

Mitigating and Monitoring Program Security
Vulnerabilities1

Technical Report No. 2010-572

Hossain Shahriar and Mohammad Zulkernine
School of Computing
Queen’s University

Kingston, Ontario, Canada
{shahriar, mzulker}@cs.queensu.ca

Copyright © Hossain Shahriar and Mohammad Zulkernine, 2010

1 This report should be cited as follows:

H. Shahriar and M. Zulkernine, Mitigating and Monitoring Program Security Vulnerabilities, Technical Report No.
2010-572, School of Computing, Queen’s University, Kingston, Canada, June 2010.

i

ABSTRACT

Today’s programs are implemented in a variety of languages and contain serious vulnerabilities which

can be exploited to cause security breaches. These vulnerabilities have been exploited in real life and

resulted in damages to related stakeholders such as program users. As most vulnerabilities belong to

program code, many techniques have been applied to mitigate vulnerabilities before and after program

deployment. Unfortunately, there is no comprehensive comparative analysis of different vulnerability

mitigation works. As a result, there exists an obscure mapping between the techniques, the addressed

vulnerabilities, and the limitations of different approaches. This paper attempts to address these issues.

The paper extensively compares and contrasts the existing program security vulnerability mitigation

(testing, static analysis, and hybrid analysis) and monitoring techniques. We also discuss other techniques

employed to mitigate the most common program security vulnerabilities: secure programming, patching,

and program transformation. The survey provides a comprehensive understanding of the current program

vulnerability mitigation approaches and challenges as well as their key characteristics and limitations.

Moreover, our discussion highlights the open issues and future research directions in the area of program

security vulnerability mitigation and monitoring.

ii

Table of Contents

1. Introduction ... 1

2. Program security vulnerabilities ... 2

2.1. Buffer overflow (BOF) ... 2

2.2. Format string bug (FSB) ... 4

2.3. SQL injection (SQLI)... 5

2.4. Cross site scripting (XSS) .. 5

2.5. Cross site request forgery (CSRF) .. 6

2.6. Other vulnerabilities .. 7

2.7. Summary ... 8

3. Testing .. 9

3.1. Software testing vs. program security vulnerability testing ... 9

3.2. Comparison of program security vulnerability testing approaches .. 10

3.3. Fault injection-based test case generation ... 12
3.3.1. Corrupting input data ... 12
3.3.2. Corrupting environment .. 13
3.3.3. Corrupting program state ... 13

3.4. Attack signature-based test case generation .. 13
3.4.1. Request and response .. 14
3.4.2. Use case ... 14

3.5. Mutation analysis-based test case generation .. 14

3.6. Static analysis-based test case generation .. 15

3.7. Search-based test case generation .. 16

3.8. Program modification-based test case generation .. 16

3.9. Constraint bypassing-based test case generation .. 17

3.10. Open issues ... 17

4. Static analysis .. 17

4.1. Comparative analysis of static analysis approaches ... 18

4.2. Tainted data flow-based technique ... 24
4.2.1. Static data type tainting ... 24
4.2.2. Implicit tainting ... 25
4.2.3. Grammar-based tainting .. 26
4.2.4. Query-based tainting ... 26

4.3. Constraint-based technique (CBT) ... 27

4.4. Annotation-based technique .. 28

4.5. String pattern matching-based technique .. 30

4.6. Open issues ... 30

5. Hybrid analysis.. 31

iii

5.1. Comparison of hybrid analysis approaches ... 32

5.2. Program operation ... 35

5.3. Code structure integrity .. 36

5.4. Code execution flow ... 36

5.5. Unwanted value .. 37

5.6. Open issues ... 37

6. Other mitigation techniques... 37

6.1. Secure programming ... 38

6.2. Program transformation ... 39

6.3. Patching .. 40

7. Monitoring ... 41

7.1. Comparative analysis of monitoring approaches .. 42

7.2. Program operation monitoring ... 48

7.3. Code execution flow and origin monitoring ... 50

7.4. Code structure monitoring .. 50

7.5. Value integrity monitoring .. 50

7.6. Unwanted value monitoring .. 51

7.7. Invariant monitoring ... 52

7.8. Open issues ... 52

8. Conclusions .. 53

9. References .. 54

iv

List of Tables

Table 1: Example program code snippets of an email address change ... 7
Table 2: A mapping between programming languages and vulnerabilities .. 8
Table 3: Comparison summary of program security vulnerability testing works 11
Table 4: Comparison summary of static analysis approaches for mitigating security vulnerabilities 19
Table 5: Comparison summary of hybrid analysis works on program security vulnerabilities 33
Table 6: A brief comparison summary of the secure programming approaches .. 38
Table 7: A comparison summary of program transformation related works for mitigating security
vulnerabilities .. 40
Table 8: A brief comparison summary of patching approaches for mitigating security vulnerabilities 41
Table 9: Comparison summary of approaches for monitoring security vulnerability exploitations 43
Table 10: A mapping between the program security mitigation techniques and the addressed
vulnerabilities .. 53
Table 11: A mapping between the program security mitigation techniques and the programming
languages .. 53

v

List of Figures

Figure 1: C code snippet of foo function vulnerable to buffer overflow ... 3
Figure 2: Stack layout of foo function .. 3
Figure 3: A JSP code snippet for authentication ... 5
Figure 4: A PHP code snipped vulnerable to XSS .. 6

1

1. Introduction
Today’s programs are complex and usually accessible to almost all users. These programs are

implemented in a wide variety of languages and run on different execution environments. Programs are

developed and tested using a rich set of tools and techniques before actual deployment to ensure that they

meet specific requirements in terms of functionality, quality, and performance. Nevertheless, these

programs contain vulnerabilities2 that might be exploited intentionally or unintentionally to cause security

breaches. Vulnerabilities are flaws in programs that allow attackers to expose, alter, disrupt, or destroy

sensitive information [92]. Approximately 50% of all security bugs (or vulnerabilities) occur at program

code level [39]. These vulnerabilities are exploited by attackers. Program vulnerabilities (i.e.,

vulnerabilities arise due to implementation in code) have been addressed in academia and industry for

more than twenty years. Still, we observe different security breach (or vulnerability) reports through many

publicly available repositories such as Open Source Vulnerability Database (OSVDB) [97] and Common

Vulnerabilities and Exposures (CVE) [95]. A number of surveys report significant financial losses by

individuals and organizations due to attacks exploiting vulnerabilities (e.g., [93]). Therefore, mitigating

program security vulnerabilities is extremely important.

If we look at the literature, we notice that many mitigation techniques are applied to the program code

before and after their deployment. These techniques are being evolved with novel attack techniques along

with program usage (e.g., standalone program vs. client server-based program), implementation languages

(e.g., procedural, object oriented, scripting), and processors (e.g., browsers, database engines).

Unfortunately, there is no effort to review these techniques in a comparative way. In the past, several

empirical studies have attempted to compare tools and techniques for mitigating program security

vulnerabilities [17, 29, 39, 56, 76, 80]. However, these studies focus on analyzing works for a single (e.g.,

buffer overflow) or few vulnerabilities or comparing approaches related to one particular mitigation

technique (e.g., static analysis). As a result, we have an obscure mapping between the techniques, the

addressed vulnerabilities, and the limitations of different approaches. In this paper, we survey program

(“code-level”) security vulnerability mitigation approaches to address these issues. We perform a

comparative analysis of program security vulnerability mitigation approaches with respect to the three

most common mitigation (testing, static analysis, hybrid analysis) and monitoring techniques. Moreover,

for the sake of completeness, we briefly discuss the secure programming guideline related works and the

approaches employed in the maintenance stage (program transformation and patching). We compare and

contrast the mitigation approaches based on the features that are commonly discussed in related works

2 The italic letters are used when we define terminologies, introduce any of our proposed classification feature name,
and explain program code examples.

2

(e.g., (31-38]). We also identify open issues for each of the techniques. Our analysis indicates that program

vulnerability solutions have been influenced by not only traditional program analysis techniques, but also

the diversity of attack mechanisms. Moreover, current approaches have their own limitations with respect

to vulnerability coverage, programming languages, and techniques.

The paper is organized as follows. Section 2 provides an overview of the eight vulnerabilities that are

most common in today’s programs. We analyze the program security vulnerability mitigation related

works based on testing, static analysis, and hybrid analysis in Sections 3, 4, and 5, respectively. Section 6

discusses the efforts on secure programming, program transformation, and patching techniques. Section 7

analyzes the efforts on monitoring approaches. Finally, Section 8 draws some conclusions.

2. Program security vulnerabilities
Program security vulnerabilities are specific flaws in program code that result in security breaches such

as sensitive information leakage, modification, and destruction. Attacks are successful exploitations of

vulnerabilities. There are many program security vulnerabilities which can be exploited by attackers.

However, we restrict our discussion with respect to eight vulnerabilities based on the taxonomy of

Common Weakness Enumeration (CWE) [170]. They are buffer overflow (BOF), format string bug (FSB),

SQL injection (SQLI), cross site scripting (XSS), cross site request forgery (CSRF), NULL pointer

dereference (NLD), dangling pointer (DAP), and memory leak (MEL). These are the most widely reported

and discovered vulnerabilities in program code. Note that several vulnerabilities can be classified as a

single source of the same problem. For example, SQLI, XSS, and CSRF can be classified as “insecure

interaction between components” based on a high level taxonomy of CWE. Nevertheless, the wide

differences in exploitation mechanisms, severity of damages, and existing mitigation efforts have inspired

us to discuss these vulnerabilities individually. Moreover, we believe that mitigating these vulnerabilities

can stop the exploitations of other vulnerabilities in programs such as buffer underflow [98].

2.1. Buffer overflow (BOF)

 A buffer overflow (BOF) vulnerability allows writing data to a program buffer exceeding the allocated

size and overwriting the content of the neighboring memory locations [154]. BOF might be present in

programs having unsafe library function calls (e.g., ANSI C standard library), lack of null characters at the

end of buffers, buffer accesses through pointers and aliases, logic errors (off by one), and insufficient

checks before accessing buffers. One of the most subtle BOF vulnerabilities might be present in programs

that perform pointer-intensive operations and generate pointer addresses through pointer arithmetic. For

example, p = p + 4 results in a pointer p to point to a new location four bytes apart from the current

location. If a read or write operation is performed through a pointer dereference (i.e., *p) and the new

memory location does not belong to valid memory regions, a program shows many unexpected behaviors.

3

 Exploitation of BOF depends on memory regions where buffers are located. These include stack, heap,

block started by symbol (also known as bss), and data segments. Here, bss and data segments contain static

or global data buffers that are uninitialized and initialized, respectively. We provide an example of C code

snippet (the function foo) in Figure 1 which is vulnerable to BOF. The buffer declared at Line 3 (buf) is

located in the stack region and has 16 bytes of memories for reading and writing operations. The valid

location of this buffer is between buf[0] and buf[15]. Line 4-5 copies src buffer into buf using a for loop.

However, the code is vulnerable as there is no checking on destination buffer length. As a result, the loop

allows copying more than the capacity of buf. To understand the effect of an overflow, we consider a

snapshot of the stack frame of the function foo (Figure 2). The stack stores the argument of foo (src), the

return address (ret), the saved frame pointer (sfp), and declared variables (i and buf). Note that the direction

of stack growth and buffer copy is opposite to each other. We assume that both ret and sfp occupy four

bytes, whereas i occupies two bytes.

1. void foo (char *src) {
2. int i;
3. char buf [16];
4. for (i=0; i<strlen(src); i++)
5. buf[i] = src[i];
6. return;
7. }

Figure 1: C code snippet of foo function vulnerable to buffer overflow

Buffer copy direction ----->
buf [0] … … buf [15] i sfp ret src
[][][][][]
<----- Stack growth direction

Figure 2: Stack layout of foo function

 Storing an input of 17 bytes in length (pointed by src) in the buf results in one byte overflow. This

corrupts the neighboring variable i and leads to further unexpected behaviors by the program (assuming no

padding performed by a compiler). However, an attacker can corrupt the return address to execute injected

code through buffer. This is known as “return address clobbering” or “direct code injection” attack [164].

An attacker inject a payload which can modify the content of ret to point to the beginning address of the

buffer (i.e., the address of buf[0]). In this case, the src buffer content must be at least 26 bytes long (16

bytes for the buf, two bytes for i, four bytes for both sfp and ret). The injected code might contain a shell

code (e.g., “/bin/sh”) to launch a remote shell with the root privilege. Note that several conditions need to

be met to perform a successful attack such as allowing code execution from stack segment, presence of no

null character in the injected payload, and allowing an input of sufficient length to reach the location of ret.

 A program might not allow copying an input to a buffer which can modify the return address. In this

case, an attacker might execute arbitrary code by overwriting the frame pointer (i.e., sfp) [155]. The sfp

4

stores the address of stack top of the caller function of foo. An attacker modifies the sfp of foo to point to a

location of the buffer. As a result, the first four bytes of the buffer is considered as the stack frame pointer

and the next four bytes is considered the return address for the caller of foo. The content of the new return

address points to the location of injected code. The foo function returns to its caller as usual. However,

when the caller returns, the injected code is executed.

Many existing countermeasures prevent code injections due to BOF attacks by converting stack

segments from executable to non-executable (e.g., [165]). However, attackers still bypass such defenses.

For example, a stack overflow modifies return addresses with known system library function call

addresses. In this case, the buffer contains the arguments for the function calls. This variation of attack is

known as “return-to-libc” or “jump-to-libc” [164]. Note that both saved frame pointer overwriting and

return-to-libc are known as “indirect code injection” attacks [164].

BOF attacks can be performed by overflowing buffers located in the heap memory region. A typical

attack overflows a neighboring function pointer which stores the address of a function. An attacker might

modify the function address with the location of his injected code which results in executing injected code

when the function is called. This is a basic form of heap-based BOF attack. Sophisticated heap-based

attacks do not even rely on the presence of function pointers in program code. These attacks can indirectly

execute injected code by leveraging the known working mechanism of malloc and free functions as well as

memory management information (or meta information) stored in the beginning of allocated and free

memory blocks (or chunks) [155]. This information can be obtained from publicly available specifications

of memory managers (e.g., dlmalloc [166]).

2.2. Format string bug (FSB)

Format string bug (FSB) vulnerabilities imply invoking format functions (e.g., the format functions of

ANSI C standard library [158]) with user supplied format strings that contain arbitrary format specifiers

(e.g., %s). As a result, the number of specifiers becomes more than the number of arguments, which allows

arbitrary reading and writing in format function stack. For example, a simple printf(“%d”, i) function call

prints the value of i to the console, where i is an integer variable. However, the printf(“%d”) function call

results in printing an arbitrary integer value. Moreover, a mismatch between a format specifier and its

corresponding argument might result in unexpected behaviors. For example, the function call printf(“%s”,

i) writes a string to the console where the string location is considered as the value of i. If attack cases are

crafted carefully, it is possible to perform malicious activities such as establishing root shells and

overwriting global offset tables (GOT) that contain function addresses [136].

5

2.3. SQL injection (SQLI)

SQLI vulnerabilities are present in programs which generate SQL queries with invalidated user

supplied inputs. The inputs might contain arbitrary SQL queries which alter intended queries. These

vulnerabilities can be exploited through SQL injection attacks that cause unexpected results such as

authentication bypassing and information leakage. We provide an example of an SQLI attack by using the

code snippet of a server side program written in JSP as shown in Figure 3. Lines 2 and 3 extract user-

supplied information from the Login and Password fields into the sLogin and sPassword variables,

respectively. The user input is not filtered and a dynamic SQL query is generated in Lines 5 and 6. Let us

assume that a user provides valid member_login and member_password, which are “guest” and “secret,”

respectively. Then, the query generated at Line 6 appropriately becomes “select member_id, member_level

from members where member_login =’guest’ and member_password = ’secret’”. The database engine

executes the query at Line 7, and the user is authenticated with a valid UserID at Line 9. A malicious user

might supply the input “’ or 1=1 -- ” in the first field and leave the second input field blank. The resultant

query becomes “select member_id, member_level from members where member_login =’’ or 1=1 --’ and

member_password =’’”. The query is a tautology as the portion after the symbol “--” is ignored by the

database engine (“--” is a comment symbol). Therefore, an attacker avoids the authentication by executing

this query. There are several common SQLI attack types such as tautologies, union queries, illegal/logical

incorrect queries, piggybacked queries, stored procedures, inference attacks, and alternate encodings (or

Hex encoded queries) [146].

1. String LoginAction (HttpServletRequest request, ...) throws IOException {
2. String sLogin = getParam (request, “Login”);
3. String sPassword = getParam (request, “Password”);
4. java.sql.ResultSet rs = null;
5. String qry = “select member_id, member_level from members where ”;
6. qry = qry + “member_login = ’” + sLogin + “’ and member_password = ’” + sPassword + “’”;
7. java.sql.ResultSet rs = stat.executeQuery (qry);
8. if (rs.next ()) { // Login and password passed
9. session.setAttribute (“UserID,” rs.getString (1));
 …
 }

Figure 3: A JSP code snippet for authentication

2.4. Cross site scripting (XSS)

XSS vulnerabilities allow the generation of dynamic Hyper Text Markup Language (HTML) [130]

contents (i.e., attributes of tags) with invalidated inputs. These inputs contain HTML tags and JavaScript

code that are interpreted by browsers while rendering web pages. As a result, the intended behavior of

generated web pages alters through visible (e.g., creation of pop-up windows) and invisible (e.g., cookie

6

bypassing) symptoms. XSS attacks circumvent traditional security mechanisms employed by browsers

such as same origin policy, sandbox, and signed script.

<?
 1. $msg = retrieveComment();
 2. echo ('Comment:' . $msg);
?>

Figure 4: A PHP code snipped vulnerable to XSS

There are three types of XSS attacks: stored, reflected, and Document Object Model-based (or DOM-

based) [121, 128]. In stored XSS attacks, dynamic HTML contents are generated from unsanitized

information that is stored in persistent data storages (e.g., files, databases). A reflected XSS attack occurs,

if injected script code (i.e., <script>alert(‘xss’);</script>) returns to a browser and gets executed (e.g., a

search string supplied in a webpage). JavaScript code that process inputs based on DOM objects [119]

(e.g., document.URL) are vulnerable to attacks which are denoted as DOM-based XSS attacks [121]. We

provide an example PHP code snippet in Figure 4 that is vulnerable to stored XSS attacks. Line 1

retrieves a comment from a persistent storage (i.e., retrieveComment()) and saves it to a PHP variable

$msg. Line 2 writes the comment as HTML output without filtering. If the $msg variable contains script

code (e.g., <script>alert(‘xss’)</alert>) and is sent to a browser without filtering, a user observes an

unexpected dialog box with the text “xss”.

2.5. Cross site request forgery (CSRF)

A CSRF vulnerability occurs, if an HTTP request is sent to a remote server program without the client’s

knowledge [161]. A CSRF vulnerability may arise in a program, if an input form submission requires no

validation, except for a cookie. Cookies are stored in browsers for a long time and added automatically

while issuing a request. Moreover, browsers add cookies automatically to HTTP GET requests when

loading images and frames, submitting forms, clicking links, or redirecting pages. Thus, a server program

cannot differentiate between an HTTP request generated by a legitimate user and a CSRF attack.

 There are two types of CSRF attack: reflected and stored [167]. In a reflected CSRF vulnerability, the

injected payload resides in a program other than a trusted server program. Thus, a victim is exposed to an

attack when he/she logs on to a server program and browse to a different website (or program)

simultaneously. In a stored CSRF vulnerability, the malicious code is stored within the trusted server

program repositories.

We provide two example code snippets (client and server side) that are vulnerable to CSRF attacks in

Table 1. Let us assume that a user is logged on to a site (www.xyz.com) that stores his/her profile. The

profile includes a contact email address which has the initial value user@xyz.com. The client side (the left

column of Table 1) provides an HTML interface (change.html) to change the email address of a logged on

7

user legitimately. A new email address provided by a user at Line 5 is updated by the server side script

named editprofile.php (i.e., the action field of Line 3). Note that the request of the email address change is

sent to editprofile.php by a hidden field (action) and corresponding value (setemail) at Line 4. The server

side code snippet is shown in the second column of Table 1. It first checks if the request is associated with

a valid session (Line 1). If the session is not valid, then the program shows an error message and terminates

(Line 2-3). Otherwise, a session is identified as valid (Line 5) and the request is performed by calling the

update_profile function at Line 6. The function is supplied with the new email address argument

($POST[‘email’]).

Table 1: Example program code snippets of an email address change

Client side code (www.xyz.com/change.html) Server side code (www.xyz.com/editprofile.php)
1. <HTML>
2. <BODY>
3. <FORM action = “editprofile.php” method = “POST”>
4. <INPUT type = “hidden” name = “action” value = “setemail”>
5. <INPUT type = “text” name = “email” value = “”>
6. <INPUT type = “submit” value = “Change Email Address”>
7. </FORM>
8. <BODY>
9. </HTML>

1. if (! session_is_registered($_SESSION['username'])) {
2. echo "invalid session detected!";
3. exit;
4. }
5. if ($_POST[‘action’] == ‘setemail’){
6. update_profile($_POST['email']);
7. }

If a user supplies the new email address as user2@xyz.com, the legitimate HTTP request becomes

http://www.xyz.com/editprofile?action=setemail&email= user2@xyz.com. The browser adds the session

information (or cookie) in the request before sending to the server program. Let us assume that the user is

logged on to www.xyz.com and visiting another website which contains an attacker supplied hyperlink

http://www.xyz.com/editprofile?action=setemail&email=evil@xyz.com. If the user clicks on the link, then

his email address gets changed to evil@xyz.com. As a result, the user is a victim of a reflected CSRF

attack. In practice, CSRF attacks not only modify profile, but also perform other severe damages such as

unauthorized financial transactions and sensitive information deletions. To become a victim of a stored

CSRF, the malicious link would be stored in the persistent storage of the website where the user is logged

in. It is common to find many such web-based programs such as message boards.

