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ABSTRACT 
 
Today’s programs are implemented in a variety of languages and contain serious vulnerabilities which 

can be exploited to cause security breaches. These vulnerabilities have been exploited in real life and 

resulted in damages to related stakeholders such as program users. As most vulnerabilities belong to 

program code, many techniques have been applied to mitigate vulnerabilities before and after program 

deployment. Unfortunately, there is no comprehensive comparative analysis of different vulnerability 

mitigation works. As a result, there exists an obscure mapping between the techniques, the addressed 

vulnerabilities, and the limitations of different approaches. This paper attempts to address these issues. 

The paper extensively compares and contrasts the existing program security vulnerability mitigation 

(testing, static analysis, and hybrid analysis) and monitoring techniques. We also discuss other techniques 

employed to mitigate the most common program security vulnerabilities: secure programming, patching, 

and program transformation. The survey provides a comprehensive understanding of the current program 

vulnerability mitigation approaches and challenges as well as their key characteristics and limitations. 

Moreover, our discussion highlights the open issues and future research directions in the area of program 

security vulnerability mitigation and monitoring. 
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1. Introduction 
Today’s programs are complex and usually accessible to almost all users. These programs are 

implemented in a wide variety of languages and run on different execution environments. Programs are 

developed and tested using a rich set of tools and techniques before actual deployment to ensure that they 

meet specific requirements in terms of functionality, quality, and performance. Nevertheless, these 

programs contain vulnerabilities2 that might be exploited intentionally or unintentionally to cause security 

breaches. Vulnerabilities are flaws in programs that allow attackers to expose, alter, disrupt, or destroy 

sensitive information [92]. Approximately 50% of all security bugs (or vulnerabilities) occur at program 

code level [39]. These vulnerabilities are exploited by attackers. Program vulnerabilities (i.e., 

vulnerabilities arise due to implementation in code) have been addressed in academia and industry for 

more than twenty years. Still, we observe different security breach (or vulnerability) reports through many 

publicly available repositories such as Open Source Vulnerability Database (OSVDB) [97] and Common 

Vulnerabilities and Exposures (CVE) [95]. A number of surveys report significant financial losses by 

individuals and organizations due to attacks exploiting vulnerabilities (e.g., [93]). Therefore, mitigating 

program security vulnerabilities is extremely important. 

If we look at the literature, we notice that many mitigation techniques are applied to the program code 

before and after their deployment. These techniques are being evolved with novel attack techniques along 

with program usage (e.g., standalone program vs. client server-based program), implementation languages 

(e.g., procedural, object oriented, scripting), and processors (e.g., browsers, database engines). 

Unfortunately, there is no effort to review these techniques in a comparative way. In the past, several 

empirical studies have attempted to compare tools and techniques for mitigating program security 

vulnerabilities [17, 29, 39, 56, 76, 80]. However, these studies focus on analyzing works for a single (e.g., 

buffer overflow) or few vulnerabilities or comparing approaches related to one particular mitigation 

technique (e.g., static analysis). As a result, we have an obscure mapping between the techniques, the 

addressed vulnerabilities, and the limitations of different approaches. In this paper, we survey program 

(“code-level”) security vulnerability mitigation approaches to address these issues. We perform a 

comparative analysis of program security vulnerability mitigation approaches with respect to the three 

most common mitigation (testing, static analysis, hybrid analysis) and monitoring techniques. Moreover, 

for the sake of completeness, we briefly discuss the secure programming guideline related works and the 

approaches employed in the maintenance stage (program transformation and patching). We compare and 

contrast the mitigation approaches based on the features that are commonly discussed in related works 

                                                      
 
2 The italic letters are used when we define terminologies, introduce any of our proposed classification feature name, 
and explain program code examples.  
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(e.g., (31-38]). We also identify open issues for each of the techniques. Our analysis indicates that program 

vulnerability solutions have been influenced by not only traditional program analysis techniques, but also 

the diversity of attack mechanisms. Moreover, current approaches have their own limitations with respect 

to vulnerability coverage, programming languages, and techniques. 

The paper is organized as follows. Section 2 provides an overview of the eight vulnerabilities that are 

most common in today’s programs. We analyze the program security vulnerability mitigation related 

works based on testing, static analysis, and hybrid analysis in Sections 3, 4, and 5, respectively. Section 6 

discusses the efforts on secure programming, program transformation, and patching techniques. Section 7 

analyzes the efforts on monitoring approaches. Finally, Section 8 draws some conclusions. 

2. Program security vulnerabilities 
Program security vulnerabilities are specific flaws in program code that result in security breaches such 

as sensitive information leakage, modification, and destruction. Attacks are successful exploitations of 

vulnerabilities. There are many program security vulnerabilities which can be exploited by attackers. 

However, we restrict our discussion with respect to eight vulnerabilities based on the taxonomy of 

Common Weakness Enumeration (CWE) [170]. They are buffer overflow (BOF), format string bug (FSB), 

SQL injection (SQLI), cross site scripting (XSS), cross site request forgery (CSRF), NULL pointer 

dereference (NLD), dangling pointer (DAP), and memory leak (MEL). These are the most widely reported 

and discovered vulnerabilities in program code. Note that several vulnerabilities can be classified as a 

single source of the same problem. For example, SQLI, XSS, and CSRF can be classified as “insecure 

interaction between components” based on a high level taxonomy of CWE. Nevertheless, the wide 

differences in exploitation mechanisms, severity of damages, and existing mitigation efforts have inspired 

us to discuss these vulnerabilities individually. Moreover, we believe that mitigating these vulnerabilities 

can stop the exploitations of other vulnerabilities in programs such as buffer underflow [98]. 

2.1. Buffer overflow (BOF) 

     A buffer overflow (BOF) vulnerability allows writing data to a program buffer exceeding the allocated 

size and overwriting the content of the neighboring memory locations [154]. BOF might be present in 

programs having unsafe library function calls (e.g., ANSI C standard library), lack of null characters at the 

end of buffers, buffer accesses through pointers and aliases, logic errors (off by one), and insufficient 

checks before accessing buffers. One of the most subtle BOF vulnerabilities might be present in programs 

that perform pointer-intensive operations and generate pointer addresses through pointer arithmetic. For 

example, p = p + 4 results in a pointer p to point to a new location four bytes apart from the current 

location. If a read or write operation is performed through a pointer dereference (i.e., *p) and the new 

memory location does not belong to valid memory regions, a program shows many unexpected behaviors.  
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     Exploitation of BOF depends on memory regions where buffers are located. These include stack, heap, 

block started by symbol (also known as bss), and data segments. Here, bss and data segments contain static 

or global data buffers that are uninitialized and initialized, respectively. We provide an example of C code 

snippet (the function foo) in Figure 1 which is vulnerable to BOF. The buffer declared at Line 3 (buf) is 

located in the stack region and has 16 bytes of memories for reading and writing operations. The valid 

location of this buffer is between buf[0] and buf[15]. Line 4-5 copies src buffer into buf using a for loop. 

However, the code is vulnerable as there is no checking on destination buffer length. As a result, the loop 

allows copying more than the capacity of buf. To understand the effect of an overflow, we consider a 

snapshot of the stack frame of the function foo (Figure 2). The stack stores the argument of foo (src), the 

return address (ret), the saved frame pointer (sfp), and declared variables (i and buf). Note that the direction 

of stack growth and buffer copy is opposite to each other. We assume that both ret and sfp occupy four 

bytes, whereas i occupies two bytes.  

 
1.  void foo (char *src) { 
2.      int i;  
3.      char buf [16]; 
4.      for (i=0; i<strlen(src); i++) 
5.         buf[i] = src[i]; 
6.      return;  
7.   } 

Figure 1: C code snippet of foo function vulnerable to buffer overflow 

Buffer copy direction -----> 
buf [0] …                 …  buf [15]    i        sfp     ret      src      
[                                                  ][       ][        ][       ][          ] 
<----- Stack growth direction 

Figure 2: Stack layout of foo function 

     Storing an input of 17 bytes in length (pointed by src) in the buf results in one byte overflow. This 

corrupts the neighboring variable i and leads to further unexpected behaviors by the program (assuming no 

padding performed by a compiler). However, an attacker can corrupt the return address to execute injected 

code through buffer. This is known as “return address clobbering” or “direct code injection” attack [164]. 

An attacker inject a payload which can modify the content of ret to point to the beginning address of the 

buffer (i.e., the address of buf[0]). In this case, the src buffer content must be at least 26 bytes long (16 

bytes for the buf, two bytes for i, four bytes for both sfp and ret). The injected code might contain a shell 

code (e.g., “/bin/sh”) to launch a remote shell with the root privilege. Note that several conditions need to 

be met to perform a successful attack such as allowing code execution from stack segment, presence of no 

null character in the injected payload, and allowing an input of sufficient length to reach the location of ret.  

     A program might not allow copying an input to a buffer which can modify the return address. In this 

case, an attacker might execute arbitrary code by overwriting the frame pointer (i.e., sfp) [155]. The sfp 
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stores the address of stack top of the caller function of foo. An attacker modifies the sfp of foo to point to a 

location of the buffer. As a result, the first four bytes of the buffer is considered as the stack frame pointer 

and the next four bytes is considered the return address for the caller of foo. The content of the new return 

address points to the location of injected code. The foo function returns to its caller as usual. However, 

when the caller returns, the injected code is executed.  

Many existing countermeasures prevent code injections due to BOF attacks by converting stack 

segments from executable to non-executable (e.g., [165]). However, attackers still bypass such defenses. 

For example, a stack overflow modifies return addresses with known system library function call 

addresses. In this case, the buffer contains the arguments for the function calls. This variation of attack is 

known as “return-to-libc” or “jump-to-libc” [164]. Note that both saved frame pointer overwriting and 

return-to-libc are known as “indirect code injection” attacks [164]. 

BOF attacks can be performed by overflowing buffers located in the heap memory region. A typical 

attack overflows a neighboring function pointer which stores the address of a function. An attacker might 

modify the function address with the location of his injected code which results in executing injected code 

when the function is called. This is a basic form of heap-based BOF attack. Sophisticated heap-based 

attacks do not even rely on the presence of function pointers in program code. These attacks can indirectly 

execute injected code by leveraging the known working mechanism of malloc and free functions as well as 

memory management information (or meta information) stored in the beginning of allocated and free 

memory blocks (or chunks) [155]. This information can be obtained from publicly available specifications 

of memory managers (e.g., dlmalloc [166]). 

2.2. Format string bug (FSB) 

Format string bug (FSB) vulnerabilities imply invoking format functions (e.g., the format functions of 

ANSI C standard library [158]) with user supplied format strings that contain arbitrary format specifiers 

(e.g., %s). As a result, the number of specifiers becomes more than the number of arguments, which allows 

arbitrary reading and writing in format function stack. For example, a simple printf(“%d”, i) function call 

prints the value of i to the console, where i is an integer variable. However, the printf(“%d”) function call 

results in printing an arbitrary integer value. Moreover, a mismatch between a format specifier and its 

corresponding argument might result in unexpected behaviors. For example, the function call printf(“%s”, 

i) writes a string to the console where the string location is considered as the value of i. If attack cases are 

crafted carefully, it is possible to perform malicious activities such as establishing root shells and 

overwriting global offset tables (GOT) that contain function addresses [136]. 
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2.3. SQL injection (SQLI) 

SQLI vulnerabilities are present in programs which generate SQL queries with invalidated user 

supplied inputs. The inputs might contain arbitrary SQL queries which alter intended queries. These 

vulnerabilities can be exploited through SQL injection attacks that cause unexpected results such as 

authentication bypassing and information leakage. We provide an example of an SQLI attack by using the 

code snippet of a server side program written in JSP as shown in Figure 3. Lines 2 and 3 extract user-

supplied information from the Login and Password fields into the sLogin and sPassword variables, 

respectively. The user input is not filtered and a dynamic SQL query is generated in Lines 5 and 6. Let us 

assume that a user provides valid member_login and member_password, which are “guest” and “secret,” 

respectively. Then, the query generated at Line 6 appropriately becomes “select member_id, member_level 

from members where member_login =’guest’ and member_password = ’secret’”. The database engine 

executes the query at Line 7, and the user is authenticated with a valid UserID at Line 9. A malicious user 

might supply the input “’ or 1=1 -- ” in the first field and leave the second input field blank. The resultant 

query becomes “select member_id, member_level from members where member_login =’’ or 1=1 --’ and 

member_password =’’”. The query is a tautology as the portion after the symbol “--” is ignored by the 

database engine (“--” is a comment symbol). Therefore, an attacker avoids the authentication by executing 

this query. There are several common SQLI attack types such as tautologies, union queries, illegal/logical 

incorrect queries, piggybacked queries, stored procedures, inference attacks, and alternate encodings (or 

Hex encoded queries) [146]. 

 
1. String LoginAction (HttpServletRequest request, ...) throws IOException { 
2.    String sLogin = getParam (request, “Login”); 
3.    String sPassword = getParam (request, “Password”); 
4.    java.sql.ResultSet rs = null; 
5.    String qry = “select member_id, member_level from members where ”; 
6.    qry = qry + “member_login = ’” + sLogin + “’ and member_password = ’” + sPassword + “’”; 
7.    java.sql.ResultSet rs = stat.executeQuery (qry); 
8.    if (rs.next ()) { // Login and password passed        
9.          session.setAttribute (“UserID,” rs.getString (1)); 
             …  
       } 

Figure 3: A JSP code snippet for authentication 

2.4. Cross site scripting (XSS) 

XSS vulnerabilities allow the generation of dynamic Hyper Text Markup Language (HTML) [130] 

contents (i.e., attributes of tags) with invalidated inputs. These inputs contain HTML tags and JavaScript 

code that are interpreted by browsers while rendering web pages. As a result, the intended behavior of 

generated web pages alters through visible (e.g., creation of pop-up windows) and invisible (e.g., cookie 
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bypassing) symptoms. XSS attacks circumvent traditional security mechanisms employed by browsers 

such as same origin policy, sandbox, and signed script.  

 
<? 
   1. $msg = retrieveComment(); 
   2. echo ('Comment:' . $msg);  
?>  

Figure 4: A PHP code snipped vulnerable to XSS 

There are three types of XSS attacks: stored, reflected, and Document Object Model-based (or DOM-

based) [121, 128]. In stored XSS attacks, dynamic HTML contents are generated from unsanitized 

information that is stored in persistent data storages (e.g., files, databases). A reflected XSS attack occurs, 

if injected script code (i.e., <script>alert(‘xss’);</script>) returns to a browser and gets executed (e.g., a 

search string supplied in a webpage). JavaScript code that process inputs based on DOM objects [119] 

(e.g., document.URL) are vulnerable to attacks which are denoted as DOM-based XSS attacks [121]. We 

provide an example PHP code snippet in Figure 4 that is vulnerable to stored XSS attacks. Line 1 

retrieves a comment from a persistent storage (i.e., retrieveComment()) and saves it to a PHP variable 

$msg. Line 2 writes the comment as HTML output without filtering. If the $msg variable contains script 

code (e.g., <script>alert(‘xss’)</alert>) and is sent to a browser without filtering, a user observes an 

unexpected dialog box with the text “xss”. 

2.5. Cross site request forgery (CSRF) 

A CSRF vulnerability occurs, if an HTTP request is sent to a remote server program without the client’s 

knowledge [161]. A CSRF vulnerability may arise in a program, if an input form submission requires no 

validation, except for a cookie. Cookies are stored in browsers for a long time and added automatically 

while issuing a request. Moreover, browsers add cookies automatically to HTTP GET requests when 

loading images and frames, submitting forms, clicking links, or redirecting pages. Thus, a server program 

cannot differentiate between an HTTP request generated by a legitimate user and a CSRF attack.  

   There are two types of CSRF attack: reflected and stored [167]. In a reflected CSRF vulnerability, the 

injected payload resides in a program other than a trusted server program. Thus, a victim is exposed to an 

attack when he/she logs on to a server program and browse to a different website (or program) 

simultaneously. In a stored CSRF vulnerability, the malicious code is stored within the trusted server 

program repositories.  

We provide two example code snippets (client and server side) that are vulnerable to CSRF attacks in 

Table 1. Let us assume that a user is logged on to a site (www.xyz.com) that stores his/her profile. The 

profile includes a contact email address which has the initial value user@xyz.com. The client side (the left 

column of Table 1) provides an HTML interface (change.html) to change the email address of a logged on 
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user legitimately. A new email address provided by a user at Line 5 is updated by the server side script 

named editprofile.php (i.e., the action field of Line 3). Note that the request of the email address change is 

sent to editprofile.php by a hidden field (action) and corresponding value (setemail) at Line 4. The server 

side code snippet is shown in the second column of Table 1. It first checks if the request is associated with 

a valid session (Line 1). If the session is not valid, then the program shows an error message and terminates 

(Line 2-3). Otherwise, a session is identified as valid (Line 5) and the request is performed by calling the 

update_profile function at Line 6. The function is supplied with the new email address argument 

($POST[‘email’]). 

 
Table 1: Example program code snippets of an email address change  

Client side code (www.xyz.com/change.html) Server side code (www.xyz.com/editprofile.php) 
1. <HTML> 
2.  <BODY> 
3.   <FORM action = “editprofile.php” method = “POST”> 
4.       <INPUT type = “hidden” name = “action” value = “setemail”>  
5.      <INPUT type = “text” name = “email” value = “”>   
6.      <INPUT type = “submit” value = “Change Email Address”>  
7.   </FORM> 
8.  <BODY> 
9. </HTML> 

1. if (! session_is_registered($_SESSION['username'] )) {
2.     echo "invalid session detected!"; 
3.     exit; 
4. } 
5.  if ($_POST[‘action’] == ‘setemail’){ 
6.     update_profile($_POST['email']);  
7. } 

 
If a user supplies the new email address as user2@xyz.com, the legitimate HTTP request becomes 

http://www.xyz.com/editprofile?action=setemail&email= user2@xyz.com. The browser adds the session 

information (or cookie) in the request before sending to the server program. Let us assume that the user is 

logged on to www.xyz.com and visiting another website which contains an attacker supplied hyperlink 

http://www.xyz.com/editprofile?action=setemail&email=evil@xyz.com. If the user clicks on the link, then 

his email address gets changed to evil@xyz.com. As a result, the user is a victim of a reflected CSRF 

attack. In practice, CSRF attacks not only modify profile, but also perform other severe damages such as 

unauthorized financial transactions and sensitive information deletions. To become a victim of a stored 

CSRF, the malicious link would be stored in the persistent storage of the website where the user is logged 

in. It is common to find many such web-based programs such as message boards. 

