
Symbolic Execution of UML-RT State Machines

Technical Report 2011-578

Karolina Zurowska and Juergen Dingel

Modeling And Analysis in Software Engineering

School of Computing

Queen’s University
Kingston, Canada

June, 2011

Copyright c©2011 Karolina Zurowska, Juergen Dingel

Abstract

One of the languages used in the industrial practice of the model-driven development
(MDD) is UML-RT. The language is a proper profile of UML 2 and it targets especially
development of embedded systems. In UML-RT, UML-RT State Machines are used to model
behavior. This paper presents a technique for a symbolic execution of these machines, which
introduces modular treatment of action code. This feature clearly separates the symbolic
execution of the state machine itself from the symbolic execution of its action code and thus
facilitates support of different action languages. The separation is achieved via a formalization
of UML-RT State Machines in which functions are used to represent the result of the symbolic
execution of the action code. Key parts of the technique are formalized, an implementation is
presented and an example is used to illustrate the symbolic execution itself and how it can be
used for different purposes including reachability analysis, invariant checking, output analysis
and test case generation. The evaluation of our tool on two case studies is also discussed.

1 Introduction

Symbolic execution of programs was proposed more than 30 years ago by King. In [21], symbolic
values serve as placeholders for input parameters. These symbolic values are used in a traversal
of the control-flow graph (CFG), which results in a symbolic execution tree. The tree contains
all execution paths and the constraints the symbolic values have to satisfy such that a particular
path in the CFG is followed. Symbolic execution can be used to solve many problems related to
program analysis, verification and testing [11]. Recently, a lot of research has been devoted to
the development of novel extensions to and applications of symbolic execution [27]. Most notably,
combining symbolic and concrete execution has been very fruitful and led to testing techniques
that are now in serious industrial use (e.g., [17]).

Model-driven development (MDD) advocates the use of models as primary artifacts for software
development (rather than code): models are iteratively refined until code can be generated from
them and model-level analyses provide early feedback regarding the quality of the models. MDD
has been used successfully for the development of, e.g., telecommunication, avionics, military, and
automotive systems and is supported by several academic and commercial tools including Scade
Suite [4], Motorola Mousetrap [35], IBM Rational Rhapsody R©

1 [2], IBM Rational R©RoseRT and
IBM Rational R©Software Architect Real Time Edition (IBM RSA-RTE) [3]. RoseRT and RSA-RTE
use UML-RT [31], a modeling language and proper profile of UML 2 [5]. UML-RT features capsules
as active objects with their behavior described with state machines. UML-RT State Machines are
a special case of UML 2 state machines with some added constraints (e.g., no orthogonal regions,
a.k.a, “and”-states) and refinements (for executability) and are fully consistent with UML 2 State
Machines. Just like state machines in UML 2, UML-RT State Machines typically contain action
code, i.e., code written in some programming language (IBM RSA-RTE supports C++, Java, and
Alf [26]) that can be associated with transitions or states (as entry actions, do actions, or exit
actions). Although it was recognized long ago that UML-RT lends itself to formal analysis [36],
current UML-RT tools still do not take advantage of this. The work presented in this paper is
inspired by the recent success of symbolic execution of source code and aims at, ultimately, making
its benefits available to the industrial practice of MDD in general and MDD using UML-RT in
particular.

To this end, this paper makes the following contributions:
1) An approach to the symbolic execution of UML-RT State Machines (see Figure 1) is presented.
The approach is based on the traversal of the state space of an internal representation of the state
machine, called Functional Finite State Machine (FFSM). The FFSM is built “on-the-fly” during
the traversal (procedure UMLRT2FFSM in Figure 1) and any action code encountered in the UML-
RT State Machine is incorporated into the FFSM in a modular way in terms of “functions”. This
modularity is a key distinguishing feature of our approach; the clear separation of the symbolic

1IBM, Rational and Rhapsody are trademarks of International Business Machines Corporation, registered in

many jurisdictions worldwide

1

execution of the state machine itself from the action code not only facilitates implementation and
support for different action languages (an external symbolic execution engine for the action code
can be used in a “pluggable” way), but also optimization via reuse similar to the work in [16, 6, 34].
We formally define FFSMs and provide algorithms for their symbolic execution (Section 3) and
construction from a UML-RT State Machine (Section 4).
2) The implementation of the approach is described. The implementation consists of Eclipse plu-
gins which can be integrated into IBM RSA-RTE, thus allowing further experimentation with
the symbolic execution of UML-RT, including, e.g., variants that combine symbolic and concrete
execution. The use of the implementation is illustrated on a running example and a model we
obtained from our industrial partner (Section 5).
3) A demonstration of the utility of symbolic execution for different analyses of models of reac-
tive systems including reachability analysis of state machine locations, invariant checking, output
analysis, and test case generation (Section 5) is given.

The literature on the analysis of state machines (expressed in, e.g., UML 2, UML-RT, or forms
of labeled transition systems) is rich. However, as we will argue in Section 6, to the best of our
knowledge, none of the existing approaches combines all the features listed above.

2 Symbolic execution of state machines

The goal of our work is to provide a technique for symbolic execution of UML-RT State Machines
and to enable their subsequent analysis. Two key challenges are the reactive nature of UML-RT
State Machines and their complex behavioral semantics based on action code [31]. In order to deal
with semantics we propose a formalization of UML-RT State Machines with functional finite state
machines (FFSMs). To incorporate reactive features in the analysis of UML-RT State Machines
we define the symbolic execution of FFSMs. Both of the above elements are introduced below and
presented in detail in the following sections.

An example of an FFSM (defined in Section 3) is shown in Figure 2. FFSMs have input/output
actions and variables, which are divided into machine variables, common to all states, and vari-
ables that store input and output values called input action variables and output action variables,
respectively. Additionally, transitions are labeled with three types of functions: guard, update and
output. The first type is used to guard a transition and represents a condition defined over machine
variables and input variables of the input action. The other two types of functions are defined over
the same set of variables, but they represent updates of machine variables and sequences of output
actions, respectively. Both of these functions, as justified in Section 3, are defined using cases and
represented as pairs with the first element being a condition that must be satisfied in order to
apply a given update or to produce an output sequence.

FFSMs capture the most important characteristics of UML-RT State Machines such as states
(called locations), transitions, events and variables. Moreover, functions represent the results of
the symbolic execution of action code. The separation of action code analysis, along with the
generality of FFSMs, make it possible to use them to represent other kinds of state machines, for

Figure 1: Symbolic execution of UML-RT State Machines.

2

update functions: no update
def
= {(true, (v1:=v1, v2:=v2))}

updateV1
def
= {(true, (v1:=i1, v2:=v2))}

updateV2
def
= {(true, (v1:=v1, v2:=i1))}

output functions: no output
def
= {(true, [])}

outputV
def
= {(true, [(out,o1:=v1)(out,o1:=v2)])}

output input
def
= {((i2 > 0), [(out, o1:=v1)]),

((i2 ≤ 0), [(out, o1:=i2)])}

Figure 2: An example of an FFSM with machine variables v1, v2, input action vari-
ables: i1, i2 and output action variables o1 (labels of transitions are of the form
input action(input action variables)? (guard) -> update [output]).

