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Abstract. We consider the state complexity of extensions of the Kleene
star and quotient operations to unranked tree languages. Due to the na-
ture of the tree structure, there are two distinct ways to define the star
operation for trees, we call these operations, respectively, bottom-up and
top-down star. We show that (n+ 3

2
)2n−1 states are sufficient and nec-

essary in the worst case to recognize the bottom-up star of a tree lan-
guage recognized by an n-state deterministic unranked tree automaton.
The bound is of a different order than the known state complexity re-
sult 3

2
· 2n−1 for the Kleene star operation for automata on strings. On

the other hand, for the top-down star we obtain a tight state complex-
ity bound that coincides with the corresponding result for automata on
strings.
The bottom-quotient and top-quotient operations are extensions of the
left and right quotient to trees. We establish tight state complexity
bounds for both variants of quotient. The precise worst-case state com-
plexity of bottom-quotient is shown to be (n+1)2n − 1, which differs by
the multiplicative factor n+ 1 from the corresponding result 2n − 1 for
ordinary finite automata.

Keywords: unranked trees, deterministic tree automata, Kleene star,
quotient operation, operational state complexity.

1 Introduction

XML plays an important role in data representation and exchange on the
web [2]. Since its arrival, many theories in formal languages and automata
have been used in XML applications, which include tree grammars and
automata [9, 8, 13, 12]. As one of the automaton models for XML, we
consider unranked tree automata in this paper. For other models such
as nested word automata and stepwise automata, please refer to [1, 11, 3]
and the references listed there.



In recent years, a lot of work has been done on the descriptional com-
plexity of finite automata and related structures [5–7, 14, 15]. Operational
state complexity studies how the size of an automaton changes under reg-
ularity preserving operations. While the corresponding results for string
languages are well known [14, 16], very few results have been obtained
for tree automata. While the state complexity results for tree automata
operating on ranked trees are often similar to the corresponding results
on regular string automata, the situation becomes essentially different for
automata operating on unranked trees.

In our previous paper [10], we have studied union, intersection and
concatenation of deterministic unranked tree automata. In this paper, we
continue the work and study the state complexity of star operations on
deterministic unranked tree automata. We find that due to the nature
of the tree structure, there are two essentially different ways to compute
the star of tree languages. We name them top-down star operation and
bottom-up star operation.

The top-down star operation is defined by building the concatenation
of trees “top-down”. Thus, we define the kth top-down power of a tree
language T to consist of all trees that are obtained from some tree in the
(k−1)th power of T by replacing some leaf by a tree t ∈ T . Since there is
no restriction on where the substitution occurs, this means that the kth
power of T includes, among others, all trees obtained from a tree in T
where k − 1 leaves have been replaced by some tree of T .

For the bottom-up star operation we define the kth bottom-up power
of T by replacing some leaf of a tree t ∈ T by a tree in the (k − 1)th
power of T . Thus, in some sense the trees are concatenated sequentially
for the bottom-up star, and, in parallel for the top-down star. From this
it might seem that the bottom-up star is more similar to the classical
star operation than the top-down star. However, at least in terms of state
complexity, just the opposite turns out to be the case.

We find that for a tree language T recognized by an n vertical state
deterministic unranked tree automaton, 3

2 · 2
n−1 is a tight upper bound

on the number of vertical states for the top-down star operation which
is the same as that of the star operation on ordinary strings, and (n +
3
2)2

n−1 vertical states are sufficient and necessary in the worst case for a
deterministic unranked tree automaton to recognize the bottom-up star
of T , which is of a different order than the known result 3

2 ·2
n−1 on strings.

The factor n is necessary here due to the restriction that the kth power
of T consists of trees obtained from some t ∈ T by replacing one leaf by
a tree in the (k − 1)th power of T . This means the computation must



guarantee that each concatenated tree has at most one leaf substituted
by another tree.

We define top-quotient and bottom-quotient operations on trees which
correspond, respectively, to right and left quotient when dealing with au-
tomata that process the input tree from the leaves to the root. We in-
vestigate the state complexity of these two operations on deterministic
unranked tree automata. For a tree language T recognized by an n ver-
tical state deterministic unranked tree automaton, n vertical states are
necessary and sufficient for any deterministic unranked tree automaton to
recognize the top-quotient of T with respect to an arbitrary tree language.
However, for the bottom-quotient operation, the tight state complexity
bound is (n + 1)2n − 1 which is of a different order than the state com-
plexity of left-quotient for automata operating on strings. Recall that the
state complexity of left-quotient is 2n − 1 [14]. The factor n+ 1 is neces-
sary here because the automaton has to be sure that the concatenation
takes place in only one branch of the tree.

The paper is organized as follows. Definitions of top-down and bottom-
up star operation, top-quotient and bottom-quotient on trees and other
notations are given in Section 2. We prove the tight upper bounds on the
number of vertical states for bottom-up and top-down star operations in
Section 3. We give tight bounds for quotient operations in Section 4. All
proofs omitted due to the length restriction can be found in the appendix
at the end of the paper.

2 Preliminaries

Here we briefly recall some notations. A general reference on tree lan-
guages and tree automata is [4].

Let IN be the set of non-negative integers. A tree domain D is a finite
set of elements in IN∗ with the following two properties: (i) If w ∈ D
and u is a prefix of w then u ∈ D. (ii) If ui ∈ D, i ∈ IN and j < i then
uj ∈ D. The nodes in an unranked tree t can be denoted by a tree domain
dom(t), and t is a mapping from dom(t) to the set of labels Σ. The set
of Σ-labeled trees is TREESΣ.

