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Abstract

Testing is one of the most popular methods to ensure the quality of software. However the
increasing complexity of software makes the testing more complex. One of the methods that
reduce this complexity by automation is the model-based testing. In this approach models of
software are used to generate a set of test cases, which are then executed on the system. This
paper reviews methods used to generate test cases for reactive systems and focuses on methods,
in which models are specified using precise or even formal languages. The presentation starts with
techniques that use all specified behaviors to generate test cases. Next, this requirement is released
and methods that use parts of models selected using coverage criteria or more general properties
are shown. The paper also gives a comparative analysis of tools that implement the model-based
test case generation. In this way a more practical view of the model-based testing methods and
their requirements is also considered.
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1 Introduction

Testing is one of the most often used methods for evaluating the quality of software products [9]. In
the most general sense it is a process of executing a system or a program with intent to find errors [77].
Testing is therefore a very broad concept and can be classified using many different criteria, some
of which are presented in Figure 1 [102]. The testing differs depending on what is tested (the levels
of details axis), why it is tested (the characteristics axis) or how the tested entity is accessed (the
accessibility axis). What is common for all types of testing is its increasing complexity [111], which
is the direct consequence of growing sizes of software systems. Additionally these systems penetrate
more and more areas and in some of them the demand for the quality is very high, for example in
medically-related software [9].

Model-based testing aims to reduce the complexity of software testing and in terms of dimensions
from Figure 1 it is functional black box testing at all levels of details. The underlying idea of this
approach is presented in Figure 2 (adapted from [103, 107]). The most important components are a
model and a system under test (SUT), which are related with a conforms relation. The model is an
abstract specification of a behavior and in some cases of the structure of the system. The relation
conforms holds if behaviors of the model and of the SUT are similar, where the exact definition of
similarity differs between approaches. Based on the model and the definition of the relation conforms
a set of test cases, called a test suite, is generated. The test suite is then executed on the SUT. Since
models represent the required behavior, generated test cases also specify responses that are necessary
to pass them during execution. The execution of the test suite is therefore a basis to infer whether the
conforms relation holds. The crucial part of the process from Figure 2 is the test case generation,
which is the topic of this paper.

The model-based testing approach is very attractive, because it promises the automation of the
test case generation process [86]. This is possible because the generation is founded on models, which
are usually precise or even formal specifications. Automatic test case generation reduces the costs of
testing. Moreover, as opposed to the manual test case generation, it may also make the whole process
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Figure 2: Model-based testing (adapted from [103, 107])



more systematic and more quantifiable. The biggest flaw is the necessity to build and maintain models,
which is an additional and sometimes expensive activity [84]. Another problem may arise due to the
limited scalability of modeling languages and the test case generation algorithms. Additionally for
non-trivial systems the number of generated test cases might be impractical.

In this work the model-based testing approach is considered for reactive systems. Such systems
continuously wait for a stimulus from their environment and after receiving it, they perform their
computations and respond to the environment [74]. This model of computation is popular in modern
software systems, especially in the embedded software that combine software and hardware compo-
nents, when a reaction is an obvious abstraction [110]. On the other hand reactive systems are also
more complex to test, and model-based testing has been proposed to deal with this complexity [17].
The restriction of the domain to reactive systems excludes from this paper works proposing model-
based test case generation from specification languages which are not well suited for this domain. For
instance approaches based on Z [52, 97] or B [72] languages, which are used rather to describe possible
operations of systems, are not presented.

Besides restricting the domain to reactive systems, the emphasis in this paper is put on behavioral
aspects of discrete models, which use formal specification languages. Such assumptions restrict the
presented works in several ways. Firstly, this paper investigates works that model behavior, which
excludes approaches based on models of static aspects of systems. Secondly, we consider discrete
systems, so the works that operate on hybrid specification languages [98, 10] or tools like Reactis [90]
are not included. Finally, only works that using models with formal or precise semantics are reviewed.
This means the paper does not analyze some of the available commercial tools used for model-based
testing like IBM Rational Rhapsody [59] or Confirmiq Qtronic [26].

This paper consists of two parts. The first one reviews the techniques and algorithms used to
generate test cases from models. The second part presents the comparative analysis of tools, which
implement some of the methods shown in the first part..

2 Review of test case generation algorithms

This part of the paper reviews the model-based test case generation methods, which are divided into
three groups. In the first group, methods, which assume that the conformance relation (from Figure 2)
is based on all specified behaviors, are shown. Because of this completeness, such an approach might be
impractical, hence the two other groups take into account only selected behaviors. These two groups
gather methods to generate test cases used to verify whether an SUT conforms to a selected part of a
specification. The selection which part is of interest is additionally specified using coverage criteria or
in properties.

The main criterion to distinguish methods for the test case generation based on coverage and on
selected properties is how the additional information is given. In case of coverage, only a type of
a required coverage criterion is given. Typically this means that test case generation algorithms for
different coverage types are not the same. In works that deal with more general notion of properties,
it is assumed that these properties are given as a separate specification. In some cases properties may
coincide with coverage criteria if the language used to express properties allows it.

2.1 Conformance based on complete models

The conformance based on complete models assumes that all behaviors given in a specification are
examined in order to check for the conforms relations. The general approach is shown in Figure 3.
It assumes that there are models that represent a specification (from the set SPEC), an SUT (from
the set IMPL) and a test suit (from the set TEST). The sets SPEC, IMPL and TEST are not
necessarily related, but usually they are not disjoint. The goal of algorithms presented in this part can
be specified as follows.

Problem 1. Given a specification s € SPEC and a relation conforms C SPEC x IM PL generate a
test suite ts € TEST. The test suite ts is executed on the ¢ € IM PL and gives a verdict. A verdict is
a function v : (IMPL x TEST) — {pass, fail}. The verdict v(i,ts) is then the basis to check whether
(s,1) € conforms.
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Figure 3: Model-based testing for conformance based on complete models

Based on the above problem definition, test cases provide a means to interact with a model of an
implementation ¢ € IM PL and to check its behavior. There are two properties of the generated test
cases: soundness and exhaustiveness specified in Definition 1 [103].

Definition 1. A set of test cases (test suite) ¢s generated for a specification s is:

- sound iff implementations that failed to pass ts are incorrect, so iff:

Vi€ IMPL : s conforms i = v(i,ts) = pass

- exhaustive iff all incorrect implementations cannot pass ts, so iff:

Vie IMPL : v(i,ts) = pass = s conforms 1

The test suite ts is complete if it is sound and exhaustive, so if correct implementations pass ts and
incorrect do not, so iff:

Vi€ IMPL : s conforms i < v(i,ts) = pass

Based on Problem 1 the SUT is assumed to have certain properties, called a test hypothesis. In all
methods presented in this section a test hypothesis includes the assumption that an implementation
can be treated as a valid model from the set /M PL. This assumption requires that an implementation
reacts to the stimuli and produces output recognized by the model in the way specified in the model.

The approaches presented in this section are classified according to the modeling language or
formalism used to specify models in SPEC and IM PL. This choice is important, since it impacts
how specifications or implementations behave and influences the exact definition of the conforms
relation. The presentation of the works starts with the more formal modeling languages, and then
moves on to the more succinct representations.

2.1.1 Finite State Machines

Finite State Machines (FSMs) were used as specifications in the most traditional branch of model-
based conformance checking, with the first works dating back to the 1950s [71]. During this time
many algorithms have been proposed. Currently FSMs are extensively and successfully used to test
the communication protocols [71].

The definition of an FSM is as follows [71]:

Definition 2. A Finite State Machine M is a tuple M = (I, 0, S, §, \), where:
- I,0 and S are finite, nonempty sets of input and output symbols and states,

- 0:8x1I— Sis a total function that defines transition between states (extended to sequences of
input symbols 6 : S x I* — § ),



Figure 4: An example of a Finite State Machine [71].

- A: 8 x I — O is a total function that defines output generated after input symbols (extended to
sequences of input and output symbols A : S x I* — O*).

Example 1. Figure 4 presents an example of an FSM. This FSM is characterized with sets S =
{81,52,53}, I = {a,b} and O = {1,0}. The labels next to arcs define input and output pairs, so
functions 6 and A\. For example §(S1,b) = 52, A\(S1,a) = 0 and A\(S1,ab) = 01.

FSMs serve as SPEC and I M PL sets from Figure 3 and the conforms relation uses the equivalence
between two FSMs. Two FSMs S and M, with common input and output symbols, are equivalent if
for every state s € Sy in the machine S there is a state ¢ € Sy in the machine M such that for each
sequence x € I* machines have the same output sequences, so Ag(s,z) = Ap(g, ), and the same holds
for all states of M [71]. Hence, the relation conforms requires that both a specification s € SPEC
and an implementation i € IM PL have the same output sequences for all possible input sequences.
The test hypothesis consists of the following assumptions:

- a specification S is a strongly connected and reduced (minimal) FSM, the second condition
guarantees that all states can be distinguished by some input sequence,

- an implementation is an FSM, which implies finiteness of states of implementation and that in
any state all inputs are enabled,

- input and output symbols of an implementation include all input and output symbols of a
specification.

One of the most popular algorithms for the test case generation based on FSMs is the W-method [22].
This method assumes that there is a distinguished initial state and that an FSM has a reliable reset
signal that moves it to this initial state. The test cases are based on sequences from two sets: a
transition cover set (P set) and a characterizing set (W set).

In order to construct a P set, Algorithm 1 is used. It builds a test tree T in the breadth first search
manner, by starting from the initial state and labeling nodes of the tree T" with states and its edges
with input symbols. During the exploration of states, the set Term contains terminated states, i.e.,
states that already have been explored. The outcome of the algorithm is a set of all paths in the tree
T including partial ones.

Example 2. For the FSM in Example 1 and with S1 as the initial state, the algorithm builds a tree
with its root labeled S1. On the first level this root node is explored. For all inputs {a,b} edges are
added and connected to nodes with labels S1 and S2. On the second level node S1 is explored first,
but it is already present in the previous level, so it is added to the T'erm set. The next is the node 52,
which again has 2 children nodes. After all states S1,52,53 are in the Term set, the partial paths in
the constructed tree are taken. This gives a set P = {¢, a, b, ba, bb, bba, bbb} .

To build a characterization set W, Algorithm 2 is used. It partitions a set of states S using the
output they produce in response to the same input sequence, until all partitions are singletons. A
sequence x in this algorithm is called a separating sequence and it must exists for each pair of states,
since an FSM is minimal.



Algorithm 1 Algorithm for constructing a transition cover set (the test tree method) [22]

Require: A minimal FSM M = (1,0, 5,6, \) with the initial node s1 € S
label the root of the tree T" with sl
k—1
Term «— ()
while S # Term do
for all nodes n at level k of the tree T" from left to right do
if n is equal to another node at level j < k then
Term «— Term U {n}
else
s «— label of a node n
for all i € I do
add a child n. ton
label an edge with ¢ and n. with §(s,7) = s’
end for
end if
end for
kE—k+1
end while
P+ labels from edges for all partial paths from T
return P

Example 3. For the FSM in Example 1 we have By = {S51,52,53}. Then for S1 and S2 the input
sequence that distinguishes them is a, because A(S1,a) = 0 and A(S2,a) = 1. The set By is partitioned
into By = {S1,53} (the common output on a is 0) and By = {S2}. At this point W = {a}. Now
the set Bs is partitioned. The separating sequence for S1 and S3 is b, because A(S1,b) = 1 and
A(S3,b) = 0. This leads to the following partitions By = {S1} and Bs = {S3} and W = {a,b}. The
remaining sets Bs, By, Bs are singletons and the algorithm terminates.

Test cases are the result of concatenation of all sequences from sets P and W along with a reset
signal. In this way each transition in the specification is executed and its target state is checked
whether it is the expected one. Simple concatenation of sequences from sets P and W is not enough if
an implementation contains more states than a specification. In such a case all additional states must
be traversed. This is achieved by adding all possible combinations of input symbols, with the length
up to the difference in number of states between the specification and the implementation. A set of
all test cases is defined as:

Definition 3. A set of test cases in W-method for a specification FSM M = (1,0, S, 4, A) is:
TC = {reset}-P-(I°UT* U U™ ™). W
where:
- P is a transition cover set (Algorithm 1),
- 1% is an empty sequence, I* is a set of all sequences from I combined k-times,

- m is a number of states in an implementation and n in a specification M,

Algorithm 2 Algorithm for constructing a characterization set [22]

Require: A minimal FSM M = (1,0, 5,6, \)
W —10
B; «— S
while B; is not singleton for all ¢ = 0,..,n do
if s,t € B; for some j and s # t then
find x € I* such that A\(s,z) # A\(¢, z)
partition Bj into Bj,, ..., Bj,, such that 7,7/ € B, < A(r,z) = A(r,z) forall k =1,...,m
W — WuU{z}
end if
end while
return W

Jm




- W is a characterization set (Algorithm 2).