Figure 3: An initial part of a symbolic execution tree for the FFSM in Figure 2

example the more general UML 2 State Machines [5].
Figure 3 presents the first states of the symbolic execution tree of the FFSM in Figure 2. The

initial symbolic state is L0 and the initial values of the two machine variables are 0 for v1 and
10 for v2. In FFSMs, machine variables are always initialized. This assumption is motivated by
the fact that machine variables represent attributes in UML-RT models (as presented in detail in
Section 4), and attributes always have initial values. From the initial symbolic state, the transition
to L1 is executed. Next, there are two possible transitions from L1 triggered by the action Input2

with input variable i1. To take the transition to L2 the input variable is given a symbolic value
i1 1 that must be greater or equal to 0. This constraint is included in the path constraint of the
next symbolic state. The evaluation of the update function updateV1 yields an update of v1 to
the symbolic value i1 1. Symbolic processing of the output function outputV generates a sequence
of output actions using the values of both machine variables.

The symbolic execution of FFSMs conveniently represents the reactive nature of UML-RT State
Machines, because inputs and outputs are part of every transition in the symbolic execution tree.
Additionally, variables of enabled input actions receive new symbolic values.

3

3 Functional finite state machines and their symbolic exe-

cution

Functional finite state machines (FFSMs) are inspired by X-machines [18] and by Input-Output
Symbolic Transition Systems (IOSTSs) [13]. As in X-machines, transitions in FFSMs are labeled
with functions, but their definition is based on first-order logic structures as in IOSTSs (although
in our case inputs and outputs are on the same transition). The explicit specification of functions
capturing how the machine processes variables is crucial for the formulation of a symbolic execution
algorithm. Also, as we will see in Section 4, FFSMs are defined in such a way that they can express
UML-RT State Machines, which then enables their symbolic execution.

3.1 Functional Finite State Machines

To represent variables, their values and operations on them, the notion of a domain is used.
Definition 1 introduces domains, which are similar to quantifier-free first-order logic structures
with functions and relations [32].

Definition 1. A domain is a tuple D = (U,F,R,X), where:

- U is called universe and is a possibly infinite set of elements,

- F is a set of functions and each function f ∈ F has an arity n ∈ N and is defined as
f : Un → U . Given x1, ..., xn ∈ U , f(x1, ..., xn) denotes an element of U represented by a
function f . If the arity of a function is 0, then the function represents a constant,

- R is a set of relations : a relation r ∈ R has an arity n ∈ N and is r ⊆ Un,

- X is a set of variables.

We define terms and formulas in the usual manner. Terms are variables, constants or functions
applied to other terms. We use Σ(D) to denote a set of all terms over a domain D. Formulas
are either relations over terms or are composed with the standard boolean connectives ¬,∨,∧,⇒.
The set of all formulas over a domain D is denoted with Φ(D). We also use an operation vars :
(Σ(D) ∪ Φ(D)) → P(X) (P is the powerset operator), which maps a term or a formula to the
set of variables that it contains. Interpretations of terms and formulas are similar to those in
first-order logic: for a given valuation of variables, a term denotes an element of a universe and a
formula denotes either true or false. Additionally we introduce predicates over multiple domains,
which use standard boolean connectives to compose formulas. For a set of domains {D1, ..., DN},
Φ({D1, ..., DN}) represents the set of all predicates composed from formulas over D1, ..., DN .

Variables have a valuation that maps them to elements in their universe. Definition 2 presents
how a valuation is extended to a set of variables from multiple domains.

Definition 2. Let D1, ..., DN be domains with universes U1, ..., UN and for a variable Y let U(Y)
denote its universe. A valuation of a set of variables X = {X1, ..., XM} is a function v : X →⋃
i=1,...,N Ui, such that ∀Xi ∈ X : v(Xi) ∈ U(Xi). The set of all possible valuations of variables in

X is denoted as Val [X].

Definition 3 of functional finite state machines (FFSMs) uses variables and labels transitions
with functions over their valuations.

Definition 3. Let Doms = {D1, ..., DN} be a set of domains. A functional finite state machine is
a tuple F = (L, V,AV,A,GF ,UF ,OF , T, l0, v0), where:

- L = {l1, ..., lk} is a finite set of locations with l0 ∈ L being the initial location,

- V = {v1, ..., vl} is a finite set of machine variables. The function D : V → Doms assigns a
type (domain) to a machine variable,

4

- AV is a finite set of action variables with type assignments D : AV → Doms . Action
variables are partitioned into sets of input and output action variables AVI = {ai1, ..., ain}
and AVO = {ao1, ..., aom} such that AVI ∩AVO = ∅ and AVI ∪AVO = AV ,

- A is a finite set of actions partitioned into input and output actions AI and AO. Each action
is mapped to a set of action variables vars : A → P(AV) such that ∀a ∈ A : a ∈ AI ⇒
vars(a) ⊆ AVI ∧ a ∈ AO ⇒ vars(a) ⊆ AVO,

- GF is a set of guard functions : gf ∈ GF is a function gf : Val [V] × Val [AV ′I] → B, where
AV ′I ⊆ AVI and B = {true, false}. So given valuations of machine variables (v) and of input
action variables (vi), gf (v, vi) is either true or false. For a function gf , vars all(gf) denotes
the set of variables that its valuations range over, i.e., vars all(gf) = V ∪AV ′I ,

- UF is a set of update functions : uf ∈ UF is uf : Val [V] × Val [AV ′I] → Val [V], where
AV ′I ⊆ AVI . So given valuations of machine variables (v) and input variables (vi), uf (v, vi)
is a new valuation of machine variables. The operation vars all(uf) is defined as for guard
functions,

- OF is a set output functions : of ∈ OF is of : Val [V] × Val [AV ′I] → Seq(AO × Val [AV ′O]),
where AV ′I ⊆ AVI , AV

′
O ⊆ AVO and Seq(AO × Val [AV ′O]) is the set of sequences of pairs

that contain an output action and a valuation of the output variables used in that action,
i.e., each element of a sequence is of the form (a, v) with a ∈ AO and v ∈ Val [vars(a)]. The
operation vars all(of) is defined as for guard functions,

- T is a transition relation: T ⊆ (L × AI × GF × UF × OF × L). We require that for a

transition t = (l, ai, gf , uf , of , l′) (denoted also as l
ai,gf ,uf ,of

−→ l′) all functions f ∈ {gf , uf , of }
are such that vars all(f) = (V ∪ vars(ai)), i.e., they are defined only for machine variables
and variables used in the input action ai,

- v0 is an initial valuation of machine variables, i.e., v0 ∈ Val [V].

