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Abstract— Numerous approaches to storing XML data in relational 
databases have been proposed that take advantage of the maturity of 
relational database management systems. Index structures to 
support these approaches have been developed to speed-up XML 
query processing.  Typical drawbacks of these approaches include 
the lack of support for twig queries and the large storage 
requirements for the index structures.  In this report we propose a 
novel index structure that is compact and effectively supports 
processing of XML twig queries. Experimental results show that our 
approach achieves lower response time than similar approaches 
while using less space to store the XML data.   
 

I. INTRODUCTION 

Due to its flexibility, XML is becoming the standard for 
exchanging data over the World Wide Web. XML data can be 
stored and queried by using either native XML repositories 
[2,7,18,20,22,31], or relational database management systems 
[3,6,10,19,23,24,25,26,29,30]. Native approaches for storing 
and querying XML data are still relatively new. On the other 
hand, relational database management systems are well 
founded, tuned, and standardized by several decades of work. 
In addition, huge volumes of data are already stored in 
relational database management systems. Motivated by these 
facts, researchers and vendors (such as IBM®, Oracle®, 
Sybase®, and Microsoft®) are working on ways to improve the 
capabilities of RDBMS to store and retrieve XML 
[1,5,6,10,19,23,24,25,26,29,30]. 

Elements in XML data are linked through a hierarchical 
structure. Any two elements are linked through their common 
ancestor. Therefore, indexing common ancestors can facilitate 
the evaluation of twig queries. For example, consider the 
XPath query below:  

  

Query 1: //student [/ fname =‘Sue’ and  lname =‘Jones’ ] / program 
 
This query returns the program of the student Sue Jones. Its 

pattern can be represented as a node-labeled tree as shown in 
Figure 1. A single line represents a parent-child relation and a 
double line represents an ancestor-descendent relation. 

Figure 2 contains an XML document, which is represented 
as the hierarchical node-labeled tree in Figure 3. The node 
labels are shown inside the nodes of Figure 3. Query 1 can be 
evaluated over the data in Figure 3 as follows. We first 
evaluate the branch with fname=‘Sue’. This part returns the 

node <4.2.3> and the branching node <3.1.3>, assuming that 
all branching nodes for each node in the data-tree are recorded 
in the database. We call the branch that is evaluated first the 
base branch, and the branch(es) evaluated afterward the 
secondary branch(es).   

 

student

“Sue”?

fname

“Jones”

lnameprogram

 
Fig. 1 Query 1 hierarchical pattern 

 
Now to solve the second branch lname=‘Jones’, we have to 

search for the lname element that has a value “Jones” and 
whose parent node label is <3.1.3>. The only node that 
matches these criteria is node <4.3.3>. Note that the other two 
nodes that have the same last name Jones, namely, nodes 
<4.3.1> and <4.3.2>, are excluded early in the search because 
their parent node is not <3.1.3>. Finally, we search for branch 
program relative to its parent <3.1.3>. So the value “CS” is 
returned as the final answer.  

 
 

<course number="251">
<name>XML</name>
<students>

<student>
<program>Math</program>
<fname>Omar</fname>
<lname>Jones</lname>

</student>
<student>

<program>Physics</program>
<fname>Ayah</fname>
<lname>Jones</lname>

</student>
<student>

<program>CS</program>
<fname>Sue</fname>
<lname>Jones</lname>

</student>
</students>
<instructor>Beth</instructor>

</course>  
 

Fig. 2 An XML document 
 

From the above example, we can see that twig queries can be 
evaluated by using knowledge of their branching nodes. We 
propose an approach that utilizes this idea to evaluate twig 
queries efficiently by building a Universal Index Structure for 
XML databases (UISX). This index structure guarantees to 
find a complete and precise match for each node of any 
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arbitrary base branch by executing a single index lookup. 
That is, all matching tuples are retrieved without any false 
positives.  
 

2.1.1

3.1.1 3.1.2 3.1.3

4.2.2 4.3.2

2.3.1

1.1.1
course

student

“251”
student

number

“Beth”

student

“Sue”

fname

“Ayah”

lname

“Jones”

2.4.1instructor2.2.1

“XML”

name

“Physics” “CS”

4.2.1 4.3.1
fname lname

“Jones”

4.2.3 4.3.3
fname

“Jones”

lname

students

4.1.1
program

4.1.2

program

4.1.3

program

“Omar”“Math”

4.2.2 4.3.2 4.1.3 4.2.3 4.3.34.1.24.3.14.2.14.1.1

2.4.12.2.12.1.1

 
 

Fig. 3 The data-tree representation of the XML document in Figure 2 
  
 

 
Finding matching elements of a twig is a core operation in 

XML query processing [3]. Much research has been done to 
match elements at different branches of twig queries 
[3,4,8,12,14]. Generally, these approaches suffer from either 
producing structures that are physically large to support twig 
queries (Queries with multiple paths) efficiently, or not being 
able to support twig queries as efficiently as they support 
single path queries as a consequence of reducing the size. A 
good study of the trade-off between index space and 
evaluation efficiency is given by Chen et al. [3]. They 
implement two index structures: ROOTPATHS and 
DATAPATHS. ROOTPATHS has small size, but it is not as 
efficient as DATAPATHS, whose size is much larger. The 
reason behind the DATAPATHS superior performance is the 
fact that it indexes all possible subpaths of root-to-leaf paths, 
which are used to match any two arbitrary branches.  

Our proposed approach has a compact size, yet, it supports 
efficient evaluation of twig queries.  It uses a RDBMS to store 
and query XML data. We use path summaries based on 
DataGuides [8], to facilitate query evaluation. The path 
summary, which is modeled as a simple table in a relational 
database, reduces the number of matches required to evaluate 
a query by preserving a path summary of the original XML 
data structure before shredding. Path summaries reduce the 
size of the stored XML databases. This reduction in size is 
achieved by: (1) eliminating redundant data from the database, 
such as the path of an element, which can be regenerated 
when needed from the summary; and (2) by using the 
summary to regenerate the internal nodes of the XML data-
tree along with their subtrees. Therefore, internal nodes do not 
need to be shredded and stored in relational tables. In our 
approach, only the leaf nodes are shredded and stored in 
relational tables. The root-paths are recorded for all leaf nodes, 
where the information of the internal nodes is encoded. Zhang 
et al. [30] observed that RDBMSs do not support the 
inequality-joins efficiently, while they support the equality-
joins efficiently. Our XML-relational approach evaluates 

XML queries by using equijoins, while most XML-relational 
approaches use inequality-joins [9,30].  

The UISX index structure has been implemented 
successfully using the DB2® DBMS [11], and the 
experimental results show that it performs well in comparison 
to existing state of the art approaches in terms of size and 
response time. The contributions of this report are as follows: 

• A novel index structure for storing and querying XML 
data, where all nodes of XML data-trees are indexed in 
relation to their branching nodes. 

• A unique way of storing and using XML path 
summaries to facilitate query processing. 

• An efficient storage method. 
 