2.6. Other vulnerabilities

Three other vulnerabilities are common in programs namely null pointer dereference (NLD), dangling

pointer (DAP), and memory leak (MEL). A NLD vulnerability occurs when a program code retrieves

memory contents from a pointer type variable whose value is assigned to NULL [159]. A NULL address

does not indicate any memory location. As a result, any operation with a NULL pointer results in

unexpected behaviors such as program crashes. A DAP (also known as a wild pointer) points to a memory

location that is no longer a valid memory location for a program. For example, a variable might point to an

allocated memory object which might be freed explicitly. The vulnerability occurs, if a program’s code

8

tries to access or store information in these free objects through pointer variables. A memory leak (MEL) is

a widespread vulnerability in programs where allocated memories are not freed explicitly or unused objects

are not set as NULLs [162]. Unlike other vulnerabilities (e.g., BOF, FSB, SQLI, XSS, and CSRF), it is

difficult to exploit NLD, DAP, and MEL directly to execute arbitrary code. Nevertheless, the presence of

these vulnerabilities might result in unexpected behaviors such as program crashes (e.g., NLD, DAP) and

wastage of memories (MEL) which can eventually lead to an abnormal termination of server programs (or

daemons). Modern compilers often generate warning messages so that programmers can fix them while

implementing programs. However, these three vulnerabilities are discovered in post release stages.

2.7. Summary

We have discussed eight worst vulnerabilities that can be found in programs which are implemented in

a variety of languages. A mapping between programming languages and vulnerabilities is shown in Table

2. The first seven languages are high level, whereas the last two (x86 assembly code and byte code) are

intermediate code generated by compilers. From the table, we notice that programs implemented in any of

these languages contain a large subset of vulnerabilities (denoted as “Y” in table cells). Note that SQLI,

XSS, and CSRF are denoted as web-based vulnerabilities. Moreover, BOF, SQLI, and XSS are known as

injection vulnerabilities as attacks might inject arbitrary code. Programs implemented in C and C++ are not

vulnerable to web-based vulnerabilities (e.g., SQLI, XSS, and CSRF) as they are rarely used in

implementing web-based programs. Rather, Java, PHP, JSP, and ASP are used to implement web-based

programs. JavaScript programs are executed by client side browsers. Due to implementation limitations of

browsers, JavaScript code might suffer from XSS and MEL vulnerabilities. Moreover, JavaScript

programs contribute to web-based vulnerabilities due to improper validation of inputs. The cells containing

“N” indicate that no vulnerability has been identified for the corresponding languages. Intermediate

programs generated from source code may inherit vulnerabilities. For example, if a C program contains a

BOF vulnerability, the corresponding machine dependant x86 assembly code also contains the same

vulnerability.

Table 2: A mapping between programming languages and vulnerabilities

Language BOF FSB SQLI XSS CSRF NLD DAP MEL
C Y Y N N N Y Y Y
C++ Y Y N N N Y Y Y
Java N N Y Y Y Y N Y
JSP N N Y Y Y Y N Y
PHP N N Y Y Y Y N Y
ASP N N Y Y Y Y N Y
JavaScript N N Y Y Y Y N Y
x86 assembly code Y Y N N N Y Y Y
Byte code N N Y Y Y Y N Y

9

 Some vulnerabilities (e.g., BOF, FSB, SQLI, NLD) result in observable abnormal behaviors such as

segmentation faults and error messages. However, several vulnerabilities (e.g., CSRF, MEL) are difficult

to identify through observable behaviors. We discuss the mitigation techniques employed for the

vulnerabilities in Sections 3-7. Allocated memory blocks and memory objects are used synonymously in

this paper.

3. Testing
Testing is one of the most proactive program security vulnerability mitigation techniques before

releasing programs. In general, a program under test is provided inputs, executed, and computed outputs

are matched with expected outputs. If there is a mismatch between the computed and the expected outputs,

then the program implementation does not comply with a desired requirement for a particular input.

Testing requirements might be expressed in terms of functionality, performance, and quality. The pioneer

works in program testing have focused on developing test case generation based on program code coverage

(e.g., branch, loop, data flow, condition), program behavior model coverage (e.g., state and transitions of a

finite state machine), and common mistakes performed by programmers (e.g., fault-based testing and

mutation analysis) [84]. However, as security of programs is getting an increasing level of attention in

recent years, we notice a lot of program security vulnerability testing techniques have emerged. McGraw et

al. [49] have described program security vulnerability testing as a misunderstood task which is often

considered as developing secured firewall rules and port scanning in networks. Program security can be

tested based on risk assessment results, requirements, and design errors. However, we restrict our

discussion to works that intend to reveal vulnerabilities. These might cause due to the limitations of

programming languages, libraries and APIs, environments, and logic errors.

We first show an analogy between software testing and program security vulnerability testing in

Section 3.1. In Section 3.2, we compare and contrast the related vulnerability testing works based on the

following five features: test case generation method, source of test case, test level, test case granularity,

and vulnerability coverage. Out of these five features, test case generation is the most important steps in

security vulnerability testing [9]. Thus, we are motivated to classify existing program security testing

approaches based on the test case generation techniques in Sections 3.3-3.9. These include fault injection,

attack signature, mutation analysis, static analysis, search, program modification, and constraint

bypassing techniques. Finally, we discuss open issues in Section 3.10.

3.1. Software testing vs. program security vulnerability testing

Like traditional software testing, we consider program security vulnerability testing as a process of

three major steps: identifying testing requirements and coverage, generating test cases, and executing test

cases [6]. In the first step, appropriate security requirements are identified based on functional

10

requirements. Our study considers the requirement in terms of security breaches that occur through the

implementation languages (e.g., ANSI C), APIs (ANSI C library, Java library), environment variables

(network data unit used in programs), processors (e.g., SQL database engine, HTML parsers, JavaScript

interpreter), and malformed inputs used by programs. In traditional testing, test coverage implies whether

generated test cases can cover a particular objective related to a program artifact. For example, a program

can be tested in a way such that all branches present in the source code are tested, or a finite state machine

can be used to generate test cases to cover all transition pairs. Similarly, vulnerability testing approaches

often set such goal in advance. For example, a program should be tested for detecting all BOF and SQLI

vulnerabilities.

In the second step, test cases are generated by using program artifacts (e.g., source code) and interacting

environments (e.g., network protocol data unit or PDU) in a systematic way. A subsequent issue that needs

to be addressed by testers is to define the oracle for each test case. Unlike traditional software testing, the

end computational results performed by programs rarely play any role for determining oracles (or

successful attacks) in program security vulnerability testing. In most of the cases, program states and

response messages are used to identify the presence or absence of attacks.

In the final stage, test cases are run against implementations and programs are assessed based on

predefined oracles to identify vulnerabilities (or whether a test case exposes the vulnerabilities through a

program’s response). Overall, program security vulnerability testing process is analogous to traditional

software testing process, except each of the stages is handled differently.

3.2. Comparison of program security vulnerability testing approaches

In this section, we perform a comparative analysis of program security vulnerability testing works from

the literature based on five criteria [6]: test case generation method, source of test case, test level, test case

granularity, and vulnerability coverage. Table 3 shows a summary of the comparison, while we provide

detailed descriptions for each criterion below.

Test case generation method: It implies how a source of test case is converted to a set of test cases. It is

interesting to note that most of the traditional software testing techniques have been used or leveraged to

conduct test case generation for security testing. We identify seven test case generation techniques [9].

These include fault injection (e.g., [15, 52, 64, 65]), attack signature (e.g., [86, 91]), mutation analysis

(e.g., [2, 3]), static analysis (e.g., [50, 96]), search (e.g., [28]), program modification [61], and constraint

bypassing [57]. We discuss these methods in Sections 3.3-3.9.

11

Table 3: Comparison summary of program security vulnerability testing works
Work Test case generation method Source of test case Test level Test case granularity Vulnerability

Jorgensen et
al. [15]

Fault injection (inject faults at
lexical, syntactic, and semantic
level)

Valid data stream Black box Input file BOF

Shahriar et al.
[1, 2]

Mutation analysis (inject
vulnerabilities in code)

Source code (C
program)

White box String or complex data
type containing string

BOF

Xu et al. [50] Static analysis (solve path
constraints of programs)

Source code and API
(C program)

White box String or complex data
type containing string

BOF

Zhang et al.
[52]

Fault injection (fields of PDU) Valid PDU Black box Sequence of PDU BOF, FSB

Shahriar et al.
[3]

Mutation analysis (inject
vulnerabilities in code)

Source code (C
program)

White box String or complex data
type containing format
string

FSB

Haugh et al.
[60]

Static analysis (interesting function
coverage)

Source code (C
program)

White box String or complex data
type containing string

BOF

Huang et al.
[86]

Attack signature (inject attack
inputs in HTML forms)

HTML form Black box URL SQLI and XSS

Junjin et al.
[90]

Attack signature (replace benign
test cases with attack inputs)

Executable code (Java
byte code)

Black box URL SQLI

Kals et al. [91] Attack signature (inject attack
inputs in HTML forms)

HTML form Black box URL SQLI, XSS

Adam et al.
[96]

Static analysis (solve path
constraints), attack signature
(replace non malicious test cases
with attack test case)

Source code (PHP
code)

White box URL SQLI and XSS

Shahriar et al.
[4]

Mutation analysis (inject
vulnerabilities in code)

Source code (JSP
code)

White box URL SQLI

Shahriar et al.
[5]

Mutation analysis (inject
vulnerabilities in code)

Source code (PHP
code)

White box URL or sequence of
URL

XSS

McAllister et
al. [134]

Attack signature (replace non
malicious test cases with attack
test cases)

User session Black box Sequence of URL XSS

Vilela et al.
[75]

Mutation analysis (inject
vulnerabilities in code)

Source code (C
program)

White box String or complex data
type containing string

BOF

Tal et al. [73] Fault injection (based on Protocol
syntax)

Valid PDU Black box PDU BOF

Allen et al.
[72]

Fault injection (based on protocol
specification)

Valid PDU Black box PDU BOF

Tappenden et
al. [71]

Attack signature (inject attack
inputs in HTML forms)

HTML form Black box URL BOF, SQLI

Kim et al. [67] Fault injection (modify file tags or
records)

Input file (HTML,
WMF)

Black box Input file BOF

Ghosh et al.
[65]

Fault injection (in program
variables)

Program state
(variable)

Black box String or complex data
type containing string

BOF

Du et al. [64] Fault injection (in direct and
indirect environment variables)

Program environment Black box Global variable,
network input, file,
socket

BOF

Breech et al.
[61]

Program modification (through
compiler)

Source code (C
program)

Black box Modified program BOF

Offutt et al.
[57]

Constraint bypassing (inputs in
response pages)

HTML form Black box URL SQLI, XSS

Grosso et al.
[28]

Search technique (genetic
algorithm)

Source code (C
program)

White box String or complex data
type containing string

BOF

Cadar et al.
[27]

Static analysis (solve path
constraints)

Source code (C
program)

White box String or complex data
type containing string

BOF

Source of test case: This criterion identifies what artifacts of programs or environments are used for

generating test cases. These include source code of programs (e.g., [2, 60]), vulnerable APIs (e.g., ANSI

12

C library functions) [50], valid protocol data units (PDUs) (e.g., [52, 73]), valid data streams [15], user

sessions [134], executable program code (e.g., [90]), runtime states of programs [65], and program

environments [64]. Here, runtime state of a program includes declared variable values of a program. A

user session indicates an execution path of a program that is traversed while performing a functionality.

Program environment includes a broader range of inputs that might be generated from files, networks, and

processors. Attack templates are known attack signatures that result in unintended behaviors in programs.

Test level: It indicates whether security vulnerability testing of a program is performed in a white box or

a black box manner. Most of the testing approaches employ black box testing (e.g., [15, 86, 90]). Some

approaches explore white box testing mechanisms (e.g., [28, 60]).

Test case granularity: This feature describes what constitutes a test case in program security

vulnerability testing. Table 3 shows that test case granularity varies not only on data received by

programs and its surrounding environments, but also on vulnerabilities. For example, exploiting BOF

vulnerabilities involve generating strings of particular lengths, or complex data types containing strings

(e.g., [2, 3]). Similarly, test cases for exposing FSB vulnerabilities require strings (or complex data types)

containing format specifiers [3, 58]. However, SQLI and XSS vulnerability exploitations require URLs

with appropriate parameters and values (e.g., [4, 5, 86, 90, 91, 96]). Moreover, a sequence of URLs (e.g.,

[5]) or PDUs (e.g., [72, 73]) might form just one test case since all of them must be applied to programs

to exploit vulnerabilities. For example, to perform a stored XSS attack (a variation of XSS), at least two

URLs are required to form one test case: one for storing a malicious script and the other to download a

page containing that script.

Vulnerability coverage: This feature indicates what particular vulnerability an approach tests. From

Table 3, it is obvious that BOF, SQLI, and XSS vulnerabilities have been addressed in most of the

approaches. Moreover, very few approaches test multiple vulnerabilities (e.g., [96]).

3.3. Fault injection-based test case generation

Fault injection is one of the most widely used test case generation techniques suitable for performing

black box-based testing. The objective is to corrupt input data and variables, execute programs with

corrupted data and variables, and observe unexpected responses to conform vulnerabilities. We divide fault

injection-based security vulnerability testing works into three types based on the target of corruption: input

data, environment, and program state. We describe them in the following three subsections.

3.3.1. Corrupting input data
In this technique, input data processed by programs are modified in ways such that the desired lexical,

syntactic, or semantic structures become malformed. The resultant input data are supplied to a program

under test to reveal vulnerabilities through abnormal behaviors (e.g., program crashes). For example,

Jorgensen et al. [15] corrupt valid data stream at lexical (i.e., character level deformation such as replacing

13

a non printable character with a printable character), syntactic (i.e., lexically correct and syntactically

incorrect such as replace a left parenthesis with a space character), and semantic (e.g., changing a date

format) levels. Tal et al. [73] capture protocol data units (PDUs), modify data fields of these PDUs, then

send them back to the server and observe the server application’s responses (i.e., whether the protocol

daemon running in the server crashes due to segmentation fault or not). Kim et al. [67] corrupt the

semantic structure of HTML files and Vector image files (WMF) by replacing one tag with another and

modifying the fields of records, respectively.

Several works corrupt input data while maintaining the semantic meaning of a sequence of input data.

For example, Zhang et al. [52] test an FTP (File Transfer Protocol) program by first identifying a valid

command packet sequence. They generate malformed packets (e.g., filling packets with large sized strings,

special format strings such as %s and %n) that are valid according to protocol grammar, but might not be

processed properly by target programs. Similarly, Allen et al. [72] construct a set of valid messages (or

packets) into blocks based on a protocol specification. They keep message sequences intact and apply

fuzzing in message fields to generate corrupted inputs.

3.3.2. Corrupting environment
In this technique, environment variables of programs are modified. These include environment

variables during program initialization (e.g., configuration file) and execution time (e.g., file system inputs,

network packets). We note that input data corruption techniques also modify files and network packets.

However, these techniques modify the lexical, syntactic, or semantic structures. In contrast, environment

variable corruption techniques modify the attributes of inputs [64]. For example, a file can be modified in

terms of existence (e.g., file can be deleted), permission (read or write permissions can be toggled), and

ownership attributes. A configuration file might point to a list of directories for performing searches. A

corruption technique might alter the sequence of directories to test security vulnerabilities.

3.3.3. Corrupting program state
In this technique, an executable program state is modified to check whether program code can handle

vulnerabilities or not. Program state might include data variables (e.g., boolean, integer, string) which

control program execution as well as sensitive locations where program stores values such as function

return addresses [65]. The modified states result in security violations. Thus, a program shows anomalous

behaviors, if the implementation does not handle security violations appropriately.

3.4. Attack signature-based test case generation

This is the second most widely used test case generation approach, where test cases are generated by

replacing some (or all) parts of a normal input with attack signatures. The attack signatures are developed

from the experience and vulnerability reports. We notice that this approach is applied widely to web-based

programs. We divide security vulnerability testing related works employing attack signature-based test

14

case generation method into two categories based on how web pages are traversed. These include request

and response and use case-based test case generation.

3.4.1. Request and response
In this method, a crawler requests a web page and captures the response page. In the response page, it

identifies input fields (e.g., HTML forms) which are filled and submitted with malicious inputs. This

process enables a tester to reach all pages where attack inputs can be injected and to observe the response

of malicious inputs. Vulnerabilities in client or server side programs are observed based on the error

messages. For example, Huang [86] and Kals et al. [91] apply request and response-based web page

crawling to generate test cases (or URLs) to discover SQLI and XSS vulnerabilities. Programs are

executed to check attack occurrences by replacing valid test cases with attack inputs (i.e., substituting a

URL parameter value with an attack input) [90, 96].

A variation of the approach is to apply a set of programmable APIs to perform crawling. These APIs

enable a tester to emulate browsers such as form submission and page redirection. In particular, input form

fields can be accessed and modified to inject attack input test cases. The modified from can be submitted

and checked for the presence of vulnerabilities in the response pages through customized assertions.

Tappenden et al. [71] develop a set of programmable APIs named HTTPUnit to detect SQLI

vulnerabilities in web-based programs for agile environment (i.e., testing and development occurs

simultaneously).

3.4.2. Use case
Traditional request and response-based testing approaches identify vulnerabilities at the interface level

of programs. They often fail to reach inner logics of program code which might open the doors for attacks.

To alleviate this problem, a use case-based approach first applies interactive user inputs to perform

functionalities of programs (e.g., login). This ensures breadth testing of a program’s code. Later, the

collection of user inputs (a sequence of URLs) required to perform functionalities are replayed back and

malicious test cases are injected at injecting points of URLs (instead of previously save user inputs).

Fuzzing method (or random fault injection) is used for injecting malicious inputs. This ensures testing the

depth of program logics. McAllister et al. [134] apply this approach to discover reflected and stored XSS

vulnerabilities in web-based programs.

3.5. Mutation analysis-based test case generation

Mutation is a fault-based testing technique that is intended to show that an implementation is free from

specific faults [14]. Mutation operators are used to generate mutants by injecting faults in an

implementation under test. Mutation operators modify program artifacts to inject vulnerabilities and force

the generation of effective test cases that can expose the injected vulnerabilities. A mutant is said to be

killed or distinguished, if at least one test case can produce different output between the mutant and the

15

implementation. Otherwise, the mutant is live. If no test case can kill a mutant, then it is either equivalent

to original implementation or new test case needs to be generated to kill the live mutant. Generating new

test cases enhances the fault detection ability of the test suite (a set of test cases). The adequacy of a test

suite is measured by a mutation score (MS), which is the ratio of the number of killed mutants to the total

number of non-equivalent mutants. Note that there is a subtle difference between fault injection-based

testing (that might employ mutation operator) and mutation-based analysis. In mutation-based analysis, the

end objective is to assess test suite quality. However, a fault injection technique is guided by mutation

operators with the objective of testing the presence of vulnerabilities in programs by observing anomalous

behaviors. Moreover, a mutation-based analysis adds new test cases to increase the MS, whereas, injecting

a fault results in a new test case (e.g., a modified PDU) in fault-based testing.

The pioneer research of applying mutation-based analysis has been performed by Vilela et al. [75]

where they assess test suite quality for detecting BOF vulnerabilities in C programs. However, their

approach does not consider BOF vulnerabilities due to the limitations of ANSI standard library functions

(e.g., strcpy function does not check the destination buffer before copying, which might result in BOF

vulnerabilities), language specific features (e.g., absence of the null character at the end of a buffer). Later,

Shahriar et al. [1, 2] propose mutation operators to assess test suite qualities for detecting BOF caused by

the above issues. Moreover, Shahriar et al. [3] propose mutation operators to inject faults in ANSI C

format functions (format string and arguments). Furthermore, they propose mutation operators for adequate

testing of SQLI [4] and XSS [5] vulnerabilities in web-based programs implemented in JSP and PHP

languages, respectively.

3.6. Static analysis-based test case generation

 This approach generates test cases by analyzing program source code without executing3. The analysis

relies on the symbolic execution of program code, where program inputs are assumed to hold arbitrary

values represented by symbols [33]. In the context of security testing, the main idea is to extract path

constraints and update symbolic values present in path conditions at different statements. The symbolic

values are updated with known values based on initialized variables or derived values from inputs [27].

While a path ends or a vulnerable statement (e.g., a buffer access likely to cause a BOF) is reached, a

current path constraint is solved with a custom constraint solver to obtain a set of concrete input values

(i.e., a test case). Most of the symbolic execution-based test case generation approaches have been applied

to detect BOF vulnerabilities in C programs [27, 50]. In these cases, symbolic assignments are preformed

for program statements present along feasible paths that include either sensitive memory accesses [27] or

3 The detailed description of static analysis techniques is provided in Section 4.

16

potential invalid memory addresses related to pointer variables [50]. Recently, symbolic execution-based

analysis has been applied to generate SQLI and XSS vulnerabilities in web-based programs [96].

 A variation of static analysis-based test case generation approach employs “interesting function

coverage” information to guide test case generation. For example, Haugh et al. [60] develop a Systematic

Testing of Buffer Overflow (STOBO) tool which instruments a given input program file to identify

whether more test cases are required to discover BOF vulnerabilities caused by unsafe memcpy and strcpy

function calls.

3.7. Search-based test case generation

If the test input space for discovering vulnerabilities is huge and identification of vulnerability revealing

test cases is time consuming, a practical approach is to apply a search-based technique [21] as a way of

generating test cases. For example, discovering BOF with test cases having large sized strings fits well for

applying the search-based test case generation technique. In general, a technique applies a suitable search

algorithm where a random input is chosen as the initial solution. The solution is evolved over a number of

times unless an objective function value remains unchanged.

One of the most widely used search techniques applied for program security testing is genetic

algorithm. The major variations in genetic algorithm-based approaches while generating test cases occur in

two important stages: fitness functions and mutation operators. The fitness (i.e., objective) function guides

the generation of test cases so that vulnerability exploitations are revealed. However, depending on testing

objectives, fitness functions vary. For example, Grosso et al. [28] define a fitness function to generate BOF

test cases which focus on program code coverage (e.g., vulnerable statement with unsafe ANSI C library

function calls). Mutation operators (i.e., evolving of solutions) depend on the testing objective. For

example, Grosso et al. [28] apply a mutation operator, where a numeric value is randomly incremented,

and a string is appended with a random string. Such approach allows the generation of test cases to quickly

reveal BOF attacks.

3.8. Program modification-based test case generation

In this technique, program instructions are modified by leveraging dynamic compiler techniques which

allow accessing intermediate program code before being executed by CPUs. The technique tests programs

that have vulnerability exploitation detection mechanisms included. Moreover, it can detect subtle

vulnerabilities that otherwise might go undetected due to modification of program environments (e.g.,

memory layout) by compilers. For example, a compiler applies default padding after an allocated buffer,

which prohibits confirming the presence of one byte BOF with test cases. Breech et al. [61] develop a

testing framework based on a dynamic compiler that can test programs by injecting attack code (e.g.,

modifying the return address of a function) in basic blocks (i.e., a sequence of code with no branching).