2.6. Other vulnerabilities 

Three other vulnerabilities are common in programs namely null pointer dereference (NLD), dangling 

pointer (DAP), and memory leak (MEL). A NLD vulnerability occurs when a program code retrieves 

memory contents from a pointer type variable whose value is assigned to NULL [159]. A NULL address 

does not indicate any memory location. As a result, any operation with a NULL pointer results in 

unexpected behaviors such as program crashes. A DAP (also known as a wild pointer) points to a memory 

location that is no longer a valid memory location for a program. For example, a variable might point to an 

allocated memory object which might be freed explicitly. The vulnerability occurs, if a program’s code 
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tries to access or store information in these free objects through pointer variables. A memory leak (MEL) is 

a widespread vulnerability in programs where allocated memories are not freed explicitly or unused objects 

are not set as NULLs [162]. Unlike other vulnerabilities (e.g., BOF, FSB, SQLI, XSS, and CSRF), it is 

difficult to exploit NLD, DAP, and MEL directly to execute arbitrary code. Nevertheless, the presence of 

these vulnerabilities might result in unexpected behaviors such as program crashes (e.g., NLD, DAP) and 

wastage of memories (MEL) which can eventually lead to an abnormal termination of server programs (or 

daemons). Modern compilers often generate warning messages so that programmers can fix them while 

implementing programs. However, these three vulnerabilities are discovered in post release stages.  

2.7. Summary 

We have discussed eight worst vulnerabilities that can be found in programs which are implemented in 

a variety of languages. A mapping between programming languages and vulnerabilities is shown in Table 

2. The first seven languages are high level, whereas the last two (x86 assembly code and byte code) are 

intermediate code generated by compilers. From the table, we notice that programs implemented in any of 

these languages contain a large subset of vulnerabilities (denoted as “Y” in table cells). Note that SQLI, 

XSS, and CSRF are denoted as web-based vulnerabilities. Moreover, BOF, SQLI, and XSS are known as 

injection vulnerabilities as attacks might inject arbitrary code. Programs implemented in C and C++ are not 

vulnerable to web-based vulnerabilities (e.g., SQLI, XSS, and CSRF) as they are rarely used in 

implementing web-based programs. Rather, Java, PHP, JSP, and ASP are used to implement web-based 

programs. JavaScript programs are executed by client side browsers. Due to implementation limitations of 

browsers, JavaScript code might suffer from XSS and MEL vulnerabilities. Moreover, JavaScript 

programs contribute to web-based vulnerabilities due to improper validation of inputs. The cells containing 

“N” indicate that no vulnerability has been identified for the corresponding languages. Intermediate 

programs generated from source code may inherit vulnerabilities. For example, if a C program contains a 

BOF vulnerability, the corresponding machine dependant x86 assembly code also contains the same 

vulnerability.  

 
Table 2: A mapping between programming languages and vulnerabilities 

Language BOF FSB SQLI XSS CSRF NLD DAP MEL 
C  Y Y N N N Y Y Y 
C++ Y Y N N N Y Y Y 
Java N N Y Y Y Y N Y 
JSP N N Y Y Y Y N Y 
PHP N N Y Y Y Y N Y 
ASP N N Y Y Y Y N Y 
JavaScript N N Y Y Y Y N Y 
x86 assembly code Y Y N N N Y Y Y 
Byte code N N Y Y Y Y N Y 

 



9 
 

   Some vulnerabilities (e.g., BOF, FSB, SQLI, NLD) result in observable abnormal behaviors such as 

segmentation faults and error messages. However, several vulnerabilities (e.g., CSRF, MEL) are difficult 

to identify through observable behaviors. We discuss the mitigation techniques employed for the 

vulnerabilities in Sections 3-7. Allocated memory blocks and memory objects are used synonymously in 

this paper. 

3. Testing  
Testing is one of the most proactive program security vulnerability mitigation techniques before 

releasing programs. In general, a program under test is provided inputs, executed, and computed outputs 

are matched with expected outputs. If there is a mismatch between the computed and the expected outputs, 

then the program implementation does not comply with a desired requirement for a particular input. 

Testing requirements might be expressed in terms of functionality, performance, and quality. The pioneer 

works in program testing have focused on developing test case generation based on program code coverage 

(e.g., branch, loop, data flow, condition), program behavior model coverage (e.g., state and transitions of a 

finite state machine), and common mistakes performed by programmers (e.g., fault-based testing and 

mutation analysis) [84]. However, as security of programs is getting an increasing level of attention in 

recent years, we notice a lot of program security vulnerability testing techniques have emerged. McGraw et 

al. [49] have described program security vulnerability testing as a misunderstood task which is often 

considered as developing secured firewall rules and port scanning in networks. Program security can be 

tested based on risk assessment results, requirements, and design errors. However, we restrict our 

discussion to works that intend to reveal vulnerabilities. These might cause due to the limitations of 

programming languages, libraries and APIs, environments, and logic errors. 

We first show an analogy between software testing and program security vulnerability testing in 

Section 3.1. In Section 3.2, we compare and contrast the related vulnerability testing works based on the 

following five features: test case generation method, source of test case, test level, test case granularity, 

and vulnerability coverage. Out of these five features, test case generation is the most important steps in 

security vulnerability testing [9]. Thus, we are motivated to classify existing program security testing 

approaches based on the test case generation techniques in Sections 3.3-3.9. These include fault injection, 

attack signature, mutation analysis, static analysis, search, program modification, and constraint 

bypassing techniques. Finally, we discuss open issues in Section 3.10. 

3.1. Software testing vs. program security vulnerability testing 

Like traditional software testing, we consider program security vulnerability testing as a process of 

three major steps: identifying testing requirements and coverage, generating test cases, and executing test 

cases [6]. In the first step, appropriate security requirements are identified based on functional 



10 
 

requirements. Our study considers the requirement in terms of security breaches that occur through the 

implementation languages (e.g., ANSI C), APIs (ANSI C library, Java library), environment variables 

(network data unit used in programs), processors (e.g., SQL database engine, HTML parsers, JavaScript 

interpreter), and malformed inputs used by programs. In traditional testing, test coverage implies whether 

generated test cases can cover a particular objective related to a program artifact. For example, a program 

can be tested in a way such that all branches present in the source code are tested, or a finite state machine 

can be used to generate test cases to cover all transition pairs. Similarly, vulnerability testing approaches 

often set such goal in advance. For example, a program should be tested for detecting all BOF and SQLI 

vulnerabilities.  

In the second step, test cases are generated by using program artifacts (e.g., source code) and interacting 

environments (e.g., network protocol data unit or PDU) in a systematic way. A subsequent issue that needs 

to be addressed by testers is to define the oracle for each test case. Unlike traditional software testing, the 

end computational results performed by programs rarely play any role for determining oracles (or 

successful attacks) in program security vulnerability testing. In most of the cases, program states and 

response messages are used to identify the presence or absence of attacks. 

In the final stage, test cases are run against implementations and programs are assessed based on 

predefined oracles to identify vulnerabilities (or whether a test case exposes the vulnerabilities through a 

program’s response). Overall, program security vulnerability testing process is analogous to traditional 

software testing process, except each of the stages is handled differently. 

3.2. Comparison of program security vulnerability testing approaches 

In this section, we perform a comparative analysis of program security vulnerability testing works from 

the literature based on five criteria [6]: test case generation method, source of test case, test level, test case 

granularity, and vulnerability coverage. Table 3 shows a summary of the comparison, while we provide 

detailed descriptions for each criterion below.  

Test case generation method: It implies how a source of test case is converted to a set of test cases. It is 

interesting to note that most of the traditional software testing techniques have been used or leveraged to 

conduct test case generation for security testing. We identify seven test case generation techniques [9]. 

These include fault injection (e.g., [15, 52, 64, 65]), attack signature (e.g., [86, 91]), mutation analysis 

(e.g., [2, 3]), static analysis (e.g., [50, 96]), search (e.g., [28]), program modification [61], and constraint 

bypassing [57]. We discuss these methods in Sections 3.3-3.9. 
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Table 3: Comparison summary of program security vulnerability testing works 
Work Test case generation method Source of test case Test level Test case granularity Vulnerability 

Jorgensen et 
al. [15] 

Fault injection (inject faults at 
lexical, syntactic, and semantic 
level) 

Valid data stream Black box Input file BOF 

Shahriar et al. 
[1, 2] 

Mutation analysis (inject 
vulnerabilities in code) 

Source code (C 
program) 

White box  String or complex data 
type containing string 

BOF 

Xu et al. [50] Static analysis (solve path 
constraints of programs) 

Source code and API 
(C program) 

White box  String or complex data 
type containing string 

BOF 

Zhang et al. 
[52] 

Fault injection (fields of PDU)  Valid PDU Black box Sequence of PDU BOF, FSB 

Shahriar et al. 
[3] 

Mutation analysis (inject 
vulnerabilities in code) 

Source code (C 
program) 

White box  String or complex data 
type containing format 
string 

FSB 

Haugh et al. 
[60] 

Static analysis (interesting function 
coverage)  

Source code (C 
program) 

White box  String or complex data 
type containing string 

BOF 

Huang et al. 
[86] 

Attack signature (inject attack 
inputs in HTML forms) 

HTML form  Black box URL SQLI and XSS

Junjin et al. 
[90] 

Attack signature (replace benign 
test cases with attack inputs)  

Executable code (Java 
byte code) 

Black box URL SQLI 

Kals et al. [91] Attack signature (inject attack 
inputs in HTML forms) 

HTML form Black box URL  SQLI, XSS 

Adam et al. 
[96] 

Static analysis (solve path 
constraints), attack signature 
(replace non malicious test cases 
with attack test case) 

Source code (PHP 
code) 

White box URL SQLI and XSS

Shahriar et al. 
[4] 

Mutation analysis (inject 
vulnerabilities in code) 

Source code (JSP 
code) 

White box URL SQLI 

Shahriar et al. 
[5] 

Mutation analysis (inject 
vulnerabilities in code) 

Source code (PHP 
code) 

White box URL or sequence of 
URL 

XSS 

McAllister et 
al. [134] 

Attack signature (replace non 
malicious test cases with attack 
test cases) 

User session Black box Sequence of URL XSS 

Vilela et al. 
[75] 

Mutation analysis (inject 
vulnerabilities in code) 

Source code (C 
program) 

White box  String or complex data 
type containing string 

BOF 

Tal et al. [73] Fault injection (based on Protocol 
syntax) 

Valid PDU Black box PDU BOF 

Allen et al. 
[72] 

Fault injection (based on protocol 
specification) 

Valid PDU Black box PDU BOF 

Tappenden et 
al. [71] 

Attack signature (inject attack 
inputs in HTML forms) 

HTML form Black box  URL BOF, SQLI 

Kim et al. [67] Fault injection (modify file tags or 
records) 

Input file (HTML, 
WMF) 

Black box Input file BOF 

Ghosh et al. 
[65] 

Fault injection (in program 
variables) 

Program state 
(variable) 

Black box String or complex data 
type containing string 

BOF 

Du et al. [64] Fault injection (in direct and 
indirect environment variables) 

Program environment Black box Global variable, 
network input, file, 
socket 

BOF 

Breech et al. 
[61] 

Program modification (through 
compiler) 

Source code (C 
program) 

Black box Modified program BOF 

Offutt et al. 
[57] 

Constraint bypassing (inputs in 
response pages)  

HTML form Black box URL SQLI, XSS 

Grosso et al. 
[28] 

Search technique (genetic 
algorithm) 

Source code (C 
program) 

White box  String or complex data 
type containing string 

BOF 

Cadar et al. 
[27] 

Static analysis (solve path 
constraints) 

Source code (C 
program) 

White box  String or complex data 
type containing string 

BOF 

 

Source of test case: This criterion identifies what artifacts of programs or environments are used for 

generating test cases. These include source code of programs (e.g., [2, 60]), vulnerable APIs (e.g., ANSI 
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C library functions) [50], valid protocol data units (PDUs) (e.g., [52, 73]), valid data streams [15], user 

sessions [134], executable program code (e.g., [90]), runtime states of programs [65], and program 

environments [64]. Here, runtime state of a program includes declared variable values of a program. A 

user session indicates an execution path of a program that is traversed while performing a functionality. 

Program environment includes a broader range of inputs that might be generated from files, networks, and 

processors. Attack templates are known attack signatures that result in unintended behaviors in programs. 

Test level: It indicates whether security vulnerability testing of a program is performed in a white box or 

a black box manner. Most of the testing approaches employ black box testing (e.g., [15, 86, 90]). Some 

approaches explore white box testing mechanisms (e.g., [28, 60]).  

Test case granularity: This feature describes what constitutes a test case in program security 

vulnerability testing. Table 3 shows that test case granularity varies not only on data received by 

programs and its surrounding environments, but also on vulnerabilities. For example, exploiting BOF 

vulnerabilities involve generating strings of particular lengths, or complex data types containing strings 

(e.g., [2, 3]). Similarly, test cases for exposing FSB vulnerabilities require strings (or complex data types) 

containing format specifiers [3, 58]. However, SQLI and XSS vulnerability exploitations require URLs 

with appropriate parameters and values (e.g., [4, 5, 86, 90, 91, 96]). Moreover, a sequence of URLs (e.g., 

[5]) or PDUs (e.g., [72, 73]) might form just one test case since all of them must be applied to programs 

to exploit vulnerabilities. For example, to perform a stored XSS attack (a variation of XSS), at least two 

URLs are required to form one test case: one for storing a malicious script and the other to download a 

page containing that script. 

Vulnerability coverage: This feature indicates what particular vulnerability an approach tests. From 

Table 3, it is obvious that BOF, SQLI, and XSS vulnerabilities have been addressed in most of the 

approaches. Moreover, very few approaches test multiple vulnerabilities (e.g., [96]). 

3.3. Fault injection-based test case generation  

Fault injection is one of the most widely used test case generation techniques suitable for performing 

black box-based testing. The objective is to corrupt input data and variables, execute programs with 

corrupted data and variables, and observe unexpected responses to conform vulnerabilities. We divide fault 

injection-based security vulnerability testing works into three types based on the target of corruption: input 

data, environment, and program state. We describe them in the following three subsections. 

3.3.1. Corrupting input data 
In this technique, input data processed by programs are modified in ways such that the desired lexical, 

syntactic, or semantic structures become malformed. The resultant input data are supplied to a program 

under test to reveal vulnerabilities through abnormal behaviors (e.g., program crashes). For example, 

Jorgensen et al. [15] corrupt valid data stream at lexical (i.e., character level deformation such as replacing 
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a non printable character with a printable character), syntactic (i.e., lexically correct and syntactically 

incorrect such as replace a left parenthesis with a space character), and semantic (e.g., changing a date 

format) levels. Tal et al. [73] capture protocol data units (PDUs), modify data fields of these PDUs, then 

send them back to the server and observe the server application’s responses (i.e., whether the protocol 

daemon running in the server crashes due to segmentation fault or not). Kim et al. [67] corrupt the 

semantic structure of HTML files and Vector image files (WMF) by replacing one tag with another and 

modifying the fields of records, respectively. 

Several works corrupt input data while maintaining the semantic meaning of a sequence of input data. 

For example, Zhang et al. [52] test an FTP (File Transfer Protocol) program by first identifying a valid 

command packet sequence. They generate malformed packets (e.g., filling packets with large sized strings, 

special format strings such as %s and %n) that are valid according to protocol grammar, but might not be 

processed properly by target programs. Similarly, Allen et al. [72] construct a set of valid messages (or 

packets) into blocks based on a protocol specification. They keep message sequences intact and apply 

fuzzing in message fields to generate corrupted inputs.  

3.3.2. Corrupting environment 
In this technique, environment variables of programs are modified. These include environment 

variables during program initialization (e.g., configuration file) and execution time (e.g., file system inputs, 

network packets). We note that input data corruption techniques also modify files and network packets. 

However, these techniques modify the lexical, syntactic, or semantic structures. In contrast, environment 

variable corruption techniques modify the attributes of inputs [64]. For example, a file can be modified in 

terms of existence (e.g., file can be deleted), permission (read or write permissions can be toggled), and 

ownership attributes. A configuration file might point to a list of directories for performing searches. A 

corruption technique might alter the sequence of directories to test security vulnerabilities.  

3.3.3. Corrupting program state 
In this technique, an executable program state is modified to check whether program code can handle 

vulnerabilities or not. Program state might include data variables (e.g., boolean, integer, string) which 

control program execution as well as sensitive locations where program stores values such as function 

return addresses [65]. The modified states result in security violations. Thus, a program shows anomalous 

behaviors, if the implementation does not handle security violations appropriately.  

3.4. Attack signature-based test case generation  

This is the second most widely used test case generation approach, where test cases are generated by 

replacing some (or all) parts of a normal input with attack signatures. The attack signatures are developed 

from the experience and vulnerability reports. We notice that this approach is applied widely to web-based 

programs. We divide security vulnerability testing related works employing attack signature-based test 



14 
 

case generation method into two categories based on how web pages are traversed. These include request 

and response and use case-based test case generation.  

3.4.1. Request and response 
In this method, a crawler requests a web page and captures the response page. In the response page, it 

identifies input fields (e.g., HTML forms) which are filled and submitted with malicious inputs. This 

process enables a tester to reach all pages where attack inputs can be injected and to observe the response 

of malicious inputs. Vulnerabilities in client or server side programs are observed based on the error 

messages. For example, Huang [86] and Kals et al. [91] apply request and response-based web page 

crawling to generate test cases (or URLs) to discover SQLI and XSS vulnerabilities. Programs are 

executed to check attack occurrences by replacing valid test cases with attack inputs (i.e., substituting a 

URL parameter value with an attack input) [90, 96].  