The rest of this report is organized as follows. Section 2 
discusses related work. Section 3 introduces the UISX 
approach, explains the XML data and path summary models 
used to build UISX, introduces XPath query expressions, 
explains how the proposed index structure optimizes the use 
of the space to store XML data, and illustrates how queries are 
evaluated by using this index structure. Section 4 presents an 
experimental evaluation of the UISX approach in comparison 
to existing approaches. Finally, Section 5 presents the 
conclusions and outlines future work.   

  
 

II. RELATED  WORK 

RDBMSs are known for their strength in data storage and 
manipulation, query processing and optimization, concurrency 
control, recovery, and security. Consequently, many research 
projects have proposed mapping XML data to RDBMSs. 
These proposals can be divided into two groups: mappings 
that are based on the schemas of XML data, which are 
referred to as structure-mappings; and mappings that are not 
based on XML schemas, which are referred to as model-
mappings. In structure-mapping, XML data is mapped to 
different relational schemas depending on the existing XML 
schemas. In model-mapping, the XML data is mapped to the 
same relational schema regardless of the structure of the 
mapped data, whether an XML schema exists or not. 
Shanmugasundaram et al. [24] and Florescu et al. [6] 
proposed two of the early approaches for mapping XML data. 
The first approach is based on structure-mapping, and the 
latter is based on model-mapping. Our approach is based on 
model-mapping. 

There are three types of model-mapping approaches: edge, 
node, and path approaches. The edge model-mapping 
approach proposed by Florescu and Kossmann [6] is based on 
the edge-labeled data model. It maps all edges in an XML 
data-tree into a single relational table that has the scheme 
(Source,Target,Tag,Flag,Value). Each edge represents an 
element that has a Source and Target identification. An XPath 
query is evaluated by matching the Target id of one element 
(edge) with the Source id of the following element in the path 
of a query starting from one end and finishing at the other end. 
The Flag represents the type of the node (e.g. int, string). The 
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edge approach requires a minimum of n-1 join operations to 
evaluate a query with n elements for both single path and twig 
path queries. In addition, it does not efficiently evaluate 
queries with the ancestor-descendent “//” axis.  

Zhang et al. [30] proposed a model-mapping approach 
based on the node-labeled data model. They use intervals to 
label the nodes and map XML tree elements to a relational 
table that has the scheme (Start,End,Tag,Level,Value). Two 
elements can be joined together if the interval (Start,End) of 
one element contains the other element’s interval. Unlike the 
edge approach, node model-mapping can efficiently evaluate 
queries with the ancestor-descendent “//” axis, but it still 
requires n-1 joins to evaluate a single path or a twig path 
query with n elements.   

Yoshikawa et al. [29] proposed a model-mapping approach 
that is based on forward-paths of elements in an XML data-
tree. A forward-path is a path that starts from an element in 
the higher part of an XML data-tree (e.g. the root element) 
and ends at an element at the lower part (e.g. the mapped 
element). In this approach, elements are shredded into a 
relational table with the scheme (Path,Start,End,Value). Each 
element is identified by its root-path (which is a forward-path). 
Single path queries are evaluated with one match. Twig 
queries, however, are evaluated by decomposing the twig into 
multiple single paths. Each path is evaluated separately and 
then joined together to obtain the final answer. The number of 
joins required to evaluate a twig query is usually equal to the 
number of branches in the query. The forward-paths approach 
reduces the number of joins required to evaluate a query, 
however, it may produce incorrect answers when recursion 
exists in XML data [9]. To overcome this problem Pal et al. 
[19] proposed a similar approach using reversed-paths instead 
of forward-paths. A reversed path is a path that starts from an 
element at a lower part in an XML data-tree and ends at an 
element in a higher part. The reversed-paths approach not only 
eliminates the possibility of producing false results, but also 
improves the performance of query evaluation. The reversed-
paths approach has been used by IBM® System RX, 
Microsoft® SQL Server 2005, and Oracle® DB [9]. 

Chen et al. [3] used a reversed-path approach where each 
node in an XML data-tree is given a global id, and then 
shredded into relational tuples with the scheme (HeadId, 
SchemaPath, LeafValue, IdList). The HeadId is the id of the 
node at which a reversed-paths ends, SchemaPath represents 
the reversed-paths of XML data nodes, LeafValue represents 
the values of the leaf nodes in the path of the mapped 
elements, and IdList contains lists of the global ids of the 
nodes that constitute a path from the HeadId to the designated 
mapped nodes. Two index structures were proposed. The first 
was the ROOTPATHS index, which indexed only the prefixes 
of the root-to-leaf paths. The second was the DATAPATHS 
index, which indexed all subpaths of root-to-leaf paths, 
including the root-to-leaf paths. The key idea of this approach 
is to create an index for all branching nodes. To process a twig 
query, in the case of ROOTPATHS index, all branches are 
evaluated and the returned IdLists are then merged or hash-
joined to arrive at the final solution. In the case of 

DATAPATHS index, a twig query is processed by evaluating 
the base branch first to get the ids of the branching nodes 
which are available in the IdList. Then a search is carried out 
for the secondary paths that are rooted at the identified 
branching nodes and that have the exact reversed-path given 
in the query. The reversed-paths that are used to evaluate a 
twig query in DATAPATHS index start from the leaf node of 
the query and end at the branching nodes. The DATAPATHS 
index reduces access to the index to a single index lookup in 
order to find a match for fully specified, single path query 
without any recursion. Consequently, solving twig queries, 
which can be divided into multiple single path queries, 
requires a relatively small number of index lookups.  

Chen’s  et al [3] index structure does not have a path 
summary table like our approach. Their approach, however, 
has a dictionary to encode schema paths by using special 
characters to designate elements and attributes instead of 
using the whole names. This dictionary has to be accessed at 
an early stage of an XML query evaluation process. Our 
approach, in contrast, uses the path summary table, which has 
approximately the same size as the dictionary table. The key 
idea of both approaches is to index all leaf nodes in relation to 
the branching nodes, and so minimize the number of index 
accesses required to evaluate a twig query.  

 
 

III. UNIVERSAL INDEX STRUCTURE FOR XML DATA 

Based on the observation that branching nodes are the key 
element in solving twig queries, we propose the UISX 
approach to efficiently match and join any two arbitrary nodes 
that share the same branching node. In this approach the base 
branch is evaluated first. Then, for each returned base branch 
node, the secondary branches are examined, and the matching 
nodes of each branch are located through their common 
ancestor node by using only one index lookup.   

A. XML Data and Path Summary Models 

In this subsection we describe our basic data model, and 
path summary. Then in the following subsections we discuss 
the query language, the size optimization, and the query 
processor of the UISX.   

