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ABSTRACT 
Indexing XML data is essential for XML query optimization. Most of the existing approaches that 

combine a labeling scheme with a path index use labeling schemes that reflect the structure of the 

indexed data. In addition, the labeling rules do not depend on the combined path indexes. By 

designing a labeling scheme that does not reflect the structure of XML data, since it is available in 

the accompanied path index; and by aligning the data nodes’ labels with the path index nodes’ 

labels, we can support the join process more efficiently. We propose a novel index structure called 

LTIX (Level-based Tree Index for XML databases). This index structure is based on Level-based 

Labeling Scheme (LLS) that not only minimizes the number of joins and matches required to 

evaluate twig queries, if it is used with path indexes, but also facilitates effective query 

optimization through early pruning of the space search. Experimental tests show the performance 

benefits of our proposed approach.   
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1. INTRODUCTION  
XML is becoming the dominant method of exchanging data over the Internet and the rapid growth 

in XML databases has resulted in the need to efficiently query this XML data. One way to achieve 

fast retrieval of data is through indexing. XML queries can contain single or multiple paths, and 

typically have predicates that involve structure. Generally, XML structural indexes can be 

grouped into three categories: node indexes, path indexes, and sequence indexes. 

 

Solving a twig query using node indexes requires n-1 structural joins where n is the number of 

nodes in the query. In contrast, less joins are needed if we use path indexes. In this case, the 

required number of joins to solve a twig query is usually equal to the number of branches in the 

query, but path indexes, in general, require a large amount of memory. No joins are required to 

solve a twig query if we use sequence indexes. Sequence indexes, however, suffer from two 

anomalies, namely, false positives and false negatives. Refinement steps are added to the 

evaluation process of a query to overcome these problems. 

 

Some researchers combine node indexes with path indexes to expedite query processing and 

reduce the number of structural joins. For example, Kaushik et al. [14], Moro et al. [20], and Haw 

et al. [12] integrate the (start,end) interval node index with the DataGuide path index. In these 

approaches element labels are assigned and then subsequently associated with their designated 

nodes in the path index. In this case, the path indexes, as well as the interval node indexes, hold 

the structural information of the data. We believe that it is sufficient for only one of them to hold 

the structure information in order for them to work well together. We can therefore plan a labeling 

scheme that is structure independent and link it with a path index to provide the structural 

information. We implement this concept in our approach. Our approach is therefore similar to the 

approaches that integrate interval node indexes with DataGuide path indexes [12,14,20] with the 

exception of the labeling scheme. We propose a novel index structure that is based on Level-based 

Labeling Scheme (LLS) [19], which is shown to work efficiently with DataGuides. The 

contributions in this report are as follows: 

• A novel index structure, LTIX, which combines the LLS and the DataGuide path index.  

• A unique compact representation of DataGuide path index. 
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• A light-weight query processor that uses LTIX to efficiently prune the space search and 

remove false positives. 

 

The remainder of the report is structured as follows. We review related work in Section 2. We 

formally define our index structure and explain the LTIX system in Section 3. We present our 

experimental results in Section 4 and conclude in Section 5. 

 

2. RELATED WORK   
Structural indexes can be grouped into three categories: node indexes, path indexes, and sequence 

indexes. Node indexing approaches [16] depend on labeling schemes including interval labeling 

[12,16,27], and prefix labeling [21,24]. Node indexes hold values that reflect the nodes’ positions 

within the structure of an XML tree. They can be used to find a given node’s location in relation 

to other nodes, which are used to solve simple (single) path and twig path queries. The main 

shortcoming of these indexes is the number of structural joins required to solve a query, which is 

equal to n-1 where n is equal to the number of nodes in the query. 

 

Path indexing schemes include indexes that cover either single path queries [8,9] or both single 

path and twig path queries [1,11,13,17]. Path indexes, in general, require a large amount of 

memory [11]. Path indexes consider paths as a whole, during query evaluation, instead of dealing 

with each node in the path separately. Consequently, the number of joins is reduced during query 

processing and hence query performance is improved.  

  

Sequence indexes [22,26] interpret the whole query as a structured-encoded sequences and search 

for a match in the structured-encoded sequence of an XML document. They suffer, however, from 

false positive and false negatives [18]. Refinement steps are added to the evaluation process of a 

query to overcome these problems.  

 

An example of interval node indexes is shown in Figure 2. It is based on the (start,end) labeling 

scheme of the XML document in Figure 1.  
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Figure 1.  An XML document  

 

 

Figure 2.  An interval labeled tree representation of the XML data in Figure 1 

 

 

The labels are given according the sequential traversal of the document in Figure 1. In this type of 

node indexes, a relation between two elements is established if one element’s interval contains the 

other element’s interval.   

<students>
<student address="Kingston">

<name>
<fname>Tim</fname>
<lname>Wang</lname>

</name>
<courses>

<course>Art</course>
<course>History</course>

</courses>
</student>
<student address="Ottawa">

<name>
<fname>Sarah</fname>
<lname>Ahmad</lname

</name>
<courses>

<course>Math</course>
</courses>
<children>

<child>
<name>

<fname>Mike</fname>
<lname>Salem</lname

</name>
</child>

</children>
</student>

</students>

students

student

fname
“Kingston”

name

address

“Tim”

lname

“Wang”

courses

course

“Art”

course

“History”

student

fname
“Ottawa”

name
address

“Sarah”

lname

“Ahamd”

courses

course

“Math”

(1,53)

(2,22)

(3,5)

(4,4)

(6,13)

(31,33)

(27,34)

(28,30)

(25,25)

(24,26)

(7,9) (10,12) 

(8,8) (11,11)

(15,17)

(16,16) (19,19)

(18,20)

(14,21)

(36,38)

(29,29) (32,32) (37,37)

(23,52)

(35,39)

fname

name

“Mike”

lname

“Salem”

(46,48)(43,45)

(44,44) (47,47)

children
(40,51)

(42,49)

child
(41,50)



4 
 

 

Path indexes [1,8,9,10,11,13,15,17] partition element nodes in the source XML data-tree based on 

their path similarity. The DataGuide summary in Figure 7 is an example path index for the data-

tree in Figure 2. The numbers inside the oval shaped nodes represent the labels of the summary 

(or path index) nodes. Unlike node indexes, which return the answers of XML queries at the 

granularity of individual instances of elements, path indexes return the answers of XML queries at 

the granularity of the whole groups of instances of elements. Then a node index, such as the 

interval node index above is used to perform structural joins in a post-processing phase to arrive at 

the answers to a query. In the structural join operations, each element’ instances in a group is 

compared with the other elements’ instances in the other groups to find a match.  