The set-theoretic definition of guard, update and output functions is not well suited for symbolic
execution, because the tuples contained in the functions are explicitly enumerated, which makes
such representation very verbose. Below, functions are defined in a more succinct way with logical
terms and predicates over the set of domains Doms. In update and output functions a notion
of cases is introduced to allow for attaching conditions to execution paths of action code (see
Section 4).

Each guard function is defined as a predicate over domains of all variables:

gf
def
= ψ such that: ψ ∈ Φ(Doms) ∧ vars(ψ) ⊆ (vars all(gf))

Update functions are defined as a set of cases. Each case is like a conditional assignment and is
represented as a pair consisting of a case condition (a predicate) and a function that assigns to
each machine variable a term denoting its new value:

uf
def
= {uf 1, ..., uf n}

∧ ∀uf k ∈ uf : uf k ∈ (Φ(Doms)× (V →
⋃

v∈V

Σ(D(v))))

For each uf k = (ψ, assign), the variables used in terms and predicates are a subset of vars all(uf).
We will use the projections case(uf k) = ψ and assign(uf k) = assign. In Figure 2 no update,
updateV1 and updateV2 are examples of update functions.

The definition of output functions also uses cases, but the second element of each pair is a list
of output actions with a valuation of output variables:

of
def
= {of 1, ..., of m}

∧ ∀of k ∈ of : of k ∈ (Φ(Doms)× Seq(AO × (AssignOut))),

5

where assignOut ∈ AssignOut if assignOut : vars(ao) →
⋃
v∈vars(ao) Σ(D(v)) is a function that

for a given output action ao ∈ AO assigns terms to its output variables.
For each of k = (ψ, seqo), the variables used in terms and predicates are a subset of vars all(of).
We will use the projections case(of k) = ψ and seq(of k) = seqo . There are examples of output
functions in Figure 2: no output, output V and output input.

The execution of FFSMs relies on the evaluation of functions. The evaluation is performed
using valuations v ∈ Val [V] and iv ∈ Val [AV ′I], where V are machine variables of an FFSM and
AV ′I is a subset of its input variables. In order to use these valuations we define a substitution
operation []. For a term (or a predicate) p we use p[v, iv] to denote an element of a universe (or
a boolean value). The element (or the value) is obtained by replacing all variables in p with their
values given by valuations v and iv. The concrete evaluation of functions is defined as follows:

1. Guard functions: their evaluation returns true or false and for gf defined with a predicate ψ
we have:

eval[gf](v, iv) = ψ[v, iv]

2. Update functions: the evaluation returns a valuation of machine variables V . A new valuation
is returned if at least one of the cases evaluates to true. Suppose uf k ∈ uf with case(uf k) = φ

and update(uf k) = u, then we have:

eval[uf](v, iv) = v
′ ∈ Val[V] iff

∃uf k ∈ uf : φ[v, iv] ∧ ∀x ∈ V : v
′
(x) = u(x)[v, iv]

3. Output functions: the evaluation results in a sequence of output actions, which occurs only
if one of cases evaluates to true. A sequence of output actions is generated with values of
output variables given by the valuations v and iv. For a case of k in an output function of ,
let case(of k) = ψ and seq(of k) = (o1, v1)(o2, v2)..., then:

eval[of](v, iv) = s iff

∃of k ∈ of : φ[v, iv] ∧ s = (o1, v1[v, iv])(o2, v2[v, iv])...

Evaluation results of update and output functions may not be uniquely defined if more than one
case evaluates to true.

The concrete execution semantics of an FFSM is defined using labeled transition system (LTS).
In such an LTS each state represents a location and a valuation of machine variables. Transitions
between states contain input actions and sequences of output actions along with values for their
respective variables.

Definition 4. Let F = (L, V,AV,A,GF ,UF ,OF , T, l0, v0) be an FFSM. Its concrete execution
semantics is a tuple E(F) = (S, Tr, s0), where:

- S is a set of execution states. Each state is a pair (l, v) where l ∈ L is a location and
v ∈ Val [V] is a valuation of machine variables;

- Tr is a transition relation Tr ⊆ (S × AI × Val [AV ′I] × Seq(AO × Val [AV ′o]) × S), where
AV ′I ⊆ AVI and AV ′O ⊆ AVO. The transition relation is generated by the following rule:

l
i,gf ,uf ,of
−→ l

′
, iv ∈ Val[vars(i)],

eval[gf](v, iv), v′ = eval[uf](v, iv), seq = eval[of](v, iv)

(l, v)
i,iv,seq
−→ (l′, v′)

The set of all paths is defined as paths(E(F)) = {s0t0s1...|∀k ≥ 0 : tk = (sk, i, iv, seq, sk+1) ∧ tk ∈
Tr}.

Example 1. An example for an FFSM is presented in Figure 2 for a single domain of integers.
The FFSM has locations L = {L0,L1,L2,L3}, machine variables V = {v1,v2}, action variables for
input AVI = {i1,i2} and for output AVO = {o1}. Actions are AI = {Input1, Input2, Input3}
and AO = {out}. The initial location is L0 and initial valuation is {v1 = 0, v2 = 10}. Figure 4
presents the initial states of the concrete execution.

6

Figure 4: An initial part of concrete execution of the FFSM in Figure 2.

3.2 Symbolic execution of FFSMs

Symbolic execution of FFSMs, as outlined in Section 2, follows the general approach of symbolic
execution of programs [21]. This means that values of variables are represented as terms over
domains of the variables. Definition 5 introduces a notion of symbolic valuation for a set of
variables.

Definition 5. For a set of variables X a symbolic valuation vs is a function that maps a variable
to a term from its domain, that is vs : X →

⋃
v∈X Σ(D(v)) such that ∀v ∈ X : vs(v) ∈ Σ(D(v)).

The set of all possible symbolic valuations of variables in X is denoted as Vals[X].

The central element of the symbolic execution of FFSMs is a symbolic evaluation of guard,
update and output functions. The evaluation is conducted for a given symbolic valuation of
machine variables vs ∈ Vals[V], path constraints pc and a symbolic valuation of input variables
ivs ∈ Vals[AV ′I], where AV

′
I ⊆ AVI . During evaluation, variables are replaced by their values,

which are symbolic and represented with terms. To achieve this, a replacement operator for terms
and predicates is introduced. If p is a term (or a formula or a predicate) then p[vs, ivs] denotes
a term (or a formula or a predicate) with all variables in p substituted by their mapped symbolic
values in vs or ivs. Additionally, evaluation of each function may update path constraints. This
happens if a guard or a case condition cannot be inferred from the current path constraints and must
be assumed. Symbolic evaluation of functions is given by (pc⇒ φ abbreviates ((

∧
ψ∈pc ψ) ⇒ φ)):

1. Guard functions: evaluation may result in an additional path constraint.

eval
s
[gf](v

s
, iv

s
, pc) =

{

∅, if pc ⇒ gf [vs, ivs]

{gf [vs, ivs]}, otherwise.

