
- 1 - 
 

 
 

Technical Report No. 2011-581 

Managing Data-Intensive Workloads in a Cloud
1,2 

Ph.D. Depth Paper 

Student Name: Rizwan Mian 

Student Number: 6001533 

Supervisor: Dr. Patrick Martin  

Supervisory Committee: Dr. Selim Akl and Dr. Ahmed Hassan 

 

School of Computing 

Queen’s University 

Kingston, Ontario, Canada 

September 20, 20111,2 

  

                                                           
1
 Publications: a book chapter [Mian et al. '11] and a poster [Mian et al. '10] have been published based on 

this depth paper. 
2 Acknowledgements: this paper has been written under the supervision of Dr. Patrick Martin. Some minor 

contributions have been made by Andrew Brown and Mingyi Zhang. Dr. Masroor Hussain and Wendy 

Powley has reviewed a draft of the depth paper. Dr. Hussain has provided detailed feedback. Muhammad 

Aboelfotoh has proofread the final draft. I thank them all. 



- 2 - 
 

ABSTRACT 

In current information technology era, the pace and volume of data being generated is exceeding our ability 

to manage and analyse it. Until recently, large data was managed in bulky repositories and analysed on 

high-end servers or compute clusters. However, the growing volume of data questions the continuation of 

this approach for many reasons such as feasibility and affordability. This requires exploring new 

technologies and methods to swiftly and reliably transform raw data into tangible information and hence 

knowledge. The promise of ―infinite‖ resources given by the cloud computing paradigm has led to recent 

interest in exploiting clouds for large-scale data-intensive computing. Given this supposedly infinite 

resource set, we need a management function that regulates application workload on these resources. 

Workload management, an important component of systems management, is the discipline of effectively 

managing, controlling and monitoring application workload across computing systems. Meanwhile, data-

intensive computing presents new challenges for systems management in the cloud including diverse data 

processing frameworks, such as MapReduce and Dataflow-processing, and costs inherent with large data 

sets in distributed environments. We need to establish our current location in this landscape. Therefore, we 

examine the state-of-the-art of workload management for data-intensive computing in clouds. A taxonomy 

is presented for workload management of data-intensive computing in the cloud. We use the taxonomy to 

classify and evaluate current workload management mechanisms and systems. 

Keywords: data-intensive workload, workload management, cloud computing, taxonomy, survey 

1. Introduction 

The advances in information and communication technologies in the last few decades has resulted in an 

increasingly perceived vision that computing would be available as a utility [Buyya et al. '09]. A number of 

paradigms have been explored to offer computing as a utility, the latest one being cloud computing. Due to 

its recent arrival there has been some confusion on its definition, and there have been many suggestions 

[Vaquero et al. '08]. We like the one proposed by Foster et al. (08):  

―A large-scale distributed computing paradigm that is driven by economies of scale, in 

which a pool of abstracted, virtualized, dynamically-scalable, managed computing power, 

storage, platforms, and services are delivered on demand to external customers [users] 

over the Internet.” 

The keywords in this definition, such as ―dynamically-scalable‖ or ―virtualized‖, may seem like a 

marketing mantra. In reality, the keywords are necessary to differentiate cloud computing from typical 

computing clusters (which usually have a static size), computing grids (typically non-virtual resources with 

multiple administrative domains), typical web hosting, and in-house or external datacenters (requiring some 

upfront commitments or capital costs). 

Cloud computing is being driven by economic and technological factors and companies such as Amazon, 

IBM, Microsoft and Google are providing software and computing resources as services [Amazon 'a; 



- 3 - 
 

Chappell '09; Google ; IBM]. Cloud computing provides users the ―illusion‖ of infinite resources 

[Armbrust et al. '10; Armbrust et al. '09], available on demand while providing efficiencies for application 

providers by limiting up-front capital expenses and by reducing the cost of ownership over time. 

Cloud computing is helping in realizing the potential of large-scale data-intensive computing by providing 

effective scaling of resources. A growing number of companies, for example Amazon and Google, rely on 

their ability to process large volumes of data to drive their core business [Dean et al. '08]. On the other 

hand, the scientific community is also benefiting in application areas such as astronomy [Raicu et al. '06] 

and life sciences [Desprez et al. '06] that have very large data sets to store and process. Figure 1 gives a 

high-level conceptual view of a cloud. 

 

Figure 1: high-level view of a cloud [Bégin '08]. 

Data-intensive computing poses new challenges for systems management in the cloud.  One challenge is 

that data-intensive applications may be built upon conventional frameworks, such as shared-nothing 

parallel database management systems [Dewitt et al. '92], or modern frameworks, such as MapReduce 

[Dean et al. '04], and so have very different resource requirements. A second challenge is that the parallel 

nature of large-scale data-intensive applications requires that scheduling and resource allocation be done to 

avoid data transfer bottlenecks. A third challenge is to support effective scaling of resources when large 

volumes of data are involved. 

Workload management is the discipline of effectively managing, controlling and monitoring application 

workloads across computing systems [Niu et al. '09]. In a cloud, the two main mechanisms used for 

workload management are (a) scheduling requests, and (b) provisioning resources. Since the load on data 

resources in a cloud can fluctuate rapidly among its multiple workloads, it is impossible for systems 

administrators to manually adjust the system configurations in order to maintain the workloads‘ objectives 

during their execution. Therefore, we need the ability to automatically manage the workloads on data 

resources.  

The primary objective of this paper is to provide a systematic study of workload management in today‘s 

clouds by surveying the workload management systems and techniques implemented. In this report, we 

propose a taxonomy to classify workload management techniques and evaluate today‘s workload 

management systems in cloud computing. 



- 4 - 
 

1.1. What’s new in cloud computing? 

Distributed, loosely-coupled clusters have been available for quite some time and there is a large amount of 

middleware available for such clusters [Henderson '95; Zhou et al. '93; Litzkow et al. '88]; so what is new 

with clouds?  

The first new thing is about the scale of resources. Google and Yahoo have used clouds that contain 

thousands of loosely coupled commodity PCs [Grossman et al. '09]. With Hadoop [Apache 'a] (an open 

source MapReduce implementation), terabytes of data can be processed easily, something that requires 

significant overhead with a database. The overhead includes developing relational schemas and populating 

tables. 

The second new thing is the simplicity of access to resources that clouds provide. To substantiate this claim, 

Grossman et al. (09) provide some examples:  

 With a MapReduce system, a novice software developer can be analyzing terabytes of web data on 100 

nodes by developing a small MapReduce programs in a short period of time that might even be less 

than a day. This is the strength of MapReduce platform. 

 With just a credit card and a connection to the Internet, it is possible to use Amazon‘s Elastic Compute 

Cloud (EC2) [Amazon 'a] to perform a computation on 100 processors without any capital investment, 

without the help of a system administrator, and without installing or managing any middleware.  

The third new thing is the elasticity of resources, which is the ability to change the number of resources 

during workload execution. For example, it is possible to manually increase the number of processors 

rented from Amazon EC2 with a few mouse clicks, or automatically using a load balancer. 

This style of cloud computing has its origins in industry [Grossman et al. '09]. It has evolved to answer 

industry‘s needs for a simple to use, yet scalable and robust platform to process large volumes of data. 

1.2. Why is cloud computing gaining relevance? 

Three aspects from a hardware provisioning and pricing point of view are fuelling the popularity of cloud 

computing [Armbrust et al. '09]: 

1. The ―illusion‖ of infinite computing resources available on demand, quickly enough to follow load 

surges. As a result, cloud users need not to plan far ahead for ensuing availability of resources. 

2. The elimination of an up-front commitment by cloud users, thereby allowing companies to follow an 

organic growth: start small and increase hardware resources only when there is an increase in their 

needs. 

3. The ability to use computing resources on a short-term basis (for example, processors by the hour and 

storage by the day) and paying for them on a pay-as-you-go basis, thereby rewarding the release of 

machines and storage when they are no longer useful. 

Efforts in the past at providing utility computing failed, and Armbrust et al. (09) note that in each case one 

or two of these three critical characteristics were missing. For example, Intel Computing Services in 2000-

2001 required negotiating a contract for longer-term use than per hour. For many companies, the pay-as-

you-go cloud computing model, along with having someone else looking after the hardware, is very 

attractive [Abadi '09]. There arises a question, while the attraction to cloud computing users is clear, who 

would become a cloud computing provider and why?  



- 5 - 
 

To build, provision, and launch a large datacenter for a cloud is a multi-million dollar investment. 

Therefore, constructing and operating an extremely large-scale commodity-compute datacenters, at low-

cost locations, is necessary to enable cloud computing. Such a datacenter would consist of tens of 

thousands of resources. This amount of resources enables a 5 to 7 times decrease in cost of electricity, 

network bandwidth, operations, software, and hardware available because of very large economies of scale. 

These factors, combined with statistical multiplexing to increase utilization compared to traditional 

datacenters, means that cloud computing could offer services below the costs of a medium-sized datacenter 

and yet still make a good profit [Armbrust et al. '10]. 

1.3. What are the opportunities in cloud computing? 

Any fundamentally new types of applications enabled by cloud computing are yet to be seen. Nevertheless, 

several existing applications are likely to benefit greatly from cloud computing, and could contribute to its 

growth. We discuss two applications suggested by Armbrust et al. (09) that are particularly relevant to our 

study: 

1. Parallel batch processing. The elasticity in cloud computing presents a unique opportunity for 

computational batch-processing and analytics jobs that process terabytes of data that would, otherwise, 

take a long time to complete. Provided that there is enough computational or data parallelism in the 

application, users can take advantage of the cloud‘s new ―illusion‖ of infinite resources and balance 

that against a pay-as-you-go model. ―Cost associativity‖ is relevant here: using hundreds of computers 

for a short time costs the same as using a few computers for longer time. For example, The 

Washington Post used 200 Amazon‘s EC2 resources (1,407 server hours) to convert 17,481 pages of 

Hillary Clinton‘s travel documents into a form more friendly to use on the web within nine hours after 

they were released [Amazon 'l]. Programming abstractions, such as Google‘s MapReduce [Dean et al. 

'08] and its open-source counterpart Hadoop [Apache 'a], were originally designed to execute over 

large clusters. They allow programmers to express tasks, such as the conversion task described above, 

at the domain level while hiding the operational complexity of orchestrating parallel execution across 

hundreds of cloud computing servers. Although originally designed to execute over large clusters, 

programming abstractions such as Google‘s MapReduce [Dean et al. '08] and its open-source 

counterpart Hadoop [Apache 'a] allow programmers to express such tasks while hiding the operational 

complexity of orchestrating parallel execution across hundreds of cloud computing servers. Amazon 

has exposed a MapReduce implementation [Amazon 'e] on clouds. A start-up company [Cloudera] is 

also pursuing commercial opportunities in this space.  

2. Analytics. The database industry was originally dominated by transaction processing. That demand is 

now levelling off and instead a growing share of computing resources is now spent on understanding 

customers, supply chains, buying habits, ranking, and more. Hence, while online transaction volumes 

will continue to grow slowly, decision support is growing rapidly. Where 1 terabyte is considered large 

for transactional systems, petabyte is increasingly becoming a norm for analytical systems [Abadi '09]. 

The real value of data lies in analysis, and analysing at petabyte scale requires large number of 

resources.  

We add two more applications to this set: 

1. Surge Computing. Some applications can be hosted in an internal datacenter (a private cloud) which 

can scale out to public clouds when additional resources are needed. This technique is known as surge 

computing. This combination of private and public clouds is known as a hybrid cloud. The reasons for 

having private clouds include development, testing, or to maintain critical service levels in case of 

public cloud failure. 



- 6 - 
 

2. Cluster in clouds. Today, many of the high-performance computing (HPC) tasks are executed on 

compute clusters, which are often poorly utilized [Armbrust et al. '10]. Building a conventional cluster 

from cloud resources is worth investigating. This would enable transparent execution of legacy cluster 

applications on clouds with the critical benefit of elasticity. That is to increase cluster resources when 

an application requires them and to release when the demand tails off. 

1.4. What are the obstacles in cloud computing? 

Armbrust et al. (10) ranked the critical obstacles to the growth of cloud computing as shown in Table 1. 

The first three affect adoption, the next five affect growth, and the last two are policy and business 

obstacles. Each obstacle is paired with an opportunity to overcome that obstacle, ranging from product 

development to research projects. 

# Obstacle Opportunity 

1 Availability/business continuity Use multiple cloud providers 

2 Data lock-in Standardize APIs; compatible software to enable surge 

computing 

3 Data confidentiality and auditability Deploy encryption, VLANs, firewalls 

4 Data transfer bottlenecks FedExing disks; higher bandwidth switches 

5 Performance unpredictability Improved virtual machine support; flash memory; gang 

schedule virtual machines 

6 Scalable storage Invent scalable store 

7 Bugs in large distributed systems Invent debugger that relies on distributed virtual machines 

8 Scaling quickly Invent auto-scaler that relies on machine learning; 

snapshots for conservation 

9 Reputation fate sharing Offer reputation-guarding services like those for email 

10 Software Licensing Pay-for-use licenses 

Table 1: Top 10 obstacles to and opportunities for growth of cloud computing [Armbrust et al. '10]. 

Note, some of these obstacles (2, 9, 10) are not strictly technical. obstacle (3) has little or nothing to do 

with the mechanics of enabling large-scale computational or data processing. The business continuity part 

of obstacle (1) is non-technical. As long as enough resources are available, the availability part of obstacle 

(1) – though technical – is a non-issue. Locating bugs in large distributed systems (7) becomes part of the 

application development toolkit and has little to do with the mechanics of large-scale data processing. 

Addressing these obstacles may result in technical solutions as in the case of suggested opportunities for 

obstacles (1, 2, 3, 9, and 10). 

Nevertheless, three of the identified obstacles (4, 6, 8) closely relate to data. So, data aspects are critical to 

the successful growth of cloud computing. This makes relevant data research very important. 

1.5. What are the offerings of a cloud? 



- 7 - 
 

At present, cloud providers offer three service abstractions (depicted in Figure 2): infrastructure-as-a-

service (IaaS), platform-as-a-service (PaaS), and software-as-a-service (SaaS) [Prodan et al. '09].  

 

Figure 2: abstractions of cloud: Infrastructure-as-a-Service (Iaas), Platform-as-a-Service (PaaS) and 

Software-as-a-Service (SaaS) [e2enetworks]. 