 

To evaluate a simple XML query a number of joins and comparisons are required if we use node 

indexes. To overcome this shortcoming node indexes can be integrated with path indexes. Our 

proposed LTIX approach integrates a special labeling scheme (LLS)  [19] with a DataGuide path 

index as a way of reducing join and match operations. To illustrate this consider evaluating Query 

1 below over the data in Figure 2. Query 1 returns the first and the last names of the students in an 

XML document. The node-labeled tree representation for Query 1 is given in Figure 3:  

 

Query 1:  //student/name[fname]/lname 
 

 
 

Figure 3. The node-labeled tree representation of Query 1 
 
 
The instances of Query 1 elements in the XML data-tree in Figure 2 are saved in an index 

structure similar to the one shown in Figure 4 as suggested by Zhang et al. [27], which is based on 

(start,end) labeling scheme.  

 

student

?

name

?

lnamefname 
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Figure 4. The (start,end) interval node index for instances of Query 1 elements in Figure 2 
 
 
To evaluate Query 1 over the data in (start,end) interval index in Figure 4, we need to implement 

3 structural joins and 18 matches, in the worst case. This worst case is reached if we used the 

standard merge join algorithm to arrive at the final answer that contains the following tuples: 

 
 

fname lname 
Tim Wang 
Sarah Ahmad 

 
   
Zhang et al.[27] propose the MPMGJN algorithm to reduce the number of joins. Much subsequent 

research has been done in this area to reduce the number of joins and comparisons [2,3,5]. 

Discussion of the suggested approaches is beyond the scope of this report.   

 

To evaluate Query 1 above by using an integrated system such as the one shown in Figure 5, 

which integrates the DataGuide path index (Figure 7) with the interval node index (Figure 4), we 

need to perform 2 join operations and 8 matches in the worst case. This worst case is reached if 

we used the standard merge join algorithm.  

 

 
 

Figure 5. Integration of the node index (Figure 4) with the interval node index (Figure 7). 

(2,22) (23,52)
(6,13) (27,34) (42,49) 
(7,9) (28,30) (43,45) 
(10,12) (31,33) (46,48) 

<student>
<name>
<fname>
<lname>

Level PerLv Tag Start End
2 11 student 2 22
2 11 student 23 52
3 21 name 6 13
3 21 name 27 34
4 11 fname 7 9
4 11 fname 28 30
4 21 lname 10 12
4 21 lname 31 33
5 11 name 42 49
6 11 fname 43 45
6 21 lname 46 48
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From the above discussion we notice that integrating interval node indexes with path indexes 

dropped the number of joins, in our example, from 3 to 2 join operations, and the number of 

matching operations have been reduced from 18 to 8 matches. Our proposed LTIX approach, 

which integrates a special labeling scheme (LLS) with a DataGuide path index, requires 

implementing only one join operation during which two matches are performed in the worst case, 

to evaluate Query 1 above. We will return to Query 1 example and explain how we can achieve 

this in Section (3.2) after we elaborate on our approach in the next section. 

 

LLS labeling [19] scheme preserves the best traits of both interval labeling [12,24,27] and prefix 

labeling schemes [21,24]. Similar to interval labels, the size of LLS labels is constant regardless 

of the data-tree depth, and hence requires modest storage space. In contrary, the prefix labels 

length grows as the depth grows, and hence more space is required to save them. Like interval 

labeling, integer comparison operations are used to establish a relation between two nodes with 

LLS, which is more efficient than the substring matching operations that are used to establish a 

relation with prefix labeling. Furthermore, a relation between two nodes can be identified with a 

single equality comparison operation with LLS, while with interval labeling, a relation is 

identified using two inequality comparison operations. 

 
ORDPATH labels [21] are a variant of Dewey prefix labels [7,21]. They do not need to be 

updated when new nodes are inserted, but they suffer from the shortcomings of prefix indexes. In 

the interval node index approach proposed by Zhang et al. [27], they suggest including the level of 

elements as a part of node labels. In contrast, our approach not only has the level of elements as 

part of the node labels, but we provide a path index (absent from Zhang’s approach), and the 

levels are also added to this path index node labels. 

 

3.  LTIX APPROACH 
In this section, we first introduce the XML data model used in LTIX, the path index, and the 

mapping of XML data-tree into native XML path index and data repository. We then trace two 

examples to demonstrate how LTIX is used to solve twig queries and to improve the efficiency of 

query evaluation process. 
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3.1 XML Data and Path Index Models 
We model an XML document as a directed graph G=(R,VR,VT,E,tagg,labelg,T). R is the root node. 

VR is the set of elements and attribute nodes  – excluding R and VT  – and VT  is the set of text 

nodes that contain the values of the nodes for nodes that have values, which usually are leaf 

nodes. VR  and VT nodes are tagged with the tagg function (the extra g stands for the graph G). VR 

nodes are tagged according to the tag of the element or attribute they represent. VT  nodes, 

however, are tagged with the tag of its VR parent node1. A node v, such that v∈ VR, may have zero 

child nodes, or one or more child nodes, which could be VR  or VT node(s). VT  nodes are always 

leaf nodes. E is a set of child-parent edges, E={e1, e2, … ei}, that connects all nodes of VR and VT 

to form a tree. The total number of edges is |E| and the total number of nodes is |VR + VT |, where 

|E|=| VR + VT | since R  ב VR. Each node in VR and VT is associated with exactly one parent through 

an edge. R does not have a parent since it is the root node.  