Example 4. For the FSM as in Example 1 if the implementation has the same number of states as
the specification the generated test cases are:

TC = {reset} - P-W = {reset} - {¢, a,b, ba, bb, bba, bbb} - {a, b}
So some of the test cases are {reset a a,reset a b,reset bb a a,reset bb a b}

The optimizations of the W-method, which can produce shorter sequences, are:

- If an FSM has a single sequence that produces different output for each state (called a distin-
guishing sequence), then this sequence constitutes a W set [95].

- The partial W-method [35] is divided into two phases. In the first phase, a state cover set (Q set)
is used, which is a set of input sequences such that for each state s € S there is a sequence x € @
that takes machine to this state: d(s1, ) = s, where s; is the initial state. The input sequences
from the Q set are concatenated with the sequences from the W set, and such test sequences
check whether all states are correctly implemented. In the second phase, all transitions that were
not used in the first phase are tested. In order to check whether their target state is correct,
only the subset of the W set is used, namely these sequences that can distinguish this particular
target state from the others.

- An input sequence x € I* is a unique input/output sequence (UIO) for a state s if an output
generated for this state is different that generated by all other states (so for all states ¢ # s:
A(s,z) # Mg, x)). The UIOv method [21] that uses such sequences is similar to the partial
W-method and also contains two phases. However in the first phase a set of UIO sequences for
all states is used as a W set, and in the second phase only a specific UIO sequence for a target
state is used.

If a reliable reset signal is not available in an implementation, then UIO or distinguishing sequences
are used [2]. These methods first check every state s1, sa, ... of an FSM in the given order, by transferring
a machine to each state and then by applying UIO or a distinguishing sequence in this state. In the
second phase all transitions between states s;, s; are tested by moving a machine to a state s(;_1),
checking this state and then moving to s; state (based on the previous phase - the correctness of s;
has been already verified), applying an input symbol and finally checking s; state.

FSMs can be extended to include variables and operations on them. The definition of an extended
FSMs (EFSM) is as follows [71]:

Definition 4. An Extended Finite State Machine (EFSM) is a tuple M = (1,0, 5,7, T), where:

- 1,0, S are non-empty, finite sets of input and output symbols and states,

T are variables,

- T is a set of transitions, each of which is a tuple t = (s¢, g¢, at, 0, Py, At), where s; is the current
state, ¢; is the next state, a; is an input symbol, o; is an output symbol, P;(T) is a predicate
on the variables and A;(T) updates values of variables. Upon receiving an input a; in a state s;
if current values of variables @ ensures that P,(7) = TRUE, then the current state is ¢; and
values of variables are as in A;(7).

An EFSM is a more succinct representation of an ordinary FSM and can be translated into it.
In an FSM translated from an EFSM a state is a configuration: a pair of a state in the EFSM and
of an assignment of variables, which record values of variables in this state. Such FSMs can be very
large in terms of number of states and they might not be minimal, which is required by the previous
algorithms. Algorithms that directly construct minimized versions of EFSMs have been proposed [70].
For the minimized machines the algorithms, like the W-method, can be applied to generate test cases.



2.1.2 Labeled Transition Systems

Labeled Transition Systems (LTSs) are another formalism used to generate test cases. LTSs can
model non-determinism: from any state multiple transitions with the same action are possible and
states may change in an unobservable manner using special internal actions. This poses challenges on
how to test the conformance relation between LTSs. The general approach is to construct a set of
observers (tests) and to conclude that two LTSs are equivalent if they pass the same tests. However
tests can have different capabilities with respect to the way they interact with an LTS. If a test can
only observe actions taken by an LTS, then two systems are equivalent if they have the same sequences
of actions (trace equivalence) [28]. But if a test can also compare alternative actions to choose from,
then systems are equivalent if at any time they enable the same set of actions (testing equivalence,
bisimulation) [29, 28]. Finally if a test can examine sets of refused actions, then systems are equivalent
if they always refuse the same sets of actions (refusal testing) [82].

The above equivalence relations assume symmetric interactions between LTSs. But reactive systems
require that interactions of a system with its environment are based on inputs and outputs, therefore
they have distinct roles. From the perspective of a system, it can always control its output actions
and has no control over received input, and for an environment it is the opposite. In order to model
this, Labeled Transition Systems with inputs and outputs were introduced [101]:

Definition 5. A Labeled Transition System with inputs and outputs is a tuple (Q, L, Ly, T, qo),
where @ is a non-empty set of states, L; and Ly are disjoint sets of input and output labels, T' C
(@ x (LU Ly U{7}) x Q) is a transition relation (7 ¢ (L; U Ly) is an internal action) and gq is the
initial state. A transition (q,a,q’) € T is denoted also as ¢ — ¢’. An LTS is sometimes identified
simply by its initial state qq.

LTSs with inputs and outputs are used as specifications, so they represent the SPEC set from
Figure 3. To model implementations, i.e., the set IM PL, Input-Output Transition Systems (IOTS)
are defined [101]:

Definition 6. An Input-Output Transition System (IOTS) is an LTS with inputs and outputs S =
(Q,L;,Ly,T,qo) in which all input actions are enabled in any reachable state (possibly after some
internal actions 7):

Vq € der(qo),Ya € Ly : q =

where :

*

-q==q¢ iff 3q1,¢% : ¢ —— ¢ % ¢ —— ¢’ (7* is a sequence of 0 or more T actions),

- g=iff 3¢ : ¢ == ¢,

-der(q) ={¢ € Q|30 € (LyULp)* : ¢ == ¢'} ( (Ly U Lp)* is a set of sequences that concatenate
zero or more actions from (Ly U Ly))

Example 5. An example of an LTS with inputs and outputs is given in Figure 5(a). It accepts an
input @ and outputs x. In Figures 5(b) and 5(c) there are examples of IOTSs with L; = {a,b}. Input
enabling is ensured by self loops in states that do not accept all inputs.

If an LTS S interacts with its environment and cannot perform any output action, then we say that
S is in a quiescent state. This state is detected with an additional output § ¢ (Ly U Ly). Sequences
of input and output actions possible in an LTS are called traces and if they contain ¢ they become
suspension traces [103] as in Definition 7.

Definition 7. 1. A state q of an LTS S = (Q, Ly, Ly, T,qo) is quiescent, denoted by d(q), iff
Vue (LyUT):not 3¢ € Q:q - ¢,

2. Straces(S) C (Ly U Ly U d)* are possible traces of S enhanced with § whenever a state ¢, such
that §(q), is reached.
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The implementation relation conforms from Figure 3 is called the ioco relation (iinput output
conformance). According to the definition of this relation, an implementation I € IOT'S conforms to

a specification S € LTS if after any observation possible in S, outputs generated by I are foreseen by
S. More formally [103]:

Definition 8. The relation iocoC IOT'S x LTS is defined (for I € IOTS and S € LTS, here coincide
with their initial states):

I ioco S <y Vo € Straces(S) : out(I after o) C out(S after o)
where:

- (q after o) = {p’ € Qg == p'} is a set of states reachable from q after a sequence o; for a set of
states P: (P after o) =, cp(q after o) ,

- out(q) = {x € Lylg —}U{6|6(q)} is a set of enabled outputs and quiescence in a state ¢; for a
set of states P: out(P) =, p out(q)

Example 6. For LTSs from Example 5, s; can serve as a specification (Figure 5(a)). The IOTS
i1 (Figure 5(b)) is not in the ioco relation with this specification, because after the sequence 7a it
may output ly, which is not part of the specification (out(iy after ?a) € out(s1 after ?a)). The
IOTS s (Figure 5(c)) is in the ioco relation with s;, because its outputs are the same as in s; for
all suspension traces of si. Although out(iy after ?b) = {ly} € out(i1 after 7b) = 0, but we also
have ?b ¢ Straces(s;). This means that an implementation must not produce any outputs other
than specified, but the specification can be partial, so behavior of an implementation on traces not in
Straces(S) is unconstrained.

For the ioco relation the test case generation algorithm (Algorithm 3) [103] generates another IOTS
that represents a test case (so TEST in Figure 3 is a subset of all IOTSs). Such an IOTS has inversed
input and output actions and two distinguished types of states fail or pass, which are always reachable
and final, meaning that no inputs can be further sent to an implementation. The algorithm allows a
choice from three possibilities. The first one is to mark a current state with pass and terminate. The
second choice is to send an input and check specified outputs (not quiescence). The last choice is to
check outputs and if no output is received from an implementation then to observe quiescence. Test
cases generated by this algorithm are sound (according to Defintion 1) and a test suite that contains
all possible test cases generated by the algorithm is also exhaustive [101].

Example 7. The test case generation algorithm for a specification s; in Example 5 starts with a set
S = (s1 after €) = {s1}. At this point one of the three choices can be applied. If the second possibility
is selected then an input 7a is explored, because (S after 7a) # (). Since out(S) = ) then all actions
in Ly = {z,y} lead to states marked fail, which is represented with transitions labeled 7z, ?y. Now S
is set to (S after 7a) = {s2}. There are no enabled inputs in sq, so the test case can be terminated



Algorithm 3 An abstract test case generation algorithm for ioco relation [103].

Require: a specification S = (Q, Ly, Ly, T, qo0)
S «— s after €
t is empty IOTS
loop
1. change current state to pass
t «— pass
return t;
2. choose input from inputs enabled in states in S
if (a € Ly) and ((S after a) # 0) then
add t = t,, S — S after a, explore t,
for all z; € out(S) and z; # 6 do
add transition ¢ —5 te;, S < S after x;, explore ty,;
end for
for all z; ¢ out(S) and z; # § do
add transition ¢ — fail
end for
end if
3. check outputs possible in states in S
for all z; € out(S) do
add t =% te;, S < S after x;, explore ts,
end for
for all z; ¢ out(S) do

add t 2L fail
end for
end loop

or outputs can be checked. The latter produces transitions labeled with ?x,?y and §, and the last two
actions lead to the fail state, since y ¢ out(S) and ¢ ¢ out(S). After the transition 7z an additional
state is added to the test case and S is set to (S after lx) = {s3}. Now the first choice is applied and
this state is marked as the pass state. The resulting IOTS is shown in Figure 5(d).

There are several extensions of the ioco relation and of Algorithm 3. The first one, called mioco,
assumes that inputs and outputs are arbitrarily partitioned into classes [47]. In this way the assump-
tion of input enabling is relaxed to a given class of inputs, and the algorithm is adjusted to deal only
with the specific class. Another extension considers variables and data [31] and defines ioco for sym-
bolic specifications. Algorithm 3 is enhanced with constraint solving, before sending inputs and with
checking constraints for generated outputs. Finally, a combination of the relation ioco with actions
refinement has been proposed [108], which allows actions of a specification and of an implementation
to be at different levels of abstractions. The test cases are generated from an abstract specification as
in Algorithm 3, but then they are then refined based on the given refinement relation between actions.

2.1.3 Real-time specifications

In some reactive systems timing requirements cannot be excluded from models, because they may
influence responses to inputs. For example, two consecutive alarm signals might trigger different
actions, depending on how much time has elapsed between them. In such a case the behavior of a
system changes due to the passage of time and this should be reflected in its specification. Specifications
use two models of time: discrete and dense (real-time) [5]. In the first model, time progresses in ticks
and events happen after ticks. Because such models are discrete, the previously described methods
can be applied to generate test cases. In dense or real-time models time progresses in infinitely small
amounts. In turn actions may happen at infinitely many moments, which makes the test case generation
much more challenging. The way to overcome this challenge is to represent real-time specifications in
a discrete way [48].

The most common formalism to represent timed specifications are timed automata [3]. Their
definition is given in Definition 9. For reactive systems it is assumed that a set of actions is partitioned
into input and output actions.

Definition 9. 1. Let X be a finite set of real-valued variables called clocks. A set of constraints
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2.

®(X) is defined using the following grammar (x is a clock, ¢ is an integer): ¢ i=a < ¢ | ¢ <
zlx<cle<z| PN

A timed automaton is a tuple A = (L, Lo, ¥, X, Inv, E), where:

- L is a finite set of locations and Lg is a set of initial locations,

- Y is a finite set of actions,

- X is a finite set of clocks,

- Inv: L — ®(X) is a function assigning constraints to locations (invariants),

- ECLxYx®(X)x2¥% x Lis aset of transitions. A transition (I,a,g,c,1') € E represent
a change from a location ! to I’ upon receiving a. A guard g is an enabling condition and a
set of clocks c is reset after this transition.

The semantics of a timed automaton is described with an LTS [3]. Such an LTS has states that
reflect a location and values of clocks. Its transitions are either delays of time or the execution of
actions. Definition 10 gives the semantics more formally.

Definition 10. 1. A clock valuation v is a mapping from a set of clocks X into non-negative reals

(R=9). A delay d € R2? is denoted by v + d and means that each clock € X has the value
v(xz) + d. A reset of clocks Y C X is denoted with v[Y := 0], which assigns 0 to all y € YV
and leaves v(z) unchanged, for all other clocks x € (X\Y). The set of all possible valuations is
denoted by V(X). For v € V(X) and ¢ € ®(X): v |= ¢ denotes the fact that the valuation v
satisfies the constraints ¢.