We denote a tree t = b(a1, . . . , an), whose root is labeled by b and
leaves are labeled by a1, . . . , an, simply as b(a1 . . . an). When a1 = . . . =
an = a, write t = b(an). By a slight abuse of notation, for a unary tree
t = a1(a2(. . . (an) . . .)), we write t = a1a2 . . . an for abbreviation. When
a1 = . . . = an = a, we write t = an for short. (In each case it should be



clear from the context whether an refers to a sequence of leaves or to a
unary tree.)

The set of all Σ-trees where exactly one leaf is labeled by a special
symbol X (X /∈ Σ) is TREESΣ [X]. For t ∈ TREESΣ[X] and t′ ∈
TREESΣ , t(X ← t′) denotes the tree obtained from t by replacing the
unique occurrence of the variable X by t′.

We define tree concatenation as an operation where one leaf of a
tree t is replaced by another tree t′. Furthermore, we can restrict the
places where the substitution can occur depending on the leaf label. For
t, t′ ∈ TREESΣ and b ∈ Σ, we denote by t ·b t

′ the set of trees that are
obtained from t by replacing one leaf labeled by b by the tree t′. The
b-concatenation operation is extended in the natural way to sets of trees
L1, L2:

L1 ·b L2 =
⋃

t∈L1,t′∈L2

t ·b t
′.

Definition 1. The top-down b-star operation of a tree language L for b ∈
Σ, denoted as [L]∗(b), is an infinite union

⋃
i≥0[L]

i
(b), where [L]0(b) = {b},

[L]1(b) = L, and [L]i+1
(b) = ([L]i(b)) ·b L, for i ≥ 1.

Definition 2. The bottom-up b-star operation of a tree language L for
b ∈ Σ, denoted as L∗

(b), is an infinite union
⋃

i≥0 L
i
(b), where L0

(b) = {b},

L1
(b) = L, and Li+1

(b) = L ·b (L
i
(b)), for i ≥ 1.

For example, if L = {a(b, b)}, tree a(a(b, b), a(b, b)) ∈ [L]3(b) and

a(a(b, b), a(b, b)) /∈ L3
(b). When b ∈ Σ is understood from the context,

we simply call the operation top-down (respectively bottom-up) star op-
eration and write [L]∗ (respectively L∗) in place of [L]∗(b) (respectively

L∗
(b)). The b-concatenation is not associative. The top-down and bottom-

up star operations represent exactly the left- and right-most bracketing of
this non-associative b-concatenation operation. Consider the concatena-
tion of the sequence t0, t1, . . . , ti+1 ∈ L. By Definition 1, ti+1 can replace
any leaf node in tj, j ≤ i. However, by Definition 2, ti+1 can only re-
place any leaf node in ti. Figure 1(a) shows one possible resulting tree
constructed by using Definition 1, and Figure 1(b) shows a resulting tree
obtained by Definition 2.

Next we define the quotient operations considered in this paper.

Definition 3. Let b ∈ Σ. The b-top-quotient of a tree language T with
respect to a tree language T ′ is defined as:

T ′⊤bT = {t | ∃t′ ∈ T ′, t′ ·b t ∈ T}.



Fig. 1. Two resulting trees from two definitions

Definition 4. Let b ∈ Σ. The b-bottom-quotient of a tree language T
with respect to a tree language T ′ is defined as:

T⊥bT
′ = {t | ∃t′ ∈ T ′, t ·b t

′ ∈ T}.

When considering computations that process a tree in the bottom-up di-
rection, the top-quotient can be viewed as an extension of right-quotient
from strings to trees, and similarly, the bottom-quotient extends the left-
quotient operation from strings to trees. When b ∈ Σ is understood
from the context, we simply call the operations top-quotient and bottom-
quotient and write T ′⊤T (respectively T⊥T ′) in place of T ′⊤bT (respec-
tively T⊥bT

′).

A deterministic unranked tree automaton (DTA(DFA))1 is a 4-tuple
A = (Q,Σ, δ, F ) where Q is a finite set of states, Σ is the alphabet,
F ⊆ Q is the set of final states, δ is a mapping from Q×Σ to the subsets
of Q∗ which satisfies the condition that, for each q ∈ Q,σ ∈ Σ, δ(q, σ)
is a regular language and for each label σ and every two states q1 6=
q2, δ(q1, σ) ∩ δ(q2, σ) = ∅. The language δ(q, σ) is called the horizontal
language associated with q and σ and it is specified by a DFA HA

q,σ.

The states in Q are called vertical states. The DFAs recognizing the
horizontal languages are called horizontal DFAs and their states are called
horizontal states. For a tree t, tA ∈ Q denotes the state assigned to the
root of t by A in the computation. The set of all Σ-trees where some leaf
nodes are labeled by elements of Q is TREESΣ(Q).

To simplify the constructions, we assume that the DFAs representing
the horizontal languages are complete.

1 Following the terminology from [10, 12] we call a deterministic bottom-up tree au-
tomaton where the horizontal languages are represented by DFAs a DTA(DFA).



3 State complexity of star operation

In this section, we prove tight upper bounds on the numbers of vertical
states for both top-down and bottom-up star operations on deterministic
unranked tree automata. We present upper bounds on both star opera-
tions below, and state the corresponding matching lower bound examples
in Section 3.2.