17

3.9. Constraint bypassing-based test case generation

The main idea of this technique is to generate inputs to bypass input filtering mechanisms employed in

a program. Such an approach can be applied to web-based programs, where script code can be written by

programmers to filter malicious inputs at browsers. Offutt et al. [57] propose three levels of bypass testing

for web-based programs to discover client side vulnerabilities such as SQLI and XSS. These include (i)

value level (e.g., tests data types, built-in length violations, special input values), (ii) parameter level (e.g.,

testing violations of underlying relationships among multiple parameters), and (iii) control flow level (e.g.,

testing under pressing back button, refresh button) testing.

3.10. Open issues

 From the comparative study, we notice that current approaches are limited to testing few vulnerability

types such as BOF, SQLI, and XSS. Thus, future research work should discover other vulnerabilities that

are present in programs such as FSB and CSRF. Moreover, every test case generation method has a narrow

perspective of testing program security vulnerabilities. For example, fault-based techniques provide us

limited or no information related to vulnerability and code coverage. Therefore, future research direction

can combine fault-based technique with other techniques (static or hybrid analysis) to improve the

situation. Current fault-based approaches are limited to corrupting input data, environment variables, and

program states. We believe that many unknown vulnerabilities can be discovered by injecting faults on

program artifacts such as control and data flows. We also notice that attack signature-based test case

generation has been improved by combining static analysis. However, their scope is limited to web-based

programs and web-based vulnerabilities. Search-based technique has been applied to generate test cases

only for testing BOF vulnerabilities. Future research might explore employing the search techniques for

generating test cases for other vulnerabilities. Program modification techniques can also be explored for

web-based programming paradigms (e.g., modifying client side program state).

4. Static analysis
A common proactive approach to detect security vulnerabilities in program code is to perform static

analysis [51]. The approach examines input program code, applies specific rules or algorithms (also known

as inference), and derives a list of vulnerable code present in a program that might result in vulnerability

exploitations. The greater advantage of performing static analysis is that it does not require executing

program code. As a result, the analysis can ignore the issues related to program executions such as the

reachability of vulnerable code and the generation of input test cases to traverse the vulnerable code. The

pioneer static analysis techniques (e.g., control flow, data flow, inter-procedural analysis) have been

developed for compiler generated code optimizations, and they are not intended for detecting security

vulnerabilities in program code. As security breaches have become widespread in programming

18

communities, many tools and techniques have been developed to apply static analysis for discovering

vulnerabilities in program code [44, 46, 148].

In the following subsection, we perform a comparative analysis of static analysis works based on the

following seven aspects: inference type, analysis sensitivity, analysis granularity, completeness, soundness,

vulnerability coverage, and language supported in the analysis. The effectiveness of any static analysis

depends on how accurate the inference is in discovering potential vulnerable code. Thus, we are motivated

to classify current static analysis related works based on the underlying inference techniques into four

types: tainted data flow-based, constraint-based, annotation-based, and string pattern matching-based. We

describe these inference techniques in Sections 4.2-4.5. We discuss open issues in Section 4.6.

4.1. Comparative analysis of static analysis approaches

Table 4 provides a comparative summary of the static analysis works related to program security based

on seven features: inference type, analysis sensitivity, analysis granularity, completeness, soundness,

vulnerability, and language [9, 11]. We now discuss these features in the following paragraphs.

 Inference type: The core part of any static analysis is to infer potential vulnerabilities by scanning

program code. We divide inference types into four categories as shown in Table 4. These are tainted data

flow-based (e.g., [88, 99, 100, 117]), constraint-based (e.g., [20, 46, 47]), annotation-based (e.g., [7, 12,

114]), and string pattern matching-based (e.g., [42, 44, 140]) approaches. We discuss these inference types

in Sections 4.2-4.5.

Analysis sensitivity: A common problem for a static analysis approach is that it might generate false

positive warnings to be examined manually. Moreover, an analysis might suffer from false negatives (i.e.,

vulnerabilities present in program code might be unreported). To reduce the number of false positives or

false negatives, the approaches take advantage of pre-computed information based on program code. Such

information helps to perform more accurate detection of vulnerabilities. We denote the dependency of

such pre-computed information as analysis sensitivity. From the third column of Table 4, we notice that

most of the analysis techniques apply some kinds of sensitivity. We identify six types of sensitivity:

control flow (e.g., [46, 88, 114]), path (e.g., [20, 47]), context (e.g., [20, 88, 99, 100, 117]), field (or

instance) [139, 171], points-to (e.g., [99, 100]), and value range [172].

 An analysis is control flow sensitive, if it performs inference technique based on statement execution

sequence with respect to a control flow graph. Applying flow sensitivity increases the precision of

vulnerability detection (i.e., less false positive warnings). For example, Weber et al. [46] improve the

approach of Wagner et al. [118] by employing a flow sensitive analysis.

19

Table 4: Comparison summary of static analysis approaches for mitigating security vulnerabilities
Work Inference type Analysis

sensitivity
Analysis
granularity

Completeness Soundness Vulnerability
coverage

Language

Dor et al. [116] Annotation Points-to Intra-procedural Yes No BOF C
Hackett et al. [12] Annotation N/A Inter-procedural No No BOF C
Le et al. [20] Constraint Context, path Inter-procedural No No BOF C
Tevis et al. [42] String pattern

matching
N/A Statement No No BOF x86

Viega et al. [44] String pattern
matching

N/A Token No No BOF C, C++

Weber et al. [46] Constraint Context, control
flow

System dependence
graph

No No BOF C

Xie et al. [47] Constraint Context, path,
points-to

Intra-procedural,
inter-procedural

Yes4 No BOF C

Jovanovic et al.
[88]

Tainted data flow Context, control
flow

Inter-procedural No No SQLI, XSS PHP

Lam et al. [99],
Livshits et al. [100]

Tainted data flow Context, points-to Statement No Yes SQLI, XSS Java

Wassermann et al.
[132]

Tainted data flow N/A Intra-procedural No No XSS PHP

Shankar et al. [138]Tainted data flow,
annotation

N/A Intra-procedural,
inter-procedural

No No FSB C

Chen et al. [139] Tainted data flow,
annotation

Context, field Statement No No FSB C

Dekok et al. [140] String pattern
matching

N/A Statement No No FSB C

Wassermann et al.
[145]

Tainted data flow N/A Intra-procedural No Yes SQLI PHP

Flawfinder [148] String pattern
matching

Context Token No No BOF, FSB C, C++

Wagner et al. [118] Constraint N/A Statement No No BOF C
Xie et al. [117] Tainted data flow Context, control

flow
Block, intra-
procedural, inter-
procedural

No No SQLI, XSS PHP

Evans et al. [114] Annotation Control flow Statement No No BOF, FSB,
MEL, NLD

C

Tripp et al. [171] Tainted data flow Context, field,
points-to

Inter-procedural No Yes SQLI, XSS Java, JSP

Vulncheck [172] Tainted data flow,
annotation

Value range Statement, data
flow, inter-
procedural

Yes No BOF C

Ganapathy et al.
[173]

Constraint Context, points-to System dependence
graph

No No BOF C

Yang et al. [78] Annotation, tainted
data flow

Control flow Intra-procedural,
Inter-procedural

No N/A BOF C

Ashcraft et al.
[131]

Tainted data flow N/A Intra-procedural,
Inter-procedural

No No BOF C

 Program execution paths that can be derived from a control flow graph might not be feasible.

Sometimes, infeasible paths can be determined statically. If an analysis explicitly excludes infeasible paths,

we denote it as path sensitive. For example, Le et al. [20] detect BOF vulnerabilities that are reachable

4 The authors report false positive warnings due to the error in their implemented constraint solver. We believe that
these errors are correctable and independent of their original approach.

20

within feasible program paths. Xie et al. [47] detect BOF due to pointer dereferences and buffer indexes in

feasible program paths based on control flow graphs.

 A context sensitive analysis differentiates multiple calls sites of a function with respect to supplied

arguments. In contrast, a context insensitive analysis ignores multiple calls of the same function with

different arguments. Context insensitivity results in false positive warnings. For example, a program has

two vulnerable library function calls of strcpy (dest, src). Here, the function copies the buffer pointed by

src to the buffer pointed by dest. The first function call has src string whose value is provided by a user,

and the second call contains a constant string whose length can be determined statically to be less than

that of the dest buffer. A context insensitive analysis reports both of them as vulnerable. However, a

context sensitive analysis (e.g., Flawfinder [148]) finds the former call as vulnerable and the later as non

vulnerable.

 An analysis is said to be field (or instance) sensitive, if different members of instantiate objects are

considered as separate variables [139]. Field sensitivity allows reducing false positive warnings. For

example, an object data type (e.g., struct of C language) might have two member variables of character

buffer. One of the buffers contains untrusted data while the other contains trusted data. Without field

sensitivity, the entire instance of the structure would be considered untrusted (or tainted) as member

variables are not distinguished.

 A points-to analysis identifies a set of memory objects that might be pointed by a given pointer variable

present in program code. Points-to analysis itself is another direction of research and interested readers can

consult the literature related to points-to analysis (e.g., [36]). We restrict our discussion on four concepts

that are relevant and used in detecting vulnerabilities: flow sensitive, flow insensitive, context sensitive,

and context insensitive points-to analysis. In a flow sensitive points-to analysis, a program’s control flow is

taken into account. In contrast, in a flow insensitive points-to analysis, statements can be analyzed in any

order. Obviously, a flow sensitive points-to analysis is more accurate than that of a flow insensitive

analysis. In a context sensitive points-to analysis, function calls accepting pointer type arguments or

returning pointers are analyzed separately. In contrast, in a context insensitive points-to analysis, these

function calls are considered identical. It is more appropriated to apply context sensitive points-to analysis

than that of context insensitive analysis to obtain more precise information.

From Table 4, we note that very few techniques apply points-to analysis (e.g., flow insensitive points-to

analysis [116]). Most of the BOF detection approaches (as shown in Table 4) do not incorporate points-to

analysis explicitly. However, some approaches employ general assumption on pointer data types. For

example, Wagner et al. [118] assume that a pointer to a structure variable might point to all other similar

structure variables present in a program. The assumption results in a huge number of false positive

warnings. Xie et al. [47] consider a limited number of pointer information such as a pointer pointing to a

21

buffer and relative distance from the base size of a buffer. However, if a pointer points to an unknown type

of memory object, their analysis does not include such information. As a result, some real BOF might be

undetected (i.e., increases false negative in the detection). Points-to analysis can be used to reduce false

negatives (i.e., detect more vulnerabilities that would otherwise remain undetected). For example,

Ganapathy et al. [173] apply points-to analysis information while generating constraints on buffers that are

being dereferenced by pointer variables. As a result, function calls having pointer to buffer arguments can

be analyzed for detecting BOF vulnerabilities.

A value range analysis provides a lower and upper bound of a variable. The information is useful when

function calls are supplied with unsanitized arguments that represent buffer sizes. These arguments result

in vulnerabilities, if their boundaries exceed expected ranges. For example, the value range analysis might

discover that the upper bound of the size argument of memcpy function call is MAXINT (maximum value

of an integer). An approach might generate a BOF warning in this case [172].

We notice that several works ignore sensitivity in their analyses for the sake of achieving the highest

level of scalability (e.g., [44, 118]). The resultant insensitivity allows an approach to analyze large scale

programs that contain millions of lines of code. In contrast, adding sensitivity brings not only the benefit of

increased precision in an analysis, but also reduced false positive rate in the warnings. Note that several

works do not explicitly discuss about sensitivity or insensitivity that are indicated as N/A in Table 4 (e.g.,

[12, 42, 44, 132]).

Analysis granularity: This feature indicates the granularity level of program code at which static analysis

is performed. From Table 4, we notice that static analyses have been performed at different granularity

levels. These include program token (e.g., [44, 148]), statement (e.g., [46, 99, 100]), block [117], intra-

procedural (e.g., [116, 145]), inter-procedural (e.g., [12, 20, 88, 171]), and system dependence graph (e.g.,

[173]) levels. Several works combine multiple granularities such as intra-procedural and inter-procedural

(e.g., [47, 117, 122]).

A compiler performs lexical analysis which tokenizes program source code to identify keywords,

variables, functions, etc. These tokens can be used to detect vulnerabilities.

In a statement level analysis, vulnerabilities are inferred by analyzing program statements. Several

works analyze the executable program code such as x86 [42]. However, such executable code is usually

de-assembled first to make partially readable before performing an analysis at the statement level.

 In an intra-procedural analysis, a program is analyzed based on either a control flow graph or a data

flow graph (a graph which represents data dependencies between a number of operations). Several works

apply intra-procedural analysis to form a summary of sensitive variables [116] or specific conditions that

are related to vulnerabilities [47].

22

An inter-procedural analysis examines a function body as well as other function call sites present in the

function by accessing the called functions. It is common to avoid analyzing same function multiple times

by following a bottom up analysis based on a call graph of a program (e.g., [47]). In a call graph, each

node represents a unique function and a directed edge from node a to b indicates that the function

represented as node a contains an invocation of the function represented by the node b.

In a system dependence graph (SDG), a node represents a program point (e.g., statement), and an edge

represents dependency between two program points which can be two types: control flow and data flow.

Note that a data flow analysis attempts to compute the values of a data variable at different program points.

Completeness: An approach is said to be complete, if it generates no false positive warnings [139]. Table

4 shows that very few techniques are complete (e.g., [116, 172]). However, the completeness depends on

both the underlying assumptions in an analysis and the types of vulnerabilities addressed. For example,

Dor et al. [116] detect all BOF vulnerabilities present in a program caused by only string variables (i.e.,

static or dynamic buffers). However, they do not consider BOF vulnerabilities due to pointers and aliases.

Vulncheck [172] is complete under the assumption that most BOF vulnerabilities occur through a set of

known unsafe library function calls that accept tainted arguments.

In practice, it is challenging to develop an analysis technique that results in no false positive warnings.

We identify three common reasons that contribute for an incomplete analysis: analysis sensitivity, result

interpretation, and assumption on program code.

 Inference approaches based on insensitive analysis of control flow (e.g., [42, 44, 100, 118, 140, 148,

173]), context (e.g., [114, 138]), path [132], points-to (e.g., [12, 46]) result in conservative analyses and

generate a high number of false positive warning. Moreover, the imprecision of analysis sensitivity (e.g.,

flow insensitive points-to analysis) contributes to false positive warnings [99, 100, 171].

 The result interpretation of an analysis can be blamed to false positive warnings. For example, the

approach of Le et al. [20] provides a set of programs paths which do not include safe and infeasible paths.

Thus, it is likely that some of the suspected paths in the set might not be vulnerable.

 An approach assumes that programmers write specific pattern of code in implementations. The breaking

of these assumptions results in false positive warnings. For example, a buffer variable might contain

malicious inputs followed by a non-malicious input before using the variable content (e.g., writing to an

output console) [139]. The buffer is suspected to be vulnerable in the first usage and it remains suspected

for the rest of the program code. A program can be written in an unusual way by storing malicious data

instead of terminating programs immediately which might result in a false positive warning [117]. A

function might conditionally use a kernel pointer instead of a user supplied pointer [78], where kernel

pointer arguments are not vulnerable. Moreover, an approach might rely on correct implementation of

functionalities (e.g., validation of inputs stored in buffers [116]). Sometimes, assumptions are made on the

23

effects of code, which lead to false positive warnings. An approach might not consider the effect of custom

sanitization functions [88]. The lack of consideration to the effect of arbitrary type casting of sensitive

variables might generate false positive warnings. For example, PHP allows a variable containing malicious

string be assigned a boolean value which is non malicious [145]. A program might type cast a signed

integer to an unsigned integer. An unsigned integer should be checked only for the upper bound before

using the integer as an index of an array. An analysis might ignore type casting effect and generate a false

positive warning while using an unsigned buffer index with no lower bound value checking [131].

Soundness: An approach is sound, if it has no false negative [139]. In other words, the approach does not

leave any program vulnerability unreported. Table 4 shows that a very small number of works claim to be

sound (e.g., [100, 171]). However, it depends both on vulnerability types and assumptions in their

analyses. For example, a query-based analysis [99, 100] is sound as long the specified queries accurately

represent vulnerability patterns. The approach of Tripp et al. [171] is sound provided that a user specified

maximum node limit (in a call graph analysis) allows reaching all tainted sinks.

 The reasons for being the approaches unsound vary widely. We classify the reasons into four types:

language features, analysis sensitivity, result interpretation, and the scope of the problem.

 Data types (i.e., features) supported in programming languages might not be considered in the analysis

approaches. For example, the approach of Wagner et al. [118] is not sound as their analysis does not

generate warnings of BOF vulnerabilities caused by pointer arithmetic or complex data structures (e.g.,

union in C) having buffers as member variables. The approach of Hackett et al. [12] does not support

global pointers and structure fields having pointer data types. A recursive function call might be analyzed

using just a single pass while constructing a function’s summary in PHP which might leave potential SQLI

and XSS vulnerabilities unreported [117]. The approaches of Shankar et al. [138] and Chen et al. [139] are

not sound as they do not support tainted data flow analysis for integer buffer data type. An integer array

containing malicious format string can be converted to a buffer character followed by supplying it to a

format function. No FSB warning would be reported in those approaches.

 Some approaches might not employ analysis sensitivity which might introduce false negatives. For

example, lack of points-to analysis (e.g., [20, 42, 44, 46, 140, 148]).

 Some works only generate warnings, if their analysis can infer certainly that vulnerabilities are present

in programs. This also allows users to interpret results with high confidence at the cost of missing actual

vulnerabilities present in program code. For example, the approach by Xie et al. [47] does not generate

warnings, if their analysis cannot infer that accessing a buffer is unsafe.

 To make an analysis approach manageable, some works explicitly limit their scope of detection for a

limited number of vulnerability types present in program code. Thus, they can be considered as not sound

with respect to the unaddressed vulnerability types. For example, BOF might be present due to unsafe

24

ANSI C library function calls, pointer arithmetic, accessing buffers through arbitrary buffer indexes and

pointers, lack of null characters at the end of buffers, and user defined functions containing flaws. Dor et

al. [116] detect all BOF vulnerabilities present in a program caused by only string variables (i.e., static or

dynamic buffers) and those accessed after null byte characters. The approach of Evans et al. [114] cannot

discover BOF caused by arbitrary buffer indexes and pointers. Xie et al. [47] assume that most pointer

arithmetic and conditional expressions present in branches and loops are linear. Thus, their approach does

not report BOF vulnerabilities that might occur through loops or branches containing non linear arithmetic.

The approach of Wassermann et al. [132] detects only stored and reflected XSS attacks and does not

analyze program code generated at browsers to identify DOM-based XSS attacks. Ashcraft et al. [131]

assume that an integer variable bound checking must be present before accessing a buffer through the

integer index variable. However, they allow a variable to compare with any numeric value as opposed to a

correct value. Thus, actual BOF present in a program might not be identified.

Vulnerability coverage: This feature indicates what vulnerabilities are detected by an approach. Table 4,

it is obvious that BOF, FSB, SQLI, and XSS have been addressed by many works (e.g., [44, 46, 47, 116]).

However, very few works detect other vulnerabilities such as MEL [114]. Very few approaches can detect

multiple vulnerabilities (e.g., [88, 114]).

Language: This feature highlights the programming languages that are supported by an analysis approach.

We notice that most techniques analyze programs implemented in C and Java languages (e.g., [12, 47, 100,

116]). A number of works analyze server side programs written in scripting languages such as PHP (e.g.,

[88, 145]). Very few approaches analyze executable code (e.g., [42]).

4.2. Tainted data flow-based technique

In this technique, input variables are marked as tainted and their propagations are tracked. Warnings are

generated, if tainted inputs or values derived from tainted inputs are used in sensitive operations. We divide

tainted data flow-based works into four categories based on the tainting mechanism: static data type,

implicit, grammar-based, and query-based tainting. They are described in the following subsections.

4.2.1. Static data type tainting
In this technique, tainted information is marked by extending variable type information. This is also

known as type qualifier approach. The approach takes advantage of statically declared data types supported

by programming languages. In particular, the technique requires adding new labels to data variables which

might represent vulnerable (“tainted”) or non-vulnerable (“untainted”) input sources. Then the approach

checks whether a labeled source or any value derived from a labeled source participates in sensitive

operations (e.g., a data buffer containing user supplied inputs is passed to a format function call) or not. If

such a case is identified, a vulnerability warning is generated. For example, Shankar et al. [138] and Chen

et al. [139] detect FSB vulnerabilities, if tainted format strings are used in format function calls. Their

25

approaches label trustworthy function parameters as “untainted” and untrustworthy parameters as “tainted”

initially. For example [138], the main function of a program might be marked as follows int main (int argc,

tainted char *argv[]).

Type checking is a popular approach to infer vulnerabilities [138, 139]. In a traditional type checking

system, errors are reported by a compiler, if the type of a variable mismatches with the expected one.

However, in a type qualifier system, warnings are raised, if an expected variable type in an expression

mismatches according to a qualifier lattice. A qualifier lattice is developed by a programmer before an

analysis that represents sub-typing relationships among different variables. For example, a sub-typing

relationship can specify “untainted char < tainted char”. It indicates that an expression (e.g., a format

function parameter labeled as “tainted”) expecting a tainted variable generates no warning, if an untainted

variable is passed. However, for a sub-typing relation “tainted char < untainted char”, a warning is

generated if a tainted variable is passed instead of an untainted one.

4.2.2. Implicit tainting
In this technique, program variables are not explicitly labeled as tainted. This approach is suitable for

languages where there are no static type declarations in the code (e.g., PHP). The tainted information flow

is performed based on pre-computed program information such as data flow and control flow graph. For

example, Jovanovic et al. [88] mark data as tainted, if they are derived from user inputs (e.g., HTTP

requests). They apply data flow analysis to identify locations where suspected tainted data reach to

sensitive sinks (e.g., the locations that are vulnerable to XSS attacks).