Definition 1. We model XML documents as trees. An XML 
tree is a directed ordered graph G=( R,VR,VL,E,tagg,labelg,T ). 
R is the root node.  VR  is the set of internal nodes. VL is the set 
of leaf nodes. VL=(VE UVT), that is, VL consists of the empty 
leaf node VE (for empty elements), and the set of value (text) 
leaf nodes VT. Nodes in VR and VL are tagged through the tagg 
function ( The extra g stands for G ). VR and VE nodes are 
tagged according to the tag of the elements or attributes they 
represent. Nodes in VT have the same tag as their VR parent 
nodes. Internal nodes VR have to have one or more child nodes, 
which could be VR and/or VL node(s). E is a set of child-parent 
edges, E= {e1, e2, … ei} that connects all nodes of VR and VL 
to form a tree. The total number of edges equal to |E|, where 
|E|=|VR| + |VL |, |VR| is the total number of internal nodes, and 
|VL | is the total number of leaf nodes in the tree. Each and 
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every node in VR and VL  is associated with only one parent 
through an edge, since each node in a tree structure can have 
only one parent, except R, which does not have a parent1.  

Each node in VR and VL are assigned a unique label through 
the labelg function, which is determined by the LLS labeling 
scheme [16] as follows. Each node v, such that v∈ (VR UVE) is 
assigned a unique vector label <d.p.s>, where d and p are 
taken from the label of the o node in the path summary I to 
which v node belongs. That is, v node is an instance of an o 
node (instances and path summaries are defined shortly). s is 
the instance serial number of node o. Nodes in VT  are labeled 
according to the labels of their parent VR  nodes. The set of 
serial paths is defined by T, where T={r1,r2,…,rn} and n is the 
number of leaf nodes |VL|. We define serial path r in 
Definition 3 below. In our model, an edge e of a node v, where 
e∈ E and v∈ V, is equal to the serial number s of the parent 
node p, denoted e(v)=s(p). The data-tree representation G of 
the data in Figure 2 is illustrated in Figure 3, which is used in 
the examples throughout this report, unless we specify 
otherwise.   

Definition 2. A tag path t for a node v is a sequence of tags , 
l1.l2…li (i ≥ 1), of the nodes on the path from the root node to 
v node.  For example, the tag path of node <4.1.2> is 
course.students.student.program. 

Definition 3. A serial path r for a node v is a sequence of 
serial numbers s1.s2…si (i ≥ 1), of the nodes on the path from 
the root node to v node. For example, the serial path of node 
<4.1.2> in Figure 3 is (1.1.2.2). Note that the d values (the 
levels) of the components of a serial path r of a node v, where 
r =(s1.s2…si), is d=(1,2,…,i), respectively, where i is the level 
of v. For example, the levels of the component of the serial 
path (1.1.2.2) are (1,2,3,and 4), respectively.  

Definition 4. A node path n for a node v is a sequence of 
alternating tags and serial numbers l1.s1.l2.s2 … li.si (i ≥ 1), of 
the nodes on the path from the root node to v node. For 
example, the node path of node <4.1.2> in Figure 3 is 
course.1.students.1.student.2.program.2. The tag path t of a 
node path n, denoted t(n), is the sequence of tags that exist in 
n. For example, t(n) of course.1.students.1.student.2.program.2 
is course.students.student.program. Similarly, the serial path r 
of node path n, denoted r(n), is the sequence of serial numbers 
that exist in n. For example, r(n) of 
course.1.students.1.student.2.program.2 is (1.1.2.2).  

Definition 5. A node with a node path n is an instance of a 
tag path t if the sequence of the tag path of n is identical to the 
sequence of tag path t, that is, if t(n)=t. For example, the 
nodes <4.1.1> and <4.1.2> are instances of the tag path 
course.students.student.program. 

Definition 6. Extension of a tag path t, denoted ext(t), is a set 
of nodes whose node paths are instances of the tag path t, that 
is, ext(t)={n : t(n)=t }. For example, the extension of tag path 
course.students.student.program includes nodes <4.1.1>, 
<4.1.2>, and <4.1.3>. 

                                                 
1 REF/IDREF are encoded as values in XML, and can be related 
through their values, hence we do not consider them as edges. 

Definition 7. A path summary is a directed ordered tree 
I=(O,M,tagi,labeli,C). O is the set of summary nodes. 
O=(R U OR U OL), where R is the same as the data graph root 
element since a tree can have only one root element, OR is the 
set of internal nodes, and OL is the set of leaf nodes. M is a set 
of child-parent edges that connects O nodes to form a tree. 
|M|=|O|-1, where |M| is the total number of edges in the 
summary tree and |O| is the total number of nodes in the 
summary tree. Nodes in O are tagged through the tagi 
function. We refer to the tags of O nodes as the tag name of 
the element or attribute they extend. All nodes in the path 
summary are assigned a unique label through the labeli 
function, which is determined by the LLS labeling scheme [16] 
as follows. Each node’s label consists of two parts vector 
<d.p>, where d is the level (depth) of the node, and p is the 
number of this node across d level. An edge m of a node o, 
where m ∈ M and o∈ O, is equal to the p value of the parent 
node x, denoted m(o)=p(x). C is the set of counts of instances 
for each node in O, that is, C={c1,c2, … , ci : i =|O|}. For each 
node oj, and count cj, where oj∈ O and cj∈ C, cj is the count of 
instances of the tag path tj of node oj, where O={o1,o2, … , oi : 
i =|O|}, t={t1,t2,…,ti : i=|O|}, and node oj has tag path tj. If we 
assume that in O there is a node oj whose count of instances is 
cj, and cj value is z, then the s values of the instances of oj 
would be 1 for the first instance, 2 for the second instance, … , 
and z for the last instance. Figure 4 contains an example of a 
path summary I of the XML data-tree G in Figure 3. Note that 
VT  nodes in G are represented by their parent nodes. 

In UISX, an XML data-tree G can be summarized by a path 
summary I such that the tag path t of  every node path n of G 
has exactly one tag path t in I, and every tag path t of I is a tag 
path of a node path n of G. That is, every distinct path in the 
source data appears only once in the path summary, and all the 
paths in the summary have at least one matching path in the 
original source data. Basically, G nodes are partitioned into 
equivalence classes in I where the nodes of a class have the 
same root path [8,17]. 

 

2.22.1

3.1

4.2 4.3

2.42.3

1.1
course

studentsnumber name

student

instructor

lnamefname

Level

1

2

3

4 4.1
program

 
 

Fig. 4 The path summary of the data in Figures 2 and 3 
 
 

 

For each node oi in I that has label <di.pi>, there are 
instances in G that have labels in the form <dg.pg.sg>, such 
that di=dg, pi=pg, and sg={1,2,…,n} where n equal to the count 
of instances of oi, that is, n=Ci. Note that the labels of the 
summary nodes (e.g. nodes of Figure 4) are created first, and 
then used to create the labels for the data-tree nodes (e.g. 
nodes of Figure 3). For example, nodes <3.1.1>, <3.1.2>, and 
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<3.1.3> in G are extensions of the same node in the path 
summary I, namely, node <3.1>.  

The path summary in Figure 4 is mapped to the relational 
table PathSummary as shown in Table 1. The leaf nodes data 
of Figure 3 is mapped to the relational table LeafNodes as 
shown in Table 2.  