3.1 Upper bounds

First we state the upper bound for the bottom-up star operation.

Lemma 1. Let A = (Q,Σ, δ, F ) be an arbitrary DTA(DFA), and HA
σ,q =

(Cσ,q, Q, µσ,q, cσ,q,0, Uσ,q) be the DFA representing the horizontal language
associated with σ and q.

We can construct a DTA(DFA) B recognizing the language L(A)∗(b),

b ∈ Σ (bottom-up b-star operation) with at most

(|Q|+
3

2
)2|Q|−1

vertical states.

Proof. Let Q = {s1, s2, . . . , sn} and 0 ∈ Q be the state assigned to the
leaf nodes labeled by b. Choose B = (P,Σ, λ,E), where P = P1∪P2∪P3,

– P1 = {({q} ∪ p, q) | p ∈ P(Q− {q}), q ∈ Q− F},

– P2 = {({q, 0} ∪ p, q) | p ∈ P(Q− {q, 0}), q ∈ F},

– P3 = {(p, dead) | p ∈ P(Q)}.

State (p, q) in P is final if q is in F or there exists state q′ in p such that
q′ is in F . In the following, we assume that {0} ∩ F 6= F , which means
there is a final state different from 0.

For states (p ∪ {q}, q) ∈ P1 and states (p ∪ {q, 0}, q) ∈ P2, let p =
{q1, . . . , qm}, 0 ≤ m < n. The transition function λ(σ, (p, q)) is defined by
DFA Gσ,(p,q) = (Dσ,(p,q), P, γσ,(p,q), dσ,(p,q),0, Vσ,(p,q)). The set of states is
Dσ,(p,q) = ((P(Cσ,q1)×. . .×P(Cσ,qm))×(Cσ,q1×. . .×Cσ,qm)×Cσ,q. The ini-
tial state is dσ,(p,q),0 = (({cσ,q1,0}, . . . , {cσ,qm,0}), (cσ,q1 ,0, . . . , cσ,qm,0), cσ,q,0).
The set of final states Vσ,(p,q) consists of all the states
v = ((C1, . . . , Cm), (u1, u2, . . . , um), u) where for every 1 ≤ i ≤ m, Ci ∩
Uσ,qi 6= ∅, u ∈ Uσ,q.



The transition function γσ,(p,q) is defined as follows: for any input
(p′, q′) = ({j1, j2, . . . , ji}, q

′) and any state d = ((C1, . . . , Cm), (c1, c2, . . . , cm), c)
in Dσ,(p,q),

γσ,(p,q)((p
′, q′), d) =

((
⋃

c∈C1

µσ,q1(q
′, c) ∪

i⋃

l=1

µσ,q1(jl, c1), . . . ,
⋃

c∈Cm

µσ,qm(q
′, c) ∪

i⋃

l=1

µσ,qm(jl, cm)),

(µσ,q1(q
′, c1), . . . , µσ,qm(q

′, cm)), µσ,q(q
′, c))

The γ-transition in the horizontal DFA Gσ,(p,q) of B is defined using
the µ-transition in the horizontal DFAs in A. However, since the input of
Gσ,(p,q) is a sequence of states of B, e.g. (p1, q1), (p2, dead), . . . , (pm, qm),
dead is also a possible input for the µ-transition. Since dead is not in the
alphabet of the horizontal DFAs of A, which means that µ is undefined
for input dead, we define the µ-transition in the horizontal DFAs in A
such that any transition labeled by dead goes to the sink state of the
DFAs.

For states in (p, dead) ∈ P3, let p = {q1, . . . , qm}, m ≤ n. The transi-
tion function λ(σ, (p, dead)) is defined by the DFA
Gσ,(p,dead) = (Dσ,(p,dead), P, γσ,(p,dead), dσ,(p,dead),0, Vσ,(p,dead)). The set of
states isDσ,(p,dead) = ((P(Cσ,q1)×. . .×P(Cσ,qm))×((Cσ,q1)×. . .×Cσ,qm)×
(Cσ,s1 , . . . , Cσ,sn). The initial state is dσ,(p,dead),0 = (({cσ,q1,0}, . . . , {cσ,qm,0}),
(cσ,q1,0, . . . , cσ,qm,0), (cσ,s1,0, . . . , cσ,sn,0)). The set of final states Vσ,(p,dead)

consists of all the states v = ((C1, . . . , Cm), (u1, u2, . . . , um), (v1, . . . , vn))
where for every 1 ≤ i ≤ m, Ci ∩ Uσ,qi 6= ∅, and there does not exist any
vi that vi ∈

⋃
s∈Q Uσ,s.

The transition function γσ,(p,dead) is defined as follows: for any input
(p′, q′) = ({j1, j2, . . . , ji}, q

′) and any state
d = ((C1, . . . , Cm), (c1, c2, . . . , cm), (c1, . . . , cn)) in Dσ,(p,q),

γσ,(p,dead)((p
′, q′), d) =

((
⋃

c∈C1

µσ,q1(q
′, c) ∪

i⋃

l=1

µσ,q1(jl, c1), . . . ,
⋃

c∈Cm

µσ,qm(q
′, c) ∪

i⋃

l=1

µσ,qm(jl, cm)),

(µσ,q1(q
′, c1), . . . , µσ,qm(q

′, cm)), (µσ,q1(q
′, c1), . . . , µσ,qn(q

′, cn)))

The vertical states in B consist of two components. The first compo-
nent simulates the situation where the concatenation occurs, and the sec-
ond component records the computation where there is no concatenation.
At a subtree σ(t1, t2, . . . , tm), where states (p1, q1), (p2, q2), . . . , (pm, qm),



pi ⊆ Q, 1 ≤ i ≤ m are assigned to the roots of t1, t2, . . . , tm, respectively,
state (p, q) is assigned to the root labeled by σ provided that the sequence
of states q1q2 . . . qm is accepted by HA

σ,q, and p consists of all states that
are obtained by A by in the child nodes “taking” one state in pi and
using qj, for all j 6= i for all choices of i. The state (p, dead), p 6= Q is
assigned to the node labeled by σ if none of the DFAs Hσ,q in A accepts
the sequence q1q2 . . . qm. When the vertical computation produces a state
with the second component in F , the computation adds 0 to the first
component of the state.

