
Timed Automata for the Development of Real-Time
Systems

Md Tawhid Bin Waez

School of Computing, Queen’s University, ON

waez@cs.queensu.ca

Juergen Dingel

School of Computing, Queen’s University, ON

dingel@cs.queensu.ca

Karen Rudie

Department of Electrical and Computer Engineering, Queen’s University, ON

karen.rudie@queensu.ca

September 20, 2011

Technical Report 2011-579
First Version Appeared on August 14, 2011

Abstract

Timed automata are a popular formalism to model real-time systems. They
were introduced two decades ago to support formal verification. Since then they
have also been used for other purposes and a large has been introduced to be able
to deal with the many different kinds of requirements of real-time system.

This paper presents a fairly comprehensive survey, comprised of eighty variants
of timed automata. The paper classifies all these eighty variants of timed automata
in an effort to determine current developments. It uses analysis techniques, formal
properties, and decision problems to draw distinctions between different versions.
Moreover, the paper discusses the challenges behind using a timed automata spec-
ification to derive an implementation of a working real-time system and presents
some solutions. Finally, the paper lists and classifies forty tools supporting timed
automata.

The paper does not only discuss many variants and their supporting concepts
(e.g., closure properties, decision problems), techniques (e.g., for analysis), and
tools, but it also attempts to help the reader navigate the vast literature in the field,
to highlight differences and similarities between variants, and to reveal research
trends and promising avenues for future exploration.

1 Introduction

Regular languages [236] are the most dominant class of underlying formal languages for
current Model Driven Development (MDD) [248] techniques because of their appealing
closure properties and impressive decidability results. They are used as the underlying
formal language in many aspects of MDD: in temporal logic [263] and process algebra
[191] which are used for model design, in model checking [115] which is used for model
verification, in controller synthesis [268] which is used for automated model construction,

1

2

and in equivalence and refinement relations [258] which are used for model conformance
testing. Although the use of regular languages is so prevalent in MDD, they are not
expressive enough to capture timing properties of real-time systems [111]. For the MDD
of real-time systems, one has to move to a different formalism which can represent timing
information.

There have been many attempts to model real-time systems. Major attempts include
timed Petri nets [269], timed transition systems [175, 252], timed I/O automata [240], and
modelcharts [198]. All these attempts associate lower and upper time bounds with the
transitions, but no time constraints to traverse the automaton. None of them developed
a theory of timed languages or an algorithm for the verification of timing properties. To
overcome these limitations, timed automata [20, 21] were introduced by Alur and Dill in
the early nineties. Since then, timed automata have become the most dominant formal
model to support MDD of real-time systems.

A timed transition system of a timed automaton can be infinitely large due to its abil-
ity to express dense time. A timed transition system can be converted into an equivalent
finitely large symbolic transition system called region graph where reachability is decid-
able. Decidability of reachability is a core requirement for automated formal verification
and this property of timed automata plays a foremost role to establish timed automata
as the major real-time formal model. Later on, zone graphs were developed and modified
continuously to provide better scalability in practice compared to region graph. Rich clo-
sure properties and decidability of many important decision problems have contributed
to the adaptation of timed automata in many approaches to support MDD of real-time
systems. During the first two decades of timed automata, many kinds of generalizations
and variants of timed automata have been proposed and studied to address practically
all aspects and features of real-time systems. The strong foundation of timed automata
has inspired the emergence of a huge number of tools for analysis, verification, controller
synthesis, and code synthesis for timed automata. This survey is an attempt to provide
a brief and compact description of the development of timed automata and its variants
from theory to practice during the first two decades after the birth of timed automata.

The contributions of this survey paper is the listing and grouping of eighty variants
of timed automata and the listing and grouping of forty tools which are based on timed
automata. This paper describes three kinds of analysis techniques for timed automata
based on region, zone, and flattening, respectively. Decision problems and closure prop-
erties for timed automata are also enumerated in this survey. It also presents a brief
survey on the implementability of timed automata.

The remainder of the paper is organized as follows: Section 2 discusses the syntax
of timed automata, while Section 3 explains the operational and symbolic semantics of
timed automata. Section 4 presents formal linguistic aspects of timed automata. Section 5
enumerates eighty variants of timed automata and then classifies them into twelve classes.
Section 6 discusses implementability challenges and solutions. Section 7 presents some
academic tools which are based on timed automata. The paper concludes in Section 8.

2 Syntax

A timed automaton is a finite state automaton with a set of asynchronous (nonnegative
real valued) clocks and a set of clock constraints. A clock valuation over the set of clocks is
a mapping which assigns to each clock a nonnegative real value. An initial clock valuation
maps each clock of a timed automaton to zero. A vertex in a timed automaton is called

3

a location. A location is associated with a clock constraint called the local invariant1 of
that location. Control can stay in a location only if the clock valuation satisfies the local
invariant of that location. Local invariants are used to ensure the progress of the model
[186], that is, control cannot stay in a location forever. Instead of local invariants, Büchi
or Muller acceptance conditions can be used to enforce progress [20, 21]. An edge in a
timed automaton is called a switch. A switch is associated with a clock constraint, a
subset of the clocks, and a label (with a symbol). A clock constraint which is associated
with a switch is called the guard of that switch. A switch can be taken only if the clock
valuation satisfies the guard of that switch. Guards are used to restrict the behavior of
the automaton. Each associated clock of a switch is reset to 0 when the switch occurs.
At any instant, the value of a clock equals the time elapsed since the last time it was
reset. While switches are instantaneous, time can elapse in a location. Consider the

Figure 1: A timed automaton with 2 clocks [12]

example [12] in Figure 1 with two clocks (x and y). The clock x is set to 0 each time the
system switches from l0 to l1 on symbol a. The local invariant (x < 1) associated with
the locations l1 and l2 ensures that the c-labeled switch from l2 to l3 happens within one
time unit of the occurrence of a. Resetting clock y together with the b-labeled switch
from l1 to l2 and the guard of the d-labeled switch from l3 to l0 ensures that the delay
between b and the following d is always greater than two time units.

A timed automaton A is a tuple 〈L,L0, LF ,Σ, C, E, I〉: where

L is a finite set of locations,

L0 ⊆ L is the set of initial locations,

LF ⊆ L is the set of final locations,

Σ is a finite alphabet,

C is a finite set of nonnegative real valued clocks,

E ∈ L× Φ(C)× {Σ ∪ {ε}} × 2C × L is the set of switches (edges), and

I : L −→ Φ(C) is a mapping that assigns local invariants to locations

and the set Φ(C) of clock constraints δ is defined inductively by

δ := x ∼ q | x− y ∼ q | ¬δ | δ1 ∧ δ2 | true

and q ∈ Q, ∼∈ {=, <,>,≤,≥}, elements of the alphabet Σ are observable actions, ε
represents unobservable actions, and C is ranged over by x, y etc. The above stated

1A timed automaton with local invariants is called timed safety automaton [186].

4

clock constraints only allow one to compare a clock or the difference of two clocks with
a rational constant. Clock constraints of the form of x− y ∼ q are called diagonal clock
constraints or difference clock constraints. A timed automaton without diagonal clock
constraints is called a diagonal-free timed automaton [62]. A flat timed automaton is a
timed automaton which does not have any nested loops: for every location l there is at
most one non-empty path from l to itself. Any timed automaton can be emulated by
a flat timed automaton [117]. A k-bounded clock constant is a clock constraint which
involves only constants between −k and k. A switch e = 〈l, a, φ, γ, l′〉 ∈ E from location l
to l′ can occur and reset the set of clocks γ ∈ 2C on symbol a if the current clock valuation
ν satisfies the guard φ (ν � φ). Only the clock constraints which are downwards closed2

are used as local invariants because a local invariant merely asserts how long control can
stay in the associated location of that local invariant.

3 Semantics

3.1 Operational Semantics

A timed transition system is a tuple 〈S, S0, SF ,Σ ∪ R+,→〉 where S is a set of states,
S0 ⊆ S is a set of initial states, SF ⊆ S is a set of final states, Σ is an alphabet, and →⊆
S ×{Σ∪ {ε} ∪R+}×S. The semantics of a timed automaton A = 〈L,L0, LF ,Σ, C, E, I〉
is defined by associating a timed transition system T S(A) of the same alphabet with A
[20, 21]: a state in T S(A) is expressed as a pair (l, ν) such that l ∈ L and ν is a clock
valuation (for C) which satisfies the local invariant I(l). A pair (l, ν) is in S0 iff l is an
initial location (l ∈ L0) and ν is the initial clock valuation ν0. Similarly, a state (l, ν) is
a final state iff l is a final location (l ∈ LF). T S(A) can have two types of transitions:

Action transition: (l, ν)
a−→ (l′, ν[γ := 0]) for a switch 〈l, a, φ, γ, l′〉 if ν � φ, where

a ∈ {Σ ∪ {ε}}, γ ∈ 2C and ν[γ := 0] denotes a clock valuation that differs from ν
only in that clocks in γ have been reset to 0.

Time transition: (l, ν)
τ−→ (l, ν + τ) if (ν + τ ′) � I(l) for ∀τ ′ : 0 ≤ τ ′ ≤ τ , where τ ∈ R+.

Due to the real-value time transitions, the state-space of the timed transition system of
a timed automaton could be infinitely large.

A timed action is a pair (t, a), where action a ∈ (Σ ∪ {ε}) is taken by a timed
automaton A after t ∈ R+ time units since A has been started. The absolute time t
is called a time-stamp of the action a. A timed word is a sequence of timed actions
ξ = (t1, a1)(t2, a2)...(ti, ai) where ti ≤ ti+1 for ∀i : i ≥ 1. A run of A in T S with initial
state 〈l0, ν0〉 over the timed word ξ = (t1, a1)(t2, a2)...(ti, ai) is a sequence of transitions:

〈l0, ν0〉
t1−→ 〈l0, ν ′0〉

a1−→ 〈l1, ν1〉
t2−t1−−−→ 〈l1, ν ′1〉

a2−→ 〈l2, ν2〉...
ai−→ 〈li, νi〉

A run is accepting iff 〈li, νi〉 is a final state. The timed language Σ∗t over Σ is the set of
all timed words over Σ. The generated timed language Lgt(A) ⊆ Σ∗t is the set of all timed
words for which there exists a run of timed automaton A. The set of all timed words with
an accepting run of a timed automaton A is the accepted timed language Lt(A) ⊆ Lgt(A)
by A. The untimed language Lu is the set of all words in the form a1a2a3... for which
there exists a timed word ξ = (t1, a1)(t2, a2)...(ti, ai) ∈ Σ∗t .

2A clock constraint in the form x � n or x− y � n is downwards closed, where �∈ {<,≤} and n is
a nonnegative integer.

5

3.2 Symbolic Semantics

Exhaustive verification via state-space exploration is not possible on an infinitely large
state-space. In the last two decades, researchers have made many attempts to convert this
infinite state-space into an abstract state-space with a finite, tractable number of states
such that this coarser state-space preserves all the important properties (for modeling
and verification) of the original state-space.

3.2.1 Region Graph

(a) Clock regions (b) 6 intersections (c) 14 lines (d) 8 spaces

Figure 2: All the 28 clock regions in Figure 2(a) for the timed automaton of Figure 1: 6
intersections, 14 lines, and 8 spaces

An infinite state-space of a timed transition system T S(A) can be converted into
an equivalent finite state-space of a symbolic transition system called a region graph
R(A) [14, 20, 21]. The decidability results (e.g., reachability analysis, untimed language
inclusion, language emptiness, etc.) in timed automata are based on this notion of a
symbolic state-space. A region, a state of a region graph R(A), is a pair 〈l, r〉; where l is
a location and r is a set of clock valuations known as clock region. Two clock valuations
ν and µ are in the same clock region if for any clock x1 these clock valuations have
equal integral part (bν(x1)c = bµ(x1)c) and for all clocks these clock valuations preserve
the order of the fractional parts (if fr(ν(x1)) ≤ fr(ν(xi)) then fr(µ(x1)) ≤ fr(µ(xi)),
where fr(c) = c − bcc and i ∈ N). The integral part of a clock value is important to
decide whether or not a specific clock constraint is satisfied, while the ordering of the
fractional parts is needed to decide which clock will change its integral part first. Let
k be a function, called a clock ceiling function, mapping each clock x ∈ C to its ceiling
k(x) ∈ N. Two clock valuations ν and µ are clock region equivalent for k, denoted ν ≈Rk µ,
iff

1. ∀x : x ∈ C, (bν(x)c = bµ(x)c) ∨ (ν(x) > k(x) ∧ µ(x) > k(x)),

2. ∀x : x ∈ C, ν(x) ≤ k(x)⇒ (fr(ν(x)) = 0)⇔ (fr(µ(x)) = 0)), and

3. ∀x, y : x, y ∈ C, ν(x) ≤ k(x) ∧ ν(y) ≤ k(y) ⇒ ((fr(ν(x)) ≤ fr(ν(y))) ⇔
(fr(µ(x)) ≤ fr(µ(y))))

≈R is used instead of ≈Rk , if the clock ceilings are given by the maximal clock constants
of the timed automaton under consideration. If the number of clocks |C| is fixed and each

6

clock x ∈ C has a maximal constant mx, then the number of clock regions is finite: the
number of clock regions can be at most |C|! · 4|C| ·

∏
x∈C(mx + 1) [21]. All clock regions

for the timed automaton of Figure 1 are shown in Figure 2. If ν ≈Rk µ then 〈l, ν〉 and
〈l, µ〉 are untimed bisimilar (or bisimilar w.r.t. Lu(A)) for ∀l : l ∈ L. As a consequence,
untimed bisimulation is used to construct the R(A).

The first attempt to construct region graphs was made on diagonal-free timed au-
tomata. Diagonal clock constraints are necessary to model many applications such as
scheduling problems [160]. It was shown that a timed automaton A with difference clock
constraints can be converted into an equivalent timed automaton A′ which has no differ-
ence clock constraints [62]. This conversion is based on a region construction. The size
of the transformed model is exponential in the number of diagonal clock constraints.

The number of clock regions in R(A) grows exponentially with the number of clocks
and the size of maximal constants in the clock constraints. Many techniques for the
minimization of region automata have been proposed [15, 16, 186, 292]. None of these
proposed techniques has been successful in practice. Region automata are not used in
practice because the number of regions is often too large to be explored exhaustively.

3.2.2 Zone Graph

Figure 3: Zone graph for the timed automaton of Figure 1 with only 5 zones

A practically efficient abstract state-space of a timed automaton A is given by its
Zone Graph Z(A) [139, 306, 308]. A zone 〈l, [δ]〉 is a pair of a location l and a clock zone
[δ]. A clock zone [δ] is the maximal set of clock valuations satisfying δ ∈ Φ(C). If a timed
automaton has n clocks, then its clock zones are convex sets in n-dimensional euclidean
space. Every clock region is a clock zone [267]. If the addition of two clock regions (or
clock zones) is a convex set then the addition is a clock zone [267]. The number of clock
zones is the number of convex unions of clock regions [278]; in the worst case, this number
is exponential in the number of clock regions. In practice, clock zones are coarser and
more compact than clock regions (e.g., the timed automaton of Figure 1 has 28 clock
regions as shown in Figure 2, while it has only 5 clock zones as shown in Figure 3). Zones
have been used to implement all the major timed automata based tools (e.g., UPPAAL

[48], KRONOS [127]).
For a timed automaton A = 〈L,L0, LF ,Σ, C, E, I〉, its zone graph Z(A) is a transition

system: states of Z(A) are zones of A, the zone 〈l0, [C = 0]〉 is the initial state of Z(A)
(where l0 ∈ L0 and C = 0 means that the value of any clock in C is 0), and for every switch
e = 〈l, a, φ, γ, l′〉 ∈ E and every zone 〈l, [δ]〉 there is a transition 〈〈l, [δ]〉, a, succe(〈l, [δ]〉)〉;
where succe is a successor function which returns all the zones which can be reached
from the zone 〈l, [δ]〉 by first performing the switch e, then letting time pass in the new

7

location, while continuously satisfying the local invariant. The successor function succe
and reachability analysis in a zone graph are possible because clock zones are closed
under the three operations [δ1] ∧ [δ2], [δ]⇑,τ , and [δ][γ := 0] where [δ1] ∧ [δ2] denotes the
intersection of [δ1] and [δ2], [δ]⇑,τ denotes the set of interpretations for ν + τ for ν ∈ [δ]
and τ ∈ R+, and [δ][γ := 0] denotes the set of clock valuations ν[γ := 0] for ν ∈ [δ] and
γ ∈ C.

A clock zone [δ] is closed under entailment, if δ cannot be strengthened3 without
reducing the solution set. A canonical zone graph Z(A) means that for every [δ] ∈ Z(A),
there is a unique clock zone [δ′] (where δ′ ∈ Φ(C)) such that [δ] and [δ′] have exactly same
solution set and [δ′] is closed under entailment. Clock zones of a canonical zone graph
are represented and manipulated in a data structure called Difference Bounded Matrices
(DBM) [53, 56, 65, 139, 230]. It is the major structure for the efficient implementation
of real-time state-space exploration using symbolic semantics.

(a) A timed automa-
ton

(b) An infinite zone graph (c) A k-extrapolated zone graph

Figure 4: A timed automaton with its infinite zone graph and its k-extrapolated (here,
k = 20) zone graph [58]

Zone graphs are not always finite [58, 128], which makes exhaustive exploration im-
possible. To remedy this problem, one approach is to construct a region-closed zone graph
[73, 293, 289]: replace each [δ] ∈ Z(A) by the union of the regions of R(A) which inter-
sect [δ]. Since the number of regions is finite, there is a finite number of zones after this
operation. The region closure of a zone may not be convex. As a result, DBM cannot be
used. For this reason, the region-closed zone graph is not used in practice.

Another approach to guarantee finiteness of zone graph is the use of an abstraction
operator called the k-extrapolation (k is a constant supposed to be greater than the
maximal constant occurring in A) [58, 74, 128, 261, 271, 290]. The k-extrapolation
operator abstracts Z(A) into another zone graph Z ′(A) such that all constraints defined
in Z ′(A) are k-bounded. The k-extrapolated zone graph is finite, since the number of
clock zones with bounded constraints is finite. As an example, a finite k-extrapolated

3Let δ1 be δ ∧ x− y � n1 (δ ∧ x � n1) and |δ1| = |δ2| where δ2 equals to δ ∧ x− y � n2 (δ ∧ x � n2)
such that n1 > n2, then δ1 can be strengthened by replacing n1 by n2 in δ1.

8

zone graph of the infinite zone graph of Figure 11(a) is shown in Figure 11(b). A k-
extrapolated zone graph is correct for reachability4 only for diagonal-free timed automata
[57, 74]. If A has any diagonal constraint, then Z(A) may have a reachable zone 〈l, [δ]〉
where l is not a reachable location in A.

A k-extrapolated zone graph (with diagonal constraints) is correct for reachability
[58], if clock valuation ν satisfies a diagonal constraint δ iff clock valuation µ satisfies δ
where ν and µ are k-extrapolated zone equivalent clock valuations. One method to ensure
correctness for reachability of a k-extrapolated zone graph is to check this property [58].
However, checking this property may suffer from an exponential blow-up in the number
of zones. The number of zones is multiplied by 2n, where n is the number of diagonal
constraints. To remedy this problem, a new method has been proposed based on counter-
example5 guided abstraction refinement [83] and has been applied [270] in UPPAAL. Not
all the diagonal constraints cause incorrectness for reachability. In practice, diagonal
constraints produce an incorrect result only very rarely. Since counter-examples are very
rare, this refinement method causes very little overhead in practice.

4 Timed Regular Languages and the Decision Prob-

lems

A language L ⊆ Σ∗t is a timed regular language, if there exists a timed automaton A such
that L = Lt(A). An untimed language of a timed regular language is a regular language
[21]. Timed regular expressions [37, 38] can be used to represent timed regular languages
and operations on them. Some variants [89, 90, 141] of timed regular expressions exist in
the literature. In MDD, closure properties and decision problems are crucial for modeling,
operations on models, and formal verification of a model. For example, the underlying
languages need to be closed under intersection and shuffle to model a concurrent system
using an synchronous and interleaving semantics, while emptiness checking is used to
detect the violation of safety properties (“nothing bad will happen”) in a model. Timed
regular languages are closed under union [20, 21], intersection [20, 21], concatenation
[37, 38], projection [20], renaming [20], and Kleene-star [36, 37, 38]. However, timed
regular languages are not closed under complementation [20, 21] and shuffle [142, 162].
These results are summarized in Table 1.

Table 1: Closure Properties of Timed Automata
Property Closure Under Property Closure Under

Union Yes Kleene-star Yes
Intersection Yes Projection Yes
Concatenation Yes Shuffle No
Renaming Yes Complementation No

The emptiness checking problem for timed automata is PSPACE-complete and can be
solved in time O(|E| · |C|! · 4|C| · (m ·m′ + 1)|C|) where m is the largest numerator in the
constants in the clock constraints and m′ is the least-common-multiple of the denomi-

4We say that a symbolic transition system T ′ of an original transition system T is correct for reach-
ability iff a state s is reachable in T then there is a reachable symbolic state s′ in T ′ which contains
s.

5A counter-example is a trace where l in A is not reachable, but 〈l, [δ]〉 in Z(A) is reachable.

9

nators of all the constants in the clock constraints [21, 27]. Minimum-time reachability6

for timed automata is PSPACE-hard [39, 118, 250]. Timed bisimulation [18, 109, 233] and
timed simulation [285] are decidable in EXPTIME. Universality [21], language equivalence
[20, 21], language inclusion [20, 21], determinizability7 [163, 288], computing the clock
degree [288, 305], minimization of the number of clocks8 [163, 288], and reducing the size
of constants9 [288] for timed automata are undecidable. Comon and Jurski [117] have
shown that the binary reachability between any two (set of) states of a timed transition
system of a timed automaton is decidable and they left the complexity issue as an open
problem. Instead of the conventional region-based (or zone-based) technique, they first
convert a timed automaton to an equivalent flat timed automaton and then use the ad-
ditive theory of real numbers to prove the decidability of binary reachability in a timed
automaton. We will call their technique flattening technique. The flattening technique
allows one to express and verify some important properties that cannot be expressed or
verified by region-based (or zone-based) techniques such as “the delay between event a1
and event b1 is never larger than twice the delay between even a2 and event b2”. On
the other hand, their technique is unable to express all the region-based (or zone-based)
timing properties, e.g., the flattening technique unable to express unavoidability. These
decision problems are summarized in Table 2.