 

All nodes in VR and VT are assigned unique labels through the labelg function, which is 

determined by the LLS labeling scheme as follows. Each node v, such that v∈ VR, is assigned a 

unique vector label <d.p.s> where d and p are taken from the label of o node in the path index I 

(Figure 7) to which v node belongs according to an earlier implemented partition. That is, v node 

is an instance of an o node. (instance and path index are defined later). s is the instance serial 

number of node o, which uniquely identifies this node among similar nodes of the same class. VT  

nodes carry the same labels as their VR  parent nodes. The set of serial paths is defined by T, where 

T={r1,r2, … , rn} and n is the number of text nodes |VT|. We define serial path r in Definition 2 

below. In our model, an edge e of a node v, where v∈ VR and e∈ E, is equal to the serial number s 

of the parent node p, denoted e(v)=s(p). The data-tree graph representation G for the data in 

Figure 1 is illustrated in Figure 6, which is used in the examples throughout this report, unless we 

state otherwise. Next, we give several definitions, which are used in describing the LLS labeling 

scheme and the LTIX system.   
 

                                                            
1 REF/IDREF are encoded as values in XML, and can be related through their values, hence we do not consider them as edges. 
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Figure 6.  LTIX data model of the data in Figure 1 

 

 

Definition 1. A tag path t for a node v is a sequence of tags, l1.l2. … . li (i ≥ 1), of the nodes on the 

path from the root node to v node, separated by dots.  For example, the tag path of node <4.31.3> 

is students.student.courses.course. 

Definition 2. A serial path r for a node v is a sequence of dot separated serial numbers, s1.s2. … .si 

(i ≥ 1), of the nodes on the path from the root node to v. For example, the serial path of node 

<4.31.3> is (1.2.2.3) , which contains the third part of the labels of the nodes in the path from the 

root node to this node. Note that the d values (the levels) of the components of a serial path r of a 

node v, where r = ( s1.s2. ….si), is d = (1,2, … , i), respectively, where i is the level of v. For 

example, the levels of the component of the serial path (1.2.2.3) are (1,2,3, and 4), respectively.  

Definition 3. A node path n for a node v is a dot-separated alternating sequence of tags and serial 

numbers l1. s1.l2.s2. … . li.si (i ≥ 1), of the nodes on the path from the root node to v node. For 

example, the node path of node <4.31.3> is students.1.student.2.courses.2.course.3. The tag path t 

of a node path n, denoted t(n), is the sequence of tags that exist in n. For example, t(n) of 

students.1.student.2.courses.2.course.3 is students.student.courses.course. Similarly, the serial 

path r of node path n, denoted r(n), is the sequence of serial numbers that exist in n. For example, 

r(n) of students.1.student.2.courses.2.course.3 is 1.2.2.3. 

1.1.1

students

3.11.1

4.11.1 4.21.1

3.31.1

4.31.1 4.31.2

3.21.1

2.11.1

student

fname
“Kingston”

name

address

“Tim”

lname

“Wang”

courses

course

“Art”

course

“History”

3.11.2

4.11.2 4.21.2

3.21.2

2.11.2

student

fname
“Ottawa”

name
address

“Sarah”

lname

“Ahamd”

3.31.2

4.31.3

courses

course

“Math”

6.11.1 6.21.1

5.11.1

fname

name

“Mike”

lname

“Salem”

3.41.1

children

4.41.1
child
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Definition 4. A node with a node path n is an instance of a tag path t if the sequence of the tag 

path in n is identical to the sequence of the tag path t, t(n)=t. For example, the node paths of nodes 

<4.31.2> and <4.31.3> are instances of the tag path students.student.courses.course. 

 Definition 5. Extension of a tag path t, denoted ext(t), is a set of all node path instances of a tag 

path t, that is, ext(t)={n : t(n)=t }. For example, the extensions of the tag path 

students.student.courses.course are nodes <4.31.1>,<4.31.2>, and <4.31.3>. 

 

In LTIX, an XML data-tree G structure can be summarized by a path index I such that all node 

paths of G that share the same tag path t are represented by exactly one tag path t in I, and every 

tag path t of I is a tag path of at least one node path n of G. That is, every distinct path in the 

source data to appear only once in the path index, and all the paths in the path index have at least 

one matching path in the original source data. Basically, G nodes are partitioned into equivalence 

classes in I where the nodes of a class have the same root path.    

 

We define path index as a directed graph I=(R,O,M,tagi,labeli,C). R is the same as the data graph 

G root element, since XML document can have only one root element. O is the set of index nodes 

excluding R. M is the set of child-parent edges that connects O nodes to form a tree. |M|=|O|, 

where |M| is the total number of edges in the index tree and |O| is the total number of nodes in the 

index tree. Nodes in O are tagged through the tagi function. We tag O nodes with the tag name of 

the element or attribute they extend. All nodes in the path index are assigned a unique label 

through the labeli function, which is determined by LLS labeling scheme as follows. Each node’s 

label consist of two parts vector <d.p>, where d is the level (depth) of the node, and p is the 

number of this node across d level (denoted PerLv ). An edge m of a node o, where m ∈ M and o∈ 

O, is equal to the p value of the parent node x, denoted m(o)=p(x). C is the set of counts of 

instances for each node in O, that is, C={c1,c2, … , ci : i =|O|}. For each node oj, and count cj, 

where oj∈ O and cj ∈ C, cj  is the count of instances of the tag path tj of node oj, where O={o1,o2, 

… , oi : i =|O|}, t={l1,l2, … , li : i=|O|}, and node oj has tag path lj. If we assume that in O there is a 

node oj whose count of instances is cj, and cj value is x, then the s values of the instances of oj 

would be 1 for the first instance, 2 for the second instance, … , and x for the last instance.   Figure 

7 contains an example of a path index I of the XML data-tree G in Figure 6. 
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Figure 7.  The path index I of the XML data-tree G in Figure 6 

 

 

 

For each node oi in I that has a label <di.pi>, there are instances in G that have labels in the form 

<dg.pg.sg>, such that di=dg, pi=pg, and sg={1,2, … ,n} where n equal to the count of instances of oi, 

that is, n=ci. For example, the numbers inside the oval shaped nodes in Figures 6 and 7 represent 

the labels of the nodes according to labelg and labeli functions, respectively. 