In IaaS, the cloud providers expose their infrastructure as a service to the users. For example, Amazon‘s 

Elastic Compute Cloud (EC2) [Amazon 'a] exposes its infrastructure in terms of virtual machines. In PaaS, 

software frameworks or platforms are exposed as a service to the users. The users write their software for a 

specific platform which that provider hosts. After writing software, the users upload their software to the 

provider‘s system and run it there whenever needed. Google App Engine [Google] offers this level of 

abstraction.  

The services themselves have long been referred to as Software as a Service (SaaS). In SaaS, software is 

exposed as a service on the web. SaaS is similar in spirit to web services or web applications. Google‘s 

online applications – such as Google Calendar – can be thought of as SaaS. 

1.6. What is data-intensive? 

A data-intensive computing environment consists of applications that produce, manipulate, or analyse data 

in the range of hundreds of megabytes to multi-terabytes [Moore et al. '98]. This observation is dated but 

there are examples where this is still relevant. For example, life science applications usually manage 

databases of protein sequence that are in the order of gigabytes [Desprez et al. '06]. The data sizes have 

generally increased rapidly since Moore‘s claim. The creation of large digital sky surveys [SDSS] presents 

the astronomy community with tremendous scientific opportunities. However, these astronomy data sets 

are generally terabytes in size and contain hundreds of millions of objects separated into millions of files 

[Raicu et al. '06]. High-energy physics remains a leading generator of raw data. For example, 3,200 

terabytes of data will be seen each year in the Atlas experiment  for the Large Hadron Collider (LHC) at the 

Center for European Nuclear Research [CERN]. 

The data is organised as collections or data sets and are typically stored on mass storage systems such as 

tape libraries or disk arrays. The data sets are accessed by users in different geographical locations. The 



- 8 - 
 

users may create local copies or replicas of the data sets to reduce data access latencies to improve 

application performance. A replica may be a complete or a partial copy of the original data set. 

The amount of data growth is intimidating, and the time needed to move it where needed has increased to 

days. Increased transmission time is a consequence of the divergence of CPU execution growth rates from 

network bandwidth growth rates [Moore et al. '98]. The transmission time has greatly reduced in the local 

area network with the emergence of high speed communication links such as InfiniBand [Koop et al. '08]. 

Even if the financial cost of such links is set aside, the sheer amount of data shadows the gain provided by 

the high speed communication links. Moreover, the cost of wide-area networking has fallen more slowly 

and Gray (08) concludes that economic necessity mandates putting the data near the application. We are 

generating data more rapidly than we can move, manage or process. 

1.7. What is workload management? 

We define workload as a set of requests that access and process data under some constraints. The data 

access performed by a request can vary from retrieval of a single record to the scan of an entire file or table. 

The requests in a workload share a common property or set of properties, such as the same source 

application or client, type of request, priority, or performance objectives. 

On a shared data server, executing workloads compete with each other for system resources such as 

processors, main memory, disk input/output (I/O), network bandwidth and various queues. If workloads are 

allowed to compete without any control then some workloads (e.g. an analytical workload) may consume a 

large amount of shared system resources resulting in other workloads missing their objectives (e.g. 

deadline). As workload requests presenting on a data resource can fluctuate rapidly among multiple types 

of workloads, it becomes impossible for administrators to manually adjust the system configurations in 

order to maintain the workloads‘ objectives during their execution. Thus, it becomes necessary to 

automatically control the workloads with different objectives and manage shared system resources. 

The primary objective of the paper is to provide a systematic study of workload management of data-

intensive workloads in clouds. The contributions of the paper are the following: 

 a taxonomy of workload management techniques used in clouds. 

 a classification of existing mechanisms for workload management based on the taxonomy. 

 a survey of workload management systems in clouds. 

 a discussion of possible directions for future research in this area. 

The remainder of the paper is structured as follows. The second section gives an overview of workload 

management in traditional database management systems (DBMSs) and data-intensive computing 

architectures for clouds. The third section describes the taxonomy for workload management in clouds. The 

fourth section uses the taxonomy to survey existing systems and techniques to manage data-intensive 

workloads in clouds. The fifth section summarizes the paper and presents directions for future research. 

2. Background 

First, we discuss cloud characteristics and suitability of data management applications in clouds. Then, we 

provide an overview of workload management in traditional DBMSs to highlight the main concepts in 

workload management. Next, we identify the different architectures that have been proposed to support 

data-intensive computing in a cloud and discuss their impact on workload management.  



- 9 - 
 

2.1. Data Management in the cloud 

Distributed resources have been successfully used for compute-intensive applications. There has been a 

natural desire to do the same for data-intensive applications. One may ask what are the basic barriers for 

enabling data-intensive distributed computing and how should these be addressed?  

2.1.1. Cloud characteristics 

To decide which data management applications are best suited for deployment on top of a cloud computing 

infrastructure, Abadi (09) discusses three characteristics of a cloud computing environment: 

1. Compute power is elastic, but only if workload is parallelizable. One of the key selling points of 

cloud computing is its elasticity in the face of changing demands and conditions. Commercial clouds 

offer large numbers of virtual machines (VMs) but these VMs are only available in a few fixed 

configurations or types [Quiroz et al. '09]. The VM types usually differ in their computational or data 

storage capacity. So additional computational resources are typically obtained by allocating additional 

VMs to a task. In general, applications designed to run on top of a shared-nothing architecture
1
 are 

well suited for such an environment.  

2. Data is stored at an untrusted host. In general, moving data off user premises increases the number 

of potential security risks, and mandates appropriate precautions. Furthermore, the data is physically 

located in a particular country and is subject to local rules and regulations. Abadi (09) claims that the 

customer has little choice but to assume the worst that the data may be accessed by a third party 

without the customer‘s knowledge. We argue a cloud provider could do better in terms of data privacy 

by notifying customers what third parties may have access to their data. Moreover, a cloud provider 

should make an effort to address those risks rather than push the responsibility to users. 

3. Data is replicated, often across large geographic distances. Data availability and durability is 

paramount for cloud storage providers, as data loss or unavailability can cause unnecessary service 

downtime leading to ill-repute of the institution (outages often make the news). Large cloud providers 

with datacenters spread throughout the world have the ability to provide high levels of fault tolerance 

by replicating data across large geographic distances. 

These characteristics are likely to impact on what applications could be deployed in a cloud. In particular, 

we discuss data management applications below. 

2.1.2. Data management applications in the cloud 

The cloud characteristics discussed above have clear implications on the data management application 

suitable for cloud. Abadi (09) describes the suitability of moving the two largest components of the data 

management market into the cloud: transactional data management and analytical data management.  

2.1.2.1. Transactional data management 

These applications typically rely on the ACID (Atomicity, Consistency, Isolation and Durability) 

guarantees that databases provide, and tend to be fairly write-intensive. At present,  transactional data 

management applications are unlikely to be deployed in the cloud for the following reasons [Abadi '09]: 

1. Transactional data management systems do not typically use a shared-nothing architecture. Most 

commercial DBMSs (Oracle, IBM DB2, Microsoft SQL Server and Sybase) dominate the transactional 

database market. However, only recently some of these vendors have offered shared-nothing 

                                                           
1
 a set of independent machines accomplishing a task with minimal resource overlap. 



- 10 - 
 

architecture but only for analytical applications running on data warehouses. One may argue that 

nothing is stopping these vendors for providing shared-nothing architecture for transactional 

applications.  However, implementing a transactional database system using a shared-nothing 

architecture is non-trivial, since data is partitioned across sites and, in general, transactions cannot be 

restricted to accessing data from a single site. Such a system would require complicated distributed 

locking and commit protocols; the data would be transported over the network leading to increased 

latency and reduced bandwidth. Furthermore, the overwhelming majority of transactional data 

processing deployments are less than 1 terabyte in size [Stonebraker et al. '07]. This undermines the 

main benefit of a shared-nothing architecture which is its scalability. 

2. It is hard to maintain ACID guarantees in the face of data replication over large geographic 

distances. The CAP theorem [Gilbert et al. '02] shows that a shared-data system can only choose at 

most two out of three properties: consistency, availability, and tolerance for data partitions (partition-

tolerance) in case of failures. A system is essentially left with the choice of consistency and 

availability when data is replicated over a wide area [Abadi '09]. As a consequence, consistency is 

often compromised to get acceptable system availability. 

Recent systems including Amazon‘s SimpleDB [Amazon 'k], Yahoo‘s PNUTS [Brian et al. '08] and 

Google‘s BigTable [Chang et al. '08] relax all or some ACID guarantees. These systems weaken the 

consistency model by implementing various forms of eventual/timeline consistency mechanisms. In 

the weak consistency mechanisms, all replicas do not have to agree on the current value of a stored 

value (avoiding distributed commit protocols), or provide simple read/write store (not implementing 

general purpose transactions).  

3. There are enormous risks in storing transactional data on an untrusted host. The complete set of 

data to support critical business applications typically resides in transactional databases. This data 

includes fine grain data, which can consist of sensitive information such as bank account details. Any 

increase in potential security breaches or privacy violations is typically unacceptable. The cloud 

providers need to explicitly provide certain minimal security guarantees, and it is worth exploring what 

security sensitive information can be handled with these weaker semantics. 

Even if we overlook the security aspect of transactional data, we see that there are difficulties in providing 

efficient distributed locking and commit protocols that would require minimal data to be transferred over 

the network. More importantly, strict ACID guarantees cannot be provided over large geographic distances. 

Thus, the transactional data management applications are generally not well suited for cloud deployment. 

2.1.2.2. Analytical data management 

Analytical data management refers to applications that query a data store for use in planning, problem 

solving, and decision support. The typical sources of such analyses include operational and historical data 

from multiple operational databases and archives. As a result, the scale of analytical systems is generally 

larger than their counterpart transactional systems. Where 1 terabyte is considered large for transactional 

systems, petabyte is increasingly becoming a norm for analytical systems [Sybase '07]. Furthermore, 

analytical systems tend to be read-mostly (or read-only), with occasional batch inserts. Analytical data 

management systems are well-suited to run in a cloud environment for the following reasons [Abadi '09]: 

1. Shared-nothing architecture is a good match for analytical data management. The shared-nothing 

architecture is commonly considered to scale well. The rare writes in analytical databases eliminates 

the need for complex distributed locking and commit protocols. Therefore, the shared-nothing 

architecture becomes a promising candidate to manage large amount of data used by analytical 

workloads. Such workloads typically comprise of many large scans, multidimensional aggregations, 



- 11 - 
 

and star schema joins, all of which are fairly easy to parallelize across nodes in a shared-nothing 

network. 

2. ACID guarantees are typically not needed. The writes are infrequent in analytical database 

workloads and analysis on a recent snapshot of the data is usually sufficient. This makes the ‘A‘, ‘C‘, 

and ‘I‘ (atomicity, consistency, and isolation) of ACID easier to obtain. As a result, the consistency 

requirements and tradeoffs for distributed data are not as problematic for analytical databases as they 

are for transactional databases. 

3. Particularly sensitive data can often be left out of the analysis. In many cases, sensitive data that 

would be most damaging should it fall in wrong hands can be identified. Such data can be excluded 

from the analytical data store, or included after anonymizing or encrypting. Second, the analytical 

workload could work on coarse-grain data instead of the lowest level and most detailed data.  

From the above discussion, we can see that the characteristics of the data and workloads of typical 

analytical data management applications are fairly suitable for cloud deployment. The elasticity of the 

cloud (both compute and storage) is in line with the shared-nothing architecture, while the security risks 

can be somewhat managed or reduced. In particular, Abadi (09) expects the cloud to be a preferred 

deployment platform for (a) data warehouses for medium-sized businesses (especially those that do not 

currently have data warehouses due to the large up-front capital costs), (b) for sudden or short-term 

business intelligence requirements (e.g., a retail store analyzing purchasing patterns in the aftermath of a 

tsunami), and (c) for public-facing data warehouses (for which data security is not an issue). 

2.2. Workload management in traditional DBMS   

There is an increasing trend of consolidating multiple individual databases onto a single shared data server 

[Niu et al. '09]. This leads to the simultaneous presence of multiple types of workloads on a single data 

resource. These workloads may include on-line transaction processing (OLTP) workloads and on-line 

analytical processing (OLAP) workloads. OLTP workloads consist of short and efficient transactions that 

require small amounts of CPU and disk I/O to complete. Whereas, OLAP workloads are typically longer, 

more complex and resource-intensive queries that can take hours to complete [Zhang et al. '11]. Workloads 

submitted by different applications or initiated from distinct users may have unique objectives that need to 

be satisfied.  

Niu et al. (09) define workload management as the discipline of effectively managing, controlling and 

monitoring ―workflow‖ across computing systems. In their case, a workflow or a workload is primarily a 

DBMS workload. With the increasing trend towards server consolidation and more diverse workloads, 

workload management has become an important requirement on a DBMSs. Niu et al. (09) also argue that 

workload management is necessary so the DBMS can be business-objective oriented, provide efficient 

various levels of services at fine granularity, and maintain high utilization of underlying resources with low 

management costs.  

A workload management process in DBMSs can involve three kinds of controls (as shown in Figure 3) 

namely admission, scheduling and execution controls [Krompass et al. '09]. Admission control determines 

whether or not newly arriving requests can be admitted into a database system. Admission control avoids 

increasing the load on the when it is busy. Requests have various costs and resource demands in OLAP and 

OLTP workloads. The admission decision is made based on admission control policies and the estimated 

arriving query‘s cost, which is given by the database query optimizer. Workloads with different priorities 

can have different admission policies and can be associated with a different set of threshold values. The 

thresholds may include the upper limits for the estimated resource usage of a query or the estimated 

execution time of the request. If a request‘s estimated cost exceeds the threshold, the request may be 



- 12 - 
 

queued or rejected. High priority workloads usually have higher (easier) thresholds, thus more high priority 

requests can be admitted to the system to run. 

Database 

Engine

Workload 

Manager

Scheduler

Execution 

Controller
DBMS

Objective

Queries

Client

Workload

Admission 

Controller

 

Figure 3: A typical DBMS workload management system includes three components: the 

admission controller, query scheduler, and execution controller [Krompass et al. '09]. 

Query scheduling determines when the admitted queries can be sent to the database engine for execution. 