Semantics for a timed automaton 74 = (L, Ly, X, X, Inv, E) is given by an LTS S(TA) =
(S, So, A, T), where:

- S is a set of states, which are pairs (I,v) € L x V(X) and for each pair v = Inv(l),

- Sp C S are initial states, and (I,v) € Sp iff | € Lo and v(c) = 0 for all clocks ¢ € X,

- A=Y UR20,

- T C S x S is the smallest transition relation that satisfies (for d,d’ € RZ°):

Vd' <d:(v+d)E Inv(l),v =v+d (l,a,9,¢,l') € E,v = g,v" =v[c:=0],v" = Inv(l')

(1,v) % (1,0 (1,v) -5 (I,0')

An LTS that represents semantics of a timed automaton is non-deterministic and infinite. So it
cannot be used as the basis to generate test cases. To overcome the non-determinism Timed Input
Output Automata have been defined, which restrict a timed automaton with input and outputs in the
following ways [96]:

Definition 11. A Timed Input Output Automaton (TIOA) is a timed automaton 7.4 with inputs
and outputs, its semantics given by S(7.A), that has the following properties:

determinism: in each location of 7.4 only one transition with a given action can be enabled, that
is if there are two transitions with the same action their guards cannot be both satisfied for the
same valuation of clocks,

isolated outputs: if in a given state of S(7.A) a transition with an output action is enabled
(guards are satisfied), then no other transition (neither an action or a delay) is possible from this
state,

input enabling: for all states of S(7'.A) in which an output action is not enabled, transitions with
input actions are always possible,

progressiveness: it is always possible to delay time, so from each state in S(7.4) with a given
valuation, a state with the greater valuation of clocks is reachable.
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An LTS S(TA) that represents the semantics of a TIOA 7 A is still infinite due to the infinite
number of possible clock valuations. One of the solutions to this problem is to use a grid automaton [30,
96], which is a proper subautomaton of the LTS S(7 .A). In such an automaton delays are restricted
only to values 27", where n € N is the size of a grid. The choice of the appropriate grid size n is based
on regions for timed automata [4]. Regions are equivalence classes on sets of states in the semantics
of a timed automaton. The equivalence relation = that generates those classes is defined for states of
an LTS S as: (q,v) = (¢, V') =dey ¢ = ¢’ Av = v, Valuations v, v’ are equivalent if for all clocks they
agree on their integral parts and also on the ordering of fractional parts. As a result regions contain
states that cannot be distinguished by any clock constraints [4]. The number of regions generated for
all clocks in both TIOAs used as a specification and as an implementation is the grid size n [96]. Such
a grid size n guarantees that if there is a trace that distinguishes those two TIOAs, then such a trace
is going to be included in the grid automaton [96].

Because grid automata are finite and deterministic it is possible to adapt the W-method for FSMs
presented in Section 2.1.1. A transition cover set P is defined for all transitions of the grid automaton,
including transitions that represent actions and delays: a € ¥ U {27"}. A characterizing set W is
based on sequences of output actions. So a test sequence o € (X U 27™)* distinguishes states if its
output sequences produced by a grid automaton are different. Additionally each TIOA must have a
reset signal, which in case of timed systems is combined with a delay necessary for a TIOA to return
to its initial state.

The above approach is complete [96] according to Definition 1. However the algorithm may generate
a huge number of test cases, because grids may become very small. One way to overcome this problem
is to increase the granularity of state space with zones, which are clock constraints [68], rather than
integral values of clocks used in regions. This concept is used in the algorithm that generates test cases
for Event Recording Automata (ERA), a class of timed automata that are deterministic [79]. In ERA
clocks can only record time that elapsed after each action. The algorithm uses equivalence classes for
states based on zones and the partitioning of clocks values. Another approach to reduce the number
of test cases is to limit the specification. This was proposed for example for communicating timed
automata with test views [20].

Timing constraints have also been investigated in the context of the ioco theory (Section 2.1.2).
Definition 12 presents the tioco relation, which includes time delays [15].

Definition 12. 1. A Timed Input-Output Transition System (TIOTS) is an IOTS (Definition 6)
S =(Q,L;,Ly,T,qo) in which a transition relation is defined as: T' C (Qx (L;ULyU{7}UD)xQ),
where D is {e(d)|d € R=°}. &(d) represents an empty action followed by a delay, so simply a
delay.

2. Let p be a state of a TIOTS, then outp(p) = {u(d)|p € Ly Ap u:(dg} U {0]6(p)}. The set out
is a set of of output actions that hapen before an arbitrarily chosen maximal time M € R20,
followed by appropriate delays (it is assumed that two consecutive delays are added if possible).

3. Let s and ¢ be TIOTS, then:
i tiocop s iff Vo € T'stracesa(s) : outapm(i after o) C outpq(s after o)
where T'stracesq(s) are suspension traces that contain time delays and are bounded by M.

The test generation algorithm is similar to Algorithm 3, but delays are included after inputs, outputs
and quiescence. The dense time inputs and outputs are difficult to observe so the above algorithm
has been extended to generate discrete test cases [66], which are more practical. Finally there is also
an extension of the tiocos relation that enables partitioning of inputs and outputs into classes [16],
which is based on the relation mioco and extends its generation algorithm with delays.

2.1.4 Other specifications

The formalisms such as LTSs or FSMs are not well suited to specify complex systems, because they
require the explicit representation of all states. Therefore in this section we present languages that
provide a more succinct representation: Statecharts, UML state machines and Abstract State Machines.
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Statecharts [44] were introduced as a modeling language that has several modeling features and
at the same time a precise semantics [45]. Statecharts are based on EFSMs (Definition 4): they have
variables that carry data and transitions that include triggers, guards and updates. The current values
of all variables is called memory, inputs and outputs are called signals and updates are called actions.
The following features characterize Statecharts [45]:

- signals may carry data values, triggers are boolean combinations of input signals and actions
change the memory or produce output signals,

- states may be organized in a hierarchical way as OR and AND compositions. The first type
means that a system is in only one of the state’s substates and the second means that a system
is in all of the state’s substates,

- semantics is described using steps, in each step all possible and non-conflicting transitions are
fired, based on the currently available set of input signals and the memory.

The test case generation algorithms based on Statecharts use the methods introduced for FSMs
such as the W-method (Section 2.1.1). This idea was first proposed in the context of X-machines [61],
which use functions as actions that can alter memory and produce an output. In the method for
Statecharts [13] a specification and an implementation must meet the following requirements: all
triggers and actions are correctly implemented, all transitions can be triggered and the combination
of input signals and output uniquely identifies a transition (called output distinguishability). Based
on such assumptions the W-method is adapted [13]:

- a set of transitions consists of all input signals an their combinations,

- instead of a transition cover set P a state cover set C is used, which contains sequences of
transitions that visit all states and in case of hierarchical states includes also transitions (or their
combinations) that visit the internal states,

- a characterization set W contains sequences of transitions to distinguish states at all levels of
hierarchy.

The language ©SZ combines Statecharts to describe dynamic behavior and the Z language to de-
scribe data [53] to enable more comprehensive data specification. During the test case generation
process partitioning methods proposed for Z are used [52], which divide the input domain into sub-
domains. The test hypothesis must encompass the uniformity hypothesis, which states that an SUT
behaves in the same way in all subdomains. Partitioning divides states in Statecharts into subdomains
and original transitions into subtransitions, based on possible values of input data and memory. In
this way an EFSM (Definition 4) is constructed and used to generate test cases [53].

In the object-oriented designs a variant of Statecharts is the basis of UML state machines, which
express behavior of elements in UML models [1]. They differ from Statecharts in some semantic aspects,
like priorities of enabled transitions or the order of executed actions. But the main challenge in using
UML state machines for the test case generation purposes lies in their informal semantics [1].

The lack of formalization of UML state machines is overcome by specifying their semantics using
a formalism like LTSs [69]. States in such an LTS are configurations, so sets of states and substates
from an original UML state machine. Transitions in the LTSs are labeled with input/output pairs of
signals based on actions in the state machine. The transition function relates configurations, so each
triggering signal may enable and fire more than one transition in the original UML state machine. For
such settings the testing equivalence is defined [69], as well as the ioco relation [40]. In the latter
case the set out from Definition 8 contains input/output pairs. So it is defined as outputs generated
after a given trace and for a given input. The test case generation algorithm is similar to Algorithm 3,
however only two cases must be considered, since outputs are immediately available.

Abstract State Machines (ASM) are a formal language based on a system A = (states, init, F).
In such a system states and the transition function F' use the algebraic notions of structures and
signatures. Definition 13 presents these aspects more formally [42].

Definition 13. 1. A structure S = (U, ¢1, ..., ¢r) consists of a set U (called universe) and finitely
many functions ¢ : U™ — U with an arity n. Constants are functions with n = 0.
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2. Asignature ¥ = (f1, ..., f1, a1, ..., a;) gathers function symbols (f1, ..., f;) and arities (a1, ..., a;). A
set of terms T, is inductively defined as: each f,, with an arity zero is a term and if ¢4, ..., t,,, € Ty
then f(t1,...,t,) € Tx if f has an arity m.

3. A Y-structure is a structure that can be described by a signature ¥, so the number of functions
is the same (I = k) and their arities agree. A set states is a set of Y-structures, which all use U.

4. A transition function F' is defined by a set of conditional assignments of the form: if o then r. A
condition « is composed of equalities s = u, s,u € Ty, and boolean connectives A, =. An update
r is of the form f(ty,...,t,) :=t with f € ¥ and ¢1,...,t,,t € Tk.

5. A specification in ASM consists of an initial 3-structure and a set of conditional assignments.
During execution of an ASM the terms in the conditional assignments are “evaluated” in the
current state, i.e. the current X-structure.

A specification described with ASM can be transformed to an FSM and the test case generation
algorithms from Section 2.1.1 may be applied [41]. The transformation of ASMs is based on execution
of updates that are enabled (their conditions are evaluated to true) in each reachable state [41]. This
means that the number of states might be infinite. To make the representation finite goals are used
and only updates that are on the path to a goal are executed [41]. In this way an FSM is constructed,
which represents a reachable portion of the ASM specification.

2.1.5 Summary

In this section we presented the model-based test case generation techniques, which assumed that the
whole model of a specification is considered. This kind of conformance requires that both SPEC" and
IMPL are sets of models. Therefore several assumptions about them must be made, which constitute
a test hypothesis. Table 1 presents the summary of used relations, test hypotheses and some properties
of the test case generation algorithms.

The above summary shows that there are two main approaches to test case generation. The first one
is based on finite and deterministic FSMs and the W-method and the second one on non-deterministic
LTSs and the ioco theory. The problem of generating test cases for FSMs is well researched and there
are many algorithms available [71]. The main idea behind most of them is similar to the W-method:
to test whether all possible transitions generate required output and move the machine to the correct
target state. In case of non-deterministic specifications it is much more difficult to give a clear definition
of a conforms relation, which can also easily be tested. The ioco theory provides both: the definition
of conformance and the algorithm to generate test cases used to check the conformance [103]. The
main idea in this theory is to check whether output produced by an implementation after a given input
is as specified. There are several further definitions of this relation and the adaptations of the original
algorithm, which deal with classes of inputs [47], timing [15, 16] and symbolic analysis of data [31].

Besides the improvements of the original algorithms there are also proposed extensions to use them
for more comprehensive modeling languages like timed automata, UML state machines or Statecharts.
There are two ways of achieving this. The first way is to translate more complex specifications into the
basic ones, for example methods based on EFSMs [70], timing analysis with grids [30, 96] or uSZ [53].
The second approach is to redefine the key theoretical ideas to deal with more complex structure, for
example as in Statecharts [13] or UML state machines [40].

The complexity of algorithms summarized in Table 1 shows that dealing with deterministic speci-
fications is less complex that in case of the non deterministic. This is because in all non-deterministic
solutions one needs to consider a subset of all states, to which a single action may lead (or a transition
combined with an internal action). This is the source of exponential growth in the complexity of those
algorithms. Moreover, algorithms based on the ioco relation may produce infinite sequences, because
these algorithms do not keep track of which states have been already explored. In modeling languages
like UML state machines or Statecharts the additional complexity of the algorithms [13, 53] arise as
the result of flattening hierarchical structures.