Table 2: Complexity of Decision Problems for Timed Automata
Problem Complexity Problem Complexity

Emptiness checking PSPACE-complete Minimum-time reachability PSPACE-hard
Timed bisimulation EXPTIME Computing the clock degree Undecidable
Timed simulation EXPTIME Language equivalence Undecidable
Universality Undecidable Reducing the size of constants Undecidable
Language inclusion Undecidable Minimiza. of the number of clocks Undecidable
Determinizability Undecidable Binary reachability Decidable

A deterministic timed automaton has at most one initial state, no ε-transitions, and
no pair of switches which have the same action from the same source location with a
common clock valuation which can satisfy the guards of both switches. Deterministic
timed automata are strictly contained in (nondeterministic) timed automata [20, 21].
A deterministic timed automaton has only one run. Deterministic timed automata are
closed under union [20, 21], intersection [20, 21], and complement [20, 21]. Deterministic
timed automata are not closed under projection [20, 21] and renaming [24]. These closure
properties of deterministic timed automata are summarized in Table 3.

Emptiness checking, universality, language inclusion, languages equivalence problems
for deterministic timed automata are PSPACE-complete. These decision problems of
deterministic timed automata are summarized in Table 4.

6Given a timed automaton A, is there a run of A from some initial location l0 ∈ L0 to some final
location lf ∈ Lf? If so, find such a run which consumes minimum-time.

7Given an automaton A, does there exists a deterministic automaton B such that L(A) = L(B)? If
so, construct B.

8Given a timed automaton A with n clocks, does there exists a timed automaton B with n−1 clocks,
such that Lt(A) = Lt(B)? If so, construct B.

9Given a timed automaton A where constants are not greater than k, does there exist a timed
automaton B where constants are not greater than k − 1, such that Lt(B) = Lt(A)? If so, construct B.

10

Table 3: Closure Properties of Deterministic Timed Automata
Property Closed Under Property Closed Under

Union Yes Complementation Yes
Intersection Yes Projection No
Renaming No

Table 4: Complexity of Decision Problems for Deterministic Timed Automata
Problem Complexity Problem Complexity

Emptiness checking PSPACE-complete Language inclusion PSPACE-complete
Universality PSPACE-complete Language equivalence PSPACE-complete

5 Variants of Timed Automata

Many variants [24, 30, 46, 81, 120, 159, 235] of timed automata have been proposed in the
literature. There are three major motivations behind this flourish of variants: the major
one is to improve existing analysis capabilities of timed automata for the modeling of
real-time systems (e.g., to find optimal paths [30], and check schedulability [52, 159], and
check memory consumption [30, 50, 159], etc.); the second one is to increase expressiveness
by adding features such as probability [46, 217] or recursion [120]; and the last reason is
to increase conciseness of the model [81]. There are also some variants of the semantics
[43, 133] to make timed automata a more robust and accurate real-time model.

5.1 Timed Automata with Other Clock Constraints

This subsection presents variants of timed automata which add more expressive clock
constraints with the existing clock constrains of classical timed automata. Most of them
lose many important theoretical properties to facilitate extra expressiveness. In terms of
practical applications parametric timed automata [25] is the most influential and impor-
tant class of variants in this subsection.

5.1.1 Timed Automata with Periodic Clock Constraints

Figure 5: A timed automaton with an ε-transition which has no equivalent ε-transition-
free timed automaton [62]

The class of ε-transition-free timed automata is strictly less expressive than the class of
timed automata with ε-transitions [62]. The timed automaton in Figure 5 accepts a timed
language Lε which can be described as follows: in each open time interval (i, i+ 1), i ≥ 0
there occurs at most one b; moreover, there is an a at time i+1 if and only if there is no b

11

in (i, i+1). This Lε cannot be accepted by a timed automaton which has no ε-transitions.
ε-transitions without resets can be removed from a timed automaton [60]. Moreover, an
ε-transition which does not lie in a loop can be eliminated [138]. Periodic clock constraints
are clock constraints of the form d+n ·θ ≤ x ≤ e+n ·θ or d+n ·θ ≤ x−y ≤ e+n ·θ where
n ∈ N, e ∈ R, and θ ∈ R+. Periodic clock constraints can express properties such as “the
value of clock x is odd” or “the value of clock x is of the form 0.7 + 4 · n where n is some
integer”. Timed automata with periodic clock constraints in the guards and classical
timed automata have the same expressive power [114]. However, the ε-transition-free
(deterministic) timed automata with periodic clock constraints in the guards are strictly
more expressive than the ε-transition-free classical (deterministic) timed automata [114].
All ε-transitions can be removed from timed automata by using periodic clock constraints
and periodic clock updates10 [145].

5.1.2 Additive, Multiplication, and Irrational Clock Constraints

Clock constraints of the form of x + y ∼ q are called additive clock constraints. The
emptiness checking problem is undecidable for timed automata with additive clock con-
straints which have four clocks [59]. Timed automata with additive clock constraints
having two clocks are strictly more expressive than classical timed automata with two
clocks. The emptiness checking problem is decidable for timed automata with additive
clock constraints having two clocks [59]. While the emptiness checking problem is still
open for timed automata with additive clock constraints which have three clocks. Intro-
ducing clock constraints such as x = q · y in the guards makes the emptiness checking
problem for timed automata undecidable [21]. Allowing irrational constants in the clock
constraints causes the emptiness checking problem to be undecidable [249]. A summary
of all kinds of clock constraints and their effect on the complexity of reachability checking
is shown in Table 5.

Table 5: Complexity of Reachability Checking Using Different Clock Constraints
Clock Constraint Reachability Clock Constraint Reachability

x ∼ q PSPACE-complete d+ n · θ ≤ x ≤ e+ n · θ PSPACE-complete
x− y ∼ q PSPACE-complete d+ n · θ ≤ x− y ≤ e+ n · θ PSPACE-complete
x ∼ e Undecidable x ∼ q · y Undecidable
x− y ∼ e Undecidable x− y ∼ q · z Undecidable

5.1.3 Parametric Timed Automata

Timing properties of almost all the real-time protocols are typically not concrete but
parametric such as “message delivery within the time it takes to execute two assignment
statements” [25]. Concrete timing properties such as “message has to be delivered within
2 time units and an assignment statement has to be executed within 1 time unit” are
applicable only for a specific environment. In MDD of real-time systems, parametric
timing properties are very appealing for a real-time model of a reusable software module
(which is important in MDD of software) or an off-the-shelf real-time hardware (which is
gaining popularity in the automotive industry to cope with different original equipment
manufacturers (OEM) and brands). Moreover, frequently real-time systems are embed-
ded in diverse environments which forces a designer to model the system according to

10During a periodic update of a clock that clock is reset to a periodic value instead of 0.

12

certain parameters. In the early design phase parametric models are usually more con-
venient for a designer compared to concrete models. Parametric timed automata [25], a
generalized form of timed automata, can model parametric timing properties by introduc-
ing parametric clock constraints. A parametric timed automaton is a timed automaton
which has an accepting run for a parameter valuation of its parametric clock constraints.
The emptiness problem for a parametric timed automaton is described as “is there a
parameter valuation for which the automaton has an accepting run?”. The emptiness
checking for parametric timed automata with three or more clocks is undecidable, while
it is decidable with only one clock and is an open problem with two clocks [25].

Parametric timed automata can be divided into linear parametric timed automata
(where all parametric expressions are linear) and non-linear parametric timed automata.
An important subclass of parametric timed automata is lower bound automata [195], in
which parameters are only used to calculate the lower bounds in clock constraints. Simi-
larly, the class of upper bound automata [195] is a specialization of parametric automata
and parameters in upper bound automata are only used to determine the upper bounds
in clock constraints. These two classes of automata are together called lower bound/upper
bound automata or L/U automata [195]. Although L/U automata are a restricted form of
parametric timed automata, they can be used to model many noteworthy algorithms and
protocols such as Fisher’s mutual exclusion algorithm [222], and the root contention proto-
col [3]. The emptiness checking problem for L/U automata is PSPACE-complete [93, 195].
The universality problem for a parametric timed automaton defined as “does a set of
parametric valuations contain all the parametric valuations for which the automaton has
an accepting run?”. The universality checking for L/U automata is PSPACE-complete
[93]. The model checking problem for L/U automata is also decidable [93, 195]. Model
checking for parametric timed automata is discussed in [22, 99, 100, 156, 296, 310].

IMITATOR11 [33, 34] can extract the largest safe12 subset of parameter values for
a parametric timed automaton from a given set of parameter values. HYTECH13 [178]
is also used for the analysis of parametric timed automata such as reachability analysis
and operations on states set. Using the open source library REDLIB14 [301], RED15

[299] also performs parametric safety analysis, simulation checking, and model checking
form parametric timed automata. VerICS16 [207] and TREX17 [35] are two other model
checkers and analyzers for parametric timed automata.

5.2 Timed Automata with Clock Updates

Variants of timed automata which add more expressive clock updates to the existing clock
reset of classical timed automata are discussed in this subsection. Like the variants of
Subsection 5.1, variants of this subsection also fail to retain some important theoretical
properties of classical timed automata.

11For more information on IMITATOR visit http://www.lsv.ens-cachan.fr/˜andre/IMITATOR/.
12Safe in a sense that the model is guaranteed not to violate a set of specified safety properties.
13For more information visit http://embedded.eecs.berkeley.edu/research/hytech/.
14http://sourceforge.net/news/?group id=226122
15RED website: http://cc.ee.ntu.edu.tw/ farn/red/
16URL to know more about VerICS is http://verics.ipipan.waw.pl/
17TREX website: http://www.liafa.jussieu.fr/˜sighirea/trex/

13

5.2.1 Updatable Timed Automata

Timed automata with diagonal constraints are exponentially more concise18 than diagonal
-free timed automata [78]. Timed automata with diagonal constraints are not more
expressive than diagonal-free timed automata [21, 62]. Diagonal constraints may yield
different behavior in an extension of timed automata called updatable timed automata
[79, 80, 81]. Unlike classical timed automata, when a switch is taken, an updatable timed
automaton can update a specified subset of clocks to values other than 0. An update
u of a clock x is deterministic if u has at most one possible value to assign as ν ′(x) for
any clock valuation ν, where ν ′(x) is the value of x after the update u. An example of
deterministic update is x := c, whereas x :> c is an nondeterministic update which can
assign any value as ν ′(x) which is greater than c. The emptiness checking problem for
updatable timed automata with updates of the form x := x− 1 or y + c <: x :< z + d is
undecidable, where c, d ∈ Q+ [79, 81]. Only allowing updates of the form x := c or x := y
or x :< c keeps the emptiness checking problem PSPACE-complete [79, 81]. Updatable
timed automata behave surprisingly for the updates of form x := x + 1 or x := y + c or
x :> c or x :∼ y + c or y + c <: x :< y + d; because these updates make the emptiness
checking problem for updatable timed automata with diagonal constraints undecidable,
while the emptiness checking problem for diagonal-free updatable timed automata with
these updates is PSPACE-complete [79, 81]. Interestingly, updatable timed automata
for which the emptiness problem is decidable can be converted into equivalent classical
timed automata [80, 81]. These decidable updatable timed automata are more concise
than classical timed automata [80, 81]. A summary of different kinds of clock updates
and their effect on reachability checking for both diagonal-free timed automata and timed
automata with diagonal clock constraints is shown in Table 6.

Table 6: Complexity of Reachability Checking Using Different Clock Updates
Clock Update Diagonal-Free With Diagonal

x := c PSPACE-complete PSPACE-complete
x := y PSPACE-complete PSPACE-complete
x := x+ 1 PSPACE-complete Undecidable
x := y + c PSPACE-complete Undecidable
x := x− 1 Undecidable Undecidable
x :< c PSPACE-complete PSPACE-complete
x :> c PSPACE-complete Undecidable
x :∼ y + c PSPACE-complete Undecidable
y + c <: x :< y + d PSPACE-complete Undecidable
y + c <: x :< z + d Undecidable Undecidable

5.2.2 Suspension Automata

Suspension automata [247], a variant of timed automata, use stopwatch-like clocks and
bounded subtraction clock updates [159] along with x := 0. A bounded subtraction clock
update is a clock update of the form x := x−n if n ≤ ν(x) ≤ k(x), where n ∈ N0 and k(x)
is the ceiling for x. The language emptiness checking problem and the language inclusion

18The size of an automaton A, denoted |A| , is the length of its (binary) encoding (states and transi-
tions) on the tape of a Turing Machine. Automaton A1 is exponentially more concise than automaton
A2 if these two automata are language equivalent and |A1| is polynomial in n, where |A2| is at least
exponential in n.

14

problem for suspension automata are decidable [247]. However, the language emptiness
checking problem for timed automata with (unbounded) subtraction clock update in the
form x := x− n is undecidable [79].

5.2.3 Integer Reset Timed automata

The class of integer reset timed automata [280, 281] is a subclass of classical timed au-
tomata since it can reset a clock (to zero) only when it has integer value. Switches without
reset can occur at any time (including at fractional times). Integer reset timed automata
are less expressive than classical timed automata, e.g., integer reset timed automata can-
not distinguish between the time stamps of actions occurring within a unit open interval
(i, i + 1). Although language inclusion for classical timed automata is undecidable, it is
decidable to check whether a timed regular language contains an integer reset timed reg-
ular language [281]. Contrary to classical timed automata, integer reset timed automata
are closed under complementation [281].

5.3 Timed Automata with Other Clock Rates

The evolving frequency of a clock is called clock rate of that clock. All clocks of a classical
timed automaton have the same monotone clock rate. Adding different kinds of clock rates
with classical timed automata gives birth to a very expressive, challenging, and popular
arena of formal methods called formal methods for hybrid systems. Many researchers
consider these variants a completely separate class from timed automata called hybrid
automata [17, 19].

5.3.1 Rectangular Automata & Controlled Timed Automata

Each clock may have a different clock rate in rectangular automata [183, 185] which
is an interesting extension of timed automata. Each clock rate is bounded by upper
and lower bound constants. For each (initialized) rectangular automaton19 there is an
equivalent timed automaton [185], thus the reachability problem is decidable for this
variant. Relaxing either the clock rate boundedness or the initialization assumption
leads to undecidability of the reachability problem. Like rectangular automata, clocks
in controlled timed automata [135] have variable clock rates. Controlled timed automata
also allow periodic clock constraints and stopwatch-like clocks. Stopwatches automata
[106], interrupt timed automata [61], and distributed time-asynchronous automata [144]
are other two general variants of timed automata which use stopwatch to increase the
expressive power of timed automata. Distributed timed automata with independently
evolving clocks [7] are inspired by distributed time-asynchronous automata and execute
in a network of timed automata each of which may have different clock rates.

Perturbed timed automata [29] is a special kind of (initialized) rectangular timed au-
tomata which considers timing perturbation. Another well-known variant of timed au-
tomata which considers perturbation are robust timed automata [168]. Section 6 presents
more discussion on timing perturbation of timed automata.

19The initialization property states that whenever the rate of a clock changes it must be reset.

15

5.3.2 Hybrid Automata

Hybrid systems (e.g., biological cell networks [167]) are described by the combination of
analog and digital inputs and outputs. Hybrid automata [19], (probably) the most famous
and most expressive generalization of timed automata, can model hybrid systems. Hybrid
automata thus model discrete controllers embedded within an analog environment (e.g.,
a digitally controlled drone flies in a continuously changing environment). A hybrid
automaton is a finite automaton associated with real-valued variables whose trajectories
obey general dynamic laws described by differential equations. Under specified conditions
a hybrid automaton can change to different dynamic laws. There are many subclasses
of hybrid automata which are not timed automata such as (non-initialized) rectangular
automata [183], affine hybrid automata [167], polynomial hybrid automata [164]. The area
of hybrid automata is exceedingly large (for example timed automata can be seen as a
subclass of hybrid automata) and out of the scope of this survey. Interested readers can
read surveys on hybrid automata [104, 125, 176, 221, 287, 291].

5.4 Timed Automata with Resources

This group of variants has been introduced almost a decade after the introduction of
classical timed automata. This group of variants has quickly received a lot of attention
because of the significance of resources in real-time systems. Now there are 18 vari-
ants which can be classified as timed automata with resources. No other class of timed
automata has so many variants.

5.4.1 Weighted Timed Automata or Priced Timed Automata

In MDD, a timed automaton serves as a superior model for a real-time system over a finite
state automaton because timed automata can explicitly assert time constraints. However,
a classical timed automaton is unable to inform the designer how many resources (band-
width, power, development time, money, etc.) its implementation will consume. This
resource consumption information (especially optimal resource consumption) may play a
crucial role in MDD. A designer can extract the total resource consumption information of
the implementation from a model if the designer attaches a resource consumption function
to each state and to each transition of that model. If the resource consumption is propor-
tional to the units of time the implementation stays in a state, then a timed automaton
with resource consumption functions is more desirable than a finite state automaton with
resource consumption functions. After recognizing the absence of timed automata with
resource consumption functions, Alur et al. and Larsen et al. independently introduced
timed automata with resource consumption functions in 2001, and called them weighted
timed automata [30] and priced timed automata [50], respectively.

A weighted/priced timed automaton consists of a timed automaton A and a price/cost
function P that maps every location l ∈ L and every switch e ∈ E to a nonnegative
rational number: P(l) is the cost for staying in l per unit of time and P(e) is the cost
for performing the switch e. Thus, every run in a weighted/priced automaton has its
own accumulated cost and an automaton may have many runs. As a result, to reach
a location from a source location with optimal cost (minimum or maximum cost) is
an important decision problem for weighted/priced automata. This problem is called
optimal reachability and is decidable [30, 50]. Optimal reachability is a general form of
minimum-time reachability. The optimal-reachability problem for weighted/priced timed
automata is PSPACE-complete [30, 50, 75]. Optimal reachability and optimal scheduling

16

using weighted/priced automata are well studied and supported in UPPAAL CORA20,
a variant of UPPAAL, which is a specialized tool for optimal reachability and optimal
scheduling [51, 52, 228]. REMES-IDE can transform REMES21 [274] (REsource Model for
Embeded Systems) models into behaviorally equivalent weighted/priced timed automata
[197]. REMES-IDE provides a graphical editor for the resulting priced automata, as
a tool to visually inspect transformation results. Model files for both UPPAAL (timed
automata) and UPPAAL CORA (weighted/priced timed automata) can be exported to
REMS-IDE for verification and analysis.

A timed-cost-extended version of CTL (branching-time temporal logic) is WCTL,
while WMTL is a timed-cost-extended version of LTL (linear-time temporal logic). Model-
checking with respect to WCTL is undecidable for weighted/priced timed automata with
three clocks or more [97]. Model checking of weighted/priced timed automata with one
clock with respect to WCTL is PSPACE-complete [84], while the decidability of WCTL
model checking for weighted/priced automata with two clocks is still open [228]. However,
model checking with respect to WMTL is decidable only for one clock weighted/priced
timed automata using a single stopwatch-cost22 variable [86].

Because of the great applied significance of weighted/priced automata, they have been
studied extensively and many variants have been proposed such as uniformly-priced timed
automata [49], dual-priced timed automata [231], multi-priced timed automata [76, 231,
232], concavely-priced timed automata [206], priced timed game automata [77], concavely-
priced probabilistic timed automata [204], weighted integer reset timed automata [245],
and priced probabilistic timed automata [63, 64]. More interesting information about
weighted/priced automata may be found in a recent article [82] by Bouyer et al..

5.4.2 Task Automata or Timed Automata Extended With Real-Time Tasks

Finite automata can only describe the arrival sequence among the actions, while classi-
cal timed automata can describe both the arrival sequence among the actions and the
arrival time of an action. Like finite automata, classical timed automata also describe
every action as an instantaneous instance. It is not clear, however, how every action
of every real-time system can be instantaneous. This assumption makes classical timed
automata a restrictive or very abstract model for real-time systems. Norström et al. [251]
have extended timed automata by adding real-time tasks with actions. Later on their
work evolved into task automata or timed automata extended with real time tasks with
locations [159, 160, 212]. A task is an executable program. A task can be described by its
task type (or task name)23, best case computational time, worst case computational time,
relative deadline24, (optionally) priority for scheduling, and (occasionally) resource con-
sumption information. Task automata may model a real-time system which is composed
of both periodic tasks and sporadic tasks. Task automata are at least as expressive as
classical timed automata [159, 251].

A task automaton is a restricted updatable timed automaton with an extra clock xdone
and a partial function F . Like suspension automata, task automata only allow bounded

20http://www.cs.aau.dk/˜behrmann/cora/
21A REMES model is a state-machine based behavioral language with support for hierarchical

modeling, resource annotations, continuous time, and notions of explicit entry and exit points that
make it suitable for component-based modeling of embedded systems. For more information visit
http://www.fer.hr/dices/remes-ide.

22A cost is stopwatch if it behaves like a clock that can be stopped and restarted.
23There can be more than one task with the same name or type.
24Relative deadline depends on a task’s release time from the location.