A variation of the approach is to apply a set of programmable APIs to perform crawling. These APIs 

enable a tester to emulate browsers such as form submission and page redirection. In particular, input form 

fields can be accessed and modified to inject attack input test cases. The modified from can be submitted 

and checked for the presence of vulnerabilities in the response pages through customized assertions. 

Tappenden et al. [71] develop a set of programmable APIs named HTTPUnit to detect SQLI 

vulnerabilities in web-based programs for agile environment (i.e., testing and development occurs 

simultaneously). 

3.4.2. Use case 
Traditional request and response-based testing approaches identify vulnerabilities at the interface level 

of programs. They often fail to reach inner logics of program code which might open the doors for attacks. 

To alleviate this problem, a use case-based approach first applies interactive user inputs to perform 

functionalities of programs (e.g., login). This ensures breadth testing of a program’s code. Later, the 

collection of user inputs (a sequence of URLs) required to perform functionalities are replayed back and 

malicious test cases are injected at injecting points of URLs (instead of previously save user inputs). 

Fuzzing method (or random fault injection) is used for injecting malicious inputs. This ensures testing the 

depth of program logics. McAllister et al. [134] apply this approach to discover reflected and stored XSS 

vulnerabilities in web-based programs.  

3.5. Mutation analysis-based test case generation 

Mutation is a fault-based testing technique that is intended to show that an implementation is free from 

specific faults [14]. Mutation operators are used to generate mutants by injecting faults in an 

implementation under test. Mutation operators modify program artifacts to inject vulnerabilities and force 

the generation of effective test cases that can expose the injected vulnerabilities. A mutant is said to be 

killed or distinguished, if at least one test case can produce different output between the mutant and the 
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implementation. Otherwise, the mutant is live. If no test case can kill a mutant, then it is either equivalent 

to original implementation or new test case needs to be generated to kill the live mutant. Generating new 

test cases enhances the fault detection ability of the test suite (a set of test cases). The adequacy of a test 

suite is measured by a mutation score (MS), which is the ratio of the number of killed mutants to the total 

number of non-equivalent mutants. Note that there is a subtle difference between fault injection-based 

testing (that might employ mutation operator) and mutation-based analysis. In mutation-based analysis, the 

end objective is to assess test suite quality. However, a fault injection technique is guided by mutation 

operators with the objective of testing the presence of vulnerabilities in programs by observing anomalous 

behaviors. Moreover, a mutation-based analysis adds new test cases to increase the MS, whereas, injecting 

a fault results in a new test case (e.g., a modified PDU) in fault-based testing. 

The pioneer research of applying mutation-based analysis has been performed by Vilela et al. [75] 

where they assess test suite quality for detecting BOF vulnerabilities in C programs. However, their 

approach does not consider BOF vulnerabilities due to the limitations of ANSI standard library functions 

(e.g., strcpy function does not check the destination buffer before copying, which might result in BOF 

vulnerabilities), language specific features (e.g., absence of the null character at the end of a buffer). Later, 

Shahriar et al. [1, 2] propose mutation operators to assess test suite qualities for detecting BOF caused by 

the above issues. Moreover, Shahriar et al. [3] propose mutation operators to inject faults in ANSI C 

format functions (format string and arguments). Furthermore, they propose mutation operators for adequate 

testing of SQLI [4] and XSS [5] vulnerabilities in web-based programs implemented in JSP and PHP 

languages, respectively.  

3.6. Static analysis-based test case generation 

     This approach generates test cases by analyzing program source code without executing3. The analysis 

relies on the symbolic execution of program code, where program inputs are assumed to hold arbitrary 

values represented by symbols [33]. In the context of security testing, the main idea is to extract path 

constraints and update symbolic values present in path conditions at different statements. The symbolic 

values are updated with known values based on initialized variables or derived values from inputs [27]. 

While a path ends or a vulnerable statement (e.g., a buffer access likely to cause a BOF) is reached, a 

current path constraint is solved with a custom constraint solver to obtain a set of concrete input values 

(i.e., a test case). Most of the symbolic execution-based test case generation approaches have been applied 

to detect BOF vulnerabilities in C programs [27, 50]. In these cases, symbolic assignments are preformed 

for program statements present along feasible paths that include either sensitive memory accesses [27] or 

                                                      
 
3 The detailed description of static analysis techniques is provided in Section 4. 
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potential invalid memory addresses related to pointer variables [50]. Recently, symbolic execution-based 

analysis has been applied to generate SQLI and XSS vulnerabilities in web-based programs [96]. 

     A variation of static analysis-based test case generation approach employs “interesting function 

coverage” information to guide test case generation. For example, Haugh et al. [60] develop a Systematic 

Testing of Buffer Overflow (STOBO) tool which instruments a given input program file to identify 

whether more test cases are required to discover BOF vulnerabilities caused by unsafe memcpy and strcpy 

function calls.  

3.7. Search-based test case generation 

If the test input space for discovering vulnerabilities is huge and identification of vulnerability revealing 

test cases is time consuming, a practical approach is to apply a search-based technique [21] as a way of 

generating test cases. For example, discovering BOF with test cases having large sized strings fits well for 

applying the search-based test case generation technique. In general, a technique applies a suitable search 

algorithm where a random input is chosen as the initial solution. The solution is evolved over a number of 

times unless an objective function value remains unchanged.  

One of the most widely used search techniques applied for program security testing is genetic 

algorithm. The major variations in genetic algorithm-based approaches while generating test cases occur in 

two important stages: fitness functions and mutation operators. The fitness (i.e., objective) function guides 

the generation of test cases so that vulnerability exploitations are revealed. However, depending on testing 

objectives, fitness functions vary. For example, Grosso et al. [28] define a fitness function to generate BOF 

test cases which focus on program code coverage (e.g., vulnerable statement with unsafe ANSI C library 

function calls). Mutation operators (i.e., evolving of solutions) depend on the testing objective. For 

example, Grosso et al. [28] apply a mutation operator, where a numeric value is randomly incremented, 

and a string is appended with a random string. Such approach allows the generation of test cases to quickly 

reveal BOF attacks. 

3.8. Program modification-based test case generation 

In this technique, program instructions are modified by leveraging dynamic compiler techniques which 

allow accessing intermediate program code before being executed by CPUs. The technique tests programs 

that have vulnerability exploitation detection mechanisms included. Moreover, it can detect subtle 

vulnerabilities that otherwise might go undetected due to modification of program environments (e.g., 

memory layout) by compilers. For example, a compiler applies default padding after an allocated buffer, 

which prohibits confirming the presence of one byte BOF with test cases. Breech et al. [61] develop a 

testing framework based on a dynamic compiler that can test programs by injecting attack code (e.g., 

modifying the return address of a function) in basic blocks (i.e., a sequence of code with no branching).  
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3.9. Constraint bypassing-based test case generation 

The main idea of this technique is to generate inputs to bypass input filtering mechanisms employed in 

a program. Such an approach can be applied to web-based programs, where script code can be written by 

programmers to filter malicious inputs at browsers. Offutt et al. [57] propose three levels of bypass testing 

for web-based programs to discover client side vulnerabilities such as SQLI and XSS. These include (i) 

value level (e.g., tests data types, built-in length violations, special input values), (ii) parameter level (e.g., 

testing violations of underlying relationships among multiple parameters), and (iii) control flow level (e.g., 

testing under pressing back button, refresh button) testing.  

3.10. Open issues 

     From the comparative study, we notice that current approaches are limited to testing few vulnerability 

types such as BOF, SQLI, and XSS. Thus, future research work should discover other vulnerabilities that 

are present in programs such as FSB and CSRF. Moreover, every test case generation method has a narrow 

perspective of testing program security vulnerabilities. For example, fault-based techniques provide us 

limited or no information related to vulnerability and code coverage. Therefore, future research direction 

can combine fault-based technique with other techniques (static or hybrid analysis) to improve the 

situation. Current fault-based approaches are limited to corrupting input data, environment variables, and 

program states. We believe that many unknown vulnerabilities can be discovered by injecting faults on 

program artifacts such as control and data flows. We also notice that attack signature-based test case 

generation has been improved by combining static analysis. However, their scope is limited to web-based 

programs and web-based vulnerabilities. Search-based technique has been applied to generate test cases 

only for testing BOF vulnerabilities. Future research might explore employing the search techniques for 

generating test cases for other vulnerabilities. Program modification techniques can also be explored for 

web-based programming paradigms (e.g., modifying client side program state).  

4. Static analysis  
A common proactive approach to detect security vulnerabilities in program code is to perform static 

analysis [51]. The approach examines input program code, applies specific rules or algorithms (also known 

as inference), and derives a list of vulnerable code present in a program that might result in vulnerability 

exploitations. The greater advantage of performing static analysis is that it does not require executing 

program code. As a result, the analysis can ignore the issues related to program executions such as the 

reachability of vulnerable code and the generation of input test cases to traverse the vulnerable code. The 

pioneer static analysis techniques (e.g., control flow, data flow, inter-procedural analysis) have been 

developed for compiler generated code optimizations, and they are not intended for detecting security 

vulnerabilities in program code. As security breaches have become widespread in programming 
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communities, many tools and techniques have been developed to apply static analysis for discovering 

vulnerabilities in program code [44, 46, 148]. 

In the following subsection, we perform a comparative analysis of static analysis works based on the 

following seven aspects: inference type, analysis sensitivity, analysis granularity, completeness, soundness, 

vulnerability coverage, and language supported in the analysis. The effectiveness of any static analysis 

depends on how accurate the inference is in discovering potential vulnerable code. Thus, we are motivated 

to classify current static analysis related works based on the underlying inference techniques into four 

types: tainted data flow-based, constraint-based, annotation-based, and string pattern matching-based. We 

describe these inference techniques in Sections 4.2-4.5. We discuss open issues in Section 4.6.  

4.1. Comparative analysis of static analysis approaches 

Table 4 provides a comparative summary of the static analysis works related to program security based 

on seven features: inference type, analysis sensitivity, analysis granularity, completeness, soundness, 

vulnerability, and language [9, 11]. We now discuss these features in the following paragraphs. 

    Inference type: The core part of any static analysis is to infer potential vulnerabilities by scanning 

program code. We divide inference types into four categories as shown in Table 4. These are tainted data 

flow-based (e.g., [88, 99, 100, 117]), constraint-based (e.g., [20, 46, 47]), annotation-based (e.g., [7, 12, 

114]), and string pattern matching-based (e.g., [42, 44, 140]) approaches. We discuss these inference types 

in Sections 4.2-4.5. 

Analysis sensitivity: A common problem for a static analysis approach is that it might generate false 

positive warnings to be examined manually. Moreover, an analysis might suffer from false negatives (i.e., 

vulnerabilities present in program code might be unreported). To reduce the number of false positives or 

false negatives, the approaches take advantage of pre-computed information based on program code. Such 

information helps to perform more accurate detection of vulnerabilities. We denote the dependency of 

such pre-computed information as analysis sensitivity. From the third column of Table 4, we notice that 

most of the analysis techniques apply some kinds of sensitivity. We identify six types of sensitivity: 

control flow (e.g., [46, 88, 114]), path (e.g., [20, 47]), context (e.g., [20, 88, 99, 100, 117]), field (or 

instance) [139, 171], points-to (e.g., [99, 100]), and value range [172]. 

      An analysis is control flow sensitive, if it performs inference technique based on statement execution 

sequence with respect to a control flow graph. Applying flow sensitivity increases the precision of 

vulnerability detection (i.e., less false positive warnings). For example, Weber et al. [46] improve the 

approach of Wagner et al. [118] by employing a flow sensitive analysis. 
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Table 4: Comparison summary of static analysis approaches for mitigating security vulnerabilities 
Work Inference type Analysis 

sensitivity 
Analysis 
granularity 

Completeness Soundness Vulnerability 
coverage 

Language

Dor et al. [116] Annotation Points-to Intra-procedural  Yes No BOF C 
Hackett et al. [12] Annotation N/A Inter-procedural No No BOF C 
Le et al. [20] Constraint Context, path  Inter-procedural No No BOF C 
Tevis et al. [42] String pattern

matching 
N/A Statement No No BOF x86 

Viega et al. [44] String pattern
matching 

N/A Token No No BOF C, C++ 

Weber et al. [46] Constraint Context, control
flow 

System dependence 
graph 

No No BOF C 

Xie et al. [47] Constraint Context, path,
points-to 

Intra-procedural, 
inter-procedural 

Yes4 No BOF C 

Jovanovic et al.
[88] 

Tainted data flow  Context, control
flow  

Inter-procedural No No SQLI, XSS PHP 

Lam et al. [99],
Livshits et al. [100] 

Tainted data flow Context, points-to Statement No Yes SQLI, XSS Java 

Wassermann et al.
[132] 

Tainted data flow N/A Intra-procedural  No No XSS PHP 

Shankar et al. [138]Tainted data flow,
annotation 

N/A Intra-procedural, 
inter-procedural 

No No FSB C 

Chen et al. [139] Tainted data flow,
annotation 

Context, field  Statement No No FSB C 

Dekok et al. [140] String pattern
matching 

N/A Statement No No FSB C 

Wassermann et al.
[145] 

Tainted data flow N/A Intra-procedural No Yes SQLI PHP 

Flawfinder [148] String pattern
matching 

Context  Token No No BOF, FSB C, C++ 

Wagner et al. [118] Constraint N/A Statement No No BOF C 
Xie et al. [117] Tainted data flow Context, control

flow  
Block, intra-
procedural, inter-
procedural  

No No SQLI, XSS PHP 

Evans et al. [114] Annotation Control flow  Statement No No BOF, FSB, 
MEL, NLD 

C 

Tripp et al. [171] Tainted data flow Context, field,
points-to 

Inter-procedural No Yes SQLI, XSS Java, JSP

Vulncheck [172] Tainted data flow,
annotation 

Value range Statement, data
flow, inter-
procedural 

Yes  No BOF C 

Ganapathy et al.
[173] 

Constraint Context, points-to System dependence
graph 

No No  BOF C 

Yang et al. [78] Annotation, tainted
data flow 

Control flow Intra-procedural, 
Inter-procedural 

No N/A BOF C 

Ashcraft et al.
[131] 

Tainted data flow N/A Intra-procedural, 
Inter-procedural 

No No BOF C 

 
     Program execution paths that can be derived from a control flow graph might not be feasible. 

Sometimes, infeasible paths can be determined statically. If an analysis explicitly excludes infeasible paths, 

we denote it as path sensitive. For example, Le et al. [20] detect BOF vulnerabilities that are reachable 

                                                      
 
4 The authors report false positive warnings due to the error in their implemented constraint solver. We believe that 
these errors are correctable and independent of their original approach.   



20 
 

within feasible program paths. Xie et al. [47] detect BOF due to pointer dereferences and buffer indexes in 

feasible program paths based on control flow graphs. 

     A context sensitive analysis differentiates multiple calls sites of a function with respect to supplied 

arguments. In contrast, a context insensitive analysis ignores multiple calls of the same function with 

different arguments. Context insensitivity results in false positive warnings. For example, a program has 

two vulnerable library function calls of strcpy (dest, src). Here, the function copies the buffer pointed by 

src to the buffer pointed by dest. The first function call has src string whose value is provided by a user, 

and the second call contains a constant string whose length can be determined statically to be less than 

that of the dest buffer. A context insensitive analysis reports both of them as vulnerable. However, a 

context sensitive analysis (e.g., Flawfinder [148]) finds the former call as vulnerable and the later as non 

vulnerable.  

     An analysis is said to be field (or instance) sensitive, if different members of instantiate objects are 

considered as separate variables [139]. Field sensitivity allows reducing false positive warnings. For 

example, an object data type (e.g., struct of C language) might have two member variables of character 

buffer. One of the buffers contains untrusted data while the other contains trusted data. Without field 

sensitivity, the entire instance of the structure would be considered untrusted (or tainted) as member 

variables are not distinguished.    

     A points-to analysis identifies a set of memory objects that might be pointed by a given pointer variable 

present in program code.  Points-to analysis itself is another direction of research and interested readers can 

consult the literature related to points-to analysis (e.g., [36]). We restrict our discussion on four concepts 

that are relevant and used in detecting vulnerabilities: flow sensitive, flow insensitive, context sensitive, 

and context insensitive points-to analysis. In a flow sensitive points-to analysis, a program’s control flow is 

taken into account. In contrast, in a flow insensitive points-to analysis, statements can be analyzed in any 

order. Obviously, a flow sensitive points-to analysis is more accurate than that of a flow insensitive 

analysis. In a context sensitive points-to analysis, function calls accepting pointer type arguments or 

returning pointers are analyzed separately. In contrast, in a context insensitive points-to analysis, these 

function calls are considered identical. It is more appropriated to apply context sensitive points-to analysis 

than that of context insensitive analysis to obtain more precise information.  

From Table 4, we note that very few techniques apply points-to analysis (e.g., flow insensitive points-to 

analysis [116]). Most of the BOF detection approaches (as shown in Table 4) do not incorporate points-to 

analysis explicitly. However, some approaches employ general assumption on pointer data types. For 

example, Wagner et al. [118] assume that a pointer to a structure variable might point to all other similar 

structure variables present in a program. The assumption results in a huge number of false positive 

warnings. Xie et al. [47] consider a limited number of pointer information such as a pointer pointing to a 
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buffer and relative distance from the base size of a buffer. However, if a pointer points to an unknown type 

of memory object, their analysis does not include such information. As a result, some real BOF might be 

undetected (i.e., increases false negative in the detection). Points-to analysis can be used to reduce false 

negatives (i.e., detect more vulnerabilities that would otherwise remain undetected). For example, 

Ganapathy et al. [173] apply points-to analysis information while generating constraints on buffers that are 

being dereferenced by pointer variables. As a result, function calls having pointer to buffer arguments can 

be analyzed for detecting BOF vulnerabilities. 

A value range analysis provides a lower and upper bound of a variable. The information is useful when 

function calls are supplied with unsanitized arguments that represent buffer sizes. These arguments result 

in vulnerabilities, if their boundaries exceed expected ranges. For example, the value range analysis might 

discover that the upper bound of the size argument of memcpy function call is MAXINT (maximum value 

of an integer). An approach might generate a BOF warning in this case [172]. 

