

Relational Universal Index Structure for
Evaluating XML Twig Queries

Samir Mohammad
Patrick Martin
Wendy Powley

School of Computing
Queen's University

Kingston, Ontario, Canada K7L3N6
{samir,martin,wendy}@cs.queensu.ca

Technical report No. 2010-576

May 2010

Page 2 of 13

Relational Universal Index Structure for Evaluating
XML Twig Queries

Samir Mohammad, Patrick Martin, Wendy Powley
School of Computing, Queen’s University, Canada
{samir,martin,wendy}@cs.queensu.ca

Abstract— Numerous approaches to storing XML data in relational
databases have been proposed that take advantage of the maturity of
relational database management systems. Index structures to
support these approaches have been developed to speed-up XML
query processing. Typical drawbacks of these approaches include
the lack of support for twig queries and the large storage
requirements for the index structures. In this report we propose a
novel index structure that is compact and effectively supports
processing of XML twig queries. Experimental results show that our
approach achieves lower response time than similar approaches
while using less space to store the XML data.

I. INTRODUCTION

Due to its flexibility, XML is becoming the standard for
exchanging data over the World Wide Web. XML data can be
stored and queried by using either native XML repositories
[2,7,18,20,22,31], or relational database management systems
[3,6,10,19,23,24,25,26,29,30]. Native approaches for storing
and querying XML data are still relatively new. On the other
hand, relational database management systems are well
founded, tuned, and standardized by several decades of work.
In addition, huge volumes of data are already stored in
relational database management systems. Motivated by these
facts, researchers and vendors (such as IBM®, Oracle®,
Sybase®, and Microsoft®) are working on ways to improve the
capabilities of RDBMS to store and retrieve XML
[1,5,6,10,19,23,24,25,26,29,30].

Elements in XML data are linked through a hierarchical
structure. Any two elements are linked through their common
ancestor. Therefore, indexing common ancestors can facilitate
the evaluation of twig queries. For example, consider the
XPath query below:

Query 1: //student [/ fname =‘Sue’ and lname =‘Jones’] / program

This query returns the program of the student Sue Jones. Its

pattern can be represented as a node-labeled tree as shown in
Figure 1. A single line represents a parent-child relation and a
double line represents an ancestor-descendent relation.

Figure 2 contains an XML document, which is represented
as the hierarchical node-labeled tree in Figure 3. The node
labels are shown inside the nodes of Figure 3. Query 1 can be
evaluated over the data in Figure 3 as follows. We first
evaluate the branch with fname=‘Sue’. This part returns the

node <4.2.3> and the branching node <3.1.3>, assuming that
all branching nodes for each node in the data-tree are recorded
in the database. We call the branch that is evaluated first the
base branch, and the branch(es) evaluated afterward the
secondary branch(es).

student

“Sue”?

fname

“Jones”

lnameprogram

Fig. 1 Query 1 hierarchical pattern

Now to solve the second branch lname=‘Jones’, we have to

search for the lname element that has a value “Jones” and
whose parent node label is <3.1.3>. The only node that
matches these criteria is node <4.3.3>. Note that the other two
nodes that have the same last name Jones, namely, nodes
<4.3.1> and <4.3.2>, are excluded early in the search because
their parent node is not <3.1.3>. Finally, we search for branch
program relative to its parent <3.1.3>. So the value “CS” is
returned as the final answer.

<course number="251">
<name>XML</name>
<students>

<student>
<program>Math</program>
<fname>Omar</fname>
<lname>Jones</lname>

</student>
<student>

<program>Physics</program>
<fname>Ayah</fname>
<lname>Jones</lname>

</student>
<student>

<program>CS</program>
<fname>Sue</fname>
<lname>Jones</lname>

</student>
</students>
<instructor>Beth</instructor>

</course>

Fig. 2 An XML document

From the above example, we can see that twig queries can be
evaluated by using knowledge of their branching nodes. We
propose an approach that utilizes this idea to evaluate twig
queries efficiently by building a Universal Index Structure for
XML databases (UISX). This index structure guarantees to
find a complete and precise match for each node of any

Page 3 of 13

arbitrary base branch by executing a single index lookup.
That is, all matching tuples are retrieved without any false
positives.

2.1.1

3.1.1 3.1.2 3.1.3

4.2.2 4.3.2

2.3.1

1.1.1
course

student

“251”
student

number

“Beth”

student

“Sue”

fname

“Ayah”

lname

“Jones”

2.4.1instructor2.2.1

“XML”

name

“Physics” “CS”

4.2.1 4.3.1
fname lname

“Jones”

4.2.3 4.3.3
fname

“Jones”

lname

students

4.1.1
program

4.1.2

program

4.1.3

program

“Omar”“Math”

4.2.2 4.3.2 4.1.3 4.2.3 4.3.34.1.24.3.14.2.14.1.1

2.4.12.2.12.1.1

Fig. 3 The data-tree representation of the XML document in Figure 2

Finding matching elements of a twig is a core operation in

XML query processing [3]. Much research has been done to
match elements at different branches of twig queries
[3,4,8,12,14]. Generally, these approaches suffer from either
producing structures that are physically large to support twig
queries (Queries with multiple paths) efficiently, or not being
able to support twig queries as efficiently as they support
single path queries as a consequence of reducing the size. A
good study of the trade-off between index space and
evaluation efficiency is given by Chen et al. [3]. They
implement two index structures: ROOTPATHS and
DATAPATHS. ROOTPATHS has small size, but it is not as
efficient as DATAPATHS, whose size is much larger. The
reason behind the DATAPATHS superior performance is the
fact that it indexes all possible subpaths of root-to-leaf paths,
which are used to match any two arbitrary branches.

Our proposed approach has a compact size, yet, it supports
efficient evaluation of twig queries. It uses a RDBMS to store
and query XML data. We use path summaries based on
DataGuides [8], to facilitate query evaluation. The path
summary, which is modeled as a simple table in a relational
database, reduces the number of matches required to evaluate
a query by preserving a path summary of the original XML
data structure before shredding. Path summaries reduce the
size of the stored XML databases. This reduction in size is
achieved by: (1) eliminating redundant data from the database,
such as the path of an element, which can be regenerated
when needed from the summary; and (2) by using the
summary to regenerate the internal nodes of the XML data-
tree along with their subtrees. Therefore, internal nodes do not
need to be shredded and stored in relational tables. In our
approach, only the leaf nodes are shredded and stored in
relational tables. The root-paths are recorded for all leaf nodes,
where the information of the internal nodes is encoded. Zhang
et al. [30] observed that RDBMSs do not support the
inequality-joins efficiently, while they support the equality-
joins efficiently. Our XML-relational approach evaluates

XML queries by using equijoins, while most XML-relational
approaches use inequality-joins [9,30].

The UISX index structure has been implemented
successfully using the DB2® DBMS [11], and the
experimental results show that it performs well in comparison
to existing state of the art approaches in terms of size and
response time. The contributions of this report are as follows:

• A novel index structure for storing and querying XML
data, where all nodes of XML data-trees are indexed in
relation to their branching nodes.

• A unique way of storing and using XML path
summaries to facilitate query processing.

• An efficient storage method.

The rest of this report is organized as follows. Section 2
discusses related work. Section 3 introduces the UISX
approach, explains the XML data and path summary models
used to build UISX, introduces XPath query expressions,
explains how the proposed index structure optimizes the use
of the space to store XML data, and illustrates how queries are
evaluated by using this index structure. Section 4 presents an
experimental evaluation of the UISX approach in comparison
to existing approaches. Finally, Section 5 presents the
conclusions and outlines future work.