In Table 1, the Tag field contains the tags of the elements 
of the nodes in the summary, which is assigned through the 
tagi function of I. The Level and PerLv fields represent the d 
and the p parts of the path summary nodes labels as indicated 
in Figure 4, respectively. These labels are allocated through 
the labeli function of I. The Parent field holds the label of the 
parent nodes, which are the p value of the parent node. The 
Level (d) value of the parent node is equal to the current node 
Level value minus one, so we do not need to list the parent 
node level in the PathSummary table. Note that the Parent 
value of the root element is zero since it does not have a 
parent. The Type represents the type of node (e.g. element or 
attribute). The Count value (C ) is the number of nodes in the 
original XML data that belong to the same summary group. It 
is used mainly to reconstruct the subtrees that are rooted at the 
internal nodes (see Section C). 

 
TABLE I. THE PATHSUMMARY TABLE 

Tag Level PerLv Parent Type Count
course 1 1 0 E 1
number 2 1 1 A 1
name 2 2 1 E 1
stduents 2 3 1 E 1
instructor 2 4 1 E 1
student 3 1 3 E 3
program 4 1 1 E 3
fname 4 2 1 E 3
lname 4 3 1 E 3

 
 

 
Table 2 shows the LeafNodes table, which is populated 

with the data of all leaf nodes VL in the XML tree. In this table 
the Level, PerLv, and No values together form the label of the 
leaf nodes d, p, and s, respectively, as shown in the data-tree 
in Figure 3. These labels are allocated through the labelg 
function of G. The Value  field contains the values of the node 
for VT nodes, and null for VE nodes. The Lev1,…, Lev4 fields 
are explained below. 

 
TABLE II. THE LEAFNODES TABLE 

Level PerLv No Value Lev 1 Lev 2 Lev 3 Lev4
2 1 1 251 1 1 0 0
2 2 1 XML 1 1 0 0
2 4 1 Beth 1 1 0 0
4 1 1 Math 1 1 1 1
4 1 2 Physics 1 1 2 2
4 1 3 CS 1 1 3 3
4 2 1 Omar 1 1 1 1
4 2 2 Ayah 1 1 2 2
4 2 3 Sue 1 1 3 3
4 3 1 Jones 1 1 1 1
4 3 2 Jones 1 1 2 2
4 3 3 Jones 1 1 3 3

 
 

 
Branching Indices: In order to achieve high performance of 

the UISX index structure, and since s value uniquely identifies 
a node among other nodes of the same class, we split the serial 

path and save each part in a different field (see Table 2). Each 
field is titled after the level of the s values it contains. That is, 
each field is titled Lev(i), where i ∈ [1,…,n], and n is the 
number of levels in G. Each field is used for indexing 
branching nodes located at the corresponding level. We define 
H as a set of branching indices that we create to index si 
values, where H={H1,H2,…,Hn}, i ∈ [1,…,n], and n is the 
number of levels in G. Each index for each level is based on 
the concatenation of (si,d,p) values (see Table 2). All s values 
of V nodes in G are covered by the H set. 

The index structure of UISX has mainly three components:  
path summary table, leaf nodes table, and branching indices. 
The tables’ key fields are underlined in Tables 1 and 2. The 
key field of the PathSummary table is (Tag), and the key 
fields of LeafNodes table are (Level,PerLv,Value). The two 
tables are related through the (Level,PerLv) fields. The 
branching indices are the H set of indexes, which are used to 
facilitate the link between two arbitrary nodes in a twig query. 
Our index structure covers nodes that belong to the same 
XML document; the extension to multiple documents can be 
implemented by adding the document id to the labels of I and 
G nodes. 

 
 

B. X-Path Query Expressions 

In what follows we formally define X-Path query 
expressions as they are used in the UISX. 

Definition 8. A query Q is covered by a summary I if and 
only if : (1) the nodes of Q exist in I, and (2) the Q nodes exist 
in I according the structure specified by Q.  

For example, the query “/instructor[/name= 
‘XML’]/course” is not covered by the path summary I in 
Figure 4. Although the first condition is met, but not the 
second. If we switch the positions of  course and instructor 
tags “/course[/name= ‘XML’]/instructor,” then the mapping of 
Q nodes to I nodes succeed and I covers Q.   

Definition  9. To evaluate a twig query Q over a data graph 
G by using I, we say that the matching of an instance of one 
group with the instances of another group is complete if the 
returned nodes contain all the relevant nodes. 

Definition  10. To evaluate a twig query Q over a data graph 
G by using I, we say that the matching of an instance of one 
group with the instances of another group is precise if the 
returned nodes do not contain any irrelevant node. 

The pattern of single path query expressions can be 
represented as t1.rel.t2 … rel.tx, where (t1,t2,…,tx) are tags of the 
query and rel represent the relationship between the adjacent tags. 
This may be a parent-child relation “/” or  ancestor-descendent 
relation “//.”  We refer to single path query expressions that have 
only the “/” axis as single simple path queries, and to single path 
query expressions that have one or more “//” axes as single 
complex path queries. Both types are evaluated by finding the 
extension of tx, that is, ext(tx). In the relational tables in UISX, the 
mapped data are sorted by <d.p> keys, and hence one index look 
up is sufficient to evaluate these types of queries by probing the 
index for tuples that match <y.x>, where <y.x> is the label of tx, 
and d=y and p=x. Twig queries patterns can be represented as: 

 



Page 7 of 13 
 

t1.rel.t2…rel.tb[rel.t1.rel.t2…tf1][rel.t1.rel.t2…tf2]…rel.t1.rel.t2…tfi 
 

This twig pattern expression consists of multiple single 
path expressions. The expressions inside the square brackets 
and the expression that follows at the end are the branches of 
the twig. The branching element tags are denoted by tb. (tf1, 
tf2,…,tfi) are the leaf elements’ tags of the first branch, second 
branch, and i th  branch, respectively, where i is the number of 
branches in the twig. Given an XML data-tree G with a path 
summary I, in general, with UISX we evaluate a twig query Q 
against G in two steps. First, we map nodes of Q to nodes of I. 
If the mapping succeeds (i.e. Q is covered by I), we move to 
the next step in the evaluation process. In the second step we 
use only the extension of tags tb and (tf1,tf2,…,tfi) to evaluate 
the query. Since our index structure is based on tree data and 
uses a path summary, it always returns complete and precise 
query results [9,14,17]. Before we present an example, we 
need to introduce the following theorem.  

 
Theorem 1.  In UISX, one index lookup into a branching 

index H is sufficient to join a pre-defined node of one group 
of the leaf nodes with all matching nodes in another group of 
leaf nodes of a twig query.   

Proof. First consider the following twig query with two 
branches:  

Q : t1.rel.t2…rel.tb[rel.t1.rel.t2… tf1][rel.t1.rel.t2…tf2] 
In this query, we assume that the level of the branching 

node tb is Lb, and Q has two leafs: tf1 and tf2. The extension of 
tf1 is a set of nodes Vf1, that is, ext(tf1)=Vf1={vf11,vf12,…,vf1n}, 
and similarly ext(tf2)=Vf2={vf21,vf22,…,vf2n}, where n is the 
number of instances in each set. According to query Q, we 
want to prove that one index lookup into HLb is sufficient to 
join a single node in Vf1 node-set with all matching nodes in 
Vf2 node-set.      