We notice that several works ignore sensitivity in their analyses for the sake of achieving the highest 

level of scalability (e.g., [44, 118]). The resultant insensitivity allows an approach to analyze large scale 

programs that contain millions of lines of code. In contrast, adding sensitivity brings not only the benefit of 

increased precision in an analysis, but also reduced false positive rate in the warnings. Note that several 

works do not explicitly discuss about sensitivity or insensitivity that are indicated as N/A in Table 4 (e.g., 

[12, 42, 44, 132]). 

Analysis granularity: This feature indicates the granularity level of program code at which static analysis 

is performed. From Table 4, we notice that static analyses have been performed at different granularity 

levels. These include program token (e.g., [44, 148]), statement (e.g., [46, 99, 100]), block [117], intra-

procedural (e.g., [116, 145]), inter-procedural (e.g., [12, 20, 88, 171]), and system dependence graph (e.g., 

[173]) levels. Several works combine multiple granularities such as intra-procedural and inter-procedural 

(e.g., [47, 117, 122]). 

A compiler performs lexical analysis which tokenizes program source code to identify keywords, 

variables, functions, etc. These tokens can be used to detect vulnerabilities. 

In a statement level analysis, vulnerabilities are inferred by analyzing program statements. Several 

works analyze the executable program code such as x86 [42]. However, such executable code is usually 

de-assembled first to make partially readable before performing an analysis at the statement level. 

 In an intra-procedural analysis, a program is analyzed based on either a control flow graph or a data 

flow graph (a graph which represents data dependencies between a number of operations). Several works 

apply intra-procedural analysis to form a summary of sensitive variables [116] or specific conditions that 

are related to vulnerabilities [47]. 
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An inter-procedural analysis examines a function body as well as other function call sites present in the 

function by accessing the called functions. It is common to avoid analyzing same function multiple times 

by following a bottom up analysis based on a call graph of a program (e.g., [47]). In a call graph, each 

node represents a unique function and a directed edge from node a to b indicates that the function 

represented as node a contains an invocation of the function represented by the node b. 

In a system dependence graph (SDG), a node represents a program point (e.g., statement), and an edge 

represents dependency between two program points which can be two types: control flow and data flow. 

Note that a data flow analysis attempts to compute the values of a data variable at different program points. 

Completeness: An approach is said to be complete, if it generates no false positive warnings [139]. Table 

4 shows that very few techniques are complete (e.g., [116, 172]). However, the completeness depends on 

both the underlying assumptions in an analysis and the types of vulnerabilities addressed. For example, 

Dor et al. [116] detect all BOF vulnerabilities present in a program caused by only string variables (i.e., 

static or dynamic buffers). However, they do not consider BOF vulnerabilities due to pointers and aliases. 

Vulncheck [172] is complete under the assumption that most BOF vulnerabilities occur through a set of 

known unsafe library function calls that accept tainted arguments. 

In practice, it is challenging to develop an analysis technique that results in no false positive warnings. 

We identify three common reasons that contribute for an incomplete analysis: analysis sensitivity, result 

interpretation, and assumption on program code.  

     Inference approaches based on insensitive analysis of control flow (e.g., [42, 44, 100, 118, 140, 148, 

173]), context (e.g., [114, 138]), path [132], points-to (e.g., [12, 46]) result in conservative analyses and 

generate a high number of false positive warning. Moreover, the imprecision of analysis sensitivity (e.g., 

flow insensitive points-to analysis) contributes to false positive warnings [99, 100, 171].  

     The result interpretation of an analysis can be blamed to false positive warnings. For example, the 

approach of Le et al. [20] provides a set of programs paths which do not include safe and infeasible paths. 

Thus, it is likely that some of the suspected paths in the set might not be vulnerable.     

     An approach assumes that programmers write specific pattern of code in implementations. The breaking 

of these assumptions results in false positive warnings. For example, a buffer variable might contain 

malicious inputs followed by a non-malicious input before using the variable content (e.g., writing to an 

output console) [139]. The buffer is suspected to be vulnerable in the first usage and it remains suspected 

for the rest of the program code. A program can be written in an unusual way by storing malicious data 

instead of terminating programs immediately which might result in a false positive warning [117]. A 

function might conditionally use a kernel pointer instead of a user supplied pointer [78], where kernel 

pointer arguments are not vulnerable. Moreover, an approach might rely on correct implementation of 

functionalities (e.g., validation of inputs stored in buffers [116]). Sometimes, assumptions are made on the 
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effects of code, which lead to false positive warnings. An approach might not consider the effect of custom 

sanitization functions [88]. The lack of consideration to the effect of arbitrary type casting of sensitive 

variables might generate false positive warnings. For example, PHP allows a variable containing malicious 

string be assigned a boolean value which is non malicious [145]. A program might type cast a signed 

integer to an unsigned integer. An unsigned integer should be checked only for the upper bound before 

using the integer as an index of an array. An analysis might ignore type casting effect and generate a false 

positive warning while using an unsigned buffer index with no lower bound value checking [131]. 

Soundness: An approach is sound, if it has no false negative [139]. In other words, the approach does not 

leave any program vulnerability unreported. Table 4 shows that a very small number of works claim to be 

sound (e.g., [100, 171]). However, it depends both on vulnerability types and assumptions in their 

analyses. For example, a query-based analysis [99, 100] is sound as long the specified queries accurately 

represent vulnerability patterns. The approach of Tripp et al. [171] is sound provided that a user specified 

maximum node limit (in a call graph analysis) allows reaching all tainted sinks. 

     The reasons for being the approaches unsound vary widely. We classify the reasons into four types: 

language features, analysis sensitivity, result interpretation, and the scope of the problem. 

     Data types (i.e., features) supported in programming languages might not be considered in the analysis 

approaches. For example, the approach of Wagner et al. [118] is not sound as their analysis does not 

generate warnings of BOF vulnerabilities caused by pointer arithmetic or complex data structures (e.g., 

union in C) having buffers as member variables. The approach of Hackett et al. [12] does not support 

global pointers and structure fields having pointer data types. A recursive function call might be analyzed 

using just a single pass while constructing a function’s summary in PHP which might leave potential SQLI 

and XSS vulnerabilities unreported [117]. The approaches of Shankar et al. [138] and Chen et al. [139] are 

not sound as they do not support tainted data flow analysis for integer buffer data type. An integer array 

containing malicious format string can be converted to a buffer character followed by supplying it to a 

format function. No FSB warning would be reported in those approaches. 

     Some approaches might not employ analysis sensitivity which might introduce false negatives. For 

example, lack of points-to analysis (e.g., [20, 42, 44, 46, 140, 148]). 

     Some works only generate warnings, if their analysis can infer certainly that vulnerabilities are present 

in programs. This also allows users to interpret results with high confidence at the cost of missing actual 

vulnerabilities present in program code. For example, the approach by Xie et al. [47] does not generate 

warnings, if their analysis cannot infer that accessing a buffer is unsafe.  

     To make an analysis approach manageable, some works explicitly limit their scope of detection for a 

limited number of vulnerability types present in program code. Thus, they can be considered as not sound 

with respect to the unaddressed vulnerability types. For example, BOF might be present due to unsafe 
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ANSI C library function calls, pointer arithmetic, accessing buffers through arbitrary buffer indexes and 

pointers, lack of null characters at the end of buffers, and user defined functions containing flaws. Dor et 

al. [116] detect all BOF vulnerabilities present in a program caused by only string variables (i.e., static or 

dynamic buffers) and those accessed after null byte characters. The approach of Evans et al. [114] cannot 

discover BOF caused by arbitrary buffer indexes and pointers. Xie et al. [47] assume that most pointer 

arithmetic and conditional expressions present in branches and loops are linear. Thus, their approach does 

not report BOF vulnerabilities that might occur through loops or branches containing non linear arithmetic. 

The approach of Wassermann et al. [132] detects only stored and reflected XSS attacks and does not 

analyze program code generated at browsers to identify DOM-based XSS attacks. Ashcraft et al. [131] 

assume that an integer variable bound checking must be present before accessing a buffer through the 

integer index variable. However, they allow a variable to compare with any numeric value as opposed to a 

correct value. Thus, actual BOF present in a program might not be identified.      

Vulnerability coverage: This feature indicates what vulnerabilities are detected by an approach. Table 4, 

it is obvious that BOF, FSB, SQLI, and XSS have been addressed by many works (e.g., [44, 46, 47, 116]). 

However, very few works detect other vulnerabilities such as MEL [114]. Very few approaches can detect 

multiple vulnerabilities (e.g., [88, 114]).  

Language: This feature highlights the programming languages that are supported by an analysis approach. 

We notice that most techniques analyze programs implemented in C and Java languages (e.g., [12, 47, 100, 

116]). A number of works analyze server side programs written in scripting languages such as PHP (e.g., 

[88, 145]). Very few approaches analyze executable code (e.g., [42]). 

4.2. Tainted data flow-based technique 

In this technique, input variables are marked as tainted and their propagations are tracked. Warnings are 

generated, if tainted inputs or values derived from tainted inputs are used in sensitive operations. We divide 

tainted data flow-based works into four categories based on the tainting mechanism: static data type, 

implicit, grammar-based, and query-based tainting. They are described in the following subsections. 

4.2.1. Static data type tainting 
In this technique, tainted information is marked by extending variable type information. This is also 

known as type qualifier approach. The approach takes advantage of statically declared data types supported 

by programming languages. In particular, the technique requires adding new labels to data variables which 

might represent vulnerable (“tainted”) or non-vulnerable (“untainted”) input sources. Then the approach 

checks whether a labeled source or any value derived from a labeled source participates in sensitive 

operations (e.g., a data buffer containing user supplied inputs is passed to a format function call) or not. If 

such a case is identified, a vulnerability warning is generated. For example, Shankar et al. [138] and Chen 

et al. [139] detect FSB vulnerabilities, if tainted format strings are used in format function calls. Their 
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approaches label trustworthy function parameters as “untainted” and untrustworthy parameters as “tainted” 

initially. For example [138], the main function of a program might be marked as follows int main (int argc, 

tainted char *argv[]). 

Type checking is a popular approach to infer vulnerabilities [138, 139]. In a traditional type checking 

system, errors are reported by a compiler, if the type of a variable mismatches with the expected one. 

However, in a type qualifier system, warnings are raised, if an expected variable type in an expression 

mismatches according to a qualifier lattice. A qualifier lattice is developed by a programmer before an 

analysis that represents sub-typing relationships among different variables. For example, a sub-typing 

relationship can specify “untainted char < tainted char”. It indicates that an expression (e.g., a format 

function parameter labeled as “tainted”) expecting a tainted variable generates no warning, if an untainted 

variable is passed. However, for a sub-typing relation “tainted char < untainted char”, a warning is 

generated if a tainted variable is passed instead of an untainted one.  

4.2.2. Implicit tainting 
In this technique, program variables are not explicitly labeled as tainted. This approach is suitable for 

languages where there are no static type declarations in the code (e.g., PHP). The tainted information flow 

is performed based on pre-computed program information such as data flow and control flow graph. For 

example, Jovanovic et al. [88] mark data as tainted, if they are derived from user inputs (e.g., HTTP 

requests). They apply data flow analysis to identify locations where suspected tainted data reach to 

sensitive sinks (e.g., the locations that are vulnerable to XSS attacks). 

A variation of the approach is to pass tainted information from lower to higher granular level. For 

example, Xie et al. [117] apply three levels of static analyses based on the control flow graph of a given 

program. They summarize and pass information from block to intra-procedural and intra-procedural to 

inter-procedural levels. Basic blocks are simulated by symbolic execution to form summaries such as error 

set (i.e., set of input variables that must be sanitized before entering the block) and untainted sets (sanitized 

locations for each successor of a block). This information is applied to perform intra-procedural analysis 

which summarizes a function such as sanitized values (set of parameters and global variables that are 

sanitized on function exit). The summaries obtained from intra-procedural analysis are applied to inter-

procedural analysis (i.e., function calls at block levels). The inter-procedural analysis generates warnings, 

if any unsanitized variable is applied to a sensitive operation (e.g., SQL query generation).  

Implicit tainting has been applied to programs written in typed languages such as Java and JSP (e.g., 

taint analysis for Java or TAJ [171]). Tainted data can be tracked using a variation of slicing algorithm 

known as hybrid thin slicing. The slice captures statements relevant to tainted data flows. It is a forward 

slicing from a statement s which identifies a set of statements that are data-dependant on s. The analysis is 

performed by a set of security rules of the form (S1, S2, S3), where S1, S2, and S3 represent a tainted or 
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untrusted source, a sanitizer, and a sink, respectively. A sink is a pair of a method name and a set of 

parameters that are vulnerable to injection attacks. The approach checks whether a source is passed to a 

sink without sanitization or not. Compared to other taint-based approaches, the slicing along with points-to 

analysis of objects can discover vulnerabilities in programs that have reflection (a technique where a 

method can be invoked by Class.forName and Method.invoke properties in Java) and object containers 

(e.g., HashMap). 

Ashcraft et al. [131] also apply a tainted data flow-based technique to detect BOF vulnerabilities by 

identifying tainted integer variables (derived from network packets, user data) that are used as array 

indexes, loop bounds, and length parameters of sensitive functions (e.g., memcpy) without sanitization 

(e.g., performing no upper and lower bound checking for a signed integer variable).  

4.2.3. Grammar-based tainting 
Tainted data flow can be tracked by grammar production rules where non terminals can be marked as 

tainted. This approach requires normalizing program source code into static single assignment (SSA) form. 

In a SSA form, each statement is expressed as an assignment statement where the left hand side sets a 

variable at most once. For example, a PHP statement “echo $out” that outputs the value of variable output 

(out) can have SSA form as “data1 = out” [132]. Here, data1 is introduced as part of SSA which can be 

further transformed as a production rule like “data1→ out”. Now, data1 is a non terminal for the 

production rule and out might be either a terminal or non terminal. The grammar rules obtained from SSA 

implicitly encode data flow information among non terminals.  

While generating grammar production rules, non terminals are marked as tainted if they are obtained 

from user inputs. The resulted rules form an extended context free grammar. The core part of an approach 

involves performing string analysis for sanitization routines by modeling their operations through finite 

state transducers (i.e., finite state machines where transitions result outputs). If tainted inputs are sanitized, 

the output is expressed as regular expressions which relate the images (i.e., a set of words that can be 

generated) of transducers. Moreover, tainted markings are removed from the related rules to make a 

context free grammar. The regular expression generated by a context free grammar and by a sanitization 

routine is intersected to identify another regular expression that is allowed by a program. If part of attack 

signatures or malicious scripts (e.g., ’ or 1=1 -- is a signature for a tautology attack exploiting SQLI 

vulnerabilities) can be constructed from an intersected regular expression, then a warning is generated. 

Wasserman et al. apply this approach to detect SQLI [145] and XSS [132] vulnerabilities.   

4.2.4. Query-based tainting 
All the taint-based techniques discussed so far provide no options to testers or programmers to check 

vulnerabilities of their choices. Query-based tainting is a step forward to mitigate this limitation. In this 

technique, a query specifies source objects and rules to transform sources to sink objects. A source object 

contains supplied inputs. A derived object uses a source object and propagates through a path which might 
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reach to a sink object. A sink object is considered tainted, if it is derived from zero or more times from a 

source object. Lam et al. [99, 100] develop the Program Query Language (PQL) which allows 

programmers to specify queries related to vulnerable information flow. They apply the technique to 

discover SQLI and XSS vulnerabilities in web-based programs implemented in Java.  

4.3. Constraint-based technique (CBT) 

Constraint-based techniques generate safety constraints from program code whose violations imply 

vulnerabilities. Constraints are propagated and updated while traversing a program. A program might be 

traversed based on system dependence graphs [46] and control flow graphs [47, 117]. At the end, the 

analysis identifies whether any solution of a set of obtained constraints exists or not. Obtaining a solution 

indicates that an exploitation might be possible through input values. Constraint solvers are used to 

compute input values which violate constraints. Most works leverage integer type constraint solvers for 

detecting BOF vulnerabilities [46, 47, 118]. Constraint-based approaches are applied to procedural 

languages that have static data types and rich data structures. Several works have applied CBT techniques 

to detect BOF vulnerabilities in C programs. We divide constraint-based techniques into three categories 

for BOF detection: integer range analysis, symbolic value analysis, and demand-driven. 

Integer range analysis: The idea of this technique is to formulate constraints by scanning each program 

statement containing buffer declarations and buffer related operations. Each constraint is expressed in 

terms of a pair of integer ranges (buffer allocation size and current size of a buffer) for each buffer defined 

or accessed. For each buffer, a set of constraints are solved to find a range of allocation and current size, 

which can be denoted as [a, b] and [c, d], respectively. Here, [a, b] implies that allocation size of a buffer 

can vary from a bytes to b bytes, and [c, d] implies that current size of a buffer can vary from c bytes to d 

bytes. The two ranges can be analyzed to identify non vulnerable (i.e., b > c) and vulnerable (i.e., b ≤ c) 

statements. 

Wagner et al. [118] first apply integer range analysis to detect BOF vulnerabilities. Later, Weber et al. 

[46] improve Wagner’s method by applying a flow sensitive analysis of BOF to reduce the number of false 

positive warnings. In addition to BOF due to string variables, they detect BOF due to global variable 

usages, function calls, and recursions. Ganapathy et al. [173] generate constraints on buffer sizes and 

allocations using an SDG and solve the constraints using linear programming.  

Symbolic value analysis: In this technique, a constraint might contain program variables and whenever 

possible their values are assigned. Otherwise, they are considered as symbolic values. Xie et al. [47] apply 

symbolic value analysis to detect BOF vulnerabilities caused by invalid buffer indexes, pointer 

dereferences, and invalid function arguments (buffer addresses and sizes). They traverse a call graph of a 

program using a bottom-up approach, where a function is analyzed through control flow graph (CFG). 