II. RELATED WORK

RDBMSs are known for their strength in data storage and
manipulation, query processing and optimization, concurrency
control, recovery, and security. Consequently, many research
projects have proposed mapping XML data to RDBMSs.
These proposals can be divided into two groups: mappings
that are based on the schemas of XML data, which are
referred to as structure-mappings; and mappings that are not
based on XML schemas, which are referred to as model-
mappings. In structure-mapping, XML data is mapped to
different relational schemas depending on the existing XML
schemas. In model-mapping, the XML data is mapped to the
same relational schema regardless of the structure of the
mapped data, whether an XML schema exists or not.
Shanmugasundaram et al. [24] and Florescu et al. [6]
proposed two of the early approaches for mapping XML data.
The first approach is based on structure-mapping, and the
latter is based on model-mapping. Our approach is based on
model-mapping.

There are three types of model-mapping approaches: edge,
node, and path approaches. The edge model-mapping
approach proposed by Florescu and Kossmann [6] is based on
the edge-labeled data model. It maps all edges in an XML
data-tree into a single relational table that has the scheme
(Source,Target,Tag,Flag,Value). Each edge represents an
element that has a Source and Target identification. An XPath
query is evaluated by matching the Target id of one element
(edge) with the Source id of the following element in the path
of a query starting from one end and finishing at the other end.
The Flag represents the type of the node (e.g. int, string). The

Page 4 of 13

edge approach requires a minimum of n-1 join operations to
evaluate a query with n elements for both single path and twig
path queries. In addition, it does not efficiently evaluate
queries with the ancestor-descendent “//” axis.

Zhang et al. [30] proposed a model-mapping approach
based on the node-labeled data model. They use intervals to
label the nodes and map XML tree elements to a relational
table that has the scheme (Start,End,Tag,Level,Value). Two
elements can be joined together if the interval (Start,End) of
one element contains the other element’s interval. Unlike the
edge approach, node model-mapping can efficiently evaluate
queries with the ancestor-descendent “//” axis, but it still
requires n-1 joins to evaluate a single path or a twig path
query with n elements.

Yoshikawa et al. [29] proposed a model-mapping approach
that is based on forward-paths of elements in an XML data-
tree. A forward-path is a path that starts from an element in
the higher part of an XML data-tree (e.g. the root element)
and ends at an element at the lower part (e.g. the mapped
element). In this approach, elements are shredded into a
relational table with the scheme (Path,Start,End,Value). Each
element is identified by its root-path (which is a forward-path).
Single path queries are evaluated with one match. Twig
queries, however, are evaluated by decomposing the twig into
multiple single paths. Each path is evaluated separately and
then joined together to obtain the final answer. The number of
joins required to evaluate a twig query is usually equal to the
number of branches in the query. The forward-paths approach
reduces the number of joins required to evaluate a query,
however, it may produce incorrect answers when recursion
exists in XML data [9]. To overcome this problem Pal et al.
[19] proposed a similar approach using reversed-paths instead
of forward-paths. A reversed path is a path that starts from an
element at a lower part in an XML data-tree and ends at an
element in a higher part. The reversed-paths approach not only
eliminates the possibility of producing false results, but also
improves the performance of query evaluation. The reversed-
paths approach has been used by IBM® System RX,
Microsoft® SQL Server 2005, and Oracle® DB [9].

Chen et al. [3] used a reversed-path approach where each
node in an XML data-tree is given a global id, and then
shredded into relational tuples with the scheme (HeadId,
SchemaPath, LeafValue, IdList). The HeadId is the id of the
node at which a reversed-paths ends, SchemaPath represents
the reversed-paths of XML data nodes, LeafValue represents
the values of the leaf nodes in the path of the mapped
elements, and IdList contains lists of the global ids of the
nodes that constitute a path from the HeadId to the designated
mapped nodes. Two index structures were proposed. The first
was the ROOTPATHS index, which indexed only the prefixes
of the root-to-leaf paths. The second was the DATAPATHS
index, which indexed all subpaths of root-to-leaf paths,
including the root-to-leaf paths. The key idea of this approach
is to create an index for all branching nodes. To process a twig
query, in the case of ROOTPATHS index, all branches are
evaluated and the returned IdLists are then merged or hash-
joined to arrive at the final solution. In the case of

DATAPATHS index, a twig query is processed by evaluating
the base branch first to get the ids of the branching nodes
which are available in the IdList. Then a search is carried out
for the secondary paths that are rooted at the identified
branching nodes and that have the exact reversed-path given
in the query. The reversed-paths that are used to evaluate a
twig query in DATAPATHS index start from the leaf node of
the query and end at the branching nodes. The DATAPATHS
index reduces access to the index to a single index lookup in
order to find a match for fully specified, single path query
without any recursion. Consequently, solving twig queries,
which can be divided into multiple single path queries,
requires a relatively small number of index lookups.

Chen’s et al [3] index structure does not have a path
summary table like our approach. Their approach, however,
has a dictionary to encode schema paths by using special
characters to designate elements and attributes instead of
using the whole names. This dictionary has to be accessed at
an early stage of an XML query evaluation process. Our
approach, in contrast, uses the path summary table, which has
approximately the same size as the dictionary table. The key
idea of both approaches is to index all leaf nodes in relation to
the branching nodes, and so minimize the number of index
accesses required to evaluate a twig query.

III. UNIVERSAL INDEX STRUCTURE FOR XML DATA

Based on the observation that branching nodes are the key
element in solving twig queries, we propose the UISX
approach to efficiently match and join any two arbitrary nodes
that share the same branching node. In this approach the base
branch is evaluated first. Then, for each returned base branch
node, the secondary branches are examined, and the matching
nodes of each branch are located through their common
ancestor node by using only one index lookup.

A. XML Data and Path Summary Models

In this subsection we describe our basic data model, and
path summary. Then in the following subsections we discuss
the query language, the size optimization, and the query
processor of the UISX.

Definition 1. We model XML documents as trees. An XML
tree is a directed ordered graph G=(R,VR,VL,E,tagg,labelg,T).
R is the root node. VR is the set of internal nodes. VL is the set
of leaf nodes. VL=(VE UVT), that is, VL consists of the empty
leaf node VE (for empty elements), and the set of value (text)
leaf nodes VT. Nodes in VR and VL are tagged through the tagg
function (The extra g stands for G). VR and VE nodes are
tagged according to the tag of the elements or attributes they
represent. Nodes in VT have the same tag as their VR parent
nodes. Internal nodes VR have to have one or more child nodes,
which could be VR and/or VL node(s). E is a set of child-parent
edges, E= {e1, e2, … ei} that connects all nodes of VR and VL
to form a tree. The total number of edges equal to |E|, where
|E|=|VR| + |VL |, |VR| is the total number of internal nodes, and
|VL | is the total number of leaf nodes in the tree. Each and

Page 5 of 13

every node in VR and VL is associated with only one parent
through an edge, since each node in a tree structure can have
only one parent, except R, which does not have a parent1.

Each node in VR and VL are assigned a unique label through
the labelg function, which is determined by the LLS labeling
scheme [16] as follows. Each node v, such that v∈ (VR UVE) is
assigned a unique vector label <d.p.s>, where d and p are
taken from the label of the o node in the path summary I to
which v node belongs. That is, v node is an instance of an o
node (instances and path summaries are defined shortly). s is
the instance serial number of node o. Nodes in VT are labeled
according to the labels of their parent VR nodes. The set of
serial paths is defined by T, where T={r1,r2,…,rn} and n is the
number of leaf nodes |VL|. We define serial path r in
Definition 3 below. In our model, an edge e of a node v, where
e∈ E and v∈ V, is equal to the serial number s of the parent
node p, denoted e(v)=s(p). The data-tree representation G of
the data in Figure 2 is illustrated in Figure 3, which is used in
the examples throughout this report, unless we specify
otherwise.