 

Note that the labels of the path index nodes in Figure 7 are created first, and then used to create 

the labels for the data-tree nodes in Figure 6. The gaps between the PerLv numbers in Figure 7 

allow for expansion while maintaining the order of the elements. The path index I information of 

Figure 7 is mapped into table representation as shown by the Path Index, and Elements and 

Attributes Dictionary tables in Figure 8 (B and A), and the data-tree G information of Figure 6 is 

mapped into table representation as shown by the Value Index, and Elements and Attribute Index 

tables in Figure 8 (C and D). We implement the path Index as a binary file; and the Elements and 

Attributes Dictionary, Value Index, and Elements and Attributes Index as B+trees in our LTIX 

system. The key of each index is underlined in Figure 8. 

 
 

 

   

Level

1

2

3

4

1.1 students

3.213.11

4.314.11 4.21

3.31

2.11
student

courses
address

name

courselnamefname

3.41

children

5.11

6.11 6.21

name

lnamefname

5

4.41
child

6
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Figure 8.  Data dictionary and indexes 

 

 

Figure 8 (A) contains a list of all elements and attributes in the path index and is referred to as the 

Elements and Attributes Dictionary. The Tag field is the tag of the elements or attributes of the 

nodes in the path index, which is assigned through the tagi function of I. The Level and PerLv 

columns represent the d and the p parts of the path index nodes labels, respectively, as indicated in 

Figure 7. These labels are allocated through the labeli function of I. The Type represents the type 

of node (e.g. element or attribute).  

 

The Parent field in Figure 8 (B) holds the PerLv labels of the parent nodes, which is the p values 

of the parent nodes. The Level value of the parent node is equal to the current node Level value 

minus one, so we do not need to list the parent node level in the Path Index. We assigned a zero 

value for the parent of the root node since it does not have any parent. Tables A and B in Figure 8 

could be combined, but we prefer to keep them separate because they are used in different stages 

of queries evaluation process. 

 

Figure 8 (C) shows the Value Index table, which is populated with the values of attributes and 

elements of the XML data-tree in Figure 6. The Level, PerLv, and No values together form the 

Level PerLv No Parent

1 1 1 0
2 11 1 1
2 11 2 1
3 11 1 1
3 11 2 2
3 21 1 1
3 21 2 2
3 31 1 1
3 31 2 2
3 41 1 1
4 11 1 1
.
.
.

.

.

.

.

.

.

.

.

.
4 41 1 1
5 11 1 1
6 11 1 1
6 21 1 1

Level PerLv Parent
1 1 0
2 11 1
3 11 11
3 21 11
3 31 11
3 41 11
4 11 21
4 21 21
4 31 31
4 41 41
5 11 41
6 11 11
6 21 11

(B) Path Index (C) Value Index

Level PerLv No Value SerialPath
3 11 1 Kingston 1,1,1
3 11 2 Ottawa 1,2,2
4 11 1 Tim 1,1,1,1
4 11 2 Sarah 1,2,2,2
4 21 1 Wang 1,1,1,1
4 21 2 Ahmad 1,2,2,2
4 31 1 Art 1,1,1,1
4 31 2 History 1,1,1,2
4 31 3 Math 1,2,2,3
6 11 1 Mike 1,2,1,1,1,1
6 21 1 Salem 1,2,1,1,1,1

(A) Elements and Attributes 
Dictionary

Tag Level PerLv Type
address 3 11 A
child 4 41 E
children 3 41 E
course 4 31 E
courses 3 31 E
fname 4 11 E
fname 6 11 E
lname 4 21 E
lname 6 21 E
name 3 21 E
name 5 11 E
student 2 11 E
students 1 1 E

(D) Elements and Attributes
Index
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labels of the leaf nodes <d.p.s>, as shown in the data-tree in Figure 6. These labels are allocated 

through the labelg function of G. The Value field contains the values of all leaf nodes, and the 

values of internal nodes in the case where complex elements exist. Note that the value labels 

(which consist of Level, PerLv, and No) are the same as the element or attribute labels to which 

they belong. Finally, the SerialPath field contains the serial paths r of each node in the tree. It 

represents a vector of the No values of the nodes that constitute a path from the root node to the 

designated node. It is used in structural joins to solve twig queries, as we shall see in the 

forthcoming examples in Section (3.2). 

 

All nodes in the XML tree are represented by the Elements and Attributes Index as shown in 

Figure 8(D). The Elements and Attributes Index can be extended to have the serial paths of all 

attributes and elements similar to the serial paths of values, but it is not necessary in our approach. 

Note that the Parent values in table (D) are different than the Parent values in table (B). In table 

(D) they stand for the No values of the parent nodes.  

 
Definition 6. In order to achieve high performance of the LTIX index structure, and since an s 

value uniquely identifies a node among other nodes of the same class, we define the Serial Path 

Index that is based on the concatenation of (Level, PerLv, SerialPath) of values. The Serial Path 

Index is used to facilitate the link between two arbitrary nodes in two different twigs of a twig 

query.  

 
Our index structure covers nodes that belong to the same XML document; the extension to 

multiple documents is straightforward. Our index structure of LTIX system consists of five 

components: The Elements and Attributes Dictionary, Path index, Value Index, Elements and 

Attributes Index, and Serial Path Index. By using the LTIX index structure, we can retrieve any 

leaf node, and reconstruct any internal node v along with the subtree that is rooted at v.  