Its primary goal is to schedule the execution of as many admitted queries as possible while maintaining the 

system in an optimal state. Admitted queries are scheduled based on scheduling policies and available 

system capacity. If an admitted query has high priority and a system has available capacity, then the query 

is scheduled to run immediately in order to meet the required performance levels. The lower priority 

queries are scheduled in such a way that their execution is tied to the availability of system resources. 

Traditionally, multi-programming level (MPL), that is the number of requests concurrently running on a 

database system, is used to manage the system load. If the MPL value is too large, then the system can 

become overloaded. On the other hand, if the MPL value is too low, then the system may be underutilized 

and hence system performance suffers. For a database system, different types of workloads have different 

optimal MPLs [Mehta et al. '08]. Scheduling aims to decide how many queries from different types of 

workloads with different business priorities can be sent to the database engine for execution at the same 

time. 

In contrast with admission and scheduling controls, which are applied to queries before their execution, 

execution control is imposed during run time. The main goal of execution control is to dynamically manage 

the running processes of large queries in order to limit their impact on other queries by slowing down the 

queries‘ execution speed and freeing up shared system resources for use by higher priority queries. As 

query costs estimated by the database query optimizer may be inaccurate, some long-running and resource-

intensive queries might get the chance to enter a system when the system is experiencing a high load. These 

problematic queries compete with others for the limited available resources and may result in high priority 

queries getting insufficient resources and missing their performance goals. Execution control manages the 

running of problematic queries based on execution control policies and determines what queries should be 

controlled as well as to what degree. 

2.3. Data-intensive computing architectures 

Data-intensive computing in a cloud involves diverse architectures and workloads, which adds complexity 

for workload management compared with traditional DBMSs. Workloads in a cloud can range from the 

ones consisting of relational queries with complex data accesses to the others involving highly parallel 

MapReduce tasks with simple data accesses. The workloads in clouds can also differ from DBMS 

workloads with respect to granularity of requests, that is, the amount of data accessed and processed by a 



- 13 - 
 

request. To reduce the data movement across the network, data can be processed at the same resource but 

this reduces parallelism. Increasing parallelism results in increased data movement. We see a tradeoff 

between amount of (processed) data movement and amount of parallelism. Coarse grain granularity 

attempts to strike the right balance. It seems that cloud workloads must operate at coarse-grain granularity 

to be highly scalable to thousands of resources. Cloud workloads are typically coarse-grained in order to 

localize data access and limit the amount of data movement. In this paper, we consider the following five 

different architectures for data-intensive computing in the cloud: 

1. MapReduce is a popular architecture to support parallel processing of large amounts of data on 

clusters of commodity PCs [Dean et al. '08; Dean et al. '04]. MapReduce enables expression of simple 

computations while hiding the details of parallelization, fault-tolerance, data distribution and load 

balancing from the application developer. A MapReduce computation is composed of two phases, 

namely the Map and the Reduce phases. Each phase accepts a set of input key/value pairs and produces 

a set of output key/value pairs. A map task takes a set of input pairs and produces sets of key/value 

pairs grouped by intermediate key values. All pairs with the same intermediate key are passed to the 

same reduce task, which combines these values to form a possibly smaller set of values. Examples of 

MapReduce systems include Google‘s implementation [Dean et al. '04] and the open-source 

implementation Hadoop [Apache 'a].  

2. Dataflow-processing models parallel computations in a two-dimensional graphical form [Gurd et al. 

'85]. Data dependencies between individual nodes are indicated by directed arcs. The nodes represent 

tasks and encapsulates data processing algorithms, while the edges represent data moving between 

tasks. Dataflow systems implement this abstract graphical model of computation. Tasks may be 

custom-made by users or adhere to some formal semantics such as relational queries. Examples of 

dataflow-processing systems in a cluster include Condor [Thain et al. '05], Dryad [Isard et al. '07], 

Clustera [DeWitt et al. '08] and Cosmos [Chaiken et al. '08].  

3. Shared-nothing relational processing is dataflow-processing specialized to the relational model and 

its usage in databases. Parallelism is an unforeseen benefit of the relational model. Relational queries 

offer many opportunities for fine-grain parallelism since they can be broken into tasks applied to very 

large collections of data. The dataflow approach to database system design needs a message-based 

client-server operating system to orchestrate the dataflow between relational operators or tasks 

executing on data hosts [Dewitt et al. '92]. Each task produces a new relation, so the tasks can be 

composed into highly parallel dataflow graphs or workflows.  

Pipelined parallelism can be achieved by streaming the output of one task into the input of another 

task. The shared-nothing relational processing moves only processed or a subset of data through the 

network. However, the benefits of pipelined parallelism are limited because of three factors [Dewitt et 

al. '92]: (1) Relational pipelines are rarely very long – a chain of length ten is unusual; (2) some tasks 

cannot be pipelined because they do not emit their first output until they have consumed all their 

inputs, examples include aggregate and sort operators; (3) often, tasks suffer from execution skew. The 

speedup obtained is limited in such cases. 

Partitioning a relation involves distributing its tuples over several disks. By partitioning the input data 

among multiple hosts, a relational query can often be split into many tasks each working on its part of 

the data. Dewitt et al. (92) consider it as an ideal situation for speedup and scalability. The partitioned 

data is the key to partitioned execution.  This partitioned data and query execution is called partitioned 

parallelism. Figure 4 depicts an example of pipelined and partitioned parallelism of a query execution. 

The work by Vertica [Vertica '09] and Teradata [Clark '00] are examples of shared-nothing parallel 

database management systems. 



- 14 - 
 

 

Figure 4: The dataflow approach to relational operators gives both pipelined and partitioned 

parallelism [Dewitt et al. '92]. 

4. Stream-processing is one of the most common ways in which graphics processing units and multi-

core hosts are programmed [Gu et al. '09]. In the stream-processing architecture, each member of the 

input data array is processed independently by the same processing function using multiple 

computational resources. This technique is also called Single-Program-Multiple-Data, a term derived 

from Flynn‘s taxonomy of CPU design [Duncan '90]. Sphere [Gu et al. '09] is an example of a stream-

processing system for data-intensive applications. 

5. Hybrid DBMS architectures try to move relational DBMSs to the cloud. Large-scale database 

processing is traditionally done with shared-nothing parallel DBMSs. While shared-nothing parallel 

DBMSs exploit pipelined and partitioned parallelism, they suffer from several limitations including 

poor fault tolerance, poor scaling and a need for homogeneous platforms. There are a number of recent 

proposals for a hybrid approach for clouds that combines the fault tolerance, heterogeneity, and ease-

of-use of MapReduce with the efficiency and performance of shared-nothing parallel DBMSs. 

Examples of hybrid DBMSs include Greenplum [GreenPlum], and HadoopDB [Abouzeid et al. '09]. 

3. Workload Management Taxonomy 

In this section, we present a taxonomy for managing data-intensive workloads in the cloud. The taxonomy 

proposed provides a breakdown of techniques based on functionality. The taxonomy is used in the next 

section of the paper to classify and evaluate existing workload management systems. The top layer of the 

taxonomy, which is shown in Figure 5, contains the four main functions performed as part of workload 

management.  

Recent systems on large-scale data processing include MapReduce [Dean et al. '08], Dryad [Isard et al. '07] 

and Clustera [DeWitt et al. '08]. Researchers have used shared-nothing clusters
1
 for development and 

evaluation
2
 of these systems. Other researchers such as Abouzeid et al. have exposed their data processing 

techniques to clouds; however, assuming a fixed set of resources during workload execution. We observe 

that elastic systems and large-scale data processing systems are disjoint at present. Since our taxonomy is 

based on existing literature, scheduling and provisioning, and their associated techniques and systems, are 

discussed separately. 

                                                           
1
 a collection of independent resources each with local disk and local main memory, connected together on 

a high-speed network. 
2
 there is no reason why these approaches cannot be exposed to clouds with little effort. So, we treat these 

approaches as if they have been exported to clouds and only focus on the scheduling aspect of them. 



- 15 - 
 

Workload characterization is essential for workload management as it provides the fundamental 

information about a workload to the management function.  Workload characterization can be described as 

the process of identifying characteristic classes of a workload in the context of workloads‘ properties such 

as costs, resource demands, business priorities and/or performance requirements. For example, a 

MapReduce workload is often characterized as a simple abstraction data processing over heterogeneous 

resources. MapReduce workloads are highly scalable and known to operate over thousands of resources. 

On the other hand, the workload of a shared-nothing parallel DBMS (PDB) is often characterized as a 

relational abstraction of processing structured data while operating over homogenous resources. 

Workload 

Management

Provisioning

Characterization

Monitoring

Scheduling

 

Figure 5: Taxonomy of workload management in cloud computing. 

Provisioning is the process of allocating resources to workloads. The ability of clouds to dynamically 

allocate and remove resources implies that provisioning should be viewed as a workload management 

mechanism. We argue that provisioning of data-intensive workloads needs to balance workload-specific 

concerns such as service level objectives (SLOs) and cost with system-wide concerns such as load 

balancing, data placement and resource utilization. 

Scheduling controls the order of executing the individual requests in workloads according to some specified 

objectives. In general, researchers in recent literature on large-scale data processing has assumed that the 

amount of resources is invariant. So, schedulers multiplex the work-units amongst the available resources. 

The scheduling of data-intensive workloads is impacted by the presence of multiple replicas of required 

data sets placed at different geographical locations, which makes it different from scheduling compute-

intensive workloads.  

Monitoring is essential to provide feedback to the scheduling and the provisioning processes. It tracks the 

performance of cloud components and makes the data available to the other processes. Monitoring can 

either be integrated into these processes or exist as a separate autonomous process.  

In case of a separate process, monitoring requires (a) the publication of static data (e.g. number of resources) 

and dynamic data (e.g. current load on resources under use), (b) a global view of this data, and (c) a query 

mechanism capable for accessing this data. Monitoring is responsible for tracking the performance of cloud 

components at all times, tracking and recording throughput, response time and availability of these 

components from a variety of locations. It also needs to be scalable to allow hundreds of resources to 

publish and be resilient if any resource fails. For example, CloudWatch [Amazon 'b] provides a monitoring 

service. CloudWatch provides users with visibility into resource utilization, operational utilization, and 

overall demand patterns —including metrics such as CPU utilization, disk reads and writes, and network 

traffic. It is used by AutoScaling [Amazon 'c] to provision or relinquish resources.  



- 16 - 
 

In case of an integrated component, monitoring has a local view. That is, the role of the integrated 

monitoring is limited and customized to the needs of the scheduling. Take the example of Dryad [Isard et al. 

'07]. A simple daemon runs on each node managed by Dryad. The daemon acts as a proxy so that the job 

manager can communicate with the remote resources and monitor the state of the computation. A web-

based interface shows regularly-updated summary statistics of a running job and can be used to monitor 

large computations. The statistics include the progress made, the amount of data transferred, and the error 

codes reported by failures. Links are provided from the summary page that allows a developer to download 

logs or crash dumps for further debugging. Monitoring has been explored in some detail in the research 

literature; however, we leave this out of this paper for brevity reasons.  

The remainder of this paper focuses on the scheduling and provisioning functions of workload management 

in the cloud. The categories used are explained within each of the functions and then used to classify 

existing systems and mechanisms from the research literature. The workload characterization and 

monitoring functions are left for future work. 

3.1. Scheduling 

The scheduling portion of our taxonomy is shown in Figure 6. We present a number of key features of a 

scheduling approach that can be used to differentiate among various approaches. Clouds are viewed as 

similar to grids in a number of ways [Foster et al. '08] and our scheduling portion of taxonomy builds on 

previous studies of scheduling in grids [Dong '09; Venugopal et al. '06]. 

3.1.1. Work-unit 

Scheduling policies can be classified by the work-unit (the job abstraction) exposed to the scheduler for 

execution. The scheduling portion of the taxonomy identifies two subclasses of work-units, namely tasks 

and workflows. Each work-unit has its own scheduling requirements. The work-units can range from 

simple queries (fine-grained data-intensive tasks), to coarser levels such as workflows of tasks. 

3.1.1.1. Task 

A task is the atomic unit for scheduling and computation to a single resource. A data-intensive task consists 

of arbitrary computation on data where data access (read or write) is a significant portion of task execution 

time.  The data access also affects the scheduling decision. For example, the scheduler may dispatch a task 

to a node with weaker computational capabilities if the required data is already local to that node. We use 

the term data-intensive task or task interchangeably for the rest of this paper. 

3.1.1.2. Workflow 

A workflow represents a set of tasks that must be executed in a certain order because there are 

computational or data dependencies among the tasks. The products of the preceding tasks may be large data 

sets themselves (e.g., in a simple two step workflow: the first task could be a simulation and the second 

task could analyze the results of the simulation). Therefore, scheduling of individual tasks in a workflow 

requires careful analysis of the dependencies to achieve a certain objective. For the preceding example, an 

objective might be to reduce the amount of data transfer. 

3.1.2. Objective Functions 

A scheduling algorithm tries to minimize or maximize some objective function.  The objective function can 

vary depending on the requirements of the users and the architecture of a specific cloud. There are two 

major parties in cloud computing, namely users (resource consumers) and cloud providers (resource 



- 17 - 
 

providers). Users are concerned with the performance of their workloads and the total cost to run their work, 

while cloud providers care about the utilization of their resources and revenue. Interests are captured by 

objective functions. Objective functions can therefore be classified as user-centric and cloud-centric. 

Scheduling
Mapping

Scheme

Static

Dynamic

Prediction-

revision

Just-in-Time

Objective

Function

Cloud-

centric

User-

centric

Makespan

QoS

Load Balancing

Workunit

Task

Workflow

Locality
Data

Process

Scheduling/

Replication 

Coupling

Decoupled

Combined

 

Figure 6: Scheduling portion of workload management taxonomy. 

3.1.2.1. User-centric objective functions 

User-centric objective functions aim to optimize the system from the user‘s point of view, and hence 

maximize performance of each work-unit. An objective function based on the makespan aims to minimize 

the average total completion time of a work-unit. Traditionally, scheduling policies are makespan based. 



- 18 - 
 

On the other hand, QoS
1
 aims to meet performance requirements specified for a work-unit or workload 

such as minimum cost, an average response time or a completion deadline. Therefore, additional 

mechanisms may be needed, such as negotiation between users and cloud providers, service level 

agreements and resource reservation. 