Definition 2. A tag path t for a node v is a sequence of tags ,
l1.l2…li (i ≥ 1), of the nodes on the path from the root node to
v node. For example, the tag path of node <4.1.2> is
course.students.student.program.

Definition 3. A serial path r for a node v is a sequence of
serial numbers s1.s2…si (i ≥ 1), of the nodes on the path from
the root node to v node. For example, the serial path of node
<4.1.2> in Figure 3 is (1.1.2.2). Note that the d values (the
levels) of the components of a serial path r of a node v, where
r =(s1.s2…si), is d=(1,2,…,i), respectively, where i is the level
of v. For example, the levels of the component of the serial
path (1.1.2.2) are (1,2,3,and 4), respectively.

Definition 4. A node path n for a node v is a sequence of
alternating tags and serial numbers l1.s1.l2.s2 … li.si (i ≥ 1), of
the nodes on the path from the root node to v node. For
example, the node path of node <4.1.2> in Figure 3 is
course.1.students.1.student.2.program.2. The tag path t of a
node path n, denoted t(n), is the sequence of tags that exist in
n. For example, t(n) of course.1.students.1.student.2.program.2
is course.students.student.program. Similarly, the serial path r
of node path n, denoted r(n), is the sequence of serial numbers
that exist in n. For example, r(n) of
course.1.students.1.student.2.program.2 is (1.1.2.2).

Definition 5. A node with a node path n is an instance of a
tag path t if the sequence of the tag path of n is identical to the
sequence of tag path t, that is, if t(n)=t. For example, the
nodes <4.1.1> and <4.1.2> are instances of the tag path
course.students.student.program.

Definition 6. Extension of a tag path t, denoted ext(t), is a set
of nodes whose node paths are instances of the tag path t, that
is, ext(t)={n : t(n)=t }. For example, the extension of tag path
course.students.student.program includes nodes <4.1.1>,
<4.1.2>, and <4.1.3>.

1 REF/IDREF are encoded as values in XML, and can be related
through their values, hence we do not consider them as edges.

Definition 7. A path summary is a directed ordered tree
I=(O,M,tagi,labeli,C). O is the set of summary nodes.
O=(R U OR U OL), where R is the same as the data graph root
element since a tree can have only one root element, OR is the
set of internal nodes, and OL is the set of leaf nodes. M is a set
of child-parent edges that connects O nodes to form a tree.
|M|=|O|-1, where |M| is the total number of edges in the
summary tree and |O| is the total number of nodes in the
summary tree. Nodes in O are tagged through the tagi
function. We refer to the tags of O nodes as the tag name of
the element or attribute they extend. All nodes in the path
summary are assigned a unique label through the labeli
function, which is determined by the LLS labeling scheme [16]
as follows. Each node’s label consists of two parts vector
<d.p>, where d is the level (depth) of the node, and p is the
number of this node across d level. An edge m of a node o,
where m ∈ M and o∈ O, is equal to the p value of the parent
node x, denoted m(o)=p(x). C is the set of counts of instances
for each node in O, that is, C={c1,c2, … , ci : i =|O|}. For each
node oj, and count cj, where oj∈ O and cj∈ C, cj is the count of
instances of the tag path tj of node oj, where O={o1,o2, … , oi :
i =|O|}, t={t1,t2,…,ti : i=|O|}, and node oj has tag path tj. If we
assume that in O there is a node oj whose count of instances is
cj, and cj value is z, then the s values of the instances of oj
would be 1 for the first instance, 2 for the second instance, … ,
and z for the last instance. Figure 4 contains an example of a
path summary I of the XML data-tree G in Figure 3. Note that
VT nodes in G are represented by their parent nodes.

In UISX, an XML data-tree G can be summarized by a path
summary I such that the tag path t of every node path n of G
has exactly one tag path t in I, and every tag path t of I is a tag
path of a node path n of G. That is, every distinct path in the
source data appears only once in the path summary, and all the
paths in the summary have at least one matching path in the
original source data. Basically, G nodes are partitioned into
equivalence classes in I where the nodes of a class have the
same root path [8,17].

2.22.1

3.1

4.2 4.3

2.42.3

1.1
course

studentsnumber name

student

instructor

lnamefname

Level

1

2

3

4 4.1
program

Fig. 4 The path summary of the data in Figures 2 and 3

For each node oi in I that has label <di.pi>, there are
instances in G that have labels in the form <dg.pg.sg>, such
that di=dg, pi=pg, and sg={1,2,…,n} where n equal to the count
of instances of oi, that is, n=Ci. Note that the labels of the
summary nodes (e.g. nodes of Figure 4) are created first, and
then used to create the labels for the data-tree nodes (e.g.
nodes of Figure 3). For example, nodes <3.1.1>, <3.1.2>, and

Page 6 of 13

<3.1.3> in G are extensions of the same node in the path
summary I, namely, node <3.1>.

The path summary in Figure 4 is mapped to the relational
table PathSummary as shown in Table 1. The leaf nodes data
of Figure 3 is mapped to the relational table LeafNodes as
shown in Table 2.

In Table 1, the Tag field contains the tags of the elements
of the nodes in the summary, which is assigned through the
tagi function of I. The Level and PerLv fields represent the d
and the p parts of the path summary nodes labels as indicated
in Figure 4, respectively. These labels are allocated through
the labeli function of I. The Parent field holds the label of the
parent nodes, which are the p value of the parent node. The
Level (d) value of the parent node is equal to the current node
Level value minus one, so we do not need to list the parent
node level in the PathSummary table. Note that the Parent
value of the root element is zero since it does not have a
parent. The Type represents the type of node (e.g. element or
attribute). The Count value (C) is the number of nodes in the
original XML data that belong to the same summary group. It
is used mainly to reconstruct the subtrees that are rooted at the
internal nodes (see Section C).

TABLE I. THE PATHSUMMARY TABLE

Tag Level PerLv Parent Type Count
course 1 1 0 E 1
number 2 1 1 A 1
name 2 2 1 E 1
stduents 2 3 1 E 1
instructor 2 4 1 E 1
student 3 1 3 E 3
program 4 1 1 E 3
fname 4 2 1 E 3
lname 4 3 1 E 3

Table 2 shows the LeafNodes table, which is populated

with the data of all leaf nodes VL in the XML tree. In this table
the Level, PerLv, and No values together form the label of the
leaf nodes d, p, and s, respectively, as shown in the data-tree
in Figure 3. These labels are allocated through the labelg
function of G. The Value field contains the values of the node
for VT nodes, and null for VE nodes. The Lev1,…, Lev4 fields
are explained below.

TABLE II. THE LEAFNODES TABLE

Level PerLv No Value Lev 1 Lev 2 Lev 3 Lev4
2 1 1 251 1 1 0 0
2 2 1 XML 1 1 0 0
2 4 1 Beth 1 1 0 0
4 1 1 Math 1 1 1 1
4 1 2 Physics 1 1 2 2
4 1 3 CS 1 1 3 3
4 2 1 Omar 1 1 1 1
4 2 2 Ayah 1 1 2 2
4 2 3 Sue 1 1 3 3
4 3 1 Jones 1 1 1 1
4 3 2 Jones 1 1 2 2
4 3 3 Jones 1 1 3 3

Branching Indices: In order to achieve high performance of

the UISX index structure, and since s value uniquely identifies
a node among other nodes of the same class, we split the serial

path and save each part in a different field (see Table 2). Each
field is titled after the level of the s values it contains. That is,
each field is titled Lev(i), where i ∈ [1,…,n], and n is the
number of levels in G. Each field is used for indexing
branching nodes located at the corresponding level. We define
H as a set of branching indices that we create to index si
values, where H={H1,H2,…,Hn}, i ∈ [1,…,n], and n is the
number of levels in G. Each index for each level is based on
the concatenation of (si,d,p) values (see Table 2). All s values
of V nodes in G are covered by the H set.