17

subtraction updates along with classical reset to zero. Clock xdone is reset whenever a task
finishes. The partial function F(l)25 may annotate a location l with a task. An incoming
switch triggers an instance of each annotated task of a location; thus the associated guard
of that incoming switch specifies the possible trigger time of the annotated task(s) of a
location. A task is entered into an task queue (i.e., the ready queue in an operating
system) whenever it is triggered. In an execution queue, tasks are executed according
to a given scheduling algorithm, e.g., fixed priority scheduling or earliest deadline first.
In a fixed task automaton all the tasks have a constant computational time26, while the
computational time of a task may vary in a flexible task automaton. The control behavior
of a feedback task automaton can be influenced by the reset of a clock xdone (or the actual
finishing time of a task); on the other hand, the actual finishing time cannot influence
the control of a non-feedback task automaton. A non-feedback task automaton does not
have any clock constraint which includes xdone.

In MDD of real-time systems, one of the most significant concerns is schedulability
analysis prior to implementation. Classical timed automata do not have any support
for specifying resource consumption information and computational time information;
although classical weighted/priced timed automata can specify resource consumption in-
formation, they are unable to specify different computational time information such as
best case computational time, worst case computational time, etc. A task automaton is
schedulable if there exists a scheduling strategy such that all possible sequences of actions
generated by the automaton are schedulable in the sense that all associated tasks can be
computed within their deadlines. Scheduling algorithms can be divided into preemptive
scheduling algorithms and non-preemptive scheduling algorithms: a currently executed
task can be pre-empted by another task in a preemptive scheduling algorithm, whereas,
a currently executed task cannot be pre-empted by another task in a non-preemptive
scheduling algorithm. The non-preemptive schedulability checking problem of a task au-
tomaton can be converted into the reachability problem of a classical timed automaton
and thus it is PSPACE-complete [159, 251]. The preemptive schedulability checking problem
of a task automaton can also be converted into the reachability problem of a classical
timed automaton if that automaton is not both a flexible task automaton and a feedback
task automaton [159]. The preemptive schedulability checking problem of a task automa-
ton is undecidable if it is both a flexible task automaton and a feedback task automaton
[159]. Table 7 shows the schedulability problem is undecidable only for a small class of
task automata.

Table 7: Complexity of Preemptive and Non-Preemptive Scheduling of Task Automata
Task Automata Preemptive Scheduling Non-Preemptive Scheduling

Fixed & Feedback PSPACE-complete PSPACE-complete
Fixed & Non-Feedback PSPACE-complete PSPACE-complete
Flexible & Feedback Undecidable PSPACE-complete
Flexible & Non-Feedback PSPACE-complete PSPACE-complete

Boundedness checking 27 is a useful analysis for a model in MDD of a real-time system,
because it can be used for the estimation of the memory consumption by the implemen-

25F(l) is a partial function because some locations may not have any annotated task.
26If task has a constant computational time then the best case computational time is equal to the

worst case computational time.
27The boundedness checking problem is to check whether the size of the task queue for all reachable

states is bounded.

18

tation of that model. If every task has finite size then schedulability implies boundedness
but not the other way around, as a bounded ready queue may not be schedulable. As
a result, boundedness checking is decidable for a task automaton if that automaton is
schedulable [31]. The memory allocated for a bounded task queue can be fixed at compile-
time and no exception handling for a queue overflow is needed at run time. A real-time
model can exhibit zeno behavior, i.e., infinite sequence of action transitions occur within
a finite time unit. Such a model is not implementable and also non-schedulable. It is pos-
sible to impose a deterministic semantics of a task automaton and also preserve the safety
properties satisfied by the non-deterministic semantics [31]. Non-determinism among ac-
tion transitions is resolved by assigning unique priorities to the action transitions and non-
determinism among time transitions is resolved by implementing the maximal-progress
assumption [307]. The expressive power, available analyses (schedulability, boundedness
checking, non-zenoness checking, resource consumption computation) and deterministic
semantics make task automata a suitable model supporting for the MDD of real-time sys-
tems. In particular, it is a good model for code synthesis if the target platform ensures
the synchrony hypothesis, i.e., the run-times of related system functions are negligible
compared to the different execution times of the associated tasks of the model. TIMES28

[31, 32, 42], based on task automata, is a popular tool in the research community for real-
time code synthesis and scheduling. Schedulability analysis problems of task automata
for multi-processor platforms have been studied in [211].

5.4.3 Timed P Automata

A biologically inspired (specifically, the structure and the functioning of living cells)
model called P systems 29 [265, 266] has received huge attention30 in the area of theoret-
ical computer science for its impressive computational and modeling power. Membrane
computing naturally models mobility, distributed parallel computing, biomolecular sys-
tems, and ecological systems. A P system comprises a hierarchy of membranes; each of
these membranes contains a multiset of reactant objects and (possibly) other membranes.
An evaluation rule describes reactants and the resulting product. An evaluation rule can
be applied only to objects of that membrane.

In timed P systems [108], a variant of P systems, each evolution rule is associated
with an integer which represents the number of time units needed by the rule to be
entirely executed. Recently proposed timed P automaton [44] is a timed automaton with
a discrete time domain where every location is a timed P system. Timed P automata are
useful to study a population which dynamically changes with time (e.g., the population
of a place whose dynamics changes with seasons).

5.5 Timed Automata with Probability

Any real-time property can be either a hard real-time property (e.g., “the car stops within
800 time unit after the break is applied”) or a soft real-time property (e.g., “at most 3%
of all the messages will not be delivered within 5 unit of times”). While hard real-time
properties are essential in many safety critical real-time systems (e.g., robotic surgery),

28For more information visit http://www.timestool.com.
29P Systems was introduced in 1998 by Gheorghe Păun, whose last name is the cause of the letter P

in ‘P Systems’. For more information on P systems please visit http://ppage.psystems.eu/.
30On 3rd October 2003, Membrane Computing has been selected by Thomson Institute for Scientific

Information (ISI) as a “Fast Emerging Research Front in Computer Science”.

19

soft real-time properties are required for many commonly used real-time systems (e.g.,
video streaming). Unfortunately, classical timed automata and all its variants discussed
above cannot support soft real-time properties. To serve as a complete model for the
MDD of real-time systems, timed automata have to have support for the specification
and analysis of soft real-time properties along with hard real-time properties. Soft real-
time properties are frequently used in fault tolerant real-time systems (e.g., communica-
tion protocols, multimedia protocols) where hard real-time properties are too restrictive:
violating a hard deadline does not affect the functionality of the protocol. Soft real-
time properties are supported by a popular extension of timed automata called discrete
probabilistic timed automata [13, 46, 202, 217]. Recently, an expressive generalization of
discrete probabilistic timed automata has been proposed called first-order probabilistic
timed automata [161]. Hierarchic first-order superposition-based theorem proving and
probabilistic model checking both are useful for models based on first-order probabilistic
timed automata based models.

Clocks in a continuous probabilistic timed automaton [218] can be reset according
to continuous probability distributions. On top of soft deadline properties, continuous
probabilistic timed automata also enable stochastic timing, that is, soft deadlines must be
satisfied under the assumption that some set of events is influenced by a certain continuous
time probability distribution. An example [216] of stochastic timing properties is “the
arrival rate of video frames is normal with mean of 40ms and variance of 5ms, and service
is exponential with rate 45ms”. Thus stochastic timing properties can estimate some
important performance parameters such as throughput and mean service time.

Every switch of a probabilistic timed automaton encodes its likelihood to occur. This
likelihood is calculated from the execution of certain actions by the system. Hence, prob-
abilistic timed automata can be used to evaluate quality of service which is the quan-
titative estimation of the probability of achieving some target (e.g., perform a certain
task in a time bound). Timed probabilistic properties can be expressed by probabilistic
timed branching-time temporal logic (PTCTL) [217]. Model checking for PTCTL can be
performed by converting it into model checking for probabilistic branching-time temporal
logic (PTCL) [217]. Zone-based forward and backwards PTCTL symbolic model checking
also has been studied in the literature [217, 219, 220]. Among tools, UPPAAL PRO31

and Fortuna [64] can analyse maximum probabilistic reachability properties of probabilis-
tic timed automata. The latest version of PRISM32 (PRISM 4.0) [173, 215] provides
more general support for the verification and analysis of both discrete and continuous
probabilistic timed automata. mcpta [1] is another model checker for probabilistic timed
automata.

5.6 Timed Automata with Communication

Concurrent and communicating models are ideal to model mobile systems, cloud comput-
ing, and concurrent embedded systems. Untimed concurrent and communicating models
widely use FIFO channels (queues) to communicate among them; channels are also com-
mon in real-time concurrent and communicating models such as communicating real-time
state machines [276], πklt-calculus [264], and UPPAAL-models [48]. In 2006, Krcál and Yi
developed communicating timed automata [208]. A communicating timed automaton is a

31http://www.cs.aau.dk/˜arild/uppaal-probabilistic/
32PRISM is a well established and popular open source verification tool for probabilistic models

such as Markov chains, Markov decision processes, probabilistic automata. For more information visit
http://www.prismmodelchecker.org/.

20

network of timed automata extended with (unbounded) channels. Untimed communicat-
ing finite state models are not more for expressive than (classical) finite state automata.
A communicating timed automaton with only one channel and no sharing states has the
power of a one-counter machine. In contrast, a communicating timed automaton with
only two channels and no sharing states has the power of two-counter machines (or Turing
machines), thus channels make the verification of communicating timed automata more
difficult [48]. Other timed automata variants which also use channels to communicate are
multi-queue discrete timed automata [262], omega deterministic timed alternating finite
automata [158], synchronized concurrent timed automata [298], and queue-connected dis-
crete timed automata [196]. An interesting timed automata variant with communication
is phase event automata [192, 193] which combines both state-base (e.g., Kripke struc-
ture) and event-based (e.g., finite state automata) structures. The benefit is one can
combine the benefits of both process algebra (which depends on event-base structure)
and model-checking (which depends on state-base structure). The trade-off for this kind
of structure in practice is that the chance of manual errors during modifying is increased.

A state in a hierarchical state machine can be either a normal state or a super-
state (which contains some other states). Although hierarchical state machines (e.g.,
STATECHARTS [172], UML33 [70]) are a widespread model in MDD, very little research
has been done to understand their theoretical aspects such as expressiveness, decision
problems, concurrency complexity, and formal (unambiguous) semantics. Alur et al.
[26] published one of the first publications on the topic of the decision problems and
succinctness of (untimed) communicating hierarchical state machine. Inspired by their
work another group came up with communicating hierarchical timed automata [223, 224]
to study theoretical aspects of real-time hierarchical state machines. Like (untimed)
communicating hierarchical state machines, the reachability problem for communicating
hierarchical timed automata is EXPSPACE-Complete. Beyer and Rust developed a hierar-
chical variant of timed automata for modular specification. The name of their variant is
Cottbus timed automata [68, 69] which are developed in Cottbus, Germany. Rabbit34 [67]
is a model checker (reachability and refinement-checker) for Cottbus timed automata.
Another hierarchical timed automata variant is timed cooperating automata [225, 226]
which is a real-time variant of cooperating automata [148].

5.7 Timed Automata with Determinizability

Alur, Fix, and Henzinger [23, 24] proposed a determinizable subclass of timed automata
named event-clock automata after determining that the major obstacle to achieving deter-
minizability of classical timed automata is nondeterministic clock resets. All the clocks in
an event-clock automaton are divided into two disjoint sets: one set contains only event-
recording clocks and another set has only event-predicting clocks. Every action (or event)
in event-clock automata has a one-to-one relation with an event-recording clock and with
an event-predicting clock. All the clocks in an event-recording automaton are associated
with actions and the number of actions are fixed, thus the number of clocks is fixed. An
event-recording clock records when the associated action occurred the last time, and an
event-predicting clock shows when the associated action will occur next time. Event-clock
automata do not have any ε-transitions. Removing all the event-predicting clocks from
an event-clock automaton will convert it into an event-recording automaton. Similarly,

33For more information on UML, please visit http://www.omg.org/spec/UML/2.1.2/
34Rabbit’s website: http://www.sosy-lab.org/˜dbeyer/Rabbit/.

21

eliminating all the event-recording clocks from an event-clock automaton will transform
it into an event-predicting automaton.

Event-clock (or event-recording or event-predicting) automata are determinizable thus
they are closed under complement. Event-clock (or event-recording or event-predicting)
timed automata are closed under all the Boolean operations. The language-inclusion
problem for event-clock automata is PSPACE-complete. Dima defined a class of regu-
lar expressions equivalent to event-clock automata [140]. D’Souza discussed the logical
characterization of event-clock automata and event-recording automata [149, 150]. Event-
clock visibly pushdown automata [284] and recursive event-clock automata [187] have also
been proposed for determinizable self-embedded recursive timed automata. Product in-
terval timed automata [153] are a subclass of event-recording automata that can be used
to model the timed behavior of asynchronous digital circuits. Other related timed au-
tomata variants are timed automata with input-determined guards [152], eventual timed
automata [151], counter-free input-determined timed automata [113], and continuous timed
automata with input-determined guards [112]. TEMPO [277] is a model checker for event-
recording automata and was first released in 2001.

5.8 Timed Automata with Self-Embedded Recursion

Self-embedded recursion35 can model naturally the control flow of sequential computation
in typical programming languages with nested and recursive invocations of program mod-
ules. A pushdown timed automaton [119, 120, 123] is a variant of classical timed automa-
ton which can express real-time self-embedded recursive properties by augmenting a timed
automaton with a stack. Many real-time non-regular properties are required for real-time
software verification. Unfortunately, introducing self-embedded recursion destroys many
important closure properties (e.g., intersection) for modeling and verification. Therefore,
these kind of properties are usually handled by less expressive but practically efficient
finite indexing techniques such as bounded real-time model-checking [260]. The binary
reachability of a pushdown timed automaton is decidable [119, 120, 123]. The binary
reachability of past pushdown timed automata [121, 122], a parametric variant of discrete
pushdown timed automata where the past-formulas36 can be used as clock constraints, is
also decidable. The universality problem and language inclusion problem for timed visibly
pushdown automata [157] (nondeterministic timed version of visibly pushdown automata
[28]) even with a single clock is undecidable. A deterministic timed automata version of
visibly pushdown automata called event-clock visibly pushdown automata [284] is closed
under Boolean operations. It is decidable to check whether a timed visibly pushdown lan-
guage is included in an event-clock visibly pushdown language [284]. In 2010, recursive
timed automata [294] and timed recursive state machines [55] were proposed.

5.9 Timed Automata with Succinctness

The main motivation behind the creation of this group of timed automata variants is to
improve modeling rather than to achieve better analyses.

35Balanced parentheses languages are well known examples for self-embedded recursion.
36A past formula is a formula which includes the past parametric values.

22

5.9.1 Alternating Timed Automata

An (untimed) alternating finite automaton [110] is a nondeterministic finite automaton
whose transitions are divided into existential and universal transitions. For example,
let A be an alternating automaton. For an existential transition (s1, a, s2 ∨ s3), A non-
deterministically chooses to switch the state to either s2 or s3 after reading a (like a
nondeterministic finite automaton). For a universal transition (s1, a, s2 ∧ s3), A moves
to s2 and s3 after reading a (which simulates the behavior of a parallel machine). An
alternating finite automaton accepts a word if there exists a run tree on that word such
that every path ends in an accepting state. Due to the universal quantification, a run
is represented by a run tree. Any alternating finite automaton is equivalent to a nonde-
terministic finite automaton. Alternating models are useful to express clauses which are
combined by Booleans.

Alternating (tree) timed automata [136], a real-time extension of alternating automata,
are closed under all Boolean operations [234, 235, 254, 255]. Emptiness checking for al-
ternating timed automata is decidable only for one clock over finite timed words; any
extension (infinite timed words, more than one clock, silent transitions) leads to unde-
cidability [235, 255]. Undecidability proofs of the emptiness checking problem for alter-
nating timed automata with one clock over infinite words rely on the ability to express
“infinitely often” properties. Weak alternating timed automata [259] do not permit one
to express “infinitely often” properties, thus the emptiness checking problem for weak
alternating timed automata over infinite words is decidable. Interestingly, bounded time
model checking of alternating timed automata (over finite or infinite words) is decidable
as in bounded time the emptiness checking is decidable [201]. TCTL model checking for
alternating timed automata has also been discussed [136].

5.9.2 Timed Automata with Deadlines

Urgency (urgent transitions and urgent locations) is a common and important concept
in real-time models (such as in timed Petri nets [203] or in timed I/O automata [165])
because they allow more succinct representation and resolution of non-determinism in
real-time concurrent models. When an urgent transition (switch) is enabled the control of
the timed automaton has to perform the transition instantaneously without spending any
time at that location. All the transitions originating from an urgent location are urgent
transitions. To our knowledge, urgency has been first introduced by Bornot et al. with
timed automata as timed automata with deadlines [71]. Later on many others generalized
timed automata with deadlines. Among them Brabuti and Tesei proposed a model which
is called timed automata with urgent transitions [45]. In Brabuti’s model, an urgent
transition must be performed within a fixed time interval from its enabling time and a
urgent transition has higher priority than other non-urgent transitions enabled in the same
state. Although from a language point of view timed automata with urgent transitions are
not more expressive than classical timed automata, from a specification point of view the
use of urgent transitions allows shorter and clearer specifications of urgent and periodic
behaviors. Variable-driven timed automata [286] and prioritized timed automata [237] are
two additional timed automata variants which mainly focus on urgency issues. UPPAAL

[48] and many other tools use urgency for the specification of their models.

23

5.10 Timed Automata with Games

A classical timed automaton models only closed real-time systems (where every thing
is controlled) while there exist many open real-time systems which interact with uncon-
trolled environments (or other systems) and these uncontrolled environments influence
the behavior of those systems. A good example of real-time open systems is a pacemaker
(an open system) which continuously interacts with a heart (an uncontrolled environ-
ment). Pacemaker’s performance crucially depends on the exact timing of an action
performed either by the system or by the environment. Timed game automata [41, 244]
along with their controller synthesis strategies have been introduced to model such open
real-time systems. The game reachability problem is whether the system has a strategy
to reach a target state regardless of how the environment behaves. The game minimum-
time reachability problem in timed game automata is finding the minimum time required
by the system to reach a target state regardless of how the environment behaves. Both
the game reachability and the game minimum-time reachability problems for timed game
automata are EXPTIME-complete [98, 184, 205]. Bouyer et al. have discussed optimal
strategies in priced timed game automata [77] which is a combination of timed game
automata and priced timed automata.

UPPAAL TIGA [47] is a well-known tool for solving games based on timed game au-
tomata with respect to reachability and safety properties. Synthia [154, 155], a recently
developed tool in Saarland University, Germany, performs verification and controller syn-
thesis for timed game automata.

5.11 Concluding Remarks on Variants

All the variants of timed automata that have been mentioned in this survey are listed in
Table 8 and Table 9, while Table 10 show the classification of these variants. The fourth
columns of Table 8 and Table 9 list the year in which the variant was first proposed in the
literature is given (corresponding papers are cited in the second columns). These years
may not be exact proposed years as these are not confirmed by the related authors. These
years have been collected according to the first associated published paper. We have listed
almost eighty variants of timed automata and there may be many more. The number is
impressive if one considers that the first variant was just proposed only two decades ago.
Interestingly, every variant was proposed to answer a new problem (e.g., parametric timed
automata for real-time protocols, probabilistic timed automata for soft-deadline, priced
timed automata for resource-consumption, communicating hierarchical timed automata
for the formal analyses of UML-RT/Statechart). Thus, the class of timed automata
is becoming a one-stop formal solution for the model-driven development of real-time
systems.

All 80 variants were first proposed between 1990 and 2010. As we don’t have complete
data for the current year (2011), we analyse the data of the first twenty first years (1990-
2010), only. Figure 6 shows the number of variants that were proposed in each of the
three 7-year time periods between 1990 and 2010 and shows increasing rate with which
new variants have been developed. This increasing rate may suggest that timed automata
yet to be applied into all potential kinds of real-time models.