3.1.2.2. Cloud-centric objective functions 

Cloud-centric objective functions aim to optimize the system from the cloud provider‘s point of view, and 

hence are concerned with maximizing revenue or resource utilization. In order to maximize revenue in a 

competitive cloud market, providers typically offer multiple levels of performance and reliability with 

different pricing. The aim of scheduling policies with a cloud-centric objective function is to provide 

predictable and reliable behaviour. Load-balancing, which distributes load in the datacenter so that 

maximum work can be obtained out of the physical resources, is a commonly used cloud-centric objective 

function. 

3.1.3. Mapping Scheme 

There are two basic types of methods to map work-units to resources in workload scheduling, namely static 

and dynamic methods. In the case of static mapping, the complete execution schedule is drawn prior to the 

actual execution of the work-unit. While in the case of the dynamic mapping scheme, the basic idea is to be 

aware of the status of execution and adapt the schedule accordingly.  

3.1.3.1. Static 

In the ―traditional‖ static mode, information regarding all available resources and all work-units to be 

scheduled is assumed to be available before the schedule is made  [Casavant et al. '88]. So, every work-unit 

is assigned once to a certain resource. Thus, the placement of a work-unit is static. In case of any 

unanticipated events such as failures, the execution schedule is redrawn and the work-unit is re-executed 

ignoring any progress made previously. Static mapping is usually based on estimates, and predictions of the 

behaviour – such as execution time – of work-units. 

3.1.3.2. Dynamic 

Dynamic mapping schemes, on the other hand, are aware of the status of execution and adapt the schedule 

accordingly. Dynamic mapping is usually applied when it is difficult to estimate the cost of work-units, 

unanticipated events are the norm, or work-units arrive on the fly. We further classify dynamic mapping 

schemes as prediction-revision and just-in-time schemes. Prediction-revision schemes create an initial 

execution schedule based on estimates and then dynamically revise that schedule during the execution as 

necessary. Just-in-time or lazy schemes do not make an initial schedule and delay scheduling decisions for 

a work-unit until it is to be executed [Yu et al. '05].  

3.1.4. Locality 

Exploiting the locality of data has been a key technique for scheduling and load-balancing in parallel 

programs [Hockauf et al. '98; McKinley et al. '96], and for query processing in databases [Shatdal et al. '94]. 

We believe it will have similar importance for scheduling of data-intensive workloads in the cloud. We 

                                                           
1  QoS is a concern for many cloud applications. This concern can be seen by anticipation of cloud 

providers guaranteeing availability of their resources. For example, Amazon commits to 99.95% 

availability in a region. 



- 19 - 
 

identify the type of locality exploited as either data or process locality. Data locality involves placing a 

work-unit in the cloud such that the data it requires is available on or near the local host, whereas process 

locality involves placing data near the work-units. In other words, we view data locality as moving 

computation to data, and process locality as moving data to computation. 

3.1.5. Scheduling/Replication Coupling 

In a cloud environment, the location where the computation takes place may be separated from the location 

where the input data is stored, and the same input data may have multiple replicas at different locations. 

Therefore, if only the computational cost is considered in the scheduling, any gain might be offset by a high 

data access cost. When the interaction of scheduling and replication is considered, there are two approaches:  

1. decoupling scheduling from data replication, 

2. producing a combined scheduling and replication schedule.  

In each case, the scheduling policy exploits locality differently. 

3.1.5.1. Decoupled-Scheduling 

Decoupled-scheduling manages scheduling and replication separately. That is, scheduling and replication 

operate independently without any direct relationship or interaction with each other. In exploiting data 

locality, the scheduler takes the data requirements of work-units into account and places them close to a 

data source for execution. Data replicas are made in the face of increased access demand on data. Data 

replicas may also be made for non-performance reasons such as fault-tolerance. Some systems perform 

―placement-aware scheduling‖, which is a special case of decoupled-scheduling exploiting data locality. In 

this case, both scheduler and replicator (if it exists) are agnostic to the need of creating any replicas in the 

face of increased data demands. As a possible consequence, the scheduler may overload data resources if 

there are no replicas [Ranganathan et al. '02]. In exploiting process locality, the scheduler brings input data 

to the work-unit and then takes away the output data or results. So, the storage requirement on the 

processing node is transient, that is, disk space is required only for the duration of execution.  

3.1.5.2. Combined-Scheduling 

Combined-scheduling manages scheduling and replication together. In exploiting data locality the 

scheduler creates replicas of data, either before the data is needed [Desprez et al. '06] or at first access [Lim 

et al. '10]. Then, the scheduler places work-units on nodes with replicas. In exploiting process locality, if 

the scheduler creates a replica for one work-unit then subsequent work-units requiring the same data can be 

scheduled on that host or in its neighborhood. However, one requirement for a resource is to have sufficient 

storage available to store replicas. This requirement creates a bias in the selection of compute resources. 

There is a possibility that resources may be disregarded only due to lack of storage space. Also, creating 

replicas add further overhead to work-unit execution. 

3.2. Provisioning 

Provisioning is the process of allocating resources for the execution of a work-unit. Clouds‘ support for 

elastic resources requires that provisioning should be viewed as a workload management mechanism. This 

is because resources can be dynamically allocated or de-allocated, during execution, to match the demands 

of a workload. This is also called dynamic provisioning. Provisioning for data-intensive workloads is 

further complicated by the need to move or copy data when the resource allocation changes. A user 

preference is the availability of a best possible QoS and transparent elasticity with no disruption of service 



- 20 - 
 

while minimizing costs. While a cloud provider wants to maximize revenue and the use of resources. The 

user and cloud goals are conflicting and workload management needs to consider tradeoffs to achieve an 

optimal balance. The provisioning portion of our taxonomy (Figure 7) identifies key features that can be 

used to categorize provisioning approaches. 

Provisioning

Trigger

Predictive

Reactive

Scope

Processing

Storage

Resource

Type

Physical

Virtual

External

 

Figure 7: Provisioning portion of taxonomy 

3.2.1. Resource Type 

Clouds currently provision two types of resources (a) virtual and (b) physical. Virtual resources emulate 

the hardware with a virtual machine (VM). A VM is a unit of a virtual resource. A VM can be packaged 

together with applications, libraries, and other configuration settings into a machine image that gives the 

illusion of a particular platform while hiding the underlying hardware. In the case of physical resources, a 

user either sees the underlying hardware directly, or has knowledge of the hardware supporting the virtual 

resources. 

3.2.2. Scope 

The scope of provisioning is the kind of resources that are varied, that is, processing resources or storage 

resources. It is simple to see how the key properties of clouds, namely short-term usage, no upfront cost, 

and infinite capacity on demand, apply for processing resources; it is less obvious for storage resources 

[Armbrust et al. '10]. In fact, it is still an open research problem to create a highly scalable storage system 

with an ability to combine management of large data with the clouds to quickly scale on demand. 

Processing resources are typically provisioned in terms of acquiring or relinquishing resources. For 

example, when an application‘s demand for computation increases, more VMs can be acquired and the 

workload multiplexed across the increased VM set. Similarly, when the demand tails off then some VMs 

can be released. In this manner, the workload execution performance could be maintained at a ―required‖ 

level. Storage resources require more complicated provisioning actions such as migrating a database 

[Elmore et al. '10] or varying the number of data nodes [Lim et al. '10]. 

3.2.3. Trigger 



- 21 - 
 

A trigger is the method used to initiate provisioning.  The trigger can be internal or external to the 

provisioning component. We identify two types of internal triggers, namely predictive and reactive triggers, 

which are part of the controller managing provisioning in a cloud. We also identify external triggers that 

can request provisioning from outside a controller.  Predictive triggers use models to forecast a need for 

resource variation. These triggers anticipate the need to provision new resources and so minimize the 

impact of the provisioning process on workload execution. Reactive triggers initiate provisioning when 

certain conditions occur such as violation of a workload‘s SLOs. These conditions are set by the user. 

External triggers are driven by the decisions outside the provisioning controller for example by a user or 

from a scheduler. SLOs are mutual agreement on quality of service between the user and the cloud provider. 

The provisioning controllers operate on a set of actuators exposed by the underlying processing or storage 

management system. In the case of processing resources, a controller uses cloud actuators to change the 

number of processing resources. In the case of storage resources, a controller does not distribute the data 

itself, rather it uses an existing rebalancer utility to rebalance data across the storage or data resources. This 

relieves the controllers from looking at data consistency issues. In this case, the focus of a controller is on 

the decision making on when to vary data resources, and what parameters (e.g. amount of bandwidth) 

should be used for rebalancing. 

Predictive and reactive approaches come with their classical tradeoffs. Cheap forecasts are quick and dirty 

but may result in misestimation of resource variations and hence, misprovisioning in the amount of 

resources. Accurate forecasts need more time for calculations. In some circumstances, accurate forecasts 

may not be timely enough for when the variation is needed. On the other hand, the reactive method is less 

likely to misprovision but it may result in some disruption to workload execution while the provisioning 

adjusts.  

4. A Survey of Workload Management Techniques and Systems 

In the following sections we examine workload management systems for data-intensive workloads in a 

cloud present in current research literature.  The taxonomy described in the previous section is used to 

categorize and evaluate this work. The scheduling and provisioning aspects of the systems are explored in 

some detail.  

4.1 Scheduling 

Scheduling has been a well researched topic [JSSPP]. In this paper, we focus on strategies that explicitly 

deal with data during processing. In presenting our survey of scheduling, we organize large-scale data 

processing systems according to the five data-intensive computing architectures discussed in the 

background section (2.3) of this paper. 

4.1.1 MapReduce 

Google has a MapReduce implementation [Dean et al. '08] called GoogleMR. In GoogleMR, map and 

reduce functions are encapsulated as tasks that perform some computation on data sets. Tasks are grouped 

into a workflow (MR-workflow) in which map tasks are executed to produce intermediate data sets for 

reduce tasks. Data is managed by the Google File System (GFS) [Sanjay et al. '03]. The GFS uses 

replication to provide resiliency against failures of machines containing data. These replicas are also 

exploited by GoogleMR to provide decoupled-scheduling. 

The execution overview of GoogleMR is given in Figure 8. The scheduler resides on the master host. It 

exploits data locality by taking the location information of the input files into account, and schedules map 

tasks on or near a worker host that contains a replica of its input data. The map tasks process input data to 



- 22 - 
 

produce intermediate results and store them on the local disks. The scheduler notifies the reduce tasks about 

the location of these intermediate results. The reduce tasks, then, use remote procedure calls to read the 

intermediate results from the local disks of the map workers. The reduce tasks process the intermediate data 

and append the results to the final output for this data partition. 

 

Figure 8: GoogleMR Execution Overview [Dean et al. '04]. 

MR-workflow execution may suffer from execution skew, that is, all the computation occurs in a small 

subset of tasks resulting in the execution time of some tasks being much greater than the others. Further, 

considering that the size of data is large and MapReduce is intended to be scaled to hundreds, possibly 

thousands of commodity PCs, failures are expected. The average task death per MR-workflow is reported 

as 1.2 tasks [Dean et al. '08]. The scheduler uses a dynamic mapping scheme to address execution skew and 

failures, and is likely to be just-in-time mapping. The objective function of the scheduler is to reduce the 

makespan of the MR-workflow. 

Hadoop [Apache 'a] is an open source implementation of MapReduce that closely follows the GoogleMR 

model. Hadoop consists of two layers [Abouzeid et al. '09]: (i) a data storage layer or the Hadoop 

Distributed File System (HDFS) [Apache 'c], and (ii) a data processing layer based on MapReduce 

Framework. The input data is managed by HDFS. HDFS is a block-structured file system managed by a 

central NameNode. Individual files are broken into blocks of a fixed size and distributed across multiple 

DataNodes in the cluster. The NameNode maintains metadata about the size and the location of blocks and 

their replicas.  



- 23 - 
 

The Hadoop framework follows a simple master-slave architecture. A master is a single JobTracker and the 

slaves or worker nodes are TaskTrackers. A JobTracker handles the runtime scheduling of a MR-workflow 

and maintains information on each TaskTracker‘s load and available data hosts. Each MR-workflow is 

broken down into map tasks based on the number of data blocks that require processing, and reduce tasks. 

The JobTracker assigns tasks to TaskTrackers with the aim of load balancing. It achieves data locality by 

matching a TaskTracker to map tasks that process data local to TaskTracker.  

TaskTrackers regularly update the JobTracker with their status through heartbeat messages. Hadoop‘s built-

in scheduler runs tasks in a first-in-first-out (FIFO) order, with five priority levels [Zaharia et al. '09]. 

When a task slot becomes free, the scheduler scans through MR-workflows in order of priority and submit 

time to find a task of the required type. In this way, Hadoop has just-in-time mapping. 

4.1.2 Dataflow-processing 

Condor is a high-throughput distributed batch computing system [Thain et al. '05]. Condor, like other batch 

systems, provides a task management mechanism, scheduling policy, priority scheme, and resource 

monitoring and management. The Directed Acyclic Graph Manager (DAGMan) is a service, built on top of 

Condor, that is responsible for executing multiple tasks with dependencies. The coordination among data 

components and tasks can be achieved at a higher level by using the DAGMan. In the same manner that 

DAGMan can dispatch tasks to a Condor agent (or a daemon present on a computational resource), it can 

also dispatch data placement requests. In this way, an entire DAG or workflow can be constructed that 

stages data to a remote site, runs a series of tasks and retrieves the output. So, the DAGMan/Condor 

combination employs combined-scheduling. Since both tasks and data are dispatched, DAGMan/Condor 

does not subscribe to any particular locality camp and hence uses a hybrid approach. DAGman is an 

external service and only ensures that tasks are executed in the right order. Therefore, only tasks are 

exposed to the Condor scheduler and the mapping of tasks to hosts is performed at execution time. 

DAGMan also does not make an execution schedule based on estimates, so, the mapping scheme is 

dynamic and employs just-in-time mapping. With a workflow of tasks, a user is probably interested in 

reducing the makespan of the workflow rather than throughput of individual tasks in the workflow. 