From definition 1, the labels of Vf j sets, where j∈  [1,2], 
consist of the three parts <d.p.s> . The first two parts (d and p) 
are the same for all nodes in each set. The third part s is the 
part that uniquely distinguishes each node among all nodes of 
the same class or group. Each node in Vf j sets has a serial path 
r (definition 3), which consist of the s part of the labels of the 
nodes in the path from the root node to the designated node. 
Since s is unique for each instance of a class, then r can be 
used to uniquely identify the labels of all nodes in the serial 
path of a node. Assume that the value of s of the branching 
node tb that is located at level Lb is sx. The two branches’ 
nodes that share tb node in their serial paths are matched if the 
value of each serial path r at tb node is equal to sx value. This 
way, the matching process will return either an empty set if 
there is no match, or it will return the exact and precise 
matches since all nodes that share this common ancestor tb 
node have their r values at tb set to sx. Consequently, there is 
no chance for any false positives to be retrieved. Since all s 
values of V nodes in G are covered by the H set of indexes 
(see branching indices), and HLb index is based on s values of 
Lev(Lb) field, then by using an index structure that contain 
HLb, it would require only one index lookup to find a match 
for any arbitrary node in one branch with one or more nodes 
in any other branch of a twig provided that they share a 
joining node. This matching process can be extended to solve 

multiple branches queries with n branches by evaluating two 
branches at a time until all branches are evaluated as 
illustrated in Algorithm 2 (to be discussed shortly) � 

 
Example 1. Consider the following twig Query 2 over the 

data-tree G shown in Figure 3, which asks for the list of 
students’ first name and the programs in which they are 
enrolled:  

Query 2: /course//student [/ program]/fname  
 

student

fnameprogram

course

 
 

Fig 5. The node-labelled tree representation of Query 2. 
 
 

This query node-labelled tree representation is shown in 
Figure 5. It is easy to see that I covers Q because the mapping 
of this Q query over I path summary of G data-tree can be 
carried out successfully. In this case student node is the 
branching node tb, program node is the first leaf node tf 1, and 
fname node is the second leaf node tf 2.  These three Q nodes 
map to I nodes <3.1>,<4.1>,and <4.2>, respectively. Note 
that Lb=3. We next retrieve ext(tf 1), the extension of tf 1, which 
returns the tuples: 

 
Level PerLv No Value Lev 1 Lev 2 Lev 3 Lev4

4 1 1 Math 1 1 1 1 
4 1 2 Physics 1 1 2 2 
4 1 3 CS 1 1 3 3 

 
To find a match for the first tuple above, and since Lb=3, 

we use the index structure to probe the H3 branch index, 
which is based on columns (Lev3,Level,PerLv), to retrieve all 
nodes that match (1,4,2). Similarly, the second and the third 
tuples are matched by probing the same H3 branch index for 
nodes that match (2,4,2) and (3,4,2), respectively, and hence 
the following tuples below are returned. If there are multiple 
nodes that match a search criterion, we retrieve them by 
invoking only one index lookup. 

 
Program Fname 

    Math Omar 
Physics Ayah 

   CS      Sue 
 
 

C. Size Optimization  

The UISX only maps leaf nodes because internal nodes can 
be regenerated using the PathSummary and the LeafNodes 
tables. 

Claim 1.  Suppose I is a path summary for an XML data-
tree G, VL is the set of leaf nodes of G, and T is the set of 
serial paths of VL. Then we can use I and T to reconstruct the 
subtree that is rooted at any internal node v, where v∈VR.     

Next, we present an algorithm (Algorithm 1) that we 
developed to reconstruct a subtree that is rooted at an internal 
node v where v∈VR. We design this algorithm as a proof for 
claim 1 above, which establishes that a subtree rooted at any 
internal node can be reconstructed. 
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Algorithm 1 : Publish an internal node

Input : An internal node v .
Output : Subtree rooted at v .
1 Identify by using I: 

a- The branching node v according to a given path,
b- structure of the subtree S that is rooted at v , and
c- leaf nodes L of S, and sort them by Level and PerLev .
CheckedNodes = empty set { }

2 For each node l in L
Begin
For i = 1 to l c // l c is the count of node l

Begin
While(CurrentNode.Level ≤ v.Level and CurrentNode Not in CheckedNodes)

Add CurrentNode (ChildNode,ParentNode ) to CheckedNodes
CurrentNode=CurrentNode.Parent

End
End

3 Sort nodes in CheckedNodes based on <d,p,s>. 
For each root node v in CheckedNodes

Begin
Subtree = empty tree { }
IdentifyChildren(v)

Begin
Add v to Subtree
ChildrenSet ={v.child}
For each child y in ChildrenSet

Begin
if  y Is Not in LeafNode

IdentifyChildren(y)
else

Add v to Subtree
End

End
End

Return the subtree rooted at v node .

 
 
Step 1 of algorithm 1 identifies the internal node v that needs 
to be published, the structure of the subtree S rooted at v, and 
the leaf nodes L of S. This step also initializes an empty set of 
checked nodes. Step 2 identifies all instances of all nodes that 
exist in S and adds them to the temporary storage repository 
CheckedNodes. For each node, it adds the labels of the child 
(the current node) and the parent nodes, which are connected 
through an edge. Step 3 contains a recursive function that 
takes all nodes in the CheckedNodes repository and builds the 
subtrees that consist of these nodes according to parent-child 
relations using the labels obtained at the previous step. Note 
that step 2 follows a bottom-up tree traversal direction, while 
step 3 follows a top-down tree traversal direction. This 
algorithm is designed to reconstruct a subtree rooted at single 
I node that satisfies a query path. Adjustment to adapt to 
multiple I nodes that stratify a given query path can be 
implemented by adding an outer loop to the algorithm to cover 
all satisfying nodes. All nodes N of S are scanned and 
retrieved only once in which they are added to a temporary 
repository that are used at a subsequent step to rebuild the 
original subtrees, and hence the cost of the algorithm is O(N) 
database accesses in the worst case. Since nodes are clustered 
by their <d.p> values, the actual database accesses are less 
than that predicted by the worst case analysis. Next, we trace a 
simple example that shows how an internal node is published 
to demonstrate our claim.  

Example 2. To illustrate how the reconstruction of an 
internal node is carried out, we use parts of the DBLP XML 
database that we use in our experimental evaluation. Table 3 
represents a portion of the PathSummary table of the DBLP 
database. Figure 6 illustrates a portion of the DBLP summary 
tree. The numbers below the elements’ tags represent the 
count C of the extent nodes in the source XML database for 
the designated elements in the summary, which are taken from 
the COUNT field in the PathSummary table (Table 3). For 
simplicity, we assume in this example that the book element 
has only three child elements (title, cdrom, and cite). 

 

TABLE III 
PART OF THE PATHSUMMARY OF THE DBLP XML DATABASE  

 
 
To evaluate the query “//book” we have to reconstruct the 

internal node book as per the structure shown in Figure 6. We 
use the PathSummary and the LeafNodes tables to implement 
the reconstruction as follows.  