During the CFG analysis, at every access to arrays, pointer dereferences, and function calls, safety 



28 
 

constraints (i.e., the negation of valid conditions) are generated. Moreover, constant relations (e.g., x = 4) 

and symbolic constraints between variables (e.g., x < y) are captured and propagated. At every potentially 

dangerous access of arrays, pointer dereferences, or call to routines, a custom constraint solver is used to 

evaluate the values against safety constraints. A warning is generated, if a solution can be found for a 

safety constraint.  

Demand-driven: Most constraint-based techniques limit their scopes by providing a list of warnings based 

on built in constraint generation, propagation, and solution mechanisms. However, a recent direction is to 

provide a programmer the option to formulate queries on vulnerable program locations. This is also 

denoted as demand-driven analysis. The approach relies on constraint generation, which starts from a 

location specified by developers. The end output might be a set of prioritized paths that might trigger BOF. 

Le et al. [20] apply this approach to detect different types of paths (e.g., infeasible, safe, user input 

dependant, vulnerable) vulnerable to BOF. A user specifies queries to know whether (i) buffer accesses at 

particular program points are safe, and (ii) user inputs can write to buffers. The queries are expressed with 

constraints in terms of buffer sizes, supplied string lengths, and flag values (to represent constant string 

values). The queries are propagated along program paths in backward directions (i.e., starting from the 

point of query to the beginning of a program’s main function call) through inter-procedural and context 

sensitive analyses. If queries can be resolved by checking whether a declared buffer size is less than the 

supplied input values, a BOF warning is generated.   

4.4. Annotation-based technique 

In an annotation-based technique, program code is annotated with desired properties in terms of pre and 

postconditions. Annotations can be specified at both function prototype declaration [12, 114, 116] and 

statement level [114]. After a piece of code is annotated, an algorithm checks whether data variables can be 

used safely based on the annotated conditions or not. In this case, a function call site is evaluated to check 

whether it conforms to specified preconditions or not (i.e., generate error messages). If preconditions are 

satisfied at the call site, the function body is further examined to ensure that the implementation meets 

specified postconditions. If a precondition cannot be resolved from a previous statement’s postcondition, 

then a warning message is generated. Warnings generated by an approach might be prioritized based on 

how well the constraints for accessing buffers are understood. For example, no condition to access a buffer 

is listed at the top of a warning list, whereas buffer access based on a condition on buffer length is placed at 

the bottom of a warning list.  

Annotation-based approaches generate constraints from the specified pre and postconditions. However, 

these constraints are evaluated to be true or false to identify whether a program location (e.g., a function 

call invocation) is free from vulnerability or not. In contrast, a constraint-based approach solves a set of 

constraints for further analysis. We also note that tainted data flow analysis might rely on annotating 
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program code such as function prototypes (e.g., [172]). However, these annotations are not involved in 

generating constraints like the annotation-based approaches. Rather, the annotation facilitates comparing 

an expected data type (annotated) with an identified data type (through static analysis) to infer 

vulnerabilities. 

Annotations can be specified by expressions supported by an implementation language. For example, 

Dor et al. [116] detect all string manipulation errors that might lead to BOF vulnerabilities by specifying 

contracts (or annotations) through C expressions. Contracts include preconditions, postconditions, and 

specific side effects. After adding annotations, a source to source semantic preserving transformation of a 

given procedure is performed. The converted program code generates errors if contracts are violated. 

However, the pre and postconditions expressed through implementation language expressions can detect 

limited types of BOF vulnerabilities such as accesses to buffers after the null-termination bytes. 

Several works have detected a wide range of BOF vulnerabilities either by introducing an annotation 

language or by extending an implementation language. For example, Hackett et al. [12] develop an 

annotation language named SAL that allows expressing buffer annotations to describe buffer interfaces 

through pointers. The annotation of buffer variables might include usage (e.g., a buffer passed to a function 

and read from), optional (e.g., pointer can be NULL), extent of an initialization (i.e., a lower initialization 

bound), and capacity (i.e., a lower capacity bound). In contrast, Evans et al. [114] annotate function 

parameters, return values, global variables, and structure fields inside tagged comments in C programs. For 

example, the /*@notnull@*/ tag before a parameter indicates that any value passed to the parameter 

should not be NULL. BOF vulnerabilities are detected by adding pre and postconditions to user defined 

and ANSI C library functions. For example, the library function strcpy(s1, s2) copies the source buffer s2 to 

the destination buffer s1. The precondition /*@requires maxSet(s1) ≥ maxRead(s2) @*/ generates an error 

message, if it cannot be satisfied at the call site by a checker. Here, the precondition indicates that the 

maximum index value that can safely access s1 (i.e., maxSet(s1)) during a write operation must be greater 

than or equal to the maximum index value that can safely access s2 (i.e., maxRead(s2)) during a read 

operation.   

An annotation language that provides flexibility and features to annotate large amount of source code 

can reduce the burden of annotating program code. Yang et al. [78] develop an annotation language named 

MECA in this direction. For example, the statement “annot tainted annotates ($variable)” specifies that 

tainted annotation to be used to bind to any local and global variable, a function’s parameter, and the return 

value of a function. MECA can bind multiple annotations with a variable (e.g., checking both src and dest 

pointer parameters with the len parameter in a memcpy(dest, src, len) function call). Moreover, the 

language allows expressing conditional annotations (e.g., annotate a variable as tainted based on specific 

parameters of function calls).  
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4.5. String pattern matching-based technique 

The pioneer static analysis approaches (e.g., [42, 44, 102, 140]) are based on simple string pattern 

matching technique. These approaches rely on a known set of library function calls that might cause 

vulnerabilities. A set of rules are developed which represent signature of vulnerable code patterns. In this 

technique, program code is tokenized to identify vulnerable pattern of strings that represent vulnerable 

function calls and arguments. For example, ITS4 [44] and Flawfinder [148] analyze the tokenized program 

code to detect potential vulnerabilities. Dekok [140] detect FSB vulnerabilities in printf family functions 

by examining patterns of vulnerable format function calls which include non constant format strings and 

format strings as the last argument.  

A recent variation of string pattern matching-based technique is to scan executable program code to 

detect vulnerable function calls. For example, Tevis et al. [42] analyze portable executable (PE) files that 

run on Windows NT/XP to detect BOF vulnerabilities. They detect BOF vulnerabilities by identifying the 

presence of vulnerable ANSI C library function names in a symbol table and the occurrence of zero filled 

regions of 50 bytes or more. These regions can be used to load malicious code during BOF attacks.  

4.6. Open issues 

From the comparative analysis, we notice that introducing analysis sensitivity and performing analysis 

on fine granular levels of program code result in better detection of vulnerabilities. Most of the current 

approaches lack completeness, soundness, or both of the properties. Analysis precision and scalability is a 

tradeoff factor in current analysis approaches. Many approaches suffer from high false positive rates. 

Therefore, future static analysis approaches can focus in several directions such as detecting less 

unaddressed vulnerabilities and improving the completeness and soundness properties. From the 

discussion, we also notice that most of the analysis techniques are geared towards a subset of high level 

languages such as C, Java, and PHP. Thus, future works should address on developing analysis techniques 

for programs implemented in other common languages such as ASP and JavaScript. 

From the discussions on inference techniques, we note that each inference mechanism is valuable from 

certain perspectives. For example, annotation-based mechanism is useful to verify that certain 

vulnerabilities are not present, whereas demand-driven and query-based tainting can help locating 

prioritized vulnerabilities that must be addressed immediately. Our study indicates that constraint, 

annotation, and string pattern matching-based inferences currently detect a limited type of vulnerabilities 

such as BOF, FSB, and SQLI. Thus, future works should improve the current techniques for detecting 

other vulnerability types such as XSS and CSRF. New approaches can also combine multiple techniques to 

detect unaddressed vulnerabilities and increase detection accuracies. Another research direction is to apply 

appropriate granularity and sensitivity for different inference techniques. Moreover, performing static 
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analysis based on the presence of improper sanitization APIs can be investigated further for different 

vulnerabilities.  

5. Hybrid analysis  
Although static analysis techniques detect vulnerable code in programs, they all suffer from a common 

disadvantage which is numerous false warning reports. As a result, a tester or programmer spends 

significant amount of time for examining warnings with actual input test cases. Thus, merely depending on 

the static analysis results might not be practically feasible to detect and fix all suspected vulnerabilities in 

large scale programs. Many approaches have attempted to improve this situation by automatically 

examining suspected vulnerable code. These approaches combine static analysis techniques with 

complementary dynamic analysis techniques [157]. A dynamic analysis is an active analysis technique 

where program states are observed to confirm vulnerability exploitations [169]. Program states include a 

wide range of entities during a program execution such as the values of declared variables, structure fields, 

and contents of memory locations. The combination of static and dynamic analysis is known as hybrid 

analysis technique.  

In general, a hybrid analysis technique strives to avail the advantages of both static and dynamic 

analyses. The static analysis identifies the locations of program code that need to be analyzed during 

program executions to verify actual exploitations of vulnerabilities. This reduces the number of suspected 

vulnerabilities reported by a static analysis technique that need to be examined further. Note that the 

vulnerability mitigation capability of any hybrid analysis technique fairly depends on the inference 

technique of a static analysis. For example, a static analysis might not identify program code as vulnerable. 

As a result, the subsequent dynamic analysis cannot find any security breaches in that code. Moreover, 

obtaining or generating required test cases that can reach the vulnerable locations during a program 

execution might not be directly addressed by a hybrid analysis technique. Rather, complementary 

mitigation techniques such as test case generation can address that issue.  

In the following section, we compare hybrid analysis works that mitigate program security 

vulnerabilities based on seven features: static inference, analysis granularity, static information, dynamic 

analysis objective, program state utilization, vulnerability coverage, and language. Note that the lack of 

discussion on “completeness” and “soundness” of the underlying static analysis techniques by the original 

authors of the related works prohibit us to include these features in our comparative discussions. The most 

important step for a hybrid analysis is to actively examine program entities to confirm suspected 

vulnerabilities based on dynamic analysis objectives. The objectives are related to program states at 

runtime. Thus, we are motivated to classify hybrid analysis works based on dynamic analysis objectives 
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into four types: program operation, code structure integrity, code execution flow, and unwanted value. 

They are described in Sections 5.2-5.5. Finally, we discuss open issues in Section 5.6.  

5.1. Comparison of hybrid analysis approaches 

We compare hybrid analysis works based on seven features: static inference, analysis granularity, static 

information, monitoring objective, program state utilization, vulnerability coverage, and language 

addressed. A summary of the comparison is shown in Table 5, while we describe these features in the 

following paragraphs. 

Static inference: This feature indicates the underlying inference mechanism by which a location is 

identified as vulnerable without executing the code. We reuse the same categorization for inference 

mechanisms that have been discussed in Sections 4.2-4.5 (i.e., tainted data flow, constraint, annotation, 

and string pattern matching). Unlike traditional static analysis technique, where inference mechanisms are 

applied to detect vulnerable code, a hybrid analysis often applies a light weight static analysis, which 

primarily discovers information flow.  

     Table 5 shows that three types of inferences are used: tainted data flow, string pattern matching, and 

untainted data flow-based analysis. Tainted data flow and string pattern matching-based techniques have 

been discussed in Section 4. Here, we discuss untainted data flow-based inference that is used in several 

works (e.g., [35, 62]). Untainted data flow represents the extraction of legitimate information that is valid 

in sensitive program operations (e.g., SQL query execution). For example, Castro et al. [35] identify 

legitimate instruction sets that can define (or assign) the value of a variable. Balzarotti et al. [62] define 

intended workflows by connecting valid views (or program paths). The common characteristic between 

an untainted and a tainted data flow is that both of them track flows of data. However, an untainted data 

flow-based technique tracks valid data, whereas a tainted data flow-based technique tracks suspected data. 

Sometimes, untainted data flow is also mentioned as “positive tainted data flow”. 

Analysis granularity: This feature identifies what granularity level of program code is used in a static 

analysis phase. The granularity levels vary widely. These include statement (e.g., [81]), control flow (e.g., 

[41, 62]), dataflow (e.g., [35]), and combined granularities such as statement and control flow (e.g., [16]). 

Static information: This feature indicates the information gathered during a static analysis which is used 

in a dynamic analysis. In Table 5, we observe that collected information depend not only on vulnerability 

types, but also on languages and analysis techniques. For example, BOF can be detected by identifying 

allocated memory blocks through MAT [19], unsafe pointers used in memory write operations [101], and 

unsafe library function calls having pointer arguments [16]. However, injection type vulnerabilities (e.g., 

SQLI and XSS) can be detected by identifying trusted strings [83], hotspots [81], finite state machines of 

SQL queries [106, 107], and the set of statements involved in generating malicious outputs [41].  
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Table 5: Comparison summary of hybrid analysis works on program security vulnerabilities 
Work Static 

inference 
Analysis 
granularity  

Static information Dynamic analysis 
objective  

Program state 
utilization  

Vulnerability 
coverage 

Language

Aggarwal et al. 
[16] 

Tainted data 
flow  

Statement and 
control flow 

Function calls 
having pointer and 
alias arguments 

Program operation 
(unsafe function 
calls) 

Addition (suspicious 
scores for pointers 
and aliases passed as 
function arguments) 

BOF C  

Castro et al. 
[35] 

Untainted 
data flow  

Data flow  List of variable that 
might modify 
values 

Program operation 
(memory read) 

Extraction (allowable 
definition set) 

BOF, FSB C 

Kumar et al. 
[19] 

String pattern 
matching 

Statement Memory allocation 
table (MAT) 

Program operation 
(memory read and 
write) 

Extraction (base and 
size of allocated 
memory blocks) 

BOF, DAP, 
MEL 

x86  

Monga et al. 
[41] 

Tainted data 
flow 

Inter-
procedural 
control flow  

Program paths and 
statements that 
might modify 
sensitive sinks 

Unwanted input 
(meta characters) 

Addition (store taint 
labels of untrusted 
inputs) 

SQLI, XSS PHP  

Balzarotti et al. 
[62] 

Untainted 
data flow 

Intra and 
inter-
procedural 
control flow  

Module views and 
intended 
workflows 

Code execution flow Extraction (valid 
program paths) 

SQLI, XSS PHP 

Halfond et al. 
[81] 

String pattern 
matching 

Statement Valid SQL query 
models  

Code structure 
(SQL) 

Extraction (valid SQL 
query models) 

SQLI JSP 

Halfond et al. 
[83] 

String pattern 
matching 

Statement Trusted strings Code structure 
(SQL) 

Addition (mark to 
hard coded strings) 

SQLI Java byte 
code  

Johns et al. 
[87] 

String pattern 
matching 

Statement Programmer 
written script code 

Unwanted value 
(injected script code)

Addition (replace 
known code with 
tokens) 

SQLI, XSS PHP  

Wei et al. 
[106] 

String pattern 
matching  

Control flow  Identify SQL 
queries 

Code structure 
(SQL) 

Extraction (a FSM of 
queries before input 
inclusions) 

SQLI N/A  

Muthuprasanna 
et al. [107] 

String pattern 
matching 

Inter-
procedural 
control flow  

SQL finite state 
machine (SQL-
FSM) 

Code structure 
(SQL) 

Extraction (SQL-
FSM) 

SQLI Java  

Lucca et al. 
[127] 

Tainted data 
flow 

Control flow  Tainted sources 
and sensitive sinks

Unwanted value 
(meta characters) 

Addition (expected 
output messages to 
analysis functions)- 

XSS ASP  

Ringenburg et 
al. [142] 

String pattern 
matching 

Data flow  White listed 
memory locations  

Program operation 
(format function 
calls) 

Extraction (valid 
memory addresses) 

FSB C  

Yong et al. 
[101] 

String pattern 
matching 

Statement Unsafe pointer 
dereferences and 
legitimate memory 
locations 

Program operation 
(memory read or 
write) 

Addition (tagging 
memory locations) 

BOF, DAP C  

 
Dynamic analysis objective: This feature describes what attribute of a program is checked at runtime to 

detect attacks during dynamic analysis phase. As can be seen from Table 5, program operation (e.g., [16, 

35]), code structure (e.g., [81, 106]), code execution flow (e.g., [62]), and unwanted value (e.g., [87, 127]) 

are monitored in different hybrid approaches. Program operation checks whether memory allocations, 

releases, and accesses are performed in valid memory regions or not. Code structure integrity attribute 

validates the known structure of program code during runtime. The code execution flow checks whether 

an intended program path can be altered or not without modifying related program states (e.g., session id, 

cookie). The unwanted value attribute checks the presence of unwanted values in program inputs and 

outputs. We provide details of dynamic analysis objectives in Sections 5.2-5.5. Note that the objectives 
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are related to program states at runtime and they are a subset of program monitoring objectives (to be 

discussed in Section 7).  

Program state utilization: To detect an attack, a program state needs to be compared with a known 

program state under attack. These known states are derived through information extraction or addition of 

program sources. We denote such derivation characteristic as program state utilization. Depending on the 

types of vulnerabilities and dynamic analysis objectives, we divide program state utilization into two 

categories: information extraction (e.g., [35, 62, 81]) and information addition (e.g., [16, 41, 87]). The 

sixth column of Table 5 shows the category of program state utilization for each of the work along with 

particular information. 

Program code can be analyzed to extract useful information to detect attacks during a dynamic analysis 

phase. For example, Ringenburg et al. [142] extract whitelists to prevent FSB attacks that write to invalid 

memories through malicious %n specifiers. Castro et al. [35] extract reaching definition instruction set for 

every variable usage. A definition table is updated on every memory write operation (i.e., definition). The 

table can detect BOF and FSB attacks which define variables not included in the reaching definition 

instruction set. Balzarotti et al. [62] extract all valid paths that a user traverses during a program’s 

execution. During code injection attacks (e.g., SQLI, XSS), these paths are not traversed. Halfond et al. 

[83] mark trusted strings in programs which are mainly hard coded strings written by programmers and 

include SQL keywords, operators, and literals. These trusted strings help to detect SQLI attacks by 

checking if certain parts of SQL queries (i.e., keywords and operators) include trusted strings (i.e., no 

attack) or not (i.e., attack). Extracting valid SQL query models through Finite State Automata (FSA) [106, 

107] and Non-Deterministic Finite Automata (NDFA) [81] is widely used to detect SQLI attacks. In these 

cases, queries are checked to be valid based on the models. 