 

3.2  Two Simple Examples 
In this section we trace two examples. The first example shows how LTIX is used to minimize the 

number of join and comparison operations. The second example illustrates the power of LTIX 

approach in pruning false positive early during the evaluation process. 
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Example 1: We evaluate Query 1 below, which was introduced in Section2, over the mapped data 

in Figure 8. This query returns the first name and the last name of all students. 

Query 1:  //student /name [fname] /lname 

Note that the branching occurs at the name node, which is the parent of the two leaf nodes, 

namely, fname and lname. We can see from the Attributes and Elements Dictionary, and the Path 

Index  that the fname and lname elements in Query 1 map to nodes <4.11> and <4.21> in I, 

respectively. First, we evaluate one side by probing the key fields of the Value Index for values 

whose labels start with (“4.11”) and the two returned tuples are: 

 
Level PerLv No Value SerialPath

4 11 1 Tim 1.1.1.1 
4 11 2 Sarah 1.2.2.2 

 
 
These tuples are joined with the Value Index to arrive at the final answer of the query. In order to 

do that, the information of these two tuples is used by the index structure as follows. We know 

that the Serial Path Index is based on the concatenations of (Level,PerLv,SerialPath) columns. So 

the index structure probes the indexed columns in the Serial Path index for tuples that match 

(4,21,LIKE 1.1.1%), which is retrieved in one match. The LIKE 1.1.1% part retrieves all 

SerialPaths values that start with 1.1.1. The search for a match to the second tuple is carried out in 

the same way by the search criterion (4,21, LIKE 1.2.2%), which retrieves the answer to this part 

in one match. The first three segments of the serialpath (“1.1.1” and “1.2.2”) are used in the 

search criteria because the branching node is located at the third level. This means that the first 

three segments of the SerialPath of the two branches of the query are common and shared by the 

two branches. 
 

Our approach, in contrast to the two approaches discussed previously in Section 2 – the (start,end) 

interval node index approach, and the approach that integrates the (start,end) interval node index 

with the DataGuide path index  –  performs only one join during which two matches are 

performed to evaluate the query. In our approach, the leaf nodes of the two branches are matched 

directly with each other without using the branching node as a mediator to join them, as opposed 

to the previous approaches. Further, the information of tuples obtained from evaluating the first 

branch leaf node is used to retrieve the exact match in one comparison for each match by using 
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equality operator. The previous approaches, in contrast, requires multiple comparisons to find a 

match, since there are two parameters involved in the searching criteria (start, and end), and both 

are involved in an inequality comparison (less than “<”, or greater than”>”). 
    
Note that the first two fields of the Value Index key and the SerialPath Index key are the same 

(Level, PerLv). This fact increases the chances of a successful memory hit when the search criteria 

run against the SerialPath Index are met by multiple tuples, and thus decreases the number of disk 

accesses. This clustering helps to explain the shortest response time achieved by LTIX system in 

comparison to the previous approaches as shown in our experiments in Section 4. 
 
Example 2: The level of XML elements in path indexes can be used to identify the element’s 

position within an XML tree structure, and can facilitate effective query optimization through 

early pruning of the space search. To demonstrate that, we evaluate Query 2 below over the 

mapped data in Figure 8. This query returns the values of fname element that has a child element 

ancestor: 
 

Query 2:  //child//fname 
 

Based on whether the used path index carries the level information of the indexed elements or it 

does not, we have two scenarios to evaluate Query 2. First, if we assume that we do not have the 

level information in the path index I, or we have it, but we do not access it in an efficient way at 

an early stage of the evaluation process of a query, then we solve Query 2 as follows. We would 

have to access the path index and search for all child and fname elements. In this process node 

<4.41> of child element, plus nodes <4.11> and <6.11> of fname elements are retrieved and 

investigated. Then node <4.11> would be excluded as the structure index would indicate that it is 

not a valid choice. The second scenario takes place if we assume that the levels of the path index 

nodes is given efficiently and at an early stage of the evaluation process, then we would need to 

match the extent of node <4.41> with only the extent of node <6.11>. The extent of node <4.11> 

would be excluded at an early stage since its level is equal to the level of <4.41> node, which 

contradicts with the query structure specification. Our index structure includes the level at which a 

node is located as part of the node label in the path index. Based on this fact, the evaluation 

algorithms of our LTIX approach detect invalid choices at an early step of the evaluation process 

and exclude them, thus improve the performance of query evaluation. To illustrate this, the 
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Elements and Attributes Dictionary table in Figure 8(A) can be used in our approach to evaluate 

Query 2 as follows. If we follow a top-down evaluation plan, then we would use the Elements and 

Attributes Dictionary table to find the child element information first. The search will return the 

following tuple: 
Tag Level PerLv Type
child 4 41 E

 

 

This information is used as a predicate to search for fname elements that are located at a level 

greater than 4. This way, the node <4.11> in the path index of fname element is excluded instantly 

without retrieving it. In contrast, other approaches will eventually exclude it, but after retrieving 

and testing it.    
 

3.3     LTIX Path Index Construction 
Path indexes, in general, require a large amount of memory [11]. Motivated by this fact, versions 

of path indexes, called approximate indexes [10,13,15] have been proposed to reduce the memory 

requirements, but at the expense of accuracy. In this section we describe efficient implementations 

for the path indexes in LTIX.  
 
The size of path indexes for regular data is relatively small. For example, in our experimental 

evaluation, the path indexes for the DBLP and XMark databases contain 71 and 251 tuples, 

respectively. For irregular data, on the other hand, in which the same pattern is not repeated very 

often in the data, the size of the path indexes may be close to the size of the original indexed data, 

depending on the regularity of data. Our path index design covers all possibilities. Path indexes, 

furthermore, are used heavily in XML queries evaluation, especially for paths that have recursion. 

Finally, since the labeling scheme of our approach is based on the level of XML elements, our 

algorithms use path indexes more often than other approaches to evaluate XML queries. Based on 

these facts, we devoted this section to discuss different alternatives to minimize the size of the 

path indexes without compromising their accuracy..   
 