A variation of the approach is to pass tainted information from lower to higher granular level. For

example, Xie et al. [117] apply three levels of static analyses based on the control flow graph of a given

program. They summarize and pass information from block to intra-procedural and intra-procedural to

inter-procedural levels. Basic blocks are simulated by symbolic execution to form summaries such as error

set (i.e., set of input variables that must be sanitized before entering the block) and untainted sets (sanitized

locations for each successor of a block). This information is applied to perform intra-procedural analysis

which summarizes a function such as sanitized values (set of parameters and global variables that are

sanitized on function exit). The summaries obtained from intra-procedural analysis are applied to inter-

procedural analysis (i.e., function calls at block levels). The inter-procedural analysis generates warnings,

if any unsanitized variable is applied to a sensitive operation (e.g., SQL query generation).

Implicit tainting has been applied to programs written in typed languages such as Java and JSP (e.g.,

taint analysis for Java or TAJ [171]). Tainted data can be tracked using a variation of slicing algorithm

known as hybrid thin slicing. The slice captures statements relevant to tainted data flows. It is a forward

slicing from a statement s which identifies a set of statements that are data-dependant on s. The analysis is

performed by a set of security rules of the form (S1, S2, S3), where S1, S2, and S3 represent a tainted or

26

untrusted source, a sanitizer, and a sink, respectively. A sink is a pair of a method name and a set of

parameters that are vulnerable to injection attacks. The approach checks whether a source is passed to a

sink without sanitization or not. Compared to other taint-based approaches, the slicing along with points-to

analysis of objects can discover vulnerabilities in programs that have reflection (a technique where a

method can be invoked by Class.forName and Method.invoke properties in Java) and object containers

(e.g., HashMap).

Ashcraft et al. [131] also apply a tainted data flow-based technique to detect BOF vulnerabilities by

identifying tainted integer variables (derived from network packets, user data) that are used as array

indexes, loop bounds, and length parameters of sensitive functions (e.g., memcpy) without sanitization

(e.g., performing no upper and lower bound checking for a signed integer variable).

4.2.3. Grammar-based tainting
Tainted data flow can be tracked by grammar production rules where non terminals can be marked as

tainted. This approach requires normalizing program source code into static single assignment (SSA) form.

In a SSA form, each statement is expressed as an assignment statement where the left hand side sets a

variable at most once. For example, a PHP statement “echo $out” that outputs the value of variable output

(out) can have SSA form as “data1 = out” [132]. Here, data1 is introduced as part of SSA which can be

further transformed as a production rule like “data1→ out”. Now, data1 is a non terminal for the

production rule and out might be either a terminal or non terminal. The grammar rules obtained from SSA

implicitly encode data flow information among non terminals.

While generating grammar production rules, non terminals are marked as tainted if they are obtained

from user inputs. The resulted rules form an extended context free grammar. The core part of an approach

involves performing string analysis for sanitization routines by modeling their operations through finite

state transducers (i.e., finite state machines where transitions result outputs). If tainted inputs are sanitized,

the output is expressed as regular expressions which relate the images (i.e., a set of words that can be

generated) of transducers. Moreover, tainted markings are removed from the related rules to make a

context free grammar. The regular expression generated by a context free grammar and by a sanitization

routine is intersected to identify another regular expression that is allowed by a program. If part of attack

signatures or malicious scripts (e.g., ’ or 1=1 -- is a signature for a tautology attack exploiting SQLI

vulnerabilities) can be constructed from an intersected regular expression, then a warning is generated.

Wasserman et al. apply this approach to detect SQLI [145] and XSS [132] vulnerabilities.

4.2.4. Query-based tainting
All the taint-based techniques discussed so far provide no options to testers or programmers to check

vulnerabilities of their choices. Query-based tainting is a step forward to mitigate this limitation. In this

technique, a query specifies source objects and rules to transform sources to sink objects. A source object

contains supplied inputs. A derived object uses a source object and propagates through a path which might

27

reach to a sink object. A sink object is considered tainted, if it is derived from zero or more times from a

source object. Lam et al. [99, 100] develop the Program Query Language (PQL) which allows

programmers to specify queries related to vulnerable information flow. They apply the technique to

discover SQLI and XSS vulnerabilities in web-based programs implemented in Java.

4.3. Constraint-based technique (CBT)

Constraint-based techniques generate safety constraints from program code whose violations imply

vulnerabilities. Constraints are propagated and updated while traversing a program. A program might be

traversed based on system dependence graphs [46] and control flow graphs [47, 117]. At the end, the

analysis identifies whether any solution of a set of obtained constraints exists or not. Obtaining a solution

indicates that an exploitation might be possible through input values. Constraint solvers are used to

compute input values which violate constraints. Most works leverage integer type constraint solvers for

detecting BOF vulnerabilities [46, 47, 118]. Constraint-based approaches are applied to procedural

languages that have static data types and rich data structures. Several works have applied CBT techniques

to detect BOF vulnerabilities in C programs. We divide constraint-based techniques into three categories

for BOF detection: integer range analysis, symbolic value analysis, and demand-driven.

Integer range analysis: The idea of this technique is to formulate constraints by scanning each program

statement containing buffer declarations and buffer related operations. Each constraint is expressed in

terms of a pair of integer ranges (buffer allocation size and current size of a buffer) for each buffer defined

or accessed. For each buffer, a set of constraints are solved to find a range of allocation and current size,

which can be denoted as [a, b] and [c, d], respectively. Here, [a, b] implies that allocation size of a buffer

can vary from a bytes to b bytes, and [c, d] implies that current size of a buffer can vary from c bytes to d

bytes. The two ranges can be analyzed to identify non vulnerable (i.e., b > c) and vulnerable (i.e., b ≤ c)

statements.

Wagner et al. [118] first apply integer range analysis to detect BOF vulnerabilities. Later, Weber et al.

[46] improve Wagner’s method by applying a flow sensitive analysis of BOF to reduce the number of false

positive warnings. In addition to BOF due to string variables, they detect BOF due to global variable

usages, function calls, and recursions. Ganapathy et al. [173] generate constraints on buffer sizes and

allocations using an SDG and solve the constraints using linear programming.

Symbolic value analysis: In this technique, a constraint might contain program variables and whenever

possible their values are assigned. Otherwise, they are considered as symbolic values. Xie et al. [47] apply

symbolic value analysis to detect BOF vulnerabilities caused by invalid buffer indexes, pointer

dereferences, and invalid function arguments (buffer addresses and sizes). They traverse a call graph of a

program using a bottom-up approach, where a function is analyzed through control flow graph (CFG).

During the CFG analysis, at every access to arrays, pointer dereferences, and function calls, safety

28

constraints (i.e., the negation of valid conditions) are generated. Moreover, constant relations (e.g., x = 4)

and symbolic constraints between variables (e.g., x < y) are captured and propagated. At every potentially

dangerous access of arrays, pointer dereferences, or call to routines, a custom constraint solver is used to

evaluate the values against safety constraints. A warning is generated, if a solution can be found for a

safety constraint.

Demand-driven: Most constraint-based techniques limit their scopes by providing a list of warnings based

on built in constraint generation, propagation, and solution mechanisms. However, a recent direction is to

provide a programmer the option to formulate queries on vulnerable program locations. This is also

denoted as demand-driven analysis. The approach relies on constraint generation, which starts from a

location specified by developers. The end output might be a set of prioritized paths that might trigger BOF.

Le et al. [20] apply this approach to detect different types of paths (e.g., infeasible, safe, user input

dependant, vulnerable) vulnerable to BOF. A user specifies queries to know whether (i) buffer accesses at

particular program points are safe, and (ii) user inputs can write to buffers. The queries are expressed with

constraints in terms of buffer sizes, supplied string lengths, and flag values (to represent constant string

values). The queries are propagated along program paths in backward directions (i.e., starting from the

point of query to the beginning of a program’s main function call) through inter-procedural and context

sensitive analyses. If queries can be resolved by checking whether a declared buffer size is less than the

supplied input values, a BOF warning is generated.

4.4. Annotation-based technique

In an annotation-based technique, program code is annotated with desired properties in terms of pre and

postconditions. Annotations can be specified at both function prototype declaration [12, 114, 116] and

statement level [114]. After a piece of code is annotated, an algorithm checks whether data variables can be

used safely based on the annotated conditions or not. In this case, a function call site is evaluated to check

whether it conforms to specified preconditions or not (i.e., generate error messages). If preconditions are

satisfied at the call site, the function body is further examined to ensure that the implementation meets

specified postconditions. If a precondition cannot be resolved from a previous statement’s postcondition,

then a warning message is generated. Warnings generated by an approach might be prioritized based on

how well the constraints for accessing buffers are understood. For example, no condition to access a buffer

is listed at the top of a warning list, whereas buffer access based on a condition on buffer length is placed at

the bottom of a warning list.

Annotation-based approaches generate constraints from the specified pre and postconditions. However,

these constraints are evaluated to be true or false to identify whether a program location (e.g., a function

call invocation) is free from vulnerability or not. In contrast, a constraint-based approach solves a set of

constraints for further analysis. We also note that tainted data flow analysis might rely on annotating

29

program code such as function prototypes (e.g., [172]). However, these annotations are not involved in

generating constraints like the annotation-based approaches. Rather, the annotation facilitates comparing

an expected data type (annotated) with an identified data type (through static analysis) to infer

vulnerabilities.

Annotations can be specified by expressions supported by an implementation language. For example,

Dor et al. [116] detect all string manipulation errors that might lead to BOF vulnerabilities by specifying

contracts (or annotations) through C expressions. Contracts include preconditions, postconditions, and

specific side effects. After adding annotations, a source to source semantic preserving transformation of a

given procedure is performed. The converted program code generates errors if contracts are violated.

However, the pre and postconditions expressed through implementation language expressions can detect

limited types of BOF vulnerabilities such as accesses to buffers after the null-termination bytes.

Several works have detected a wide range of BOF vulnerabilities either by introducing an annotation

language or by extending an implementation language. For example, Hackett et al. [12] develop an

annotation language named SAL that allows expressing buffer annotations to describe buffer interfaces

through pointers. The annotation of buffer variables might include usage (e.g., a buffer passed to a function

and read from), optional (e.g., pointer can be NULL), extent of an initialization (i.e., a lower initialization

bound), and capacity (i.e., a lower capacity bound). In contrast, Evans et al. [114] annotate function

parameters, return values, global variables, and structure fields inside tagged comments in C programs. For

example, the /*@notnull@*/ tag before a parameter indicates that any value passed to the parameter

should not be NULL. BOF vulnerabilities are detected by adding pre and postconditions to user defined

and ANSI C library functions. For example, the library function strcpy(s1, s2) copies the source buffer s2 to

the destination buffer s1. The precondition /*@requires maxSet(s1) ≥ maxRead(s2) @*/ generates an error

message, if it cannot be satisfied at the call site by a checker. Here, the precondition indicates that the

maximum index value that can safely access s1 (i.e., maxSet(s1)) during a write operation must be greater

than or equal to the maximum index value that can safely access s2 (i.e., maxRead(s2)) during a read

operation.

An annotation language that provides flexibility and features to annotate large amount of source code

can reduce the burden of annotating program code. Yang et al. [78] develop an annotation language named

MECA in this direction. For example, the statement “annot tainted annotates ($variable)” specifies that

tainted annotation to be used to bind to any local and global variable, a function’s parameter, and the return

value of a function. MECA can bind multiple annotations with a variable (e.g., checking both src and dest

pointer parameters with the len parameter in a memcpy(dest, src, len) function call). Moreover, the

language allows expressing conditional annotations (e.g., annotate a variable as tainted based on specific

parameters of function calls).

30

4.5. String pattern matching-based technique

The pioneer static analysis approaches (e.g., [42, 44, 102, 140]) are based on simple string pattern

matching technique. These approaches rely on a known set of library function calls that might cause

vulnerabilities. A set of rules are developed which represent signature of vulnerable code patterns. In this

technique, program code is tokenized to identify vulnerable pattern of strings that represent vulnerable

function calls and arguments. For example, ITS4 [44] and Flawfinder [148] analyze the tokenized program

code to detect potential vulnerabilities. Dekok [140] detect FSB vulnerabilities in printf family functions

by examining patterns of vulnerable format function calls which include non constant format strings and

format strings as the last argument.

A recent variation of string pattern matching-based technique is to scan executable program code to

detect vulnerable function calls. For example, Tevis et al. [42] analyze portable executable (PE) files that

run on Windows NT/XP to detect BOF vulnerabilities. They detect BOF vulnerabilities by identifying the

presence of vulnerable ANSI C library function names in a symbol table and the occurrence of zero filled

regions of 50 bytes or more. These regions can be used to load malicious code during BOF attacks.

4.6. Open issues

From the comparative analysis, we notice that introducing analysis sensitivity and performing analysis

on fine granular levels of program code result in better detection of vulnerabilities. Most of the current

approaches lack completeness, soundness, or both of the properties. Analysis precision and scalability is a

tradeoff factor in current analysis approaches. Many approaches suffer from high false positive rates.

Therefore, future static analysis approaches can focus in several directions such as detecting less

unaddressed vulnerabilities and improving the completeness and soundness properties. From the

discussion, we also notice that most of the analysis techniques are geared towards a subset of high level

languages such as C, Java, and PHP. Thus, future works should address on developing analysis techniques

for programs implemented in other common languages such as ASP and JavaScript.

From the discussions on inference techniques, we note that each inference mechanism is valuable from

certain perspectives. For example, annotation-based mechanism is useful to verify that certain

vulnerabilities are not present, whereas demand-driven and query-based tainting can help locating

prioritized vulnerabilities that must be addressed immediately. Our study indicates that constraint,

annotation, and string pattern matching-based inferences currently detect a limited type of vulnerabilities

such as BOF, FSB, and SQLI. Thus, future works should improve the current techniques for detecting

other vulnerability types such as XSS and CSRF. New approaches can also combine multiple techniques to

detect unaddressed vulnerabilities and increase detection accuracies. Another research direction is to apply

appropriate granularity and sensitivity for different inference techniques. Moreover, performing static

31

analysis based on the presence of improper sanitization APIs can be investigated further for different

vulnerabilities.

5. Hybrid analysis
Although static analysis techniques detect vulnerable code in programs, they all suffer from a common

disadvantage which is numerous false warning reports. As a result, a tester or programmer spends

significant amount of time for examining warnings with actual input test cases. Thus, merely depending on

the static analysis results might not be practically feasible to detect and fix all suspected vulnerabilities in

large scale programs. Many approaches have attempted to improve this situation by automatically

examining suspected vulnerable code. These approaches combine static analysis techniques with

complementary dynamic analysis techniques [157]. A dynamic analysis is an active analysis technique

where program states are observed to confirm vulnerability exploitations [169]. Program states include a

wide range of entities during a program execution such as the values of declared variables, structure fields,

and contents of memory locations. The combination of static and dynamic analysis is known as hybrid

analysis technique.

In general, a hybrid analysis technique strives to avail the advantages of both static and dynamic

analyses. The static analysis identifies the locations of program code that need to be analyzed during

program executions to verify actual exploitations of vulnerabilities. This reduces the number of suspected

vulnerabilities reported by a static analysis technique that need to be examined further. Note that the

vulnerability mitigation capability of any hybrid analysis technique fairly depends on the inference

technique of a static analysis. For example, a static analysis might not identify program code as vulnerable.

As a result, the subsequent dynamic analysis cannot find any security breaches in that code. Moreover,

obtaining or generating required test cases that can reach the vulnerable locations during a program

execution might not be directly addressed by a hybrid analysis technique. Rather, complementary

mitigation techniques such as test case generation can address that issue.

In the following section, we compare hybrid analysis works that mitigate program security

vulnerabilities based on seven features: static inference, analysis granularity, static information, dynamic

analysis objective, program state utilization, vulnerability coverage, and language. Note that the lack of

discussion on “completeness” and “soundness” of the underlying static analysis techniques by the original

authors of the related works prohibit us to include these features in our comparative discussions. The most

important step for a hybrid analysis is to actively examine program entities to confirm suspected

vulnerabilities based on dynamic analysis objectives. The objectives are related to program states at

runtime. Thus, we are motivated to classify hybrid analysis works based on dynamic analysis objectives

32

into four types: program operation, code structure integrity, code execution flow, and unwanted value.

They are described in Sections 5.2-5.5. Finally, we discuss open issues in Section 5.6.

5.1. Comparison of hybrid analysis approaches

We compare hybrid analysis works based on seven features: static inference, analysis granularity, static

information, monitoring objective, program state utilization, vulnerability coverage, and language

addressed. A summary of the comparison is shown in Table 5, while we describe these features in the

following paragraphs.

Static inference: This feature indicates the underlying inference mechanism by which a location is

identified as vulnerable without executing the code. We reuse the same categorization for inference

mechanisms that have been discussed in Sections 4.2-4.5 (i.e., tainted data flow, constraint, annotation,

and string pattern matching). Unlike traditional static analysis technique, where inference mechanisms are

applied to detect vulnerable code, a hybrid analysis often applies a light weight static analysis, which

primarily discovers information flow.

 Table 5 shows that three types of inferences are used: tainted data flow, string pattern matching, and

untainted data flow-based analysis. Tainted data flow and string pattern matching-based techniques have

been discussed in Section 4. Here, we discuss untainted data flow-based inference that is used in several

works (e.g., [35, 62]). Untainted data flow represents the extraction of legitimate information that is valid

in sensitive program operations (e.g., SQL query execution). For example, Castro et al. [35] identify

legitimate instruction sets that can define (or assign) the value of a variable. Balzarotti et al. [62] define

intended workflows by connecting valid views (or program paths). The common characteristic between

an untainted and a tainted data flow is that both of them track flows of data. However, an untainted data

flow-based technique tracks valid data, whereas a tainted data flow-based technique tracks suspected data.

Sometimes, untainted data flow is also mentioned as “positive tainted data flow”.

Analysis granularity: This feature identifies what granularity level of program code is used in a static

analysis phase. The granularity levels vary widely. These include statement (e.g., [81]), control flow (e.g.,

[41, 62]), dataflow (e.g., [35]), and combined granularities such as statement and control flow (e.g., [16]).

Static information: This feature indicates the information gathered during a static analysis which is used

in a dynamic analysis. In Table 5, we observe that collected information depend not only on vulnerability

types, but also on languages and analysis techniques. For example, BOF can be detected by identifying

allocated memory blocks through MAT [19], unsafe pointers used in memory write operations [101], and

unsafe library function calls having pointer arguments [16]. However, injection type vulnerabilities (e.g.,

SQLI and XSS) can be detected by identifying trusted strings [83], hotspots [81], finite state machines of

SQL queries [106, 107], and the set of statements involved in generating malicious outputs [41].

33

Table 5: Comparison summary of hybrid analysis works on program security vulnerabilities
Work Static

inference
Analysis
granularity

Static information Dynamic analysis
objective

Program state
utilization

Vulnerability
coverage

Language

Aggarwal et al.
[16]

Tainted data
flow

Statement and
control flow

Function calls
having pointer and
alias arguments

Program operation
(unsafe function
calls)

Addition (suspicious
scores for pointers
and aliases passed as
function arguments)

BOF C

Castro et al.
[35]

Untainted
data flow

Data flow List of variable that
might modify
values

Program operation
(memory read)

Extraction (allowable
definition set)

BOF, FSB C

Kumar et al.
[19]

String pattern
matching

Statement Memory allocation
table (MAT)

Program operation
(memory read and
write)

Extraction (base and
size of allocated
memory blocks)

BOF, DAP,
MEL

x86

Monga et al.
[41]

Tainted data
flow

Inter-
procedural
control flow

Program paths and
statements that
might modify
sensitive sinks

Unwanted input
(meta characters)

Addition (store taint
labels of untrusted
inputs)

SQLI, XSS PHP

Balzarotti et al.
[62]

Untainted
data flow

Intra and
inter-
procedural
control flow

Module views and
intended
workflows

Code execution flow Extraction (valid
program paths)

SQLI, XSS PHP

Halfond et al.
[81]

String pattern
matching

Statement Valid SQL query
models

Code structure
(SQL)

Extraction (valid SQL
query models)

SQLI JSP

Halfond et al.
[83]

String pattern
matching

Statement Trusted strings Code structure
(SQL)

Addition (mark to
hard coded strings)

SQLI Java byte
code

Johns et al.
[87]

String pattern
matching

Statement Programmer
written script code

Unwanted value
(injected script code)

Addition (replace
known code with
tokens)

SQLI, XSS PHP

Wei et al.
[106]

String pattern
matching

Control flow Identify SQL
queries

Code structure
(SQL)

Extraction (a FSM of
queries before input
inclusions)

SQLI N/A

Muthuprasanna
et al. [107]

String pattern
matching

Inter-
procedural
control flow

SQL finite state
machine (SQL-
FSM)

Code structure
(SQL)

Extraction (SQL-
FSM)

SQLI Java

Lucca et al.
[127]

Tainted data
flow

Control flow Tainted sources
and sensitive sinks

Unwanted value
(meta characters)

Addition (expected
output messages to
analysis functions)-

XSS ASP

Ringenburg et
al. [142]

String pattern
matching

Data flow White listed
memory locations

Program operation
(format function
calls)

Extraction (valid
memory addresses)

FSB C

Yong et al.
[101]

String pattern
matching

Statement Unsafe pointer
dereferences and
legitimate memory
locations

Program operation
(memory read or
write)

Addition (tagging
memory locations)

BOF, DAP C

Dynamic analysis objective: This feature describes what attribute of a program is checked at runtime to

detect attacks during dynamic analysis phase. As can be seen from Table 5, program operation (e.g., [16,

35]), code structure (e.g., [81, 106]), code execution flow (e.g., [62]), and unwanted value (e.g., [87, 127])

are monitored in different hybrid approaches. Program operation checks whether memory allocations,

releases, and accesses are performed in valid memory regions or not. Code structure integrity attribute

validates the known structure of program code during runtime. The code execution flow checks whether

an intended program path can be altered or not without modifying related program states (e.g., session id,

cookie). The unwanted value attribute checks the presence of unwanted values in program inputs and

outputs. We provide details of dynamic analysis objectives in Sections 5.2-5.5. Note that the objectives

34

are related to program states at runtime and they are a subset of program monitoring objectives (to be

discussed in Section 7).

Program state utilization: To detect an attack, a program state needs to be compared with a known

program state under attack. These known states are derived through information extraction or addition of

program sources. We denote such derivation characteristic as program state utilization. Depending on the

types of vulnerabilities and dynamic analysis objectives, we divide program state utilization into two

categories: information extraction (e.g., [35, 62, 81]) and information addition (e.g., [16, 41, 87]). The

sixth column of Table 5 shows the category of program state utilization for each of the work along with

particular information.