For states (p, q) in P1, we always have q ∈ p. This is done because for
any state (p, q) where q /∈ p there is always an equivalent state (p∪{q}, q).
Recall that a state (p, q) is final if q ∈ F or p ∩ F 6= ∅. Thus, after B
reading some tree, B reaches a final state from the state (p, q) if and only
if the state (p ∪ {q}, q) reaches a final state.

According to the construction, |P1| = (|Q|−|F |)2|Q|−1, |P2| = |F |2
|Q|−2,

|P3| = 2|Q|. We have |P | = (|Q| − |F |
2 + 2)2|Q|−1. The worst case is when

|F | = 1. Then the number of vertical states of B is at most (|Q|+ 3
2)2

|Q|−1.

The lemma below states an upper bound for the top-down star oper-
ation.

Lemma 2. Let A = (Q,Σ, δ, F ) be an arbitrary DTA(DFA). We can
construct a DTA(DFA) B accepting language [L(A)]∗(b) (top-down b-star

operation) with at most

2|Q|−|F |−1 + 2|Q|−|F |

vertical states.

Proof. Since Definition 1 has no restriction on the place where a leaf
can be replaced, the vertical state of B needs only one component P ,
P ⊆ Q. Initially, P contains only the state pb assigned to the leaf node b.
B simulates the computation of A. Whenever a final state is produced in
P , pb is added to P . B accepts the input if P contains some state p such
that p ∈ F .

We are going to state corresponding matching lower bounds in the
next subsection.



3.2 Lower bounds

First, we present a lower bound for the bottom-up star operation as fol-
lows. In Figure 2 we show the DFA A we get from the one used in Theo-
rem 5 of [16] by adding symbol c.

Fig. 2. The DFA A used to define the tree language T

Based on the DFA A we define the tree language T used in our lower
bound construction. The tree language T consists of Σ-labeled trees t,
Σ = {a, b, c}, where:

1. All leaves are labeled by a and if a node u has a child that is a leaf,
then all the children of u are leaves.

2. A accepts the string of symbols labeling a path from any node of
height one 2 to the root.

3. The following holds for any u ∈ dom(t) and any nodes v1 and v2 of
height one below u. If wi is the string of symbols labeling the path
from vi to u, i = 1, 2, then A reaches the same state after reading
strings w1 and w2.

The computation starts from nodes of height one. This is done because
when the concatenation takes place, the leaf node is substituted by a tree,
and it will not appear in the resulting tree.

T can be recognized by a DTA(DFA) M = (Q, {a, b, c}, δ, F ) where
Q = {0, 1, . . . , n− 1} and F = {n− 1}. The transition function is defined
as:

(1) δ(0, a) = (n− 1)∗,

(2) δ(i, a) = (i− 1)+ for 1 ≤ i ≤ n− 1,

(3) δ(j, b) = (j − 1)+ for 2 ≤ j ≤ n− 1,

(4) δ(0, b) = {n− 1, 0}+,

(5) δ(i, c) = i+ for 1 ≤ i ≤ n− 1.

2 We define here that the height of a tree that contains only a root node is 0



A DTA(DFA) C recognizing the tree language T ∗ is obtained from M
using the construction given in Lemma 1. The vertical states in C are of
the following form

(p, q), 0 ≤ q ≤ n, p ⊆ {0, 1, . . . , n − 1}, (1)

where

– if 0 ≤ q ≤ n− 1, then q ∈ p,
– if q = n− 1 then 0 ∈ p,
– q = n denotes the dead state in the construction.

Lemma 3. All states in (1) are reachable.

Proof. For a unary tree t = a1(a2(. . . am(a) . . .)), we denote word(t) =
amam−1 . . . a1 ∈ Σ∗. In the following discussion all numbers that are
used to represent elements of Q are interpreted modulo n. That is, y is
interpreted as the element of {0, 1, . . . , n− 1} congruent to y modulo n.

From state ({0}, 0) state ({0, n− 1}, n− 1) can be reached by reading
n − 1 a′s. State ({1, 0}, 0) can be reached by reading a. State ({2, 0}, 0)
can be reached by reading b. State ({0, 1, n−1}, n−1) can be reached by
reading n − 1 a′s. Similarly, state ({0, 1, 2, n − 1}, n − 1) can be reached
by reading sequence ab followed by n− 1 a′s.