• From the PathSummary table we can see that the C 
value of  book element is 1249, in other words, there 
are 1249 instances of the book element, and these 
instances are associated by child relations with: 1249 
instances of the title element, 4 instances of the cdrom 
element, and 3319 instances of the cite element. For 
repetitive referencing, we refer to the book element 
here as the parent element, and the title, cdrom, and 
cite elements as the child elements. 

• At this stage we want to determine which child 
instances are associated with each parent instance. In 
order to show how to do that, we use the LeafNodes 
table. We take only the instances of the cdrom element 
in the LeafNodes table, which are shown in Table 4, as 
an example.  

• Note that the parent element (the root element of the 
subtree) is located at level 2 (Lb=2) and the child 
elements are located at level 3 as shown in Figure 6. 
Also, from Table 4, we can see that the first instance (the 
first tuple in Table 4), whose SerNo=1, of the cdrom 
element is associated with instance number 4 (s value at 
Lev2) of the book parent element. Similarly, the second 
instance of cdrom element is associated with instance 
number 22 of the book parent element, and so on.  
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2.2

book

3.13
title

3.23 3.24
citecdrom

1249 33194

1249
Level 2

Level 3

 
 

Fig. 6 A portion of the DBLP XML path summary tree 
 
 
 

In this way we can reconstruct and publish the internal 
nodes. In our example in Figure 6, each instance of the book 
element has only one title child element. Just 4 instances of 
the book element have 4 instances of cdrom child element, in 
one-to-one relation. Finally, some instances of the book 
parent element have multiple instances of the cite child 
element. 

 

TABLE  IV 
THE TUPLES OF CDROM ELEMENT IN THE LEAFNODES TABLE 

Level PerLevel SerNo Value Lev1 Lev2 Lev3 Lev4
3 23 1 AHV/Toc.pdf 1 4 1 0
3 23 2 BERNSTEIN/Contents.pdf 1 22 2 0
3 23 3 MAIER/CONTENTS.pdf 1 151 3 0
3 23 4 Wiederhold/toc.html 1 443 4 0

 
 
 
 

D. UISX Query Processor 

This section discusses the components of the UISX 
query processor and the algorithm used in evaluating twig 
queries. We evaluate twig queries using a light-weight 
native XML engine on top of an SQL engine as illustrated 
in Figure 7. Hence, we refer to this method as a hybrid 
query processor. The job of the native XML engine is to 
explore potential query optimization processes that are 
related to the structure of XML data, which can not be 
exploited by SQL engines. The SQL engine handles the 
XML-Relational data after shredding. 

 

SQL Engine

RDBMS
PathSummary Table 
LeafNodes      Table

Translator & Coordinator

XML Engine

XML Query Interface

 
 

Fig. 7 The UISX hybrid query processor 
 
 

We developed the algorithm that is outlined below 
(Algorithm 2) to evaluate twig queries with one branching 
node. To evaluate a query with multiple branching nodes, 
the query is divided into several subtrees that are rooted at 
the branching nodes. The most nested subtree is evaluated 
first, and then the result is used to solve the subtree that is 
rooted at the next higher branching node, and so on.  

The algorithm consists of 5 parts, which are indicated on 
the left-hand side of the algorithm. Please note that curly 

brackets stand for a set that can contain one or more node(s) 
or element(s); (d,p) represents the node in the path summary 
whose Level is specified by d and PerLv is specified by p; 
and (d,p,V,Lev(x)) stands for the tuple in the LeafNodes table 
whose Level is d, PerLv is p,  the Value of the tuple is V, and 
the Lev(x) is the value in the LeafNodes table where x is 
equal to the level of the branching node, namely Lb. 

Step 1 of Algorithm 2 identifies the labels d and p (Level, 
and PerLv) of the leaf nodes for all branches in a twig 
query, in addition to the level of the branching node Lb. 
The second step identifies: the branch with the minimal 
cardinality if no predicates are given in the query, where 
the cardinality can be identified from the Count field in the 
PathSummary table; or the branch with the minimal 
selectivity if predicates are used in the query. We need this 
step to minimize the number of nodes examined to identify 
a match, and hence reduce the evaluation cost. Step 3 in the 
algorithm identifies the set of secondary branches, which 
contains all the branches identified in Step 1 minus the 
base branch identified in Step 2. Step 4 evaluates the base 
branch by identifying the set of tuples that satisfy the 
predicates obtained in the preceding steps. These predicates 
include the values of d, p, and x . Note that the first two 
predicates are obtained from Step 2, and the third predicate 
is obtained from Step 1 where x (to be used in Lev(x)) is 
equal to Lb. We use these predicates to identify V and Lev(x) 
values of the leaf nodes of the base branch. Finally, in Step 
5, the information obtained in the previous steps - 
specifically d, p, and Lev(x) values - is used to evaluate the 
secondary branches and obtain the final answers, which are 
returned to the user as the answer to the given query .  

 

Algorithm 2: Evaluating twig queries

Algorithm to evaluate twig queries by using the hybrid method. 
Input :   Multiple paths XML query Q .
Output :   Answer to all leaf nodes of the query .
1 //Use the PathSummary table to identify the Level & PerLev sets {(di , pi )} 

//for all leaf nodes of all branches, plus the Level of the branching node Lb.
M (Q)→ {(di , pi)} // mapping of Q in I, identify leaf nodes
M (Q)→ (Lb)        // mapping of Q in I, identify the branching node level

2 //define the base branch (dmin ,pmin).
(dmin , pmin)=(d1,p1) 
For k = 2 to i

if       Count(dk , pk) < Count(dmin,pmin) 
then  (dmin, pmin)=(dk,pk) 

3 //define the secondary branches (dr , pr).
{(dr ,pr)}={{(di , pi)} – (dmin , pmin)}

4 //Evaluate the base branch first.
use LeafNodes table to find set of tuples {(dj ,pj ,Vm ,Lev (x))} 

where dj=dmin and
pj=pmin and
x = Lb

5//Evaluate the secondary branches by using the base branch  information .
For each tuple in {(dj ,pj ,Vm , Lev (x))} returned by step 4

Begin
For each branch in {(dr , pr)}

Find {(dr , pr , Vn , Lev (y))}
where y = Lb and

Lev(x)= Lev(y)
Return (Vm, {{ Vn}})

End
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In Algorithm 2 there are two factors that affect the 
number of accesses to indexes: the number of branches and 
the selectivity of the branches.  Generally in our algorithm, 
the number of accesses to indexes is affected exponentially 
by the number of branches and linearly by the selectivity of 
the leaf nodes. The numbers of returned tuples and indexes 
accesses are inversely proportional to the selectivity of the 
leaf nodes of the branches in twig queries. False positive 
answers for a query are not possible with this algorithm 
since the set of retrieved tuples (candidate tuples) forms the 
exact answer to the query. 