Program code can be analyzed to extract useful information to detect attacks during a dynamic analysis

phase. For example, Ringenburg et al. [142] extract whitelists to prevent FSB attacks that write to invalid

memories through malicious %n specifiers. Castro et al. [35] extract reaching definition instruction set for

every variable usage. A definition table is updated on every memory write operation (i.e., definition). The

table can detect BOF and FSB attacks which define variables not included in the reaching definition

instruction set. Balzarotti et al. [62] extract all valid paths that a user traverses during a program’s

execution. During code injection attacks (e.g., SQLI, XSS), these paths are not traversed. Halfond et al.

[83] mark trusted strings in programs which are mainly hard coded strings written by programmers and

include SQL keywords, operators, and literals. These trusted strings help to detect SQLI attacks by

checking if certain parts of SQL queries (i.e., keywords and operators) include trusted strings (i.e., no

attack) or not (i.e., attack). Extracting valid SQL query models through Finite State Automata (FSA) [106,

107] and Non-Deterministic Finite Automata (NDFA) [81] is widely used to detect SQLI attacks. In these

cases, queries are checked to be valid based on the models.

Information can be added in program code which can be retrieved later and compared with a future

program state to detect attack. Aggarwal et al. [16] assign suspicion score for pointers which are declared

locally in functions or passed as arguments to detect BOF. Yong et al. [101] mark memory allocation and

free operations, global, and static variables with “appropriate” and “inappropriate” to tag legitimate and

illegitimate memory locations, respectively in a dynamic analysis. Lucca et al. [127] add expected output

messages to confirm XSS attacks in suspected files (or pages). These files are supplied with attack input

cases and checked for expected responses. Monga et al. [41] detect XSS in PHP-based programs by adding

tainted labels to untrusted input sources and these labels are propagated to variables derived from these

sources during computation. Kumar et al. [19] add a memory allocation table (MAT) to keep track of

memory blocks and sizes to be used later for detecting BOF vulnerabilities. Moreover, they mark each

memory block as active or inactive to identify MEL. Program output locations are checked for the presence

of malicious meta characters in tainted variables. Johns et al. [87] identify keywords in programmer

35

written script code and replace them with masks (random tokens). The masked keywords are unmasked

before generating responses to prevent code injection exploits.

Vulnerability coverage: This feature indicates what vulnerabilities are covered in a hybrid analysis.

Table 5 shows that most approaches address web-based vulnerabilities such as SQLI and XSS (e.g., [41,

81, 87]). Moreover, BOF, FSB, and DAP vulnerabilities have been addressed by several works (e.g., [16,

19, 142]). However, few works have addressed MEL [19] and NLD vulnerabilities.

Language: This feature indicates programming languages (related to implementations) that are supported

in hybrid analysis approaches. As can be seen in Table 5, most of the works analyze code written in either

server side scripting languages (e.g., PHP, JSP) or in procedural languages (e.g., C). Very few works

analyze executable code [19]. A motivation behind analyzing high level scripting languages is the

availability of static analysis tools for those languages. For example, Balzarotti et al. [62] perform intra

and inter-procedural analysis with the help of Pixy tool [88] that analyze PHP code. Similarly, procedural

languages (e.g., C) have high number of static analysis tools and algorithms (e.g., points-to analysis

algorithms).

5.2. Program operation

In this technique, static analysis phase identifies valid memory locations that can be accessed, read, or

written during program executions. During a dynamic analysis phase, these locations are checked for any

operations performed outside the valid memory locations. For example, Castro et al. [2] identify a set of

instructions (or statements) that might modify a variable value (i.e., definition) for each variable use (i.e.,

read) in the dataflow graph of a program during static analysis. During the dynamic analysis, they check

whether a value read has been defined by a legitimate set of definition or not. Ringenburg et al. [110]

perform static data flow analysis to generate white listed addresses (or valid addresses) where writing

operations can be performed during format function calls. Any modification outside the registered

addresses during format function calls are identified in an active analysis. Yong et al. [101] identify

dangerous pointer dereferences and legitimate memory locations which pointers can point to during the

static analysis. Programs are instrumented to check whether dereferences are pointing to legitimate

memory locations or not. If any pointer is used to write (or free) an illegitimate location, then the

instrumented program halts further execution.

Hybrid analysis can be applied to executable program code. However, a dynamic analysis is performed

first to map executable instructions with virtual addresses and identify program operations related to

vulnerability exploitations. Static analysis is performed by decompiling the executable into object code

(e.g., assembly). The object code can be analyzed to obtain attributes related to vulnerabilities (e.g.,

allocated memory sizes). Finally, programs are executed with test cases to check whether vulnerabilities

36

might be exploited based on the gathered information. Kumar et al. [19] apply hybrid analysis of

executable C programs to identify BOF vulnerabilities.

5.3. Code structure integrity

In this approach, a static analysis technique is applied to extract valid code structure. During a dynamic

analysis, it is checked whether runtime program code conforms to the structure or not. Depending on the

types of attacks, the code structure can be modeled with different formal models. For example Halfond et

al. [81] apply Non Deterministic Finite Automata (NDFA) to model valid queries in each hotspot (i.e., a

location where a SQL query is issued to a database engine). In an NDFA, a transition might contain a SQL

token, a delimiter, or an input string value. Muthuprasanna et al. [107] perform Java string analysis on all

the hotspots to construct NDFA, where transitions occur at the character level of a string. Each NDFA is

converted to a SQL Finite State Machine (SQL-FSM) where transitions are either SQL keywords or input

string variables. In both of the works, if a query is not consumed by the model, a SQLI vulnerability is

warned. Wei et al. [106] detect SQLI vulnerabilities in stored procedures by identifying queries that might

be generated during a program’s execution. They develop Finite State Machine (FSM) models of SQL

queries, where a transition from one state to another state occurs for a SQL keyword. During a dynamic

analysis phase, query statements with user inputs are checked against the FSM. If a query is rejected (or

not consumed by an FSM) then an error is flagged. A recent variation of code structure integrity approach

is to apply positive tainting on trusted strings (e.g., hard coded strings written by programmers, SQL

keywords, operators, and literals) during the static analysis and to check whether runtime generated code

are constructed from these trusted strings or not. Halfond et al. [83] apply this approach to detect SQLI

attacks in Java byte code.

5.4. Code execution flow

 In this approach, static analysis is applied to identify valid program execution paths which share a

common program state. These paths also represent sequence of operations to perform functionalities.

During a dynamic analysis, it is checked whether it is possible to jump from one execution path to another

or not. Balzarotti et al. [62] apply this approach. They analyze programs to summarize valid execution

paths (or views) where a path comprises of more than one web page to perform a desired functionality

(e.g., authentication). The second stage of the analysis constructs intended workflows. A workflow

connects a source view with a target view provided that a hyperlink present in the source view is

referenced in the target view and parameters provided through a link is extracted in a target view. The

summarized workflow is represented by a graph, where a node contains a page and corresponding view,

and an edge represents possible web-based operations (e.g., form submission, redirection). A model

checker identifies whether any unintended workflow (i.e., vulnerabilities) is present in the summarized

37

workflow. A detection algorithm is used to check whether from any view it is possible to jump to another

view not included in the intended workflow.

5.5. Unwanted value

 The static analysis phase identifies potential locations where inputs or tainted values might reach and

perform sensitive operations (sinks). When a program execution reaches a sink, all tainted inputs are

checked for suspicious meta characters (e.g., single quotation) that can be used to exploit vulnerabilities

such as SQLI and XSS. For example, Monga et al. [41] detect XSS in PHP-based programs. Similarly,

Lucca et al. [127] identify XSS vulnerabilities in Active Server Pages (ASP)-based programs. However,

these approaches stop program executions while detecting unwanted values. An alternative approach is to

prevent the inclusion of unwanted values in program outputs. This is common for web-based programs

that generate HTML outputs and need to avoid unwanted values (e.g., JavaScript code) to avoid attacks

(e.g., XSS). For example, Johns et al. [87] separate programmer written scripts which are static string

constants in program code. A string is analyzed to identify keywords (e.g., HTML attributes, JavaScript

words) and replace them with masks (random tokens). These masked keywords are unmasked before

generating responses by browsers. As a result, unwanted injected code is replaced with corresponding

encoded form.

5.6. Open issues

From the discussion of hybrid analysis approaches, we observe that program operation and code

integrity are the two widely used dynamic analysis objectives. Most of the works apply string pattern

matching and tainted data flow analysis along with static data or control flow analysis. Very few works

perform dynamic analysis followed by static analysis. Moreover, CSRF vulnerabilities have not been

addressed by current approaches. The study shows that static analysis influences dynamic analysis stage

for most of the works. The precision of static analysis is important and needs to be carefully considered

before applying in a hybrid approach. Future works should explore how assumptions behind static analyses

influence the vulnerability detection in dynamic analysis stages. We notice that very few approaches

employ untained data flow-based static analyses and code execution flow-based dynamic analysis

objectives. We believe that employing suitable dynamic analysis objectives and static inference techniques

can not only improve the effectiveness of hybrid analysis, but also detect a wide range of vulnerabilities.

6. Other mitigation techniques
In this section, we first describe secure programming guidelines. Then we briefly discuss two other

approaches that are primarily applied in the maintenance phase: program transformation and patching.

38

6.1. Secure programming

Program security breaches can be blamed to programmers who overlook possible vulnerabilities in their

implemented code. Moreover, the lack of understanding of an implementation language features (e.g., data

types, libraries) contributes in writing code that is vulnerable [160]. Secure programming (or coding)

approaches are intended to provide supports for implementing programs in vulnerability free ways and can

be considered as the first line of defense to avoid program security breaches. Writing secure code helps

reducing subsequent costs of detecting and fixing security vulnerabilities at later stages. Secure

programming approaches provide supports in the form of safe APIs, libraries, aspects, and filters.

Table 6: A brief comparison summary of the secure programming approaches

Work Type of programming support Vulnerability coverage Programming language
Speirs et al. [38] API BOF C
Tsai et al. [43] Library BOF C
Hermosillo et al. [85] Aspect SQLI, XSS Java
Juillerat et al. [89] Library SQLI, XSS Java
Robbins et al. [144] Library FSB C
CSRFGuard [168] Filter CSRF Java

APIs are system calls which allow programmers to perform checks in the code to avoid vulnerabilities.

For example, ptrbounds [38] is a kernel level API that helps obtaining the writable upper and lower bounds

for a given pointer data type to avoid BOF vulnerabilities in C programs. Most of the vulnerabilities can be

mitigated by applying safe libraries. For example, the Libsafe [43] intercepts all vulnerable library

functions that might result BOF attacks. The library code checks stack to identify the maximum number of

bytes that can be safely written for each destination buffer. Similarly, Libformat library [144] contains

improved version of format functions to prevent FSB vulnerabilities by checking whether supplied format

strings are in writable memory locations and contain suspicious specifiers or not. Moreover, safe libraries

capture the structure of strings that might be used in SQL queries and HTML outputs to prevent code

injection attacks. In this case, the library disallows writing of SQL queries and HTML structures in

program code directly. Juillerat et al. [89] develop such a library named Stones to prevent SQLI and XSS

vulnerabilities in web programs written in Java. Secure programming approaches are adapted to different

programming paradigms. For example, the aspect oriented programming [85] allows weaving special code

through pointcuts (i.e., a pattern of method or function calls with common signatures) and advices (i.e.,

additional code to be added before or after function calls). Vulnerabilities are caused by invalidated inputs

which can be checked through intercepting inputs at pointcuts and detecting (or preventing) the presence of

malicious inputs in advices.

To protect server side programs from CSRF attacks, filters can be added [168]. A filter is a mapping

between resources (e.g., a server script page that performs a sensitive operation) and corresponding code

that intercept HTTP requests to detect possible CSRF attacks. The idea is to verify a request by comparing

39

a unique request token for an HTTP parameter value with a token stored in a session table. If there is a

mismatch, the request is considered as forged and part of a CSRF attack. The filter can redirect a user to an

error page. However, if the token matches with the stored value, then a request is forwarded to a server

program which generates a response page. The response page is searched for HTML forms and links, and

inserted with appropriate unique token parameter values for further prevention of CSRF attacks.

We provide a comparison summary of secure programming approaches in Table 6 which includes three

features: type of programming support, vulnerability coverage, and intended programming language. We

notice that most secure programming approaches are intended to mitigate a limited type of vulnerabilities

namely BOF, FSB, SQLI, and XSS. Moreover, C and Java are the two programming languages having

ample supports for secure programming.

6.2. Program transformation

Program security vulnerabilities can be mitigated in a post release stage which is commonly known as

maintenance phase [156]. Although program features can be extended, removed, or modified in this stage,

we only focus on activities that are intended to fix security vulnerability breaches in the implemented code.

Program transformation is one of the most widely used approaches in this direction which removes

vulnerabilities by applying structured modification of program source code. In other words, source code of

a vulnerable program is transformed to a vulnerability free program. We categorize program

transformation related works into two types: source to source translation [25, 45, 48, 112, 147] and code

rewriting [120, 133, 137].

In source to source translation, a program source is taken as input and an enhanced program in the same

language is generated automatically. A source to source translation can be implemented in different ways

such as using a functional programming language that can replace certain patterns of code with desired

patterns (e.g., TXL [150]). However, we restrict our discussion on the enhancement added in program code

to mitigate vulnerabilities. We divide program transformation approaches into three categories based on

enhancement type: shifting data to safe region, adding security checks, and enriching program data. The

shifting data to safe region approach shifts vulnerable data into safe regions. For example, the SecureC

translator [25] translates a C program into security-enhanced source code. The translation shifts a buffer

memory location into a shadow stack (a read only page, except the location of buffer) to prevent BOF

attacks through out of bound writing. Moreover, C programs are enhanced to reposition each stack buffer

into heap area [147] to avoid return address corruption through BOF. The adding security checks add

necessary checks to avoid vulnerabilities. For example, every buffer index and pointer dereference can be

preceded by an assertion to prevent BOF attacks [45]. The enriching program data approach stores

additional information to track valid memory related information. The information is used to prevent

invalid memory accesses in program code. For example, to detect BOF and DAP vulnerabilities in C

40

programs [48, 112], pointer data types are extended to contain additional information such the base and the

size of memory objects and the status of memory objects (i.e., allocated or freed).

Table 7: A comparison summary of program transformation related works for mitigating security
vulnerabilities

Work Transformation type Vulnerability coverage Programming language
Nishiyama et al. [25], Wang et al. [45],
Dahn et al. [147]

Source to source translation BOF C

Xu et al. [48], Austin et al. [112] Source to source translation BOF, DAP C
Reis et al. [120] Code rewriting BOF JavaScript
Yu et al. [133], Ofunoye et al. [137] Code rewriting XSS JavaScript

The code rewriting technique is used for rewriting the output of a program as opposed to program

source code directly. The output is another high level program that is interpreted or executed. For example,

a server script code written in PHP generates HTML code which might contain BOF vulnerabilities due to

arbitrary large HTML attribute identifiers [120]. The code can be rewritten at the browser to avoid

unexpected results while rendering the page. Similarly, vulnerable JavaScript code can be rewritten to stop

XSS attacks [133, 137].

We provide a brief comparison summary of program transformation related works in Table 7 according

to transformation type, vulnerability coverage, and programming language used. It is obvious that only

BOF, DAP, and XSS have been mitigated using program transformation techniques. Moreover, current

approaches have addressed C and JavaScript programs whose sources are transformed to safe equivalents.

6.3. Patching

Patching is a widely used approach in program maintenance phase to fix reported bugs or errors so that

modified programs conform to expected functionality, performance, and quality [156]. However, we focus

on corrective maintenance which are intended to fix reported security breaches in programs. A patching

technique identifies vulnerable code and modifies the program to remove vulnerabilities. Unlike other

proactive (e.g., static and hybrid analysis, testing) techniques, patches are generated after the occurrence of

attacks. We classify patching works into two types: source code and environment patching.

The source code patching technique analyzes program source code to identify vulnerable statements

that need to be fixed. The common practice is replacing vulnerable code with equivalent safe code. For

example, a SQL query statement can be written as a PreparedStatement which does not allow the

modification of query structure during runtime to prevent SQLI [74, 115]. Moreover, unsafe library

function calls can be replaced with their safe equivalents and added vulnerability checks to avoid BOF

[37]. A variation of source code patching is to guide patching locations by data flow analysis on the source

code of the functions to identify related statements that contribute to vulnerabilities [22]. Patches are

generated by determining the size of buffers. Out of buffer reads are redirected within buffers. Out of

41

bound writings are discarded by replacing unsafe library function calls with safe function calls or skipping

through out of bound checking.

Table 8: A brief comparison summary of patching approaches for mitigating security vulnerabilities

Work Patching type Vulnerability coverage Programming language
Gao et al. [149], Novark et al. [26] Environment BOF, DAP C
Lin et al. [22], Smirnov et al. [37] Source code BOF C
Lin et al. [53] Environment BOF x86
Dysart et al. [74] Source code SQLI PHP
Lin et al. [103] Environment SQLI, XSS N/A
Thomas et al. [115] Source code SQLI Java

In an environment patching approach, program environment is modified which might include memory

layout, external library addresses, etc. This approach can help in patching programs without stopping their

executions. For example, patching to prevent BOF attacks can be performed by redirecting a vulnerable

function (e.g., strcpy) with an equivalent non-vulnerable function (e.g., strncpy) [53] by changing the GOT

(Global Offset Table) entries. Many approaches analyze program artifacts that are generated due to

vulnerability exploitations. These artifacts help identifying changes to be made in an environment. For

example, the crashed program can be analyzed to change environment by adding a canary value at the end

of a buffer to prevent BOF [149]. Moreover, the heap image of a crashed program can be dumped to learn

the magnitude of the overflowed bytes and memory object de-allocation call sites [26]. The information is

used to pad objects and defer object de-allocations to prevent BOF and DAP vulnerabilities, respectively.

For web-based programs, patching can be performed in proxies located between a server and a client. In

this case, a proxy might be enhanced with input filters (input validation functions) [103] to detect

malicious inputs from client side of a program.

We provide a brief comparison summary of patching works that fix program security vulnerabilities in

Table 8, where we classify the works based on patching type, vulnerability coverage, and programming

language. We note that BOF, DAP, SQLI, and XSS vulnerabilities have been addressed by current

approaches. Moreover, most patching works are related to the implementation of C programs. Very few

works generate patches for programs whose sources are available in high (e.g., Java and PHP) and

intermediate languages (e.g., Java byte code and x86).

7. Monitoring
Vulnerabilities might be exploited at runtime through successful attacks. Given that, it is very important

to have a tool which can be used for online monitoring of programs in the operational stage. In a

monitoring approach, vulnerability symptoms are checked by comparing the current state of a program

with a known state under attack. When there is a match (or mismatch) between the two states, a successful

exploitation of a particular vulnerability (or an attack) occurs. The program might be stopped for further

42

execution. A monitoring tool can help to mitigate the consequences of some vulnerability exploitations.

Moreover, it can be utilized in a complementary fashion with other vulnerability prevention techniques

such as static analysis (e.g., [12, 20]) and testing (e.g., [52, 86, 91]).

In this section, we compare and contrast program security vulnerability monitoring approaches in order

to provide a classification based on the following seven identified characteristics: monitoring objective,

program state utilization, implementation mechanism, environmental change, attack response,

vulnerability coverage, and language [7, 8, 10]. The classification is provided in Table 9. We describe

these characteristics in Section 7.1. We then classify these works based on ‘monitoring objective’ which is

a very important characteristic for any monitoring approach. The objectives are program operation, code

execution flow and origin, code structure, value integrity, unwanted value, and invariant. They are

discussed in Sections 7.2-7.7. We discuss open issues in Section 7.8.

7.1. Comparative analysis of monitoring approaches

Monitoring objective: This characteristic indicates program properties during execution which need to be

monitored to detect attacks. We classify the works into six categories which are shown in the second

column of Table 9. These include program operation (e.g., [31, 163]), code execution flow and origin (e.g.,

[63, 69, 70]), code structure (e.g., [66, 79]), value integrity (e.g., [24, 30, 68, 129]), unwanted value (e.g.,

[59, 111, 123, 125]), and invariant (e.g., [13]). Note that some approaches employ multiple monitoring

objectives such as program operation and code execution and origin [69, 70]. We discuss these objectives

in Sections 7.2-7.7.

Program state utilization: To detect an attack at runtime, a program state needs to be compared with a

known program state under attack. These known states might be derived from program states through

information extraction, addition, or modification. We denote such derivation characteristic as program

state utilization. Depending on the nature of vulnerabilities and monitoring objectives, we divide program

state utilization into three categories: information extraction, information addition, and information

modification. The third column of Table 9 shows the category of program state utilization for each of the

work along with particular information.

 Program code can be analyzed to identify (or extract) useful information to detect attacks during

runtime. For example, a list of known JavaScript code [125] can be developed to detect XSS attacks at

runtime. Dhurjati et al. [18] develop a pool allocation table which contains a set of homogenous objects.

Each set represents memory objects related to a data type that a pointer might point during a program

execution [18]. These sets are used to detect BOF and DAP attacks through pointer dereferences. Cowan

et al. [141] extract the number of arguments in format function calls to detect FSB attacks.