The methods presented in this section specify a set of requirements that an implementation must
meet. These requirements restrict the behavior of an SUT, so that it becomes possible to infer confor-
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Test hypotheses Algorithm
Method and/or confo.rms Specification SPEC Implementation IM PL .
authors relation Complexity Comments
Model Determ. | Data | Timed Other Model | Determ. Other
W-method trace FSM Yes No No -minimal FSM Yes -reliable reset ngnd)v where: -lengths of
Chow [22] and equivalence -strongly p1s n.u'mber of sequences differ for
Fujiwara et al. [35] connected trz.msrmons, specific methods
D-method Sidhu trace FSM Yes No No -has a FSM Yes -reliable reset n is number of -test suite is
et al. [95] equivalence distinguishing states complete
sequence
UIOv-method trace FSM Yes No No -UIO FSM Yes -reliable reset
Chen et al. [21] equivalence sequences
UIO-method Aho trace FSM Yes No No -UIO FSM Yes -number of states
et al. [2] equivalence sequences as in specification
Tretmans [101] ioco LTS with No No No -finite IOLTS No -input enabled if specification has | -test suite might be
1/0 behavior finite traces: infinite,
Heerink et al. [47] mioco LTS with No No No -finite IOLTS No -input enabled O(aQ"), where: -each test suite is
1/0 behavior for I/O clasess ats number of sound .
- - - - actions, -test suites are
Frantzen et iocor IOSTS No Yes No —symbollg IOLTS No -uniformity of n is number of complete if all
al. [31] soecification data values states possible test cases
Bijl et al. [108] ioco LTS with No No No -finite IOLTS No -given action generated
1/0 behavior refinement
Springintveld et trace TIOA Yes No Yes -separated TIOA Yes -as specification O(pr3), where: -based on
al. [96] equivalence outputs r is number of W-method
-input combined regions -test suite complete
enabled
Nielsen et al. [79] trace ERA Yes No Yes -event ERA Yes -as specification O(pz?), where: -based on
equivalence recording z is number of W-method
ones
Briones et al. [15] tiocoamg Timed No No Yes - finite TIOTS No -input enabled if specififcation has )
and Krichen et Automata behavior finite traces: -based on ioco
al. [66] with 1/O O(ac2™), where:
Briones et al. [16] mtiocoaq Timed No No Yes - finite TIOTS No -input enabled fillb number of
Automata behavior for classes of I/O elays
with I/O
Bogdanov et trace Statecharts Yes Yes No - output FSM Yes -correct triggers O(pn3) where: -based on
al. [13] equivalence distinguish. and actions p,n in statechart W-method
Hierons et al. [53] trace uSZ Yes Yes No -output FSM Yes -uniformity of O(ps(ns)?), where: | -based on
equivalence distinguish. subdomains s is number of ‘W-method
subdomains
Gnesi et al. [40] iocor UML state No No No -only control IOLTS Yes -triggers correct O(t2™), where -based on ioco
machines behavior t is number of
triggers
Grieskamp et action ASM No No No -finite with FSM Yes -updates correct goal dependant -based on FSMs
al. [41] equivalence goals

Table 1: The summary of test hypotheses in the test case generation for conformance based on complete models.
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Figure 6: Model-based testing for coverage criteria.

mance after a test suite is generated and executed. The most obvious requirement is that implemen-
tations must be treated as models - for example as FSMs or IOLTSs. This leads to basic assumptions
about behavior, for example that sending an input changes a state (LTSs) or changes a state and
produces an output (FSMs). There are several other limitations like reliable resets, input enabling or
precise timing information, which are specific for the test case generation algorithm.

The algorithms shown here are rather expensive in terms of time and other resources. One of the
reasons of such complexity lies in the assumption that all behaviors must be considered. The ways to
overcome this requirement are presented in the following sections.

2.2 Test case generation based on coverage

This section gives an overview of methods proposed to generate test cases based on coverage. These
methods attempt to overcome the complexity of the test case generation by focusing on certain parts
of a specification. This means that not all behaviors in a model are considered, but only those that
satisfy specified structural coverage criteria. Therefore resulting test suites can only prove or disprove
the existence of the conforms relation between a specification and an SUT with respect to the given
criteria.

Figure 6 depicts the idea of the model-based testing based on coverage criteria. Similarly to
techniques proposed for the conformance based on complete models, there are models of a specification,
of an implementation and of test suites. Additionally the test case generation depends on the given
coverage criteria or coverage rules. The problem considered by works presented in this section is
specified as follows.

Problem 2. Given a specification s € SPEC and coverage rules CR generate a test suite ts € TEST.
The ts should be such that all coverage rules CR are satisfied. The execution of s on an implementation
i € IMPL gives a verdict v € {fail, pass}, which determines whether (s,4) € conformscr.

There are many types of coverage criteria, which have been introduced for source code and white-
box testing [8, 39] and which are adapted to work with models. They can be divided into two main
categories: control and data flow coverage criteria [39]. The first group contains criteria that describe
control aspects, for example statement coverage. In model-based testing these criteria are defined
usually in the context of graph-like specifications and they constitute node or transition coverage.
Control flow coverage criteria are also used to analyze relations between branching conditions and
boolean expressions they are built from [8]. The data flow coverage criteria are typically concerned
with variables and their goal is to cover paths in models that connect definition and uses of specified
variables.

Some of the methods presented in this section employ existing model checkers [23]. Model checkers
can automatically verify whether a formula in temporal logics such as Linear Temporal Logic (LTL) [83]
or Computation Tree Logic (CTL) [24] holds in the given specification of a system. If the formula
does not hold then an appropriate counterexample is returned, which is a path to a state in which a
violation has been found. In the test case generation methods counterexamples are assumed to be the
test cases. So the goal of these methods is to find a formula that expresses a violation of a desired
property, run a model checker and then use counterexamples as test cases [34]. Methods presented
in this section that use model checking are mostly concerned with generating appropriate formulas in
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Algorithm 4 Algorithm to generate test suite for transition and state coverage criteria [51]

PASS« 0; WAIT+ {(s0, Co,¢)}; SUITE« 0; COV« Co
while WAIT# () do
select (s, C,w) from WAIT
PASS «— PASS U{(s,C,w)}
for all (s’,C’,w.t) such that (s,C,w) L (¢/,C",w.t) do
if ¢’ ¢ COV then
SUITE—SUITE U {(w.t,C")}
COV+—COV uc’
end if
if =3(s”,C",w") : (s",C",w") €(PASS U WAIT)A(s” = s’) then
WAIT+—WAIT U{(s',C",w.t)}
end if
end for
end while
return SUITE

order to satisfy coverage rules. How exactly counterexamples are then translated to sequences of inputs
and outputs is not further presented and is assumed to be specific to the implementation. Nevertheless
such a translation is not always trivial [112] .

In the following we present algorithms for generating test cases divided into groups based on the type
of criteria. The models assumed in the presented works use more comprehensive modeling languages
(EFSMs, Statecharts, ASMs), which can represent complex behaviors in a more succinct way.

2.2.1 Control flow coverage criteria

Control flow coverage criteria are used if generated test cases should cover parts of the possible control
flow of a specification s € SPEC. Therefore a test suite that satisfies the criteria must contain required
elements of the given model or must satisfy conditions that will lead to certain parts of the model.
Since modeling languages differ, the exact criteria are described in more detail below.

The most basic control flow coverage criteria require that test suites contain all states or transitions
of the given specification. For EFMSs (Definition 4) the version of the breadth-first search reachability
algorithm is presented in Algorithm 4 [51]. The algorithm identifies: a set COV of globally covered
elements, a set SUITE of paths and covered elements, and two sets WAIT and PASS of triples (s, C,w),
where s is a state in an EFSM, C is a set of covered elements in a path and w is this path. A triple
from the set WAIT is explored for each enabled transition ¢ in the EFSM. The set C' is updated into
C’ to contain the newly discovered transition or state, depending on which coverage criterion is used.
If this new coverage set C’ adds an element to COV then a path w.t is added to the set SUITE (along
with covered elements C’). Finally if a new state of the EFSM has not been yet explored then the
triple is stored for further exploration in the set WAIT.

For Statecharts and UML state machines, besides the transition coverage criterion based on breadth
first search [80], the transition pairs coverage criterion has been considered [93, 11]. This criterion aims
to cover all possible combinations of incoming and outgoing transitions for each state. The proposed
algorithms assume that a Statechart or an UML state machine is flat, so it has that a graph-like
structure. From such a structure a transition graph is constructed [93, 11]. A transition graph is
a directed graph with nodes representing original transitions and arcs connecting those nodes which
are incoming and outgoing transitions for some state. The transition graph is then used to construct
transition pairs by traversing it and gathering all nodes. This idea can be extended to consider not
only pairs of transitions but also sequences up to a certain constant value [11].

Model checking techniques are another approach to generate test cases that satisfy certain coverage
criteria. The underlying idea is to prepare a set of test predicates, which are translated to formulas
called trap properties [36]. For a test predicate tp, a trap property is a CTL formula AG!tp, which
means that tp is never satisfied in the given specification. A model checker returns a counterexample
if it finds a state in which a formula does not hold, hence tp is satisfied. A counterexample is a path
leading to such a state, so it can be interpreted as a test case that satisfies a test predicate tp.

The above idea was initially proposed for specifications modeled with Software Cost Reduction
(SCR) requirements method [36]. SCR represents requirements with a set of monitored and controlled
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variables, which are inputs and outputs, respectively. States are given by valuations of those variables
and transitions are described with two types of tables. Event tables are used to represent transitions
triggered by events and condition tables gather conditions necessary to change values of controlled
variables. These tables are the basis to generate test predicates, which are combinations of possible
events and conditions to change a state. The set of test predicates defined in this way satisfy a branch
coverage criterion [36]. The translation of the SCR specification along with encoded trap properties
are run in SPIN [54] and SMV [23] model checkers. If counterexamples are generated then they are
test cases, if not then the particular test predicate is either not reachable or the state space is too big
for a model checker to exhaustively explore it.

The similar approach is also taken for ASM-based specifications [37, 38], however for different
coverage criteria. According to Definition 13, an ASM specification consists of a set of guarded updates
(rules) of the form: R = if Cond then Updates. The following coverage criteria are defined (there
are m rules R; for i = 1,...,m) [37, 38]:

- rule coverage: requires that all rules are fired, so a set of test predicates contains { Cond;, =Cond; }
fori=1,...,m,

- rule update coverage: requires that all updates are executed, so a set of test predicates is { Cond; A
fi,j(tij) = ti;} for each rule R; and each update in this rule f; ;(¢; ;) (£;; is a vector of terms),

- parallel rule coverage: requires that each possible set {R;} of n rules fire simultaneously, so a set
of test predicates contains conjunctions of guards in each rule in a set,

- modified condition decision coverage (MCDC): requires that there is a test predicate in which
each atomic condition ¢ (subcondition without connectives) of Cond; evaluates to true and to
false. The valuations of all other atomic conditions are chosen in such a way that the outcome
of Cond; is true in one case and false in the other.

An ASM specification is translated to input language of SPIN [38] or SMV [37]. Trap properties
generated from the test predicates specified for the above coverage criteria are formulas verified by the
model checkers.

2.2.2 Data flow coverage criteria

Data flow coverage criteria are used to ensure that generated test cases cover states that follow data
flow between variables [88]. The main idea is to differentiate between definition and use occurrences of
variables and then cover paths between them. A definition occurrence of a variable x is an assignment
to this variable and a use occurrence is a statement that uses a value of the variable. The latter type
of occurrence can be divided further into a computational or a predicate use occurrence. The most
common data flow coverage criterion is the definition-use, which requires that a test suite contains at
least one path for each definition and use pair and that this path is free of further definition occurrences.
In this way it is possible to trace dependencies between variables and their values.

In order to generate test cases that satisfy the definition-use criterion Algorithm 4 can be ad-
justed [51] to enable partial coverage. The criterion C is extended to be a pair (F,U), where F is not
empty if a definition of a variable x has been encountered. Then if its use is found a value from F and
the current state is added to U.

Test case generation for EFSMs (Definition 4) can also be based on flowgraphs as shown in Defini-
tion 14 [106].

Definition 14. A flowgraph G for an EFSM M = (1,0, S, 7, T) is a directed graph G = (V, vs, vy, E),
where

- V is a set of nodes, which are marked as s-node, i-node or t-node,
- vs,vy € V are an initial node and a final node, respectively,
- F is a set of edges, which are marked as an si-edge, it-edge or ts-edge.

The mapping between an EFSM S and a flowgraph G is such that, for each s € S, G has:
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- one s-node,

- one i-node for each input action possible from S, so for each i € I, where Iy ={i | i € I A3s":
(s,8',i,0, P, A) € T for some o, P, A},

- one t-node for each transition from s, so for each t € T, where Ts = {t € T|3s' : (s,5',i,0,P, A) €
T for some 4,0, P, A},

- one si-edge from s-node to each i-node, ¢ € I,
- one it-edge from each i-node to t-node, i € Iy and ¢t € T, and ¢ is an input action of ¢,

- one ts-edge from each t-node to s'-node, where s’ is a target for the transition ¢.