Dryad is a general-purpose framework for developing and executing coarse-grain data applications [Isard et 

al. '07]. It draws its functionalities from cluster management systems like Condor, MapReduce 

implementations, and parallel database management systems. Dryad applications consist of a dataflow 

graph (which is a workflow of tasks) where each vertex is a program or a task and edges represent data 

channels. The overall structure of a Dryad workflow is determined by its communication or dataflow. It is a 

logical computation graph that is automatically mapped onto data hosts by the runtime engine providing 

dynamic mapping. The structure of the Dryad system is shown in Figure 9. A simple daemon (D) runs on 

each host managed by Dryad. The daemon acts as a proxy so that the job manager (JM) can communicate 

with the remote resources. The job manager consults the name server (NS) to discover the list of available 

hosts. It maintains the dataflow graph and schedules vertices (V) on available hosts using daemons. The 

vertices can exchange data through files, TCP pipes, or shared-memory channels. The vertices that are 

currently executing are indicated by the shaded bar in the figure.  

Dryad uses a distributed storage system, similar to GFS, in which large files are broken into small pieces, 

and are replicated and distributed across the local disks of the cluster computers. Because input data can be 

replicated on multiple computers in a cluster, the computer on which a graph vertex or a task is scheduled 

is in general non-deterministic. Moreover the amount of data written during the intermediate computation 

stages is typically not known before a computation begins. Therefore in such situations, dynamic 

refinement is often more efficient than attempting a static schedule in advance. A decoupled-scheduling 

approach is used that exploits data locality, and makespan is the objective function. Dryad is not a database 



- 24 - 
 

engine and it does not include a query planner or optimizer, therefore, the dynamic mapping scheme is just-

in-time.  

 

Figure 9: The Dryad system organization [Isard et al. '07]. 

Clustera [DeWitt et al. '08] shares many of the same goals as Dryad and is similarly categorized with our 

taxonomy. Both are targeted towards handling a wide range of work-units from fine-grained data-intensive 

tasks (SQL queries) to workflows of coarse-grained tasks. The two systems, however, employ radically 

different implementation methods. Dryad uses techniques similar to those first pioneered by the Condor 

project. In the Condor system, the daemon processes run on each host in the cluster to which the scheduler 

pushes tasks for execution. In contrast, Clustera employs a pull model. In the pull model, a data host runs a 

web-service client that requests work from the server. The web-service is forked and monitored by a 

daemon process. In addition to dataflow-processing, both Dryad and Clustera support execution of MR-

workflows. 

Cosmos, developed by Microsoft, is a distributed computing platform for storing and analyzing massive 

data sets [Chaiken et al. '08]. Cosmos is designed to run on large clusters consisting of thousands of 

commodity servers.  The Cosmos Storage System, similar to GFS, supports data distribution and replication. 

It is optimized for large sequential I/O and all writes are append-only. Data is compressed to save storage 

and increase I/O throughput. Data is also distributed and replicated to provide resiliency against failure of 

machines containing data. Cosmos application is modeled as a dataflow graph.  

SCOPE is a declarative language that allows users to focus on the data transformations that are required to 

solve the problem at hand while hiding the complexity of the underlying platform. The SCOPE compiler 

and optimizer are responsible for generating an efficient execution schedule or an optimized workflow. The 

optimized workflow is an input
1
 for Cosmos for execution. The runtime component of the Cosmos 

execution engine is called the job manager. The job manager is the central and coordinating process for all 

tasks within a workflow. The primary function of the job manager is to map a compile time workflow to 

the runtime workflow and execute it. 

Cosmos schedules tasks for execution on servers hosting their input data. The job manager schedules a task 

onto the hosts when all the inputs are ready, monitors progress, and re-executes parts of the workflow on 

failure. SCOPE/Cosmos is evaluated in terms of scalability of elapsed times. So, it seems that 

SCOPE/Cosmos aims for makespan utility. The Cosmos extensions provide the same functionality as the 

                                                           
1
 In contrast, only tasks were exposed to the Condor scheduler by DAGMan. 



- 25 - 
 

Google MapReduce. SCOPE/Cosmos provide a prediction-revision mapping and employ decoupled-

scheduling approach. 

4.1.3 Shared-nothing relational processing 

Shared-nothing parallel database management systems (PDBs) provide relational processing in a shared-

nothing setup. In a shared-nothing setup, each processor has a private memory and one or more disks, and 

processors communicate via a high-speed network. The structure of shared-noting design is shown in 

Figure 10.  

 

Figure 10: The basic shared-nothing design [Dewitt et al. '92]. 

Madden et al. (07) observe that shared-nothing does not typically have nearly as severe bus or resource 

contention as shared-memory or shared-disk machines. Therefore, they claim in a blog posting that ―shared 

nothing [parallel DBMSs] can be made to scale to hundreds or even thousands of machines‖. In reality, this 

is highly unlikely. Abouzeid et al. (09) present a number of reasons to counter this claim. A prominent 

reason is that there is a strong trend towards increasing the number of nodes that participate in query 

execution to increase parallelization using cheap low end resources. However, PDBs historically assume 

that failures are rare events and ―large‖ clusters mean dozens of data resources (instead of hundreds or 

thousands). The execution schedule is drawn prior to execution (static mapping), and any failure results in 

the entire relational query being re-executed. Secondly, PDBs generally assume a homogeneous set of 

machines. However, it is nearly impossible to get homogeneous performance across hundreds or thousands 

of compute nodes, even if each node runs on identical hardware or on an identical virtual machine. Finally, 

despite executing on homogenous resources, PDBs are prone to execution and data skew
1
.  

Abouzeid et al. (09) state that PDBs implement many of the performance enhancing techniques developed 

by the research community over the decades. Hence, PDBs best meet the ―performance property‖ in terms 

of minimizing execution time of queries. In a PDB, most data is partitioned over multiple data resources in 

a shared-nothing cluster. However, the partitioning mechanism is transparent to the end-user. PDBs use a 

scheduler that turns SQL commands into an execution schedule. The scheduler optimises workload 

distribution in such a way that execution is divided equally among multiple homogenous data resources 

hosting different partitions. Data partitioning is key to the PDB performance [Dewitt et al. '92]. There are 

various data partitioning schemes; most prominent are round-robin, range and hash partitioning. Certain 

data access patterns may influence the choice of a particular data partitioning scheme. Nonetheless, these 

schemes operate independently of scheduling of tasks to data hosts conforming to decoupled-scheduling in 

our taxonomy. 

                                                           
1
 Data skew is when all the data is present in one or few partitions rather than evenly distributed across all 

the data resources. 



- 26 - 
 

4.1.4 Stream-processing 

Sector [Gu et al. '09] is a distributed storage system that operates over high-speed network connections. 

Sector has been deployed over a wide geographical area and it allows users to obtain large data sets from 

any location. For example, Sector has been used to distribute an astronomical data set (Sloan Digital Sky 

Survey [SDSS]) to astronomers around the world. In addition to the ability of operating over wide areas, 

Sector automatically replicates files for better reliability, availability and access throughout the WAN.  

Sphere [Gu et al. '09] is a compute service built on top of Sector and provides a set of simple programming 

interfaces for users to write distributed data-intensive applications using a stream abstraction. A Sphere 

stream consists of multiple data segments and which are processed by Sphere Processing Engines (SPEs) 

using hosts. A SPE can process a single data record from a segment, a group of data records or the 

complete segment. User-defined functions (UDFs) are supported by the Sphere cloud over data both within 

and across datacenters. 

Data-intensive applications could be executed in parallel in two ways. First, the Sector data set which 

consists of one or more physical files can be processed in parallel. Second, Sector is typically configured to 

create replicas of files for archival purposes. These replicas can also be processed in parallel. An important 

advantage provided by Sphere is that data can often be processed in place without moving it, and hence 

achieving data locality. 

The computing paradigm of Sphere is shown in Figure 11. The SPE is the major Sphere service or a task 

and is started by a Sphere server in response to a request from a Sphere client or user. Each SPE is based on 

a user-defined function. Each SPE takes a segment from a stream as input and produces a segment of a 

stream as output. These output segments can themselves be the input segments to other SPEs. 

Contrary to the different systems discussed so far, a user is responsible for orchestrating the complete 

running of each task in Sphere. One of the design principles of the Sector/Sphere system is to leave most of 

the decision making to the user, so that the Sector master can be quite simple. The objective function of 

Sector/Sphere system is therefore user-centric, and makespan is used as an example by Gu et al. (09). In 

Sphere, the user is responsible for the control and scheduling of the program execution, while Sector 

independently replicates for parallelism.  

SPEs periodically report the progress of the processing to the user. If an SPE does not report any progress 

before a timeout occurs, then the user abandons the SPE. The segment being handled by the abandoned 

SPE is assigned to another SPE if available, or placed back into the pool of unassigned segments. This way 

Sphere achieves fault tolerance. Sphere does not check point SPE progress; when the processing of a data 

segment fails, it is completely reprocessed by another SPE. 

Usually the number of data segments is much larger than the number of SPEs. As a result, the system is 

naturally load balanced because the scheduler keeps all SPEs busy most of the time. Imbalances in system 

load occur only towards the end of the computation when there are fewer data segments to process, 

resulting in some SPEs becoming idle. Each idle SPE is assigned to one of the incomplete segments. A user 

collects results from the SPE that finishes first. This approach is similar to stragglers for GoogleMR [Dean 

et al. '08]. It implies that Sphere employs just-in-time mapping. There are several reasons for SPEs having 

different duration to process data segments including (a): the hosts may not be dedicated, (b) the hosts may 

have different hardware configurations (Sector hosts can be heterogeneous), and (c) different data segments 

may require different processing times. Gu et al. (09) argue that both stream-processing and MapReduce 

are ways to simplify parallel programming and that MapReduce-style programming can be implemented in 

Sphere by using a map UDF followed by a reduce UDF. 



- 27 - 
 

 

Figure 11: The computing paradigm of Sphere [Gu et al. '09]. 

4.1.5 MR+DB Hybrid 

Driven by the competition in the open market and embracing decades of research work, PDBs best meet the 

―performance property‖ [Abouzeid et al. '09]. However, there are problems. First, most PDBs re-execute a 

failed query due to their operating environment. In their environment, queries take no more than a few 

hours and run on no more than dozens of resources. Query failures are relatively rare in such an 

environment, so an occasional query restart is acceptable [Abadi '09]. Second, even though the operating 

environment consists of homogeneous equipment, PDBs are prone to execution and data skew. There is a 

possibility of significantly poor performance if a small subset of nodes in the cluster is performing 

particularly poorly. 

MapReduce provides high fault tolerance and the ability to operate in a heterogeneous environment 

[Abouzeid et al. '09]. In MapReduce, the fault tolerance is achieved by detecting and reassigning failed 

tasks to other available resources in the cluster, while the ability to operate in a heterogeneous environment 

is achieved via redundant task execution. In this way, the time to complete a task becomes equal to the time 

for the fastest resource to complete the redundantly executed task. By breaking tasks into small, granular 

tasks, the effect of faults and straggler resources can be minimized. MapReduce has its share of 

shortcomings [Abadi '09]. Long start-up time to get to peak performance, which is four to six times slower 

than the read rate of fast disks in the cluster; there indeed is room for improvement. Pavlo et al. (09) have 

also empirically shown that MapReduce is relatively slower than alternative systems. 



- 28 - 
 

More recently researchers have looked into bringing ideas together from MapReduce and database systems. 

However, such work focuses mainly on language and interface issues. The Hadoop‘s DBInputFormat 

[Apache 'b] allows users to easily use relational data as input for their MR-workflow [Gruska et al. '10]. 

The Pig project at Yahoo [Olston et al. '08] and the open source Hive project [Thusoo et al. '09] integrate 

declarative query constructs from the database community into MapReduce software to allow greater data 

independence, code reusability, and automatic query optimization. The DBInputFormat, Pig and Hive use 

Hadoop as the underlying MapReduce framework.  

Recent Hadoop releases added a DBInputFormat component to its distribution. DBInputFormat is a class 

provided by Hadoop to read data from a relational database. The DBInputFormat could be used as an input 

format for MR-workflow. DBInputFormat is built into Hadoop and is classified the same way as Hadoop. 

A Pig Latin program is compiled by the Pig system into a sequence of MapReduce tasks that are executed 

using Hadoop [Olston et al. '08]. Unlike DBInputFormat, Pig Latin is an additional abstraction layer built 

on top of Hadoop. Olston et al. (08) describe Pig Latin as a dataflow language using a nested data model. 

Each step in a model specifies a single, high-level data transformation. Pig Latin is classified the same way 

as Hadoop. 

 

Figure 12: Hive Architecture [Thusoo et al. '09]. 

Hive is an open-source data warehousing solution built on top of Hadoop [Thusoo et al. '09]. Hive supports 

queries expressed in a SQL-like declarative language – HiveQL. The queries are compiled into MapReduce 



- 29 - 
 

tasks and are executed on Hadoop. The architecture of Hive is shown in Figure 12
1
. Hive exposes two 

kinds of  interfaces (a) user interfaces like command line (CLI) and web GUI, and (b) application 

programming interfaces (API) like JDBC and ODBC. The Hive Thrift Server exposes a very simple client 

API to execute HiveQL statements. In addition, HiveQL supports custom MapReduce scripts to be plugged 

into queries. The Driver manages the life cycle of a HiveQL statement during compilation, optimization 

and execution. Hive also includes a system catalogue, Hive-Metastore, containing schemas and statistics, 

which is useful in data exploration and query optimization. Like Pig Latin, Hive is an additional abstraction 

layer built on top of Hadoop and is classified the same way as Hadoop in our survey. 

Hive

HDFS

Database Connector

Name Node Catalogue

Data storage layer

Job Tracker

MapReduce 

Framework

Hadoop Core

Task Tracker

Database 

Node

Node 1

DBMS

SQL Query

MRWorkflow

Task Tracker

Database 

Node

Node n

DBMS

 

Figure 13: The Architecture of HadoopDB 

 

                                                           
1
 The Hive architecture is typical of  bringing together ideas from MapReduce and database systems at the 

language and interface level. 



