Sons, 1994.

[9] M. von der Beeck. A structured operational semantics for UML-statecharts.
SoSyM, 1(2):130–141, 2002.

[10] B.P. Zeigler, H. Praehofer, and T.G. Kim. Theory of Modeling and Simu-
lation (2nd ed.). Academic Press, 2000.

42