2. Update functions: evaluation results in a pair containing possibly a new path constraint and
a new symbolic valuation. The evaluation is performed for each case and for the kth case
uf k = (φ, asgn) (φ is a case constraint and asgn ∈ Vals[V] is a symbolic valuation) we have:

eval
s
[uf k](v

s
, iv

s
, pc) =

{

(∅, asgn[vs, ivs]), if pc ⇒ φ[vs, ivs]

(φ[vs, ivs], asgn[vs, ivs]), otherwise.

where asgn[vs, ivs] is a valuation such that ∀v ∈ V : asgn[vs, ivs](v) = asgn(v)[vs, ivs].

3. Output functions: evaluation may result in a pair with a sequence of output actions as the sec-
ond element. Evaluation is performed for each case. For the kth case of k = (φ, (oa1, asgn1)(oa2, asgn2)...)
we have:

7

Table 1: An example of symbolic evaluation of the functions from Figure 2.

Arguments:

vs = {(v1← i1 1), (v2← 10)},
ivs1 = {(i1← i1 2)},
ivs2 = {(i2← i2 1)},
pc = {i1 1 ≥ 0}

guard function: (i1 ≥ 0) evals[(i1 ≥ 0)](vs, ivs1, pc) = {(i1 2 ≥ 0)}

update func.: updateV1
def
=

{(true, (v1:=i1, v2:=v2))}

evals[updateV11](v
s, ivs1, pc) =

(∅, {(v1← i1 2), (v2← 10)})

output func.: output inp
def
= {((i2 > 0), [(out,

o1:=v1)]),
((i2 ≤ 0), [(out, o1:=i2)])}

evals[output inp1](v
s, ivs2, pc) =

({i2 1 > 0}, [(out, (o1← i1 1))]),
evals[output inp2](v

s, ivs2, pc) =
({i2 1 ≤ 0}, [(out, (o1← i2 1))])

eval
s
[of k](v

s
, iv

s
, pc) =

{

(∅, (oa1, asgn1[vs, ivs])...), if pc ⇒ φ[vs, ivs]

(φ[vs, ivs], (oa1, asgn1[vs, ivs])...), otherwise.

Example 2. Table 1 presents the symbolic evaluation of some of the functions in Figure 2. For
instance, an evaluation of the guard function (i1 ≥ 0) results in a constraint (i1 2 ≥ 0) by simply
replacing i1 with i1 2 based on a mapping ivs1. The output function output input is evaluated
using the mapping ivs2 and the evaluation proceeds for both cases.

Definition 6. A symbolic execution tree for a given FFSM
F = (L, V,AV,A,GF ,UF ,OF , T, l0, v0) is a tuple
SE(F) = (Ss, AV sI , InVars

s, T rs, ss0), where:

- AV sI is a set of input variables different from all other variables in F ,

- InVarss is a set of mappings ivs : AV ′I → AV sI with AV ′I ⊆ AVI that assign to an input
variable a new variable that represents its symbolic value. Each mapping is therefore a special
kind of a symbolic valuation for an arbitrary subset of input variables,

- Ss is a set of symbolic states s = (l, vs, pc), where l ∈ L is a location, vs ∈ Vals[V] is a
symbolic valuation of machine variables and pc is a set of path constraints that are predicates,
i.e., pc ⊆ Φ(Doms). For a state s = (l, v, pc) we define projections val(s) = v and pc(s) = pc.
The initial symbolic state ss0 ∈ Ss is (l0, v0, ∅),

- Trs is a relation Trs ⊆ (Ss×AI×InVarss×Seq(AO×Vals[AV ′O])×S
s), where AV ′O ⊆ AVO.

For a transition t = (s, ai, iv, seq, s′) we denote its source and target states with sr(t) = s

and tg(t) = s′ and its sequence of output actions as seq(t) = seq. The transition relation is
generated by the following rule:

l
ai,gf ,uf ,of
−→ l

′
, iv

s ∈ InVars, pc1 = eval
s
[gf](v

s
, iv

s
, pc),

∃uf k ∈ uf : (pc2, v
′
) = eval

s
[uf k](v

s
, iv

s
, pc),

∃of k ∈ of : (pc3, seq) = eval
s
[of k](v

s
, iv

s
, pc),

pc′ = pc[ivs, vs] ∪ pc1 ∪ pc2 ∪ pc3, pc
′ satisfiable

(l, vs, pc)
ai,ivs,seq
−→ (l′, vs′ , pc′)

The set of all symbolic paths is defined as pathss(SE(F)) = {ss0t
s
0s
s
1...|∀k ≥ 0 : tsk = (ssk, i, iv

s, seq, ssk+1)∧
tsk ∈ Trs}

A symbolic execution tree for an FFSM represents its all possible concrete executions, which
follows from the theorem below. In the theorem the relation |= between paths is satisfied if values
used in a concrete path satisfy all path constrains in a symbolic path and paths agree as for
locations and actions.

8

Algorithm 1 FFSM2SET - symbolic execution of an FFSM

Require: F = (L, V,AV,A,GF, UF,OF, T, l0, v0)
Ensure: SE(F) = (Ss, AV s

I , InVarss, Trs, ss0)
to process ← < ss0 >
while to process 6= ∅ do

3: s = (l, sv, pc) ← removed first element from to process
for all outgoing transitions t = (l, ai, gf, uf, of, l′) from l do

ivs ← new mapping of variables in vars(ai)
6: pc′ ← pc ∪ evals[gf](vs, ivs, pc)

for all uf k ∈ uf do

(pc′′, vs′) ← evals[uf k](v
s, ivs, pc′)

9: for all of k ∈ of do

(pc′′′, seq) ← evals[of k](v
s, ivs, pc′)

pc′ ← pc′ ∪ pc′′ ∪ pc′′′

12: if (pc′ is satisfiable) then

s′ ← (l′, vs′ , pc′)
Ss ← Ss ∪ {s′}

15: Trs ← Trs ∪ {(s, ai, ivs, seq, s′)}
InVarss ← InVarss ∪ ivs

if ¬(∃s′′ ∈ Ss : s′′ 6= s′ ∧ s′ ≺ s′′) then

18: add (l′, vs
′
, pc′) at the end of to process

return SE(F)

Theorem 1. Let F be an FFSM. For its execution semantics E(F) and symbolic execution tree
SE(F) we have

∀p ∈ paths(E(F)) : ∃ps ∈ pathss(SE(F)) : p |= ps

(sketch). The proof is inductive over length of paths. For paths with the length 0 we note that
initial states are the same in a symbolic and concrete execution. Now let assume p |= ps for paths
of length n. For a concrete path p a transition is added according to the rule in Definition 4. The
rule requires that there is a transition in which a guard function is satisfied and there is a case in
an update and in an output function that are satisfied. The satisfaction of guard and cases implies
that a transition is also generated for a symbolic path ps. The transitions agree, thus the concrete
path with length n+ 1 satisfies a symbolic path of the same length.