- 30 - 
 

Greenplum and Aster Data are analytical data management systems that offer the ability to write 

MapReduce functions in addition to SQL over data stored in their PDB products [Abouzeid et al. '09]. All 

of the projects discussed in MR+DB hybrid category so far are an important step in the hybrid direction at 

the interface level. Nevertheless, there remains a need for a hybrid solution at the systems level. HadoopDB 

[Abouzeid et al. '09] is one example that provides such a hybrid structure at the systems-level.  The 

architecture of HadoopDB is depicted in Figure 13. It uses MapReduce as the communication layer above 

multiple data nodes running single-node DBMSs. Queries expressed in SQL are translated into MapReduce 

(Hadoop) tasks by extending existing tools (Hive), and then pushed into the higher performing single-node 

DBMSs.  HadoopDB connects multiple single-node DBMSs systems using Hadoop as the task coordinator 

and network communication layer. It inherits scheduling and task tracking from Hadoop,  while doing 

much of the query processing inside of the DBMS. So, it inherits fault tolerance and the ability to operate in 

heterogeneous environments from MapReduce and the performance offered by parallel execution from 

DBMSs. Data is loaded from HDFS into data node databases according to metadata exposed in the Catalog 

component of HadoopDB. Scheduling from Hadoop and data in data node databases are managed 

separately conforming to decoupled scheduling. Tasks are dispatched to data node DBMSs containing the 

data to exploit data locality. For the purpose of our report, HadoopDB is classified the same way as 

Hadoop. 

4.2 Discussion 

A summary of the scheduling architectures discussed in this paper is given in Table 2. We know that 

moving large volumes of data is expensive and causes significant delays in its processing. Moving 

terabytes of data over a WAN with current network technologies would require days [Armbrust et al. '10]. 

Any middleware to enable execution of data-intensive application is bottlenecked by network capacity no 

matter how efficient. As a result, almost all of the surveyed systems in this paper exploit data locality by 

bringing computations to the data source or near it. The issues related to data movement over a network 

suggest that bringing computation to data is a better and more appropriate approach for data-intensive 

workload management.  

We see many schedulers employ decoupled-scheduling approach. That is, the schedulers operate 

independently of replication and place tasks close to data, ideally on the same resource hosting data or near 

it. Some schedulers specifically employ placement-aware scheduling. As described earlier, the placement-

aware scheduling is a special case of decoupled-scheduling where the scheduler and replicator are agnostic 

to the need of creating any replicas in the face of increased data demand. In such a situation, a placement-

aware scheduler may overload data resources if there are no replicas [Ranganathan et al. '02]. Thus, 

creating replicas for performance reasons is a good idea. However, there is a need to explore different 

replication strategies. 

Using low cost unreliable commodity hardware to build shared-nothing clusters has its benefits. However, 

the probability of a node failure during data processing increases rapidly. This problem gets worse at larger 

scales: the larger the amount of data that needs to be processed, the more resources are required to 

participate. Further, if the resources deployed are low cost and unreliable the chances of system failures are 

amplified. Therefore, fault-resiliency must be built into schedulers to addresses such issues. 

Most of the systems surveyed in this paper use workflow as a unit of execution and employ just-in-time 

mapping. This mapping approach is scalable and adapts to resource heterogeneity and failures. 

Nevertheless, we believe that a system could benefit from prediction-revision mapping techniques that 

incorporate some pre-execution planning, workflow optimization, heuristics or history analysis. This 

additional analysis could help in creating an appropriate number of replicas or determining an appropriate 

amount of resources required for a computation. 



- 31 - 
 

Makespan is the prevalent objective function in the survey. Clouds, however, are competitive and dynamic 

market systems in which users and providers have their own objectives. We therefore believe that objective 

functions related to cost and revenue, or participants‘ utilities, are appropriate and require further study. 

Because the economic cost and revenue are considered by cloud users and cloud providers, respectively, 

objective functions and scheduling policies based on them need to be developed. 

Most systems surveyed here use shared-nothing clusters for large-scale data processing. We argue that 

these systems can be exposed to clouds with little effort. These systems assume a static resource base, 

whereas clouds are elastic. So, there are two immediate research opportunities in this direction. First, 

expose these systems on clouds. Second, make them aware of elasticity during execution. HadoopDB uses 

Amazon‘s EC2 but does not use elasticity during execution of the MR-workflow. Similarly, Amazon has 

made Hadoop available in its cloud with Elastic MapReduce [Amazon 'e], however the number of VMs 

have to be selected before the execution starts.  



- 32 - 
 

A summary of the evaluation using our scheduling taxonomy is given in Table 1. 

Architecture System objective function mapping Scheduling/ Replication 

Coupling 

locality work-unit 

MapReduce GoogleMR [Dean et al. '08] user->makespan; cloud-> 

load balancing 

just-in-time decoupled data workflow 

Hadoop [Apache 'a] user->makespan; cloud-> 

load balancing 

just-in-time decoupled data workflow 

Dataflow-

processing 

DAGMan/Condor [Thain et al. '05] user->makespan just-in-time combined hybrid
1
 task 

Dryad [Isard et al. '07] user->makespan just-in-time decoupled data workflow 

Clustera [DeWitt et al. '08] user->makespan just-in-time decoupled data workflow 

SCOPE/Cosmos [Chaiken et al. '08] user->makespan prediction-

revision 

decoupled data workflow 

Relational 

Dataflow-

processing 

PDB [Dewitt et al. '92] user->makespan static decoupled data workflow 

Stream-processing Sector/Sphere [Gu et al. '09] user->makespan; cloud-> 

load balancing 

just-in-time decoupled data task 

Hybrid MR+DB Hadoop‘s DBInputFormat [Apache 

'b]; Pig Latin
1
 [Olston et al. '08]; 

Hive [Thusoo et al. '09] 

user->makespan; cloud-> 

load balancing 

just-in-time decoupled data workflow 

HadoopDB [Abouzeid et al. '09] user->makespan; cloud-> 

load balancing 

just-in-time decoupled data workflow 

Table 2: Summary of the scheduling in large-scale data processing systems 

                                                           
1
 Both tasks and data are dispatched so this system does not subscribe to any particular locality camp.  



- 33 - 
 

4.3 Provisioning Techniques 

We discuss provisioning at the infrastructure level of a cloud and identify three provisioning techniques 

currently in use, namely scaling, migration and surge computing. Therefore, our discussion of IaaS would 

seem obvious. This discussion is also relevant to PaaS and SaaS, since both of these may also vary the 

amount of resources behind the scenes. Our presentation of provisioning mechanisms in clouds for data-

intensive workloads is organized based on the provisioning technique used. 

4.3.1 Scaling 

Scaling is a process of increasing or decreasing the amount of resources allocated during workload 

execution. These resources can be processing resources for computation, or storage resources for data 

requirements. Currently, scaling is one of the most prevalent mechanisms for dealing with variations in the 

workload. Commercial clouds typically offer customers the choice of a small number of fixed configuration 

VM types that differ in their computational capacity [Quiroz et al. '09]. Given fixed configuration VM 

types, scaling is a more effective mechanism to deal with workload demand variation. That is, expand the 

resource set (scale out) when workload demand increases, and reduce the resource set (scale in) when the 

demand tails off. 

Amazon EC2 provides scaling of virtual processing resources called instances. An EC2 instance is 

primarily a virtual processing resource (VM) in the Amazon cloud. A set of instances is monitored by a 

web service called CloudWatch [Amazon 'b], and automatically scaled in or out by AutoScaling [Amazon 

'c] according to user-defined conditions. AutoScaling takes an action based on metrics exposed by 

CloudWatch. In this case, the trigger is reactive since action is taken when a condition is met. 

The process of instantiating new VMs could take as long as few ―minutes‖ [Amazon 'a]. The new VMs 

originate either as fresh boots or replicas of a template VM, unaware of the current application state. This 

forces users into employing ad hoc methods to explicitly propagate application state to new VMs [Lagar-

Cavilla et al. '09]. The adhoc methods could either impact the parent VM and hence workload execution, 

while the state is being propagated, or waste resources if VMs are pre-provisioned. 

The Snowflock project [Lagar-Cavilla et al. '09] introduced a VM fork mechanism that instantaneously 

clones a VM into multiple replicas that execute on different hosts. All replicas share the same initial state, 

matching the intuitive semantics of stateful worker creation. In doing so, the VM fork provides a straight 

forward creation and efficient deployment of stateful workers in a cloud environment. The stateful workers 

start-up rapidly (< 1 second). The state is replicated to clones as ―one way‖ [Lagar-Cavilla et al. '10]. That 

is, the children inherit the parent‘s state at the time of cloning but any changes in children‘s state is not 

propagated back to the parent. This is because there is no write-through channels back to the parent. Also, 

the VM fork aims at cloning VMs providing virtual processing resources leaving any large data replication 

and distribution policies to the underlying storage stack. The VM fork is triggered externally by the user. 

S3 is Amazon‘s Simple Storage System [Amazon 'h]. Conceptually, S3 is an infinite store for objects of 

variable size (minimum 1 Byte, maximum 5 GB) [Brantner et al. '08] where data is written and read as 

objects. Each object is stored in a bucket and retrieved via a unique, user-assigned key. That is, the user 

specifies which bucket an object is stored in. So, the fundamental unit of storage is a bucket. Amazon has 

not published details on the implementation of S3. We believe these buckets are likely virtual units of 

storage that are mapped down to physical media such as hard disks.  

The data access throughput varies with the number of clients of a S3 bucket. In case of increased client set, 

the combined access throughput of all clients increase; however, access throughput for any particular client 

decreases [Garfinkel '07]. The decrease seems proportional to the number of concurrent clients. 



- 34 - 
 

Consequently, the user has to provide replicated copies of objects to maintain a consistent throughput for 

any given client, creating additional buckets if necessary, and copying the data. Therefore, the trigger is 

external for storage increase or decrease. When the number of clients decreases, the user has to delete 

additional copies of data while ensuring any data consistency. 

Elastic storage provides elastic control for a multi-tier application service that acquire and release 

resources in discrete units, such as VMs of pre-determined configuration [Lim et al. '10]. It focuses on 

elastic control of a storage tier where adding or removing a data node requires rebalancing stored data 

across the data nodes (which consists of VMs). The storage tier presents new challenges for elastic control, 

namely delays due to data rebalancing, interference with application and sensor measurements, and the 

need to synchronize variation in resources with data rebalancing. Many previous works vary a ―continuous‖ 

resource share allotted to a single data node; clouds with per-VM pricing like EC2 do not expose this 

actuator. So, Lim et al. (10) employed an integral control technique called proportional thresholding to 

regulate the number of discrete data nodes in a cluster. They employed a reactive controller that decides 

resizing node set based on a feedback signal of CPU utilization.  

Google AppEngine [Google] scales a user‘s applications automatically for both processing resources and 

storage. The scaling is completely transparent to the user. The system simply replicates the application 

enough times to meet the current workload demand. A reactive trigger is likely used to initiate the scaling. 

The amount of scaling is capped in that resource usage of a given application is monitored and is not 

allowed to exceed its quota. There is a base level of usage available for free whereas a payment system is 

available to pay for higher quotas. The monitored resources include incoming and outgoing bandwidth, 

CPU time, stored data, and email recipients.  

Microsoft Windows Azure does not offer automatic scaling but it is the primary tool for provisioning. Users 

can provision how many instances they wish to have available for their application. Like Amazon, the 

instances are virtual processing resources [Chappell '09]. 

4.3.2 Migration 

Migration is a workload management technique used in clouds where an application execution is moved to 

a more appropriate host. Clark et al. (05) explores one of the major benefits enjoyed by virtualization, that 

is the migration of live OS  (i.e. an OS continues to operate during migration). Live migration of virtual 

machines has been shown to have performance advantages in the case of computation-intensive workloads 

[Voorsluys et al. '09] as well as fault tolerance benefits [Prodan et al. '09]. 

Clark et al. (05) discusses a number of reasons for why a migration at the VM level is useful. First, 

migrating an entire OS and all of its applications as one unit avoids many of the difficulties faced by 

process-level migration approaches. Second, migrating at the level of an entire VM means that in-memory 

state can be transferred in a consistent and efficient fashion. In practical terms this means that, for example, 

it is possible to migrate an on-line game server or streaming media server without requiring clients to 

reconnect: something not possible with approaches which use application level restart. Third, live migration 

of VMs allows a separation of concerns between the users and providers of a data center (or a cloud). Users 

have complete control regarding the software and services they run within their VMs, and need not provide 

the operator with any OS-level access. Similarly the providers need not be concerned with the details of 

what is happening inside a VM. Instead they can simply migrate the entire VM and its attendant processes 

as a single unit. 

Xen live migration [Clark et al. '05] achieves impressive performance with minimal application execution 

downtimes, and it demonstrates the migration of entire OS instances on a commodity cluster. Xen live 

migration uses a precopy mechanism that iteratively copies memory to the destination [Luo et al. '08]. 



- 35 - 
 

Precopy takes place while the VM is still executing applications. A record of any memory pages modified 

after the precopy process is kept. Then at the right time, Xen suspends the VM to copy to the destination 

the CPU state and the remaining memory pages that were modified after precopy. It resumes the VM at the 

destination after all the memory has been synchronized. Since only a few pages are transferred during VM 

pausing, the downtime is usually too short for a user to notice – service downtimes as low as 60 

milliseconds (ms) on a Gigabit LAN [Clark et al. '05]. The performance of live migration is sufficient to 

make it a practical tool even for servers running interactive loads. Any failures during migration result in 

the abortion of migration and the VM continues to be operative on the source host. Nonetheless, Clark et al. 

(05) assume network attached storage (NAS) is available for live VM migration and do not cater for 

migrating VM local storage. Consequently, only a subset of a VM is migrated. The subset contains an 

entire OS and all of its applications as one unit. Since the VMs assume a shared storage, no data in local 

(VM specific) storage is migrated. Therefore, the scope of Xen live migration is processing. Clark et al. (05) 

claim that most modern data centers consolidate their storage requirements using a NAS device, in 

preference to using local disks in individual VMs. This claim predates the birth of cloud computing, and we 

note that this is not the case with Amazon EC2.  

In Amazon EC2, VMs have their local storage. Another storage capacity is made available that could be 

shared through mounting called Elastic Block Storage (EBS) [Amazon 'i]. Amazon also offers a storage 

cloud (S3). It is most likely that VMs will continue to have their local storage. Also, we will quite possibly 

see the combination of both shared and local storage being used effectively. Therefore, migration with both 

local storage and shared storage is relevant. 

Migration with data-intensive workloads, however, faces problems with high overhead and long delays 

because the large data sets may also have to be moved [Elmore et al. '10]. Luo et al. (08) consider 

migrating whole-system state of a VM from the source to the destination machine, including its CPU state, 

memory data, and local disk storage data. During the migration time the VM keeps running. Whole-system 

VM migration builds on Xen live migration. In addition to the normal activities that Xen live migration 

performs during the migration, a block-bitmap data structure is used to track all the write accesses to the 

local disk storage. The block-bitmap is used for synchronizing the local disk storage in the migration 

process. Experiments show this setup works well even when I/O intensive workloads are running in the 

migrated VM. The downtime of the migration is around 100 ms, close to Xen live migration. Like Xen live 

migration, whole-system migration deals with VMs. However, the VMs are migrated along with data in 

local storage. Therefore, the scope is hybrid. 