We propose two types of implementations for path indexes. The first is called Matrix Index and 

the second is called Flat Index. Figures 10 and 11 are examples of the implementations of the first 

and the second types for the path index in Figure 9, respectively. Figure 9 is a portion of the path 

index in Figure 7. To simplify our examples we narrow the expansion gaps. The expansion gaps 
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are reserved for inserting new nodes between the existing nodes while maintaining the order of the 

nodes. 

 
 

Figure 9. Fraction of the path index in Figure 7 
 
 
 
In the matrix index (Figure 10), sequential memory slots (numbered in the bottom- right corner) 

are dealt with as if it is a matrix that has two coordinates. The X and Y axes coordinates represent 

the width (PerLv) and the depth (Level) of the path index. The first seven slots are reserved for the 

first level elements, the second seven for the second level elements, and so on. Each slot contains 

the Parent value for its corresponding node in the path index. The empty slots can be used for 

expansion. This index-probe operation is illustrated in Algorithm 1, which finds the parent node 

label for a given node. The matrix structure index does not have to have equal width and depth as 

in our example. The depth and the width of the matrix index may vary depending in the depth and 

the width of the path index tree, and the formed structure would still maintain the uniformity of 

access since the depth and the width are set ahead of time. 

 

 
Figure 10. The Matrix Index structure that hold the Parent value of the path index in Figure 9 
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Algorithm 1: Find the parent node of a given node using the Matrix Index 

//  F(di,pi)   is a function to find the parent node label for a given node. 
 // Input   :  (di,Pi) is the label of a node where di and Pi are the Level and  

       the PerLevel of the input node, respectively.  

 // Output :  (do,Po) is the label of a node where do and Po are the Level  
        and the PerLevel of the output(parent) node, respectively.  

 1   do=di-1;    // return the Level of the output node 

 2   Po= V(U)=V(((di-1)*W)+Pi)  // return the PerLevel of the output node 

 
Due to the increase in the number of nodes in the path index as levels increase, and due to the fact 

that this index structure width has to be the same for all levels, this index structure has limited 

control over the unused slots. Motivated by this fact, we propose the flat index (Figure 11) that 

divides the path index into three parts. In the first part, we save the number of levels of the path 

index (assume it is equal to n). The second part contains n storage units. These storage units are 

used to specify how many nodes there are in each level. For example, level 3 (in storage unit 4) 

has room for seven nodes. Finally, the third part contains the PerLevel of the parent node of all 

nodes in all levels, if they exist. Otherwise, null value is presented. This index-probe operation is 

illustrated in Algorithm 2. 

 
 

Figure 11.  More efficient dynamic Flat Index structure for the path index in Figure 9 
 
 

Algorithm 2 : Find the parent node of a given node using the Flat Index 

//  F(di,pi)    is a function to find the parent node label for a given node. 
 // Input   :  (di,Pi) is the label of a node where di and Pi are the Level and the  
                PerLevel of the input node, respectively.  
 // Output :  (do,Po) is the label of a node where do and Po are the Level and 

        the PerLevel of the output (parent) node, respectively.  
 1   Y <= V(1) ;    // Assign the value in storage unit 1 to variable Y 
 2   Target  = T = 0 ;  // initialize the value of target level 
 3   For k=2 to di   // This loop is to find the address  
 4       { T=V(k)+T }  // of the level specified by di 

 5   do = di-1;    // returns the value of  do 

 6   Po = V( 1+Y+T+Pi )  // returns the value of  Po 

4 1 2 7 3 0 1 1 1 1 1 3 3
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In order to solve a query Q, for example, /students//fname against the mapped data of G in Figure 

8, we first verify that the two elements of Q exist in I (the path index of G). If so, we get their 

labels, which consist of two sets of labels, {<1,1>} and {<4,11>,<6,11>} for students and fname 

elements, respectively. We then use Algorithm 3 to verify if a relationship exists between the 

instances of these two sets of elements before going any further in the query evaluation. The 

function R((d1,p1),(d2,p2)) in Algorithm 3 is used to verify a child-parent or descendant-ancestor 

relationship between any two arbitrary nodes. 

 

Algorithm 3: Confirm a relationship between two given nodes 
// R((d1,p1),(d2,p2))  is a function to find if a relationship  
                                     exists between two arbitrary nodes. 
 // Input    :   (d1,p1) is the node in higher level and  
                      (d2,p2) is the node in lower level.  
 // Output  :   Boolean value: true if the relationship exists,  
          or false otherwise.       
  1   n = d2-d1; 
  2   di=d2; 
  3   Pi=P2 ; 
  4   for t = 1 to n 
  5      {  (do,po) = F(di,pi); // The function of Algorithm 1 or Algorithm 2 is used 
  6          di=do;        
  7          Pi=Po  } 
  8   if (do==d1  and  po==p1) 
  9    then return  true; 
10    else  return  false;             

 
 
The size of the matrix and the flat indexes are dependent on the number of spare space available 

for insertion. The more space we have, the more robust the path index will be, but at the expense 

of size. There is a trade-off between the path index size and its ability to adapt to insertion. Flat 

index structure, however, has more control over the index size.  

 

We believe that these types of index structure representations are useful for XML databases. They 

transform the irregularity of XML databases into regular data that can be accessed uniformly. 

Moreover, the address of a node itself is used as part of information to reconstruct the index tree, 

that is, we used the address as a representation for Level and PerLevel information instead of 

saving them inside the file, and hence save memory. The size of the flat index is equal to O(n + v) 

were n is the number of nodes in the path index tree and v is equal to the number of levels in the 
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path index plus one. In real life situations, where the nodes in the path index can reach hundreds 

or thousands of nodes, v becomes negligible compared to n, and hence the size of the path index is 

approximately O(n) of nodes that a path index can hold. Since our path index is based on the 

DataGuide path index, the size is relatively small for a regular data-tree, and grows linearly for 

irregular data-trees, but does not exceed the size of the source data in the worst case [9,11]. More 

on the cost of updating the index structure can be found in Mohammad and Martin [19]. 