Algorithm 1 shows how to construct a symbolic execution tree from an FFSM. The algorithm
explores symbolic states in a breadth-first search manner and maintains states waiting for ex-
ploration in a queue to process . During the exploration of a symbolic state, for each outgoing
transition from the state’s location the guard function and each case of update and output func-
tions are symbolically evaluated. If generated path constraints do not create a contradiction, then
a new symbolic state is added to the tree along with a symbolic transition. If this new state is not
subsumed (denoted as ≺ and explained below) by one of the previous states, then it is stored in
to process . The algorithm terminates if there are no more states to explore.

The presented method uses the subsumption relation. For two symbolic states s′ = (l′, sv′, pc′)
and s′′ = (l′′, sv′′, pc′′), we say that s′′ subsumes s′ (denoted as s′ ≺ s′′) iff the states have the
same location (l′ = l′′), the same symbolic valuations sv′ =iv sv

′′ and the path constraints pc′′

of s′′ are weaker than the path constraints pc′ of s′. The subsumption relation also relates states
that are different only up to the replacement of the last input symbolic variable. The rationale
behind this relation is that if there is a state s′′ with weaker path constraints pc′′ and with the
same location and values of machine variables, it represents in fact more states with concrete values
than s′ does. This means that there is no point to further explore s′. Note that Algorithm 1 may
not terminate, if there are loops with updates based on the previous values of machine variables
to machine variables. To overcome this, each transition is symbolically executed only M times,
where M is some user-defined bound.

Example 3. Figure 3 presents a part of a symbolic execution tree for the FFSM given in Example 1.
Comparing the tree in Figure 3 to the concrete execution shown in Figure 4 we see that in the
symbolic execution there are two symbolic states for the first occurrence of the location L2. In the

9

Table 2: The mapping of UML-RT elements to elements of an FFSM.
UML-RT State Machine element FFSM element

non-composite states (with parent states) locations L

attributes of a capsule machine variables V

input events (signals) for base ports,
input actions AI

output events (signals) for conjugated

output events (signals) for base ports,
output actions AO

input events (signals) for conjugated

parameters of input and output
action variables AV

events (signals)

transition chains between two states transitions T

default values of attributes
initial valuation

of machine var. v0

initial pseudostate of a top level state initial location l0

concrete execution the number of states with the location L2 is given by the number of possible
values of the input variable i1 and thus it is potentially infinite.

4 UML-RT State Machines as FFSMs and their analysis

The UML-RT language is a profile of UML 2 [5] and is used for modeling embedded and real
time systems. The language is supported by the IBM RSA RTE tool (a successor of the IBM
Rational R©RoseRT tool) [3]. UML-RT models consist of a hierarchy of capsules connected with
typed ports [31]. A capsule, as its name suggests, is a highly encapsulated entity, which communi-
cates with other capsules only by sending and receiving signals through its ports. Each port has
a type specified with a protocol, which gathers sent or received signals. Connected ports must im-
plement the same protocol and one port in such a connection is declared to be a base one, whereas
the second one is a conjugated one, in which send and receive signals of its protocol are inversed.

Capsules have their behavior specified with UML-RT State Machines [31], which are similar
to UML State Machines [5]. A UML-RT State Machine contains hierarchical states and guarded
transitions, which are triggered by signals received on ports. As the standard UML State Machines,
UML-RT State Machines use a strict run-to-completion semantics of event-handling. The main
difference between UML and UML-RT State Machines is that UML-RT State Machines do not
have “and-states”, i.e., no orthogonal regions. Hence all states are “or-states”. Moreover, UML-
RT State Machines deal with sending events and the initializations of timers in their action code.
Figure 5 presents an example of UML-RT State Machine.

4.1 Representing structure

In order to represent structural elements of UML-RT State Machines, these elements are mapped
to elements of FFSMs. This mapping is summarized in Table 2.

States in UML-RT State Machines might be hierarchical, whereas FFSMs do not support such
hierarchy. Thus to be able to process hierarchical UML-RT State Machines, locations of FFSMs
are assumed to contain the information about a state and all its parent states. In this way it is
possible to discover transitions of a given state and its parent states (if any). The exploration of
states and transitions is part of the on-the-fly algorithm introduced in Section 4.3. Hence explicit
flattening of UML-RT State Machines is avoided and a flat UML-RT State Machine is not required
as the input to symbolic execution.

In the presented mapping of UML-RT State Machines not all available features are considered.
For instance, we omit history states or internal transitions. Although these are important modeling
elements, their treatment is not essential in the presented approach. To include them only the
state exploration part of the algorithm has to be adjusted, which does not influence the symbolic
execution. The support for these elements is left for future work.

10

4.2 Representing action code

Action code from UML-RT State Machines is represented in FFSMs as functions. Such code
is contained in entry or exit actions of states and as actions and guards on transitions. It is
gathered during the discovery of transition chains (see Algorithm 2) in the order imposed by the
run-to-completion semantics of UML-RT. To generate functions, the gathered code is executed
symbolically [21] with the sending of events also included in the resulting symbolic execution tree.
The results of a symbolic execution of action code are translated to functions in FFSMs.

Definition 7. Let assume that a piece of action code c has been executed symbolically and has
produced a symbolic execution tree. Leaves of this tree are tuples (pcc, svc, retc, seqc), where pcc
represents the path constraints, svc the symbolic values of machine variables (required by update
functions), retc the returned boolean expression (required in guard functions) and seqc the possibly
empty sequence of output actions (required in output functions) with symbolic values of output
variables. Let the set SE (c) contain all leaves of the tree. Then c is represented by the functions:

- guard function:
gf

def
=

∧

(pcc,svc,retc,seqc)∈SE(c)((
∧

p∈pcc
p)⇒ retc) ,

- update function:

uf
def
= {uf k|∃(pcc, svc, retc, seqc) ∈ SE(c) :

(case(uf k) =
∧

p∈pcc

p) ∧ (update(uf k) = svc)},

- output function:

of
def
= {of k|∃(pcc, svc, retc, seqc) ∈ SE(c) :

(case(of k) =
∧

p∈pcc

p) ∧ (seq(of k) = seqc)}.

If c does not return any retc then the guard function is trivial. Similarly, if c has no updates or
outputs then update or output functions are trival.

The exact specification how to symbolically execute action code depends on the used action
language. In the next section we use C++, however the above method can be applied also to other
languages.

4.3 Constructing FFSMs

The construction of an FFSM from a given UML-RT State Machine is performed in two stages.
First, the static elements of the FFSM are created according to Table 2. These elements are
all variables, input and output actions, an initial location and valuation. The second stage is
performed on-the-fly during symbolic execution of the FFSM in Algorithm 1. The exploration
that is added after line 18 of Algorithm 1 and is outlined in Algorithm 2. The overall process has
been presented in Figure 1.