Figure 7 presents number of variants for each class from 1990 to 2010. The column
chart of Figure 7 shows the class of timed automata with resources has the highest
number of variants and the class of timed automata with determinizability has the second
highest number of variants. The main motivation behind the flourish of the class of timed

24

Table 8: Variants of Timed Automata: Part 1
Variant Citation Authors Year

Timed Büchi Automata [20] Alur, Dill 1990
Timed Muller Automata [20] Alur, Dill 1990
Diagonal-Free Timed Automata [20] Alur, Dill 1990
Timed Automata with ε-Transitions [20] Alur, Dill 1990
Timed Automata with Diagonal Con-
straints

[20] Alur, Dill 1990

Timed Automata without ε-Transitions [20] Alur, Dill 1990
Timed Automata with Multiplication
Clock Constraints

[20] Alur, Dill 1990

Discrete Probabilistic Timed Automata [13] Alur, Courcoubetis, Dill 1991
Parametric Timed Automata [25] Alur, Henzinger, Vardi 1993
Hybrid Automata [19] Alur, Courcoubetis, Henzinger,

Ho
1993

Timed Safety Automata [186] Henzinger, Nicollin, Sifakis,
Yovine

1994

Event-Clock Automata [23] Alur, Fix, Henzinger 1994
Event-Recording Automata [23] Alur, Fix, Henzinger 1994
Event-Predicting Automata [23] Alur, Fix, Henzinger 1994
Suspension Automata [247] McManis, Varaiya 1994
Rectangular Automata [185] Henzinger, Kopke, Puri, Varaiya 1995
Timed Game Automata [244] Maler, Pnueli, Sifakis 1995
Robust Timed Automata [168] Gupta, Henzinger, Jagadeesan 1997
Timed Automata with Deadlines [71] Bornot, Sifakis, Tripakis 1997
Controlled Timed Automata [135] Demichelis, Zielonka 1998
Recursive Event-Clock Automata [187] Henzinger, Raskin, Schobbens 1998
Cottbus Timed Automata [68] Beyer, Rust 1998
Product Interval Timed Automata [153] D’Souza, Thiagarajan 1999
Extended Timed Automata with Tasks [251] Norström, Wall, Yi 1999
Flat Timed Automata [117] Comon, Jurski 1999
Stopwatch Automata [106] Cassez, Larsen 2000
Updatable Timed Automata [79] Bouyer, Dufourd, Fleury, Petit 2000
Discrete Pushdown Timed Automata [123] Dang, Ibarra, Bultan, Kemmerer,

Su
2000

Timed Automata with Periodic Clock
Constraints

[114] Choffrut, Goldwurm 2000

Timed Automata with Additive Clock
Constraints

[59] Bérard, Dufourd 2000

Timed Automata with Irrational Clock
Constraints

[249] Miller 2000

Timed Cooperating Automata [225] Lanotte, Maggiolo-Schettini,
Peron

2000

Continuous Probabilistic Timed Au-
tomata

[218] Kwiatkowska, Norman, Segala,
Sproston

2000

Weighted Timed Automata [30] Alur, Torre, Pappas 2001
Priced Timed Automata [50] Behrmann, Fehnker, Hune,

Larsen, Pettersson, Romijn
2001

Pushdown Timed Automata [119] Dang 2001
Past Pushdown Timed Automata [121] Dang, Bultan, Ibarra, Kemmerer 2001
L/U Automata [195] Hune, Romijn, Stoelinga, Vaan-

drager
2001

Uniformly-Priced Timed Automata [49] Behrmann, Fehnker, Hune,
Larsen, Pettersson, Romijn

2001

Synchronized Concurrent Timed Au-
tomata

[298] Wang 2001

Extended Timed Automata with Asyn-
chronous Processes

[160] Fersman, Pettersson, Yi 2002

25

Table 9: Variants of Timed Automata: Part 2
Variant Citation Authors Year

Multi-Queue Discrete Timed Automata [262] Pietro, Dang 2003
Queue-Connected Discrete Timed Au-
tomata

[196] Ibarra, Dang, Pietro 2003

Timed Automata with Input-
Determined Guards

[152] D’Souza, Tabareau 2004

Timed Automata with Urgent Transi-
tions

[45] Barbuti, Tesei 2004

Timed Automata with ASAP Semantics [132] De Wulf, Doyen, Raskin 2004
Priced Timed Game Automata [77] Bouyer, Cassez, Fleury, Larsen 2004
Eventual Timed Automata [151] D’Souza, Mohan 2005
Alternating Timed Automata [234] Lasota, Walukiewicz 2005
Prioritized Timed Automata [237] Lin, Hsiung, Huang, Chen 2005
Perturbed Timed Automata [29] Alur, La Torre, Madhusudan 2005
Dual-Priced Timed Automata [231] Larsen, Rasmussen 2005
Multi-Priced Timed Automata [231] Larsen, Rasmussen 2005
Phase Event Automata [193] Jochen Hoenicke, Patrick Maier 2005
Omega Deterministic Timed Alternat-
ing Finite Automata

[158] Fellah, Noureddine 2006

Communicating Timed Automata [208] Krcál, Yi 2006
Communicating Hierarchical Timed Au-
tomata

[223] Lanotte, Maggiolo-schettini, Mi-
lazzo, Troina

2006

Priced Probabilistic Timed Automata [63] Berendsen, Jasper, Jansen, Ka-
toen

2006

Continuous Timed Automata with
Input-Determined Guards

[112] Chevalier, D’Souza, Prabhakar 2006

Timed Visibly Pushdown Automata [157] Emmi, Majumdar 2006
Task Automata [159] Fersman, Krcal, Pettersson, Yi 2007
Distributed Time-Asynchronous Au-
tomata

[144] Dima, Lanotte 2007

Fixed Task Automata [159] Fersman, Krcal, Pettersson, Yi 2007
Flexible Task Automata [159] Fersman, Krcal, Pettersson, Yi 2007
Feedback Task Automata [159] Fersman, Krcal, Pettersson, Yi 2007
Non-Feedback Task Automata [159] Fersman, Krcal, Pettersson, Yi 2007
Counter-Free Input-Determined Timed
Automata

[113] Chevalier, D’Souza, Prabhakar 2007

Integer Reset Timed Automata [281] Suman, Pandya, Krishna, Man-
asa

2008

Distributed Timed Automata with In-
dependently Evolving Clocks

[7] Akshay, Bollig, Gastin, Mukund,
Kumar

2008

Concavely-Priced Timed Automata [206] Jurdziński, Trivedi 2008
Concavely-Priced Probabilistic Timed
Automata

[204] Jurdziński, Kwiatkowska, Nor-
man,Trivedi

2009

Interrupt Timed Automata [61] Bérard, Haddad 2009
Weak Alternating Timed Automata [259] Parys, Walukiewicz 2009
Timed P Automata [44] Barbuti, Maggiolo-Schettini, Mi-

lazzo, Tesei
2009

Event-Clock Visibly Pushdown Au-
tomata

[284] Tang, Ogawa 2009

Variable Driven Timed Automata [286] Timo, Rollet 2010
Recursive Timed Automata [294] Trivedi, Wojtczak 2010
Timed Recursive State Machines [55] Benerecetti, Minopoli, Adriano 2010
First-Order Probabilistic Timed Au-
tomata

[161] Fietzke,Hermanns, Weidenbach 2010

Weighted Integer Reset Timed Au-
tomata

[245] Manasa, Krishna, Jain 2011

26

Table 10: Classification of the Variants of Timed Automata
Class Variants

Classical Timed Automata Timed Büchi Automata, Timed Muller Automata,
Diagonal-Free Timed Automata, Timed Automata with
Diagonal Constraints, Timed Automata with ε-Transitions,
Timed Automata without ε-Transitions, Timed Safety
Automata, Flat Timed Automata

Timed Automata with Other Clock
Constraints

Timed Automata with Multiplication Clock Constraints,
Timed Automata with Periodic Clock Constraints, Timed
Automata with Additive Clock Constraints, Timed Au-
tomata with Irrational Clock Constraints, Parametric Timed
Automata, L/U Automata

Timed Automata with Clock Updates Updatable Timed Automata, Suspension Automata, Inte-
ger Reset Timed Automata, Weighted Integer Reset Timed
Automata

Timed Automata with Other Clock
Rates

Hybrid Automata, Rectangular Automata, Controlled
Timed Automata, Stopwatch Automata, Distributed Time-
Asynchronous Automata, Distributed Timed Automata
with Independently Evolving Clocks, Interrupt Timed Au-
tomata

Timed Automata with Resources Weighted Timed Automata, Priced Timed Automata,
Uniformly-Priced Timed Automata, Dual-Priced Timed Au-
tomata, Multi-Priced Timed Automata, Priced Probabilistic
Timed Automata, Extended Timed Automata with Tasks,
Extended Timed Automata with Asynchronous Processes,
Task Automata, Fixed Task Automata, Flexible Task Au-
tomata, Feedback Task Automata, Non-Feedback Task Au-
tomata, Concavely-Priced Timed Automata, Concavely-
Priced Probabilistic Timed Automata, Timed P Automata,
Weighted Integer Reset Timed Automata, Priced Timed
Game Automata

Timed Automata with Probability Discrete Probabilistic Timed Automata, Continuous Prob-
abilistic Timed Automata, Concavely-Priced Probabilis-
tic Timed Automata, First-Order Probabilistic Timed Au-
tomata

Timed Automata with Determinizabil-
ity

Event-Clock Automata, Event-Recording Automata, Event-
Predicting Automata, Eventual Timed Automata, Recursive
Event-Clock Automata, Product Interval Timed Automata,
Timed Automata with Input-Determined Guards, Con-
tinuous Timed Automata with Input-Determined Guards,
Counter-Free Input-Determined Timed Automata, Event-
Clock Visibly Pushdown Automata

Timed Automata with Self-Embedded
Recursion

Recursive Event-Clock Automata, Discrete Pushdown
Timed Automata, Pushdown Timed Automata, Past Push-
down Timed Automata, Timed Visibly Pushdown Au-
tomata, Event-Clock Visibly Pushdown Automata, Recur-
sive Timed Automata, Timed Recursive State Machines

Timed Automata with Communication Communicating Timed Automata, Communicating Hierar-
chical Timed Automata, Multi-Queue Discrete Timed Au-
tomata, Omega Deterministic Timed Alternating Finite Au-
tomata, Synchronized Concurrent Timed Automata, Queue-
Connected Discrete Timed Automata, Phase Event Au-
tomata, Timed Cooperating Automata, Cottbus Timed Au-
tomata

Timed Automata with Succinctness Timed Automata with Deadlines, Prioritized Timed Au-
tomata, Variable Driven Timed Automata, Timed Au-
tomata with Urgent Transitions, Alternating Timed Au-
tomata, Weak Alternating Timed Automata

Timed Automata with Robustness Robust Timed Automata, Timed Automata with ASAP Se-
mantics, Perturbed Timed Automata

Timed Automata with Games Timed Game Automata, Priced Timed Game Automata

27

Figure 6: Numbers of Variants were First Proposed in Different Time Periods

Figure 7: Number of Variants were First Proposed For Each Class During 1990-2010

automata with resources is to improve expressiveness and analysis capabilities. On the
other hand, the goal of the research on timed automata with determinizability is to
improve the complexity of key decision problems and to achieve more closure properties.
Typically, an increase in expressive power and analysis capabilities comes at the expense
of increased complexity and fewer closure properties. Figure 7 points out both of these
conflicting goals are being researched most. Figure 8 shows how many variants were
proposed for each category during between 1990 and 1996. We can see that the research
was in a foundational stage then, because Classical Timed Automata still received most
of the attention.

Figure 9 shows which classes of variants were first proposed between 1997 and 2003;
this period appears to have been more exploratory, because there is no focus on a single
category.

On the other hand, Figure 10 shows that between 2004 and 2010 timed automata
with resources were of most interest.

According to these column charts, all the classes of timed automata other than the
class of classical timed automata are still being actively explored. Researchers are still
trying to develop suitable variants for different purposes.

28

Figure 8: Numbers of Variants of Different Classes were First Proposed During 1990-1996

6 Implementation

Formal verification, control theory, and other model-based analyses lose a lot of their value
when the implementation of the model is not accurate. An accurate implementation of
a model conveys and contains all the verified, controlled, and analysed properties of its
archetypical model. Moreover, the correspondence between the model and the accurate
implementation is precisely understood.

6.1 Challenges

The semantic mismatch between the continuous-time of timed automata and the discrete-
time of implementation platforms (e.g., operating system and related hardware are the
implementation platform for software) makes the implementation of timed automata a
hard problem. The notion of instantaneous action (which is performed in precisely zero
time units) is another barrier to implement timed automata accurately as in practice no
action can be executed in precisely zero time units. This semantic mismatch and practi-
cally non-instantaneous actions create (usually tiny amounts of) clock drift and violations
of the guards. Furthermore, a timed automaton with zeno behavior or a behavior where
actions have to be executed in less and less time (even without causing zeno behavior)
cannot be implementable on a finite-speed platform [105].

MDD advocates generating code automatically from models. Automatic accurate
code generation from timed automata has the potential to improve reliability and reduce
costs:

i. Automatic accurate code generation from a formal model should be an essential
part of safety-critical software development because code synthesis is (probably) the
best way to avoid error-prone manual programming. The group of safety-critical
software includes safety-critical software for nuclear plants, life-critical software for
medical devices, control software for space shuttles, etc. Along with logical time,
concrete time is a major concern for almost all safety-critical software. Therefore,

29

Figure 9: Numbers of Variants of Different Classes were First Proposed During 1997-2003

accurate code synthesis for timed automata has vital significance for safety-critical
software development as timed automata are a prominent real-time formal model.

ii. The wages of competent programmers to write accurate real-time code is high.
Moreover, accurate manual programming takes a huge amount of time compared
to automatic code generation.

6.2 Solutions

Puri [267] has shown that timed automata are not robustly safe37. Puri used the progress
cycle assumption38 for a region-based search of the strongly connected components to
compute the robust reachable set of states of a timed automaton with closed clock con-
straints. He showed that in a non-robustly safe timed automaton an infinitesimally small
amount of timing perturbation can make bad or unsafe states reachable which are un-
reachable with no perturbation.

To tackle this implementation problem, a platform-dependent parametric semantics
of timed automata called almost ASAP [129, 130, 131, 132, 133] has been proposed by
Wulf et al.. Instead of instantaneous actions as in classical semantics, in the almost
ASAP semantics actions have to be performed within a parametric timing tolerance.
Depending on this timing tolerance the clock constraints are enlarged. This parametric
timing tolerance changes according to the speed of the implementation platform. Even
though the almost ASAP semantics based approach is an ad hoc approach, if a parametric
timing tolerance is good for a platform then that parametric time unit is also good for
any faster platform. They have also shown how to determine a suitable parametric timing
tolerance for a platform by using an algorithm which is inspired by Puri’s robust reachable
state set finding algorithm. Both these algorithms are based on region graphs thus they
are not practically efficient. Zone-based pragmatically efficient algorithms have been

37Robust reachability computes the set of reachable states if there exist timing perturbations up to a
certain amount. In a robustly safe timed automaton no unsafe state is robustly reachable.

38In the progress cycle assumption it is assumed that each clock is reset at least once in every cycle of
a timed automaton.

30

Figure 10: Numbers of Variants of Different Classes were First Proposed During 2004-
2010

offered in different papers [126, 282] including one [143] by Dima where he proposed a
zone-based algorithm which can also be applied to timed automata which have open clock
constraints. A discussion on the decision problems and formal verifications of different
kinds of robust timed automata exists in the literature [29, 88, 168, 199, 253, 283, 131].

Another group of researchers has advocated a modeling-based solution [11] to ensure
implementability of timed automata with classical semantics. Their approach utilizes a
network of timed automata to model the behavior of the platform. Their approach is
practically inefficient because of the enormous state-space created by that network of
timed automata. Unlike methods based on almost ASAP semantics, this modeling-based
approach is not guaranteed to also ensure correctness on a faster platform, i.e., on a
faster platform a timed automaton (which is correct on a slower platform) may perform
incorrectly by producing more behavior or higher sampling rates.

An alternative way to check implementability of timed automata is to check its sampla-
bility. A timed automaton is samplable if its semantics is preserved under a discretization
(sampling rate) of time. Sampled semantics of a timed automaton is a finite approxima-
tion of its classical semantics. The sampling problem of a timed automaton is to decide
whether there is a sampling rate such that any untimed behaviors accepted by it with
classical semantics can be also accepted by it with sampled semantics. Recently a group
from Uppsala University has shown the sampling problem for timed automata is decidable
[5]. In an accepted but not yet published conference paper, Bouyer et al. have addressed
both the robustness and samplability of timed automata [85]. They have shown that any
timed automaton can be converted into a new timed automaton with same behavior such
that this new timed automaton is both robust and samplable. Sampling rates of timed
automata have been discussed by a few other groups [40, 105, 210].

Massive industrial demands for accurate code synthesis from high level models (es-
pecially real-time models) are currently attracting attention from researchers both from
industry and academia. Accurate code synthesis from high level models is (still) chal-
lenging because of the wide gap between the high level model and the low level code.
One of the earliest successful code synthesis for timed automata (including its variants)
is the code synthesis for task automata which is discussed in Section 5.4.2. Wulf et

31

al. [129, 134] synthesized code for a Philips audio control protocol [72] on the LEGO

MINDSTORMS platform using their proposed almost ASAP semantics. Another group
used real-time specification for Java (RTSJ) [304] to generate Java code from timed au-
tomata [171]. They developed a prototype tool called TART39 [170] which implements
their method. Unfortunately, their technique does not perform code validation and their
synthesized code does not preserve timing properties of its archetype timed automaton
because of the synchrony hypothesis.

In 2010, a group of researchers from the University of Pennsylvania proposed an it-
erative process to generate accurate code for timed automata [200]. Instead of code
synthesis, their main focus was to ensure that the implementation has the exact same
timing properties as its archetypical model. This iterative process consists of a cycle of
modeling, model checking, code generation, testing, and reverse engineering. In their ap-
proach, reverse engineering and testing steps use empirical (rather than formal) methods
and therefore their technique cannot ensure total safety. In the same year, another group
independently proposed a similar approach [214]. Readers interested in this subarea can
also check some related works [179, 180, 181, 182, 194, 295, 303] which are not specific
to timed automata.

7 Tools

At the beginning, timed automata were used only by verifiers and analyzers of real-time
formal models. Since then, the use of timed automata based tools has been spreading
to almost every aspect of real-time MDD such as controller synthesis [10, 47, 155], code
synthesis [31, 170], scheduling [32], probabilistic analyses [1, 2, 64, 215], (optimal) resource
analyses [52, 54, 64], parametric analyses [34, 35, 178, 207, 302], analyses for higher
level models [91, 101, 137, 146, 166, 188, 207], code synthesis for higher level models
[272, 273], real-time web service analyses [102, 147, 190], component-based development
[4, 169, 241, 275], performance evaluation [174], test suites generation [189], black-box
testing [229], multicore software analyses [239], distributed systems analyses [242, 302],
mixed-reality systems analyses [137], quality assurance [279], and many more. The rich
and strong theoretical foundation of timed automata makes them a good candidate to
use as the underlying formal model for real-time MDD. Region-based approaches are not
suitable for practical purposes because of the exponential size of the region automata.
Most of the tools use zone-based approaches as these approaches are practically more
efficient and scalable. Section 3.2.2 describes how zone-based techniques have changed
a lot during last two decades to overcome many deficiencies. These large number of
changes have made it challenging to keep these tools up to date. Only a few number
of tools such as UPPAAL [48, 124], RED [297, 299, 302], and VerICS [207] have been
actively maintained and have evolved for a long period of time. As zone-based techniques
are now well-established, there is a very bright future waiting for timed automata based
tools.

Table 11 and Table 12 list some of the timed automata based or closely related tools
available in the web and literature. All these listed tools are developed and maintained
mainly for research and academic purposes. The first column of these tables displays the
names of the listed tools; the second column shows group names of these tools; the third
column presents the description of the functionality of these tools; the fourth column
exhibits citations to any publication describing these tools; at the end, the fifth and sixth

39To download TART please visit http://itee.uq.edu.au/˜niusha/TART/

32

Table 11: Timed Automata Based or Related Tools: Part 1
Name G. Description Cita. First

Rele.
Latest
Rele.

UPPAAL U An integrated tool environment for modeling, valida-
tion and verification of real-time systems modeled as
networks of timed automata, extended with data types.

[48,
124]

1995 2011

UPPAAL
PRO

U A tool for probabilistic reachability analysis for proba-
bilistic timed automata.

[2] 2008 2009

UPPAAL
PORT

U A tool for component-based modelling, simulation, and
verification of real-time and embedded systems mod-
elled as timed automata.

[169] 2006 2008

UPPAAL
CoVer

U A tool for creating test suites from timed automata
with coverage specified by coverage observers.

[189] 2005 2009

UPPAAL
TIGA

U A tool for solving games based on timed game automata
with respect to reachability and safety properties.

[47] 2005 2011

UPPAAL
CORA

U A tool for cost optimal reachability analyses for priced
timed automata.

[52] 2002 2006

UPPAAL
TRON

U A black-box conformance testing tool, based on timed
automata, for embedded real-time software.

[229] 2004 2009

TIMES U A tool set for modelling, schedulability analysis, syn-
thesis of (optimal) schedules and executable code.

[31,
32]

2002 2005

CATS U A tool for compositional timing and performance analy-
sis of real-time systems modeled using timed automata
and the real-time calculus.

[209] 2007 2007

SAVE IDE U,
E

A tool for design, analysis and implementation of
component-based embedded real-time systems using
timed automata.

[275] 2008 2009

McAiT U,
O

A timing analyzer for multicore real-time software using
timed automata.

[238] 2010 2010

TASM U,
O

A tool for specification, simulation, and verification of
real-time systems using timed automata.

[257] 2007 2008

Kronos V A tool for checking whether a timed automaton satisfies
a TCTL formula.

[127] 1992 2002

SynthKro V A tool for controller synthesis of timed automata. [10] 2002 2002
Open-Kronos V A model-checker for timed Büchi automata. [293] 1997 2005
TAXYS V A timed automata based tool for the development and

verification of real-time embedded systems.
[66,
116]

2000 2001

minim V A tool for minimization of timed automata with respect
to time-abstracting bisimulation.

[292] 1996 2001

RTSpin V A verification tool which extends Spin with quantitative
dense time features using timed Büchi automata.

[290] 1993 2004

IF V A validation platform which uses a specification lan-
guage based on timed automata extended with discrete
data variables, various communication primitives, dy-
namic process creation and destruction. This language
is expressive enough to represent major modeling and
programming languages for distributed systems such as
real-time SDL and UML.

[91,
92]

1998 2004

TReX V A tool for reachability analysis of complex systems
modelled as parametric timed automata.

[35] 2000 2006

33

Table 12: Timed Automata Based or Related Tools: Part 2
Name G. Description Cita. First

Rele.
Latest
Rele.

IMITATOR L A tool for extracting the largest safe subset of param-
eter values for a parametric timed automaton from a
given set of parameter values.

[33,
34]

2009 2011

CMC L A tool for compositional model-checking of real-time
systems.

[227] 1995 2004

Synthia S A tool for verification and controller synthesis for timed
automata.

[154,
155]

2011 2011

mcpta S A model checker for probabilistic timed automata. [1] 2009 2011
MCTA E A model checker for real-time specifications modelled

as timed automata. It can find shortest error trace.
[213] 2008 2009

Rabbit E A model checker for Cottbus timed automata. [67] 1999 2002
MIRELA
Framework

E A framework which uses mixed reality language
MIRELA. MIRELA’s compiler generates timed au-
tomata for simulation and verification of time con-
straints in this framework.

[137] 2007 2008

XAL E A web oriented programming language based on timed
automata.

[103] 2008 2008

WST E A tool for design, validation and verification of com-
posite Web Services with timed restrictions using timed
automata.

[102] 2007 2011

VerICS E A (bounded, unbounded, parametric, and non-
parametric) model checker for timed and multi-agent
systems modeled by networks of communicating au-
tomata such as timed automata, time Petri nets. It
supports model checking for model specified in high
level languages such as Promela, UML, Java, and Es-
telle.