The index structure of UISX has mainly three components:
path summary table, leaf nodes table, and branching indices.
The tables’ key fields are underlined in Tables 1 and 2. The
key field of the PathSummary table is (Tag), and the key
fields of LeafNodes table are (Level,PerLv,Value). The two
tables are related through the (Level,PerLv) fields. The
branching indices are the H set of indexes, which are used to
facilitate the link between two arbitrary nodes in a twig query.
Our index structure covers nodes that belong to the same
XML document; the extension to multiple documents can be
implemented by adding the document id to the labels of I and
G nodes.

B. X-Path Query Expressions

In what follows we formally define X-Path query
expressions as they are used in the UISX.

Definition 8. A query Q is covered by a summary I if and
only if : (1) the nodes of Q exist in I, and (2) the Q nodes exist
in I according the structure specified by Q.

For example, the query “/instructor[/name=
‘XML’]/course” is not covered by the path summary I in
Figure 4. Although the first condition is met, but not the
second. If we switch the positions of course and instructor
tags “/course[/name= ‘XML’]/instructor,” then the mapping of
Q nodes to I nodes succeed and I covers Q.

Definition 9. To evaluate a twig query Q over a data graph
G by using I, we say that the matching of an instance of one
group with the instances of another group is complete if the
returned nodes contain all the relevant nodes.

Definition 10. To evaluate a twig query Q over a data graph
G by using I, we say that the matching of an instance of one
group with the instances of another group is precise if the
returned nodes do not contain any irrelevant node.

The pattern of single path query expressions can be
represented as t1.rel.t2 … rel.tx, where (t1,t2,…,tx) are tags of the
query and rel represent the relationship between the adjacent tags.
This may be a parent-child relation “/” or ancestor-descendent
relation “//.” We refer to single path query expressions that have
only the “/” axis as single simple path queries, and to single path
query expressions that have one or more “//” axes as single
complex path queries. Both types are evaluated by finding the
extension of tx, that is, ext(tx). In the relational tables in UISX, the
mapped data are sorted by <d.p> keys, and hence one index look
up is sufficient to evaluate these types of queries by probing the
index for tuples that match <y.x>, where <y.x> is the label of tx,
and d=y and p=x. Twig queries patterns can be represented as:

Page 7 of 13

t1.rel.t2…rel.tb[rel.t1.rel.t2…tf1][rel.t1.rel.t2…tf2]…rel.t1.rel.t2…tfi

This twig pattern expression consists of multiple single
path expressions. The expressions inside the square brackets
and the expression that follows at the end are the branches of
the twig. The branching element tags are denoted by tb. (tf1,
tf2,…,tfi) are the leaf elements’ tags of the first branch, second
branch, and i th branch, respectively, where i is the number of
branches in the twig. Given an XML data-tree G with a path
summary I, in general, with UISX we evaluate a twig query Q
against G in two steps. First, we map nodes of Q to nodes of I.
If the mapping succeeds (i.e. Q is covered by I), we move to
the next step in the evaluation process. In the second step we
use only the extension of tags tb and (tf1,tf2,…,tfi) to evaluate
the query. Since our index structure is based on tree data and
uses a path summary, it always returns complete and precise
query results [9,14,17]. Before we present an example, we
need to introduce the following theorem.

Theorem 1. In UISX, one index lookup into a branching

index H is sufficient to join a pre-defined node of one group
of the leaf nodes with all matching nodes in another group of
leaf nodes of a twig query.

Proof. First consider the following twig query with two
branches:

Q : t1.rel.t2…rel.tb[rel.t1.rel.t2… tf1][rel.t1.rel.t2…tf2]
In this query, we assume that the level of the branching

node tb is Lb, and Q has two leafs: tf1 and tf2. The extension of
tf1 is a set of nodes Vf1, that is, ext(tf1)=Vf1={vf11,vf12,…,vf1n},
and similarly ext(tf2)=Vf2={vf21,vf22,…,vf2n}, where n is the
number of instances in each set. According to query Q, we
want to prove that one index lookup into HLb is sufficient to
join a single node in Vf1 node-set with all matching nodes in
Vf2 node-set.

From definition 1, the labels of Vf j sets, where j∈ [1,2],
consist of the three parts <d.p.s> . The first two parts (d and p)
are the same for all nodes in each set. The third part s is the
part that uniquely distinguishes each node among all nodes of
the same class or group. Each node in Vf j sets has a serial path
r (definition 3), which consist of the s part of the labels of the
nodes in the path from the root node to the designated node.
Since s is unique for each instance of a class, then r can be
used to uniquely identify the labels of all nodes in the serial
path of a node. Assume that the value of s of the branching
node tb that is located at level Lb is sx. The two branches’
nodes that share tb node in their serial paths are matched if the
value of each serial path r at tb node is equal to sx value. This
way, the matching process will return either an empty set if
there is no match, or it will return the exact and precise
matches since all nodes that share this common ancestor tb
node have their r values at tb set to sx. Consequently, there is
no chance for any false positives to be retrieved. Since all s
values of V nodes in G are covered by the H set of indexes
(see branching indices), and HLb index is based on s values of
Lev(Lb) field, then by using an index structure that contain
HLb, it would require only one index lookup to find a match
for any arbitrary node in one branch with one or more nodes
in any other branch of a twig provided that they share a
joining node. This matching process can be extended to solve

multiple branches queries with n branches by evaluating two
branches at a time until all branches are evaluated as
illustrated in Algorithm 2 (to be discussed shortly) �

Example 1. Consider the following twig Query 2 over the

data-tree G shown in Figure 3, which asks for the list of
students’ first name and the programs in which they are
enrolled:

Query 2: /course//student [/ program]/fname

student

fnameprogram

course

Fig 5. The node-labelled tree representation of Query 2.

This query node-labelled tree representation is shown in
Figure 5. It is easy to see that I covers Q because the mapping
of this Q query over I path summary of G data-tree can be
carried out successfully. In this case student node is the
branching node tb, program node is the first leaf node tf 1, and
fname node is the second leaf node tf 2. These three Q nodes
map to I nodes <3.1>,<4.1>,and <4.2>, respectively. Note
that Lb=3. We next retrieve ext(tf 1), the extension of tf 1, which
returns the tuples:

Level PerLv No Value Lev 1 Lev 2 Lev 3 Lev4

4 1 1 Math 1 1 1 1
4 1 2 Physics 1 1 2 2
4 1 3 CS 1 1 3 3

To find a match for the first tuple above, and since Lb=3,

we use the index structure to probe the H3 branch index,
which is based on columns (Lev3,Level,PerLv), to retrieve all
nodes that match (1,4,2). Similarly, the second and the third
tuples are matched by probing the same H3 branch index for
nodes that match (2,4,2) and (3,4,2), respectively, and hence
the following tuples below are returned. If there are multiple
nodes that match a search criterion, we retrieve them by
invoking only one index lookup.

Program Fname

 Math Omar
Physics Ayah

 CS Sue

C. Size Optimization

The UISX only maps leaf nodes because internal nodes can
be regenerated using the PathSummary and the LeafNodes
tables.

Claim 1. Suppose I is a path summary for an XML data-
tree G, VL is the set of leaf nodes of G, and T is the set of
serial paths of VL. Then we can use I and T to reconstruct the
subtree that is rooted at any internal node v, where v∈VR.

Next, we present an algorithm (Algorithm 1) that we
developed to reconstruct a subtree that is rooted at an internal
node v where v∈VR. We design this algorithm as a proof for
claim 1 above, which establishes that a subtree rooted at any
internal node can be reconstructed.