Assume that state ({0, 1, 2, . . . , k, n − 1}, n − 1), 0 ≤ k < n − 2 is
reachable. We want to show that ({0, 1, 2, . . . , k + 1, n− 1}, n− 1) is also
reachable. From state ({0, 1, 2, . . . , k, n − 1}, n − 1), state ({1, 2, . . . , k +
1, 0}, 0) is reachable by reading a. Since 0 ≤ k < n − 2, k + 1 < n − 1.
State (S1, 0) = ({2, 3, . . . , k + 2, 0}, 0) is reachable by reading b. Since
0 ≤ k < n − 2, k + 2 < n which means (k + 2)mod n 6= 0. (If (k +
2)mod n = 0, the size of S1 will decrease by 1.) After reading n− 1 a′s,
state ({1, 2, . . . , k + 1, n − 1, 0}, n − 1) is reached.

We have proved that state ({0, 1, . . . , n−2, n−1}, n−1) is reachable.
After reading i+1 a′s, state ({0, 1, . . . , n− 2, n− 1}, i mod n) is reached.

Assume all states (S, j), |S| ≥ k + 1, k < n and 0 ≤ j ≤ n − 1 in
(1) are reachable. We will inductively show that all states where |S| = k
are reachable. Let (S, si) where S = {s1, s2, . . . , sk}, 1 ≤ i ≤ k and
0 ≤ s1 < s2 < . . . < sk ≤ n− 1 be an arbitrary state where |S| = k.

First consider the case where si+1 − si ≥ 2 and si < n− 1. According
to the inductive assumption, state ({0, n− 1}∪S1, 0) where S1 = {si+1−
si − 1, si+2 − si− 1, . . . , sk − si − 1, n+ s1 − si − 1, . . . , n+ si−1 − si− 1}
is reachable. Since 0 ≤ s1 < s2 < . . . < sk ≤ n − 1 and si − si−1 ≥ 2,
n − 1 /∈ S1 and 0 /∈ S1. After reading b, state ({0} ∪ S2, 0) where S2 =



{si+1−si, si+2−si, . . . , sk−si, n+s1−si, . . . , n+si−1−si} is reached. Since
0 ≤ s1 < s2 < . . . < sk ≤ n − 1, 0 /∈ S2. State ({si, si+1, si+2, . . . , sk, n +
s1, . . . , n + si−1}, si) is reached after reading si a

′s. This means we have
reached the state (S, si), where S = {s1, s2, . . . , sk}.

Next consider the case when si+1 = si + 1 and si < n − 1. Since
|S| = k < n, there exists sj, sj+1 ∈ S such that sj+1 − sj ≥ 2. According
to the inductive assumption, state ({0, n− 1} ∪S1, n+ si− sj − 1) where
S1 = {sj+1−sj−1, sj+2−sj−1, . . . , sk−sj−1, n+s1−sj−1, n+s2−sj−
1, . . . , n+ si− sj − 1, n+ si− sj, . . . , n+ sj−1− sj − 1} is reachable. After
reading b, ({0}∪S2, n+ si− sj) where S2 = {sj+1− sj, sj+2− sj, . . . , sk−
sj, n+s1−sj, n+s2−sj, . . . , n+si−sj, n+si−sj+1, . . . , n+sj−1−sj}
is reachable. Since 0 ≤ s1 < s2 < . . . < sk ≤ n − 1, 0 /∈ S2. State
({sj , sj+1, sj+2, . . . , sk, n+s1, n+s2, . . . , n+si, n+si+1, . . . , n+sj−1}, n+
si) is reached after reading sj a′s. This means we have reached the state
(S, si), where S = {s1, s2, . . . , sk}.

Now consider the case when si = n − 1. When si = n − 1, 0 ∈ S.
Since 0 ≤ s1 < s2 < . . . < sk ≤ n − 1, we have si = sk = n − 1
and s1 = 0. Since k < n, there always exists sj, sj+1 ∈ S such that
sj+1− sj ≥ 2. According to the inductive assumption, state ({sj+1− sj−
1, sj+2 − sj − 1, . . . , sk−1 − sj − 1, n− 1− sj − 1, n+ 0− sj − 1, n+ s2 −
sj − 1, . . . , n+ sj−1 − sj − 1, n− 1, 0}, n − 1− sj − 1) is reachable. State
({sj+1−sj, sj+2−sj, . . . , sk−1−sj, n−1−sj, n+0−sj, n+s2−sj, . . . , n+
sj−1 − sj, 0}, n − 1− sj) is reached after reading b. After reading sj a′s,
state ({sj+1, sj+2, . . . , sk−1, n − 1, n + 0, n + s2, . . . , n + sj−1, sj}, n − 1)
is reached. This means we have reached the state (S, n − 1) where S =
{0, s2, . . . , sk−1, n− 1}.

Thus, we have shown all states (S, x), S ⊆ {0 ≤ j ≤ n − 1}, 0 ≤
x ≤ n − 1 in (1) are reachable. Next we will show that states (S, n),
S ⊂ {0, 1, . . . , n− 1} are reachable.

We have already shown that ({0, 1, . . . , n − 1}, 0) is reachable. State
({1, . . . , n − 1}, n) is reachable by reading c. State ({0, 1, . . . , n − 1} −
{i}, n), 1 ≤ i ≤ n − 1 is reachable after reading i a′s. Assume all states
(S, n), n > |S| ≥ k + 1, k < n − 1 are reachable. We will inductively
show that all states where |S| = k are reachable. Let (S, n) where S =
{s1, s2, . . . , sk}, 0 ≤ s1 < s2 < . . . < sk ≤ n − 1 be an arbitrary state
where |S| = k. According to the inductive assumption, state (S ∪ {0}, n)
is reachable. State (S, n) is reachable by reading c.