[207] 2003 2010

PRISM 4:0 E A verification tool for probabilistic models including
probabilistic timed automata.

[173,
215]

2010 2011

AITARTOS E A tool for automatic implementation of timed au-
tomata model in a real-time operating system.

[214] 2010 2011

Fortuna E A model checker priced probabilistic timed automata. [64] 2010 2010
Priced-Timed
Maude

E An analyzer for priced timed automata. [54] 2008 2008

RED O A model checker and simulation checker for timed au-
tomata and parametric analyzer for parametric timed
automata.

[297,
299,
302]

2000 2011

HyTech O A model checking and analyses tool for linear hybrid
automata including parametric timed automata.

[177,
178]

1995 2003

TEMPO O A model-checker for event recording automata. [277] 2001 2001
DREAM O A distributed real-time embedded systems analyzer

based on timed automata.
[242] 2005 2007

TART O A prototype tool to generate Java code from timed au-
tomata using RTSJ.

[170] 2010 2010

VInTiMe O VInTiMe is a suite of timed automata based tools
(Lapsus [96], VTS [9], ObsSlice [94], and Zeus [95])
that combines high-level expressive power, unassisted
property-preserving model-reduction and low-level dis-
tributed model checking power to describe and verify
complex real-time systems.

[8] 2003 2009

34

columns show the first release year and the latest release year of these tools. All these
release years have been confirmed by the respective developers other than TASM [257],
TEMPO [277], HyTech [177, 178], RED [297, 299, 302], TART [170], Fortuna [64], PRISM
4:0 [173, 215], XAL [103], and McAiT [239]. Depending on origins, all these tools can
be assigned to one of six different research groups: Uppaal (U), Verimag (V), LSV (L),
Saarland (S), European (E), and Others (O). Uppaal group is formally a collaboration
between two research groups of Uppsala University, Sweden and Aalborg University,
Denmark. Tools like McAiT [239], SAVE IDE [275], TASM [257] have been put into the
Uppaal group because apart from the strong influence of UPPAAL tool, some of the major
developers (e.g., Wang Yi, Paul Pettersson) of these tools have strong past or present
ties with the Uppaal group. All the tools of the Verimag group originated from Verimag,
France research center. Tools created in Laboratory Specification and Verification (LSV),
ENS Cachan, France have been put into the LSV group. The Saarland group represents
two recently developed tools (mcpta [1] and Synthia [154, 155]) at Saarland University,
Germany. The European group combines all the other tools which are developed by
different European research groups. Tools originating from the rest of the world have
been put into the Others group. From Figure 11 indicates that almost all the timed
automata based research tools are developed in Europe. It is also obvious from this

Figure 11: Numbers of Tools Created by Different Research Groups

grouping that Uppaal and Verimag are the main two driving forces of timed automata
based tool research. This grouping and release dates indicate the Verimag group has not
been very active in this research arena recently. A large number of tools, the diversity in
tools functionality, and the long maintenance period suggest that the UPPAAL group is
the most established group in this arena.

Table 13 lists timed automata based or related tools together with their major func-
tionality, while Figure 12 and Figure 13 show how many tools have a particular purpose
or functionality. The column charts of Figure 12 and Figure 13 clearly indicate that
majority of timed automata based tools is used for real-time analysis and verification
purposes and that tools are also beginning to be used for other purposes.

8 Conclusion

In only two decades the theory of timed automata has established itself as an integral
part of real-time systems development. The beauty of its evolution is that after people

35

Table 13: Major Purposes of Timed Automata Based or Related Tools
Purposes Tools

Black-Box Testing & Related UPPAAL TRON, UPPAAL CoVer
Code Synthesis TIMES, SAVE IDE, AITARTOS, TART
Controller Synthesis UPPAAL TIGA, SynthKro, Synthia
Component-Based Development UPPAAL PORT, SAVE IDE
Model Minimization minim, VInTiMe
Mixed Reality Language Development MIRELA Framework
Web Related Development XAL, WST
Parametric Analysis and Verification TReX, IMITATOR, VerICS, HyTech, RED
Probabilistic Analysis and Verification UPPAAL PRO, mcpta, PRISM 4:0, Fortuna
Resource Analysis and Verification UPPAAL CORA, TIMES, CATS, Fortuna,

Priced-Timed Maude
Other Analyses and Verification UPPAAL, TASM, McAiT, Kronos, Open-Kronos,

TAXYS, RTSpin, IF, CMC, MCTA, Rabbit, Ver-
ICS, RED, TEMPO, DREAM, VInTiMe

Figure 12: Number of Tools for Different Purposes

have found shortcomings and a solution is developed shortly after that. By observing the
origin dates of the variants and tools, it is clear that this area is becoming more active
day by day. This survey is only a snapshot of this area. It is impossible to cover the whole
area in a single short article. The main motivation of this survey was to sort out this
scattered arena instead of giving full detailed information about a few decision problems
or variants or tools related to timed automata. To our knowledge no survey on timed
automata exists which covers at least twenty variants or tools. Hopefully, this survey will
be handy for a researcher who is interested in real-time model driven development.

This survey did not discuss real-time temporal logics, real-time formal verification,
and real-time controller synthesis because these topics are mostly related to real-time
formal models in general instead of being specific to timed automata. There are many
surveys [6, 107, 87, 243, 246, 256, 291, 300, 309] which may be attractive for readers who
are interested in these real-time formal methods.

36

Figure 13: Number of Tools for Different Purposes

Acknowledgements

We want to thank Wang Yi, Patricia Bouyer, Hubert Comon, Catalin Dima, Stavros
Tripakis, Sergio Yovine, Paul Pettersson, Holger Hermanns, Alexandre David, Jochen
Hoenicke, Didier Lime, Andreas Podelski, Dirk Beyer, Fernando P. Schapachnik, Peter
Csaba Ölveczky, Mihaela Sighireanu, Anders Hessel, Marius Mikucionis, Maciej Szreter,
Maria Emilia Cambronero Piqueras, Francois Laroussinie, Gregorio Diaz, Marius Bozga,
Bachir Djafri, Enrique Mart́ınez López, Pavel Kuc̆era, Hans-Jörg Peter, Séverine Sentilles,
Martin Wehrle, and Franck Cassez to help us regarding their works. We also want to
thank James R. Cordy and Ahmed E. Hassan for their administrative help. At the end,
we want to thank Stefan D. Bruda for his help.

References

[1] mcpta. URL http://www.modestchecker.net/.

[2] UPPAAL PRO. URL http://www.cs.aau.dk/~arild/uppaal-probabilistic/.

[3] IEEE Standard for a High-Performance Serial Bus. IEEE Std 1394-1995, Aug.
1996.

[4] T. Abdellatif, J. Combaz, and J. Sifakis. Model-based implementation of real-
time applications. In Proceedings of the tenth ACM international conference on
Embedded software, EMSOFT ’10, pages 229–238. ACM, New York, NY, USA,
2010. ISBN 978-1-60558-904-6. URL http://doi.acm.org/10.1145/1879021.

1879052.

[5] P. A. Abdulla, P. Krcál, and W. Yi. Sampled semantics of timed automata. Com-
puting Research Repository, 2010.

[6] L. Aceto and F. Laroussinie. Is your model checker on time? On the complexity of
model checking for timed modal logics. J. Log. Algebr. Program., 52-53:7–51, 2002.

37

[7] S. Akshay, B. Bollig, P. Gastin, M. Mukund, and K. Narayan Kumar. Dis-
tributed timed automata with independently evolving clocks. In Proceedings of
the 19th international conference on Concurrency Theory, CONCUR ’08, pages
82–97. Springer-Verlag, Berlin, Heidelberg, 2008. ISBN 978-3-540-85360-2. URL
http://dx.doi.org/10.1007/978-3-540-85361-9_10.

[8] A. Alfonso, V. Braberman, D. Garbervetsky, N. Kicillof, A. Olivero, and F. Scha-
pachnik. VInTiMe: Combining high-level finesse with low-level muscle to verify
real-time systems. In PRISE 2004: First International Conference on Princi-
ples of Software Engineering. Buenos Aires, Argentina, oct 2004. URL http://

publicaciones.dc.uba.ar/Publications/2004/ABGKOS04.

[9] A. Alfonso, V. Braberman, N. Kicillof, and A. Olivero. Visual timed event scenarios.
In Proceedings of the 26th International Conference on Software Engineering, ICSE
’04, pages 168–177. IEEE Computer Society, Washington, DC, USA, 2004. ISBN
0-7695-2163-0. URL http://portal.acm.org/citation.cfm?id=998675.999423.

[10] K. Altisen and S. Tripakis. Tools for controller synthesis of timed systems. In 2nd
Workshop on Real-Time Tools (RT-TOOLS’2002), july 2002.

[11] K. Altisen and S. Tripakis. Implementation of timed automata: An issue of seman-
tics or modeling? In FORMATS, pages 273–288, 2005.

[12] R. Alur. Timed automata. Theoretical Computer Science, 126:183–235, 1999.

[13] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time
systems (extended abstract). In Proceedings of the 18th International Colloquium
on Automata, Languages and Programming, pages 115–126. Springer-Verlag New
York, Inc., New York, NY, USA, 1991. ISBN 0-387-54233-7. URL http://portal.

acm.org/citation.cfm?id=111713.111721.

[14] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Inf.
Comput., 104:2–34, May 1993. ISSN 0890-5401. URL http://portal.acm.org/

citation.cfm?id=178164.178166.

[15] R. Alur, C. Courcoubetis, D. L. Dill, N. Halbwachs, and H. Wong-Toi. An imple-
mentation of three algorithms for timing verification based on automata emptiness.
In IEEE Real-Time Systems Symposium, pages 157–166, 1992.

[16] R. Alur, C. Courcoubetis, N. Halbwachs, D. L. Dill, and H. Wong-Toi. Minimization
of timed transition systems. In Proceedings of the Third International Conference
on Concurrency Theory, CONCUR ’92, pages 340–354. Springer-Verlag, London,
UK, 1992. ISBN 3-540-55822-5. URL http://portal.acm.org/citation.cfm?

id=646727.703209.

[17] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theor. Comput. Sci., 138:3–34, February 1995. ISSN 0304-3975. URL http://dl.

acm.org/citation.cfm?id=202379.202381.

[18] R. Alur, C. Courcoubetis, and T. A. Henzinger. The observational power of clocks.
In Lecture Notes in Computer Science, volume 836/1994, pages 162–177. Springer-
Verlag, 1994.

38

[19] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In
Hybrid Systems, pages 209–229. Springer-Verlag, London, UK, 1993. ISBN 3-540-
57318-6. URL http://portal.acm.org/citation.cfm?id=646874.709849.

[20] R. Alur and D. L. Dill. Automata for modeling real-time systems. In Proceed-
ings of the Seventeenth International Colloquium on Automata, Languages and
Programming, pages 322–335. Springer-Verlag New York, Inc., New York, NY,
USA, 1990. ISBN 0-387-52826-1. URL http://portal.acm.org/citation.cfm?

id=90397.90438.

[21] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126:
183–235, April 1994. ISSN 0304-3975. URL http://portal.acm.org/citation.

cfm?id=180782.180519.

[22] R. Alur, K. Etessami, S. La Torre, and D. Peled. Parametric temporal logic for
“model measuring”. ACM Trans. Comput. Logic, 2:388–407, July 2001. ISSN
1529-3785. URL http://doi.acm.org/10.1145/377978.377990.

[23] R. Alur, L. Fix, and T. A. Henzinger. A determinizable class of timed automata. In
Proceedings of the 6th International Conference on Computer Aided Verification,
CAV ’94, pages 1–13. Springer-Verlag, London, UK, 1994. ISBN 3-540-58179-0.
URL http://portal.acm.org/citation.cfm?id=647763.735669.

[24] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: a determinizable
class of timed automata. Theor. Comput. Sci., 211:253–273, January 1999. ISSN
0304-3975. URL http://portal.acm.org/citation.cfm?id=293573.297329.

[25] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
STOC ’93, pages 592–601. ACM, New York, NY, USA, 1993. ISBN 0-89791-591-7.
URL http://doi.acm.org/10.1145/167088.167242.

[26] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state ma-
chines. In Proceedings of the 26th International Colloquium on Automata, Lan-
guages and Programming, ICAL ’99, pages 169–178. Springer-Verlag, London, UK,
1999. ISBN 3-540-66224-3. URL http://portal.acm.org/citation.cfm?id=

646229.681725.

[27] R. Alur and P. Madhusudan. Decision problems for timed automata: A survey.
In M. Bernardo and F. Corradini, editors, Formal Methods for the Design of Real-
Time Systems — Revised Lectures of the International School on Formal Methods
for the Design of Computer, Communication and Software Systems (SFM-RT’04),
volume 3185 of Lecture Notes in Computer Science, pages 1–24. Springer-Verlag,
Sept. 2004.

[28] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the
36th Annual ACM Symposium on Theory of Computing (STOC 04), pages 202–211.
ACM Press, 2004.

[29] R. Alur, S. L. Torre, and P. Madhusudan. Perturbed timed automata. In Hybrid
Systems, pages 70–85, 2005.

39

[30] R. Alur, S. L. Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
In Proceedings of the 4th International Workshop on Hybrid Systems: Computation
and Control, HSCC ’01, pages 49–62. Springer-Verlag, London, UK, 2001. ISBN
3-540-41866-0. URL http://portal.acm.org/citation.cfm?id=646881.710623.

[31] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES - a
tool for modelling and implementation of embedded systems. In Proceedings of
the 8th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS ’02, pages 460–464. Springer-Verlag, London,
UK, 2002. ISBN 3-540-43419-4. URL http://portal.acm.org/citation.cfm?

id=646486.694613.

[32] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES: a tool
for schedulability analysis and code generation of real-time systems. In P. Niebert
and K. G. Larsen, editors, Proc. of FORMATS’03, number 2791 in Lecture Notes
in Computer Science, pages 60–72. Springer–Verlag, 2004.

[33] E. André. IMITATOR: A tool for synthesizing constraints on timing bounds of
timed automata. In Proceedings of the 6th International Colloquium on Theoret-
ical Aspects of Computing, ICTAC ’09, pages 336–342. Springer-Verlag, Berlin,
Heidelberg, 2009. ISBN 978-3-642-03465-7. URL http://dx.doi.org/10.1007/

978-3-642-03466-4_22.

[34] É. André. IMITATOR II: A tool for solving the good parameters problem in timed
automata. In INFINITY, pages 91–99, 2010.

[35] A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reachability
analysis of complex systems. In Proceedings of the 13th International Conference
on Computer Aided Verification, CAV ’01, pages 368–372. Springer-Verlag, London,
UK, 2001. ISBN 3-540-42345-1. URL http://portal.acm.org/citation.cfm?

id=647770.734247.

[36] E. Asarin. Equations on timed languages. In Proceedings of the First International
Workshop on Hybrid Systems: Computation and Control, pages 1–12. Springer-
Verlag, London, UK, 1998. ISBN 3-540-64358-3. URL http://portal.acm.org/

citation.cfm?id=646878.710297.

[37] E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for timed automata. In
Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science,
LICS ’97, pages 160–171. IEEE Computer Society, Washington, DC, USA, 1997.
ISBN 0-8186-7925-5. URL http://portal.acm.org/citation.cfm?id=788019.

788856.

[38] E. Asarin, P. Caspi, and O. Maler. Timed regular expressions. J. ACM, 49(2):
172–206, 2002.

[39] E. Asarin and O. Maler. As soon as possible: Time optimal control for timed
automata. In Proceedings of the Second International Workshop on Hybrid Sys-
tems: Computation and Control, HSCC ’99, pages 19–30. Springer-Verlag, London,
UK, 1999. ISBN 3-540-65734-7. URL http://portal.acm.org/citation.cfm?

id=646879.710314.

40

[40] E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed automata
and digital circuits. In Proceedings of the 9th International Conference on Concur-
rency Theory, CONCUR ’98, pages 470–484. Springer-Verlag, London, UK, 1998.
ISBN 3-540-64896-8. URL http://portal.acm.org/citation.cfm?id=646733.

701304.

[41] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In Proceedings of the 5th IFAC Cconference on System Structure and
Control (SSC’98), pages 469–474. Elsevier Science, july 1998.

[42] M. Åsberg, T. Nolte, and P. Pettersson. Prototyping and code synthesis of hi-
erarchically scheduled systems using TIMES. Journal of Convergence (Consumer
Electronics), 1(1):77–86, December 2010. URL http://www.mrtc.mdh.se/index.

php?choice=publications&id=2376.

[43] C. Baier, N. Bertrand, P. Bouyer, T. Brihaye, and M. Größer. Probabilistic and
topological semantics for timed automata. In Proceedings of the 27th International
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS’07, pages 179–191. Springer-Verlag, Berlin, Heidelberg, 2007. ISBN
3-540-77049-6, 978-3-540-77049-7. URL http://portal.acm.org/citation.cfm?

id=1781794.1781811.

[44] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and L. Tesei. Timed P automata.
Electronic Notes Theoretical Computer Science, 227:21–36, January 2009. ISSN
1571-0661. URL http://portal.acm.org/citation.cfm?id=1486279.1486497.

[45] R. Barbuti and L. Tesei. Timed automata with urgent transitions. Acta Inf., 40:
317–347, March 2004. ISSN 0001-5903. URL http://portal.acm.org/citation.

cfm?id=1006191.1006194.

[46] D. Beauquier. On probabilistic timed automata. Theor. Comput. Sci., 292:65–84,
January 2003. ISSN 0304-3975. URL http://portal.acm.org/citation.cfm?

id=642013.642018.

[47] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and L. Didier.
UPPAAL-Tiga: time for playing games! In Proceedings of the 19th International
Conference on Computer Aided Verification, CAV’07, pages 121–125. Springer-
Verlag, Berlin, Heidelberg, 2007. ISBN 978-3-540-73367-6. URL http://portal.

acm.org/citation.cfm?id=1770351.1770370.

[48] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. In M. Bernardo
and F. Corradini, editors, International School on Formal Methods for the Design
of Computer, Communication, and Software Systems, SFM-RT 2004. Revised Lec-
tures, volume 3185 of Lecture Notes in Computer Science, pages 200–237. Springer
Verlag, 2004. URL http://doc.utwente.nl/51010/.

[49] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, and J. Romijn.
Efficient guiding towards cost-optimality in UPPAAL. In Proceedings of the 7th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems, TACAS 2001, pages 174–188. Springer-Verlag, London, UK, 2001.
ISBN 3-540-41865-2. URL http://portal.acm.org/citation.cfm?id=646485.

694458.

41

[50] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and
F. W. Vaandrager. Minimum-cost reachability for priced timed automata. In Pro-
ceedings of the 4th International Workshop on Hybrid Systems: Computation and
Control, HSCC ’01, pages 147–161. Springer-Verlag, London, UK, 2001. ISBN 3-
540-41866-0. URL http://portal.acm.org/citation.cfm?id=646881.710599.

[51] G. Behrmann, K. G. Larsen, and J. I. Rasmussen. Priced timed automata: Algo-
rithms and applications. In FMCO, pages 162–182, 2004.

[52] G. Behrmann, K. G. Larsen, and J. I. Rasmussen. Optimal scheduling using priced
timed automata. SIGMETRICS Perform. Eval. Rev., 32:34–40, March 2005. ISSN
0163-5999. URL http://doi.acm.org/10.1145/1059816.1059823.

[53] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[54] L. Bendiksen and P. C. Ölveczky. The priced-timed maude tool. In Proceedings
of the 3rd international conference on Algebra and coalgebra in computer science,
CALCO’09, pages 443–448. Springer-Verlag, Berlin, Heidelberg, 2009. ISBN 3-
642-03740-2, 978-3-642-03740-5. URL http://portal.acm.org/citation.cfm?

id=1812941.1812981.

[55] M. Benerecetti, S. Minopoli, and A. Peron. Analysis of timed recursive state ma-
chines. In Proceedings of the 17th International Symposium on Temporal Represen-
tation and Reasoning, pages 61–68, 2010.

[56] J. Bengtsson. Clocks, DBMs and States in Timed Systems. PhD thesis, Department
of Information Technology, Uppsala University,, Uppsala, Sweeden, 2002.

[57] J. Bengtsson and W. Yi. On clock difference constraints and termination in reacha-
bility analysis of timed automata. In J. S. Dong and J. Woodcock, editors, Proc. of
ICFEM’03, number 2885 in Lecture Notes in Computer Science. Springer–Verlag,
2003.

[58] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In
W. Reisig and G. Rozenberg, editors, In Lecture Notes on Concurrency and Petri
Nets, Lecture Notes in Computer Science vol 3098. Springer–Verlag, 2004.

[59] B. Bérard and C. Dufourd. Timed automata and additive clock constraints. Inf.
Process. Lett., 75:1–7, July 2000. ISSN 0020-0190. URL http://portal.acm.org/

citation.cfm?id=359506.359509.

[60] B. Bérard, P. Gastin, and A. Petit. On the power of non-observable actions in timed
automata. In Proceedings of the 13th Annual Symposium on Theoretical Aspects
of Computer Science, pages 257–268. Springer-Verlag, London, UK, 1996. ISBN 3-
540-60922-9. URL http://portal.acm.org/citation.cfm?id=646511.759229.

[61] B. Bérard and S. Haddad. Interrupt timed automata. In Proceedings of the 12th
International Conference on Foundations of Software Science and Computational
Structures: Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, FOSSACS ’09, pages 197–211. Springer-Verlag, Berlin,
Heidelberg, 2009. ISBN 978-3-642-00595-4. URL http://dx.doi.org/10.1007/

978-3-642-00596-1_15.

42

[62] B. Bérard, A. Petit, V. Diekert, and P. Gastin. Characterization of the expressive
power of silent transitions in timed automata. Fundam. Inf., 36:145–182, November
1998. ISSN 0169-2968. URL http://portal.acm.org/citation.cfm?id=305052.

305055.