 

Another alternative for building the path index is the B+trees, which handle growth gracefully. 

But the B+trees structure may require more number of accesses to retrieve specific information, 

which depends on the size of the tree that dictates the depth of the tree. In addition, B+trees 

require huge space. In contrast, our path index structures require one access to retrieve specific 

indexed information, and they require modest space. Our path index structure is similar to a 

dynamic hash index to some extent.    

 

4. EXPERIMENTAL EVALUATION 
All experiments were performed on a 3 GHz Pentium 4 PC running Windows XP operating 

system, with 1.49 GB of RAM. The goals of the experiments are to evaluate the performance of 

our LTIX method that uses the LLS labeling scheme. We therefore compare three different 

indexing methods. First, we implement a basic interval node index with the multiple predicate 

merge join (MPMRJN) algorithm proposed by Zhang et al. [27]. Second, we modify the 

MPMRJN algorithm to use the path index we described above. This allows us to observe the 

impact of our path index on performance. Third, we implement our LTIX method, which consists 

of the LLS labeling scheme and our path index. We evaluate the LLS labeling scheme’s effect in 

the LTIX system by comparing it with the extended version of Zhang’s interval labeling scheme.  

We have two different labeling schemes integrated with the same path index so performance 

differences should be due to the labeling schemes.  

 

We use the Berkeley B+tree to store the data for the three schemes, and we use a binary file to 

store the path index. We evaluate each method against two test sets (see Section 4.1). We measure 

the performance using two implementation-independent criteria, namely the number of 

comparisons performed to establish relations between two elements and the number of cases 
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pruned by the method, as well as the average runtime of  a query with each method. The size of 

the tables is not measured since they depend on the B+tree implementation.  

 

4.1     The Datasets and Queries 
We execute our experiments using two datasets: the DBLP Computer Science Bibliography [25] 

dataset and the XMark [23] dataset with scale factor (0.1). Statistics for the two datasets are 

summarized in Table 1. 
Table 1. Details of DBLP and XMark datasets 

 

 

XPath (XML Path Language) [6] is a flexible query language that has been proposed to access 

XML data. An XML query may consist of either a single path or multiple paths (twig path). Both 

single path and twig path queries can be recursive (i.e. support ancestor-descendent “//” 

relationships) or non-recursive. Based on these criteria, we can divide XML queries into the 

following four types.  
 

 Type 1 (T1): Single path non-recursive queries.  
 Type 2 (T2): Single path recursive queries. 
 Type 3 (T3): Twig path non-recursive queries. 
 Type 4 (T4): Twig path recursive queries. 
 

 

Since most XML queries fall into these four types of queries, we use them in our experimental 

evaluation, and we run them against the DBLP and XMark datasets. For each type of query, we 

used 4 queries as shown in Figures 12(A) and 12(B). These queries are chosen to cover different 

combination of query path lengths, cardinality of elements, and the number of returned tuples, 

which is affected by the selectivity of elements. Figures 12(A) and 12(B) contain lists of the 4 

types of queries, as specified by (T1,T2,T3, and T4).  

  

Testing 
Dataset

Size
No of 

Elements in 
PathIndex

No of 
Levels

Total 
Number of 
Elements 

Max 
Cardinality 

Avg. 
Cardinality 

DBLP  20 MB  71  5 582,033 109,595 8,197 

XMark  15 MB  251  11 185,225  6,183  737 
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(A).  For DBLP database                                                                       (B).  For XMark database 

 

Figure 12. Representative queries for 4 types of queries  
 

 

4.2    Performance Evaluation 
We execute each query ten times against its respective dataset and take the average of the 10 

readings. The average of each type of the 4 types of queries is used in our analysis. Tables 2(A) 

and 2(B) show the results of the testing of DBLP and XMark test cases, respectively. The results 

include the number of pruned cases, the average number of comparison operations, and the 

average runtime of the test cases. The pruning is due to the use of the path indexes and the 

information about the elements’ levels. We notice that the number of pruned cases in DBLP 

dataset is less than those of XMark datasets. This is due to two factors. First, the number of levels 

is higher in the XMark dataset. Second, the number of repetitive element names (elements with 

the same name) is also higher in the XMark dataset. Since more elements are tested in the twig 

queries, we notice that the number of pruned cases for twig queries is more than those of single 

path queries for both datasets.   

 

In both test cases, the number of row pairs compared drops to zero for both types of single path 

queries (T1 and T2) when the path index is incorporated, and hence the performance of our 

approach is similar to that of the extended approach. The basic interval node indexes require 

significantly more comparisons than the extended interval node indexes and LTIXs because, with 

the latter two indexes, the correct set of answers is identified by the path index. During this 

process, the labels of the nodes (which consist of Level and PerLevel parts) that match the exact 

answer criteria are identified by using the path index, then used to retrieve the answer from the 

T1‐Q1 : /site/regions/africa/item/id
T1‐Q2 : /site/open_auctions/open_auction/bidder/personref/person
T1‐Q3 : /site/open_auctions/open_auction/seller/person
T1‐Q4 : /site/catgraph/edge/from
T2‐Q1 : //id
T2‐Q2 : //africa//category
T2‐Q3 : //regions//item//text
T2‐Q4 : //open_auctions//text
T3‐Q1 : /site/regions/africa/item[/location='United States']/payment
T3‐Q2 : /site/regions/africa/item[/id='item0'] /location
T3‐Q3 : /site/catgraph/edge[/from='category0']/to
T3‐Q4 : /site/people/person[/name='Kaj Carey']/phone
T4‐Q1 : //africa/item[/quantity='1']/name
T4‐Q2 : //open_auction[/reserve='3199.90']/initial
T4‐Q3 : //closed_auction[/type='Regular']/price
T4‐Q4 : //regions//item[/quantity='2']/name