That is all the states in (1) except state ({0, 1, . . . , n − 1}, n) are
reachable.



We show that state ({0, 1, . . . , n− 1}, n) is reachable by introducing a
new symbol d. Let T be the tree language defined above Lemma 3 and M
is the deterministic tree automaton constructed for T above Lemma 3.
Let d be a new symbol not in Σ. Based on M we define a tree automaton
M ′ = (Q,Σ ∪ {d}, δ′, F ) where δ′ for elements of Σ is defined as δ and

δ′(1, d) = 11, δ′(2, d) = 22, δ′(i, d) = 1i for 3 ≤ i ≤ n.

The node labeled by d has two branches. If the root of the left branch is
assigned with state 1 by M ′, then the node labeled by d is assigned with
the same state (except state 2) as the root of its right branch. If the root
of the left branch is assigned with state 2 by M ′, then the root of its right
branch must also be assigned with state 2, and so is the node labeled
by d. The sequence of states 12 is not defined at the node labeled by d.
Now consider tree t = d(t1, t2) where the roots of t1 and t2 are assigned
with state ({1, 2}, 1) and ({1, 2, . . . , n}, 2), respectively. According to the
above definition, state ({0, 1, . . . , n− 1}, n) is assigned to the root of the
tree t.

Lemma 4. All states in (1) are pairwise inequivalent.

Proof. Let (S1, x) 6= (S2, y) be two arbitrary states. First consider the
case when neither of x and y is equal to n.

Assume S1 6= S2. Let s ∈ S1 and s /∈ S2 (The other case is totally
symmetric). According to the definition of the state in (1), y 6= s. After
reading n − s − 1 a′s, a final state is reached from state (S1, x), and no
final state is reached from state (S2, y).

Next we consider the case S1 = S2 = S, S 6= {0, 1, . . . , n − 1} and
x 6= y. According to the definition of the state in (1), x, y ∈ S. Consider
tree T [X] = an−1−x(t,X) where state ({x, z}, z), z /∈ S is assigned to
the root of subtree t. (Since S 6= {0, 1, . . . , n − 1}, z always exists.) Let
(S, x) and (S, y) be the states assigned to the roots of subtrees t1 and t2,
respectively. Consider T [X ← t1]. State ({x + 1}, n) is assigned to the
root of subtree a(t, t1). A final state ({n − 1}, n) is assigned to the root
of tree an−1−x(t, t1). Now consider T [X ← t2]. State (∅, n) is assigned
to the root of subtree a(t, t2). State (∅, n) is assigned to the root of tree
an−1−x(t, t2), which is not a final state.

When S1 = S2 = {0, 1, . . . , n − 1} and x 6= y. After reading b, states
(S1, x) and (S2, y) become to (S, x) and (S, y) where S = {0, 2, 3, . . . , n−
1}, respectively, which can be distinguished similarly as the above case.



Next consider the case when one of x and y is equal to n. Without
loss of generality, assume y = n. Consider tree T [X] = an−1(t, bn(X))
where state ({1, 0}, 1) is assigned to the root of subtree t. Let (S1, x)
and (S2, n) be the states assigned to the roots of subtrees t1 and t2,
respectively. Consider T [X ← t1]. State ({0}, 0) is assigned to the root of
subtree bn(t1). State ({1}, n) is assigned to the root of subtree a(t, bn(t1)).
A final state ({n − 1}, n) is assigned to the root of tree an−1(t, bn(t1)).
Now consider T [X ← t2]. State ({0}, n) is assigned to the root of subtree
bn(t2). State (∅, n) is assigned to the root of subtree a(t, bn(t2)). State
(∅, n) is assigned to the root of tree an−1(t, bn(t2)), which is not a final
state.

Now consider the case when x = y = n. Choose s ∈ S1 and s /∈ S2

(The other case is totally symmetric). After reading n− s− 1 a′s, a final
state is reached from state (S1, n), and no final state is reached from state
(S2, n).

Thus, all states are pairwise inequivalent.

According to Lemma 3 and Lemma 4, we can get the following theo-
rem.

Theorem 1. Let A = (Q,Σ, δ, F ) be an arbitrary DTA(DFA). We can
construct a DTA(DFA) B recognizing language L(A)∗(b), b ∈ Σ (bottom-up

b-star operation) with at most (|Q|+ 3
2)2

|Q|−1 vertical states.
For any integer n > 1, there exists tree language Ln such that Ln

can be recognized by a DTA(DFA) with at most n vertical states, and any
DTA(DFA) recognizing L∗

n(b) needs at least (n+ 3
2)2

n−1 vertical states.

The lemma below gives the lower bound for top-down star operation.

Lemma 5. The upper bound in lemma 2 is tight.

Proof. The lemma can be similarly proved as Section 3 in [16], where
we can view strings as unary trees.

4 Top-quotient and bottom-quotient

We have proved the following two theorems for top-quotient and bottom-
quotient operations on unranked tree automata.

Theorem 2. For any integer n ≥ 1, n vertical states are necessary and
sufficient in the worst case for a deterministic unranked tree automaton
to accept the top-quotient of the tree language recognized by an n vertical
states deterministic unranked tree automaton with respect to an arbitrary
tree language T ′.