43

Table 9: Comparison summary of approaches for monitoring security vulnerability exploitations
Work Monitoring

objective
Program state
utilization

Implementation
mechanism

Environmental
change

Attack
response

Vulnerabilit
y coverage

Language

Berger et
al. [58]

Program operation
(memory read and
write)

Information
modification (memory
locations)

Spatial
rearrangement of
memories

Implementation
(DLL
modification)

Program
termination

BOF, DAP C

Chiueh et
al. [129]

Value integrity
(return address)

Information addition
(return address)

Code
instrumentation
(compiler
modification)

Implementation
(kernel system call
patches)

Program
termination

BOF C

Fetzer et al.
[163]

Program operation
(memory
allocation)

Information addition
(memory block sizes)

API hook Implementation
(DLL
modifications)

Error messages
and program
termination

BOF C

Cowan et
al. [68]

Value integrity
(return address)

Information addition
(canary value)

Code
instrumentation
(compiler
modification)

Program state
utilization
(prologue and
epilogue)

Attack handler
function
execution

BOF C

Gupta et al.
[126]

Value integrity
(return address)

Information addition
(return address and
stack frame)

Binary rewriting Program state
utilization (parallel
stack frame)

Program state
recovery

BOF C

Han et al.
[13]

Invariant
(legitimate API
function call
sequences)

Information addition
and extraction
(function names, stack
size, and return
address)

API hook Implementation
(add DLL functions
in programs)

Program
termination

BOF C

StackShiel
d [77]

Value integrity
(return addresses)

Information addition
(return addresses in
global variables)

Code
instrumentation
(compiler
modification)

Program state
utilization (modify
DATA section)

Program
termination

BOF C

Aggarwal
et al. [105]

Value integrity
(return address,
setjmp, longjmp)

Information addition
(return addresses in a
monitor agent)

Code
instrumentation

Implementation
(program runs
under an agent)

Warning
message
generation

BOF C

Kohli et al.
[108]

Unwanted value
(format string
specifier)

Information addition (a
lightweight hash value
of return addresses)

Binary rewriting Implementation
(DLL calls for
vulnerable
function)

Program
termination

FSB x86

Prasad et
al. [109]

Value integrity
(return address)

Information addition
(return addresses in
prologues)

Binary rewriting

Program state
utilization (return
address repository)

Program
termination

BOF x86

Madan et
al. [24]

Value integrity
(return address)

Information addition
(encrypted return
address)

Code
instrumentation
(compiler
modification)

Program state
utilization
(prologue and
epilogue)

Program
termination

BOF x86

Kiriansky
et al. [110]

Code execution
flow and origin

Information addition
(policies that map
allowable control
transfers with
instructions, source
and destination)

Dynamic code
optimizer extension

Performance (fast
lookup of branches
by saving addresses
in cache memory)

Warning
message
generation

BOF, FSB x86

Newsome
et al. [102]

Program operation
(memory write)

Information addition
(taint untrusted data
source)

Code
instrumentation

Performance (save
code block in
cache)

Invocation of
taint analyzer

BOF, FSB x86

Dhurjati et
al. [18]

Program operation
(memory read and
write)

Information extraction
(homogenous object
sets or pools for each
pointer)

Code
instrumentation
(compiler
modification)

Program state
utilization
(memory pools and
free blocks)

Program
termination

BOF, DAP C

Pyo et al.
[30]

Value integrity
(return address)

Information addition
(encrypted return
address)

Code
instrumentation
(compiler
modification)

Program state
utilization
(prologue and
epilogue)

Attack handler
function
execution

BOF C

44

Work Monitoring
objective

Program state
utilization

Implementation
mechanism

Environmental
change

Attack
response

Vulnerabilit
y coverage

Language

Rinard et
al. [31]

Program operation
(memory write)

Information addition
(hash tables store out
of bound data)

Code
instrumentation
(compiler
modification)

Performance (LRU
cache to store hash
tables)

Program
execution
continuation

BOF, DAP C

Salamat et
al. [32]

Value integrity
(similar output in
two programs)

Information
modification (duplicate
program having stack
growth in reverse
direction)

Code
instrumentation

Implementation
(system call
synchronizations)

Program
terminations

BOF C

Kiciman et
al. [104]

Program operation
(JavaScript code
execution)

Information addition
(policies that map
instrumentation points
and expressions)

Proxy-based tool Implementation (a
proxy with
JavaScript parser is
added)

Warning
message
generation

MEL JavaScript

Suh et al.
[40]

Code execution
flow and origin

Information addition
(tag for untrusted input
values)

Code
instrumentation

Program state
utilization
(program context
switch)

Program
termination

BOF, FSB N/A

Zhou et al.
[54]

Invariant
(instruction sets
accessing
memories)

Information extraction
(instruction sets related
to memory accesses)

Code
instrumentation
(compiler
modification)

Performance
(Check Look aside
Buffer to store most
recently accessed
objects)

Warning
message
generation

BOF C

Zhu et al.
[55]

Value integrity
(function pointer)

Information addition
(encrypted function
pointers in memories)

Code
instrumentation
(compiler
modification)

Implementation
(compiler source
code modification)

Warning
message
generation

BOF C

Alfantookh
et al. [59]

Unwanted value
(SQL code and
meta character)

Information extraction
(know characters
related to SQLI
attacks)

Proxy-based tool Implementation
(adding a filter in
the IIS server)

Request
blockage

SQLI N/A

Bandhakav
i et al. [63]

Invariant (parse
tree of SQL
queries)

Information extraction
and addition (save
parse trees of intended
queries in database)

Code
instrumentation

Implementation
(code optimization
framework)

Warning
message
generation

SQLI JSP

Buehrer et
al. [66]

Code structure
(SQL query)

Information addition
(pre and postpend SQL
queries with random
keys)

Code
instrumentation

Implementation
(static class
addition)

Request
blockage

SQLI Java

Clause et
al. [69]

Program operation,
code execution
flow and origin

Information addition
(taint information of
program variables)

Code
instrumentation

Program state
utilization (bit
vector to be saved
outside program)

Attack handler
function
execution

BOF, FSB,
SQLI

x86

Dalton et
al. [70]

Program operation,
code execution
flow and origin

Information addition
(tainted value to
program memories and
input data)

Code
instrumentation

Program state
utilization (save
register, cache, and
memory locations
while context
switch)

Attack handler
function
execution

BOF, SQLI,
XSS

N/A

Gaurav et
al. [79]

Code structure (x86
opcode)

Information
modification (encrypt
opcode with secret
key)

Modified processor Implementation
(jump to even
addresses)

Runtime
exception
throwing

BOF x86

Boyd et al.
[94]

Code structure
(SQL query)

Information addition
(random integer after
SQL keywords)

Proxy-based tool Implementation
(add a proxy
server)

SQL query
blockage

SQLI N/A

Iha et al.
[122]

Program operation
(HTML page
generation)

Information
modification (inputs
are separated from
DOM nodes)

Browser extension Program state
utilization (store
bind value data into
cache)

Malicious
script blockage

XSS N/A

45

Work Monitoring
objective

Program state
utilization

Implementation
mechanism

Environmental
change

Attack
response

Vulnerabilit
y coverage

Language

Ismail et al.
[123]

Unwanted value
(special HTML
characters)

Information extraction
(identify meta
characters)

Proxy-based tool Implementation
(proxy server
extension)

Attack string
encoding and
storing

XSS JavaScript

Jim et al.
[124]

Unwanted value
(JavaScript code)

Information extraction
(white listed
JavaScript)

Browser extension Implementation
(browser parser
modification)

JavaScript code
blockage

XSS JavaScript

Johns et al.
[125]

Unwanted value
(JavaScript code)

Information extraction
(known JavaScript
used in programs)

Browser extension Implementation
(browser parser
modification)

Warning
message
generation

XSS JavaScript

Bisht et al.
[135]

Invariant (DOM of
an output page)

Information extraction
(parse tree of
JavaScript code)

Browser extension Implementation
(browser scanner
and tokenizer)

Error message
generation

XSS JSP

Cowan et
al. [141]

Value integrity
(format string)

Information extraction
(argument count of
functions)

Code
instrumentation
(compiler
modification)

Implementation
(compiler patch)

Program
termination

FSB C

Li et al.
[143]

Program operation
(memory read)

Information addition
(canary value at the
end of argument list)

Code
instrumentation

Program state
utilization (debug
register saving
while context
switch)

Warning
message
generation and
program
termination

FSB x86

Jones et al.
[151]

Program operation
(memory read and
write)

Information addition
(data structures
containing base and
size of objects)

Code
instrumentation
(compiler
modification)

Implementation
(DLL
modification)

Runtime
exception
throwing

BOF, DAP C

Ruwase et
al. [113]

Program operation
(memory read and
write)

Information addition
(data structures
containing base and
size of objects)

Code
instrumentation
(compiler
modification)

Implementation
(parser generates
object and hash
table)

Runtime
exception
throwing

BOF, DAP C

Etoh et al.
[152]

Value integrity
(canary)

Information
modification (pointer
variables before buffer
variables)

Code
instrumentation
(compiler
modification)

Program state
utilization (frame
pointer and return
address location
change)

Program
termination

BOF C

Hastings et
al. [153]

Program operation
(memory read and
write)

Information addition (a
bit table to track if
allocated memory is
readable, writable, and
both)

Code
instrumentation

Program state
utilization (bit table
is added in object
code)

Warning
message
generation

BOF, DAP,
MEL

C

Lhee et al.
[111]

Unwanted value
(large sized inputs)

Information addition
(data structure and
type table to store
buffer variable names
and sizes)

Code
instrumentation
(compiler
modification)

Program state
utilization (type
table is added in
object code)

Program
termination

BOF C

 Information can be added in a program’s state and retrieved later with a future program state to detect

attacks. For example, BOF attack detection requires storing return addresses of functions and function

pointers adjacent to buffers in safe locations (e.g., [13, 24, 129]). Many approaches add information in

executable program code or environment. Such information can be variables (e.g., a canary value before

return address of a function [68, 143]), data structures and tables containing allocated buffer size

information (e.g., [31, 151]), and taint information of sensitive variables (e.g., [63, 69, 70, 102]).

Moreover, policies can be added to monitor allowable control transfers in executables. In this case, a

policy might check program instructions with allowable sources and destinations [110]. Kiciman et al.

46

[104] apply policies to identify instrumentation points so that unintended behavior of JavaScript code can

be detected and modified. Note that approaches applying invariant-based monitoring objective might

employ both information addition and extraction (e.g., [54]).

 Some approaches modify current program states (e.g., memory, code) to detect attacks. We identify

two ways of performing modifications: randomization and reorganization. The randomization technique

is used in detecting code injection attacks. In this case, non-randomized program code (injected by

attackers) becomes different from randomized program code (written by a programmer) [66, 94].

Randomization can be performed on memory locations [58]. Some monitoring techniques reorganize

program variables and environments to alter program behaviors during attacks. For example, the growth

direction of two stack segments might be set opposite for two versions of a program [32]. This helps to

detect BOF attack based on different outputs of two programs. Another example is to reorganize program

variables including buffers in such a way so that sensitive variables are placed before stack buffers [152].

Implementation mechanism: This characteristic highlights the way of achieving monitoring objective.

We identify eight unique implementation mechanisms as shown in the fourth column of Table 9. These

include spatial rearrangement of memories [58], code instrumentation (e.g., [66, 69, 143]), API hooking

(e.g., [13, 163]), proxy-based tool (e.g., [94, 104, 123]), browser extension (e.g., [122, 124]), modified

processor [79], binary rewriting (e.g., [108, 109]), and dynamic code optimizer extension (e.g., [110]).

We briefly describe them in the following paragraphs.

 In a spatial rearrangement technique, memory blocks (or objects) are allocated at random locations and

the objects are located apart to reduce BOF. Sometimes, allocated objects are initialized with random

values to detect DAP attacks. The mechanism requires developing customized memory managers [58].

 Code instrumentation is one of the widely used techniques where program code is enhanced with

monitoring and prevention code. Additional code can be injected at the binary level [105]. Binary

executable code can be instrumented to add checks (e.g., taint a basic block before passing to a processor

[70, 102]). Monitoring code can also be injected in the object code generated by a compiler [153].

Moreover, an operating system kernel can be modified to save registers containing tainted information for

program data and control during context switches [69]. Code can be instrumented by modifying (or

patching) compilers so that necessary monitoring code is automatically injected into programs. For

example, monitoring of BOF requires saving return addresses to safe locations. This can be done by

adding necessary code in a function prologue [129].

 In API hook technique, vulnerable library function calls are intercepted. The objective of interception

depends on vulnerability type. For example, function calls vulnerable to BOF can be replaced with non

vulnerable function calls. Sometimes, buffer sizes and function calls are stored to be used at a later stage

[13].

47

 The proxy-based tool resides between a client and a server program. The role of the tool depends on

monitoring objectives. For example, a proxy may perform de-randomization of code (e.g., SQL key

words) before submitting SQL queries to a database engine [94]. A proxy can also be used to instrument

client side JavaScript code to prevent security breaches [104].

 Browser extension enables to monitor client side program execution. In this case, browsers are

enhanced with functionalities to support monitoring and prevention of attacks. For example, Firefox can

be extended to generate HTML pages in a customized way to prevent script code injection [122].

 Processors can execute code provided the supplied instruction sets are supported by CPUs. In a

modified processor technique, code randomization is applied with a secret key, where randomized code

must be de-randomized before passing to processors [79]. The modification includes adding decryption

mechanism before loading to processors.

 The binary rewriting technique adds or modifies different section of executable programs such as

adding entries to a symbol table and a hash table in a new section to store data [108, 109].

 Dynamic optimization frameworks allow runtime analysis of program code at different granular levels

(e.g., statement, block). The dynamic code optimizer extension technique leverages such framework to

monitor programs to add checks such as allowing or disallowing control flow between two blocks [110].

Environmental change: This characteristic indicates how an approach introduces changes in program

execution environment. A program execution environment change might include modification of

dynamically linked libraries, compiler, memory, cache, operating system kernel, etc. For web-based

programs, environment might include web server, browser, proxy server, etc. The fifth column of Table 9

shows that the environment can be changed due to implementation mechanism, program state utilization,

and performance. We describe them in the following paragraphs.

 Most of the approaches modify environments due to implementation mechanism. For example,

dynamically linked library calls are modified or injected (e.g., memory allocation and free) as part of

attack detection [13, 58, 163]. Execution of multiple programs might be controlled through system call

synchronization to allow changing of program states due to input and output [32] from the environment.

Web-base client program environments are modified by enhancing browser components (e.g., parsers,

tokenizers) [124, 125]. Server program environment can be modified by extending proxy servers, adding

filters, etc. [59, 123]. Kernel system calls can be modified to detect unintended memory accesses (e.g.,

read only memory access [129]).

 Program states are utilized to detect attacks at runtime. However, program states are often enhanced

and modified with information. These result in changes of program execution environments. For example,

information can be added in registers, cache memories, or extended address space of a program. Program

function prologue and epilogue are modified to introduce environment changes [24, 30, 68]. Moreover,

48

kernel system calls are modified to save program states such as registers, tagging information (or tainted

information), and stacks [40, 70, 143]. A duplicate stack frame can be created in an execution

environment to save sensitive information [126]. Information can be saved in the environment such as a

bit vector table to store the readable and writable status of memory bytes.

 Several approaches try to reduce monitoring overhead by storing information in environment. Many

approaches use faster memory blocks such as cache, hash, and look aside buffer in this direction as ways

of modifying environments. For example, cache memories are used to store the most recent program

instructions that access memories [54]. Moreover, hash can be used to store out of bound data during

BOF attacks [31]. Furthermore, instrumented code block can be saved in cache memory to avoid

instrumenting the same block in future [110].

Attack response: This characteristic describes how monitoring approaches respond to attacks. From the

sixth column of Table 9, it is obvious that most of the techniques terminate programs and generate error

messages. However, some techniques continue program executions by jumping to attack handler modules

that might take corrective actions. For example, recovery of information can be performed based on saved

stacks and return addresses [126]. Some approaches silently respond by simply blocking inputs and

stopping further processing of inputs [59, 94, 122]. These are widely used approaches for handling web-

based attacks. We also notice that several approaches rely on exceptions thrown by processors, as

opposed to attack handler functions [18, 79].

Vulnerability coverage: This characteristic indicates what vulnerabilities are addressed by each of the

approaches. From the seventh column of Table 9, we note that BOF, DAP, FSB, XSS, and SQLI have

been addressed by most of the approaches. Very few approaches have addressed MEL vulnerabilities

during runtime [104, 153]. Moreover, very few approaches can detect multiple attacks (e.g., [69, 70]).

Language: This feature indicates the language of implemented programs which are being monitored.

Most approaches monitor attacks by modifying programs implemented in C (e.g., [68, 129, 151, 163]),

Java [66], and JSP [63, 135] languages. Few approaches modify executable program code to detect

attacks (e.g., x86 [109-111, 143]). Some approaches monitor attacks which are not related to any

implementation languages (e.g., [40, 70]), where we mention the language feature as N/A. Most of these

approaches employ policies which are independent of implementation languages.

7.2. Program operation monitoring

In general, a program takes inputs, processes them, and generates outputs. However, operations related

to memory and function call during these phases might indicate vulnerability exploitations or attacks. The

program operation monitoring objective aims to detect these attacks. We classify program operation

monitoring approaches into four types: memory access with strict bound, memory access with flexible

bound, function call, and output generation.

49

Memory access with strict bound: In this case, an approach does not allow performing read, write, and

free operations on memory locations which are not within the valid address space of a program. This

monitoring objective facilitates the checking of memory related security vulnerabilities such as BOF,

DAP, and MEL. However, the approach requires tracking memory accesses at the fine grained level. For

example, the memory bytes can be tagged for readability and writability status [153]. Moreover, memory

allocation and free operations can be monitored [163]. Furthermore, computation through pointer type

data (e.g., pointer arithmetic) might contribute to memory access related vulnerabilities which can be

prevented by tracking the base and size of all memory objects at runtime [18, 113, 151].

Memory access with flexible bounds: In this monitoring objective, accidental or intentional memory

operations outside valid address spaces are allowed for the sake of program execution continuation. The

related approaches aim to make programs as attack tolerant. However, such approach requires

customization of memory managers to deal with invalid memory accesses. For example, Rinard et al. [31]

prevent BOF as a boundless memory writing approach. They save the out of bound memory values in

hash tables during buffer writing operations. Some approaches allow invalid memory operations in such a

way that corruptions of variables are not performed. For example, Berger et al. [58] develop a runtime

memory manager which randomizes the location of memory objects into the heap region and increases

the size of allocated objects at least twice. As a result, successive objects are located at a wider gap and

chances of BOF attacks are reduced. The DAP vulnerability is prevented by filling random values when

allocating memory blocks by a program and executing multiple versions of the same program.

Function call: A monitoring approach might check whether functions are invoked in vulnerable free

ways or not. In this case, argument count and argument list of functions might be examined. This

objective has been used for detecting FSB attacks during format function calls. For example, Cowan et al.

[141] count the number of arguments passed in format function calls and match these counts with the

number of specifier supplied in format strings during runtime. Li et al. [143] check whether arguments are

being retrieved beyond an argument list or not to detect FSB attacks.

Output generation: In this objective, it is checked whether vulnerabilities might be exploited while

generating outputs with untrusted or tainted data sources. To check attack occurrences, data originating

from untrusted sources are marked as tainted, and the propagation of tainted data is tracked. Finally, the

sensitive output generation points are monitored for the presence of tainted inputs. For example,

Newsome et al. [102] check whether format strings are derived from untrusted inputs or not, during

format function calls. Sometimes, the output generation process is controlled by approaches to make sure

that outputs do not contain injected malicious code. For example, Iha et al. [122] propose the generation

of an HTML page into two stages: generating a DOM tree with nodes and filling the nodes with literals to

50

prevent XSS attacks. Kiciman et al. [104] intercept JavaScript code before rendering through a browser.

They replace vulnerable string constants with safe equivalents to avoid XSS and MEL attacks.

7.3. Code execution flow and origin monitoring

This objective monitors allowable and unallowable control flows in program code. Moreover, it is

checked whether program code is loaded from allowable locations or not. The dynamic information flow

tracking is a popular approach to check these two properties (i.e., intended execution flow and intended

code origin) [40, 69, 70, 110]. Input data sources (e.g., data from file or network) are marked as tainted. If

any value generated from a tainted value is used in either code execution flow (e.g., jump location) or as

code (i.e., instructions and pointers), programs are halted. Such an approach is useful for detecting

vulnerability exploits that change program control flows such as BOF, FSB, and SQLI.

7.4. Code structure monitoring

This objective monitors if an executable code conforms to a desired syntactic structure that is valid and

recognized by processors which execute the code. The objective is intended to detect injection code that

might be provided through user inputs. A programmer implemented source code is randomized initially.

After including user inputs, some parts of the code is de randomized before the code is executed by

processors. As a result, attacker supplied code become meaningless to a processor and only the

implemented code is executed. For example, Gaurav et al. [79] randomize machine code instructions by

XORing each opcode with a unique key. Before loading the code by a processor (i.e., interpreter), the code

is decoded with the same key. Therefore, any decoded injected code results in invalid opcode and a CPU

throws runtime exceptions. The approach can prevent code injection attacks caused by BOF and SQLI.

Boyd et al. [94] also propose randomization of SQL keywords (SQLrand tool) to thwart injection attacks

that contain SQL keywords. They add random integer numbers after SQL keywords. A proxy performs de-

randomization of queries before sending to database engines. For any query containing injected data, the

parse fails to interpret and does not forward it to database engines.

Several approaches compare the code structure before and after including user supplied inputs as ways

of detecting code injection attacks. For example, Buehrer et al. [66] detect SQLI attacks by comparing the

parse trees of SQL queries generated before and after input inclusions.

7.5. Value integrity monitoring

This objective monitors sensitive program or environment values which might be modified during

attacks. We categorize related works into four types: sensitive memory location without modification,

sensitive memory location with modification, injected value, and program output.

Sensitive memory location without modification: In this case, values stored in sensitive memory

locations of programs are checked for their corruption. These values are modified by attacks. For

51

example, the integrity of a function’s return address can be checked to detect a BOF attack [77, 105, 109,

126, 129]. In this case, a copy of the value is saved in a safe memory location (e.g., a register or a global

variable) before a function call. When a function returns to its caller, the integrity of current return

address is checked by comparing the saved return address with the current return address. If the two

addresses matches, then the execution of a program continues. Otherwise, an attack is detected.

Sensitive memory location with modification: To avoid guessing of sensitive memory locations by an

attacker, several approaches store sensitive values in modified forms. For example, a return address or a

function pointer can be encrypted (by XORing with a unique key) and saved in a safe location [24, 30,

55]. When a function finishes execution, the current return address is encrypted with the same key and

compared with the saved address. If they do not match, the address is considered modified by an attack.

Injected value: This objective checks the integrity of injected values in a program as opposed to sensitive

memory locations (e.g., return addresses). When the injected value is modified, an attack is detected. For

example, a canary value might be injected before a return address of a function [68, 152]. Before

returning from a function to its caller, it is checked whether the canary is intact or not. If it is intact, no

attack is detected and a program execution continues by returning a function to its caller. Otherwise, an

attack is detected and a program execution might be stopped.

Program output: This objective detects occurrence of attacks by comparing the output of multiple

versions of a program. These versions are structurally dissimilar and semantically similar to each other.

For example, Salamat et al. [32] apply multi-variant code execution approach to detect BOF

vulnerabilities. They allow the stack growth of two programs in two directions: downward and upward. In

presence of an attack, one version is affected due to overwriting of return address, whereas, another

version might remain intact and behave differently. The approach detects the occurrence of an attack, if

there is any discrepancy in program outputs.