Page 8 of 13

Algorithm 1 : Publish an internal node

Input : An internal node v .
Output : Subtree rooted at v .
1 Identify by using I:

a- The branching node v according to a given path,
b- structure of the subtree S that is rooted at v , and
c- leaf nodes L of S, and sort them by Level and PerLev .
CheckedNodes = empty set { }

2 For each node l in L
Begin
For i = 1 to l c // l c is the count of node l

Begin
While(CurrentNode.Level ≤ v.Level and CurrentNode Not in CheckedNodes)

Add CurrentNode (ChildNode,ParentNode) to CheckedNodes
CurrentNode=CurrentNode.Parent

End
End

3 Sort nodes in CheckedNodes based on <d,p,s>.
For each root node v in CheckedNodes

Begin
Subtree = empty tree { }
IdentifyChildren(v)

Begin
Add v to Subtree
ChildrenSet ={v.child}
For each child y in ChildrenSet

Begin
if y Is Not in LeafNode

IdentifyChildren(y)
else

Add v to Subtree
End

End
End

Return the subtree rooted at v node .

Step 1 of algorithm 1 identifies the internal node v that needs
to be published, the structure of the subtree S rooted at v, and
the leaf nodes L of S. This step also initializes an empty set of
checked nodes. Step 2 identifies all instances of all nodes that
exist in S and adds them to the temporary storage repository
CheckedNodes. For each node, it adds the labels of the child
(the current node) and the parent nodes, which are connected
through an edge. Step 3 contains a recursive function that
takes all nodes in the CheckedNodes repository and builds the
subtrees that consist of these nodes according to parent-child
relations using the labels obtained at the previous step. Note
that step 2 follows a bottom-up tree traversal direction, while
step 3 follows a top-down tree traversal direction. This
algorithm is designed to reconstruct a subtree rooted at single
I node that satisfies a query path. Adjustment to adapt to
multiple I nodes that stratify a given query path can be
implemented by adding an outer loop to the algorithm to cover
all satisfying nodes. All nodes N of S are scanned and
retrieved only once in which they are added to a temporary
repository that are used at a subsequent step to rebuild the
original subtrees, and hence the cost of the algorithm is O(N)
database accesses in the worst case. Since nodes are clustered
by their <d.p> values, the actual database accesses are less
than that predicted by the worst case analysis. Next, we trace a
simple example that shows how an internal node is published
to demonstrate our claim.

Example 2. To illustrate how the reconstruction of an
internal node is carried out, we use parts of the DBLP XML
database that we use in our experimental evaluation. Table 3
represents a portion of the PathSummary table of the DBLP
database. Figure 6 illustrates a portion of the DBLP summary
tree. The numbers below the elements’ tags represent the
count C of the extent nodes in the source XML database for
the designated elements in the summary, which are taken from
the COUNT field in the PathSummary table (Table 3). For
simplicity, we assume in this example that the book element
has only three child elements (title, cdrom, and cite).

TABLE III
PART OF THE PATHSUMMARY OF THE DBLP XML DATABASE

To evaluate the query “//book” we have to reconstruct the

internal node book as per the structure shown in Figure 6. We
use the PathSummary and the LeafNodes tables to implement
the reconstruction as follows.

• From the PathSummary table we can see that the C
value of book element is 1249, in other words, there
are 1249 instances of the book element, and these
instances are associated by child relations with: 1249
instances of the title element, 4 instances of the cdrom
element, and 3319 instances of the cite element. For
repetitive referencing, we refer to the book element
here as the parent element, and the title, cdrom, and
cite elements as the child elements.

• At this stage we want to determine which child
instances are associated with each parent instance. In
order to show how to do that, we use the LeafNodes
table. We take only the instances of the cdrom element
in the LeafNodes table, which are shown in Table 4, as
an example.

• Note that the parent element (the root element of the
subtree) is located at level 2 (Lb=2) and the child
elements are located at level 3 as shown in Figure 6.
Also, from Table 4, we can see that the first instance (the
first tuple in Table 4), whose SerNo=1, of the cdrom
element is associated with instance number 4 (s value at
Lev2) of the book parent element. Similarly, the second
instance of cdrom element is associated with instance
number 22 of the book parent element, and so on.

Page 9 of 13

2.2

book

3.13
title

3.23 3.24
citecdrom

1249 33194

1249
Level 2

Level 3

Fig. 6 A portion of the DBLP XML path summary tree

In this way we can reconstruct and publish the internal
nodes. In our example in Figure 6, each instance of the book
element has only one title child element. Just 4 instances of
the book element have 4 instances of cdrom child element, in
one-to-one relation. Finally, some instances of the book
parent element have multiple instances of the cite child
element.

TABLE IV
THE TUPLES OF CDROM ELEMENT IN THE LEAFNODES TABLE

Level PerLevel SerNo Value Lev1 Lev2 Lev3 Lev4
3 23 1 AHV/Toc.pdf 1 4 1 0
3 23 2 BERNSTEIN/Contents.pdf 1 22 2 0
3 23 3 MAIER/CONTENTS.pdf 1 151 3 0
3 23 4 Wiederhold/toc.html 1 443 4 0

D. UISX Query Processor

This section discusses the components of the UISX
query processor and the algorithm used in evaluating twig
queries. We evaluate twig queries using a light-weight
native XML engine on top of an SQL engine as illustrated
in Figure 7. Hence, we refer to this method as a hybrid
query processor. The job of the native XML engine is to
explore potential query optimization processes that are
related to the structure of XML data, which can not be
exploited by SQL engines. The SQL engine handles the
XML-Relational data after shredding.

SQL Engine

RDBMS
PathSummary Table
LeafNodes Table

Translator & Coordinator

XML Engine

XML Query Interface

Fig. 7 The UISX hybrid query processor

We developed the algorithm that is outlined below
(Algorithm 2) to evaluate twig queries with one branching
node. To evaluate a query with multiple branching nodes,
the query is divided into several subtrees that are rooted at
the branching nodes. The most nested subtree is evaluated
first, and then the result is used to solve the subtree that is
rooted at the next higher branching node, and so on.

The algorithm consists of 5 parts, which are indicated on
the left-hand side of the algorithm. Please note that curly

brackets stand for a set that can contain one or more node(s)
or element(s); (d,p) represents the node in the path summary
whose Level is specified by d and PerLv is specified by p;
and (d,p,V,Lev(x)) stands for the tuple in the LeafNodes table
whose Level is d, PerLv is p, the Value of the tuple is V, and
the Lev(x) is the value in the LeafNodes table where x is
equal to the level of the branching node, namely Lb.

Step 1 of Algorithm 2 identifies the labels d and p (Level,
and PerLv) of the leaf nodes for all branches in a twig
query, in addition to the level of the branching node Lb.
The second step identifies: the branch with the minimal
cardinality if no predicates are given in the query, where
the cardinality can be identified from the Count field in the
PathSummary table; or the branch with the minimal
selectivity if predicates are used in the query. We need this
step to minimize the number of nodes examined to identify
a match, and hence reduce the evaluation cost. Step 3 in the
algorithm identifies the set of secondary branches, which
contains all the branches identified in Step 1 minus the
base branch identified in Step 2. Step 4 evaluates the base
branch by identifying the set of tuples that satisfy the
predicates obtained in the preceding steps. These predicates
include the values of d, p, and x . Note that the first two
predicates are obtained from Step 2, and the third predicate
is obtained from Step 1 where x (to be used in Lev(x)) is
equal to Lb. We use these predicates to identify V and Lev(x)
values of the leaf nodes of the base branch. Finally, in Step
5, the information obtained in the previous steps -
specifically d, p, and Lev(x) values - is used to evaluate the
secondary branches and obtain the final answers, which are
returned to the user as the answer to the given query .