[63] J. Berendsen, D. N. Jansen, and J.-P. Katoen. Probably on time and within budget:
On reachability in priced probabilistic timed automata. In Proceedings of the 3rd
international conference on the Quantitative Evaluation of Systems, pages 311–322.
IEEE Computer Society, Washington, DC, USA, 2006. ISBN 0-7695-2665-9. URL
http://portal.acm.org/citation.cfm?id=1173695.1173993.

[64] J. Berendsen, D. N. Jansen, and F. W. Vaandrager. Fortuna: Model checking priced
probabilistic timed automata. In QEST, pages 273–281, 2010.

[65] B. Berthomieu and M. Menasche. An enumerative approach for analyzing time
Petri nets. In Proceedings IFIP, pages 41–46. Elsevier Science Publishers, 1983.

[66] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine.
TAXYS = Esterel + Kronos - a tool for verifying real-time properties of embedded
systems. In Conference on Decision and Control, 2001.

[67] D. Beyer, C. Lewerentz, and A. Noack. Rabbit: A tool for BDD-based verification
of real-time systems. In CAV, pages 122–125, 2003.

[68] D. Beyer and H. Rust. Modeling a production cell as a distributed real-time system
with Cottbus timed automata. In FBT, pages 148–159, 1998.

[69] D. Beyer and H. Rust. Cottbus timed automata: Formal definition and semantics.
In Proceedings of the 2nd IEEE/IFIP Joint Workshop on Formal Specifications of
Computer-Based Systems (FSCBS 2001, pages 75–87, 2001.

[70] G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Conallen, and K. Houston.
Object-Oriented Analysis and Design with Applications, Third Edition. Addison-
Wesley Professional, third edition, 2007. ISBN 9780201895513.

[71] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In Revised
Lectures from the International Symposium on Compositionality: The Significant
Difference, COMPOS’97, pages 103–129. Springer-Verlag, London, UK, 1998. ISBN
3-540-65493-3. URL http://portal.acm.org/citation.cfm?id=646738.702093.

[72] D. Bosscher, I. Polak, and F. W. Vaandrager. Verification of an audio control pro-
tocol. In Proceedings of the Third International Symposium Organized Jointly with
the Working Group Provably Correct Systems on Formal Techniques in Real-Time
and Fault-Tolerant Systems, pages 170–192. Springer-Verlag, London, UK, 1994.
ISBN 3-540-58468-4. URL http://portal.acm.org/citation.cfm?id=646843.

706645.

[73] A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model checking for
real-time systems. In Proceedings of the 18th IEEE Real-Time Systems Symposium,
RTSS ’97, pages 232–243. IEEE Computer Society, Washington, DC, USA, 1997.
ISBN 0-8186-8268-X. URL http://portal.acm.org/citation.cfm?id=827269.

828996.

43

[74] P. Bouyer. Forward analysis of updatable timed automata. Form. Methods Syst.
Des., 24:281–320, May 2004. ISSN 0925-9856. URL http://portal.acm.org/

citation.cfm?id=987276.987303.

[75] P. Bouyer, T. Brihaye, V. Bruyère, and J.-F. Raskin. On the optimal reachabil-
ity problem of weighted timed automata. Form. Methods Syst. Des., 31:135–175,
October 2007. ISSN 0925-9856. URL http://portal.acm.org/citation.cfm?

id=1288667.1288679.

[76] P. Bouyer, E. Brinksma, and K. G. Larsen. Optimal infinite scheduling for multi-
priced timed automata. Form. Methods Syst. Des., 32:3–23, February 2008. ISSN
0925-9856. URL http://portal.acm.org/citation.cfm?id=1331427.1331460.

[77] P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal Strategies in Priced
Timed Game Automata. In K. Lodaya and M. Mahajan, editors, Proceedings of the
24th Conference on Fundations of Software Technology and Theoretical Computer
Science (FSTTCS’04), volume 3328 of Lecture Notes in Computer Science, pages
148–160. Springer, Chennai, India, December 2004.

[78] P. Bouyer and F. Chevalier. On conciseness of extensions of timed automata. J.
Autom. Lang. Comb., 10:393–405, April 2005. ISSN 1430-189X. URL http://

portal.acm.org/citation.cfm?id=1375928.1375929.

[79] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata updatable?
In CAV, pages 464–479, 2000.

[80] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Expressiveness of updatable timed
automata. In MFCS, pages 232–242, 2000.

[81] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed automata. Theor.
Comput. Sci., 321:291–345, August 2004. ISSN 0304-3975. URL http://portal.

acm.org/citation.cfm?id=1040971.1040979.

[82] P. Bouyer, U. Fahrenberg, K. G. Larsen, and N. Markey. Quantitative analysis of
real-time systems using priced timed automata. Communications of the ACM, 54:
78–87, Sept. 2011. URL http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/

BFLM-cacm11.pdf.

[83] P. Bouyer, F. Laroussinie, and P.-A. Reynier. Diagonal constraints in timed au-
tomata: Forward analysis of timed systems. In P. Pettersson and W. Yi, editors,
Proceedings of the 3rd International Conference on Formal Modelling and Analy-
sis of Timed Systems (FORMATS’05), volume 3829 of Lecture Notes in Computer
Science, pages 112–126. Springer, Uppsala, Sweden, Nov. 2005. URL http://www.

lsv.ens-cachan.fr/Publis/PAPERS/PDF/BLR05-DBM.pdf.

[84] P. Bouyer, K. G. Larsen, and N. Markey. Model-checking one-clock priced
timed automata. In Proceedings of the 10th International Conference on Foun-
dations of Software Science and Computational Structures, FOSSACS’07, pages
108–122. Springer-Verlag, Berlin, Heidelberg, 2007. URL http://portal.acm.

org/citation.cfm?id=1760037.1760048.

44

[85] P. Bouyer, K. G. Larsen, N. Markey, O. Sankur, and C. Thrane. Timed automata
can always be made implementable. In J.-P. Katoen and B. König, editors, Proceed-
ings of the 22nd International Conference on Concurrency Theory (CONCUR’11),
volume 6901 of Lecture Notes in Computer Science. Springer, Aachen, Germany,
Sept. 2011. To appear.

[86] P. Bouyer and N. Markey. Costs are expensive! In FORMATS, pages 53–68, 2007.

[87] P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. On expressiveness and complex-
ity in real-time model checking. In Proceedings of the 35th international colloquium
on Automata, Languages and Programming, Part II, ICALP ’08, pages 124–135.
Springer-Verlag, Berlin, Heidelberg, 2008. ISBN 978-3-540-70582-6. URL http://

dx.doi.org/10.1007/978-3-540-70583-3_11.

[88] P. Bouyer, N. Markey, and P. Reynier. Robust model-checking of linear-time proper-
ties in timed automata. In Latin American Theoretical INformatics, pages 238–249,
2006.

[89] P. Bouyer and A. Petit. Decomposition and composition of timed automata. In
Proceedings of the 26th International Colloquium on Automata, Languages and Pro-
gramming, ICAL ’99, pages 210–219. Springer-Verlag, London, UK, 1999. ISBN 3-
540-66224-3. URL http://portal.acm.org/citation.cfm?id=646229.681713.

[90] P. Bouyer and A. Petit. A Kleene/Büchi-like theorem for clock languages. Journal
of Automata, Languages and Combinatorics, 7(2):167–186, 2002.

[91] M. Bozga, S. Graf, L. Mounier, and I. Ober. Modeling and Verification of Real-
Time Systems Using the IF Toolbox. In N. Navet, S. Merz, , and , editors,
Modeling and Verification of Real-time Systems, chapter 10, pages 319–352. Wiley,
http://www.wiley.com/, janvier 2008. URL http://www.iste.co.uk/index.php?

p=a&ACTION=View&id=195.

[92] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF toolset. In SFM-04:RT
4th Int. School on Formal Methods for the Design of Computer, Communication
and Software Systems: Real Time, number 3185 in LNCS, June 2004.

[93] L. Bozzelli and S. La Torre. Decision problems for lower/upper bound parametric
timed automata. Form. Methods Syst. Des., 35:121–151, October 2009. ISSN 0925-
9856. URL http://portal.acm.org/citation.cfm?id=1644391.1644396.

[94] V. Braberman, D. Garbervetsky, and A. Olivero. ObsSlice: A timed automata
slicer based on observers. In CAV2004: 16th International Conference on Computer
Aided Verification, volume 3114 of LNCS, pages 470–474. Springer, jul 2004. URL
http://publicaciones.dc.uba.ar/Publications/2004/BGO04.

[95] V. Braberman, A. Olivero, and F. Schapachnik. Issues in distributed timed model
checking: Building Zeus. Int. J. Softw. Tools Technol. Transf., 7:4–18, Febru-
ary 2005. ISSN 1433-2779. URL http://portal.acm.org/citation.cfm?id=

1045581.1045585.

[96] V. A. Braberman and M. Felder. Verification of real-time designs: Combining
scheduling theory with automatic formal verification. In Proceedings of the 7th

45

European software engineering conference held jointly with the 7th ACM SIGSOFT
international symposium on Foundations of software engineering, ESEC/FSE-7,
pages 494–510. Springer-Verlag, London, UK, 1999. ISBN 3-540-66538-2. URL
http://dx.doi.org/10.1145/318773.319266.

[97] T. Brihaye, V. Bruyère, and J.-F. Raskin. Model-checking for weighted timed
automata. In FORMATS/FTRTFT, pages 277–292, 2004.

[98] T. Brihaye, T. A. Henzinger, V. S. Prabhu, and J. françois Raskin. Minimum-time
reachability in timed games. In International Congress of Mathematicans, pages
825–837, 2007.

[99] V. Bruyère, E. Dall’Olio, and J.-F. Raskin. Durations, parametric model-checking
in timed automata with presburger arithmetic. In Proceedings of the 20th Annual
Symposium on Theoretical Aspects of Computer Science, STACS ’03, pages 687–
698. Springer-Verlag, London, UK, UK, 2003. ISBN 3-540-00623-0. URL http://

portal.acm.org/citation.cfm?id=646517.696334.

[100] V. Bruyère and J.-F. Raskin. Real-time model-checking: Parameters everywhere.
Logical Methods in Computer Science, 3(1), 2007.

[101] M.-E. Cambronero, G. Dı́az, E. Mart́ınez, V. Valero, and L. Tobarra. WST: a
tool supporting timed composite web services model transformation. Simulation:
Transactions of the Society for Modeling and Simulation International, 2010.

[102] M.-E. Cambronero, G. Dı́az, V. Valero, and E. Mart́ınez. Validation and verification
of web services choreographies by using timed automata. J. Log. Algebr. Program.,
80(1):25–49, 2011.

[103] S. Campana, L. Spalazzi, and F. Spegni. XAL: A web oriented programming lan-
guage based on timed-automata. In Proceedings of the 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology
- Volume 01, pages 862–868. IEEE Computer Society, Washington, DC, USA,
2008. ISBN 978-0-7695-3496-1. URL http://portal.acm.org/citation.cfm?

id=1486927.1487051.

[104] L. P. Carloni, R. Passerone, A. Pinto, and A. L. Sangiovanni-Vincentelli. Languages
and tools for hybrid systems design. Found. Trends Electron. Des. Autom., 1:1–193,
January 2006. ISSN 1551-3076. URL http://portal.acm.org/citation.cfm?id=

1166403.1166404.

[105] F. Cassez, T. A. Henzinger, and J.-F. Raskin. A comparison of control problems
for timed and hybrid systems. In Proceedings of the 5th International Workshop on
Hybrid Systems: Computation and Control, HSCC ’02, pages 134–148. Springer-
Verlag, London, UK, 2002. ISBN 3-540-43321-X. URL http://portal.acm.org/

citation.cfm?id=646882.710764.

[106] F. Cassez and K. G. Larsen. The impressive power of stopwatches. In Proceedings
of the 11th International Conference on Concurrency Theory, CONCUR ’00, pages
138–152. Springer-Verlag, London, UK, 2000. ISBN 3-540-67897-2. URL http://

portal.acm.org/citation.cfm?id=646735.701625.

46

[107] F. Cassez and N. Markey. Communicating Embedded Systems – Software and De-
sign, chapter Control of Timed Systems, pages 83–120. Oct. 2009. URL http://

www.iste.co.uk/index.php?f=a&ACTION=View&id=288.

[108] M. Cavaliere and D. Sburlan. Time-independent P systems. In Workshop on
Membrane Computing, pages 239–258, 2004.

[109] K. Cerans. Decidability of bisimulation equivalences for parallel timer processes. In
Proceedings of the Fourth International Workshop on Computer Aided Verification,
pages 302–315. Springer-Verlag, London, UK, 1993. ISBN 3-540-56496-9. URL
http://portal.acm.org/citation.cfm?id=647761.735349.

[110] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28:
114–133, January 1981. ISSN 0004-5411. URL http://doi.acm.org/10.1145/

322234.322243.

[111] A. M. K. Cheng. Real-Time Systems: Scheduling, Analysis, and Verification. John
Wiley & Sons, Inc., New York, NY, USA, 1 edition, 2002. ISBN 0471184063.

[112] F. Chevalier, D. D’Souza, and P. Prabhakar. On continuous timed automata with
input-determined guards. In FSTTCS, pages 369–380, 2006.

[113] F. Chevalier, D. D’Souza, and P. Prabhakar. Counter-free input-determined timed
automata. In Proceedings of the 5th international conference on Formal modeling
and analysis of timed systems, FORMATS’07, pages 82–97. Springer-Verlag, Berlin,
Heidelberg, 2007. ISBN 3-540-75453-9, 978-3-540-75453-4. URL http://portal.

acm.org/citation.cfm?id=1779879.1779887.

[114] C. Choffrut and M. Goldwurm. Timed automata with periodic clock constraints.
J. Autom. Lang. Comb., 5:371–403, October 2000. ISSN 1430-189X. URL http:/

/portal.acm.org/citation.cfm?id=360852.360853.

[115] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model checking. MIT Press,
Cambridge, MA, USA, 1999. ISBN 0-262-03270-8.

[116] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venter, D. Weil, and S. Yovine. TAXYS:
A tool for the development and verification of real-time embedded systems. In
Proceedings of the 13th International Conference on Computer Aided Verification,
CAV ’01, pages 391–395. Springer-Verlag, London, UK, 2001. ISBN 3-540-42345-1.
URL http://portal.acm.org/citation.cfm?id=647770.734253.

[117] H. Comon and Y. Jurski. Timed automata and the theory of real numbers. In Pro-
ceedings of the 10th International Conference on Concurrency Theory, CONCUR
’99, pages 242–257. Springer-Verlag, London, UK, 1999. ISBN 3-540-66425-4. URL
http://portal.acm.org/citation.cfm?id=646734.701462.

[118] C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in
real-time systems. Form. Methods Syst. Des., 1:385–415, December 1992. ISSN
0925-9856. URL http://portal.acm.org/citation.cfm?id=175770.175774.

[119] Z. Dang. Binary reachability analysis of pushdown timed automata with dense
clocks. In Proceedings of the 13th International Conference on Computer Aided
Verification, CAV ’01, pages 506–518. Springer-Verlag, London, UK, 2001. ISBN
3-540-42345-1. URL http://portal.acm.org/citation.cfm?id=647770.734112.

47

[120] Z. Dang. Pushdown timed automata: a binary reachability characterization and
safety verification. Theor. Comput. Sci., 302:93–121, June 2003. ISSN 0304-3975.
URL http://dx.doi.org/10.1016/S0304-3975(02)00743-0.

[121] Z. Dang, T. Bultan, O. H. Ibarra, and R. A. Kemmerer. Past pushdown timed
automata. In Revised Papers from the 6th International Conference on Implemen-
tation and Application of Automata, CIAA ’01, pages 74–86. Springer-Verlag, Lon-
don, UK, 2001. ISBN 3-540-00400-9. URL http://portal.acm.org/citation.

cfm?id=647268.721711.

[122] Z. Dang, T. Bultan, O. H. Ibarra, and R. A. Kemmerer. Past pushdown timed
automata and safety verification. Theor. Comput. Sci., 313:57–71, February
2004. ISSN 0304-3975. URL http://portal.acm.org/citation.cfm?id=985565.

985571.

[123] Z. Dang, O. H. Ibarra, T. Bultan, R. A. Kemmerer, and J. Su. Binary reacha-
bility analysis of discrete pushdown timed automata. In Proceedings of the 12th
International Conference on Computer Aided Verification, CAV ’00, pages 69–84.
Springer-Verlag, London, UK, 2000. ISBN 3-540-67770-4. URL http://portal.

acm.org/citation.cfm?id=647769.733961.

[124] A. David, K. Larsen, P. Pettersson, W. Yi, and G. Behrmann. Developing UPPAAL
over 15 years. Software: Practice and Experience, 2010.

[125] J. M. Davoren and A. NERODE. Logics for hybrid systems. Proceedings of The
IEEE, 88:985–1010, 2000.

[126] C. Daws and P. Kordy. Symbolic robustness analysis of timed automata. In
E. Asarin and P. Bouyer, editors, Proceedings of the 4th International Conferences
on Formal Modelling and Analysis of Timed Systems, (FORMATS’06), volume
4202 of Lecture Notes in Computer Science, pages 143–155. Springer-Verlag, Sept.
2006.

[127] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Proceed-
ings of the DIMACS/SYCON Workshop on Hybrid Systems III: Verification and
Control, pages 208–219. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.
ISBN 3-540-61155-X. URL http://portal.acm.org/citation.cfm?id=239587.

239607.

[128] C. Daws and S. Tripakis. Model checking of real-time reachability properties us-
ing abstractions. In Proceedings of the 4th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, pages 313–329. Springer-
Verlag, London, UK, 1998. ISBN 3-540-64356-7. URL http://portal.acm.org/

citation.cfm?id=646482.691457.

[129] M. De Wulf. From Timed Models to Timed Implementations. Thèse de doctorat,
Département d’Informatique, Université Libre de Bruxelles, Belgium, December
2006.

[130] M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robustness and implementabil-
ity of timed automata. In Y. Lakhnech and S. Yovine, editors, Proceedings of the

48

Joint International Conferences on Formal Modelling and Analysis of Timed Sys-
tems, (FORMATS’04) and Formal Techniques in Real-Time and Fault-Tolerant
Systems (FTRTFT’04), volume 3253 of Lecture Notes in Computer Science, pages
118–133. Springer-Verlag, Sept. 2004.

[131] M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robust safety of timed
automata. Form. Methods Syst. Des., 33:45–84, December 2008. ISSN 0925-9856.
URL http://portal.acm.org/citation.cfm?id=1454351.1454357.

[132] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From timed
models to timed implementations. In R. Alur and G. J. Pappas, editors, Proceedings
of the 7th International Workshop on Hybrid Systems: Computation and Control
(HSCC’04), volume 2993 of Lecture Notes in Computer Science, pages 296–310.
Springer-Verlag, Mar.-Apr. 2004.

[133] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: from timed
models to timed implementations. Formal Aspects of Computing, 17:319–341, Oc-
tober 2005. ISSN 0934-5043. URL http://portal.acm.org/citation.cfm?id=

1095527.1095530.

[134] M. De Wulf, L. Doyen, and J.-F. Raskin. Systematic implementation of real-time
models. In FM, pages 139–156, 2005.

[135] F. Demichelis and W. Zielonka. Controlled timed automata. In Proceedings of
the 9th International Conference on Concurrency Theory, CONCUR ’98, pages
455–469. Springer-Verlag, London, UK, 1998. ISBN 3-540-64896-8. URL http://

portal.acm.org/citation.cfm?id=646733.701317.

[136] M. Dickhöfer and T. Wilke. Timed alternating tree automata: The automata-
theoretic solution to the TCTL model checking problem. In Proceedings of the 26th
International Colloquium on Automata, Languages and Programming, ICAL ’99,
pages 281–290. Springer-Verlag, London, UK, 1999. ISBN 3-540-66224-3. URL
http://portal.acm.org/citation.cfm?id=646229.681548.

[137] J.-Y. Didier, B. Djafri, and H. Klaudel. The mirela framework: modeling and
analyzing mixed reality applications using timed automata. Journal of Virtual
Reality and Broadcasting, 6(1), Feb. 2009. urn:nbn:de:0009-6-17423,, ISSN 1860-
2037.

[138] V. Diekert, P. Gastin, and A. Petit. Removing epsilon-transitions in timed au-
tomata. In Proceedings of the 14th Annual Symposium on Theoretical Aspects of
Computer Science, STACS ’97, pages 583–594. Springer-Verlag, London, UK, 1997.
ISBN 3-540-62616-6. URL http://portal.acm.org/citation.cfm?id=646512.

695332.

[139] D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proceedings of the International Workshop on Automatic Verification Methods
for Finite State Systems, pages 197–212. Springer-Verlag New York, Inc., New York,
NY, USA, 1990. ISBN 0-387-52148-8. URL http://portal.acm.org/citation.

cfm?id=88032.88140.

49

[140] C. Dima. Kleene theorems for event-clock automata. In Proceedings of the 12th
International Symposium on Fundamentals of Computation Theory, FCT ’99, pages
215–225. Springer-Verlag, London, UK, 1999. ISBN 3-540-66412-2. URL http://

portal.acm.org/citation.cfm?id=647899.740957.

[141] C. Dima. Regular expressions with timed dominoes. In Proceedings of the 4th Inter-
national Conference on Discrete Mathematics and Theoretical Computer Science,
DMTCS’03, pages 141–154. Springer-Verlag, Berlin, Heidelberg, 2003. ISBN 3-540-
40505-4. URL http://portal.acm.org/citation.cfm?id=1783712.1783725.

[142] C. Dima. Timed shuffle expressions, pages 95–109. Springer-Verlag, London, UK,
2005. ISBN 3-540-28309-9. URL http://portal.acm.org/citation.cfm?id=

1099332.1099344.