 
 

IV. EXPERIMENTAL EVALUATION 
 

We performed all experiments on a 3 GHz Intel® 
Pentium 4 PC running Windows® XP, with 1.5 GB of 
RAM. We used IBM’s DB2® V9.5 RDBMS [11] to store 
and retrieve XML shredded data. The goal of the 
experiments is to evaluate the performance in terms of 
elapsed time to execute a query and to evaluate the sizes of 
the databases, and the supporting indexes that are used by 
UISX system. We compare our approach with the 
approaches proposed by Chen et al. [3] for two reasons. 
First, they adopt a similar approach by creating branching 
nodes indexes that facilitate and guarantee one index 
lookup to find matches for each node returned by the base 
branch evaluation. Second, they compared their approach 
with five existing indexing schemes including: Edge table 
[14] and simulated DataGuide [8], which are based on edge 
model-mapping; simulated Index Fabric [4] and Access 
Support Relation (ASR) [13], which are based on forward-
paths model-mapping; and Join Indices (JI) [28]. Chen et al. 
[3] proved experimentally that, in general, their approaches 
outperform these schemes.   

 

A. Testing Data and Queries 

Our experiments were carried out using the XMark [21], 
and the DBLP [27] datasets. We used the test queries 
proposed by Chen et al. [3] because they are broad and 
cover different criteria such as cardinality, selectivity, 
recursion, and depth of the branch node. For ease of 
reference, the queries are listed in Table 5. Table 6 
contains a summary of the characteristics of the test query 
sets in Table 5. The first set covers single path queries. The 
second set covers twig (multiple paths) queries with 
different selectivity and high branch points. The third set 
covers twig queries with low branch points. The fourth set 
covers recursive queries. The “X” and the “D” in the “Qry 
No” column in Table 5 stand for the XMark and the DBLP 
databases, respectively. 

We executed each query ten times against its respective 
dataset and used the average of the 10 readings in our 
analysis. The time to translate the XPath queries to SQL 
queries is not included and only the execution times of the 
queries are recorded, which reflect the impact of the index 
structures. 

 

TABLE V. FOUR SETS OF QUERIES USED IN TESTING 

Set
No

Qry
No Testing Query

Result 
per 

Branch

1

Q1X
Q1D
Q2X
Q2D
Q3X
Q3D

/site/regions/namerica/item/quantity [ . = 5]
/dblp/inproceedings/year [ . = 1968]
/site/regions/namerica/item/quantity [ . = 2]
/dblp/inproceedings/year [ . = 1988]
/site/regions/namerica/item/quantity [ . = 1]
/dblp/inproceedings/year [ . = 2004]

1
1

709
1746
9228

10660

2

Q4X

Q5X

Q6X

Q7X

Q8X

Q9X

/site [/people/person/profile/@income = 46814.17]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 46814.17]
[/people/person/name = ‘Hagen Artosi’ ]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 9876.00]
/open_auctions/open_auction/bidder[ /increase = 75.00]
/site [/people/person/profile/@income = 9876.00]
[/regions/namerica/item/location = ‘United States’ ]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 9876.00]
/open_auctions/open_auction/bidder[/ increase = 3.00]
/site [/people/person/profile/@income = 9876.00]
[/regions/namerica/item/location = ‘United States’ ]
/open_auctions/open_auction /bidder[ /increase = 3.00]

1
55

1
1

55
2038

55
2038
7519

55
2038
5172
2038
7519
5172

3

Q10X

Q11X

/site/open_auctions/open_auction
[ /annotation/author/@person = ‘person22082’]
/bidder/time
/site/open_auctions/open_auction
[ /annotation/author/@person = ‘person22082’]
[/bidder/increase = 3.00]
/bidder/time

2
59486

2
5172

59486

4

Q12X

Q13X

Q14X

Q15X

/site//item[/incategory/category = ‘category440’]
/mailbox/mail/date
/site//item[/incategory/category = ‘category440’]
/mailbox/mail/date
/mailbox/mail/to
/site//item[/quantity = 2]
[/location = ‘United States’]
/site//item[/quantity = 2]
[/location = ‘United States’]
/mailbox/mail/to

41
20946

41
20946
20946

1543
16294

1543
16294
20946

 
 

TABLE VI 
CHARACTERISTICS OF THE TESTING QUERY SETS IN TABLE 5 

Query 
Set Branches Result Per 

Branch
Branch 
Depth Recursion

1 1 1 – 10660 N/A 0
2 2-3 1 – 7519 High 0
3 2-3 2 – 59486 Low 0
4 2-3 41 – 20946 Low 1

 
 
 
 
 

B. Experimental Results 
 
Since we can reconstruct internal nodes from the 

LeafNodes and the PathSummary tables, we do not 
therefore need to map them, and hence the size of the 
mapped database can be reduced significantly. For example, 
the actual size savings in our experiments are 115 MB and 
88 MB for the XMark and the DBLP databases, 
respectively. Should we decided to store the internal nodes 
and use them as in the approaches proposed by  Chen et al. 
[3] and Cooper et al. [4], we would need to use that much 
of extra space, which cause 42% and 51% increase in the 
size of the current XMark and DBLP tables, respectively 
(see Table 7). Another source of space saving in our 
approach is the fact that the paths of the nodes (elements 
and attributes) are not recorded in the database, as the case 
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in other approaches [3,4], because we can regenerate them 
from the PathSummary table by using the nodes’ labels.  

 
TABLE VII.  

SIZES OF XMARK AND DBLP DATA-SETS WITH DIFFERENT IMPLEMENTATIONS 

Original 
size

UISX with Internal 
nodes mapping

UISX without internal 
nodes mapping

Saved 
space 

Percentage of 
saved space

XMARK 100 MB 250 158 115 42%
DBLP      50 MB 155 85 88 51%

 
 
Table 8 summarizes the characteristics of the 

ROOTPATHS, DATAPATHS, and UISX index structures 
for the XMark and the DBLP databases. The tables and 
indexes sizes are in Megabytes. Note that the original sizes 
of XMark and DBLP datasets are 100 MB and 50 MB, 
respectively.  

 
 
 
 
 
 

TABLE VIII 
CHARACTERISTICS OF TESTING DATABASES AS IMPLEMENTED BY THE 

INDICATED APPROACHES 

ROOTPATHS DATAPATHS UISX
XMARK Tables Size 267 1,285 158
DBLP      Tables Size 151 381 85
XMARK Indexes Size 509 2,535 325
DBLP      Indexes Size 282 402 183
XMARK No. of Tuples 2,995,272 15,734,707 1,158,492
DBLP     No. of Tuples 2,709,327 8,022,673 1,296,328

 
 
 
The ROOTPATHS and DATAPATHS indexes in Table 8 

were not subjected to the compression methods listed in Chen 
et al.’s paper. To save the shredded data of the XMark 
database, UISX used a space equal to 59% of the space used 
by ROOTPATHS, and 12% of the space used by 
DATAPATHS. Similarly, to save the shredded data of the 
DBLP database, UISX used a space equal to 56% of the space 
used by ROOTPATHS, and 22% of the space used by 
DATAPATHS. With regard to the indexes size for XMark 
database, UISX used 64% of the space used by ROOTPATHS, 
and 13% of the space used by DATAPATHS. With regard to 
the indexes size of the DBLP database, UISX used 65% of the 
space used by ROOTPATHS, and 46% of the space used by 
DATAPATHS. Finally, the number of tuples that is required 
by UISX to shred the XMark XML database is equal to 39% 
of the tuples required by ROOTPATHS, and 7% of the tuples 
required by DATAPATHS; and for DBLP, UISX requires 
48% of the number of tuples required by ROOTPATHS and 
16% of the tuples required by DATAPATHS. 