For all variables z, t-nodes are identified as the definition occurrence (def(x)) if they assign to x or
the computational use occurrence (c-use(z)) if they use x for output or assignment. The it-edges are
marked as the predicate use occurrence (p-use(x)), if a guard for a transition ¢ uses a variable . The
flowgraph is then used to identify associations between definition and use of variables:

- def-c-use association for a variable x is a triple (x,4,j) if ¢ is a def(x) node, j is a c-use(z) node
and there exists a path (i,n1,...,%y,j) for m > 0 such that nodes ny,...,n,, are not marked
def(x),

- def-p-use association for a variable x is a triple (z,1, (j, k)) if ¢ is a def(z) node, (j, k) is a p-use(x)
edge and there exists a path (i,m1,...,nm, J, k) for m > 0 such that nodes n, ..., n,,j are not
marked def(z).

The definition of flowcharts and associations for variables are proposed for specifications in Es-
telle [106] and Statcharts [56]. In the first case additionally more complex relations between input
and output variables (as a special type of definition and use occurrence) are defined. Statecharts are
represented as EFSMs and their hierarchy is flat, so states of an appropriate EFSM are configurations
(sets of all states that a Statechart is in). Transitions can be triggered with multiple signals. The
generated paths in a flowchart are then translated into sequences of signals, which are test cases.

The above data flow criteria can be also expressed as a model checking problem [57, 55]. A flowchart
can be seen as a Kripke structure as in Definition 15.

Definition 15. A Kripke structure is a tuple K = (V,vs, L, E), where V is a set of states, vy is an
initial state, L is a labeling function and F is a set of edges. The labeling function L assigns to each
state a subset of atomic propositions AP, so L : V — 24F.

A Kripke structure that represent a flowchart has the function L that labels vs and vy with {start}
and {final} and other states with def(x), c-use(x) or p-use(z) [55]. A specified definition-use associa-
tion can be expressed as a CTL formula, and then a Kripke structure is used to find witnesses of such
a formula [25]. A witness is a path leading to state in the Kripke structure that satisfies a given CTL
formula and is directly used as a test case. This approach has been also extended to include control
flow dependencies for EFSMs [57, 58].

A different view of the data flow coverage criteria is used in combinatorial testing, which aims at
covering combinations of possible values of input variables [67, 19]. The rationale is to check how such
combinations may influence an implementation. Because for n variables that range over m values each,
there are m™ combinations, in practice only subsets of variables are used, called k-way combinations.
The factor k is usually no more than 6. All combinations are translated into trap properties and
appropriate counterexamples are used as test cases.

2.2.3 Summary

In this section we presented techniques to generate test cases, which are restricted to structural coverage
criteria. These criteria are defined using rules, so no specific language is required to express them. All
presented approaches are summarized in Table 2.
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Authors Model Type of coverage criteria Method Comments
SPEC Control flow Data flow
Offutt et UML state | -transitions, breadth first -requires flat structure
al. [80] machine -transition pairs search of state machines
Belli et Statecharts | -transition pairs, transition graphs -optimization with
al. [11] -k-transitions, number of transitions
-faulty transitions
Santiago et Statecharts | -transition pairs transition graphs -requires flat model
al. [93]
Hessel et EFSM -control states, -definition use reachability -EFSM represents
al. [50] -transitions algorithm timed automata with
zones,
-optimization with
delays
Gargantini SCR -branch coverage model checking -use SPIN and SMV
[36] model checkers
Gargantini ASM -rules, model checking -use SMV and SPIN
et -rule updates, model checkers
al. [37, 3§] -parallel rule,
-MCDC
Ural et Estelle -definition use, exploration of -assumes normal form
al. [106] -input output flowcharts of specification (based
relations on EFSM)
Hong et Statecharts -definition use exploration of -requires flat model
al. [56] flowcharts
Hong et EFSM -definition use model checking -adapted model
al. [57, 55, -chains of checking algorithm
58] defintion use
Khun et -combinatorial model checking -use SMV model
al. [67], testing checker
Calvagna et
al. [19]

Table 2: Properties of methods for test case generation based on coverage.

The complexity of presented techniques depends on the underlying methods, so it is not directly
given in Table 2. In case of reachability- or graph-based algorithms the complexity may be even
exponential if Statecharts or UML state machines must be flattened, because all possible subsets of
the original specification are used. For methods based on model checking the complexity depends
on the model checker, the size of the specification (in terms of processes and used variables) and the
number and size of formulas to check. This in case of larger systems may reduce the practical value of
the presented works.

In this section we presented approaches that do not require any special representation of coverage
criteria. In the next section approaches that require explicit specification of properties are presented.
In some cases this includes also coverage criteria as a special case of a property.

2.3 Test case generation based on properties

Generation of test cases based on properties follows a similar pragmatic approach as in the coverage-
based testing. The assumption is therefore to construct test cases that can check whether an SUT
behaves in the same way as the given specification for some part of it. The idea of model-based testing
for conformance based on properties is depicted in Figure 7.

There are two components of a specification. The first one specifies required behaviors as in the
previous sections, the second describes the selected properties p € PROP. The sets SPEC and PROP
are in some cases disjoint and in some cases they overlap depending on the method used. The problem
considered in this section can be described as follows.

Problem 3. Given a specification s € SPEC and properties p € PROP generate a test suite ts €
TEST. The test suite ts should be such that its execution on an implementation ¢ € I M PL respects
the properties p. The execution of ts gives a verdict v € {fail,pass}, which determines whether
(s,i) € conforms,.
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Figure 7: Model-based testing for selected properties.

Properties and how test cases can satisfy them is understood in several different ways. The first
approach is to use properties to restrict a specification and to test only parts of it given by properties
(i.e., PROP and SPEC coincide). Another approach is to use the properties as a restriction of
an environment, in which a reactive system is going to operate. In this way it can be compared
whether a specification and an implementation behaves in the same way under the given conditions.
Finally formulas in temporal logics (like LTL or CTL) can be properties. The formulas may restrict
specifications and environment at the same time. In this case SPEC and PROP are typically disjoint.

2.3.1 Restricting a specification

Properties for which the conformance is checked can represent a certain part of a specification. In this
way the specification is restricted and test cases are generated only within such a restriction. There
are several ways how to express the properties and how to combine it with the original specification.

For instance, in the context of LTSs and the ioco relation (Section 2.1.2), the TGV tool proposes
test purposes to restrict a specification [62]. A test purpose is an LTS with inputs and outputs
(Definition 5) as in Definition 16.

Definition 16. A test purpose is an LTS TP = (QTF, ATP TTF ¢I'F), where actions AT are
partitioned into LT and LLF and which has the following characteristics:

- it is deterministic, i.e. Vg, s,s’ € QT vl € ATF : (q BLINN q LN )= (s=¢9)

- it has trap states Accept’t and Refuse’” with self-loops on each action | € AT, ie. Vg €
(Accept™ U Refuse™™) Wl e ATF . ¢ LN q,

- it is complete, i.e. in all states all actions are enabled Vg € Q77 Vi € ATPq L

A specification is an LTS with inputs and outputs S = (Q°, A%, 7%, ¢5) and a test purpose must
have the same actions, so LITP = L*I9 and LEP = Lg.
The steps to build test cases are outlined below [62]:

1. Construct the synchronous product of S and TP: SP = S||TP. SP is an LTS with inputs and
outputs such that SP = (Q° x QTF, A% T3 (¢5,4f")). The transition relation is defined by :

(p,q) ——sp (p,d) & p-——sp Ng—1p ¢

Accepting states are Acceptgp = Q37 N (Q° x Accept™) and refusing are Refusegp = Q%7 N
(Q5 x Refuse™™)

2. Add quiescent transitions (self transitions in states that do not enable any output actions),
determinize and remove internal actions. These steps result in an LTS with the visible behavior
SPVIS — (QVIS’AS’TVIS,q(\)/IS)'

3. Construct a complete test graph CTG = (Q°TE A5 TCTE ¢§TE). Tts inputs and outputs are

switched with respect to the specification S. States in Q¢T“ are following:
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- states from which accepting states can be reached: coreachable(AcceptVIS) ={qe V|30 ¢
(AS)* : g %5 AcceptV 15},

- inconclusive states (Inconc), which are not in coreachable( Accept”?¥), but are direct suc-
cessors of those states in SPY!S by an output a € LEIS,

- a new failing state (Fail),

tVIS

- passing states (Pass), which are Accep states.

The transition relation TC¢TC consists of:

TVIS tVIS)

- transitions t € , which are between states in a set coreachable(Accep U Inconc,

- transitions {(q, a, Fail) | q € coreachable(Accept” ™) Aa € LETG A ~(q v 15)}

This procedure constructs an LTS that represents all possible test cases with respect to the given test
purpose TP and can be used to test an implementation. There are three possible verdicts. Either
an implementation reaches a desired state of TP (Pass states), or it produces an output that is not
part of a test purpose (but is conformant with the specification) and a desired state cannot be reached
(Inconc states), or it produces an output which is not conformant (Fail state) [62].

The TGV method is extended to deal with symbolic transition systems (10STS) [91, 64]. These
systems include variables to represent a state of a system or parameters of inputs. Variables guard
transitions and their values update other variables [63, 92]. In such systems reachability of certain states
depends not only on actions, but also on received input values. Therefore, searching for states, from
which accepting ones can be reached, must also take into account values of input variables and their
assignments. Because such analysis cannot be exact [64], coreachable states are overapproximated.
This means that test cases may still not produce any verdict, although the accepting state of the T'P
is not reachable anymore. The above approach is further extended to enable verification of safety and
liveness properties [27]. Even if such properties cannot be formally verified, because the state space
is too big, it may is still possible to generate test cases that can check whether an implementation
satisfies them.

The TGV method is used in the AGEDIS tool, in which models are based on UML state ma-
chines [46]. In this tool definitions of test purposes are called testing scenarios and are coverage
oriented. The coverage can be defined in terms of functional as well as structural criteria. It is also
possible to manually define required test cases by defining an explicit testing scenario.

To restrict specifications modeled with communicating timed automata in UPPAAL the notion of
observers has been proposed [49]. Observers express coverage criteria. The underlying idea is to make
them to “accept” traces that lead to states in which coverage is satisfied. Formally, observers are timed
automata (Definition 9) with a set of accepting states. Their transitions are synchronized with the
transitions of a UPPAAL timed automaton, so both are executed in parallel [49].

An approach based on Constraint Logic Programming (CLP) has been introduced to generate
test cases from specifications in the modeling language of AutoFocus tool [87]. AutoFocus models
are hierarchies of components connected with typed ports. Behavior of a component is described
with a state machine similar to an EFSM (Definition 4). The translation from AutoFocus models to
CLP iterates through all transitions in all state machines. A transition with its guards and variable
assignments, defines a predicate [73]. Predicates are used also to specify constraints imposed by test
purposes (expressed with constraint handling rules - CRH). An execution of a CLP program, which
is a translated specification and a test purpose, may lead to a solution. Several search strategies
are proposed to find the most useful solutions that serve as test cases [85, 86]. These strategies are
variations of the depth first search, but they use heuristics to reduce the length of test cases. Because
the language used to specify test purposes is based on predicate logic it is expressive enough to allow
the specification of complex purposes: functional, coverage-based or stochastic [81].

2.3.2 Model checking and mutation analysis

Model checking is one of the underlying techniques used to generate test cases based on properties. As
presented in the context of the coverage-based test case generation (Section 2.2), the idea is to use a
counterexample or a witness as a test case.
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One of the ways how counterexamples may be produced is based on mutation analysis [6], that is on
small syntactical changes applied to some parts of a model. For a given specification S and a property
p, which holds in the specification (otherwise the model is incorrect and should not be used to generate
test cases) we can mutate either of them. There are two possibilities: a property p is checked against
a mutated specification S’ or a mutated property p’ is checked against the original model S. The
interpretation of produced counterexamples differs in both of those cases. In the first one (mutated
specification) a negative test case is obtained, to pass it an implementation must produce a failure, in
the second case (mutated properties) a positive test case is produced and an implementation must not
return a failure [32].

The above idea was used to generate test cases based on a Software Cost Reduction (SCR) re-
quirement specification [6]. An SCR specification describes controllable and observable variables in a
system and how their values change. Such a specification is the basis to build a model used by SMV
model checker along with a set of formal requirements [6]. After applying mutation operators on a
model and on properties test cases are obtained. Applying different mutation operators may lead to
different levels of coverage, for example the highest coverage is achieved when replacing variables with
the other ones from the specification [12]

Another way of using mutations of specifications is to combine a mutated specification S’ and an
original one S [7, 14]. S and S’ are Kripke structures (Definition 15), in which atomic propositions
(AP) are partitioned into input and output. A set of properties used by the model checker is based
on comparisons of outputs produced by S and S’. A counterexample that leads to a state in which
outputs differ is a test case. To deal with non determinism, possible input sequences are also encoded
as Kripke structures and they restrict the combination of mutant and specification further [14].