[143] C. Dima. Dynamical properties of timed automata revisited. In Proceedings of
the 5th international conference on Formal modeling and analysis of timed systems,
FORMATS’07, pages 130–146. Springer-Verlag, Berlin, Heidelberg, 2007. ISBN
3-540-75453-9, 978-3-540-75453-4. URL http://portal.acm.org/citation.cfm?

id=1779879.1779890.

[144] C. Dima and R. Lanotte. Distributed time-asynchronous automata. In Proceedings
of the 4th international conference on Theoretical aspects of computing, ICTAC’07,
pages 185–200. Springer-Verlag, Berlin, Heidelberg, 2007. ISBN 3-540-75290-0,
978-3-540-75290-5. URL http://portal.acm.org/citation.cfm?id=1777259.

1777272.

[145] C. Dima and R. Lanotte. Removing all silent transitions from timed automata.
In Proceedings of the 7th International Conference on Formal Modeling and Anal-
ysis of Timed Systems, FORMATS ’09, pages 118–132. Springer-Verlag, Berlin,
Heidelberg, 2009. ISBN 978-3-642-04367-3. URL http://dx.doi.org/10.1007/

978-3-642-04368-0_11.

[146] J. S. Dong, P. Hao, S. C. Qin, J. Sun, and W. Yi. Timed automata patterns. IEEE
Transactions on Software Engineering, 52(1), 2008. ISSN 0098-5589.

[147] J. S. Dong, Y. Liu, J. Sun, and X. Zhang. Verification of computation orchestration
via timed automata. In IEEE International Conference on Formal Engineering
Methods, pages 226–245, 2006.

[148] D. Drusinsky and D. Harel. On the power of bounded concurrency i: Finite au-
tomata. J. ACM, 41:517–539, May 1994. ISSN 0004-5411. URL http://doi.acm.

org/10.1145/176584.176587.

[149] D. D’Souza. A logical characterisation of event recording automata. In Proceed-
ings of the 6th International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems, FTRTFT ’00, pages 240–251. Springer-Verlag, London,
UK, 2000. ISBN 3-540-41055-4. URL http://portal.acm.org/citation.cfm?

id=646846.706968.

[150] D. D’Souza. A logical characterisation of event clock automata. International
Journal Foundations Computer Science, 14(4):625–640, 2003.

50

[151] D. D’Souza and M. R. Mohan. Eventual timed automata. In FSTTCS, pages
322–334, 2005.

[152] D. D’Souza and N. Tabareau. On timed automata with input-determined guards.
In FORMATS/FTRTFT, pages 68–83, 2004.

[153] D. D’Souza and P. S. Thiagarajan. Product interval automata: A subclass of timed
automata. In Proceedings of the 19th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, pages 60–71. Springer-Verlag, London,
UK, 1999. ISBN 3-540-66836-5. URL http://portal.acm.org/citation.cfm?

id=646837.708502.

[154] R. Ehlers, R. Mattmüller, and H.-J. Peter. Combining symbolic representations for
solving timed games. In FORMATS, pages 107–121, 2010.

[155] R. Ehlers, R. Mattmüller, and H.-J. Peter. Synthia: Verification and synthesis for
timed automata. In 23rd International Conference on Computer Aided Verification,
to appear. Cliff Lodge, Snowbird, Utah, USA, July 2011.

[156] E. A. Emerson and R. J. Trefler. Parametric quantitative temporal reasoning. In
Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science,
LICS ’99, pages 336–. IEEE Computer Society, Washington, DC, USA, 1999. ISBN
0-7695-0158-3. URL http://portal.acm.org/citation.cfm?id=788021.788942.

[157] M. Emmi and R. Majumdar. Decision problems for the verification of real-time
software. In HSCC, pages 200–211, 2006.

[158] A. Fellah and S. Noureddine. Some succinctness properties of ω-DTAFA. In Proceed-
ings of the 5th WSEAS International Conference on Software Engineering, Parallel
and Distributed Systems, pages 97–103. World Scientific and Engineering Academy
and Society (WSEAS), Stevens Point, Wisconsin, USA, 2006. ISBN 960-8457-41-6.
URL http://portal.acm.org/citation.cfm?id=1365739.1365755.

[159] E. Fersman, P. Krčál, P. Pettersson, and W. Yi. Task automata: Schedulability,
decidability and undecidability. Inf. Comput., 205:1149–1172, August 2007. ISSN
0890-5401. URL http://portal.acm.org/citation.cfm?id=1274187.1274249.

[160] E. Fersman, P. Pettersson, and W. Yi. Timed automata with asynchronous pro-
cesses: Schedulability and decidability. In Proceedings of the 8th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS ’02, pages 67–82. Springer-Verlag, London, UK, UK, 2002. ISBN 3-540-
43419-4. URL http://portal.acm.org/citation.cfm?id=646486.694626.

[161] A. Fietzke, H. Hermanns, and C. Weidenbach. Superposition-based analysis of first-
order probabilistic timed automata. In Proceedings of the 17th international con-
ference on Logic for programming, artificial intelligence, and reasoning, LPAR’10,
pages 302–316. Springer-Verlag, Berlin, Heidelberg, 2010. ISBN 3-642-16241-X,
978-3-642-16241-1. URL http://portal.acm.org/citation.cfm?id=1928380.

1928402.

[162] O. Finkel. On the shuffle of timed regular languages. Bulletin of the European
Association for Theoretical Computer Science, Volume 88:182–184, February 2006.

51

[163] O. Finkel. Undecidable problems about timed automata. In FORMATS, pages
187–199, 2006.

[164] M. Fränzle. What will be eventually true of polynomial hybrid automata? In
Proceedings of the 4th International Symposium on Theoretical Aspects of Computer
Software, TACS ’01, pages 340–359. Springer-Verlag, London, UK, 2001. ISBN 3-
540-42736-8. URL http://portal.acm.org/citation.cfm?id=645870.668686.

[165] B. Gebremichael and F. Vaandrager. Specifying urgency in timed I/O automata.
In Proceedings of the Third IEEE International Conference on Software Engineer-
ing and Formal Methods, pages 64–74. IEEE Computer Society, Washington, DC,
USA, 2005. ISBN 0-7695-2435-4. URL http://portal.acm.org/citation.cfm?

id=1109722.1110561.

[166] A. Gherbi and F. Khendek. Timed-automata semantics and analysis of UML/SPT
models with concurrency. In Proceedings of the 10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing, ISORC ’07,
pages 412–419. IEEE Computer Society, Washington, DC, USA, 2007. ISBN 0-
7695-2765-5. URL http://dx.doi.org/10.1109/ISORC.2007.57.

[167] R. Ghosh and C. Tomlin. Symbolic reachable set computation of piecewise affine
hybrid automata and its application to biological modelling: Delta-notch protein
signalling. Systems Biology, 1:170–183, 2004.

[168] V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed automata. In
Proceedings of the International Workshop on Hybrid and Real-Time Systems, pages
331–345. Springer-Verlag, London, UK, 1997. ISBN 3-540-62600-X. URL http://

portal.acm.org/citation.cfm?id=646883.710916.

[169] J. H̊akansson, J. Carlson, A. Monot, P. Pettersson, and D. Slutej. Component-
based design and analysis of embedded systems with UPPAAL PORT. In Proceed-
ings of the 6th International Symposium on Automated Technology for Verification
and Analysis, ATVA ’08, pages 252–257. Springer-Verlag, Berlin, Heidelberg, 2008.
ISBN 978-3-540-88386-9. URL http://dx.doi.org/10.1007/978-3-540-88387-

6_23.

[170] N. Hakimipour, P. Strooper, and A. Wellings. TART: Timed-automata to real-
time java tool. In Proceedings of the 2010 8th IEEE International Conference
on Software Engineering and Formal Methods, SEFM ’10, pages 299–309. IEEE
Computer Society, Washington, DC, USA, 2010. ISBN 978-0-7695-4153-2. URL
http://dx.doi.org/10.1109/SEFM.2010.39.

[171] N. Hakimipour, P. A. Strooper, and R. Duke. Exploring model-based development
for the verification of real-time Java code. In VERIFY, 2008.

[172] D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, 1987. URL http://linkinghub.elsevier.

com/retrieve/pii/0167642387900359.

[173] A. Hartmanns and H. Hermanns. A modest approach to checking probabilistic
timed automata. In Proceedings of the 2009 Sixth International Conference on the
Quantitative Evaluation of Systems, QEST ’09, pages 187–196. IEEE Computer

52

Society, Washington, DC, USA, 2009. ISBN 978-0-7695-3808-2. URL http://dx.

doi.org/10.1109/QEST.2009.41.

[174] M. Hendriks and M. Verhoef. Timed automata based analysis of embedded system
architectures. In Proceedings of the 20th international conference on Parallel and
distributed processing, IPDPS’06, page 179. IEEE Computer Society, Washington,
DC, USA, 2006. ISBN 1-4244-0054-6. URL http://portal.acm.org/citation.

cfm?id=1898953.1899117.

[175] T. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for real-
time systems. In Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’91, pages 353–366. ACM, New
York, NY, USA, 1991. ISBN 0-89791-419-8. URL http://doi.acm.org/10.1145/

99583.99629.

[176] T. A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science, LICS ’96, pages 278–.
IEEE Computer Society, Washington, DC, USA, 1996. ISBN 0-8186-7463-6. URL
http://portal.acm.org/citation.cfm?id=788018.788803.

[177] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to hytech. In Proceedings
of the First International Workshop on Tools and Algorithms for Construction and
Analysis of Systems, pages 41–71. Springer-Verlag, London, UK, 1995. ISBN 3-
540-60630-0. URL http://portal.acm.org/citation.cfm?id=646479.693768.

[178] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. In Proceedings of the 9th International Conference on Computer Aided
Verification, CAV ’97, pages 460–463. Springer-Verlag, London, UK, 1997. ISBN
3-540-63166-6. URL http://portal.acm.org/citation.cfm?id=647766.760724.

[179] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Embedded control systems de-
velopment with Giotto. SIGPLAN Not., 36:64–72, August 2001. ISSN 0362-1340.
URL http://doi.acm.org/10.1145/384196.384208.

[180] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: a time-triggered language
for embedded programming. Technical report, Berkeley, CA, USA, 2001.

[181] T. A. Henzinger and C. M. Kirsch. The embedded machine: Predictable, portable
real-time code. In Proceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming language design and implementation, PLDI ’02, pages 315–326. ACM,
New York, NY, USA, 2002. ISBN 1-58113-463-0. URL http://doi.acm.org/10.

1145/512529.512567.

[182] T. A. Henzinger, C. M. Kirsch, M. A. A. Sanvido, and W. Pree. From control
models to real-time code using Giotto. IEEE Control Systems Magazine, 23:50–64,
2003.

[183] T. A. Henzinger and P. W. Kopke. State equivalences for rectangular hybrid au-
tomata. In Proceedings of the 7th International Conference on Concurrency Theory,
CONCUR ’96, pages 530–545. Springer-Verlag, London, UK, 1996. ISBN 3-540-
61604-7. URL http://portal.acm.org/citation.cfm?id=646731.703830.

53

[184] T. A. Henzinger and P. W. Kopke. Discrete-time control for rectangular hybrid
automata. Theor. Comput. Sci., 221:369–392, June 1999. ISSN 0304-3975. URL
http://portal.acm.org/citation.cfm?id=309476.309523.

[185] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? In Proceedings of the Twenty-seventh Annual ACM Symposium
on Theory of Computing, STOC ’95, pages 373–382. ACM, New York, NY, USA,
1995. ISBN 0-89791-718-9. URL http://doi.acm.org.proxy.queensu.ca/10.

1145/225058.225162.

[186] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111:394–406, 1994.

[187] T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time lan-
guages. In Proceedings of the 25th International Colloquium on Automata, Lan-
guages and Programming, ICALP ’98, pages 580–591. Springer-Verlag, London,
UK, 1998. ISBN 3-540-64781-3. URL http://portal.acm.org/citation.cfm?

id=646252.686189.

[188] P. Herber, J. Fellmuth, and S. Glesner. Model checking SystemC designs using
timed automata. In Proceedings of the 6th IEEE/ACM/IFIP international con-
ference on Hardware/Software codesign and system synthesis, CODES+ISSS ’08,
pages 131–136. ACM, New York, NY, USA, 2008. ISBN 978-1-60558-470-6. URL
http://doi.acm.org/10.1145/1450135.1450166.

[189] A. Hessel and P. Pettersson. CoVer - a real-time test case generation tool. In
19th IFIP International Conference on Testing of Communicating Systems and 7th
International Workshop on Formal Approaches to Testing of Software, 2007.

[190] Y. Hirshfeld and A. Rabinovich. Logics for real time: Decidability and complexity.
Fundam. Inf., 62:1–28, January 2004. ISSN 0169-2968. URL http://portal.acm.

org/citation.cfm?id=1227039.1227041.

[191] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21:666–
677, August 1978. ISSN 0001-0782. URL http://doi.acm.org/10.1145/359576.

359585.

[192] J. Hoenicke. Combination of Processes, Data, and Time. PhD thesis, Univer-
sity of Oldenburg, July 2006. URL http://csd.Informatik.Uni-Oldenburg.DE/

~skript/pub/Papers/csp-oz-dc.pd% f.

[193] J. Hoenicke and P. Maier. Model-checking of specifications integrating processes,
data and time. In FM, pages 465–480, 2005.

[194] X. Hu, M. Lawford, and A. Wassyng. Formal Verification of the Implementabil-
ity of Timing Requirements, pages 119–134. Springer-Verlag, Berlin, Heidelberg,
2009. ISBN 978-3-642-03239-4. URL http://portal.acm.org/citation.cfm?id=

1614485.1614500.

[195] T. Hune, J. Romijn, M. Stoelinga, and F. W. Vaandrager. Linear parametric model
checking of timed automata. In Proceedings of the 7th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2001,

54

pages 189–203. Springer-Verlag, London, UK, 2001. ISBN 3-540-41865-2. URL
http://portal.acm.org/citation.cfm?id=646485.694456.

[196] O. H. Ibarra, Z. Dang, and P. S. Pietro. Verification in loosely synchronous queue-
connected discrete timed automata. Theor. Comput. Sci., 290:1713–1735, January
2003. ISSN 0304-3975. URL http://portal.acm.org/citation.cfm?id=781861.

781881.

[197] D. Ivanov, M. Orlić, C. Seceleanu, and A. Vulgarakis. REMES tool-chain: A set
of integrated tools for behavioral modeling and analysis of embedded systems. In
Proceedings of the IEEE/ACM international conference on Automated software en-
gineering, ASE ’10, pages 361–362. ACM, New York, NY, USA, 2010. ISBN 978-1-
4503-0116-9. URL http://doi.acm.org.proxy.queensu.ca/10.1145/1858996.

1859076.

[198] F. Jahanian and A. K.-L. Mok. A graph-theoretic approach for timing analysis
and its implementation. IEEE Trans. Comput., 36:961–975, August 1987. ISSN
0018-9340. URL http://portal.acm.org/citation.cfm?id=32415.32421.

[199] R. Jaubert and P.-A. Reynier. Quantitative robustness analysis of flat timed au-
tomata. In FOSSACS, pages 229–244, 2011.

[200] E. Jee, S. Wang, J. K. Kim, J. Lee, O. Sokolsky, and I. Lee. A safety-assured
development approach for real-time software. 2010. URL http://repository.

upenn.edu/cis_papers/430.

[201] M. Jenkins, J. Ouaknine, A. Rabinovich, and J. Worrell. Alternating timed au-
tomata over bounded time. In Proceedings of the 2010 25th Annual IEEE Sym-
posium on Logic in Computer Science, LICS ’10, pages 60–69. IEEE Computer
Society, Washington, DC, USA, 2010. ISBN 978-0-7695-4114-3. URL http://dx.

doi.org/10.1109/LICS.2010.45.

[202] H. E. Jensen. Model checking probabilistic real time systems. In Proceedings of the
7th Nordic Workshop on Programming Theory, pages 247–261. Chalmers Institute
of Technology, 1996.

[203] N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of some problems in
Petri nets. Theoretical Computer Science, 4:277–299, 1977.

[204] M. Jurdziński, M. Kwiatkowska, G. Norman, and A. Trivedi. Concavely-priced
probabilistic timed automata. In Proceedings of the 20th International Conference
on Concurrency Theory, CONCUR 2009, pages 415–430. Springer-Verlag, Berlin,
Heidelberg, 2009. ISBN 978-3-642-04080-1. URL http://dx.doi.org/10.1007/

978-3-642-04081-8_28.

[205] M. Jurdzinski and A. Trivedi. Reachability-time games on timed automata. In
ICALP, pages 838–849, 2007.

[206] M. Jurdziński and A. Trivedi. Concavely-priced timed automata. In Proceedings
of the 6th International Conference on Formal Modeling and Analysis of Timed
Systems, FORMATS ’08, pages 48–62. Springer-Verlag, Berlin, Heidelberg, 2008.
ISBN 978-3-540-85777-8. URL http://dx.doi.org/10.1007/978-3-540-85778-

5_5.

55

[207] M. Knapik, A. Niewiadomski, W. Penczek, A. Pólrola, M. Szreter, and A. Zbrzezny.
Parametric model checking with VerICS. T. Petri Nets and Other Models of Con-
currency, 4:98–120, 2010.

[208] P. Krcál and W. Yi. Communicating timed automata: The more synchronous, the
more difficult to verify. In CAV, pages 249–262, 2006.

[209] P. Krčál, L. Mokrushin, and W. Yi. A tool for compositional analysis of timed sys-
tems by abstraction (extended abstract). In E. B. Johnsen, O. Owe, and G. Schnei-
der, editors, Proc. of NWPT’07, the 19th Nordic Workshop on Programming The-
ory, Oslo, Oct. 10-12, 2007.

[210] P. Krčál and R. Pelánek. On sampled semantics of timed systems. In R. Ramanujam
and S. Sen, editors, Proceedings of FSTTCS’05, Hyderabad, India., volume 3821 of
Lecture Notes in Computer Science, pages 310–321. Springer-Verlag, 2005.

[211] P. Krčál, M. Stigge, and W. Yi. Multi-processor schedulability analysis of pre-
emptive real-time tasks with variable execution times. In Proceedings of the 5th
International Conference on Formal Modeling and Analysis of timed Systems, FOR-
MATS’07, pages 274–289. Springer-Verlag, Berlin, Heidelberg, 2007. ISBN 3-
540-75453-9, 978-3-540-75453-4. URL http://portal.acm.org/citation.cfm?

id=1779879.1779899.

[212] P. Krčál and W. Yi. Decidable and undecidable problems in schedulability anal-
ysis using timed automata. In K. Jensen and A. Podelski, editors, Proceedings of
TACAS’04, Barcelona, Spain., volume 2988 of Lecture Notes in Computer Science,
pages 236–250. Springer-Verlag, 2004.

[213] S. Kupferschmid, M. Wehrle, B. Nebel, and A. Podelski. Faster than UPPAAL? In
Proceedings of the 20th international conference on Computer Aided Verification,
CAV ’08, pages 552–555. Springer-Verlag, Berlin, Heidelberg, 2008. ISBN 978-3-
540-70543-7. URL http://dx.doi.org/10.1007/978-3-540-70545-1_53.

[214] P. Kuc̆era, O. Hync̆ica, and P. Honźık. Implementation of timed automata in a
real-time operating system. In Proceedings of World Congress on Engineering and
Computer Science, volume I, pages 56–60, October 2010. ISBN 978-988-17012-0-6.

[215] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In Proc. 23rd International Conference on Computer
Aided Verification (CAV’11), LNCS. Springer, 2011.

[216] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying soft deadlines
with probabilistic timed automata. In Proc. Workshop on Advances in Verification
(Wave’2000), July 2000.

[217] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of
real-time systems with discrete probability distributions. Theor. Comput. Sci., 282:
101–150, June 2002. ISSN 0304-3975. URL http://portal.acm.org/citation.

cfm?id=568395.568399.

[218] M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying quantitative
properties of continuous probabilistic timed automata. In Proceedings of the 11th

56

International Conference on Concurrency Theory, CONCUR ’00, pages 123–137.
Springer-Verlag, London, UK, 2000. ISBN 3-540-67897-2. URL http://portal.

acm.org/citation.cfm?id=646735.701637.

[219] M. Z. Kwiatkowska, G. Norman, and J. Sproston. Symbolic computation of maxi-
mal probabilistic reachability. In Proceedings of the 12th International Conference
on Concurrency Theory, CONCUR ’01, pages 169–183. Springer-Verlag, London,
UK, 2001. ISBN 3-540-42497-0. URL http://portal.acm.org/citation.cfm?

id=646736.701779.

[220] M. Z. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model check-
ing for probabilistic timed automata. Inf. Comput., 205(7):1027–1077, 2007.

[221] G. Labinaz, M. M. Bayoumi, and K. Rudie. A survey of modeling and control of
hybrid systems. Annual Reviews in Control, 21:79–92, 1997.

[222] L. Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 5:1–11,
January 1987. ISSN 0734-2071. URL http://doi.acm.org/10.1145/7351.7352.

[223] R. Lanotte, A. Maggiolo-schettini, P. Milazzo, and A. Troina. Modeling long-
running transactions with communicating hierarchical timed automata. In Proc. of
Formal Methods for Open Object-Based Distributed Systems (FMOODS’06), LNCS
4037. Springer, 2006.

[224] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. Design and verifica-
tion of long-running transactions in a timed framework. Sci. Comput. Program., 73:
76–94, October 2008. ISSN 0167-6423. URL http://portal.acm.org/citation.

cfm?id=1435014.1435307.

[225] R. Lanotte, A. Maggiolo-Schettini, and A. Peron. Timed cooperating automata.
Fundam. Inf., 43:153–173, August 2000. ISSN 0169-2968. URL http://portal.

acm.org/citation.cfm?id=353327.358771.

[226] R. Lanotte, A. Maggiolo-Schettini, S. Tini, and A. Peron. Transformations of timed
cooperating automata. Fundam. Inf., 47:271–282, October 2001. ISSN 0169-2968.
URL http://portal.acm.org/citation.cfm?id=1220035.1220043.