Information can be added in program code which can be retrieved later and compared with a future 

program state to detect attack. Aggarwal et al. [16] assign suspicion score for pointers which are declared 

locally in functions or passed as arguments to detect BOF. Yong et al. [101] mark memory allocation and 

free operations, global, and static variables with “appropriate” and “inappropriate” to tag legitimate and 

illegitimate memory locations, respectively in a dynamic analysis. Lucca et al. [127] add expected output 

messages to confirm XSS attacks in suspected files (or pages). These files are supplied with attack input 

cases and checked for expected responses. Monga et al. [41] detect XSS in PHP-based programs by adding 

tainted labels to untrusted input sources and these labels are propagated to variables derived from these 

sources during computation. Kumar et al. [19] add a memory allocation table (MAT) to keep track of 

memory blocks and sizes to be used later for detecting BOF vulnerabilities. Moreover, they mark each 

memory block as active or inactive to identify MEL. Program output locations are checked for the presence 

of malicious meta characters in tainted variables. Johns et al. [87] identify keywords in programmer 



35 
 

written script code and replace them with masks (random tokens). The masked keywords are unmasked 

before generating responses to prevent code injection exploits. 

Vulnerability coverage: This feature indicates what vulnerabilities are covered in a hybrid analysis. 

Table 5 shows that most approaches address web-based vulnerabilities such as SQLI and XSS (e.g., [41, 

81, 87]). Moreover, BOF, FSB, and DAP vulnerabilities have been addressed by several works (e.g., [16, 

19, 142]). However, few works have addressed MEL [19] and NLD vulnerabilities.  

Language: This feature indicates programming languages (related to implementations) that are supported 

in hybrid analysis approaches. As can be seen in Table 5, most of the works analyze code written in either 

server side scripting languages (e.g., PHP, JSP) or in procedural languages (e.g., C). Very few works 

analyze executable code [19]. A motivation behind analyzing high level scripting languages is the 

availability of static analysis tools for those languages. For example, Balzarotti et al. [62] perform intra 

and inter-procedural analysis with the help of Pixy tool [88] that analyze PHP code. Similarly, procedural 

languages (e.g., C) have high number of static analysis tools and algorithms (e.g., points-to analysis 

algorithms).  

5.2. Program operation  

In this technique, static analysis phase identifies valid memory locations that can be accessed, read, or 

written during program executions. During a dynamic analysis phase, these locations are checked for any 

operations performed outside the valid memory locations. For example, Castro et al. [2] identify a set of 

instructions (or statements) that might modify a variable value (i.e., definition) for each variable use (i.e., 

read) in the dataflow graph of a program during static analysis. During the dynamic analysis, they check 

whether a value read has been defined by a legitimate set of definition or not. Ringenburg et al. [110] 

perform static data flow analysis to generate white listed addresses (or valid addresses) where writing 

operations can be performed during format function calls. Any modification outside the registered 

addresses during format function calls are identified in an active analysis. Yong et al. [101] identify 

dangerous pointer dereferences and legitimate memory locations which pointers can point to during the 

static analysis. Programs are instrumented to check whether dereferences are pointing to legitimate 

memory locations or not. If any pointer is used to write (or free) an illegitimate location, then the 

instrumented program halts further execution. 

Hybrid analysis can be applied to executable program code. However, a dynamic analysis is performed 

first to map executable instructions with virtual addresses and identify program operations related to 

vulnerability exploitations. Static analysis is performed by decompiling the executable into object code 

(e.g., assembly). The object code can be analyzed to obtain attributes related to vulnerabilities (e.g., 

allocated memory sizes). Finally, programs are executed with test cases to check whether vulnerabilities 
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might be exploited based on the gathered information. Kumar et al. [19] apply hybrid analysis of 

executable C programs to identify BOF vulnerabilities. 

5.3. Code structure integrity  

In this approach, a static analysis technique is applied to extract valid code structure. During a dynamic 

analysis, it is checked whether runtime program code conforms to the structure or not. Depending on the 

types of attacks, the code structure can be modeled with different formal models. For example Halfond et 

al. [81] apply Non Deterministic Finite Automata (NDFA) to model valid queries in each hotspot (i.e., a 

location where a SQL query is issued to a database engine). In an NDFA, a transition might contain a SQL 

token, a delimiter, or an input string value. Muthuprasanna et al. [107] perform Java string analysis on all 

the hotspots to construct NDFA, where transitions occur at the character level of a string. Each NDFA is 

converted to a SQL Finite State Machine (SQL-FSM) where transitions are either SQL keywords or input 

string variables. In both of the works, if a query is not consumed by the model, a SQLI vulnerability is 

warned. Wei et al. [106] detect SQLI vulnerabilities in stored procedures by identifying queries that might 

be generated during a program’s execution. They develop Finite State Machine (FSM) models of SQL 

queries, where a transition from one state to another state occurs for a SQL keyword. During a dynamic 

analysis phase, query statements with user inputs are checked against the FSM. If a query is rejected (or 

not consumed by an FSM) then an error is flagged. A recent variation of code structure integrity approach 

is to apply positive tainting on trusted strings (e.g., hard coded strings written by programmers, SQL 

keywords, operators, and literals) during the static analysis and to check whether runtime generated code 

are constructed from these trusted strings or not. Halfond et al. [83] apply this approach to detect SQLI 

attacks in Java byte code. 

5.4. Code execution flow 

     In this approach, static analysis is applied to identify valid program execution paths which share a 

common program state. These paths also represent sequence of operations to perform functionalities. 

During a dynamic analysis, it is checked whether it is possible to jump from one execution path to another 

or not. Balzarotti et al. [62] apply this approach. They analyze programs to summarize valid execution 

paths (or views) where a path comprises of more than one web page to perform a desired functionality 

(e.g., authentication). The second stage of the analysis constructs intended workflows. A workflow 

connects a source view with a target view provided that a hyperlink present in the source view is 

referenced in the target view and parameters provided through a link is extracted in a target view. The 

summarized workflow is represented by a graph, where a node contains a page and corresponding view, 

and an edge represents possible web-based operations (e.g., form submission, redirection). A model 

checker identifies whether any unintended workflow (i.e., vulnerabilities) is present in the summarized 
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workflow. A detection algorithm is used to check whether from any view it is possible to jump to another 

view not included in the intended workflow.  

5.5. Unwanted value  

     The static analysis phase identifies potential locations where inputs or tainted values might reach and 

perform sensitive operations (sinks). When a program execution reaches a sink, all tainted inputs are 

checked for suspicious meta characters (e.g., single quotation) that can be used to exploit vulnerabilities 

such as SQLI and XSS. For example, Monga et al. [41] detect XSS in PHP-based programs. Similarly, 

Lucca et al. [127] identify XSS vulnerabilities in Active Server Pages (ASP)-based programs. However, 

these approaches stop program executions while detecting unwanted values. An alternative approach is to 

prevent the inclusion of unwanted values in program outputs. This is common for web-based programs 

that generate HTML outputs and need to avoid unwanted values (e.g., JavaScript code) to avoid attacks 

(e.g., XSS). For example, Johns et al. [87] separate programmer written scripts which are static string 

constants in program code. A string is analyzed to identify keywords (e.g., HTML attributes, JavaScript 

words) and replace them with masks (random tokens). These masked keywords are unmasked before 

generating responses by browsers. As a result, unwanted injected code is replaced with corresponding 

encoded form. 

5.6. Open issues  

From the discussion of hybrid analysis approaches, we observe that program operation and code 

integrity are the two widely used dynamic analysis objectives. Most of the works apply string pattern 

matching and tainted data flow analysis along with static data or control flow analysis. Very few works 

perform dynamic analysis followed by static analysis. Moreover, CSRF vulnerabilities have not been 

addressed by current approaches. The study shows that static analysis influences dynamic analysis stage 

for most of the works. The precision of static analysis is important and needs to be carefully considered 

before applying in a hybrid approach. Future works should explore how assumptions behind static analyses 

influence the vulnerability detection in dynamic analysis stages. We notice that very few approaches 

employ untained data flow-based static analyses and code execution flow-based dynamic analysis 

objectives. We believe that employing suitable dynamic analysis objectives and static inference techniques 

can not only improve the effectiveness of hybrid analysis, but also detect a wide range of vulnerabilities.  

6. Other mitigation techniques  
In this section, we first describe secure programming guidelines. Then we briefly discuss two other 

approaches that are primarily applied in the maintenance phase: program transformation and patching.  
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6.1. Secure programming 

Program security breaches can be blamed to programmers who overlook possible vulnerabilities in their 

implemented code. Moreover, the lack of understanding of an implementation language features (e.g., data 

types, libraries) contributes in writing code that is vulnerable [160]. Secure programming (or coding) 

approaches are intended to provide supports for implementing programs in vulnerability free ways and can 

be considered as the first line of defense to avoid program security breaches. Writing secure code helps 

reducing subsequent costs of detecting and fixing security vulnerabilities at later stages. Secure 

programming approaches provide supports in the form of safe APIs, libraries, aspects, and filters.  

  
Table 6: A brief comparison summary of the secure programming approaches 

Work Type of programming support Vulnerability coverage Programming language 
Speirs et al. [38] API BOF C 
Tsai et al. [43] Library BOF C 
Hermosillo et al. [85] Aspect SQLI, XSS Java 
Juillerat et al. [89] Library SQLI, XSS Java 
Robbins et al. [144] Library FSB C 
CSRFGuard [168] Filter CSRF Java 
 
APIs are system calls which allow programmers to perform checks in the code to avoid vulnerabilities. 

For example, ptrbounds [38] is a kernel level API that helps obtaining the writable upper and lower bounds 

for a given pointer data type to avoid BOF vulnerabilities in C programs. Most of the vulnerabilities can be 

mitigated by applying safe libraries. For example, the Libsafe [43] intercepts all vulnerable library 

functions that might result BOF attacks. The library code checks stack to identify the maximum number of 

bytes that can be safely written for each destination buffer. Similarly, Libformat library [144] contains 

improved version of format functions to prevent FSB vulnerabilities by checking whether supplied format 

strings are in writable memory locations and contain suspicious specifiers or not. Moreover, safe libraries 

capture the structure of strings that might be used in SQL queries and HTML outputs to prevent code 

injection attacks. In this case, the library disallows writing of SQL queries and HTML structures in 

program code directly. Juillerat et al. [89] develop such a library named Stones to prevent SQLI and XSS 

vulnerabilities in web programs written in Java. Secure programming approaches are adapted to different 

programming paradigms. For example, the aspect oriented programming [85] allows weaving special code 

through pointcuts (i.e., a pattern of method or function calls with common signatures) and advices (i.e., 

additional code to be added before or after function calls). Vulnerabilities are caused by invalidated inputs 

which can be checked through intercepting inputs at pointcuts and detecting (or preventing) the presence of 

malicious inputs in advices. 

To protect server side programs from CSRF attacks, filters can be added [168]. A filter is a mapping 

between resources (e.g., a server script page that performs a sensitive operation) and corresponding code 

that intercept HTTP requests to detect possible CSRF attacks. The idea is to verify a request by comparing 
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a unique request token for an HTTP parameter value with a token stored in a session table. If there is a 

mismatch, the request is considered as forged and part of a CSRF attack. The filter can redirect a user to an 

error page. However, if the token matches with the stored value, then a request is forwarded to a server 

program which generates a response page. The response page is searched for HTML forms and links, and 

inserted with appropriate unique token parameter values for further prevention of CSRF attacks.  

We provide a comparison summary of secure programming approaches in Table 6 which includes three 

features: type of programming support, vulnerability coverage, and intended programming language. We 

notice that most secure programming approaches are intended to mitigate a limited type of vulnerabilities 

namely BOF, FSB, SQLI, and XSS. Moreover, C and Java are the two programming languages having 

ample supports for secure programming. 

6.2. Program transformation 

Program security vulnerabilities can be mitigated in a post release stage which is commonly known as 

maintenance phase [156]. Although program features can be extended, removed, or modified in this stage, 

we only focus on activities that are intended to fix security vulnerability breaches in the implemented code. 

Program transformation is one of the most widely used approaches in this direction which removes 

vulnerabilities by applying structured modification of program source code. In other words, source code of 

a vulnerable program is transformed to a vulnerability free program. We categorize program 

transformation related works into two types: source to source translation [25, 45, 48, 112, 147] and code 

rewriting [120, 133, 137]. 

In source to source translation, a program source is taken as input and an enhanced program in the same 

language is generated automatically. A source to source translation can be implemented in different ways 

such as using a functional programming language that can replace certain patterns of code with desired 

patterns (e.g., TXL [150]). However, we restrict our discussion on the enhancement added in program code 

to mitigate vulnerabilities. We divide program transformation approaches into three categories based on 

enhancement type: shifting data to safe region, adding security checks, and enriching program data. The 

shifting data to safe region approach shifts vulnerable data into safe regions. For example, the SecureC 

translator [25] translates a C program into security-enhanced source code. The translation shifts a buffer 

memory location into a shadow stack (a read only page, except the location of buffer) to prevent BOF 

attacks through out of bound writing. Moreover, C programs are enhanced to reposition each stack buffer 

into heap area [147] to avoid return address corruption through BOF. The adding security checks add 

necessary checks to avoid vulnerabilities. For example, every buffer index and pointer dereference can be 

preceded by an assertion to prevent BOF attacks [45]. The enriching program data approach stores 

additional information to track valid memory related information. The information is used to prevent 

invalid memory accesses in program code. For example, to detect BOF and DAP vulnerabilities in C 
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programs [48, 112], pointer data types are extended to contain additional information such the base and the 

size of memory objects and the status of memory objects (i.e., allocated or freed).  

Table 7: A comparison summary of program transformation related works for mitigating security 
vulnerabilities 

Work Transformation type Vulnerability coverage Programming language
Nishiyama et al. [25], Wang et al. [45], 
Dahn et al. [147] 

Source to source translation BOF C 

Xu et al. [48], Austin et al. [112] Source to source translation BOF, DAP C 
Reis et al. [120]  Code rewriting BOF JavaScript 
Yu et al. [133], Ofunoye et al. [137] Code rewriting XSS JavaScript 

 

The code rewriting technique is used for rewriting the output of a program as opposed to program 

source code directly. The output is another high level program that is interpreted or executed. For example, 

a server script code written in PHP generates HTML code which might contain BOF vulnerabilities due to 

arbitrary large HTML attribute identifiers [120]. The code can be rewritten at the browser to avoid 

unexpected results while rendering the page. Similarly, vulnerable JavaScript code can be rewritten to stop 

XSS attacks [133, 137].  

We provide a brief comparison summary of program transformation related works in Table 7 according 

to transformation type, vulnerability coverage, and programming language used. It is obvious that only 

BOF, DAP, and XSS have been mitigated using program transformation techniques. Moreover, current 

approaches have addressed C and JavaScript programs whose sources are transformed to safe equivalents.  

6.3. Patching 

Patching is a widely used approach in program maintenance phase to fix reported bugs or errors so that 

modified programs conform to expected functionality, performance, and quality [156]. However, we focus 

on corrective maintenance which are intended to fix reported security breaches in programs. A patching 

technique identifies vulnerable code and modifies the program to remove vulnerabilities. Unlike other 

proactive (e.g., static and hybrid analysis, testing) techniques, patches are generated after the occurrence of 

attacks. We classify patching works into two types: source code and environment patching. 

The source code patching technique analyzes program source code to identify vulnerable statements 

that need to be fixed. The common practice is replacing vulnerable code with equivalent safe code. For 

example, a SQL query statement can be written as a PreparedStatement which does not allow the 

modification of query structure during runtime to prevent SQLI [74, 115]. Moreover, unsafe library 

function calls can be replaced with their safe equivalents and added vulnerability checks to avoid BOF 

[37]. A variation of source code patching is to guide patching locations by data flow analysis on the source 

code of the functions to identify related statements that contribute to vulnerabilities [22]. Patches are 

generated by determining the size of buffers. Out of buffer reads are redirected within buffers. Out of 
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bound writings are discarded by replacing unsafe library function calls with safe function calls or skipping 

through out of bound checking.  

 
Table 8: A brief comparison summary of patching approaches for mitigating security vulnerabilities 

Work Patching type Vulnerability coverage Programming language
Gao et al. [149], Novark et al. [26] Environment BOF, DAP C 
Lin et al. [22], Smirnov et al. [37] Source code BOF C 
Lin et al. [53] Environment BOF x86 
Dysart et al. [74] Source code SQLI PHP 
Lin et al. [103] Environment SQLI, XSS N/A 
Thomas et al. [115] Source code SQLI Java 

 
In an environment patching approach, program environment is modified which might include memory 

layout, external library addresses, etc. This approach can help in patching programs without stopping their 

executions. For example, patching to prevent BOF attacks can be performed by redirecting a vulnerable 

function (e.g., strcpy) with an equivalent non-vulnerable function (e.g., strncpy) [53] by changing the GOT 

(Global Offset Table) entries. Many approaches analyze program artifacts that are generated due to 

vulnerability exploitations. These artifacts help identifying changes to be made in an environment. For 

example, the crashed program can be analyzed to change environment by adding a canary value at the end 

of a buffer to prevent BOF [149]. Moreover, the heap image of a crashed program can be dumped to learn 

the magnitude of the overflowed bytes and memory object de-allocation call sites [26]. The information is 

used to pad objects and defer object de-allocations to prevent BOF and DAP vulnerabilities, respectively. 

For web-based programs, patching can be performed in proxies located between a server and a client. In 

this case, a proxy might be enhanced with input filters (input validation functions) [103] to detect 

malicious inputs from client side of a program. 

We provide a brief comparison summary of patching works that fix program security vulnerabilities in 

Table 8, where we classify the works based on patching type, vulnerability coverage, and programming 

language. We note that BOF, DAP, SQLI, and XSS vulnerabilities have been addressed by current 

approaches. Moreover, most patching works are related to the implementation of C programs. Very few 

works generate patches for programs whose sources are available in high (e.g., Java and PHP) and 

intermediate languages (e.g., Java byte code and x86).  