Mutations of properties enables detection how well a property has been tested [99]. Because there
is possibly an infinite number of paths in a specification S that lead to states that satisfy a property
p, it is not possible to test all of them. To increase the confidence that at least the most important
ones were selected and tested property-based metrics and coverage are used. For a given property p a
test suite covers it, if for every subformula ¢ a mutation replacing ¢ with ¢ (p[¢ < ]), which is not
satisfied in S, is represented with a test case. The selection of 1 can be based on the notion of polarity
of a subformula, so v is set to true if ¢ is enclosed in odd number of negations and 1 is set to false
otherwise [99]. Another approach to deal with a possibly infinite number of paths in a specification
is to partition them based on satisfaction of a set of properties. Then a path from each partition is
selected as a representative test case [18].

2.3.3 Constraining the environment of a system

This section shows how properties are used to constrain the environment, in which a reactive system
operates. To achieve this testing scenarios are specified and they that should be covered by test cases.

The restriction of possible inputs data is extensively studied in the context of the Lustre language.
Lustre is a synchronous data flow programming language [43] designed for specifying reactive systems.
A synchronous language means that changes in states of a system are propagated at ticks of some
virtual clock. A data flow language means that a program is based on the description of sequences of
typed data and relations between such sequences. For example a specification Z = X +Y is interpreted
as a flow Z equals to (z1 + y1,22 + ¥ya,....) for X equals to (z1,z2,...) and Y equals to (y1,y2,...).
Besides usual arithmetic and boolean operators, there are two specific ones: previous pre (X) is defined
as (nil, x1, 2, ....) and followed by X -> Y is defined as (z1,y2,ys, ...). Building blocks in the Lustre
program are called nodes and they define input flows and the resulting flow [43].

There are several tools based on the Lustre language that generate test sequences according to
required constraints imposed on the environment:

- in order to generate test data Lurette [89] requires an environment and an oracle modeled as
Lustre nodes. An environment is described as a set of constraints on data flows, and an oracle is a
set of assertions between input and output flows. The generated input values are sent to an SUT,
which responds with output values and the next inputs are generated. The test data generation
is combined with checking the correctness of output values in the oracle. To generate relevant
test sequences, so the ones that respect the set of constraints specified in an environment node,
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the constraints are abstracted and internally represented as binary decision diagrams (BDDs).
By traversing such diagrams and solving constraints, required inputs are produced.

- Lutess [94] uses a very similar approach as Lurette, i.e., it requires constraints on the environment
and an oracle node. However, the internal implementation is different and is based on Constraint
Logic Programming. A set of constraints is translated to a program and then solved. Lutess
allows also assigning conditional probabilities to input values. So if conditions are satisfied a
probability of generating an input with a required value should be as specified.

- GATeL [75] requires that test objectives are given in the specification. So a Lustre program is
enhanced with assertions, which state conditions that flows must meet, and with requirements
that must be reached in the current test sequence. The test sequence generation is based on
finding sequences that satisfy the assertions. But, unlike Lurrete and Lutess, the process starts
from the last state in which test objectives hold. Then constraints are simplified and translated
to a CLP program.

In the object oriented domain SpecExlorer has been developed to allow for the test case generation
for reactive systems [109]. The tool uses the languages Spec# or ASML#, which both have their
formal semantics defined with ASMs (Definition 13). Conditional assignments, specific for ASMs, are
represented as methods with preconditions, called actions, declared in classes. Actions that represent
outputs in a system are controllable and the ones for inputs are observable. A program written in
Spec# or ASML# is a model program and a result of its execution is a model automaton. SpecExplorer
has the following methods that control how the model automaton is constructed [109]:

- restricting values of parameters used in actions,
- strengthening preconditions of actions,
- filtering states based on attributes of a class or on auxiliary variables,

- directed search by assigning probabilities to certain values of parameters and by bounding state
exploration,

- grouping states with an equivalence relation into classes, in which an arbitrary number of states
is further explored.

The test case generation is realized by traversing a model automaton. The result of such a traversal is
a test automaton, which extends the model automaton with additional features like timeouts or test
variables. SpecExplorer implements the traversal algorithms as games, in which a test tool tries to
win by going into predefined accepting states [78].

2.3.4 Summary

In this section we presented methods for test case generation based on properties. As in the coverage-
based conformance, the proposed methods follow rather pragmatic approach. In such an approach the
number of generated test cases is reduced by considering only part of a specification. The presented
works are summarized in Table 3.

The presented methods for generating test cases typically rely on some other methods. These
methods include a parallel composition [62, 64, 63, 91, 92], different search strategies [109], constraint
solving [86, 87, 89, 94, 75] and model checking [6, 32, 7, 14, 99, 18]. Such diversity of underlying
techniques and algorithms is the result of the increasing complexity of specifications and the increasing
number of modeling languages. Therefore test case generation methods must become also diversified.

There is also a lot of variation in the way properties are expressed. In some cases, they are given
using languages that are the same or very similar to the specification language. In other cases a
completely different languages is used. The properties differ also in what they actually describe: test
purposes or goals, test specifications or test scenarios. Testing purposes or goals specify which paths
of a specification to consider during generation. In contrast, testing specifications are used to provide
a general state that should be reached by a specification. Testing scenarios restrict the environment,
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Authors and/or tool SPEC PROP Method Comments
Model Determ. Model
TGV - Jard et LTS with No LTS with parallel -coreachability based on
al. [62] 1/0 Accept and composition with | strongly connected
Refuse coreachability components
Jeron [64], ioSTS No ioSTS with parallel -overapproximation of
Jeannet et al. [63], (symbolic Accept composition with | coreachable states
Rusu et al. [91, 92] LTS) and/or coreachability
Constant et al. [27] Refuse
AGEDIS - Hartman UML state No LTS with based on TGV -testing scenarios,
et al. [46] machines Accept and -properties for coverage
Refuse criteria
UPPAAL Cover - UPPAAL No observers model checking -properties for coverage
Hessel et al. [49] timed criteria
automata
AutoFocus - AutoFocus Yes Constraint translation into -several search strategies
Pretschner et Handling CLP based on heuristics
al. [85, 86, 87] Rules
Phillipps et al. [81] (CHR)
Amman et al. [6] SCR Yes CTL/LTL model checking -mutation of specification and
properties
-SMYV model checker
Fraser et al. [32] Kripke Yes CTL/LTL model checking -property relevance
structure -positive and negative test
with I/O cases
Amman et al. [7] input lang. Yes CTL/LTL model checking -using SMV model checker
for SMV -analysis of dangerous traces
Boroday et al. [14] Kripke No CTL/LTL module checking | -support for non-determinism
structure
with I/O
Tan et al. [99] Kripke Yes LTL model checking -properties based coverage
structure
Callahan et al. [18] Promela Yes LTL model checking -partitioning based on
properties
Lurette - Raymond Lustre Yes Lustre constraint solving | -generates test data
et al. [89] and BDDs -online checking with oracle
Lutess - Seljimi et Lustre Yes Lustre translation into -generates test data
al. [94] CLP -online checking with oracle
-stochastic specification
GaTEL - Marre et Lustre Yes Lustre translation into -generates test data based on
al. [75] CLP goal state
SpecExplorer - Spec#, No exploration searching graphs, | -restricts possible actions
Veanes et al. [109] ASML# rules games -stochastic specification

Table 3: Properties of methods for test case generation based on properties.

and test cases are used to check whether behaviors of a given specification and of an SUT are the same
for some subset of all possible input data.

As for the coverage-based test case generation, the complexity of the algorithms is not given.
The complexity depends on the underlying method such as constraint logic programming or model
checking. This also means that the scalability of the presented techniques is not directly specified.
The approaches based on model checking or other search strategies may not be scalable, but it also
depends on the complexity of properties used.

2.4 Conclusions

This part of the paper reviews the most common model-based test case generation methods. They are
divided into three categories according to the definition of the conformance relation between a model
of a specification and of an SUT. The three categories are test case generation based on complete
models, on coverage criteria and on properties.

Methods proposed for conformance testing based on complete models are influenced by two main
approaches: one based on FSMs and one based on non-deterministic LTSs. In the first case, since the
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conformance relation is straightforward, there are a lot of approaches that propose improvements to the
most popular W-method [22]. The popularity of this method is due to its simplicity, but also to its non
restrictive assumptions. In the second approach that is based on non-deterministic LTSs the emphasis
is put on defining the relation conforms (Figure 3) precisely and to use a straightforward algorithm.
The definition in this case is important, because it influences how SUTs are tested. The most popular
conformance relation is the ioco relation [103], which is also easily tested. Other approaches in the
conformance based on complete models are usually variations of these two methods.

The test case generation based on coverage or properties differs from the above mainly because the
notion of conforms relation is not of the most importance. What is important in those approaches are
algorithms that efficiently can produce test cases, which additionally satisfy given constraints based
on coverage criteria or properties. In these approaches the conformance is usually assumed to be the
trace equivalence, with an exception of TGV-based methods, which use the ioco relation [27, 62, 63,
64, 91, 92, ?].

The presented review also showed that there are many formalisms and modeling languages used
to represent specifications of reactive systems. The simple formalisms such as FSMs or LTSs are
quite common and they allow for model-based testing to be placed on formal foundations. However
in practice more comprehensive modeling languages such as Statecharts, UML state machines, ASMs
(Spec#) are more popular. The methods for the test case generation proposed for these languages are
usually specific for them, but they reuse existing algorithms such as the W-method or the ioco theory
or other analysis techniques, for instance model checking or CLP.

The additional sources of complexity in the test case generation methods are timing requirements
for real-time models (like timed automata [5]). This complexity arises from the often infinite ways how
such systems may behave and from intrinsic non-determinism. To overcome these challenges authors of
the presented methods assume several restrictions to ensure deterministic executions and to represent
the state space in a discrete way. Discrete models are typically achieved using regions [96] or zones [79].
The latter approach results in coarser state spaces, but at the same time the uniform behavior within
zones must be assumed to hold in an SUT.

One of the common techniques used to generate test cases based on properties or coverage is model
checking. The most important advantage of using model checkers is that they are easily available and
they offer optimizations such as symbolic model checking and partial order reduction [23]. But model
checkers are not intended to generate test cases, so they are also limited in how they can be used
for this purpose [33, 34]. The problems arise, because model checkers are usually satisfied with one
counterexample or witness, which might not be the shortest one. Consequently generated test cases
might be longer and therefore not optimal. The other problem lies in the exhaustiveness of generated
test cases: model checkers usually cannot find all possible ways to violate a given formula, since one
path is enough. Finally counterexamples or witnesses are not directly executable, so they must be
adjusted to the required format accepted by an implementation.

3 Comparative analysis of tools

This part of the paper analyzes and compares several tools, which implement model-based test case
generation. The goal of this analysis is to show how the test case generation is performed in practice
and what the requirements of the specific methods are. Due to the high diversity of tools, they are
compared using some high-level criteria.

The tools compared in this section are:

- TorX [104]: the implementation of the conformance checking based on the ioco theory (Sec-
tion 2.1.2),

- TGV [60]: also based on the ioco relation, but with test purposes (Section 2.3.1),

- UPPAAL Cover [105]: used for test case generation from timed automata in UPPAAL with
observers (Section 2.3.1),

- SpecExplorer [76]: introduces the testing scenarios for specifications in Spec#(Section 2.3.3).
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Figure 8: The structure of the traffic lights system.

The main reason these tools were selected is that they represent different types of the model-
based testing: conformance testing based on complete models (TorX), testing based on properties
(TGV, SpecExplorer, UPPAAL Cover) and support for coverage criteria (UPPAAL Cover). The tools
differs also in formalisms and the modeling languages they rely on: labeled transition systems and
LOTOS (TorX, TGV), communicating timed automata (UPPAAL Cover) and ASM based Spec#
(SpecExplorer). With the selected tools it is possible to compare specific requirements of the various
methods presented in the review part of this paper.

The above selection is by no means exhaustive, since there are other model-based test case genera-
tion tools developed in academia as well as commercial ones. Unfortunately some of the tools such as
AutoFocus [87, 86] or AGEDIS [46] are no longer maintained and could not be used here. The com-
mercial tools like Confirmiq Qtronic [26] or IBM Rational Rhapsody ATG [59] do not provide details
of the semantics used in models and of their test case generation algorithms, so it is hard to use them
in this comparison. Finally tools for generating data sets (like Lutess [94], Lurette [89], GATeL [75]) or
for combinatorial testing (like AETG for Web [100]) are not of the main interest of this work, because
they can generate only data sets from a specifications. So they do not contain correct responses of a
system, and in turn cannot automatically give verdicts.