Elmore et al. (10) analyze various database multi-tenancy models and relate them to the different cloud 

abstractions to determine the tradeoffs in supporting multi-tenancy. So, the scope is the storage tier. At one 

end of the spectrum is the shared hardware model which uses virtualization to multiplex multiple data 

nodes on the same host with strong isolation. In this case, each data node has only a single database process 

with the database of a single tenant. At the other end of the spectrum is the shared table model which stores 

multiple tenants‘ data in shared tables providing the finest level of granularity. 

Elmore et al. (10) provide preliminary investigation and experimental results for various multi-tenancy 

models and forms of migration. For shared hardware migration, using VM abstracts the complexity of 

managing memory state, file migration and networking configuration. Live migration only requires Xen be 

configured to accept migrations from a specified host. Using Xen and a 1 Gbps network switch, Elmore et 

al. are able to migrate an Ubuntu image running MySQL with a 1 GB TPC-C database between hosts on 

average in only 20 seconds. The authors also observe an average increase of response times by 5-10% 

when the TPC-C benchmark is executed in a VM compared to no virtualization. In this case, the resource 

type is virtual. 



- 36 - 
 

On the other hand, shared table migration is extremely challenging and any potential mechanism is coupled 

to the implementation. Isolation constructs must be available to prevent demanding tenants from degrading 

system wide performance in systems without elastic migration. Some shared table models utilize tenant 

identifiers or entity keys as a natural partition to manage physical data placement [Chang et al. '08]. Lastly, 

using a ‗single‘ heap storage for all tenants [Weissman et al. '09] makes isolating a data cell for migration 

extremely difficult. Without the ability to isolate a data cell leaves efficient migration of shared tables an 

open problem. One avenue of research is investigating the right level of abstraction for database migration. 

Another is autonomic management and decision making of when to migrate. The trigger is external in 

database multi-tenancy models. 

Elmore et al. (10) describe different methods of migrating multi-tenancy models of a database while 

leaving out any discussion on ACID properties provided by these models. As a result, they seem to make 

an implicit assumption that a DBMS on a cloud guarantees ACID (or at least some variant) properties. As 

discussed in the background of this paper, a transactional database on a cloud guaranteeing ACID 

properties is difficult to achieve. To date there has not been a concrete and demonstratable prototype 

[Abadi '09]. 

4.3.3 Surge Computing 

Surge computing is a provisioning technique applicable in hybrid (private/public) clouds [Armbrust et al. 

'09]. A private cloud model saves costs by reusing existing resources, keeping some data onsite and 

allowing more control on certain aspects of the application. The resources for a private cloud are 

augmented on-demand (in times of load spikes) with resources from the public cloud. In these scenarios 

more than one cloud are typically connected by a WAN resulting in latency implications with moving data 

to the public cloud. 

Zhang et al. (09) present a comprehensive workload management framework for web based applications 

called Resilient Workload Manager (ROM). ROM includes components for (a) load balancing and 

dispatching, (b) offline capacity planning for resources, and (c) enforcing desired QoS (e.g. response time). 

It features a fast workload classification algorithm for classifying incoming workload between a base 

workload (executing on a private cloud) and trespassing workload (executing on a public cloud)
1
. This 

implies that the scope of ROM is to vary processing resources. Resource planning and sophisticated 

request-dispatching schemes for efficient resource utilization are only performed for the base workload. 

The private cloud runs a small number of dedicated hosts for the base workload, while VMs in the public 

cloud are used for servicing the trespassing workload. So, the resource type is hybrid. The data storage in 

the private cloud is decoupled from that in the public cloud so shared or replicated data is not needed. 

In the ROM architecture, there are two separate load balancers one for each type of workload. The base 

load balancer makes predictions on the base workload and uses integrated offline planning and online 

dispatching schemes to deliver the guaranteed Quality of Service (QoS). The prediction may also trigger an 

overflow alarm. In case of an alarm, workload classification algorithm sends some workload to the public 

cloud for processing. ROM operates an integrated controller and load balancer in the public cloud. The 

controller reacts to the external alarm and provisions VMs and the load balancer services trespassing 

workload on the provisioned images using round-robin policy. 

                                                           
1 Base workload refers to the smaller and smoother workload experienced by the application platform 

―most‖ of the time (e.g., 95% of the time), while trespassing workload refers to the ―short‖ and transient 

workload spikes experienced at rare times (e.g., the 5% of the time). 



- 37 - 
 

 

Moreno-Vozmediano et al. (09) analyze the deployment of generic clustered services on top of a 

virtualized infrastructure layer that combines the OpenNebula VM manager [Sotomayor et al. '09] and 

Amazon EC2. The separation of resource provisioning, managed by OpenNebula, from workload 

management, provides elastic cluster capacity. The capacity is varied by deploying (or shutting down) VMs 

on demand, either in local hosts or in remote EC2 instances. The variation in the number of VMs in 

OpenNebula is requested by an external provisioning module. For example, a provisioning policy limits the 

number of VMs per host to a given threshold. The variation in the number of VMs in OpenNebula is 

requested by an external provisioning module. For example, a provisioning policy limits the number of 

VMs per host to a given threshold. 

Two experiments, operating over the hybrid cloud, are reported by Moreno-Vozmediano et al. (09). One 

shares insights in executing a typical high throughput computing application, and the other at latencies in a 

clustered web server. For the experiments, the scope is variation in processing resources. 

Technique System Scope Trigger Resource Type 

Scaling Amazon AutoScaling [Amazon 'c] processing reactive virtual 

SnowFlock [Lagar-Cavilla et al. '09] processing external virtual 

Amazon S3 [Amazon 'h] storage external virtual 

Elastic Storage [Lim et al. '10]  storage reactive virtual 

Google AppEngine [Google] hybrid reactive physical 

Microsoft Windows Azure [Chappell '09] processing external virtual 

Migration Xen Live Migration [Clark et al. '05] processing external virtual 

Whole-system VM migration [Luo et al. 

'08] 

hybrid external virtual 

Multi-tenant DB Migration [Elmore et al. 

'10] 

storage external virtual 

Surge 

Computing 

Resilient Workload Manager (ROM) 

[Zhang et al. '09] 

processing external hybrid 

OpenNebula [Sotomayor et al. '09] processing external virtual 

Table 3: Summary of provisioning for large-scale data processing 

4.4 Discussion 

A summary of our classification of provisioning techniques is given in Table 3. We observe that most of 

the current work that is related to provisioning in clouds involves scaling. Such work is applied to web 

applications that do not require large-scale data processing. In the ROM system, the data storage in a 

private cloud is decoupled from that in the public cloud so that the latter is not tied to the former through 

shared or replicated data resources. This seems to be a reasonable approach for larger and read-only data. 



- 38 - 
 

Maintaining data consistency for read/write operations between sites in a hybrid cloud is still an open 

problem.  

Note that some of the reactive techniques, examined here, involve a user defining rules in terms of 

condition and action pairs to control the reaction. With multiple rules, many questions arise such as can 

multiple rules be defined on the same metrics, can they overlap or contradict.  

We looked at some migration approaches. Migration approaches may benefit users and cloud providers in 

different ways. For example, from the user‘s perspective, a VM may be placed in a more suitable 

environment such as on a resource hosting the data needed by the application residing in the VM. From the 

cloud provider‘s perspective, VMs may be rearranged across machines in a datacenter to relieve load on 

congested hosts for example. In such situations the combination of virtualization and migration could 

significantly improve manageability of hosts. Also, migration is a powerful tool for datacenter 

administrators, allowing separation of hardware and software considerations. If some hardware needs to be 

removed from service, an administrator could migrate the VMs including the applications that they are 

running to an alternative host, freeing the original host for maintenance.  

The mechanisms for current provisioning techniques to handle varying workload demand may not scale for 

large-scale data processing. Nonetheless, one can admire the potential benefits of these techniques and 

argue that relevant mechanisms need to be developed for large data. Armbrust et al. (10) point out that 

there is a need to create a storage system that could harness the advantage of elastic resources provided by a 

cloud while meeting existing storage systems expectations  in terms of data consistency, data persistence 

and performance. 

Systems that jointly employ scheduling and provisioning have been explored in grids. The Falkon [Raicu et 

al. '07] scheduler triggers a provisioner component for host increase or decrease. This host variation has 

also been explored during the execution of a workload hence providing dynamic provisioning. Presently, 

tasks stage data from a data repository. Since this can become a bottleneck as data scales, scheduling 

exploiting data locality is suggested as a solution. The MyCluster project [Walker et al. '06] similarly 

allows Condor or SGE clusters to be overlaid on top of TeraGrid resources to provide a user with personal 

clusters. Various provisioning policies with different tradeoffs are explored including dynamic provisioning. 

The underlying motivation is to minimize wastage of resources. However, MyCluster is aimed at compute-

intensive tasks. Given the similarities between grids and clouds, the joint techniques for scheduling and 

provisioning in these systems and related work are worth exploring for their relevance in clouds. 

5. Conclusion and Future Research 

Summary 

The amount of data available for many areas is increasing faster than our ability to process and analyse it. 

The possibility of providing large number of computational resources by cloud computing has led to recent 

interest in exploiting clouds for large-scale data-intensive computing. However, data-intensive computing 

presents a set of new challenges, for systems management in a cloud, including the new processing 

frameworks, such as MapReduce, and the costs inherent with large data sets in a distributed environment. 

Workload management, an important component of systems management, is the discipline of effectively 

managing, controlling and monitoring ―workflow‖ across computing systems. In this paper, we examine 

workload management for data-intensive computing in clouds.  

We present a taxonomy for workload management of data-intensive computing in the cloud. At the top 

level of the taxonomy four main functions are identified: (a) workload characterization, (b) provisioning, (c) 



- 39 - 
 

scheduling and (d) monitoring. We focus on the scheduling and provisioning functions in the paper. The 

scheduling portion of the taxonomy categorizes scheduling methods in terms of several key properties such 

as (a) the scheduled work-unit, (b) the objective function optimized by the scheduling, (c) the scheme used 

to map work-units to resources, (d) the type of locality exploited in the scheduling, and (e) whether data 

replica management is integrated with scheduling or not. In examining current scheduling approaches we 

see that most systems consider entire workflows, optimize a user-centric objective like the makespan of a 

workflow, use simple dynamic mapping and exploit knowledge of replicas in placing tasks. Moreover, 

there is a need to better integrate scheduling and replica management and to balance global metrics such as 

cost with user metrics in scheduling. 

The provisioning portion of the taxonomy categorizes provisioning methods in terms of (a) the kind of 

resource provisioned (physical or virtual), (b) the kind of trigger used to initiate provisioning (predictive, 

reactive or external), (c) and the scope of the provisioning (processing or storage). Note that systems 

employing provisioning use three methods namely scaling, migration and surge computing. Scaling is the 

primary method used in public clouds such as Amazon‘s EC2 where virtual processing images are 

automatically scaled using a reactive trigger based on user-defined conditions. Surge computing is used in 

the case of a hybrid private-public cloud combination. However, there is little work so far on the 

provisioning of storage resources. 

Open Problems 

Recent research on large-scale data processing, renewed interest in shared-nothing parallel DBMSs and the 

illusion of infinite resources offer exciting opportunities to process large amounts of data. Processing data 

on clouds poses a new tradeoff for data-intensive workload management. The tradeoff lies in the choices 

available for workload management in case of workload variation. In case of an increase in workload, the 

tradeoff for data processing has two choices. It could either multiplex the increased workload across 

existing resources or resize the resource pool to increase processing capacity. However, each of the choices 

has its own challenges. For example, multiplexing may lead to resource overload, QoS and deadline 

violations, increased response time and reduced fault tolerance. Increasing resources may address all of 

these issues but may require an access to data, data loading or rebalancing, and preprocessing. Furthermore, 

more resources on a public cloud mean additional (monetary) costs. Scaling in reduces cost but may require 

that data be off-loaded from unneeded resources. 

A data-intensive workload manager in a cloud is a complex information management system, which has 

many tuning parameters for performance optimization. With  integrating workload management features, a 

large number of threshold values to control workload are needed to be well understood and set by the cloud 

providers. This renders the entire system more complex in terms of operation and maintenance. 

Estimating a system capacity plays an important role in the workload management process in DBMS, as all 

controls imposed on the users‘ requests are based on the system state. It is yet unclear how estimating a 

system capacity will turn out for a workload execution in a cloud with the resource pool scaling into 

hundreds and possibly more. 

From the discussion presented in this paper, it is clear that there are several issues that need to be explored 

and addressed for a data-intensive workload management system in a cloud. It becomes more important 

when (a) systems need to automatically choose and apply appropriate techniques to manage users‘ 

workloads during execution, (b) dynamically estimating available system capacity and executing  progress 

of a running workload, and (c)  reducing the complexity of a workload management system‘s operation and  

maintenance. Second, provisioning of storage resources in a dynamic manner involves a number of 

problems including effective partitioning and replication of data, minimizing the impact of dynamic 



- 40 - 
 

reallocation of resources on executing work and finding new definitions of consistency appropriate for the 

cloud environment. Third, workload management methods that integrate scheduling and provisioning 

should be explored. The methods should be dynamic in order to fit into the elastic resource model of a  

cloud. 

References  [Mian et al. '11] [Mian et al. '10] [Gray '08] [Madden et al. '07] [Moreno-Vozmediano et al. '09] 

Abadi, D. J. (2009). Data Management in the Cloud: Limitations and Opportunities. IEEE Data Eng. Bull. 

32(1): 3-12. 

Abouzeid, A., K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz and S. A. Rasin (2009). HadoopDB: an 

architectural hybrid of MapReduce and DBMS technologies for analytical workloads. Proc. 

VLDB Endow. 2(1): 922-933. 

Amazon. ('a). Elastic Compute Cloud (Amazon EC2).  Retrived 17.9.11, from http://aws.amazon.com/ec2/. 

Amazon. ('b). CloudWatch.  Retrived 18.5.10, from http://aws.amazon.com/cloudwatch/. 