7.6. Unwanted value monitoring

In this objective, user supplied data is examined and checked for the presence of unwanted values. This

objective is common to detect attacks in web-based programs. We divide the related works into two

categories based on input value and input attribute.

Input value: In this case, whitelisted and blacklisted characters are checked before processing inputs by a

program. Presence of blacklisted characters might form malicious code through input values. These

blacklisted inputs might include SQL meta characters [59], HTML characters [123], and format specifiers

[108] which allow SQLI, XSS, and FSB attacks, respectively. Moreover, input values can be examined to

confirm whether they contain only known set of inputs. Any unknown input might represent injected

code. For example, JavaScript code implemented in a program can be digitally signed to mark as

whitelisted. When a page is rendered by a browser, it can be checked whether any JavaScript code present

52

within the page matches with known whitelisted script code or not. Such approach helps to detect XSS

attacks [124, 125].

Input attribute: Program inputs should conform to attributes such as input size. If the input size is large,

it might cause BOF attacks. A monitoring objective might check such attribute of inputs to detect attacks

[111].

7.7. Invariant monitoring

This objective monitors the violation of constant properties in programs during execution. Extracting

invariants requires one to run a program with a set of normal (non attack) input test cases (also known as

profiling). A monitor identifies any deviation from the learned invariants (or profiles) during actual

program run. The invariant properties depend on the attacks. For example, Han et al. [13] apply API

invocation fingerprints to detect BOF attacks during runtime. They obtain a set of legitimate API

invocation sequences and compare API invocation sequences generated at runtime to identify BOF attack.

Program code structure can be applied as invariants. For example, SQLI attacks can be detected by

comparing the parse tree generated with normal and actual inputs [63]. Similarly, XSS attacks can be

identified by comparing the DOM of a shadow page (containing scripts written by programmers) and an

actual generated page [135]. Zhou et al. [54] detect memory related vulnerabilities (e.g., BOF) by

identifying a set of instructions (AccSet) (i.e., invariants) that access memory objects during program

executions. In an actual program run with inputs, it is checked whether any instruction (program counter)

accessing memory objects are within an identified set or not.

7.8. Open issues

We observe that monitoring techniques significantly vary according to the above characteristics. Our

analysis indicates that BOF attacks have been well addressed through program operation and value

integrity-based monitoring objectives. However, few works explore the runtime detection of other attacks

(e.g., SQLI and XSS) based on these objectives. Moreover, unwanted value and code structure-based

monitoring have addressed SQLI and XSS attacks. These two objectives can be explored to detect other

types of attack (e.g., BOF and FSB). We notice that many approaches monitor very fine grained level of

program operations (e.g., accessing a register, memory objects). These approaches may invite high

overhead to maintain and process information at fine grained levels (e.g., byte and word). New research

should focus on introducing monitoring approaches that can detect attacks using higher granularity levels

(e.g., memory block) in order to reduce overhead. For example, randomization can be performed at block

level, as opposed to every opcode.

For web-based programs, most of the works address the monitoring issues related to server side

programs. Very few works monitor client side programs, while client side programming paradigms are

53

evolving rapidly. Thus, we need to develop more client side monitoring tools. We also notice that program

operation, code execution flow and origin, and code structure monitoring objectives can address multiple

attacks. However, many recent attacks do not require injecting code or even corrupting data (e.g., CSRF).

Some attacks might not have direct observable symptoms (e.g., DAP, MEL) compared to other attacks

such as BOF, FSB, SQLI, and XSS. Therefore, more research is required to develop tools for identifying

attacks with unobservable symptoms.

8. Conclusions
In this paper, we perform a comprehensive survey of the works that address detection and prevention of

the most commonly occurred and addressed program security vulnerabilities namely buffer overflow

(BOF), format string bug (FSB), SQL injection (SQLI), cross site scripting (XSS), cross site request

forgery (CSRF), NULL pointer dereference (NLD), dangling pointer (DAP), and memory leak (MEL). We

primarily compare and contrast the most widely used vulnerability mitigation (testing, static analysis, and

hybrid analysis) and runtime monitoring techniques. Each technique has been explored in detail to perform

comparative and qualitative analysis among relevant approaches based on a number of distinguishing

criteria. Then we identify the open issues for each of the corresponding techniques. We also briefly discuss

the current challenges of some other approaches which provide secure programming guidelines or related

program maintenance: program transformation and patching.

Table 10: A mapping between the program security mitigation techniques and the addressed vulnerabilities
Technique BOF FSB SQLI XSS CSRF NLD DAP MEL
Testing Y Y Y Y N N N N
Static analysis Y Y Y Y N Y Y Y
Monitoring Y Y Y Y N N Y Y
Hybrid Y Y Y Y N N Y Y
Secure programming Y Y Y Y Y N N N
Program transformation Y N N Y N N Y N
Patching Y N Y Y N N Y N

Table 11: A mapping between the program security mitigation techniques and the programming languages

Technique C C++ Java JSP PHP ASP JavaScript x86 Java byte code
Testing Y N N Y Y N N Y Y
Static analysis Y Y Y Y Y Y N Y N
Monitoring Y N Y Y N Y Y Y N
Hybrid Y N Y Y Y Y N Y Y
Secure programming Y N Y N N N N N N
Program transformation Y N N N N N Y N N
Patching Y N Y N Y N N Y N

Based on our analysis, we provide a summarized mapping between the program security mitigation

techniques and the addressed vulnerabilities in Table 10. It relates whether techniques have been applied to

mitigate corresponding vulnerabilities (Y) or not (N). It is obvious that existing techniques have devoted

considerable effort to partially mitigate a subset of vulnerabilities such as BOF, FSB, SQLI, and XSS. We

54

also map whether these techniques have been applied to programs written in a particular language (Y) or

not (N) in Table 11. We notice a gap between current techniques and underlying programming languages

as well. Currently, programs written in C, Java, and PHP are analyzed. However, we should also

investigate how vulnerabilities can be detected in the programs written in other programming languages

and where source code is not available (i.e., in executable forms). For all these techniques, our common

observation is that they can detect only certain types of vulnerabilities at the same time. Some techniques

are strictly limited to certain programming languages. Moreover, few works have attempted combined

techniques to detect vulnerabilities. We believe that future program security research should explore the

detection and prevention of multiple vulnerabilities by applying new and hybrid techniques on the

programs written in various programming languages.

Currently, there is no existing work that summarizes and compares current program-based vulnerability

mitigation works in detail. This survey will help software security practitioners and researchers to

understand pros and cons of these techniques, develop new software security tools, and explore future

research avenues. For the sake of the length of the survey and the broadness of this topic, our study is

restricted to the techniques that strive to mitigate the vulnerabilities found in the code level only. We also

limit our analysis of vulnerabilities for the programs written in procedural, object oriented, and scripting

languages. We do not discuss the approaches that primarily develop (e.g., [34, 82]) or evaluate (e.g., [23])

network intrusion detection systems (IDS). Our study also does not include security breaches that can be

managed by using formal access control policies (e.g., role-based access control policy or RBAC). More

independent surveys are required for the above mentioned topics.

9. References
[1] H. Shahriar and M. Zulkernine, “Test Adequacy of Buffer Overflow Vulnerabilities: A Mutation-

Based Approach,” International Journal of Software Engineering and Knowledge Engineering (IJSEKE),

Vol. 20, Issue 1, World Scientific, February 2010, pp. 73-101.

[2] H. Shahriar and M. Zulkernine, “Mutation-based Testing of Buffer Overflow Vulnerabilities,” Proc.

of the 2nd International Workshop on Security in Software Engineering (IWSSE), Finland, July 2008, pp.

979-984.

[3] H. Shahriar and M. Zulkernine, “Mutation-based Testing of Format String Bugs,” Proc. of 11th High

Assurance Systems Engineering Symposium (HASE 2008), Nanjing, China, December 2008, pp. 229-238.

[4] H. Shahriar and M. Zulkernine, “MUSIC: Mutation-based SQL Injection Vulnerability Checking”.

Proc. of the 8th International Conference on Quality Software (QSIC 2008), London, UK, August 2008,

pp. 77-86.

55

[5] H. Shahriar and M. Zulkernine, “MUTEC: Mutation-based Testing of Cross Site Scripting,” Proc. of

the 5th ICSE Workshop on Software Engineering for Secure Systems, Vancouver, Canada, May 2009, pp.

47-53.

[6] H. Shahriar and M. Zulkernine, “Automatic Testing of Program Security Vulnerabilities,” Proc. of the

1st International Workshop on Test Automation, Seattle, USA, July 2009, pp. 550-555.

[7] H. Shahriar and M. Zulkernine, “Classification of Buffer Overflow Vulnerability Monitors,” Proc. of

the 4th International Workshop on Secure Software Engineering, Krakow, Poland, February 2010, pp.

519-524.

[8] H. Shahriar and M. Zulkernine, “Taxonomy and Classification of Automatic Monitors for Program

Security Vulnerabilities,” Journal of Systems and Software, Elsevier (Under 2nd round review).

[9] H. Shahriar and M. Zulkernine, “Mitigating Program Security Vulnerabilities: Challenges and

Approaches,” ACM Computing Surveys, Conditionally accepted in June 2010.

[10] H. Shahriar and M. Zulkernine, “Monitoring Buffer Overflow Attacks: A Perennial Task,” To appear

in International Journal of Secure Software Engineering, IGI Global.

[11] H. Shahriar and M. Zulkernine, “Classification of Static Analysis-based Buffer Overflow

Vulnerability Detection,” Proceedings of the 1st International Workshop on Model Checking in Reliability

and Security, Singapore, June 2010, pp. 94-101.

[12] B. Hackett, M. Das, D. Wang, and Z. Yang, “Modular Checking for Buffer Overflows in the Large,”

Proceedings of the 28th International Conference on Software Engineering, Shanghai, China, May 2006,

pp. 232-241.

[13] H. Han, X. Lu, L. Ren, B. Chen, and N. Yang, “AIFD: A Runtime Solution to Buffer Overflow

Attack,” International Conference on Machine Learning and Cybernetics, August 2007, Hong Kong, pp.

3189-3194.

[14] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection: Help for the practicing

programmer,” IEEE Computer Magazine, Volume 11, Issue 4, 1978, pp. 34-41.

[15] A. Jorgensen, “Testing with hostile data streams,” ACM SIGSOFT Software Engineering Notes,

Volume 28, Issue 2, March 2003, pp. 9

[16] A. Aggarwal and P. Jalote, “Integrating Static and Dynamic Analysis for Detecting Vulnerabilities,”

Proceedings of the 30th Annual International Computer Software and Application Conference, July 2006,

pp. 343-350.

[17] K. Kratkiewicz and R. Lippmann, “Using a Diagnostic Corpus of C Programs to Evaluate Buffer

Overflow Detection by Static Analysis Tools,” Proc. of the Workshop on the Evaluation of Software

Defect Detection Tools, Chicago, USA, June 2005.

56

[18] D. Dhurjati and V. Adve, “Detecting all Dangling Pointer Uses in Production Servers”, Proc. of the

International Conference on Dependable Systems and Networks, Philadelphia, USA, June 2006, pp. 269-

280.

[19] P. Kumar, A. Nema, and R. Kumar, “Hybrid Analysis of Executables to Detect Security

Vulnerabilities,” Proc. of the 2nd Annual Conf. on India Software Engineering Conference, Pune, India,

February 2009, pp. 141-142.

[20] W. Le and M. Soffa, “Marple: A Demand-driven Path-sensitive Buffer Overflow Detector,” Proc. of

the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering, Atlanta,

Georgia, November 2008, pp. 272-282.

[21] P. McMinn, “Search-based Software Test Data Generation: A Survey,” Software Testing,

Verification and Reliability, Vol. 14, No. 2, pp. 105-156, 2004.

[22] Z. Lin, X. Jiang, D. Xu, B. Mao, and L. Xie, “AutoPaG: Towards Automated Software Patch

Generation with Source Code Root Cause Identification and Repair,” Proc. of the 2nd Symposium on

Information, Computer and Communications Security, Singapore, March 2007, pp. 329-340.

[23] G. Vigna, W. Robertson, D. Balzarotti, “Testing Network-based Intrusion Detection Signature Using

Mutant Exploits,” Proc. of the Conf. on Computer and Communication Security, October 2004,

Washington DC, pp. 21-30.

[24] B. Madan, S. Phoha, and K. Trivedi, “StackOFFence: A Technique for Defending Against Buffer

Overflow Attacks,” Proc. of the Intl. Conference on Information Technology: Coding and Computing,

April 2005, pp. 656- 661

[25] H. Nishiyama, “SecureC: control-flow protection against general buffer overflow attack,”

Proceedings of the 29th Annual International Computer Software and Applications Conference,

Edinburgh, Scotland, July 2005, pp. 149-155.

[26] G. Novark, E. Berger, and B. Zorn, “Exterminator: Automatically Correcting Memory Errors with

High Probability,” Proc. of the Conf. on Programming Language Design and Implementation, San Diego,

2007, pp. 1- 11

[27] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler, “EXE: Automatically Generating Inputs

of Death,” Proc. of the 13th Conference on Computer and Communications Security, Alexandria, USA,

Nov 2006, pp. 322-335.

[28] C. Grosso, G. Antoniol, E. Merlo, and P. Galinier, “Detecting Buffer Overflow via Automatic Test

Input Data Generation,” Computers and Operations Research, Volume 35, Issue 10, October 2008, pp.

3125-3143.

57

[29] D. Pozza, R. Sisto, L. Durante, and A. Valenzano, “Comparing Lexical Analysis Tools for Buffer

Overflow Detection in Network Software,” Proc. of the 1st International Conference on Communication

System Software and Middleware, January 2006, New Delhi, pp. 1-7.

[30] C. Pyo, B. Bae, T. Kim, and G. Lee, “Run-time Detection of Buffer Overflow Attacks without

Explicit Sensor Data Objects,” Proc. of the Intl. Conf. on Information Technology: Coding and

Computing, Las Vegas, April 2004, pp. 50

[31] M. Rinard, C. Cadar, D. Dumitran, D. Roy, and T. Leu, “A Dynamic Technique for Eliminating

Buffer Overflow Vulnerabilities (and Other Memory Errors),” Proceedings of the 20th Annual Computer

Security Applications Conference, Tucson, USA, December 2004, pp. 82-90

[32] B. Salamat, A. Gal, T. Jackson, K. Manivannan, G. Wagner, and M. Franz, “Multi-variant Program

Execution: Using Multi-core Systems to Defuse Buffer-Overflow Vulnerabilities,” Proc. of the

International Conference on Complex, Intelligent and Software Intensive Systems, Spain, March 2008, pp.

843-848.

[33] J. King, “Symbolic Execution and Program Testing,” Communications of the ACM, Volume 19,

Issue 7, July 1976, pp. 385-394.

[34] E. Bertino, A. Kamra, and J. Early, “Profiling Database Application to Detect SQL Injection

Attacks,” Proc. of the Intl. Performance, Computing, and Communications Conference, New Orleans,

April 2007, pp. 449-458.

[35] M. Castro, M. Costa, and T. Harris, “Securing Software by Enforcing Data-flow Integrity,”

Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation, Seattle,

WA, 2006, pp. 11-11.

[36] M. Hind, “Pointer Analysis: Haven’t We Solve This Problem Yet?,” Proceedings of the ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, Snowbird,

Utah, June 2001, pp. 54-61.

[37] A. Smirnov and T. Chiueh, “Automatic Patch Generation for Buffer Overflow Attacks,” Proc. of the

3rd Intl. Symposium on Information Assurance and Security, Manchester, UK, August 2007, pp. 165-170,

ISBN: 0-7695-2876-7

[38] W. Speirs, “Making the Kernel Responsible: A New Approach to Detecting & Preventing Buffer

Overflows,” Proc. of the 3rd IEEE International Workshop on Information Assurance, Washington,

March 2005, pp. 21-32

[39] V. Okun, William Guthrie, Romain Gaucher, and Paul Black, “Effect of Static Analysis Tools on

Software Security: Preliminary Investigation,” Proc. of the 3rd Workshop on Quality of Protection QoP,

October 2007, Alexandira, Virginia, pp. 1-5.

58

[40] G. Edward Suh, J. Lee, D. Zhang, and S. Devadas, “Secure Program Execution via Dynamic

Information Flow Tracking,” Proceedings of the 11th Intl. Conf. on Architectural Support for

Programming Languages and Operating Systems, California, October 2006, pp. 85-96.

[41] M. Monga, R. Paleari, and E. Passerini, “A Hybrid Analysis Framework for Detecting Web

Application Vulnerabilities,” Proc. of the 5th ICSE Workshop on Software Engineering for Secured

Systems, Vancouver, Canada, May 2009, pp. 87-96.

[42] J. Tevis and J. Hamilton, “Static Analysis of Anomalies and Security Vulnerabilities in Executable

Files,” Proceedings of the 44th Annual Southeast Regional Conference, Melbourne, Florida, 2006, pp.

560-565.

[43] T. Tsai and N. Singh, “Libsafe: Transparent System-wide Protection Against Buffer Overflow

Attacks,” Proc. of the International Conference on Dependable Systems and Networks, Bethesda, USA,

June 2002, pp. 541

[44] J. Viega, J. Bloch, T. Kohno, and G. McGraw, “Token-based scanning of source code for security

problems,” ACM Transactions on Information and System Security (TISSEC), Volume 5, Issue 3, August

2002, pp. 238-261

[45] L. Wang, J. Cordy, and T. Dean, “Enhancing Security Using Legality Assertions,” Proceedings of

the 12th Working Conference on Reverse Engineering, Stuttgart, German, November 2005, pp. 35-44.

[46] M. Weber, V. Shah, and C. Ren, “A Case Study in Detecting Software Security Vulnerabilities

Using Constraint Optimization,” Proc. of the Workshop on Source Code Analysis and Manipulation,

Italy, November 2001, pp. 3-13.

[47] Y. Xie, A. Chou, and D. Engler, “ARCHER: Using Symbolic, “Path-sensitive Analysis to Detect

Memory Access Errors,” Proceedings of the 9th European Software Engineering Conference, Helsinki,

Finland, 2003, pp. 327-336.

[48] W. Xu, D. DuVarney, and R. Sekar, “An Efficient and Backwards-Compatible Transformation to

Ensure Memory Safety of C Programs,” Proc. of the 12th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, California, 2004, pp. 117-126.

[49] G. McGraw and B. Potter, “Software Security Testing,” IEEE Security and Privacy 2(5), 2004, pp.

81-85.

[50 R. Xu, P. Godefroid, and R. Majumdar, “Testing for Buffer Overflows with Length Abstraction,”

Proceedings of the International Symposium on Software Testing and Analysis, July 2008, Seattle, USA,

pp. 27-38.

[51] B. Chess and G. McGraw, “Static Analysis for Security,” IEEE Security and Privacy 2(6), 2004, pp.

76-79.

59

[52] X. Zhang, L. Shao, and J. Zheng, “A Novel Method of Software Vulnerability Detection based on

Fuzzing Technique,” Intl. Conf. on Apperceiving Computing and Intelligence Analysis, December 2008,

pp. 270-273.

[53] Z. Lin, B. Mao, and L. Xie, “A Practical Framework for Dynamically Immunizing Software Security

Vulnerabilities,” Proc. of the 1st Intl. Conference on Availability, Reliability and Security, April 2006, pp.

348-357.

[54] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and J. Torrellas, “AccMon:

Automatically Detecting Memory-related Bugs via Program Counter-based Invariants,” Proc. of 37th Intl.

Symposium on Microarchitecture (MICRO), Portland, Oregon, 2004, pp. 269-280.

[55] G. Zhu and A. Tyagi, “Protection against Indirect Overflow Attacks on Pointers,” Proceedings of the

2nd International Information Assurance Workshop (IWIA’04), Charlotte, North Carolina, April 2004, pp.

97-106.

[56] M. Zitser, R. Lippmann, and T. Leek, “Testing Static Analysis Tools using Exploitable Buffer

Overflows from Open Source Code,” Proceedings of the 12th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, Newport Beach, California, November 2004, pp. 97-106.

[57] J. Offutt, Ye Wu, X. Du, and H. Huang, “Bypass Testing of Web Applications,” Proc. of the 15th

International Symposium on Software Reliability Engineering (ISSRE 2004), Saint-Malo, France,

November 2004, pp. 187-197.

[58] E. Berger and B. Zorn, “DieHard: Probabilistic Memory Safety for Unsafe Languages,” Proc. of the

ACM SIGPLAN Conference on Programming Language Design and Implementation, Ottawa, Canada,

June 2006, pp. 158-168.

[59] A. Alfantookh, “An Automated Universal Server Level Solution for SQL Injection Security Flaw,”

Proc. of the International Conference on Electrical, Electronic and Computer Engineering, September

2004, pp. 131-135.

[60] E. Haugh and M. Bishop, “Testing C Programs for Buffer Overflow Vulnerabilities,” Proc. of the

Network and Distributed System Security Symposium (NDSS), San Diego, California, February 2003.

[61] B. Breech and L. Pollock, “A Framework for Testing Security Mechanisms for Program-based

Attacks,” Proc. of the 2005 ICSE Workshop on Software Engineering for Secure Systems, Missouri, May

2005, pp. 1-7.

[62] D. Balzarotti, M. Cova, V. Felmetsger, and G. Vigna, “Multi-Module Vulnerability Analysis of

Web-based Applications,” Proc. of the 14th ACM Conference on Computer and Communications Security,

Alexandria, October 2007, pp. 25-35.

60

[63] S. Bandhakavi, P. Bisth, P. Madhusudan, and V. Venkatakrishnan, “CANDID: Preventing SQL

Injection Attacks using Dynamic Candidate Evaluations,” Proceedings of the 14th ACM Conference on

Computer and communications security, Alexandria, Virginia, Oct 2007, pp. 12-24.

[64] W. Du and A. Mathur, “Testing for Software Vulnerabilities Using Environment Perturbation,”

International conference on Dependable Systems and Networks (DSN 2000), New York, NY, June 2000,

pp. 603-612.

[65] A. Ghosh, T. O'Connor, and G. McGraw, “An Automated Approach for Identifying Potential

Vulnerabilities in Software,” IEEE Symposium on Security and Privacy, California, 1998, pp. 104-14.