T1‐Q1 : /dblp/inproceedings/cdrom
T1‐Q2 : /dblp/inproceedings/cite/label
T1‐Q3 : /dblp/inproceedings/booktitle
T1‐Q4 : /dblp/book/series/href
T2‐Q1 : /dblp//author
T2‐Q2 : //series/href
T2‐Q3 : //book//label
T2‐Q4 : //href
T3‐Q1 : /dblp/incollection[/year='2000']/booktitle
T3‐Q2 : /dblp/proceedings[/booktitle='ACCV']/isbn
T3‐Q3 : /dblp/inproceedings[/author='Adele E. Howe']/title
T3‐Q4 : /dblp/proceedings[/isbn='0‐7695‐1991‐1']/title
T4‐Q1 : //inproceedings[/mdate='2002‐08‐04']/title
T4‐Q2 : //proceedings[/booktitle='ACNS']/isbn
T4‐Q3 : //incollection[/booktitle='Temporal Databases']/year
T4‐Q4 : //incollection[/author='Jurgen Annevelink']/title
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data in the B+tree index. The data is clustered in the B+tree by these labels so the retrieval times 

are much smaller than those of the basic interval node indexes.  

 

We see similar performance improvements for both types of twig queries (T3 and T4) in both test 

cases. The extended interval node indexes compare less row pairs than the basic interval node 

indexes (79%-90% less comparisons), and LTIXs compares 97.9%-99.9% less pairs than the 

extended interval node indexes.  Similarly, extended interval node indexes perform 46%-78% 

faster than the basic interval node indexes, and our approach outperforms the extended interval 

node indexes by 89%-99.6%.  

 

 
Tables 2.  Average pruned cases, comparisons, and runtime for 4 types of queries. 

 

(A).  Against DBLP dataset.                                                         (B). Against XMark dataset. 
 

 

 

 

The experimental results of the twig queries (T3 and T4) show that in the case of the DBLP 

dataset, our approach performs 99.5% - 99.6% faster than the extended approach, while in the 

case of  XMark dataset our approach performs 89% - 97% faster than the extended approach. This 

is because the XMark dataset is text oriented where the size of data is very large and it exceeds 

7,000 characters for many elements; while the DBLP dataset is record-oriented and the size of the 

data items is often short (e.g. name, title, date). 

 

We believe that the performance gain of LTIX, as noted in tables 2(A) and 2(B), is achieved 

mainly by two factors in our index structure. First, the LTIX path index is based on the levels of 

XML elements, which is used to prune out false positive cases early in the evaluation process. 

Second, multiple inequality comparisons are performed to find a match for a node using the basic 

and the extended node indexes, while LTIX only requires one equality comparison to find a match 

for a node.   

Query 
Type

Average 
Pruned 
Cases

Avg. No of Comparisons Avg. Runtime (msec)

Basic 
Interval

Extended 
Interval

LTIX
Basic 

Interval
Extended 
Interval

LTIX

T1 5 105,684 0 0 22,108 6 6

T2 2 32,376 0 0 15,545 12 12

T3 13 322,491 67,966 17 39,503 8,543 32

T4 14 316,409 67,384 61 35,016 18,991 96

Query 
Type

Average 
Pruned 
Cases

Avg. No of Comparisons Avg. Runtime (msec)

Basic 
Interval

Extended 
Interval

LTIX
Basic 

Interval
Extended 
Interval

LTIX

T1 29 25,915 0 0 3,250 7 7

T2 69 7,003 0 0 1,426 48 48

T3 205 32,805 3,272 12 2,304 738 22

T4 140 81,022 7,902 168 5,241 1,732 191



23 
 

 

5. CONCLUSIONS 
Unlike other type of indexes such as node indexes [24,27], path indexes [9,8,17,10,15,13], and 

sequence indexes [26,22], our index structure strengthens the importance of levels in the structural 

index by including it as part of the node identifications (labels). The knowledge of the level can be 

used by an XML query optimizer to select those nodes whose level indicates a potential answer 

for a given query, and to eliminate the nodes that violate the element level order given by the 

query. Unlike previous approaches that integrate interval node indexes with path indexes 

[12,14,20], our approach does not have to have the structural information available in both 

indexes. This allows us to provide a structure independent labeling scheme for our approach that 

performs better in evaluating XML queries.  

 

Query optimization in the context of XML databases is extremely challenging because the 

complexity of the XML data model leads to much larger search spaces for XML query 

optimization [4]. Experimental evaluations of our system show that LTIX system is capable of 

pruning improper and inefficient plans at the early stages of query optimization process. Previous 

approaches that use a universal label scheme across the complete document result in large labels 

for large documents. In contrast, in our approach we split the labels into groups of smaller 

numbers that require less memory and are easier to maintain and process than large labels. The 

join operations are carried out by using equality operator instead of inequality operator, which is 

used by most XML indexing approaches [11].  

 

Much research has been done to propose a persistent labeling scheme for dynamic XML data to 

avoid the relabeling cost [7,21]. Cohen et al. [7] established that any persistent labeling scheme 

requires Ω(N) bits per label in the absence of any clues about the data, where N is the size of the 

data. Such long labels, however, require high storage in addition to being more expensive to 

process than the shorter one. In contrast, our labeling scheme in LTIX, which is tightly coupled 

with the summary index, requires a constant label size to cover dynamic data. The worst case 

update cost of LTIX requires relabeling fewer nodes than that of the interval labeling scheme [19]. 
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We showed experimentally that the LTIX system outperforms the basic interval node indexes as 

proposed by Zhang et al. [27] and the extended interval node indexes. It works well for single path 

queries as well as for twig queries. For a future work, we are planning to use a customized XML 

storage media for the LTIX system, instead of using B+tree storage media. We are also planning 

to extend our indexing scheme to be adapted gracefully by relational database systems in term of 

storage and querying by building an engine that translate XPath queries into SQL queries where 

the hierarchy of XML paths are reflected properly. 
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