[227] F. Laroussinie and K. G. Larsen. CMC: A tool for compositional model-checking
of real-time systems. In Proceedings of the FIP TC6 WG6.1 Joint International
Conference on Formal Description Techniques for Distributed Systems and Com-
munication Protocols (FORTE XI) and Protocol Specification, Testing and Verifica-
tion (PSTV XVIII), FORTE XI / PSTV XVIII ’98, pages 439–456. Kluwer, B.V.,
Deventer, The Netherlands, The Netherlands, 1998. ISBN 0-412-84760-4. URL
http://portal.acm.org/citation.cfm?id=646216.681836.

[228] K. G. Larsen. Priced timed automata: Theory and tools. In FSTTCS, pages
417–425, 2009.

[229] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou. Testing real-time embedded
software using UPPAAL-TRON: an industrial case study. In Proceedings of the 5th
ACM international conference on Embedded software, EMSOFT ’05, pages 299–306.
ACM, New York, NY, USA, 2005. ISBN 1-59593-091-4. URL http://doi.acm.

org/10.1145/1086228.1086283.

57

[230] K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Clock difference diagrams. Nordic J.
of Computing, 6:271–298, September 1999. ISSN 1236-6064. URL http://portal.

acm.org/citation.cfm?id=774455.774459.

[231] K. G. Larsen and J. I. Rasmussen. Optimal conditional reachability for multi-priced
timed automata. In FoSSaCS, pages 234–249, 2005.

[232] K. G. Larsen and J. I. Rasmussen. Optimal reachability for multi-priced timed
automata. Theor. Comput. Sci., 390:197–213, January 2008. ISSN 0304-3975.
URL http://portal.acm.org/citation.cfm?id=1330765.1330861.

[233] K. G. Larsen and Y. Wang. Time-abstracted bisimulation: implicit specifications
and decidability. Inf. Comput., 134:75–101, May 1997. ISSN 0890-5401. URL
http://portal.acm.org/citation.cfm?id=255487.255491.

[234] S. Lasota and I. Walukiewicz. Alternating timed automata. In V. Sassone, editor,
Proceedings of the 8th International Conference on Foundations of Software Sci-
ence and Computation Structure (FoSSaCS’05), volume 3441 of Lecture Notes in
Computer Science, pages 250–265. Springer-Verlag, Apr. 2005.

[235] S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Trans. Comput.
Logic, 9:10:1–10:27, April 2008. ISSN 1529-3785. URL http://doi.acm.org/10.

1145/1342991.1342994.

[236] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 1997. ISBN
0132624788.

[237] S.-W. Lin, P.-A. Hsiung, C.-H. Huang, and Y.-R. Chen. Model checking prioritized
timed automata. In ATVA, pages 370–384, 2005.

[238] M. Lv, N. Guan, W. Yi, and G. Yu. McAiT - a timing analyzer for multicore real-
time software. In Proceedings of The 19th International Symposium on Automated
Technology for Verification and Analysis (ATVA 2011). Taipei, Taiwan, October
2011. Tool paper, To appear.

[239] M. Lv1, N. Guan1, W. Yi1, and G. Yu. McAiT (Rev 1.0) User Manual, 2011. URL
http://www.neu-rtes.org:81/mcait/.

[240] N. Lynch and H. Attiya. Using mappings to prove timing properties. In Proceedings
of the Ninth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’90, pages 265–280. ACM, New York, NY, USA, 1990. ISBN 0-89791-404-
X. URL http://doi.acm.org/10.1145/93385.93428.

[241] G. Macariu and V. Cretu. Timed automata model for component-based real-time
systems. In Proceedings of the 2010 17th IEEE International Conference and Work-
shops on the Engineering of Computer-Based Systems, ECBS ’10, pages 121–130.
IEEE Computer Society, Washington, DC, USA, 2010. ISBN 978-0-7695-4005-4.
URL http://dx.doi.org/10.1109/ECBS.2010.20.

[242] G. Madl and N. Dutt. Tutorial for the Open-source Dream Tool. In CECS Tech-
nical Report, 2006.

58

[243] O. Maler, D. Nickovic, and A. Pnueli. Pillars of computer science. chapter Checking
Temporal Properties of Discrete, Timed and Continuous Behaviors, pages 475–505.
Springer-Verlag, Berlin, Heidelberg, 2008. ISBN 3-540-78126-9, 978-3-540-78126-4.
URL http://portal.acm.org/citation.cfm?id=1805839.1805865.

[244] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems (an extended abstract). In Symposium on Theoretical Aspects of
Computer Science, pages 229–242, 1995.

[245] L. Manasa, S. N. Krishna, and C. Jain. Model checking weighted integer reset
timed automata. Theory Comput. Syst., 48(3):648–679, 2011.

[246] N. Markey. Verification of Embedded Systems – Algorithms and Complexity.
Mémoire d’habilitation, École Normale Supérieure de Cachan, France, Apr. 2011.
URL http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/hdr-nm.pdf.

[247] J. McManis and P. Varaiya. Suspension automata: A decidable class of hybrid
automata. In Proceedings of the 6th International Conference on Computer Aided
Verification, CAV ’94, pages 105–117. Springer-Verlag, London, UK, 1994. ISBN
3-540-58179-0. URL http://portal.acm.org/citation.cfm?id=647763.735660.

[248] S. J. Mellor, A. N. Clark, and T. Futagami. Guest editors’ introduction: model-
driven development. IEEE Software, 20:14–18, 2003. ISSN 0740-7459.

[249] J. S. Miller. Decidability and complexity results for timed automata and semi-
linear hybrid automata. In Proceedings of the Third International Workshop on
Hybrid Systems: Computation and Control, HSCC ’00, pages 296–309. Springer-
Verlag, London, UK, 2000. ISBN 3-540-67259-1. URL http://portal.acm.org/

citation.cfm?id=646880.710453.

[250] P. Niebert, S. Tripakis, and S. Yovine. Minimum-time reachability for timed au-
tomata. In Proceedings of the 8th Mediteranean Conference on Control and Au-
tomation, MED’2000.

[251] C. Norström, A. Wall, and W. Yi. Timed automata as task models for event-
driven systems. In Proceedings of the Sixth International Conference on Real-Time
Computing Systems and Applications, RTCSA ’99, pages 182–. IEEE Computer
Society, Washington, DC, USA, 1999. ISBN 0-7695-0306-3. URL http://portal.

acm.org/citation.cfm?id=519167.828781.

[252] J. S. Ostroff. Temporal Logic for Real Time Systems. John Wiley & Sons, Inc.,
New York, NY, USA, 1989. ISBN 0-471-92402-4.

[253] J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and decidabil-
ity for timed automata. In Proceedings of the 18th Annual IEEE Symposium on
Logic in Computer Science, pages 198–. IEEE Computer Society, Washington, DC,
USA, 2003. ISBN 0-7695-1884-2. URL http://portal.acm.org/citation.cfm?

id=788023.789050.

[254] J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In Pro-
ceedings of the 20th Annual Symposium on Logic in Computer Science (LICS’05),
pages 188–197. IEEE Comp. Soc. Press, July 2005.

59

[255] J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal
logic over finite words. Logicical Methods in Computer Science, 3(1), Mar. 2007.

[256] J. Ouaknine and J. Worrell. Some recent results in metric temporal logic. In
Proceedings of the 6th international conference on Formal Modeling and Analysis
of Timed Systems, FORMATS ’08, pages 1–13. Springer-Verlag, Berlin, Heidelberg,
2008. ISBN 978-3-540-85777-8. URL http://dx.doi.org/10.1007/978-3-540-

85778-5_1.

[257] M. Ouimet and K. Lundqvist. The TASM toolset: Specification, simulation, and
formal verification of real-time systems. In Proceedings of the 19th international con-
ference on Computer aided verification, CAV’07, pages 126–130. Springer-Verlag,
Berlin, Heidelberg, 2007. ISBN 978-3-540-73367-6. URL http://portal.acm.org/

citation.cfm?id=1770351.1770371.

[258] D. Park. Concurrency and automata on infinite sequences. In Proceedings of
the 5th GI-Conference on Theoretical Computer Science, pages 167–183. Springer-
Verlag, London, UK, 1981. ISBN 3-540-10576-X. URL http://portal.acm.org/

citation.cfm?id=647210.720030.

[259] P. Parys and I. Walukiewicz. Weak alternating timed automata. In Proceedings
of the 36th Internatilonal Collogquium on Automata, Languages and Programming:
Part II, ICALP ’09, pages 273–284. Springer-Verlag, Berlin, Heidelberg, 2009. ISBN
978-3-642-02929-5. URL http://dx.doi.org/10.1007/978-3-642-02930-1_23.

[260] W. Penczek and B. Woźna. Towards bounded model checking for Timed Automata.
In L. Czaja, editor, Proceedings of the International Workshop on Concurrency,
Specification and Programming (CS&P’01), pages 195–209. Warsaw University,
2001.

[261] P. Pettersson. Modelling and Verification of Real-Time Systems Using Timed Au-
tomata: Theory and Practice. PhD thesis, Department of Computer Systems,
Uppsala University, 1999.

[262] P. S. Pietro and Z. Dang. Automatic verification of multi-queue discrete timed
automata. In Proceedings of the 9th Annual International Conference on Com-
puting and Combinatorics, COCOON’03, pages 159–171. Springer-Verlag, Berlin,
Heidelberg, 2003. ISBN 3-540-40534-8. URL http://portal.acm.org/citation.

cfm?id=1756869.1756893.

[263] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pages 46–57. IEEE Computer
Society, Washington, DC, USA, 1977. URL http://portal.acm.org/citation.

cfm?id=1398506.1382534.

[264] E. Posse and J. Dingel. Theory and implementation of a real-time extension to the
π-calculus. In FMOODS/FORTE, pages 125–139, 2010.

[265] G. Păun. Computing with membranes. Technical report, 1998.

[266] G. Păun. Computing with membranes. Journal of Computer and System Sci-
ences, 61:108–143, August 2000. ISSN 0022-0000. URL http://portal.acm.org/

citation.cfm?id=353298.353304.

60

[267] A. Puri. Dynamical properties of timed automata. In Proceedings of the 5th Interna-
tional Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems,
FTRTFT ’98, pages 210–227. Springer-Verlag, London, UK, 1998. ISBN 3-540-
65003-2. URL http://portal.acm.org/citation.cfm?id=646845.706811.

[268] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM J. Control Optim., 25(1):206–230, 1987. ISSN 0363-0129.

[269] C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri
nets. PhD thesis, Massachusetts Institute of Technology. Department of Electrical
Engineering, 1973.

[270] P.-A. Reynier. Diagonal constraints handled efficiently in UPPAAL. Technical
Report LSV-07-02, Laboratoire Spécification et Vérification, ENS Cachan, France,
2007.

[271] T. G. Rokicki. Representing and modeling digital circuits. PhD thesis, Department
of Computer Science, Stanford University, Stanford, CA, USA, 1993.

[272] K. Sacha. Verification and implementation of dependable controllers. In Proceedings
of the 2008 Third International Conference on Dependability of Computer Systems
DepCoS-RELCOMEX, pages 143–151. IEEE Computer Society, Washington, DC,
USA, 2008. ISBN 978-0-7695-3179-3. URL http://portal.acm.org/citation.

cfm?id=1440469.1441305.

[273] K. Sacha. Verification and implementation of software for dependable controllers.
Int. J. Crit. Comput.-Based Syst., 1:238–254, February 2010. ISSN 1757-8779. URL
http://dx.doi.org/10.1504/IJCCBS.2010.031717.

[274] C. Seceleanu, A. Vulgarakis, and P. Pettersson. REMES: A resource model for
embedded systems. In Proceedings of the 2009 14th IEEE International Conference
on Engineering of Complex Computer Systems, ICECCS ’09, pages 84–94. IEEE
Computer Society, Washington, DC, USA, 2009. ISBN 978-0-7695-3702-3. URL
http://dx.doi.org/10.1109/ICECCS.2009.49.

[275] S. Sentilles, A. Pettersson, D. Nystrom, T. Nolte, P. Pettersson, and I. Crnkovic.
Save-IDE - a tool for design, analysis and implementation of component-based
embedded systems. In Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09, pages 607–610. IEEE Computer Society, Washington, DC,
USA, 2009. ISBN 978-1-4244-3453-4. URL http://dx.doi.org/10.1109/ICSE.

2009.5070567.

[276] A. C. Shaw. Communicating real-time state machines. IEEE Trans. Softw. Eng., 18:
805–816, September 1992. ISSN 0098-5589. URL http://dx.doi.org/10.1109/

32.159840.

[277] M. Sorea. Tempo: A model-checker for event-recording automata. In Proceedings
of RT-TOOLS’01. Aalborg, Denmark, August 2001. Also available as Technical
Report SRI-CSL-01-04, Computer Science Laboratory, SRI International, Menlo
Park, CA, 2001, http://www.csl.sri.com/papers/csl-01-04/.

61

[278] M. Sorea. Verification of Real-Time Systems through Lazy Approximations. PhD
thesis, Universität Ulm, Germany, 2003. URL http://www.informatik.uni-ulm.

de/ki/Papers/sorea04-diss.pdf.

[279] J. Steiner, K. Diethers, M. Hagner, and U. Goltz. Model based quality assurance for
a robotic software architecture. In D. Schütz and F. Wahl, editors, Robotic Systems
for Handling and Assembly, volume 67 of Springer Tracts in Advanced Robotics,
pages 373–389. Springer Berlin / Heidelberg, 2011.

[280] P. V. Suman and P. K. Pandya. Determinization and expressiveness of integer reset
timed automata with silent transitions. In Proceedings of the 3rd International
Conference on Language and Automata Theory and Applications, LATA ’09, pages
728–739. Springer-Verlag, Berlin, Heidelberg, 2009. ISBN 978-3-642-00981-5. URL
http://dx.doi.org/10.1007/978-3-642-00982-2_62.

[281] P. V. Suman, P. K. Pandya, S. N. Krishna, and L. Manasa. Timed automata with
integer resets: Language inclusion and expressiveness. In FORMATS, pages 78–92,
2008.

[282] M. Swaminathan and M. Franzle. A symbolic decision procedure for robust safety
of timed systems. In Proceedings of the 14th International Symposium on Temporal
Representation and Reasoning, pages 192–. IEEE Computer Society, Washington,
DC, USA, 2007. ISBN 0-7695-2836-8. URL http://portal.acm.org/citation.

cfm?id=1270404.1271915.

[283] M. Swaminathan, M. Fränzle, and J.-P. Katoen. The surprising robustness of
(closed) timed automata against clock-drift. In IFIP TCS, pages 537–553, 2008.

[284] N. Tang and M. Ogawa. Event-clock visibly pushdown automata. In Proceedings
of the 35th Conference on Current Trends in Theory and Practice of Computer
Science, SOFSEM ’09, pages 558–569. Springer-Verlag, Berlin, Heidelberg, 2009.
ISBN 978-3-540-95890-1. URL http://dx.doi.org/10.1007/978-3-540-95891-

8_50.

[285] S. Tasiran, R. Alur, R. P. Kurshan, and R. K. Brayton. Verifying abstractions of
timed systems. In Proceedings of the 7th International Conference on Concurrency
Theory, CONCUR ’96, pages 546–562. Springer-Verlag, London, UK, 1996. ISBN
3-540-61604-7. URL http://portal.acm.org/citation.cfm?id=646731.703837.

[286] O. N. Timo and A. Rollet. Conformance testing of variable driven automata. In
Proceedings of the 8th IEEE International Workshop on Factory Communication
Systems Communication in Automation, 2010.

[287] C. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi. Computational techniques for
the verification of hybrid systems. Proceedings of The IEEE, 91:986–1001, 2003.

[288] S. Tripakis. Folk theorems on the determinization and minimization of timed au-
tomata. Inf. Process. Lett., 99(6):222–226, 2006.

[289] S. Tripakis. Checking timed Büchi automata emptiness on simulation graphs. ACM
Trans. Comput. Logic, 10:15:1–15:19, April 2009. ISSN 1529-3785. URL http://

doi.acm.org/10.1145/1507244.1507245.

62

[290] S. Tripakis and C. Courcoubetis. Extending Promela and Spin for real time. In
Proceedings of the Second International Workshop on Tools and Algorithms for
Construction and Analysis of Systems, pages 329–348. Springer-Verlag, London,
UK, 1996. ISBN 3-540-61042-1. URL http://portal.acm.org/citation.cfm?

id=646480.693791.

[291] S. Tripakis and T. Dang. Model-based Design of Heterogeneous Systems, chapter
Modeling, Verification and Testing using Timed and Hybrid Automata. CRC Press,
2009.

[292] S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisim-
ulations. Form. Methods Syst. Des., 18:25–68, January 2001. ISSN 0925-9856. URL
http://portal.acm.org/citation.cfm?id=371031.371045.

[293] S. Tripakis, S. Yovine, and A. Bouajjani. Checking timed Büchi automata emptiness
efficiently. Form. Methods Syst. Des., 26:267–292, May 2005. ISSN 0925-9856. URL
http://portal.acm.org/citation.cfm?id=1084737.1084741.

[294] A. Trivedi and D. Wojtczak. Recursive timed automata. In Proceedings of the
8th international conference on Automated technology for verification and anal-
ysis, ATVA’10, pages 306–324. Springer-Verlag, Berlin, Heidelberg, 2010. ISBN
3-642-15642-8, 978-3-642-15642-7. URL http://portal.acm.org/citation.cfm?

id=1927331.1927356.

[295] J. Voeten, O. Florescu, J. Huang, and H. Corporaal. Error computation for pre-
dictable real-time software synthesis. Simulation, 87:334–350, April 2011. ISSN
0037-5497. URL http://dx.doi.org/10.1177/0037549710364204.

[296] F. Wang. Parametric timing analysis for real-time systems. Inf. Comput., 130:131–
150, November 1996. ISSN 0890-5401. URL http://portal.acm.org/citation.

cfm?id=246778.246780.

[297] F. Wang. Efficient data structure for fully symbolic verification of real-time software
systems. In Proceedings of the 6th International Conference on Tools and Algorithms
for Construction and Analysis of Systems: Held as Part of the European Joint
Conferences on the Theory and Practice of Software, ETAPS 2000, TACAS ’00,
pages 157–171. Springer-Verlag, London, UK, 2000. ISBN 3-540-67282-6. URL
http://portal.acm.org/citation.cfm?id=646484.691753.

[298] F. Wang. Symbolic verification of complex real-time systems with clock-restriction
diagram. In Proceedings of the IFIP TC6/WG6.1 - 21st International Conference
on Formal Techniques for Networked and Distributed Systems, FORTE ’01, pages
235–250. Kluwer, B.V., Deventer, The Netherlands, The Netherlands, 2001. ISBN
0-7923-7470-3. URL http://portal.acm.org/citation.cfm?id=646219.682167.

[299] F. Wang. Efficient verification of timed automata with BDD-like data structures.
Int. J. Softw. Tools Technol. Transf., 6:77–97, July 2004. ISSN 1433-2779. URL
http://portal.acm.org/citation.cfm?id=1014530.1014533.

[300] F. Wang. Formal verification of timed systems: A survey and perspective. vol-
ume 92, pages 1283–1305. IEEE, August 2004.

63

[301] F. Wang. REDLIB for the formal verification of embedded systems. In Proceed-
ings of the Second International Symposium on Leveraging Applications of For-
mal Methods, Verification and Validation, pages 341–346. IEEE Computer Society,
Washington, DC, USA, 2006. ISBN 978-0-7695-3071-0. URL http://portal.acm.

org/citation.cfm?id=1396805.1397092.

[302] F. Wang, L.-W. Yao, and Y.-L. Yang. Efficient verification of distributed real-time
systems with broadcasting behaviors. Real-Time Systems, 47(4):285–318, 2011.
URL http://dx.doi.org/10.1007/s11241-011-9122-0.

[303] A. Wassyng, M. Lawford, and X. Hu. Timing tolerances in safety-critical software.
In J. Fitzgerald, I. Hayes, and A. Tarlecki, editors, FM 2005: Formal Methods:
International Symposium of Formal Methods Europe Proceedings, volume 3582 of
LNCS, pages 157 – 172. Springer-Verlag, Newcastle, UK, July 2005.

[304] A. Wellings. Concurrent and Real-Time Programming in Java. John Wiley & Sons,
2004. ISBN 047084437X.

[305] T. Wilke. Automaten und Logiken für zeitabhängige Systeme. Dissertation,
Christian-Albrechts-Universität zu Kiel, 1994.

[306] M. Yannakakis and D. Lee. An efficient algorithm for minimizing real-time tran-
sition systems. In Proceedings of the 5th International Conference on Computer
Aided Verification, CAV ’93, pages 210–224. Springer-Verlag, London, UK, 1993.
ISBN 3-540-56922-7. URL http://portal.acm.org/citation.cfm?id=647762.

735497.

[307] W. Yi. A Calculus of Real Time Systems. PhD thesis, Department of Computer
Science, Chalmers University of Technolog y, 1991.

[308] W. Yi, P. Pettersson, and M. Daniels. Automatic verification of real-time com-
municating systems by constraint-solving. In Proceedings of the 7th IFIP WG6.1
International Conference on Formal Description Techniques VII, pages 243–258.
Chapman & Hall, Ltd., London, UK, 1995. ISBN 0-412-64450-9. URL http://

portal.acm.org/citation.cfm?id=646213.681364.

[309] S. Yovine. Model checking timed automata. In European Educational Forum:
School on Embedded Systems, pages 114–152, 1996.

[310] D. Zhang and R. Cleaveland. Fast on-the-fly parametric real-time model check-
ing. In Proceedings of the 26th IEEE International Real-Time Systems Symposium,
pages 157–166. IEEE Computer Society, Washington, DC, USA, 2005. ISBN 0-7695-
2490-7. URL http://portal.acm.org/citation.cfm?id=1106608.1106649.