Proof. Let A = (Q,Σ, δ, F ) where |Q| = n, be an arbitrary deterministic
unranked tree automaton. We can construct a deterministic unranked tree
automaton B = (Q,Σ, δ,E) recognizing T ′⊤L(A), where E = {q ∈ Q |
(∃t′ ∈ T ′)(∃r ∈ (t′ ·b q)) r

A ∈ F}.
Now we show that n states are necessary. Let T ′ = {b} and A =

({q1, q2, . . . , qn}, {a}, δ, {q1}), where δ is defined as:

– for 1 ≤ i ≤ n− 1, δ(qi, a) = qi+1,
– δ(qn, a) = ǫ.

A accepts the unary tree language an. We have T ′⊤L(A) = L(A).

Theorem 3. For any integer n ≥ 1, (n + 1)2n − 1 vertical states are
necessary and sufficient in the worst case for a deterministic unranked tree
automaton to accept the bottom-quotient of the tree language recognized
by an n vertical states deterministic unranked tree automaton with respect
to an arbitrary tree language T ′.

We prove Theorem 3 by stating two lemmas. Lemma 6 establishes
the upper bound and Lemma 7 establishes a lower bound that differs by
the constant one. Finally, after the proof of Lemma 7 we explain how
the proof of Lemma 7 can be modified to exactly reach the upper bound
given in Lemma 6.

Lemma 6. For an arbitrary deterministic unranked tree automaton A
with n vertical states and an arbitrary tree language T ′, any deterministic
unranked tree automaton recognizing L(A)⊥bT

′ needs at most (n+1)2n−1
vertical states.

Proof. Let A = (Q,Σ, δ, F ) where |Q| = n, be an arbitrary deterministic
unranked tree automaton. Define G = {t′A | t′ ∈ T ′}. G consists of all the
states that are assigned to the roots of trees in T ′ by A. We can construct
a deterministic unranked tree automaton B = (P,Σ, µ,E) recognizing
L(A)⊥T ′, where

– P = {(q,P(Q)) | q ∈ Q ∪ {dead}},
– (q, S) ∈ E if S ∩ F 6= ∅.

B operates as follows. For a leaf node u labeled by σ,

– assign (q, ∅) to u if σ 6= b and ǫ ∈ δ(q, σ),
– assign (q,G) to u if σ = b and ǫ ∈ δ(q, b),
– assign (dead,G) to u if σ = b and ǫ 6∈ δ(q, b).



For a tree σ(σ1, . . . , σm) where the leaf nodes are assigned with a
sequence of states (q1, S1), . . . , (qm, Sm), the root node is assigned with
state (q, S) provided that q1 . . . qm ∈ δ(q, σ) and S consists of all s ∈ Q
such that for some 1 ≤ i ≤ m

(∃si ∈ Si) such that q1 . . . qi−1siqi+1 . . . qm ∈ δ(s, σ).

We define q = dead if q1 . . . qm is not included in any δ(s, σ), s ∈ Q.
In states of B the first component directly simulates the computation

of A. In a state (q, S), the second component keeps track of all states that
A may be in provided that exactly one leaf labeled by b below the current
node was replaced by a tree of T ′.

Thus, the upper bound on the number of vertical states is (n+1)2n−1
as we do not require the tree automata to be complete.

Lemma 7. There exists a tree language T that can be recognized by a de-
terministic unranked tree automaton with n vertical states, such that any
deterministic unranked tree automaton recognizing T⊥bTREESΣ needs
at least (n+ 1)2n − 2 vertical states.

Proof.

Fig. 3. Tree automaton A

Shown in Figure 3, A is the DFA we modified from the one used in
Theorem 5 of [16] by adding symbols a0, . . . , an−1. Based on the DFA A
we define the tree language T used in our lower bound construction. The
tree language T consists of Σ-labeled trees t, Σ = {a, b, c}, where:

1. All leaves are labeled by a and if a node u has a child that is a leaf,
then all the children of u are leaves.

2. A accepts the string of symbols labeling a path from any node of
height one to the root.

3. The following holds for any u ∈ dom(t) and any nodes v1 and v2 of
height one below u. If wi is the string of symbols labeling the path
from vi to u, i = 1, 2, then A reaches the same state after reading
strings w1 and w2.



The computation starts from nodes of height one. This is done because
when the bottom-quotient takes place, the leaf node is substituted by a
tree, and it will not appear in the resulting tree.

T can be recognized by a deterministic tree automaton
M = (Q, {a, b, a0, . . . , an−1}, δ, F ) where Q = {0, 1, . . . , n − 1} and F =
{n− 1}. The transition function is defined as:

(1) δ(0, a) = ǫ ∪ (n− 1)+,
(2) δ(i, a) = (i− 1)+ for 1 ≤ i ≤ n− 1,
(3) δ(j, b) = (j − 1)+ for 1 ≤ i ≤ n− 1,
(4) δ(0, b) = {n− 1, 0}+,
(5) δ(i, aj) = (i− 1)+ for 1 ≤ i ≤ n− 1 and i 6= j,
(6) δ(0, aj) = (n− 1)+ for j 6= n− 1.

Let T ′ = TREESΣ and N be the deterministic tree automaton for
L(M)⊥T ′ as considered in Lemma 6. According to the upper bound
construction, the states in N are of the form (q, S), 0 ≤ q ≤ n, S ⊆
{0, 1, . . . , n − 1}, where q = n denotes dead state in the construction.