The intent of the above translation is that the resulting FFSM captures the semantics of the
UML-RT State Machines. A formal proof of this property is outside the scope of the paper and
is omitted due to space limitations. For the same reason a formal definition of the translation of
UML-RT State Machines into FFSMs is not presented.

Algorithms 1 and 2 are designed to analyze UML-RT State Machines. However, it can be
adapted to analyze the general UML State Machines [5] or any subset of those. For instance,
to deal with ”and-states“ in UML 2 a mapping of a location to a configuration of states in a
state machine is necessary. Additionally, symbolic execution of code needs to be adjusted. These
enhancements are left as the future work.

11

Algorithm 2 UMLRT2FFSM - constructing an FFSM from a UML-RT State Machine

Require: UML-RT State Machine SM ,
Require: FFSM F = (L, V,AV,A,GF ,UF ,OF , T, l0, v0),
Require: location l′

if l′ not explored then

for all transition chains tc in SM starting in l′ do

action code ← gather exit, entry actions, guards, effects of transitions in tc
SE(action code) ← execute symbolically action code
generate functions gf , uf , of from SE(action code)
add target state l′′ of tc to L,
add (l′,trigger of tc, gf , uf , of , l′′) to T
mark l′ as explored

4.4 Analyses of UML-RT State Machines

A symbolic execution tree generated from an FFSM, which is translated from a UML-RT State
Machine can be used to perform several analyses. This is possible, because the tree represents
all possible executions of the machine up to the subsumption relation. Therefore, we can verify a
variety of properties of UML-RT State Machines. The most important ones are introduced below.

A symbolic execution tree can be used to perform reachability analysis between states in the
original UML-RT State Machines, which are represented with locations in the FFSM. The location
s is reachable from the location s′ if there is a path (which may contain subsumed states) in the
symbolic execution tree, which starts in a symbolic state with the location s and ends in a symbolic
state with the location s′.

Another useful analysis is invariant checking, which allows checking whether some conditions
are satisfied in all states of execution of a UML-RT State Machine. Conditions are defined as
predicates over attributes (i.e. machine variables in the FFSM) and input variables of the UML-
RT State Machine. A predicate with those variables is an invariant if it can be inferred from path
constraints in all symbolic states of the symbolic execution tree.

A symbolic execution tree can be also used for output analysis, that is, to check whether an
output action is a part of any output sequence. In this way it is verified whether an event in a
UML-RT State Machine is generated as output during its execution. If this event is represented
with an output action ao we check whether the FFSM has a transition in which ao occurs in a
sequence of output actions. If so, a path to such a transition is returned.

If a symbolic execution tree is deterministic it can be used to generate test cases. The tree is
deterministic if two outgoing transitions with the same input action cannot be both taken for the
same values of input variables, thus the path constraints in the resulting symbolic states do not
have a solution in common. A set of test cases that provides path coverage of a UML-RT State
Machine is defined as the traces to the leaves of a symbolic execution tree. A trace is a sequence
of input and output actions gathered from the transitions that lead to some leaf. In order to be
useful, such traces must be solved, which means that input variables in each trace receive values
that do not contradict the path constraints.

The presented analyses are just examples of how symbolic execution trees can be used to verify
some properties of UML-RT State Machines. They were chosen, because our industrial partners
expressed interest in them. Nevertheless, other possible types of analysis as well as extensions of
the above methods are possible.

5 Implementation and evaluation

5.1 Implementation

The implementation of the symbolic execution of UML-RT State Machines as well as the analysis
consist of several Eclipse plugins in IBM RSA RTE [3]. The implementation follows the general
approach as presented in Figure 1.

During the implementation several assumptions were made. Firstly, the symbolic execution of
code is performed for a subset of C++ containing basic operations on variables, if statements and

12

Figure 5: An example of UML-RT state machine (transitions are of the form action/action

code[guard code]).

while loops (their symbolic execution is bounded). The symbolic execution of full C or C++ is not
trivial and is not of interest here. We justify this simplification by the observation that action code
used in UML-RT State Machines is typically not very complex. Secondly, variables are assumed
to have numeric types (i.e., integer and reals). This is the consequence of using the constraint
solver Choco [1] for constraint representation and for checking their satisfiability in Algorithm 1.
Thirdly, constraints are compared syntactically (symbol by symbol). Therefore the subsumption
relation ≺ is quite restrictive and does not take into account the meaning of constraints. Finally,
we treat setting timers and timeout events as ordinary actions, but we require that a timeout event
happens only if the corresponding timer has been set.

5.2 Example

To present some of the possible analysis results, the example of the UML-RT State Machine shown
in Figure 5 is used. This machine is a part of a UML-RT model of traffic lights. The system controls
pedestrian and car lights at a street crossing. It is equipped with buttons and with sensors that
periodically report a number of cars approaching the crossing. The shown UML-RT State Machine
specifies the behavior of the controller. There are two attributes noOfCars and carLights. The
latter stores the encoding of the current color of lights for cars (0 is green, 1 is yellow, 2 is red, 3
is yellow-red). Both attributes are initialized to zero. In the presented code the pointer *rtdata
represents input values, timers are set using the informIn() method and sending events uses the
send() method.

The result of the symbolic execution of UML-RT State Machine in Figure 5 is a symbolic
execution tree, which is shown partially in Figure 6. The whole tree has 98 states, which is the
consequence of combining possible valuations of the attribute carLights and locations, as well as
additional branching conditions based on the attribute noOfCars. The tree represents the possible
executions of the given UML-RT State Machine with each symbolic state aggregating possibly

13

Figure 6: A part of a symbolic execution tree for the example UML-RT State Machine in Figure 5.

infinitely many concrete states.
In the implementation the computed tree is used to perform analyses as introduced in Sec-

tion 4.4:

1. Reachability analysis. For instance, checking for paths from Walking to NoWalking returns
a path (i.e., a sequence of symbolic states and transitions that connect them, the latter are
enclosed in ”<>“) :
(Walking, (carLights=3, noOfCars=0), PC=[])

<lightsTimeout(), [] >

(NoWalking, (carLights=3,noOfCars=0), PC=[])

The last symbolic state reveals a fault, because the value of carLights is not properly reset
to 0 (green lights for cars) and the lights signal with this value is not sent (the fault is in
the transition between Walking and NoWalking in Figure 5).

2. Invariant checking. For example, when checking the invariant (noOfCars >= 0) there is a
violation found for a simple path with only a single occurrence of the signal carsWithin.
This is because the input value is not checked before the assignment to noOfCars, and the
attribute takes on a negative value (this fault is in the action code of the self-loop transition
in NoWalking state in the UML-RT State Machine in Figure 5).

3. Output analysis. For example, if we consider the signal walkTimer.informIn() the following
traces are possible:

- <carsWithin(var0)[] > . . .
<lightsTimeout()[...,walkTimer(timerVar=(30-var0))] >
with PC=[(var0 > 0), (var0 < 20)],

- <carsWithin(var0)[] > . . .
<lightsTimeout()[...,walkTimer(timerVar=30)] >
with PC=[(var0 > 0), ¬(var0 < 20)],

The traces show the values used to set the timer and their constraints.