3.1 Used procedure

The procedure used during the analysis assumes that the common specification, as described in Sec-
tion 3.1.1, is given. Based on this specification the following steps were performed for all tools:

1. The specification was implemented in the modeling language supported by a tool.

2. If necessary other required artifacts (test purposes, implementations) were prepared.

3. The test case generation was performed.

4. Outputs produced by a tool were gathered.
All experiments in this section were performed on a PC machine (Pentium 4 2.8 GHz, 1.96GB of
RAM).
3.1.1 Specification

The common specification is the control part of a traffic light, which is used to allow pedestrians
to cross a street. The abstract structure of this system is given in Figure 8. There are two types
of input signals to the system: a car sensor and two buttons at both sides of the street. The sensor
detects whether there are cars in the vicinity of the traffic lights and it sends two signals: approach
if there is one or more cars and leave if the crossing is empty. The buttons are used by pedestrians
to make a request to cross the street and they both produce a signal press. The output signals from
the controller manage three devices: indicators, pedestrian and car lights. The indicators are flashing
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after the request has been made and they receive two signals on and off. The pedestrian lights receive
two signals walk and noWalk, which allow and disallow crossing the street. The car lights receive one
of four signals with the color of the light.

The requirements imposed on the behavior of a traffic light are as follows:

1. After receiving the signal press the controller sends on and walk signals.
2. A walk signal cannot be sent if the controller has not sent a sequence of lights yellow and red.

3. The controller cannot send a yellow signal if the signal approach has been received and after it
the signal leave has not been received or the appropriate delay has not passed.

4. The controller sends the signal noWalk only after the predefined delay after sending the last walk
signal.

5. After each noWalk signal the controller sends a sequence of signals yellowRed and green.

6. Before the signal green is sent, the controller sends an off signal.

7. The controller sends the signal yellow only after a delay after the last green signal.

From the above description it follows that the traffic light represents a reactive system, which waits
for the input (pressing buttons or approaching cars) and then produces the required output.
3.1.2 Criteria

The tools compared in this analysis vary substantially with respect to the required input information
or produced outputs. Therefore the comparison criteria are not quantifiable and they are listed below:

1. How is a specification represented: required/allowed formats of models, alternative representa-
tions,

2. What are other required artifacts?

3. Is the test case generation performed offline or online (test case generation with execution) or
both are supported?

4. What is the outcome of running the tool?

5. What is the estimated scalability of the tool? The scalability is understood in terms of the
size of the model of specification, for which each tool can produce test cases. In the presented
experiments we asses the scalability by using a composition of the specification described in
Section 3.1.1 and for how many compositions we can obtain test cases.

6. Are there interfaces to other tools?

7. How easy is it to use generated test cases directly on an implementation?

3.2 Results of the analysis
3.2.1 TorX

TorX [104] is the tool that implements an online version of Algorithm 3 for checking the ioco relation
between LTSs. In steps that resemble choices of Algorithm 3 an implementation is executed along
with the analysis of a specification. In each step the specification is analyzed for possible outputs and
inputs after input-output sequence generated so far. There is a choice between sending an input to the
implementation and checking an output. If at any time the implementation returns an output that is
not contained in outputs predicted by the specification then the verdict of testing is failed. The choice
between sending one of the inputs and checking an output is random or can be guided by a user.
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Settings In order to run TorX the following are required: a specification, an implementation and
configuration information, like partitioning of signals into inputs and outputs.

A specification can be in several formats: LOTOS (an example in Listing 1), Promela (an input
language for SPIN [54]), LTSA and Aldebaran (explicit enumeration of all transitions). In this analysis
the LOTOS language has been selected and an excerpt of the specification is given in Listing 1.

Listing 1: Excerpt from the specification of traffic lights in LOTOS
1 specification
LIGHTS [PRESS.A, PRESS.B, APPROACH, LEAVE, WALK, NOWALK, ON,

3 OFF, GREEN, YELLOW, RED,YELLOWRED]|: noexit
behaviour
5 hide PRESS, A, L in(
Controller [PRESS, A, L, WALK, NOWALK, ON, OFF, GREEN, YELLOW, RED, YELLOWRED]
7 | [PRESS,WALK, NOWALK, A, L, ON, OFF, GREEN, YELLOW, RED, YELLOWRED] |
(
9 Buttons [PRESS_A,PRESS_B,PRESS| | [PRESS]| CarSensor [APPROACH,LEAVE,A,L,PRESS ]| | |
PedestrianLights [WALK,NOWAIK] ||| CarLights [GREEN,YELLOW,RED,YELIOWRED] | | |
11 Indicators [ON,OFF]
))
13 where
/xprocesses Buttons, CarSensor, PedestrianLights, CarLights, Indicators*/
15 process Controller [PRESS, A, L, WALK, NOWALK,
ON, OFF, GREEN, YELLOW, RED, YELLOWRED]:noexit :=
17 A; Controller WAIT [/« channelsx/] []
PRESS; Controller-WALK [ /* channels*/]
19 endproc
process Controller-WAIT [ /xchannelsx/]: noexit :=
21 L; Controller [ /«xchannelsx/] []
PRESS; (hide TIMEOUT in
23 (L;exit [] TIMEOUT;exit) >> Controller ' WALK [ /*channelsx/])
endproc
25 process Controller . WALK [ /xchannelsx/]: noexit :=
(YELLOW; RED; exit ||| ON;exit)>>
27 WALK; NOWAIK; (OFF;exit ||| YELLOWRED;GREEN; exit) >>
PRESS; (hide DELAY in (
29 (DELAY; Controller [/«channelsx/]) |[]
(PRESS; DELAY; Controller .- WALK [ /*channelsx/])))
31 endproc
endspec

The specification identifies several signals (lines 2-3), called channels, which represent environment
of the system. The overall behavior is given in lines 5-12 and it consists of several processes (like
Buttons or CarSensor), which run in parallel (notation |||) or synchronize on predefined channels
(notation | [...]1| with channel names between square brackets). The keyword hide introduces chan-
nels that represent internal actions. Only the specification of the Controller process is shown, whereas
the other ones are straightforward. The process operates in one of three “modes”. In the first and
the initial one (lines 15-19) the process waits either for a request to walk (PRESS channel) or (notation
[1) a signal indicating approaching cars (A channel). In the second mode (lines 20-24) requests are
deferred until all cars leave (L channel) or there is a request to walk and a timeout. The third mode
(lines 25-31) is for dealing with request to cross the street, so the appropriate sequences of car and
pedestrian lights are generated and indicators are turned on and off. Then after the predefined delay
the process is ready to start the cycle again.

Implementations in TorX can be either in C with additional wrappers or can also be represented
in the same way as a specification. In the analysis the second possibility was selected and two faulty
models were implemented in LOTOS:

- Fault 1: the model allows for signals YELLOWRED and GREEN to be sent before NOWALK, so line 27 be-
comes WALK; (OFF; exit ||| YELLOWRED;GREEN; exit |||NOWALK;exit) >>, which enables
parallel execution of the three sequences,

- Fault 2: the model stops after the first request, so lines 28-30 are changed to a single action stop.

To estimated the scallability of TorXOne the above specification was composed in parallel, i.e., if
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Specification Number of transitions in LTS Number of steps
Fault 1 | Fault 2

1 traffic lights model 832 6 23

2 traffic lights models 317,960 41 43

3 traffic lights models 91,570,188 it 47

Table 4: The average number of steps to detect non-conformant implementations.

several traffic lights processes operate independently. The same was applied to the faulty implemen-
tations: for the model with Fault 1 only one composed process is faulty and for the model with Fault
2 all processes are faulty.

Outcome The result of running the tool is one of the verdicts: pass, fail or inconclusive. For
the specification of traffic lights TorX cannot return the pass verdict and cannot prove conformance,
because the specification has infinite runs. Therefore for non-trivial systems the tool is useful mostly
to detect non-conformance, in which case it also returns a trace to the erroneous state.

During the experiments the traffic lights specifications (for a single, 2 and 3 compositions) were
checked against two faulty models of implementations. Table 4 gathers the number of transitions of
the explicit labeled transition system for the given LOTOS specification and the average number of
steps required to discover the failure in 3 consecutive trial runs. Although the size of a specification
increases substantially, the tool could detect non-conformance using small number of steps in all cases.
The increase in the number of necessary steps was more considerable for the first type of fault, because
this implementation contains only one faulty process, therefore it takes more steps to find a fault. For
specifications with more than 3 processes the tool could not proceed after several steps.

3.2.2 TGV

TGV is a tool that generates test cases for the version of the ioco relation, but with the given test
purpose (Section 2.3.1). As opposed to TorX, test cases are generated offline and only after generation
is finished, they can be executed on an implementation. The tool was implemented as the part of the
CADP toolset and uses LOTOS as its primary specification language.

Settings Running TGV requires a specification, a test purpose and partition of channels into inputs
and outputs.

A specification is implemented in LOTOS and for this analysis it is the same as the one given in
Listing 1. The scalability analysis is based on the parallel composition, so there are several processes
for traffic lights that run in parallel.

A test purpose (see Definition 16) uses the Aldebaran format, in which transitions are explicitly
specified. In the analysis test purposes depicted in Figure 9 are used. All of them have the ACCEPT
and REFUSE transitions as a self loop for a state, which is an accepting or refusing state, respectively.
The test purposes describe the following situations:

- tp_1 (Figure 9(a)): this test purpose is used to generate test cases for the requests if there is no
car approaching, so there are transitions with APPROACH and LEAVE to the refusing state,

- tp2 (Figure 9(b)): this test purpose is similar to ¢p_1, but cars are approaching and there is no
LEAVE input, so lights should be changed after a predefined delay,

- tp_3 (Figure 9(c)): this test purpose is as tp_2, but cars are approaching and then leaving,

- tp_4 (Figure 9(d)) - this test purpose generates test cases that check whether indicators are turned
on before there is WALK signal and turned off before GREEN. To prune the state space no PRESS_A
and PRESS_B signals are allowed before the GREEN signal.
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Figure 9: Test purposes used in experiments with TGV.

Test purpose
tp-1 | tp2 | tp3 | tp4
1 traffic lights model 28 34 34 25
2 traffic lights model | 490 | 620 | 829 73

Specification

Table 5: Number of transitions in LTSs generated by TGV.

Outcome For a given specification and a test purpose, TGV generates an LTS, which is a test
case. Such an LTS indicates in each transition whether the signal is an input or output from the test
execution perspective. A test case is used to send inputs to an implementation and observe outputs
and if they are as expected then the test case passes. For instance, for the test purpose tp_1 the
generated LTS starts with output signals PRESS_A or PRESS_B and then a sequence of inputs to the test
case is expected. This sequence is a sequence of required signals for car and pedestrian lights.

The experiments with TGV were performed for the specification with a single traffic lights process
and for specifications with 2 parallel processes. The sizes of appropriate LTSs for the specifications
are the same as given in Table 4, and the sizes of the generated test cases, in terms of the number
of transitions in an LTS, are given in Table 5. For larger specifications, generated test cases are also
substantially larger, especially for the ¢tp_2 and ¢p_3. The growth is not that significant in the other
two purposes, because they are more restricted. For specifications with the more than 2 traffic lights
the tool was not able to generate test cases for test purposes tp_1, tp_2 and tp_3 in experiments that
were running for 12 hours.

3.2.3 Cover

Cover [105] is a tool developed for the UPPAAL, which is a model checker for communicating timed
automata. Cover tool therefore supports the same language. The algorithm implemented in Cover is
based on parallel execution of a specification and of properties, which are specified as observers. Cover
works offline and produces a set of traces that satisfies the properties for the given specification.

Settings Cover requires to run a specification in UPPAAL and properties specified as observers and
queries.

A specification in UPPAAL consists of timed automata that communicate through channels. In
the traffic light specification these automata are: Buttons, Indicators, CarSensor, CarLights,
PedestrianLights, Controller and Environment. This last automaton is required to continuously
provide input signals such as pressing button, approaching and leaving cars. The controller automaton
is shown in Figure 10. From its initial location after a press signal (input from either of buttons)
an appropriate sequence of car lights is generated and then a walk signal. Before lights are changed
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Figure 10: The Controller timed automaton for traffic light.

the indicators are turned on and if this happens the variable indicatorOn is updated. Similarly after
synchronization on the noWalk channel with the automaton PedestrianLights appropriate sequence
of car lights is generated and indicators are turned off. If there is a signal about approaching cars
(signal a) and a press signal then either the controller waits for the leaving signal (signal 1) or for a
timeout. The latter situation is modeled with a clock variable x, an invariant x <= 30 and a guard
x==30 on the timeout transition. The timed automata provide opportunity to specify timing require-
ments explicitly. In the traffic lights this feature is used in CarLights in which delays between changes
of lights are included and in PedestrianlLights to model delays between walk and noWalk.

As in the case of the previous tools the scalability analysis is based on multiplying the original
specification. This is possible because each automaton in UPPAAL is implemented as a template
instantiated to define a system. To specify systems that consist of multiple traffic lights, templates are
instantiated several times. Unfortunately in case of the presented traffic lights model these models are
not independent in the composite system. This results in interactions between automata, which might
not be possible in real world applications. Nevertheless, the composite systems are in this analysis just
the basis to observe the scalability of the tool.