Algorithm 2: Evaluating twig queries

Algorithm to evaluate twig queries by using the hybrid method.
Input : Multiple paths XML query Q .
Output : Answer to all leaf nodes of the query .
1 //Use the PathSummary table to identify the Level & PerLev sets {(di , pi)}

//for all leaf nodes of all branches, plus the Level of the branching node Lb.
M (Q)→ {(di , pi)} // mapping of Q in I, identify leaf nodes
M (Q)→ (Lb) // mapping of Q in I, identify the branching node level

2 //define the base branch (dmin ,pmin).
(dmin , pmin)=(d1,p1)
For k = 2 to i

if Count(dk , pk) < Count(dmin,pmin)
then (dmin, pmin)=(dk,pk)

3 //define the secondary branches (dr , pr).
{(dr ,pr)}={{(di , pi)} – (dmin , pmin)}

4 //Evaluate the base branch first.
use LeafNodes table to find set of tuples {(dj ,pj ,Vm ,Lev (x))}

where dj=dmin and
pj=pmin and
x = Lb

5//Evaluate the secondary branches by using the base branch information .
For each tuple in {(dj ,pj ,Vm , Lev (x))} returned by step 4

Begin
For each branch in {(dr , pr)}

Find {(dr , pr , Vn , Lev (y))}
where y = Lb and

Lev(x)= Lev(y)
Return (Vm, {{ Vn}})

End

Page 10 of 13

In Algorithm 2 there are two factors that affect the
number of accesses to indexes: the number of branches and
the selectivity of the branches. Generally in our algorithm,
the number of accesses to indexes is affected exponentially
by the number of branches and linearly by the selectivity of
the leaf nodes. The numbers of returned tuples and indexes
accesses are inversely proportional to the selectivity of the
leaf nodes of the branches in twig queries. False positive
answers for a query are not possible with this algorithm
since the set of retrieved tuples (candidate tuples) forms the
exact answer to the query.

IV. EXPERIMENTAL EVALUATION

We performed all experiments on a 3 GHz Intel®
Pentium 4 PC running Windows® XP, with 1.5 GB of
RAM. We used IBM’s DB2® V9.5 RDBMS [11] to store
and retrieve XML shredded data. The goal of the
experiments is to evaluate the performance in terms of
elapsed time to execute a query and to evaluate the sizes of
the databases, and the supporting indexes that are used by
UISX system. We compare our approach with the
approaches proposed by Chen et al. [3] for two reasons.
First, they adopt a similar approach by creating branching
nodes indexes that facilitate and guarantee one index
lookup to find matches for each node returned by the base
branch evaluation. Second, they compared their approach
with five existing indexing schemes including: Edge table
[14] and simulated DataGuide [8], which are based on edge
model-mapping; simulated Index Fabric [4] and Access
Support Relation (ASR) [13], which are based on forward-
paths model-mapping; and Join Indices (JI) [28]. Chen et al.
[3] proved experimentally that, in general, their approaches
outperform these schemes.

A. Testing Data and Queries

Our experiments were carried out using the XMark [21],
and the DBLP [27] datasets. We used the test queries
proposed by Chen et al. [3] because they are broad and
cover different criteria such as cardinality, selectivity,
recursion, and depth of the branch node. For ease of
reference, the queries are listed in Table 5. Table 6
contains a summary of the characteristics of the test query
sets in Table 5. The first set covers single path queries. The
second set covers twig (multiple paths) queries with
different selectivity and high branch points. The third set
covers twig queries with low branch points. The fourth set
covers recursive queries. The “X” and the “D” in the “Qry
No” column in Table 5 stand for the XMark and the DBLP
databases, respectively.

We executed each query ten times against its respective
dataset and used the average of the 10 readings in our
analysis. The time to translate the XPath queries to SQL
queries is not included and only the execution times of the
queries are recorded, which reflect the impact of the index
structures.

TABLE V. FOUR SETS OF QUERIES USED IN TESTING

Set
No

Qry
No Testing Query

Result
per

Branch

1

Q1X
Q1D
Q2X
Q2D
Q3X
Q3D

/site/regions/namerica/item/quantity [. = 5]
/dblp/inproceedings/year [. = 1968]
/site/regions/namerica/item/quantity [. = 2]
/dblp/inproceedings/year [. = 1988]
/site/regions/namerica/item/quantity [. = 1]
/dblp/inproceedings/year [. = 2004]

1
1

709
1746
9228

10660

2

Q4X

Q5X

Q6X

Q7X

Q8X

Q9X

/site [/people/person/profile/@income = 46814.17]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 46814.17]
[/people/person/name = ‘Hagen Artosi’]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 9876.00]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 9876.00]
[/regions/namerica/item/location = ‘United States’]
/open_auctions/open_auction/bidder[/increase = 75.00]
/site [/people/person/profile/@income = 9876.00]
/open_auctions/open_auction/bidder[/ increase = 3.00]
/site [/people/person/profile/@income = 9876.00]
[/regions/namerica/item/location = ‘United States’]
/open_auctions/open_auction /bidder[/increase = 3.00]

1
55

1
1

55
2038

55
2038
7519

55
2038
5172
2038
7519
5172

3

Q10X

Q11X

/site/open_auctions/open_auction
[/annotation/author/@person = ‘person22082’]
/bidder/time
/site/open_auctions/open_auction
[/annotation/author/@person = ‘person22082’]
[/bidder/increase = 3.00]
/bidder/time

2
59486

2
5172

59486

4

Q12X

Q13X

Q14X

Q15X

/site//item[/incategory/category = ‘category440’]
/mailbox/mail/date
/site//item[/incategory/category = ‘category440’]
/mailbox/mail/date
/mailbox/mail/to
/site//item[/quantity = 2]
[/location = ‘United States’]
/site//item[/quantity = 2]
[/location = ‘United States’]
/mailbox/mail/to

41
20946

41
20946
20946

1543
16294

1543
16294
20946

TABLE VI
CHARACTERISTICS OF THE TESTING QUERY SETS IN TABLE 5

Query
Set Branches Result Per

Branch
Branch
Depth Recursion

1 1 1 – 10660 N/A 0
2 2-3 1 – 7519 High 0
3 2-3 2 – 59486 Low 0
4 2-3 41 – 20946 Low 1

B. Experimental Results

Since we can reconstruct internal nodes from the

LeafNodes and the PathSummary tables, we do not
therefore need to map them, and hence the size of the
mapped database can be reduced significantly. For example,
the actual size savings in our experiments are 115 MB and
88 MB for the XMark and the DBLP databases,
respectively. Should we decided to store the internal nodes
and use them as in the approaches proposed by Chen et al.
[3] and Cooper et al. [4], we would need to use that much
of extra space, which cause 42% and 51% increase in the
size of the current XMark and DBLP tables, respectively
(see Table 7). Another source of space saving in our
approach is the fact that the paths of the nodes (elements
and attributes) are not recorded in the database, as the case

Page 11 of 13

in other approaches [3,4], because we can regenerate them
from the PathSummary table by using the nodes’ labels.

TABLE VII.

SIZES OF XMARK AND DBLP DATA-SETS WITH DIFFERENT IMPLEMENTATIONS

Original
size

UISX with Internal
nodes mapping

UISX without internal
nodes mapping

Saved
space

Percentage of
saved space

XMARK 100 MB 250 158 115 42%
DBLP 50 MB 155 85 88 51%

Table 8 summarizes the characteristics of the

ROOTPATHS, DATAPATHS, and UISX index structures
for the XMark and the DBLP databases. The tables and
indexes sizes are in Megabytes. Note that the original sizes
of XMark and DBLP datasets are 100 MB and 50 MB,
respectively.