7. Monitoring  
Vulnerabilities might be exploited at runtime through successful attacks. Given that, it is very important 

to have a tool which can be used for online monitoring of programs in the operational stage. In a 

monitoring approach, vulnerability symptoms are checked by comparing the current state of a program 

with a known state under attack. When there is a match (or mismatch) between the two states, a successful 

exploitation of a particular vulnerability (or an attack) occurs. The program might be stopped for further 
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execution. A monitoring tool can help to mitigate the consequences of some vulnerability exploitations. 

Moreover, it can be utilized in a complementary fashion with other vulnerability prevention techniques 

such as static analysis (e.g., [12, 20]) and testing (e.g., [52, 86, 91]). 

In this section, we compare and contrast program security vulnerability monitoring approaches in order 

to provide a classification based on the following seven identified characteristics: monitoring objective, 

program state utilization, implementation mechanism, environmental change, attack response, 

vulnerability coverage, and language [7, 8, 10]. The classification is provided in Table 9. We describe 

these characteristics in Section 7.1. We then classify these works based on ‘monitoring objective’ which is 

a very important characteristic for any monitoring approach. The objectives are program operation, code 

execution flow and origin, code structure, value integrity, unwanted value, and invariant. They are 

discussed in Sections 7.2-7.7. We discuss open issues in Section 7.8. 

7.1. Comparative analysis of monitoring approaches 

Monitoring objective: This characteristic indicates program properties during execution which need to be 

monitored to detect attacks. We classify the works into six categories which are shown in the second 

column of Table 9. These include program operation (e.g., [31, 163]), code execution flow and origin (e.g., 

[63, 69, 70]), code structure (e.g., [66, 79]), value integrity (e.g., [24, 30, 68, 129]), unwanted value (e.g., 

[59, 111, 123, 125]), and invariant (e.g., [13]). Note that some approaches employ multiple monitoring 

objectives such as program operation and code execution and origin [69, 70]. We discuss these objectives 

in Sections 7.2-7.7. 

Program state utilization: To detect an attack at runtime, a program state needs to be compared with a 

known program state under attack. These known states might be derived from program states through 

information extraction, addition, or modification. We denote such derivation characteristic as program 

state utilization. Depending on the nature of vulnerabilities and monitoring objectives, we divide program 

state utilization into three categories: information extraction, information addition, and information 

modification. The third column of Table 9 shows the category of program state utilization for each of the 

work along with particular information. 

     Program code can be analyzed to identify (or extract) useful information to detect attacks during 

runtime. For example, a list of known JavaScript code [125] can be developed to detect XSS attacks at 

runtime. Dhurjati et al. [18] develop a pool allocation table which contains a set of homogenous objects. 

Each set represents memory objects related to a data type that a pointer might point during a program 

execution [18]. These sets are used to detect BOF and DAP attacks through pointer dereferences. Cowan 

et al. [141] extract the number of arguments in format function calls to detect FSB attacks. 
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Table 9: Comparison summary of approaches for monitoring security vulnerability exploitations 
Work Monitoring 

objective 
Program state 
utilization 

Implementation 
mechanism 

Environmental 
change 

Attack 
response 

Vulnerabilit
y coverage 

Language

Berger et 
al. [58] 

Program operation 
(memory read and 
write) 

Information 
modification (memory 
locations) 

Spatial 
rearrangement of 
memories 

Implementation 
(DLL 
modification)  

Program 
termination 

BOF, DAP C 

Chiueh et 
al. [129] 

Value integrity 
(return address) 

Information addition 
(return address) 

Code 
instrumentation 
(compiler 
modification) 

Implementation 
(kernel system call 
patches) 

Program 
termination 

BOF C 

Fetzer et al. 
[163] 

Program operation 
(memory 
allocation)  

Information addition 
(memory block sizes) 

API hook Implementation 
(DLL 
modifications) 

Error messages 
and program 
termination 

BOF C 

Cowan et 
al. [68] 

Value integrity 
(return address) 

Information addition 
(canary value) 

Code 
instrumentation 
(compiler 
modification) 

Program state 
utilization 
(prologue and 
epilogue) 

Attack handler 
function 
execution 

BOF C 

Gupta et al. 
[126] 

Value integrity 
(return address) 

Information addition 
(return address and 
stack frame) 

Binary rewriting  Program state 
utilization (parallel 
stack frame)  

Program state 
recovery 

BOF C 

Han et al. 
[13] 

Invariant 
(legitimate API 
function call 
sequences) 

Information addition 
and extraction 
(function names, stack 
size, and return 
address) 

API hook Implementation 
(add DLL functions 
in programs) 

Program 
termination 

BOF C 

StackShiel
d [77] 

Value integrity 
(return addresses) 

Information addition 
(return addresses in 
global variables) 

Code 
instrumentation 
(compiler 
modification) 

Program state 
utilization (modify 
DATA section) 

Program 
termination 

BOF C 

Aggarwal 
et al. [105] 

Value integrity 
(return address, 
setjmp, longjmp) 

Information addition 
(return addresses in a 
monitor agent) 

Code 
instrumentation 
 

Implementation 
(program runs 
under an agent)  

Warning 
message 
generation 

BOF C 

Kohli et al. 
[108] 

Unwanted value 
(format string 
specifier) 

Information addition (a 
lightweight hash value 
of return addresses) 

Binary rewriting Implementation 
(DLL calls for 
vulnerable 
function) 

Program 
termination 

FSB x86 

Prasad et 
al. [109] 

Value integrity 
(return address) 

Information addition 
(return addresses in 
prologues) 

Binary rewriting 
 

Program state 
utilization (return 
address repository)

Program 
termination 

BOF x86 

Madan et 
al. [24] 

Value integrity 
(return address)  

Information addition 
(encrypted return 
address) 

Code 
instrumentation 
(compiler 
modification) 

Program state 
utilization 
(prologue and 
epilogue) 

Program 
termination 

BOF x86 

Kiriansky 
et al. [110] 

Code execution 
flow and origin  

Information addition 
(policies that map 
allowable control 
transfers with 
instructions, source 
and destination) 

Dynamic code 
optimizer extension 

Performance (fast 
lookup of branches 
by saving addresses 
in cache memory) 

Warning 
message 
generation 

BOF, FSB x86 

Newsome 
et al. [102] 

Program operation 
(memory write) 

Information addition 
(taint untrusted data 
source) 

Code 
instrumentation  

Performance (save 
code block in 
cache) 

Invocation of 
taint analyzer 

BOF, FSB x86 

Dhurjati et 
al. [18] 

Program operation 
(memory read and 
write) 

Information extraction 
(homogenous object 
sets or pools for each 
pointer) 

Code 
instrumentation 
(compiler 
modification)  
 

Program state 
utilization 
(memory pools and 
free blocks)  

Program 
termination 

BOF, DAP C 

Pyo et al. 
[30] 

Value integrity 
(return address) 

Information addition 
(encrypted return 
address)  

Code 
instrumentation 
(compiler 
modification) 

Program state 
utilization 
(prologue and 
epilogue) 

Attack handler 
function 
execution 

BOF C 
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Work Monitoring 
objective 

Program state 
utilization 

Implementation 
mechanism 

Environmental 
change 

Attack 
response 

Vulnerabilit
y coverage 

Language

Rinard et 
al. [31] 

Program operation 
(memory write) 

Information addition 
(hash tables store out 
of bound data) 

Code 
instrumentation 
(compiler 
modification) 

Performance (LRU 
cache to store hash 
tables) 

Program 
execution 
continuation 

BOF, DAP C 

Salamat et 
al. [32] 

Value integrity 
(similar output in 
two programs) 

Information 
modification (duplicate 
program having stack 
growth in reverse 
direction) 

Code 
instrumentation 

Implementation 
(system call 
synchronizations) 

Program 
terminations 

BOF C 

Kiciman et 
al. [104] 

Program operation 
(JavaScript code 
execution) 

Information addition 
(policies that map 
instrumentation points 
and expressions) 

Proxy-based tool Implementation (a 
proxy with 
JavaScript parser is 
added)  

Warning 
message 
generation 

MEL JavaScript 

Suh et al. 
[40] 

Code execution 
flow and origin  

Information addition 
(tag for untrusted input 
values) 

Code  
instrumentation  

Program state 
utilization 
(program context 
switch) 

Program 
termination 

BOF, FSB N/A 

Zhou et al. 
[54] 

Invariant 
(instruction sets 
accessing 
memories) 

Information extraction 
(instruction sets related 
to memory accesses) 

Code 
instrumentation 
(compiler 
modification) 

Performance 
(Check Look aside 
Buffer to store most 
recently accessed 
objects) 

Warning 
message 
generation 

BOF C 

Zhu et al. 
[55] 

Value integrity 
(function pointer) 

Information addition 
(encrypted function 
pointers in memories) 

Code 
instrumentation 
(compiler 
modification) 

Implementation 
(compiler source 
code modification)

Warning 
message 
generation 

BOF C 

Alfantookh 
et al. [59] 

Unwanted value 
(SQL code and 
meta character) 

Information extraction 
(know characters 
related to SQLI 
attacks) 

Proxy-based tool Implementation 
(adding a filter in 
the IIS server) 

Request 
blockage 

SQLI N/A 

Bandhakav
i et al. [63] 

Invariant (parse 
tree of SQL 
queries)  

Information extraction 
and addition (save 
parse trees of intended 
queries in database) 

Code 
instrumentation 

Implementation 
(code optimization 
framework) 

Warning 
message 
generation 

SQLI JSP 

Buehrer et 
al. [66] 

Code structure 
(SQL query) 

Information addition 
(pre and postpend SQL
queries with random 
keys) 

Code 
instrumentation 

Implementation 
(static class 
addition) 

Request 
blockage 

SQLI Java 

Clause et 
al. [69] 

Program operation, 
code execution 
flow and origin 

Information addition 
(taint information of 
program variables) 
 

Code 
instrumentation 

Program state 
utilization (bit 
vector to be saved 
outside program) 

Attack handler 
function 
execution 

BOF, FSB, 
SQLI 

x86 

Dalton et 
al. [70] 

Program operation, 
code execution 
flow and origin 

Information addition 
(tainted value to 
program memories and 
input data)  

Code  
instrumentation  

Program state 
utilization (save 
register, cache, and 
memory locations 
while context 
switch) 

Attack handler 
function 
execution 

BOF, SQLI, 
XSS 

N/A 

Gaurav et 
al. [79] 

Code structure (x86 
opcode) 

Information 
modification (encrypt 
opcode with secret 
key) 

Modified processor Implementation 
(jump to even 
addresses) 

Runtime 
exception 
throwing  

BOF  x86 

Boyd et al. 
[94] 

Code structure 
(SQL query) 

Information addition 
(random integer after 
SQL keywords) 

Proxy-based tool Implementation 
(add a proxy 
server) 

SQL query 
blockage 

SQLI N/A 

Iha et al. 
[122] 

Program operation 
(HTML page 
generation) 

Information 
modification (inputs 
are separated from 
DOM nodes) 

Browser extension Program state 
utilization (store 
bind value data into 
cache) 

Malicious 
script blockage 

XSS N/A 



45 
 

Work Monitoring 
objective 

Program state 
utilization 

Implementation 
mechanism 

Environmental 
change 

Attack 
response 

Vulnerabilit
y coverage 

Language

Ismail et al. 
[123] 

Unwanted value 
(special HTML 
characters) 

Information extraction 
(identify meta 
characters)  

Proxy-based tool Implementation 
(proxy server 
extension) 

Attack string 
encoding and 
storing 

XSS JavaScript 

Jim et al. 
[124] 

Unwanted value 
(JavaScript code) 

Information extraction 
(white listed 
JavaScript) 

Browser extension Implementation 
(browser parser 
modification) 

JavaScript code 
blockage 

XSS JavaScript 

Johns et al. 
[125] 

Unwanted value 
(JavaScript code)  

Information extraction 
(known JavaScript 
used in programs) 

Browser extension Implementation 
(browser parser 
modification) 

Warning 
message 
generation 

XSS JavaScript 

Bisht et al. 
[135] 

Invariant (DOM of 
an output page) 

Information extraction 
(parse tree of 
JavaScript code) 

Browser extension Implementation 
(browser scanner 
and tokenizer) 

Error message 
generation 

XSS JSP 

Cowan et 
al. [141] 

Value integrity 
(format string)  

Information extraction 
(argument count of 
functions)  

Code 
instrumentation 
(compiler 
modification) 

Implementation 
(compiler patch) 

Program 
termination 

FSB C 

Li et al. 
[143] 

Program operation 
(memory read) 

Information addition 
(canary value at the 
end of argument list) 

Code 
instrumentation 

Program state 
utilization (debug 
register saving 
while context 
switch) 

Warning 
message 
generation and 
program 
termination 

FSB x86 

Jones et al. 
[151] 

Program operation 
(memory read and 
write) 

Information addition 
(data structures 
containing base and 
size of objects) 

Code 
instrumentation 
(compiler 
modification) 

Implementation  
(DLL 
modification) 

Runtime 
exception 
throwing 

BOF, DAP C 

Ruwase et 
al. [113] 

Program operation 
(memory read and 
write) 

Information addition 
(data structures 
containing base and 
size of objects) 

Code 
instrumentation 
(compiler 
modification) 

Implementation  
(parser generates 
object and hash 
table) 

Runtime 
exception 
throwing 

BOF, DAP C 

Etoh et al. 
[152] 

Value integrity 
(canary) 

Information 
modification (pointer 
variables before buffer 
variables) 

Code 
instrumentation 
(compiler 
modification)  

Program state 
utilization (frame 
pointer and return 
address location 
change) 

Program 
termination 

BOF C 

Hastings et 
al. [153] 

Program operation 
(memory read and 
write) 
 

Information addition (a 
bit table to track if 
allocated memory is 
readable, writable, and 
both) 

Code 
instrumentation 

Program state 
utilization (bit table 
is added in object 
code) 

Warning 
message 
generation 

BOF, DAP, 
MEL 

C 

Lhee et al. 
[111] 

Unwanted value 
(large sized inputs) 

Information addition 
(data structure and 
type table to store 
buffer variable names 
and sizes) 

Code 
instrumentation 
(compiler 
modification) 

Program state 
utilization (type 
table is added in 
object code) 

Program 
termination 

BOF C 

 
     Information can be added in a program’s state and retrieved later with a future program state to detect 

attacks. For example, BOF attack detection requires storing return addresses of functions and function 

pointers adjacent to buffers in safe locations (e.g., [13, 24, 129]). Many approaches add information in 

executable program code or environment. Such information can be variables (e.g., a canary value before 

return address of a function [68, 143]), data structures and tables containing allocated buffer size 

information (e.g., [31, 151]), and taint information of sensitive variables (e.g., [63, 69, 70, 102]). 

Moreover, policies can be added to monitor allowable control transfers in executables. In this case, a 

policy might check program instructions with allowable sources and destinations [110]. Kiciman et al. 
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[104] apply policies to identify instrumentation points so that unintended behavior of JavaScript code can 

be detected and modified. Note that approaches applying invariant-based monitoring objective might 

employ both information addition and extraction (e.g., [54]). 

     Some approaches modify current program states (e.g., memory, code) to detect attacks. We identify 

two ways of performing modifications: randomization and reorganization. The randomization technique 

is used in detecting code injection attacks. In this case, non-randomized program code (injected by 

attackers) becomes different from randomized program code (written by a programmer) [66, 94]. 

Randomization can be performed on memory locations [58]. Some monitoring techniques reorganize 

program variables and environments to alter program behaviors during attacks. For example, the growth 

direction of two stack segments might be set opposite for two versions of a program [32]. This helps to 

detect BOF attack based on different outputs of two programs. Another example is to reorganize program 

variables including buffers in such a way so that sensitive variables are placed before stack buffers [152]. 

Implementation mechanism: This characteristic highlights the way of achieving monitoring objective. 

We identify eight unique implementation mechanisms as shown in the fourth column of Table 9. These 

include spatial rearrangement of memories [58], code instrumentation (e.g., [66, 69, 143]), API hooking 

(e.g., [13, 163]), proxy-based tool (e.g., [94, 104, 123]), browser extension (e.g., [122, 124]), modified 

processor [79], binary rewriting (e.g., [108, 109]), and dynamic code optimizer extension (e.g., [110]). 

We briefly describe them in the following paragraphs. 

     In a spatial rearrangement technique, memory blocks (or objects) are allocated at random locations and 

the objects are located apart to reduce BOF. Sometimes, allocated objects are initialized with random 

values to detect DAP attacks. The mechanism requires developing customized memory managers [58].       

     Code instrumentation is one of the widely used techniques where program code is enhanced with 

monitoring and prevention code. Additional code can be injected at the binary level [105]. Binary 

executable code can be instrumented to add checks (e.g., taint a basic block before passing to a processor 

[70, 102]). Monitoring code can also be injected in the object code generated by a compiler [153]. 

Moreover, an operating system kernel can be modified to save registers containing tainted information for 

program data and control during context switches [69]. Code can be instrumented by modifying (or 

patching) compilers so that necessary monitoring code is automatically injected into programs. For 

example, monitoring of BOF requires saving return addresses to safe locations. This can be done by 

adding necessary code in a function prologue [129]. 

     In API hook technique, vulnerable library function calls are intercepted. The objective of interception 

depends on vulnerability type. For example, function calls vulnerable to BOF can be replaced with non 

vulnerable function calls. Sometimes, buffer sizes and function calls are stored to be used at a later stage 

[13].  
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     The proxy-based tool resides between a client and a server program. The role of the tool depends on 

monitoring objectives. For example, a proxy may perform de-randomization of code (e.g., SQL key 

words) before submitting SQL queries to a database engine [94]. A proxy can also be used to instrument 

client side JavaScript code to prevent security breaches [104].  

     Browser extension enables to monitor client side program execution. In this case, browsers are 

enhanced with functionalities to support monitoring and prevention of attacks. For example, Firefox can 

be extended to generate HTML pages in a customized way to prevent script code injection [122].  