4. Test case generation. The tree is deterministic and there are 50 test cases satisfying a path
coverage criterion. One of them is:
<carsWithin(1)><press()[waitingTimer(10)]>

<waitingTimeout()[lights(1),lightsTimer(5)]>

<lightsTimeout()[lights(2),walk(), walkTimer(29)]>

<failed()[blink()]>

14

Table 3: Performance of generating symbolic execution trees (SET) and test cases (TC)

UML-RT State
Machine

number of
locations in

FFSM

number of states
in SET

time to generate
SET (in seconds)

time to generate
TC (in seconds)

Traffic lights (Figure 5) 5 98 2.9 0.3

Phone (simplified) 69 960 20.8 97.1

Phone 125 4069 51.0 362.4

5.3 Evaluation

In order to evaluate the presented approach we performed several experiments using different UML-
RT State Machines. Table 3 presents the results of these experiments (performed on a standard
PC with Intel Core i7 CPU 2.67 GHz, 3GB of RAM). In the table the first UML-RT State Machine
is the one presented in Figure 5. The third UML-RT State Machine, which we obtained from one
of our industrial partners, models interactions between a user and a phone. It has more than 100
states, which are nested up to the sixth level. In the simplified model (the second UML-RT State
Machine in Table 3) some of the transitions are disabled using contradictory guards, so parts of the
UML-RT State Machine are not reachable. The presented results include the test case generation
time, which is the most complex analysis, because all paths in the tree must be considered.

As shown in Table 3 the sizes of the generated FFSMs differ for the last two cases. Although
both UML-RT State Machines contain the same number of states and transitions, in the first model
some parts are unreachable. Because Algorithm 2 generates the appropriate FFSM on-the-fly, the
FFSM represents only a reachable part of the UML-RT State Machine. Therefore the number of
locations in the FFSM is the same as the number of non-composite and reachable states in the
respective UML-RT State Machine.

Times to generate SETs increase with the number of locations in FFSMs and with the number of
states in SETs. Nonetheless, the increase is not proportional: on average it takes 0.03s to generate
one symbolic state in the first model and only 0.01s in the third one. The difference between those
two models is only in the used action code: the action code of the UML-RT State Machine shown
in Figure 5 introduces more constraints than the action code in the phone model. With more
constraints more queries are made to the constraint solver, which affects the performance. This
effect manifest itself in the time required to generate test cases for the third state machie. There
are more than 3000 paths in the SET and all these paths must have their constraints solved to
become test cases and this process is very time consuming.

As presented, the prototype implementation performs the analysis of the subset of UML-RT
State Machines. However the implementation has its limitations. One of them is inherited from
the Choco solver [1], which cannot solve arbitrary complex constraints and is not very efficient.
Nevertheless, for straightforward relations between variables, the performance is acceptable and the
solver is sufficient. The other limitation is the result of the exhaustive exploration in Algorithm 1,
which may mean that the implementation does not scale well to larger models. However, the
presented technique, besides using symbolic values to aggregate states, is applied to a single state
machine, so the analysis is performed on the unit level. As illustrated by the above examples, the
technique can be applied to analyze non-trivial UML-RT State Machines. The general applicability
of the method to industrial models is future work and will directly depend on the nature of the
action code used in these models.

6 Related work

We partition our discussion of related work into three groups: 1) symbolic execution of programs,
2) symbolic execution of state-based models, and 3) formal analysis of state machines in UML and
UML-RT.
1) Apart from the development of a dedicated tool for symbolic analysis, the use of a standard

15

model checker has also been suggested [20, 12]. A translation of UML-RT State Machines into
a language supported by one these tools could be used to realize symbolic execution of UML-RT
State Machines. While this approach would allow use of, e.g., the optimization and abstraction
features of these model checkers, it would also complicate the support for different action languages.
Approaches to make symbolic execution modular by creating summaries of computational units
have also been developed (e.g., [6, 16]). Although the technical details differ, these summaries are
similar in spirit to the functions used in FFSMs to capture the effect of action code.
2) Symbolic execution has been applied to different kinds of state-based models. For instance, Tret-
mans’ testing theory [9], which formalizes circumstances under which an implementation (modeled
as an input/output transition system, ioTS) can be considered conforming to a specification (mod-
eled as a labeled transition system), has been extended to deal with infinite-state specifications
using symbolic execution for test case generation [13] and selection [19]. The work in [15, 28]
builds on this effort and presents approaches for test case generation for UML 1.x state machines
by translating them into ioTS, and for implementing LTL model checking of ioTS by using sym-
bolic execution. Test case generation for a timed extension of Harel’s Statecharts is dealt with
in [22] (the work in [8] does the same for Harel Statecharts, but without symbolic execution). In
contrast to our work, none of these approaches allow for action code that is written in a standard
programming language.
3) A deductive approach to verifying temporal properties state machines in UML 1.x is taken in [7,
33]. A simple, idealized action language containing assignment, sequencing, parallel composition is
supported, however, the approach cannot be used for test case generation and is not fully automatic,
since it is based on interactive theorem proving. The literature contains many proposals to model
check state machines in UML-RT and UML. All approaches we are aware of translate the state
machines into the input language of a model checker. Early work on translating UML-RT State
Machines to Promela can be found in [29]. The approach in [30] deals with state machines in
UML 1.4 in the same way, but also features an implementation that can check state machines with
respect to collaboration diagrams (called communication diagrams in UML 2). The work is revised
to deal with timing constraints in [25] using timed automata and Uppaal. In [10], Burmester et
al also use a form of timed automata and Uppaal; however, the work also supports incremental,
compositional development and refinement via the reasoning approach detailed in [14]. In [23],
UML-RT State Machines are mapped to ASML; in contrast to other work on the topic, dynamic
capsule creation, binding, and destruction via optional and imported capsules are supported as
well; SpecExplorer is used for simulation of UML-RT models, but support for model checking and
test case generation is left for future work. In [24], UML State Machines are translated to Java and
analyzed using JPF. Unlike other works, the approach can deal directly with Java action code, but
support for other action languages would require a translation to Java. A key difference between
model checking and symbolic execution is that symbolic execution is capable of handling very large
(possibly even infinite) state spaces.

A comprehensive, formal account of the semantics of UML-RT is still an open research problem.
Since the primary goal of our work is to define and implement symbolic execution of UML-RT State
Machines and not to present a full, formal definition of their semantics, we do not review this part
of the literature. Finally, the model analysis capabilities of IBM RSA RTE and RoseRT are quite
limited and do not cover the analyses we are interested in. Therefore, these tools also are not
reviewed any further.