Besides a specification Cover requires a definition of properties. Such a definition consists of an
observer and a query. The first one is a parameterized automaton with rules that serve as its transitions,
and which are fired while executing a UPPAAL system. A query uses an observer by providing possible
values for its parameters. In the traffic lights model the following observers are implemented:

- nodeObs: used to generate test cases that cover all location of an automaton and satisfy the
location coverage criterion,

- edgeObs: used to generate test cases that satisfy the edge coverage criterion,
- varObs: used for the definition-use coverage for the indicatorOn variable.

Queries connect the above observers and the specific UPPAAL system of timed automata. Therefore,
they were implemented separately for each specification, depending on how many traffic light models
it consisted of.

Outcome Given a UPPAAL model, an observer and a query, Cover generates a set of traces which
satisfy the coverage given in the observer. For example for a nodeObs and a traffic lights model there
are 2 traces. The first one starts in the initial state and then synchronizes on the pressA, approach, a,
press and leave channels. The second one goes through locations in the loop without the approach
channel. This trace also identifies delays if they are required. Unfortunately the tool generates the
same traces for location and edge coverage criteria, which is not explained in the documentation. In
turn the edge coverage criterion is not satisfied by the generated traces.

The experiments with Cover were performed for observers described above and for specifications
that consisted of 1 and 2 traffic lights models. For each of these cases and for each observer the queries
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Specification nodeObs edgeQbs varQObs

number of traces | total length | number of traces | total length | number of traces | total length
1 traffic lights 2 21 2 21 3 41
2 traffic lights 2 71 2 71 4 96

Table 6: Number and total length of traces generated by Cover.

were specified. Table 6 shows the number of generated traces as well as their total length in number of
transitions in each trace. It can be observed that the number of traces is similar for both specifications,
however the size of those traces increases. This is the result of the cyclic behavior of traffic lights,
which means that in each test case there are several cycles through the timed automaton to cover all
locations or edges. Any experiments with more than 2 traffic lights models finished with an exception
stating that there is not enough memory.

3.2.4 SpecExplorer

SpecExplorer [76] is a model-based test generation tool that uses object-oriented specifications in
Spec# or ASML#. These languages have their semantics based on ASMs (Defintion 13). A model
in Spec# or ASML# is a set of actions with enabling conditions, some of which are distinguished as
observable ones for input from the environment. The test case generation in SpecExplorer consists of
two phases. The first one is to explore the specification by executing all possible actions enabled in
each state. In this way the finite state representation is built. In the second phase the representation is
used to construct test cases which are sequences of actions. The tool provides several ways to restrict
the exploration and to specify search criteria of the constructed finite representation.

Settings In the analysis the Spec# language was chosen to implement the traffic lights system. This
specification consists of several classes that store states of buttons, indicators, a car sensor, car and
pedestrian lights. The class Controller defines actions possible in the model. An excerpt of this class
is given in Listing 2.

Listing 2: Excerpt from the Specification of the Controller class in Spec#

class Controller{

Indicators indicators;

PedestrianLights pLights;

Button buttonA, buttonB;

CarLights cLights;

CarSensor cs;

Delay delayWalk, delayGreen, delaylsCar;

[Action (Kind=ActionAttributeKind . Observable)]
void press_A ()

if (cLights.l = Lights.Green && !indicators.on) {
buttonA . pressed = true;
}
[Action]

SignalWalk walk ()
requires !pLights.walk;
requires cLights.] == Lights.Red;
requires indicators.on;

delayWalk . set ();
pLights.setWalk ();
return SignalWalk.Walk;

/*other actions : press_-B, approach, leave, indOff, indOn, timeout, toRed,
toYellowred, toGreenx/
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Kind of test suite
Specification Num.el'r of Transition cov. Random walk Shortest path
transitions
Number of | Length | Number of | Length Number of
segments segments segments
1 traffic lights model 421 425 536 123 200 72
2 traffic lights models 59,896 n/a n/a 9,125 200 7,209

Table 7: Number of segments and lengths of test suites generated by SpecExplorer.

The class has several attributes declared in lines 2-7. Two actions are shown: one is observable
and one is controllable. In the example, observable actions like press_A (lines 9-15), may be always
executed, but they update a state only if the specified conditions are satisfied. For example pressing
the button is considered only if lights for cars are green and indicators are turned off (line 12). The
second action (lines 16-25) is controllable and has several conditions to restrict its enabling. The
method walk requires (lines 18-20) that lights for cars are red, indicators are turned on and the lights
for pedestrians are not set to walk already. Executing this action starts the timer and changes the
state of pedestrian lights. Delays in this specification are also treated as actions that are enabled only
if appropriate timer is set. The complete specification contains implementations of other actions in
the Controller class, other classes and helper methods.

The model exploration in SpecExplorer can be restricted in different ways. One way is to limit
the possible values of parameters used in actions. The other way is to define filters on states so that
only states that satisfy the given conditions are explored. States can be also grouped based on a
user-defined expression, and only a limited number of representative states is further explored. The
exploration can be also bounded. In the traffic lights model only restricting the values of parameters
is introduced in an action that is responsible for creating the required number of Controller objects.

The explored specification is represented as a finite machine. The test generation from such a
machine can be performed offline and online. In the first mode the test cases can cover all transitions
in the machine, they can be generated by a random selection of the next transition up to a certain
depth bound or they can cover the shortest path to a specified state. All of these possibilities were used
during the experiments. The online testing uses a similar approach but actions are executed directly
on the implementation, therefore test cases are generated dynamically. This option was not used in
the experiments.

Outcome The model of the traffic lights system is first executed to build a finite machine. The
test suite generated from the machine contains test segments, which are sequences of actions and are
distinguished to account for different observable actions. The user can optionally provide actions bind-
ings, which indicate how actions are mapped to methods of an implementation provided in reference
libraries. With those bindings a test suite can run within SpecExplorer or can be exported as a C#
library or an executable program.

The experiments in SpecExplorer were performed for specifications with 1 and 2 traffic lights
models. Table 7 presents the sizes of machines (number of transitions) in each case and the sizes of
test suites for the transition coverage, random choice bounded to the length 200 and the shortest path
to the state in which all car traffic lights have the yellow red color.

The number of states in the finite machine for the model with 2 traffic lights is substantially larger
than that of the model with 1 traffic light. For the 2 traffic lights case the tool could not produce
test cases for the transition coverage after running it for 12 hours. For other test suites the number
of generated test segments was also much larger, even for bounded random walk, which indicates that
there are more possibilities based on observable actions. For models with a greater number of traffic
lights the tool could not explore them in experiments that lasted 24 hours.

3.3 Summary

In this part of the paper we provided an overview of tools used in the model-based test case generation
for reactive systems. Table 8 summarizes those tools based on the questions presented at the beginning
of this section.
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Aspect TorX TGV Cover SpecExplorer
1.Representation of LOTOS, Promela, LOTOS, UPPAAL timed Spec#, ASML#
specification Aldebaran, LTSA Aldebaran automata

2.0ther required Implementation (C Test purpose Observer, query Exploration
artifacts code, model as (Aldebaran), settings, kind of

specification),
partition of signals

partition of signals

test suite, bindings
of actions (for
exporting and
online)

3.Support for
offline/online testing

Online only

Offline only

Offline only

Offline and online

4.0utcome of running a

Verdict: fail, pass,

LTS representation

Set of traces (with

Test harness

tool inconclusive of a test case transitions and (offline), verdict
delays) (online)

5.Scalability of a tool up to 3 up to 2 up to 2 up to 2

(number of

compositions of a

traffic lights model that

a tool can work with)

6.Interfaces to other CADP, SPIN - for CADP - for UPPAAL - for Microsoft Visual

tools specifications specifications specifications Studio - for test

execution

7.Support for direct
execution on an
implementation

must implement
wrappers on C
code

must manually
translate LTSs

must manually
translate traces

must define
bindings between
actions and

methods (direct
execution
supported)

Table 8: Summary of comparative analysis of tools.

The analyzed tools implement several different types of model-based test case generation. The tools
vary with respect to the artifacts they require. For instance, TorX implements conformance based on
complete models, so it requires only models of specification and an implementation. The other tools
implement properties-based testing, therefore they require additional information about the selected
properties. TGV is based on the parallel composition of a specification and properties, so properties
are modeled in the similar way as specifications. UPPAAL Cover is used to generate test cases based
on coverage, which are provided as observers. Finally SpecExplorer generates test cases that are based
on restricted finite representation of a specification, so the properties are used to limit possible inputs,
that is, to define the environment of systems.

The important aspect of all formally grounded analysis methods is their scalability, which is based
on the size of the specification. In case of model-based test case generation this is also a problem.
Although the used common model is rather straightforward, tools were not able to generate test cases
for more than three compositions of such a system. TorX performed the best in terms of finding faults
in models of SUTSs, but it could not give confirmation that models are conformant. Other tools in
terms of scalability achieved weaker results.

Generated test cases are executed on an implementation of a system, i.e., they should be applicable
to the source code. In the set of the analyzed tools only TorX and SpecExplorer have such capabilities.
For TorX wrapper code, which translates actions and output/input from and to a C program, needs to
be implemented. In case of SpecExplorer more possibilities are offered and the tool requires only that
there is a DLL library, which provides a source to define bindings between its methods and actions
in the Spec# specification. If such bindings are provided, offline and online testing can be applied
directly on an implementation. TGV and Cover do not provide any support to execute test cases.
Therefore generated test cases must be manually translated to be used on an implementation.

4 Conclusions

This paper explores model-based test case generation for reactive systems. The paper contains two
parts: the review of research and the comparative analysis of selected tools in the above area. In the
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first part we presented works that propose methods to generate test cases that rely on the given model
of specification. The second part of the paper is the analysis of tools that implement model-based test
case generation.

Model-based testing uses a model of required behaviors (a specification) to detect conformance
with an implementation by executing on it a set of generated test cases (a test suite). Detection of
the conformance increases the confidence that the given implementation is correct. In the first part we
presented several variations of this idea with emphasis on the test case generation part. They differ in
the following aspects:

1. Definition of conformance. The most common way is to consider all behaviors of a specification
and to require that a conformant implementation has the same ones. However such a defini-
tion may be too restrictive and may lead to excessively large test suites. Therefore there are
approaches that limit the conformance to consider only some specific parts of the specification.
This limitation might be based on the structure (coverage criteria) or on some other properties
of specifications as well as the environment in which the system works.

2. A modeling language used to express a specification. There are many formally defined languages
that can represent a specification of a reactive system. Some of them, like FSMs or LTSs, are
explicit and they specify all possible states of a model. However there are many others that
provide more succinct representations, for example timed automata, Statecharts and ASMs. The
methods to generate test cases from more comprehensive models usually adapt the methods
proposed for more basic formalisms.

3. Underlying methods. Some of the presented algorithms were specifically designed to generate
test cases, such as the W-method. However there are many works that reuse some other analysis
methods for models. For instance search methods in graph-like structures with breadth- or
depth-first search strategies. Another common underlying technique is model checking, which
use counterexamples produced by model checkers as test cases.

The definition of conformance was used as the basic criterion to group works in the review part of this
paper.

As presented in the review and in the analysis of tools, the main gain of using the model-based
testing approach is automation of the testing process. This is especially evident for the methods for
conformance based on complete models, because they analyze the whole specification. For methods
that adapt a properties-based view of conformance, it is still required to manually define coverage
criteria, test purposes or scenarios. The choice of the most useful ones in some cases is not trivial.
Nevertheless, the task of specifying such properties is obviously less complex than defining the whole
test suite.

The main flaw of the presented methods is their limited scalability. The analysis of tools showed
that the tools where not able to generate test cases for a system consisting of more than 3 straight-
forward entities. The scalability issues are common to all methods based on any kind of a state space
exploration. The test case generation is one of them and must in one way or another deal with all
states that a specification may be in, or that properties require it to be in. This defines a tradeoft:
either smaller part of specifications are tested and test suites are less complex or test suites are more
complex, but larger parts of a specification are covered, so testing is more comprehensive. Model-based
testing uses standard techniques to overcome the scalability problems such as: symbolic analysis (to
avoid analysis of all values of variables) or online versions of algorithms (to avoid excessive storage).

Another limitation of the presented methods is that they are usually dedicated to only one modeling
language. Therefore they assume that the whole system is specified using one formalism, for example
with FSMs or Statecharts. Such an assumption holds for many software projects, but there are also
projects that have heterogeneous specifications. This means that different parts of the system are
modeled with different formalisms. The only way to reuse the methods presented in this paper is to
transform such models into a selected common language. Such a solution is not appropriate for many
large systems, so the presented techniques are not directly applicable to heterogeneous models.

Even with the above drawbacks the model-based testing approach is very attractive, especially
with the increasing interest in the Model Driven Engineering [65] paradigm. This concept proposes
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to use models during the development at several levels of abstraction. The more abstract models are
typically independent of any implementation details. They are transformed or refined and incorporate
the platform dependent knowledge, so they become the basis of implementation. In this approach
models are actively maintained, so they can also be used for the test case generation. Another benefit
is that the generation can be performed at several stages of the development and therefore may be
even more effective. In such settings model-based testing methods seem very suitable.
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