     Processors can execute code provided the supplied instruction sets are supported by CPUs. In a 

modified processor technique, code randomization is applied with a secret key, where randomized code 

must be de-randomized before passing to processors [79]. The modification includes adding decryption 

mechanism before loading to processors.       

     The binary rewriting technique adds or modifies different section of executable programs such as 

adding entries to a symbol table and a hash table in a new section to store data [108, 109].  

     Dynamic optimization frameworks allow runtime analysis of program code at different granular levels 

(e.g., statement, block). The dynamic code optimizer extension technique leverages such framework to 

monitor programs to add checks such as allowing or disallowing control flow between two blocks [110].  

Environmental change: This characteristic indicates how an approach introduces changes in program 

execution environment. A program execution environment change might include modification of 

dynamically linked libraries, compiler, memory, cache, operating system kernel, etc. For web-based 

programs, environment might include web server, browser, proxy server, etc. The fifth column of Table 9 

shows that the environment can be changed due to implementation mechanism, program state utilization, 

and performance. We describe them in the following paragraphs. 

     Most of the approaches modify environments due to implementation mechanism. For example, 

dynamically linked library calls are modified or injected (e.g., memory allocation and free) as part of 

attack detection [13, 58, 163]. Execution of multiple programs might be controlled through system call 

synchronization to allow changing of program states due to input and output [32] from the environment. 

Web-base client program environments are modified by enhancing browser components (e.g., parsers, 

tokenizers) [124, 125]. Server program environment can be modified by extending proxy servers, adding 

filters, etc. [59, 123]. Kernel system calls can be modified to detect unintended memory accesses (e.g., 

read only memory access [129]).  

     Program states are utilized to detect attacks at runtime. However, program states are often enhanced 

and modified with information. These result in changes of program execution environments. For example, 

information can be added in registers, cache memories, or extended address space of a program. Program 

function prologue and epilogue are modified to introduce environment changes [24, 30, 68]. Moreover, 
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kernel system calls are modified to save program states such as registers, tagging information (or tainted 

information), and stacks [40, 70, 143]. A duplicate stack frame can be created in an execution 

environment to save sensitive information [126]. Information can be saved in the environment such as a 

bit vector table to store the readable and writable status of memory bytes.  

     Several approaches try to reduce monitoring overhead by storing information in environment. Many 

approaches use faster memory blocks such as cache, hash, and look aside buffer in this direction as ways 

of modifying environments. For example, cache memories are used to store the most recent program 

instructions that access memories [54]. Moreover, hash can be used to store out of bound data during 

BOF attacks [31]. Furthermore, instrumented code block can be saved in cache memory to avoid 

instrumenting the same block in future [110].  

Attack response: This characteristic describes how monitoring approaches respond to attacks. From the 

sixth column of Table 9, it is obvious that most of the techniques terminate programs and generate error 

messages. However, some techniques continue program executions by jumping to attack handler modules 

that might take corrective actions. For example, recovery of information can be performed based on saved 

stacks and return addresses [126]. Some approaches silently respond by simply blocking inputs and 

stopping further processing of inputs [59, 94, 122]. These are widely used approaches for handling web-

based attacks. We also notice that several approaches rely on exceptions thrown by processors, as 

opposed to attack handler functions [18, 79].  

Vulnerability coverage: This characteristic indicates what vulnerabilities are addressed by each of the 

approaches. From the seventh column of Table 9, we note that BOF, DAP, FSB, XSS, and SQLI have 

been addressed by most of the approaches. Very few approaches have addressed MEL vulnerabilities 

during runtime [104, 153]. Moreover, very few approaches can detect multiple attacks (e.g., [69, 70]). 

Language: This feature indicates the language of implemented programs which are being monitored. 

Most approaches monitor attacks by modifying programs implemented in C (e.g., [68, 129, 151, 163]), 

Java [66], and JSP [63, 135] languages. Few approaches modify executable program code to detect 

attacks (e.g., x86 [109-111, 143]). Some approaches monitor attacks which are not related to any 

implementation languages (e.g., [40, 70]), where we mention the language feature as N/A. Most of these 

approaches employ policies which are independent of implementation languages. 

7.2. Program operation monitoring 

In general, a program takes inputs, processes them, and generates outputs. However, operations related 

to memory and function call during these phases might indicate vulnerability exploitations or attacks. The 

program operation monitoring objective aims to detect these attacks. We classify program operation 

monitoring approaches into four types: memory access with strict bound, memory access with flexible 

bound, function call, and output generation.  
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Memory access with strict bound: In this case, an approach does not allow performing read, write, and 

free operations on memory locations which are not within the valid address space of a program. This 

monitoring objective facilitates the checking of memory related security vulnerabilities such as BOF, 

DAP, and MEL. However, the approach requires tracking memory accesses at the fine grained level. For 

example, the memory bytes can be tagged for readability and writability status [153]. Moreover, memory 

allocation and free operations can be monitored [163]. Furthermore, computation through pointer type 

data (e.g., pointer arithmetic) might contribute to memory access related vulnerabilities which can be 

prevented by tracking the base and size of all memory objects at runtime [18, 113, 151].  

Memory access with flexible bounds: In this monitoring objective, accidental or intentional memory 

operations outside valid address spaces are allowed for the sake of program execution continuation. The 

related approaches aim to make programs as attack tolerant. However, such approach requires 

customization of memory managers to deal with invalid memory accesses. For example, Rinard et al. [31] 

prevent BOF as a boundless memory writing approach. They save the out of bound memory values in 

hash tables during buffer writing operations. Some approaches allow invalid memory operations in such a 

way that corruptions of variables are not performed. For example, Berger et al. [58] develop a runtime 

memory manager which randomizes the location of memory objects into the heap region and increases 

the size of allocated objects at least twice. As a result, successive objects are located at a wider gap and 

chances of BOF attacks are reduced. The DAP vulnerability is prevented by filling random values when 

allocating memory blocks by a program and executing multiple versions of the same program.  

Function call: A monitoring approach might check whether functions are invoked in vulnerable free 

ways or not. In this case, argument count and argument list of functions might be examined. This 

objective has been used for detecting FSB attacks during format function calls. For example, Cowan et al. 

[141] count the number of arguments passed in format function calls and match these counts with the 

number of specifier supplied in format strings during runtime. Li et al. [143] check whether arguments are 

being retrieved beyond an argument list or not to detect FSB attacks.  

Output generation: In this objective, it is checked whether vulnerabilities might be exploited while 

generating outputs with untrusted or tainted data sources. To check attack occurrences, data originating 

from untrusted sources are marked as tainted, and the propagation of tainted data is tracked. Finally, the 

sensitive output generation points are monitored for the presence of tainted inputs. For example, 

Newsome et al. [102] check whether format strings are derived from untrusted inputs or not, during 

format function calls. Sometimes, the output generation process is controlled by approaches to make sure 

that outputs do not contain injected malicious code. For example, Iha et al. [122] propose the generation 

of an HTML page into two stages: generating a DOM tree with nodes and filling the nodes with literals to 
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prevent XSS attacks. Kiciman et al. [104] intercept JavaScript code before rendering through a browser. 

They replace vulnerable string constants with safe equivalents to avoid XSS and MEL attacks. 

7.3. Code execution flow and origin monitoring 

This objective monitors allowable and unallowable control flows in program code. Moreover, it is 

checked whether program code is loaded from allowable locations or not. The dynamic information flow 

tracking is a popular approach to check these two properties (i.e., intended execution flow and intended 

code origin) [40, 69, 70, 110]. Input data sources (e.g., data from file or network) are marked as tainted. If 

any value generated from a tainted value is used in either code execution flow (e.g., jump location) or as 

code (i.e., instructions and pointers), programs are halted. Such an approach is useful for detecting 

vulnerability exploits that change program control flows such as BOF, FSB, and SQLI. 

7.4. Code structure monitoring 

This objective monitors if an executable code conforms to a desired syntactic structure that is valid and 

recognized by processors which execute the code. The objective is intended to detect injection code that 

might be provided through user inputs. A programmer implemented source code is randomized initially. 

After including user inputs, some parts of the code is de randomized before the code is executed by 

processors. As a result, attacker supplied code become meaningless to a processor and only the 

implemented code is executed. For example, Gaurav et al. [79] randomize machine code instructions by 

XORing each opcode with a unique key. Before loading the code by a processor (i.e., interpreter), the code 

is decoded with the same key. Therefore, any decoded injected code results in invalid opcode and a CPU 

throws runtime exceptions. The approach can prevent code injection attacks caused by BOF and SQLI. 

Boyd et al. [94] also propose randomization of SQL keywords (SQLrand tool) to thwart injection attacks 

that contain SQL keywords. They add random integer numbers after SQL keywords. A proxy performs de-

randomization of queries before sending to database engines. For any query containing injected data, the 

parse fails to interpret and does not forward it to database engines. 

Several approaches compare the code structure before and after including user supplied inputs as ways 

of detecting code injection attacks. For example, Buehrer et al. [66] detect SQLI attacks by comparing the 

parse trees of SQL queries generated before and after input inclusions.  

7.5. Value integrity monitoring 

This objective monitors sensitive program or environment values which might be modified during 

attacks. We categorize related works into four types: sensitive memory location without modification, 

sensitive memory location with modification, injected value, and program output. 

Sensitive memory location without modification: In this case, values stored in sensitive memory 

locations of programs are checked for their corruption. These values are modified by attacks. For 
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example, the integrity of a function’s return address can be checked to detect a BOF attack [77, 105, 109, 

126, 129]. In this case, a copy of the value is saved in a safe memory location (e.g., a register or a global 

variable) before a function call. When a function returns to its caller, the integrity of current return 

address is checked by comparing the saved return address with the current return address. If the two 

addresses matches, then the execution of a program continues. Otherwise, an attack is detected. 

Sensitive memory location with modification: To avoid guessing of sensitive memory locations by an 

attacker, several approaches store sensitive values in modified forms. For example, a return address or a 

function pointer can be encrypted (by XORing with a unique key) and saved in a safe location [24, 30, 

55]. When a function finishes execution, the current return address is encrypted with the same key and 

compared with the saved address. If they do not match, the address is considered modified by an attack.  

Injected value: This objective checks the integrity of injected values in a program as opposed to sensitive 

memory locations (e.g., return addresses). When the injected value is modified, an attack is detected. For 

example, a canary value might be injected before a return address of a function [68, 152]. Before 

returning from a function to its caller, it is checked whether the canary is intact or not. If it is intact, no 

attack is detected and a program execution continues by returning a function to its caller. Otherwise, an 

attack is detected and a program execution might be stopped.  

Program output: This objective detects occurrence of attacks by comparing the output of multiple 

versions of a program. These versions are structurally dissimilar and semantically similar to each other. 

For example, Salamat et al. [32] apply multi-variant code execution approach to detect BOF 

vulnerabilities. They allow the stack growth of two programs in two directions: downward and upward. In 

presence of an attack, one version is affected due to overwriting of return address, whereas, another 

version might remain intact and behave differently. The approach detects the occurrence of an attack, if 

there is any discrepancy in program outputs. 

7.6. Unwanted value monitoring 

In this objective, user supplied data is examined and checked for the presence of unwanted values. This 

objective is common to detect attacks in web-based programs. We divide the related works into two 

categories based on input value and input attribute. 

Input value: In this case, whitelisted and blacklisted characters are checked before processing inputs by a 

program. Presence of blacklisted characters might form malicious code through input values. These 

blacklisted inputs might include SQL meta characters [59], HTML characters [123], and format specifiers 

[108] which allow SQLI, XSS, and FSB attacks, respectively. Moreover, input values can be examined to 

confirm whether they contain only known set of inputs. Any unknown input might represent injected 

code. For example, JavaScript code implemented in a program can be digitally signed to mark as 

whitelisted. When a page is rendered by a browser, it can be checked whether any JavaScript code present 
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within the page matches with known whitelisted script code or not. Such approach helps to detect XSS 

attacks [124, 125].  

Input attribute: Program inputs should conform to attributes such as input size. If the input size is large, 

it might cause BOF attacks. A monitoring objective might check such attribute of inputs to detect attacks 

[111]. 

7.7. Invariant monitoring 

This objective monitors the violation of constant properties in programs during execution. Extracting 

invariants requires one to run a program with a set of normal (non attack) input test cases (also known as 

profiling). A monitor identifies any deviation from the learned invariants (or profiles) during actual 

program run. The invariant properties depend on the attacks. For example, Han et al. [13] apply API 

invocation fingerprints to detect BOF attacks during runtime. They obtain a set of legitimate API 

invocation sequences and compare API invocation sequences generated at runtime to identify BOF attack. 

Program code structure can be applied as invariants. For example, SQLI attacks can be detected by 

comparing the parse tree generated with normal and actual inputs [63]. Similarly, XSS attacks can be 

identified by comparing the DOM of a shadow page (containing scripts written by programmers) and an 

actual generated page [135]. Zhou et al. [54] detect memory related vulnerabilities (e.g., BOF) by 

identifying a set of instructions (AccSet) (i.e., invariants) that access memory objects during program 

executions. In an actual program run with inputs, it is checked whether any instruction (program counter) 

accessing memory objects are within an identified set or not. 

7.8. Open issues 

We observe that monitoring techniques significantly vary according to the above characteristics. Our 

analysis indicates that BOF attacks have been well addressed through program operation and value 

integrity-based monitoring objectives. However, few works explore the runtime detection of other attacks 

(e.g., SQLI and XSS) based on these objectives. Moreover, unwanted value and code structure-based 

monitoring have addressed SQLI and XSS attacks. These two objectives can be explored to detect other 

types of attack (e.g., BOF and FSB). We notice that many approaches monitor very fine grained level of 

program operations (e.g., accessing a register, memory objects). These approaches may invite high 

overhead to maintain and process information at fine grained levels (e.g., byte and word). New research 

should focus on introducing monitoring approaches that can detect attacks using higher granularity levels 

(e.g., memory block) in order to reduce overhead. For example, randomization can be performed at block 

level, as opposed to every opcode.  

For web-based programs, most of the works address the monitoring issues related to server side 

programs. Very few works monitor client side programs, while client side programming paradigms are 
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evolving rapidly. Thus, we need to develop more client side monitoring tools. We also notice that program 

operation, code execution flow and origin, and code structure monitoring objectives can address multiple 

attacks. However, many recent attacks do not require injecting code or even corrupting data (e.g., CSRF). 

Some attacks might not have direct observable symptoms (e.g., DAP, MEL) compared to other attacks 

such as BOF, FSB, SQLI, and XSS. Therefore, more research is required to develop tools for identifying 

attacks with unobservable symptoms. 

8. Conclusions 
In this paper, we perform a comprehensive survey of the works that address detection and prevention of 

the most commonly occurred and addressed program security vulnerabilities namely buffer overflow 

(BOF), format string bug (FSB), SQL injection (SQLI), cross site scripting (XSS), cross site request 

forgery (CSRF), NULL pointer dereference (NLD), dangling pointer (DAP), and memory leak (MEL). We 

primarily compare and contrast the most widely used vulnerability mitigation (testing, static analysis, and 

hybrid analysis) and runtime monitoring techniques. Each technique has been explored in detail to perform 

comparative and qualitative analysis among relevant approaches based on a number of distinguishing 

criteria. Then we identify the open issues for each of the corresponding techniques. We also briefly discuss 

the current challenges of some other approaches which provide secure programming guidelines or related 

program maintenance: program transformation and patching. 

Table 10: A mapping between the program security mitigation techniques and the addressed vulnerabilities 
Technique BOF FSB SQLI XSS CSRF NLD DAP MEL 
Testing Y Y Y Y N N N N 
Static analysis Y Y Y Y N Y Y Y 
Monitoring Y Y Y Y N N Y Y 
Hybrid Y Y Y Y N N Y Y 
Secure programming Y Y Y Y Y N N N 
Program transformation Y N N Y N N Y N 
Patching Y N Y Y N N Y N 

 
Table 11: A mapping between the program security mitigation techniques and the programming languages 

Technique C C++ Java JSP PHP ASP JavaScript x86 Java byte code
Testing Y N N Y Y N N Y Y 
Static analysis Y Y Y Y Y Y N Y N 
Monitoring Y N Y Y N Y Y Y N 
Hybrid Y N Y Y Y Y N Y Y 
Secure programming Y N Y N N N N N N 
Program transformation Y N N N N N Y N N 
Patching Y N Y N Y N N Y N 

 
Based on our analysis, we provide a summarized mapping between the program security mitigation 

techniques and the addressed vulnerabilities in Table 10. It relates whether techniques have been applied to 

mitigate corresponding vulnerabilities (Y) or not (N). It is obvious that existing techniques have devoted 

considerable effort to partially mitigate a subset of vulnerabilities such as BOF, FSB, SQLI, and XSS. We 
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also map whether these techniques have been applied to programs written in a particular language (Y) or 

not (N) in Table 11. We notice a gap between current techniques and underlying programming languages 

as well. Currently, programs written in C, Java, and PHP are analyzed. However, we should also 

investigate how vulnerabilities can be detected in the programs written in other programming languages 

and where source code is not available (i.e., in executable forms). For all these techniques, our common 

observation is that they can detect only certain types of vulnerabilities at the same time. Some techniques 

are strictly limited to certain programming languages. Moreover, few works have attempted combined 

techniques to detect vulnerabilities. We believe that future program security research should explore the 

detection and prevention of multiple vulnerabilities by applying new and hybrid techniques on the 

programs written in various programming languages. 

Currently, there is no existing work that summarizes and compares current program-based vulnerability 

mitigation works in detail. This survey will help software security practitioners and researchers to 

understand pros and cons of these techniques, develop new software security tools, and explore future 

research avenues. For the sake of the length of the survey and the broadness of this topic, our study is 

restricted to the techniques that strive to mitigate the vulnerabilities found in the code level only. We also 

limit our analysis of vulnerabilities for the programs written in procedural, object oriented, and scripting 

languages. We do not discuss the approaches that primarily develop (e.g., [34, 82]) or evaluate (e.g., [23]) 

network intrusion detection systems (IDS). Our study also does not include security breaches that can be 

managed by using formal access control policies (e.g., role-based access control policy or RBAC). More 

independent surveys are required for the above mentioned topics. 
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