First we show every state is reachable except (n, {0, 1, . . . , n − 1}).
The leaf node labeled with a is assigned with (0, {0, 1, . . . , n − 1}). The
state (i, {0, 1, . . . , n−1}), 0 ≤ i ≤ n−1 is reachable after reading a unary
tree ai. For S ⊆ Q, 0 ≤ i ≤ n − 1, i ∈ S, (i, S) is reachable from state
(i,Q) by reading s0sn−1 . . . s1 where for each 0 ≤ j ≤ n − 1, sj = a if
j ∈ S and sj = b, otherwise.

For i 6∈ S, we show that the state (i, S) is reachable using decreasing
induction on the size of S. First we note that for S ⊆ Q, 0 ≤ i ≤ n − 1,
i 6∈ S, (i,Q − {i}) is reachable from state (i − 1, Q) by reading ai. Now
suppose (si, Q − {s1, . . . , sk}), 1 ≤ i ≤ k is reachable. Let p = (sj, Q −
{s1, . . . , sk+1}), 1 ≤ j ≤ k + 1, s1 < . . . < sk+1 and Q− {s1, . . . , sk+1} =
{r1, . . . , rn−k−1} be an arbitrary state. p is reachable from (sj − 1, {r1 −
1, r2−1, . . . , rn−k−1−1, s

′}), by reading as′ , where s
′ 6∈ {sj−1, r1−1, r2−

1, . . . , rn−k−1 − 1}.
We have already shown that (0, {0, 1, . . . , n − 1}) is reachable. State

(n, {1, . . . , n− 1}) is reachable by reading a0. State (n, {0, 1, . . . , n− 1}−
{i}), 1 ≤ i ≤ n−1 is reachable after reading i a′s. Assume all states (n, S),
n > |S| ≥ k+1, k < n−1 are reachable. We will inductively show that all
states where |S| = k are reachable. Let (S, n) where S = {s1, s2, . . . , sk},
0 ≤ s1 < s2 < . . . < sk ≤ n − 1 be an arbitrary state where |S| = k.
According to the inductive assumption, state (S ∪ {0}, n) is reachable.
State (S, n) is reachable by reading a0. The state (n, ∅) is reached at the
root of tree a(u, v) where u and v are assigned with (1, {1}) and (2, {2}),
respectively.



That is all the states except (n, {0, 1, . . . , n − 1}) are reachable.
Now we show that all states are pairwise inequivalent. Given two states

(i, S1) and (j, S2), first we consider the case when S1 6= S2. Without loss
of generality, let s ∈ S1−S2. After reading unary tree an−1−s, a final state
is reached from (i, S1) and no final state is reached from (j, S2). Now we
consider the case when i 6= j and S1 = S2 = S. Suppose (i, S) and
(j, S) are assigned to the roots of tree t1 and t2, respectively. Consider
tree an−2−i(a(u, x), v) where u, v are assigned with states (i, {i}) and
(n, {i + 1}), respectively. Now (i + 1, {i + 1}) is assigned at the root of
a(u, x← t1) and (n, {i+ 2}) is assigned at the root of a(a(u, x← t1), v).
After reading the rest of a’s, a final state (n, {n− 1}) is reached. On the
other hand, if i ∈ S, (n, {i + 1}) is assigned at the root of a(u, x ← t2),
(n, ∅) if i 6∈ S. In either case (n, ∅) is assigned at the root of a(a(u, x ←
t1), v). (n, ∅) is a dead state, which means no final state can be reached.

In fact, state (n, {0, 1, . . . , n − 1}) is reachable by introducing a new
symbol and a few transitions. Let T be the tree language defined in
Lemma 7 and M is the deterministic tree automaton constructed for
T in the proof of Lemma 7. Let d be a new symbol not in Σ. Based on M
we define a tree automaton M ′ = (Q,Σ∪{d}, δ′, F ) where δ′ for elements
of Σ is defined as δ and

(1) δ(1, d) = 11,
(2) δ(2, d) = 22,
(3) δ(i, d) = 1i for 3 ≤ i ≤ n.

The node labeled by d has two branches. If the root of the left branch
is assigned with state 1 by M ′, then the node labeled by d is assigned
with the same state (except state 2) as the root of its right branch. If the
root of the left branch is assigned with state 2 by M ′, then the root of
its right branch must also be assigned with state 2, and so is the node
labeled by d. The sequence of states 12 is not defined at the node labeled
by d. Now let T ′ = TREESΣ∪{d}. Consider tree t = d(t1, t2) where the
roots of t1 and t2 are assigned with state (1, {1, 2}) and (2, {1, 2, . . . , n}),
respectively. According to the above definition, state (n, {0, 1, . . . , n−1})
is assigned to the root of the tree t.

We get a tight bound for the state complexity of top-quotient and
bottom-quotient, respectively. Note that the bound for bottom-quotient
differs, roughly, by a multiplicative factor n + 1 from the corresponding
result for ordinary finite automata. The precise state complexity of left-
quotient for ordinary finite automata is 2n − 1 [16].



5 Conclusion

We have defined two star operations on tree languages according to the
nature of tree structure, bottom-up and top-down star operations, and
proved tight upper bounds on the number of vertical states for both star
operations. The top-down star operation shares the state complexity of
the star operation on string automata. On the other hand, we have es-
tablished that the state complexity of the bottom-up star is (n+ 3

2)2
n−1

which is of a different order than the corresponding result for the star op-
eration on string automata. We defined top-quotient and bottom-quotient
operations on trees and obtained tight state complexity bounds for both
operations. The bound for the bottom-quotient operation differs by a mul-
tiplicative factor n+ 1 from the corresponding result 2n − 1 for ordinary
finite automata.
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