[66] G. Buehrer, B. Weide, and P. Sivilotti, “Using Parse Tree Validation to Prevent SQL Injection

Attacks,” Proc. of the 5th Intl. Workshop on Software Engineering and Middleware, Lisbon, Portugal,

2005,pp.106-113.

[67] H. Kim, Y. Choi, D. Lee, and D. Lee, “Practical Security Testing using File Fuzzing,” Proc. of

International Conference on Advanced Computing Technologies (ICACT), Hyderabad, India, February

2008, pp. 1304-1307.

[68] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q.

Zhang, “Automatic Adaptive Detection and Prevention of Buffer Overflow Attacks,” Proc. of the 7th

USENIX Security Conference, San Antonio, Texas, January 1998.

[69] J. Clause, W. Li, and A. Orso, “Dytan: A Generic Dynamic Taint Analysis Framework,” Proc. of the

International Symposium on Software Testing and Analysis, London, United Kingdom, 2007, pp. 196-

206.

[70] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A Flexible Information Flow Architecture for

Software Security,” Proc. of the 34th Intl. Symposium on Computer Architecture, San Diego, California,

2007, pp. 482-493.

[71] A. Tappenden, P. Beatty, J. Miller, A. Geras, and M. Smith, “Agile Security Testing of Web-based

Systems via HTTPUnit,” Proc. of Agile Development Conference (ADC), Denver, Colorado, July 2005,

pp. 29- 38.

[72] W. Allen, D. Chin, and G. Marin, “A Model-based Approach to the Security Testing of Network

Protocol Implementations,” Proc. of the 31st IEEE Conference on Local Computer Networks, November

2006, pp. 1008-1015.

[73] O. Tal, S. Knight, and T. Dean, “Syntax-based Vulnerabilities Testing of Frame-based Network

Protocols,” Proc. of the 2nd Annual Conference on Privacy, Security and Trust, Fredericton, Canada,

October 2004, pp. 155-160.

61

[74] F. Dysart and M. Sherriff, “Automated Fix Generator for SQL Injection Attacks,” Proceedings of the

19th International Symposium on Software Reliability Engineering, Seattle, Washington, November 2008,

pp. 311-312.

[75] P. Vilela, M. Machado, and E. Wong, “Testing for Security Vulnerabilities in Software,” Proceeding

Software Engineering and Applications (SEA 2002), Cambridge, USA, November 2002.

[76] J. Fonseca, M. Vieira, and H. Madeira, “Testing and Comparing Web Vulnerability Scanning Tools

for SQL Injection and XSS Attacks,” Proceedings of the 13th Pacific Rim International Symposium on

Dependable Computing, Melbourne, Australia, December 2007, pp. 365-372.

[77] Stack Shield, A “stack smashing” technique protection tool for Linux, Vendicator, January 2001,

Accessed from www.angelfire.com/sk/stackshield

[78] J. Yang, T. Kremenek, Y. Xie, and D. Engler, “MECA: An Extensible, Expressive System and

Language for Statically Checking Security Properties,” Proceedings of 10th ACM Conference on

Computer and Communications Security, Washington DC, USA, October 2003, pp. 321-334.

[79] Gaurav Kc, A. Keromytis, and V. Prevelakis, “Countering code-injection attacks with instruction-set

randomization,” Proc. of the 10th ACM Conf. on Computer and Communications Security, Washington,

October 2003, pp. 272-280.

[80] J. Wilander and M. Kamkar, “A Comparison of Publicly Available Tools for Dynamic Buffer

Overflow Prevention,” Proc. of the 10th Network and Distributed System Security Symposium, February

2003, California, pp. 149-162.

[81] W. Halfond and A. Orso, “Combining static analysis and runtime monitoring to counter SQL-

injection attacks,” Proc. of the 3rd International Workshop on Dynamic Analysis, Missouri, May 2005, pp.

1-7.

[82] K. Kemalis and T. Tzouramanis, “SQL-IDS: A Specification-based Approach for SQL-Injection

Detection,” Proc. of 23rd ACM Symposium on Applied Computing (SAC’08), March 2008, Fortaleza,

Brazil, pp. 2153- 2158.

[83] W. Halfond, A. Orso, and P. Manolios, “Using positive tainting and syntax-aware evaluation to

counter SQL injection attacks,” Proc. of the 14th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, Portland, Oregon, November 2006, pp. 175-185.

[84] H. Zhu, P. Hall, and J. May, “Software Unit Test Coverage and Adequacy,” ACM Computing

Surveys (CSUR), Volume 29, Issue 4, December 1997, pp. 366-427.

[85] G. Hermosillo, R. Gomez, L. Seinturier, and L. Duchien, “AProSec: an Aspect for Programming

Secure Web Applications,” Proceedings of the 2nd International Conference on Availability, Reliability

and Security, Vienna, Austria, April 2007, pp. 1026-1033.

62

[86] Y. Huang, S. Huang, T. Lin, and C. Tsai, “Web Application Security Assessment by Fault Injection

and Behavior Monitoring,” Proceedings of the 12th International Conference on World Wide Web,

Budapest, May 2003, pp. 148-159.

[87] M. Johns and C. Beyerlein, “SMask: Preventing Injection Attacks in Web Applications by

Approximating Automatic Data/Code Separation,” Proceedings of the ACM Symposium on Applied

computing, Seoul, Korea, March 2007, pp. 284-291.

[88] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A Static Analysis Tool for Detecting Web

Application Vulnerabilities,” Proc. of the IEEE Symposium on Security and Privacy, Oakland, May 2006,

pp. 258-263.

[89] N. Juillerat, “Enforcing Code Security in Database Web Applications using Libraries and Object

Models,” Proc. of the 2007 Symposium on Library-Centric Software Design, Montreal, Canada, 2007, pp.

31-41.

[90] M. Junjin, “An Approach for SQL Injection Vulnerability Detection,” Proc. of the 6th International

Conference on Information Technology: New Generations, Las Vegas, Nevada, April 2009, pp. 1411-

1414.

[91] S. Kals, E. Krida, C. Kruegel, and N. Jovanovic, “SecuBat: A Web Vulnerability Scanner,” Proc. of

the 15th International Conference on World Wide Web, Edinburgh, Scotland, May 2006, pp. 247-256.

[92] M. Dowd, J. McDonald, and J. Schuh, The Art of Software Security Assessment, Addision-Wesley,

2007.

[93] Symantec Internet Security Threat Report, Trends for July–December 07, Volume XII, April 2008,

Accessed from http://eval.symantec.com/mktginfo/enterprise/white_papers

[94] S. Boyd and A. Keromytis, “SQLrand: Preventing SQL Injection Attacks,” Proc. of 2nd International

Conference on Applied Cryptography and Network Security, Springer, 2004, pp. 292–302

[95] Common Vulnerabilities and Exposures (CVE), http://cve.mitre.org

[96] A. Kieżun, P. Guo, K. Jayaraman, and M. Ernst, “Automatic Creation of SQL Injection and Cross-

site Scripting Attacks,” Proceedings of the 31st Intl. Conf. on Software Engineering, Vancouver, Canada,

May 2009, pp. 199-209.

[97] Open Source Vulnerability Database (OSVDB), http://osvdb.org

[98] Range and Type Error Vulnerability, Accessed from http://www.owasp.org/index.php/

Category:Range_and_Type_Error_Vulnerability

[99] M. Lam, M. Martin, B. Livshits, and J. Whaley, “Securing Web Applications with Static and

Dynamic Information Flow Tracking,” Proceedings of the ACM SIGPLAN Symposium on Partial

Evaluation and Semantics-based Program Manipulation, San Francisco, California, January 2008, pp. 3-

12.

63

[100] V. Livshits and M. Lam, “Finding Security Vulnerabilities in Java Applications with Static

Analysis,” Proceedings of the 14th conference on USENIX Security Symposium, Baltimore, USA, July

2005, pp.18.

[101] S. Yong and S. Horwitz, “Protecting C Programs from Attacks via Invalid Pointer Dereferences,” In

ACM SIGSOFT Software Engineering Notes, Volume 28, Issue 5, September 2003, pp. 307-316.

[102] J. Newsome and D. Song, “Dynamic Taint Analysis for Automatic Detection, Analysis, and

Signature Generation of Exploits on Commodity Software,” Proceedings of the Network and Distributed

System Security Symposium, San Diego, Feb 2005.

[103] J. Lin and J. Chen, “The Automatic Defense Mechanism for Malicious Injection Attack,” Proc. of

7th Intl. Conference on Computer and Information Technology, Fukushima, Japan, Oct 2007, pp. 709-714.

[104] E. Kiciman and B. Livshits, “AjaxScope: A Platform for Remotely Monitoring the Client-Side

Behavior of Web 2.0 Applications,” Proc. of 21st Symposium on Operating Systems Principles, Stevenson,

Washington, 2007, pp. 17-30.

[105] A. Aggarwal and P. Jalote, “Monitoring the Security Health of Software Systems,” Proceedings of

the 17th International Symposium on Software Reliability Engineering, North Carolina, November 2006,

pp. 146-158.

[106] K. Wei, M. Muthuprasanna, and S. Kothari, “Preventing SQL Injection Attacks in Stored

Procedures,” Proceedings of the Australian Software Engineering Conference, Sydney, Australia, April

2006, pp. 191-198.

[107] M. Muthuprasanna, K. Wei, and S. Kothari, “Eliminating SQL Injection Attacks- A transparent

Defense Mechanism,” Proc. of the 8th International Symposium on Web Site Evolution, Philadelphia, Sept

2006, pp 22-32.

[108] P. Kohli and B. Bruhadeshwar, “FormatShield: A Binary Rewriting Defense against Format String

Attacks,” Proc. of the 13th Australasian Conf. on Information Security and Privacy, Australia, July 2008,

pp. 376-390.

[109] M. Prasad and T. Chiueh, “A Binary Rewriting Defense against Stack based Buffer Overflow

Attacks,” Proceedings of USENIX 2003 Annual Technical Conference, San Antonio, Texas, June 2003,

pp. 211-224.

[110] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure Execution via Program Shepherding,”

Proceedings of the 11th USENIX Security Symposium, San Francisco, August 2002, pp. 191-206.

[111] K. Lhee and S. Chapin, “Type-Assisted Dynamic Buffer Overflow Detection,” Proceedings of the

11th USENIX Security Symposium, San Francisco, August 2002, pp. 81-88.

64

[112] T. Austin, S. Breach, and G. Sohi, “Efficient Detection of All Pointer and Array Access Errors,”

Proc. of the Conference on Programming Language Design and Implementation, Orlando, June 1994, pp.

290-301.

[113] O. Ruwase and M. Lam, “A Practical Dynamic Buffer Overflow Detector,” Proceedings of Network

and Distributed System Security Symposium (NDSS), 2004, pp. 159-169.

[114] D. Evans and D. Larochelle, “Improving Security Using Extensible Lightweight Static Analysis,”

IEEE Software, January 2002, pp. 42-51.

[115] S. Thomas and L. Williams, “Using Automated Fix Generation to Secure SQL Statements,”

Proceedings of the 3rd International Workshop on Software Engineering for Secure Systems, Minneapolis,

May 2007, pp 9-14.

[116] N. Dor, M. Rodeh, and M. Sagiv, “CSSV: Towards a Realistic Tool for Statically Detecting All

Buffer Overflows in C,” Proc. of the Conf. on Programming Language Design and Implementation,

California, June 2003, pp. 155-167.

[117] Y. Xie and A. Aiken, “Static Detection of Security Vulnerabilities in Scripting Languages,”

Proceedings of the 15th Conference on USENIX Security Symposium, Vancouver, Canada, July 2006, pp.

179-192.

[118] D. Wagner, J. Foster, E. Brewer, and A. Aiken, “A First Step Towards Automated Detection of

Buffer Overrun Vulnerabilities,” Proc. of Network and Distributed System Security Symposium, San

Diego, February 2000, pp. 3-17.

[119] Document Object Model (DOM) Level 1 Specification, Version 1.0, October 1998,

http://www.w3.org

[120] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir, “BrowserShield: Vulnerability-driven

filtering of dynamic HTML,” ACM Transactions on the Web, Volume 1, Issue 3, September 2007, Article

No. 11.

[121] A. Klein, “DOM-based Cross Site Scripting or XSS of the Third Kind,” July 2005.

[122] G. Iha and H. Doi, “An Implementation of the Binding Mechanism in the Web Browser for

Preventing XSS Attacks: Introducing the Bind-Value Headers,” Proc. of the Intl. Conf. on Availability,

Reliability and Security, 2009, pp. 966-971.

[123] O. Ismail, M. Etoh, Y. Kadobayashi, and S. Yamaguchi, “A Proposal and Implementation of

Automatic Detection/Collection System for Cross-site Scripting Vulnerability,” Proceedings of the 18th

International Conference on Advanced Information Networking and Applications, 2004, pp. 145-151.

[124] T. Jim, N. Swamy, and M. Hicks, “Defeating Script Injection Attacks with Browser-Enforced

Embedded Policies,” Proceedings of the 16th International Conference on World Wide Web, Alberta, May

2007, pp. 601-610.

65

[125] M. Johns, B. Engelmann, and J. Posegga, “XSSDS: Server-Side Detection of Cross-Site Scripting

Attacks,” Proceedings of the Annual Computer Security Applications Conference, Anaheim, CA,

December 2008, pp. 335-344.

[126] S. Gupta, P. Pratap, H. Saran, and A. Kumar, “Dynamic Code Instrumentation to Detect and

Recover from Return Address Corruption,” Proc. of the Workshop on Dynamic Systems Analysis, China,

2006, pp. 65-72.

[127] G. Lucca, A. Fasolino, M. Mastoianni, and P. Tramontana, “Identifying Cross Site Scripting

Vulnerabilities in Web Applications,” Proc. of the 6th Intl. Workshop on Web Site Evolution, Chicago,

September 2004, pp. 71-80.

[128] G. Zuchlinski, The Anatomy of Cross Site Scripting, November 2003.

[129] T. Chiueh and F. Hsu, “RAD: A Compile-Time Solution to Buffer Overflow Attacks,” Proc. of the

21st International Conference on Distributed Computing Systems, Arizona, USA, April 2001, pp. 409-

417.

[130] HTML 4.01 Specification, http://www.w3.org/TR/REC-html40, December 1999.

[131] K. Ashcraft and D. Engler, “Using Programmer-Written Compiler Extensions to Catch Security

Holes,” Proceedings of the IEEE Symposium on Security and Privacy, Oakland, USA, May 2002, pp.

143.

[132] G. Wassermann and Z. Su, “Static detection of cross-site scripting vulnerabilities,” Proceedings of

the 30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 2008,

pp. 171-180.

[133] D. Yu, A. Chander, N. Islam, and I. Serikov, “JavaScript Instrumentation for Browser Security,”

Proc. of the 34th Symposium on Principles of Programming Languages (POPL’07), Nice, France, January

2007, pp. 237-249.

[134] S. McAllister, E. Kirda, and C. Kruegel, “Leveraging User Interactions for In-Depth Testing of

Web Applications,” Proc. of the 11th International Symposium on Recent Advances in Intrusion

Detection, Cambridge, Massachusetts, USA., pp. 191-210.

[135] P. Bisht and V. Venkatakrishnan, “XSS-GUARD: Precise Dynamic Prevention of Cross-Site

Scripting Attacks,” Proc. of the 5th Intl. Conf. on Detection of Intrusions and Malware, and Vulnerability

Assessment, Paris, July, 2008, pp.23-43.

[136] Scut/team teso, “Exploiting Format String Vulnerabilities,” 2001, Accessed from

http://doc.bughunter.net/format-string/exploit-fs.html (January 2009).

[137] E. Ofuonye and J. Miller, “Resolving JavaScript Vulnerabilities in the Browser Runtime,”

Proceedings of the 19th International Symposium on Software Reliability Engineering, Washington DC,

November 2008, pp. 57-66.

66

[138] U. Shankar, K. Talwar, J. Foster, and D. Wagner, “Detecting Format String Vulnerabilities with

Type Qualifiers,” Proceedings of the 10th USENIX Security Symposium, 2001, pp. 201-220.

[139] K. Chen and D. Wagner, “Large-Scale Analysis of Format String Vulnerabilities in Debian Linux,”

Proc. of the Workshop on Programming Languages and Analysis for Security (PLAS’ 07), San Diego,

June 2007, pp. 75-84.

[140] A. Dekok, “Pscan (1.2-8) Format String Security Checker for C Files,”

http://packages.debian.org/etch/pscan

[141] C. Cowan, M. Barringer, S. Beattie, G. Hartman, M. Frantzen, and J. Lokier, “FormatGuard:

Automatic Protection From printf Format String Vulnerabilities,” Proceedings of the 10th USENIX

Security Symposium, August 2001, Washington, D.C., pp. 191-200.

[142] M. Ringenburg and D. Grossman, “Preventing Format-string Attacks via Automatic and Efficient

Dynamic Checking,” Proc. of 12th Conference on Computer and Communications Security, Nov 2005,

Alexandria, pp. 354-363.

[143] W. Li and T. Chiueh, “Automated Format String Attack Prevention for Win32/X86 Binaries,”

Proceedings of 23rd Annual Computer Security Applications Conference, Miami, Dec 2007, pp. 398-409.

[144] T. Robbins. Libformat, http://archives.neohapsis.com/ archives/linux/lsap/2000-q3/0444.html

[145] G. Wassermann and Z. Su, “Sound and Precise Analysis of Web Applications for Injection

Vulnerabilities,” Proc. of the 2007 PLDI Conference, pp. 32-41.

[146] W. Halfond, J. Viegas, and A. Orso, “A Classification of SQL-Injection Attacks and

Countermeasures,” Proceedings of IEEE International Symposium on Secure Software Engineering,

Arlington, Virginia, March 2006.

[147] C. Dahn and S. Mancoridis, “Using Program Transformation to Secure C Programs Against Buffer

Overflows,” Proceedings of the 10th Working Conference on Reverse Engineering (WCRE 2003),

November 2003, pp. 323-332.

[148] FlawFinder, Available at http://www.dwheeler.com/flawfinder

[149] Q. Gao, W. Zhang, Y. Tang, and F. Qin, “First-aid: surviving and preventing memory management

bugs during production runs,” Proceedings of the 4th European Conference on Computer System,

Germany, 2009, pp. 159-172.

[150] J. Cordy, “The TXL Source Transformation Language,” Science of Computer Programming,

Volume 61, Issue 3, pp. 190-210, Elsevier North-Holland.

[151] R. Jones and P. Kelly, “Backwards-compatible Bounds Checking for Arrays and Pointers in C

Programs,” In Proc. of Automated and Algorithmic Debugging, Sweden, 1997, pp. 13-26.

[152] H. Etoh, GCC Extension for Protecting Applications from Stack-smashing Attacks,

http://www.trl.ibm.com/projects/security/ssp

67

[153] R. Hastings and B. Joyce, “Purify: Fast Detection of Memory Leaks and Access Errors,”

Proceedings of the USENIX Winter Conference, San Francisco, CA, January 1992, pp. 125-138.

[154] Aleph One, “Smashing the Stack for Fun and Profit,” Phrack Magazine, Volume 7, Issue 49,

November 1996, Accessed from http://insecure.org/stf/smashstack.html

[155] Y. Younan, F. Piessens, and W. Joosen, “Protecting Global and Static Variables from Buffer

Overflow Attacks without Overhead,” Report CW463, Department of Computer Science, Katholieke

University Leuven, Belgium, October 2006, Accessed from http://www.fort-knox.be/files/CW463.pdf.

[156] S. Mancoridis, “Software Analysis for Security,” Proc. of Frontiers of Software Maintenance,

Beijing, October 2008, pp. 109-118.

[157] M. Ernst, “Static and Dynamic Analysis: Synergy and Duality,” Proceedings of ICSE Workshop on

Dynamic Analysis, Portland, May 2003, pp. 24-27.

[158] C Standard Library in http://www.utas.edu.au/infosys/info/documentation/C/ CStdLib.html

[159] NULL Pointer Dereference, Accessed from http://cwe.mitre.org/data/definitions/476.html

[160] R. Seacord, “Secure coding in C and C++ of Strings and Integers,” IEEE Security & Privacy,

Volume 4, Issue 1, Feb 2006, pp 74-76.

[161] CWE-352: Cross Site Request Forgery, http://cwe.mitre.org/data/definitions/352.html

[162] C. Erickson, “Memory Leak Detection in Embedded Systems,” September 2002, Accessed from

http://www.linuxjournal.com/article/6059

[163] C. Fetzer and Z. Xiao, “Detecting Heap Smashing Attacks through Fault Containment Wrappers,”

Proceedings of the 20th IEEE Symposium on Reliable Distributed Systems, New Orleans, USA, October

2001, pp. 80-89.

[164] U. Erlingsson, “Low-level Software Security: Attacks and Defenses,” Microsoft Research

Technical Report MSR-TR-07-153, November 2007.

[165] PaX Project, Accessed from http://pax.grsecurity.net/docs/pax.txt

[166] D. Leah, A Memory Allocator, April 2000, Accessed from http://g.oswego.edu/dl/html/malloc.html

[167] J. Burns, Cross Site Request Forgery: An Introduction to A Common Web Application Weakness,

White paper, Information Security Partners LLC., 2007.

[168] OWASP CSRFGuard Project, Accessed in March 2010 from

http://www.owasp.org/index.php/CSRFGuard_2.2_Configuration_Manual

[169] P. Guo, A Scalable Mixed-Level Approach to Dynamic Analysis of C and C++ Programs, Master of

Engineering thesis, Massachusetts Institute of Technology, USA, May 2006.

[170] Common Weakness Enumeration, 2009 CWE/SANS Top 25 Most Dangerous Programming Errors,

Accessed from http://cwe.mitre.org/top25

68

[171] O. Tripp, M. Pistoia, S. Fink, M. Sridharan, and O. Weisman, “TAJ: Effective Taint Analysis of

Web Applications,” Proceedings of the Programming Language Design and Implementation, Dublin,

June 2009, pp. 87-97.

[172] A. Sotirov, Automatic Vulnerability Detection Using Static Analysis, MSc Thesis, The University of

Alabama, 2005, Accessed from http://gcc.vulncheck.org/sotirov05automatic.pdf

[173] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek, “Buffer Overrun Detection using

Linear Programming and Static Analysis,” Proceedings of the 10th ACM conference on Computer and

Communications Security, Washington D.C., USA, October 2003, pp. 345-354.