TABLE VIII
CHARACTERISTICS OF TESTING DATABASES AS IMPLEMENTED BY THE

INDICATED APPROACHES

ROOTPATHS DATAPATHS UISX
XMARK Tables Size 267 1,285 158
DBLP Tables Size 151 381 85
XMARK Indexes Size 509 2,535 325
DBLP Indexes Size 282 402 183
XMARK No. of Tuples 2,995,272 15,734,707 1,158,492
DBLP No. of Tuples 2,709,327 8,022,673 1,296,328

The ROOTPATHS and DATAPATHS indexes in Table 8

were not subjected to the compression methods listed in Chen
et al.’s paper. To save the shredded data of the XMark
database, UISX used a space equal to 59% of the space used
by ROOTPATHS, and 12% of the space used by
DATAPATHS. Similarly, to save the shredded data of the
DBLP database, UISX used a space equal to 56% of the space
used by ROOTPATHS, and 22% of the space used by
DATAPATHS. With regard to the indexes size for XMark
database, UISX used 64% of the space used by ROOTPATHS,
and 13% of the space used by DATAPATHS. With regard to
the indexes size of the DBLP database, UISX used 65% of the
space used by ROOTPATHS, and 46% of the space used by
DATAPATHS. Finally, the number of tuples that is required
by UISX to shred the XMark XML database is equal to 39%
of the tuples required by ROOTPATHS, and 7% of the tuples
required by DATAPATHS; and for DBLP, UISX requires
48% of the number of tuples required by ROOTPATHS and
16% of the tuples required by DATAPATHS.

The results of the performance tests of UISX compared to
ROOTPATHS and DATAPATHS with regards to the sets of
test queries in Table 5 are illustrated in Figures 8-10.

1.0

10.0

100.0

1 2 3

UISX

DATAPATHS

ROOTPATHS

Query Number

El
ap
se
d
tim

e
(m

s)

Fig. 8 Performance comparison of UISX with ROOTPATHS and
DATAPATHS using the DBLP database

We tested the DBLP data-tree with just the single branch
queries since its depth is shallow. The results of the 3 test
queries, given in Figure 8, show that UISX performs 67% -
76% better than the ROOTPATHS, and 76% - 79% better
than DATAPATHS.

Figure 9 presents the elapsed execution time of the test
queries with UISX compared with ROOTPATHS using the
XMark database. We notice that the gain in performance is
fairly steady (53% – 64%) for the first type (single branch
queries 1-3). On the other hand, the percentage gain in
performance for the second type of queries (queries 4 – 9)
decreases from the 81% to 31% as the selectivity decreases,
since the number of pages that contain the returned tuples
of the elements with high selectivity are smaller than those
with low selectivity. The gain in performance for the third
type of test queries is extremely high (99%) because with
ROOTPATHS, each tuple returned by the base branch
evaluation result has to be hash-joined or merged with the
tuples returned by the secondary branches in order to find
the matching tuples. While in UISX, the matching tuples of
each secondary branch are retrieved with one comparison
for each tuple returned by the base branch. The gain in
performance for the fourth type of queries is high (79% -
89%) for the selective queries (queries 12 and 13), and
relatively low (19% - 37%) for the queries with low
selectivity (queries 14 and 15).

1.0

10.0

100.0

1000.0

10000.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

UISX

ROOTPATHS

Query Number

El
ap
se
d
tim

e
(m

s)

Fig. 9 The performance comparison of UISX with ROOTPATHS using
XMark database

Page 12 of 13

Figure 10 shows the comparison of UISX with
DATAPATHS using the XMark database. We notice that the
gain percentage for the first type of queries is steady and it is
in the fifties. Similar to the performance tests against the
ROOTPATHS, the gain percentage in the performance of the
second type of queries decreases as the selectivity decreases
and ranges between (9% - 53%). The gain percentage in
performance for the third type is ranging between (48% -
50%). Also, the gain percentage in performance for the first
two queries of the forth type of queries (queries with high
selectivity) ranges between (36% - 44%), which is higher than
that of the last two queries (queries with low selectivity),
which ranges between (9% -24%).

1.0

10.0

100.0

1000.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

UISX

DATAPATHS

El
ap
se
d
tim

e
(m

s)

Query Number

Fig. 10 The performance comparison of UISX with DATAPATHS using

XMark database

Our approach performs well in comparison to
ROOTPATHS and DATAPATHS. The UISX performance
gains over ROOTPATHS are mainly because UISX does not
produce any false positive answers, while ROOTPATHS does.
DATAPATHS does not produce any false positives, and it is
an efficient index structure, but its size is large. UISX
performance gains over DATAPATHS are due to the
relatively small size of the UISX index structure. Larger
indexes require a deeper B+tree, and hence require more
search. An efficient way to evaluate a query using
DATAPATHS index structure is by evaluating the base
branch first. Then a mechanism must be implemented in order
to extract the ids of the branching nodes from the returned
IdLists (e.g. scan the IdList string by implementing a string
matching operations). In UISX, in contrast, when the base
branch is evaluated, the branching nodes ids (labels) are
returned in the fields (Lev2,Lev3,Lev4,..etc), and are ready to
be used in matching operations directly without the need for
extra techniques to extract the branching nodes ids.

To evaluate recursive queries (queries 12-15), the reversed-
path approaches use the Optional String Pattern Matching
(OSPM) function (“LIKE”) to evaluate a path with ancestor-
descendent axis [9]. For example, if we assume that S and A
stands for student and address elements, respectively, then the
query “//student/address” would be evaluated by using an
SQL query that would contain the statement “SchemaPath
LIKE AS%” along with other statements. In contrast, the
UISX approach uses only the exact string pattern matching

(“=”). For example to find the nodes that match the path in the
above query, we would run the following SQL query:

select s1.level, s1.perlv
from PathSummary as s1, PathSummary as s2
where s1.tag='address' and
 s2.tag='student' and
 s1.parent=s2.perlv

It is known that SQL supports exact string pattern matching

efficiently by using the B+tree indexes, while B+tree indexes
do not support (“LIKE”) efficiently [9].

V. CONCLUSIONS

We have proposed an index structure that indexes all nodes
in an XML data-tree in relation to their branching nodes. This
index structure can be used to establish a relation between any
two arbitrary nodes that have a common ancestor in a data-
tree with a minimal number of matches. Consequently, this
index structure facilitates efficient evaluation of twig queries,
while maintaining competitive performance for single path
queries. The index structure has a path summary of the XML
data-tree. Relational tables are used to store shredded XML
data and path summaries. Our approach uses less space
compared to other state-of-the-art approaches while having
similar or better query performance.

We believe that building a native XML query engine on top
of the SQL engine is a good way to process XML queries on
shredded XML data. The native engine verifies the
correctness of the hierarchical structure of the query.
Meanwhile, it identifies the essential parts (elements) of an
XML query that must be used to execute the query, and pass
them to the SQL engine in a special order for execution, hence
eliminating joins that could be performed otherwise. Further,
our experiments show that mappings that are based on path
summaries perform well in comparison to mappings that are
based on reversed-paths.

USIX uses only two tables to store XML databases. One
table holds the path summary, and the other holds data about
the leaf nodes. The summary table is relatively small. These
summaries save us from recording the paths of the tuples in
the database, and are used to regenerate the paths from the
nodes’ labels.

Our method of mapping XML into relational tables does
not require an XML schema so it can be applied as a general
solution for any data-tree structure in addition to XML
databases. Two popular data-sets are used in our experiments:
the XMark dataset [21], which is document-centric database;
and the DBLP dataset [27], which is a data-centric database.
Our approach performs well with both types of data-sets.