The results of the performance tests of UISX compared to 
ROOTPATHS and DATAPATHS with regards to the sets of 
test queries in Table 5 are illustrated in Figures 8-10.  
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Fig. 8  Performance comparison of UISX with ROOTPATHS and 
DATAPATHS using the DBLP database 

 
 

We tested the DBLP data-tree with just the single branch 
queries since its depth is shallow. The results of the 3 test 
queries, given in Figure 8, show that UISX performs 67% - 
76% better than the ROOTPATHS, and 76% - 79% better 
than DATAPATHS. 

Figure 9 presents the elapsed execution time of the test 
queries with UISX compared with ROOTPATHS using the 
XMark database. We notice that the gain in performance is 
fairly steady (53% – 64%) for the first type (single branch 
queries 1-3). On the other hand, the percentage gain in 
performance for the second type of queries (queries 4 – 9) 
decreases from the 81% to 31% as the selectivity decreases, 
since the number of pages that contain the returned tuples 
of the elements with high selectivity are smaller than those 
with low selectivity. The gain in performance for the third 
type of test queries is extremely high (99%) because with 
ROOTPATHS, each tuple returned by the base branch 
evaluation result has to be hash-joined or merged with the 
tuples returned by the secondary branches in order to find 
the matching tuples. While in UISX, the matching tuples of 
each secondary branch are retrieved with one comparison 
for each tuple returned by the base branch. The gain in 
performance for the fourth type of queries is high (79% - 
89%) for the selective queries (queries 12 and 13), and 
relatively low (19% - 37%) for the queries with low 
selectivity (queries 14 and 15). 
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Fig. 9  The performance comparison of UISX with ROOTPATHS using 
XMark database 
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Figure 10 shows the comparison of UISX with 
DATAPATHS using the XMark database. We notice that the 
gain percentage for the first type of queries is steady and it is 
in the fifties. Similar to the performance tests against the 
ROOTPATHS, the gain percentage in the performance of the 
second type of queries decreases as the selectivity decreases 
and ranges between (9% - 53%). The gain percentage in 
performance for the third type is ranging between (48% - 
50%). Also, the gain percentage in performance for the first 
two queries of the forth type of queries (queries with high 
selectivity) ranges between (36% - 44%), which is higher than 
that of the last two queries (queries with low selectivity), 
which ranges between (9% -24%). 
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Fig. 10  The performance comparison of UISX with DATAPATHS using 

XMark database 
 
 
 
 

Our approach performs well in comparison to 
ROOTPATHS and DATAPATHS. The UISX performance 
gains over ROOTPATHS are mainly because UISX does not 
produce any false positive answers, while ROOTPATHS does. 
DATAPATHS does not produce any false positives, and it is 
an efficient index structure, but its size is large. UISX 
performance gains over DATAPATHS are due to the 
relatively small size of the UISX index structure. Larger 
indexes require a deeper B+tree, and hence require more 
search. An efficient way to evaluate a query using 
DATAPATHS index structure is by evaluating the base 
branch first. Then a mechanism must be implemented in order 
to extract the ids of the branching nodes from the returned 
IdLists (e.g. scan the IdList string by implementing a string 
matching operations). In UISX, in contrast, when the base 
branch is evaluated, the branching nodes ids (labels) are 
returned in the fields (Lev2,Lev3,Lev4,..etc), and are ready to 
be used in matching operations directly without the need for 
extra techniques to extract the branching nodes ids.   

To evaluate recursive queries (queries 12-15), the reversed-
path approaches use the Optional String Pattern Matching 
(OSPM) function (“LIKE”) to evaluate a path with ancestor-
descendent axis [9]. For example, if we assume that S and A 
stands for student and address elements, respectively, then the 
query “//student/address” would be evaluated by using an 
SQL query that would contain the statement “SchemaPath 
LIKE AS%” along with other statements.  In contrast, the 
UISX approach uses only the exact string pattern matching 

(“=”). For example to find the nodes that match the path in the 
above query, we would run the following SQL query: 

 
 

select  s1.level, s1.perlv 
from  PathSummary as s1, PathSummary as s2 
where s1.tag='address'  and 
 s2.tag='student'  and 
 s1.parent=s2.perlv   
 
It is known that SQL supports exact string pattern matching 

efficiently by using the B+tree indexes, while B+tree indexes 
do not support (“LIKE”) efficiently [9]. 

 

V. CONCLUSIONS 

We have proposed an index structure that indexes all nodes 
in an XML data-tree  in relation to their branching nodes. This 
index structure can be used to establish a relation between any 
two arbitrary nodes that have a common ancestor in a data-
tree with a  minimal number of matches. Consequently, this 
index structure facilitates efficient evaluation of twig queries, 
while maintaining competitive performance for single path 
queries. The index structure has a path summary of the XML 
data-tree. Relational tables are used to store shredded XML 
data and path summaries. Our approach uses less space 
compared to other state-of-the-art approaches while having 
similar or better query performance.  

We believe that building a native XML query engine on top 
of the SQL engine is a good way to process XML queries on 
shredded XML data. The native engine verifies the 
correctness of the hierarchical structure of the query. 
Meanwhile, it identifies the essential parts (elements) of an 
XML query that must be used to execute the query, and pass 
them to the SQL engine in a special order for execution, hence 
eliminating joins that could be performed otherwise. Further, 
our experiments show that mappings that are based on path 
summaries perform well in comparison to mappings that are 
based on reversed-paths.  

USIX uses only two tables to store XML databases. One 
table holds the path summary, and the other holds data about 
the leaf nodes. The summary table is relatively small. These 
summaries save us from recording the paths of the tuples in 
the database, and are used to regenerate the paths from the 
nodes’ labels. 

Our method of mapping XML into relational tables does 
not require an XML schema so it can be applied as a general 
solution for any data-tree structure in addition to XML 
databases. Two popular data-sets are used in our experiments: 
the XMark dataset [21], which is document-centric database; 
and the DBLP dataset [27], which is a data-centric database. 
Our approach performs well with both types of data-sets. 

Our XML-relational approach evaluates XML queries by 
using equijoins, while most other XML-relational approaches 
use inequality-joins [9,10,30], which are less efficient. Our 
approach, furthermore, uses exact string pattern matching, 
while other approaches use the “LIKE” operator [9]. Finally, 
we are planning to improve on the native XML query engine 
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that works on top of the SQL engine. We think that 
coordinating the query optimization tasks between these two 
engines can improve XML query processing. Despite the fact 
that the size of the shredded data is minimized, since the leaf 
nodes contain details about both themselves and the internal 
nodes, we noticed that some of these details are redundant 
among multiple leaf nodes. For example, leaf nodes that share 
the same branching node have similar information about the 
path from the root node to the branching node. It worth 
investigating if there is a way to eliminate these redundancies 
and improve performance at the same time.  
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