7 Conclusions and future work

This paper presents a method for the symbolic execution of UML-RT State Machines, able to
handle different action languages. This is possible due to the modular treatment of action code
via functions, which are constructed on-the-fly during the symbolic execution of state machines
with the help of a symbolic execution engine for action code. The functions are incorporated
into a formal representation of state machines, called functional finite state machines (FFSMs).

16

As shown, FFSMs can represent UML-RT State Machines, however translation from other state
machines models is also possible. The symbolic execution of FFSMs is formally defined. To
illustrate the method and the analysis, the paper presents an implementation which symbolically
executes UML-RT State Machines with action code that is a subset of C++. The resulting symbolic
execution tree is used to perform reachability analysis, invariant checking, output analysis and test
case generation and two case studies are presented.

Apart from the future work already mentioned, more work is required to determine the ap-
plicability of the technique to industrial-size UML-RT models. If performance or functionality
improvements become necessary some of the recently developed extensions of symbolic executions
(e.g., with concrete execution) will be considered. Finally, work allowing for the symbolic analysis
of collections of capsules by combining symbolic execution trees is currently ongoing [37].

8 Acknowledgements

Authors wish to acknowledge the support of NSERC, IBM Canada, and Malina Software.

References

[1] Choco Solver http://www.emn.fr/x-info/choco-solver/doku.php?id=about.

[2] IBM Rational Rhapsody Architect, Version 7.5.3. http://www-01.ibm.com/software/ ratio-
nal/products/rhapsody/swarchitect/.

[3] IBM Rational Software Architect, RealTime Edition, Version 7.5.5.
http://publib.boulder.ibm.com/ infocenter/rsarthlp/v7r5m1/.

[4] Scade Suite (Esterel Technologies) http://www.esterel-technologies.com/products/scade-suite/.

[5] Unified Modeling Language (UML 2.0) Superstructure. http://www.uml.org/.

[6] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional symbolic execution.
In TACAS 2008 (LNCS 4963), pages 367–381, 2008.

[7] M. Balser, S. Baumler, A. Knapp, W. Reif, and A. Thums. Interactive verification of UML
state machines. In ICFEM 2004 (LNCS 3308), pages 434 – 48, 2004.

[8] K. Bogdanov, M. Holcombe, and H. Singh. Automated test set generation for statecharts. In
FM-Trends 1998 (LNCS 1641), pages 107 – 21, 1998.

[9] E. Brinksma and J. Tretmans. Testing transition systems: An annotated bibliography. In
Summer School on Modeling and Verification of Parallel Processes (MOVEP’00), 2001.

[10] S. Burmester, H. Giese, M. Hirsch, and D. Schilling. Incremental design and formal verification
with UML/RT in the FUJABA real-time tool suite. In SVERTS2004 (part of UML2004), 2004.

[11] P. Coward. Symbolic execution systems-a review. Software Eng. J., 3(6):229 –239, 1988.

[12] X. Deng, J. Lee, and Robby. Bogor/kiasan: A k-bounded symbolic execution for checking
strong heap properties of open systems. In Proc. ASE’06, 2003.

[13] L. Frantzen, J. Tretmans, and T. Willemse. Test generation based on symbolic specifications.
In FATES 2004 (LNCS 3395), pages 1 – 15, 2004.

[14] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and S. Flake. Towards the Compositional
Verification of Real-Time UML Designs. In Proc. ESEC/FSE’03, 2003.

17

[15] S. Gnesi, D. Latella, and M. Massink. Formal test-case generation for UML statecharts. In
ICECCS 2004, pages 75–84, 2004.

[16] P. Godefroid. Compositional dynamic test generation. In POPL ’07, 2007.

[17] P. Godefroid. From blackbox fuzzing to whitebox fuzzing towards verification. Invited talk at
ISSTA’2010, 2010. http://research.microsoft.com/en-us/um/people/pg/.

[18] F. Ipate and M. Holcombe. Generating test sets from non-deterministic stream X-machines.
Formal Aspects of Computing, 12(6):443 – 58, 2000.

[19] T. Jeron. Symbolic Model-based Test Selection. ENTCS, 240:167 – 184, 2009.

[20] S. Khurshid, C. Pǎsǎreanu, and W. Visser. Generalized symbolic execution for model checking
and testing. In Proc. TACAS’03, 2003.

[21] J. King. Symbolic execution and program testing. Communications of the ACM, 19(7):385 –
94, 1976.

[22] N. H. Lee and S. D. Cha. Generating test sequence using symbolic execution for event-driven
real-time systems. Microproc. and Microsys., 27(10):523 – 31, 2003.

[23] S. Leue, A. Stefanescu, and W. Wei. An AsmL Semantics for Dynamic Structures and Run
Time Schedulability in UML-RT. Technical report, University of Konstanz, Germany, 2008.

[24] P. Mehlitz. Trust your model - verifying aerospace system models with Java pathfinder. In
IEEE Aerospace Conference, 2008.

[25] S. Merz and C. Rauh. Model checking timed UML state machines and collaborations. In
Formal Techniques in Real-Time and Fault Tolerant Systems (FTRTFT’02), pages 395–414,
2002.

[26] OMG. Action Language for Foundational UML (Alf), 2010. ptc/2010-10-05.

[27] C. Pǎsǎreanu and W. Visser. A survey of new trends in symbolic execution for software testing
and analysis. J. on Software Tools for Technology Transfer (STTT), 11:339–353, 2009.

[28] N. Rapin. Symbolic execution based model checking of open systems with unbounded vari-
ables. In Tests and Proofs, volume 5668 of LNCS, pages 137–152, 2009.

[29] M. Saaltink and I. Meisels. Using SPIN to analyse RoseRT models. Technical report, ORA
Canada, 1999.

[30] T. Schäfer, A. Knapp, and S. Merz. Model checking UML state machines and collaborations.
ENTCS, 55(3):pp. 1–13, 2001.

[31] B. Selic. Using UML for modeling complex real time systems. In ACM SIGPLAN Workshop
LCTES 1998 (LNCS 1474), pages 250 – 60, 1998.

[32] V. Sperschneider and G. Antoniou. Logic : a foundation for computer science. Addison-
Wesley, 1991.

[33] A. Thums, G. Schellhorn, F. Ortmeier, and W. Reif. Interactive Verification of Statecharts.
In INT 2004 (LNCS 3147), 2004.

[34] A. Tomb, G. Brat, and W. Visser. Variably interprocedural program analysis for runtime
error detection. In ISSTA ’07, pages 97–107, 2007.

[35] T. Weigert, F. Weil, and K. Marth. Experiences in deploying model-driven engineering. In
SDL 2007: Design for Dependable Systems, 2007.

18

[36] P. Whittaker, M. Goldsmith, K. Macolini, and T. Teitelbaum. Model checking uml-rt proto-
cols. In Workshop on Formal Design Techniques for Real-Time UML, 2000.

[37] K. Zurowska and J. Dingel. Symbolic execution of collections of UML-RT State Machines.
Draft, 2011.

19