Our XML-relational approach evaluates XML queries by
using equijoins, while most other XML-relational approaches
use inequality-joins [9,10,30], which are less efficient. Our
approach, furthermore, uses exact string pattern matching,
while other approaches use the “LIKE” operator [9]. Finally,
we are planning to improve on the native XML query engine

Page 13 of 13

that works on top of the SQL engine. We think that
coordinating the query optimization tasks between these two
engines can improve XML query processing. Despite the fact
that the size of the shredded data is minimized, since the leaf
nodes contain details about both themselves and the internal
nodes, we noticed that some of these details are redundant
among multiple leaf nodes. For example, leaf nodes that share
the same branching node have similar information about the
path from the root node to the branching node. It worth
investigating if there is a way to eliminate these redundancies
and improve performance at the same time.

ACKNOWLEDGMENT

This work was supported by the Natural Science and
Engineering Research Council of Canada.

REFERENCES

[1] S. Chaudhuri and K. Shim, “Storage and Retrieval of XML Data using
Relational Database,” in Proc. ICDE 2003, Bangalore, India, p. 802.

[2] D. Che, K. Aberer, and M. Ozsu, “Query Optimization in XML
Structured-document Databases. The VLDB Journal, Vol. 15, No. 3 , pp.
263-289, 2006.

[3] Z. Chen, J. Gehrke, F. Korn, N. Koudas, J. Shanmugasundaram, D.
Srivastava, “Index Structures for Matching XML Twigs using
Relational Query Processors,” Data & Knowledge Engineering, Vol. 60,
No. 2 , pp. 283-302, 2007.

[4] B. Cooper, N. Sample, M. Franklin, G. Hjaltason, and M. Shadmon, “A
Fast Index for Semistructured Data,” in Proc.VLDB, 2001, Rome, Italy,
pp. 341-350.

[5] I. Dweib, A. Awadi, S.E. Elrhman, and J. Lu, “Schemaless Approach of
Mapping XML Document into Relational Database, in Proc. of CIT,
2008, Sydney, Australia, pp. 167-172.

[6] D. Florescu, and D. Kossmann, “Storing and Querying XML Data using
an RDMBS,” Bulletin of the Technical Committee on Data Engineering,
Vol. 22, No. 3, pp. 27-34, 1999.

 [7] R. Goldman, J. McHugh, and J. Widom, “From Semistructured Data to
XML: Migrating the Lore Data Model and Query Language,” in
Proceedings of the 2nd International Workshop on the Web and
Databases, ACM SIGMOD Workshop, 1999, Philadelphia,
Pennsylvania, USA, pp. 25-30.

[8] R. Goldman and J. Widom, “DataGuides: Enabling Query Formulation
and Optimization in Semistructured Databases,” in Proc. VLDB, 1997,
Athens, Greece, pp. 436-445.

 [9] G. Gou, and R. Chirkova, “Efficiently Querying Large XML Data
Repositories: A Survey,” Transactions on Knowledge and Data
Engineering, Vol. 19, No. 10, pp. 1381-1403, 2007.

[10] P. Harding, Q. Li, and B. Moon, “XISS/R: XML Indexing and Storage
System Using RDBMS,” in Proc. VLDB, 2003, Berlin, Germany, pp.
1073-1076.

[11] (2007) IBM homepage on DB2. [Online]. Available:
http://www01.ibm.com/software/data/db2/linux-unix-windows/

[12] R. Kaushik, P. Bohannon, J. Naughton, and H. Korth, “ Covering
Indexes for Branching Path Queries,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2002, pp.
133-144.

[13] A. Kemper and G. Moerkotte, “Access Support in Object Bases”, in
Proc. SIGMOD, 1990, pp. 364-374.

[14] J. McHugh and J. Widom, “Query Optimization for XML,” in
Proc.VLDB, 1999, Edinburgh, Scotland, UK, pp. 315-326.

[15] T. Milo and D. Suciu, “Index Structures for Path Expressions,” in Proc.
ICDT, 1999, Jerusalem, Israel, pp. 277-295.

[16] S. Mohammad and P. Martin, “LLS: A Level-based Labelling Scheme
for XML Databases,” CASCON, 2010, Toronto, Canada. pp. 115-127

[17] S. Mohammad and P. Martin, “Index Structures for XML Databases,” In
Li, C., and Ling, T. W. (Eds.). Advanced Applications and Structures in
XML processing: Label Streams, Semantics Utilization and Data Query
Technologies. IGI Global, 2010, pp. 98-124.

 [18] J. Naughton, D. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis, et
al, “ The Niagara Internet Query System,” Bulletin of the Technical
Committee on Data Engineering, Vol. 24, No. 2, pp. 27-33, 2001.

[19] S. Pal, I. Cseri, O. Seeliger, G. Schaller, L. Giakoumakis, and V.
Zolotov, “Indexing XML Data Stored in a Relational Database, “ in
Proc. VLDB, 2004, Toronto, Canada , pp. 1146-1157.

[20] S. Paparizos, H. Jagadis, J. Patel, S. Al-Khalifa, L. Ladshmanan, D.
Srivastava, et al., “TIMBER: A Native System for Querying XML,” in
Proc. of the ACM SIGMOD International Conference on Management
of Data, 2003, San Diego, California, USA, pp. 672-672.

[21] A. Schmidt, F. Waas, M. Kersten, D. Florescu, I. Manolescu, M. Carey,
and R. Busse, “The XML Benchmark Project,” CWI Technical Report
INS-R0103, 2001.

[22] H. Schoning, “Tamino – a DBMS Designed for XML,” in Proc. ICDE,
2001, Heidelberg, Germany, pp. 149-154.

[23] J. Shanmugasundaram, E. Shekita, J. Kiernan, R. Krishnamurthy, E.
Viglas, J. Naughton, and I. Tatarinov, “A General Technique or
Querying XML Documents using a Relational Database System,” ACM
SIGMOD Record, Vol. 30, No. 3, pp. 20-26, 2001.

[24] J. Shanmugasundaram, K. Tufte, and G. He, “Relational Databases for
Querying XML Documents: Limitations and Opportunities, “ in Proc.
VLDB, 1999, Edinburgh, Scotland, pp. 302-314.

[25] P. Suei, J. Wu, Y. Lu, D. Lee, S. Chou, and C. Lin, “A Novel Query
Preprocessing Technique for Efficient Access to XML-Relational
Databases,” in Proc. of First International Workshop on Database
Technology and Applications, 2009, Wuhan, Hubei China, pp. 565-569.

[26] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and
C. Zhang, “Storing and Querying Ordered XML Using a Relational
Database System,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2002, Madison, Wisconsin, USA,
pp. 204-215.

[27] The DBLP Computer Science Bibliography XML records homepage.
[Online]. 2009, Available: http://www.informatik.uni-trier.de/~ley/db/.

[28] P. Valduriez, “Join Indices,” ACM Transactions on Database Systems
(TODS), Vol. 12, No. 2, pp. 218-246, 1987.

[29] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura, “XRel: A
Path-Based Approach to Storage and Retrieval of XML Documents
using Relational Databases,” ACM Transaction on Internet Technology
(TOIT), Vol. 1, No. 1, pp. 110-141, 2001.

[30] C. Zhang, R. Naughton, D. Dewitt, Q. Luo, and G. Lohman, “On
Supporting containment Queries in Relational Database Management
Systems,” in Proceedings of ACM SIGMOD International Conference
on Management of Data, 2001, Santa Barbara, California, USA, pp.
425-436.

[31] Q. Zou, S. Liu, and W. Chu, “Ctree: A Compact Tree for Indexing XML
Data,” in Proc. WIDM, 2004, Washington, DC, USA, pp. 39-46.

TRADEMARKS

- IBM and DB2 are trademarks or registered trade-marks of
International Business Machines Corporation in the United States,
other countries, or both.

- Windows is a trademark of Microsoft Corporation in the United
States, other countries, or both.

- Intel is a trademark or registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries

- Oracle is a registered trademark of Oracle Corporation and/or its
affiliates

- Sybase is a registered trademark of Sybase,