Amazon. ('c). Auto Scaling.  Retrived 18.5.10, from http://aws.amazon.com/autoscaling/. 

Amazon. ('e). Elastic MapReduce.  Retrived 19.5.10, from http://aws.amazon.com/elasticmapreduce/. 

Amazon. ('h). Amazon Simple Storage Service (Amazon S3).  Retrived 2.12.10, from 

http://aws.amazon.com/s3/. 

Amazon. ('i). Amazon Elastic Block Store (EBS).  Retrived 28.8.10, from http://aws.amazon.com/ebs/. 

Amazon. ('k). Amazon SimpleDB (beta).  Retrived 1.1.11, from http://aws.amazon.com/cloudwatch/. 

Amazon. ('l). Washington Post. Case Study Retrived 18.2.11, from http://aws.amazon.com/solutions/case-

studies/washington-post/. 

Apache. ('a). Hadoop.  Retrived 19.8.10, from http://hadoop.apache.org/. 

Apache. ('b). Hadoop DBInputFormat.  Retrived 14.12.10, from 

http://www.cloudera.com/blog/2009/03/database-access-with-hadoop/. 

Apache. ('c). Hadoop Distributed File System.  Retrived 19.8.10, from http://hadoop.apache.org/hdfs/. 

Armbrust, M., A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. 

Stoica and M. Zaharia (2010). A view of cloud computing. Commun. ACM 53(4): 50-58. 

Armbrust, M., A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A. 

Rabkin, I. Stoica and M. Zaharia (2009). Above the Clouds: A Berkeley View of Cloud 

Computing. Technical Report No. UCB/EECS-2009-28, University of California at Berkeley. 

Bégin, M.-E. (2008). An egee comparative study: grids and clouds evolution or revolution? Enabling Grids 

for E-Science, CERN. 1. 

Brantner, M., D. Florescu, D. Graf, D. Kossmann and T. Kraska (2008). Building a database on S3. 

Proceedings of the 2008 ACM SIGMOD international conference on Management of data. 

Vancouver, Canada, ACM. 

Brian, F. C., R. Raghu, S. Utkarsh, S. Adam, B. Philip, J. Hans-Arno, P. Nick, W. Daniel and Y. Ramana 

(2008). PNUTS: Yahoo!'s hosted data serving platform. Proc. VLDB Endow. 1(2): 1277-1288. 

Buyya, R., C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic (2009). Cloud computing and emerging IT 

platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation 

Computer Systems 25(6): 599-616. 

Casavant, T. L. and J. G. Kuhl (1988). A taxonomy of scheduling in general-purpose distributed computing 

systems. Software Engineering, IEEE Transactions on 14(2): 141-154. 

CERN. The Atlas Experiment.  Retrived 10.7.10, from http://www.atlas.ch/fact-sheets-1-view.html. 

Chaiken, R., B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver and J. Zhou (2008). SCOPE: easy 

and efficient parallel processing of massive data sets. Proc. VLDB Endow. 1(2): 1265-1276. 

Chang, F., J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes and R. E. 

Gruber (2008). Bigtable: A distributed storage system for structured data. ACM Transactions on 

Computer Systems (TOCS) 26(2): 1-26. 

Chappell, D. (2009). Introducing Windows Azure.  Retrived 24.8.10, from 

http://download.microsoft.com/documents/uk/mediumbusiness/products/cloudonlinesoftware/Intr

oducingWindowsAzure.pdf. 

Clark, C., K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt and A. Warfield (2005). Live 

migration of virtual machines. USENIX Association Proceedings of the 2nd Symposium on 

http://aws.amazon.com/ec2/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/s3/
http://aws.amazon.com/ebs/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/solutions/case-studies/washington-post/
http://aws.amazon.com/solutions/case-studies/washington-post/
http://hadoop.apache.org/
http://www.cloudera.com/blog/2009/03/database-access-with-hadoop/
http://hadoop.apache.org/hdfs/
http://www.atlas.ch/fact-sheets-1-view.html
http://download.microsoft.com/documents/uk/mediumbusiness/products/cloudonlinesoftware/IntroducingWindowsAzure.pdf
http://download.microsoft.com/documents/uk/mediumbusiness/products/cloudonlinesoftware/IntroducingWindowsAzure.pdf


- 41 - 
 

Networked Systems Design & Implementation (NSDI '05). Berkeley, CA, USA, Usenix Assoc: 

273-286. 

Clark, S. (2000). Teradata NCR.  Retrived 22.2.11, from 

http://www.teradata.com/library/pdf/butler_100101.pdf. 

Cloudera. Hadoop training and support.  Retrived 1.7.10, from http://www.cloudera.com/. 

Dean, J. and S. Ghemawat (2004). MapReduce: simplified data processing on large clusters. Proceedings of 

the Sixth Symposium on Operating Systems Design and Implementation (OSDI'04): 137-149, 

Berkeley, CA, USA, USENIX Assoc. 

Dean, J. and S. Ghemawat (2008). MapReduce: simplified data processing on large clusters. 

Communications of the ACM 51(1): 107-113. 

Desprez, F. and A. Vernois (2006). Simultaneous Scheduling of Replication and Computation for Data-

Intensive Applications on the Grid. Journal of Grid Computing 4(1): 19-31. 

Dewitt, D. and J. Gray (1992). Parallel database systems. The future of high performance database systems. 

Communications of the ACM 35(6): 85-98. 

DeWitt, D. J., E. Paulson, E. Robinson, J. Naughton, J. Royalty, S. Shankar and A. Krioukov (2008). 

Clustera: an integrated computation and data management system. Proc. VLDB Endow. 1(1): 28-

41. 

Dong, F. (2009). Workflow Scheduling Algorithms in the Grid. School of Computing. Kingston, Queen's 

University. PhD. 

Duncan, R. (1990). Survey of parallel computer architectures. Computer 23(2): 5-16. 

e2enetworks. demystifying-saas-paas-and-iaas.  Retrived 20.2.11, from 

http://e2enetworks.com/2010/05/03/demystifying-saas-paas-and-iaas/. 

Elmore, A., S. Das, D. Agrawal and A. E. Abbadi (2010). Who's Driving this Cloud? Towards Efficient 

Migration for Elastic and Autonomic Multitenant Databases. Tecnical Report 2010-05, UCSB CS. 

Foster, I., Z. Yong, I. Raicu and S. Lu (2008). Cloud Computing and Grid Computing 360-Degree 

Compared. Grid Computing Environments Workshop, 2008. GCE '08: 1-10. 

Garfinkel, S. L. (2007). An Evaluation of Amazon‘s Grid Computing Services: EC2, S3 and SQS. 

Cambridge, MA., Harvard University. 

Gilbert, S. and N. Lynch (2002). Brewer's conjecture and the feasibility of consistent, available, partition-

tolerant web services. SIGACT News 33(2): 51-59. 

Google. App engine.  Retrived 19.5.10, from http://code.google.com/intl/de-DE/appengine/. 

Gray, J. (2008). Distributed Computing Economics. Queue 6(3): 63-68. 

GreenPlum. Greenplum Database Architecture.  Retrived 19.8.10, from 

http://www.greenplum.com/technology/architecture/. 

Grossman, R. L. and Y. Gu (2009). On the Varieties of Clouds for Data Intensive Computing. IEEE Data 

Engineering Bulletin 32(1): 44-50. 

Gruska, N. and P. Martin (2010). Integrating MapReduce and RDBMSs. Proceedings of the 2010 

Conference of the Center for Advanced Studies on Collaborative Research (CASCON '10), 

Toronto, Canada, IBM. 

Gu, Y. and R. L. Grossman (2009). Sector and Sphere: the design and implementation of a high-

performance data cloud. Philosophical Transactions of the Royal Society A: Mathematical, 

Physical and Engineering Sciences 367(1897): 2429-2445. 

Gurd, J. R., C. C. Kirkham and I. Watson (1985). The Manchester prototype dataflow computer. 

Communications of the ACM 28(1): 34-52. 

Henderson, R. L. (1995). Job scheduling under the Portable Batch System: 279, Berlin, Germany, Springer-

Verlag. 

Hockauf, R., W. Karl, N. Leberecht, M. Oberhuber and M. Wagner (1998). Exploiting spatial and temporal 

locality of accesses: a new hardware-based monitoring approach for DSM systems. Lecture Notes 

in Computer Science: 206-215. 

IBM. IBM Smart Cloud.  Retrived 24.6.11, from http://www.ibm.com/cloud-computing/us/en/. 

Isard, M., M. Budiu, Y. Yu, A. Birrell and D. Fetterly (2007). Dryad: distributed data-parallel programs 

from sequential building blocks. Proceedings of the 2nd ACM SIGOPS/EuroSys European 

Conference on Computer Systems 2007. Lisbon, Portugal, ACM. 26. 

JSSPP. Proceedings of Job Scheduling Strategies for Parallel Processing Workshop.  Retrived 13.6.10, 

from http://www.link.springer.de/link/service/series/0558/tocs/t2221.htm. 

http://www.teradata.com/library/pdf/butler_100101.pdf
http://www.cloudera.com/
http://e2enetworks.com/2010/05/03/demystifying-saas-paas-and-iaas/
http://code.google.com/intl/de-DE/appengine/
http://www.greenplum.com/technology/architecture/
http://www.ibm.com/cloud-computing/us/en/
http://www.link.springer.de/link/service/series/0558/tocs/t2221.htm


- 42 - 
 

Koop, M. J., W. Huang, K. Gopalakrishnan and D. K. Panda (2008). Performance Analysis and Evaluation 

of PCIe 2.0 and Quad-Data Rate InfiniBand. 16th IEEE Symposium on High Performance 

Interconnects: 85-92, Stanford, CA  

Krompass, S., H. Kuno, J. L. Wiene, K. Wilkinson, U. Dayal and A. Kemper (2009). Managing long-

running queries. Proceedings of the 12th International Conference on Extending Database 

Technology: Advances in Database Technology, EDBT'09: 132-143, Saint Petersburg, Russia, 

Association for Computing Machinery. 

Lagar-Cavilla, H. A., J. A. Whitney, A. Scannell, P. Patchin, S. M. Rumble, E. de Lara, M. Brudno and M. 

Satyanarayanan (2009). SnowFlock: Rapid Virtual Machine Cloning for Cloud Computing. 

Eurosys'09: Proceedings Of The Fourth Eurosys Conference. New York, Association for 

Computing Machinery: 1-12. 

Lagar-Cavilla, H. A., J. A. Whitney, A. Scannell, R. B. P. Patchin, S. M. Rumble, E. d. Lara, M. Brudno 

and M. Satyanarayanan (2010). SnowFlock: Virtual Machine Cloning as a First Class Cloud 

Primitive. ACM Transactions on Computer Systems (TOCS) 19(1). 

Lim, H. C., S. Babu and J. S. Chase (2010). Automated control for elastic storage. Proceeding of the 7th 

International Conference on Autonomic Computing, ICAC '10 and Co-located Workshops: 1-10, 

Washington, DC, United states, Association for Computing Machinery. 

Litzkow, M. J., M. Livny and M. W. Mutka (1988). Condor-a hunter of idle workstations. 8th International 

Conference on Distributed Computing Systems.: 104. 

Luo, Y., B. Zhang, X. Wang, Z. Wang, Y. Sun and H. Chen (2008). Live and incremental whole-system 

migration of virtual machines using block-bitmap. Cluster Computing, 2008 IEEE International 

Conference on: 99-106. 

Madden, S., D. DeWitt and M. Stonebraker. (2007). Database parallelism choices greatly impact scalability. 

DatabaseColumn Blog. Retrived 8.5.10, 2010, from http://databasecolumn.vertica.com/database-

architecture/database-parallelism-choices-greatly-impact-scalability/  

McKinley, K. S., S. Carr and C.-W. Tseng (1996). Improving data locality with loop transformations. ACM 

Trans. Program. Lang. Syst. 18(4): 424-453. 

Mehta, A., C. Gupta, S. Wang and U. Dayal (2008). Automatic Workload Management for Enterprise Data 

Warehouses. IEEE Data Eng. Bull. 31(1): 11-19. 

Mian, R., P. Martin, A. Brown and M. Zhang (2010). Managing Data-Intensive Workloads in a Cloud 

(poster). Proceedings of the 2010 Conference of the Center for Advanced Studies on Collaborative 

Research (CASCON '10), Toronto, Canada, IBM. 

Mian, R., P. Martin, A. Brown and M. Zhang (2011). Managing Data-Intensive Workloads in a Cloud. Grid 

and Cloud Database Management. G. Aloisio and S. Fiore. Heidelberg, Springer. 

Moore, R., T. A. Prince and M. Ellisman (1998). Data-intensive computing and digital libraries. Commun. 

ACM 41(11): 56-62. 

Moreno-Vozmediano, R., R. S. Montero and I. M. Llorente (2009). Elastic management of cluster-based 

services in the cloud. Proceedings of the 1st workshop on Automated control for datacenters and 

clouds (ACDC). Barcelona, Spain, ACM: 19-24. 

Niu, B., P. Martin and W. Powley (2009). Towards autonomic workload management in DBMSs. Journal 

of Database Management 20(3): 1-17. 

Olston, C., B. Reed, U. Srivastava, R. Kumar and A. Tomkins (2008). Pig latin: a not-so-foreign language 

for data processing. Proceedings of the 2008 ACM SIGMOD international conference on 

Management of data. Vancouver, Canada, ACM. 

Prodan, R. and S. Ostermann (2009). A survey and taxonomy of infrastructure as a service and web hosting 

cloud providers. Grid Computing, 2009 10th IEEE/ACM International Conference on: 17-25, 

Banff, Canada. 

Quiroz, A., H. Kim, M. Parashar, N. Gnanasambandam and N. Sharma (2009). Towards autonomic 

workload provisioning for enterprise grids and clouds. 2009 10th IEEE/ACM International 

Conference on Grid Computing (GRID): 50-57, Banff, AB, Canada, IEEE Computer Society. 

Raicu, I., I. Foster, A. Szalay and G. Turcu (2006). AstroPortal: A Science Gateway for Large-scale 

Astronomy Data Analysis. TeraGrid Conference. 

Raicu, I., Y. Zhao, C. Dumitrescu, I. Foster and M. Wilde (2007). Falkon: a Fast and Light-weight tasK 

executiON framework. Proceedings of the 2007 ACM/IEEE conference on Supercomputing. Reno, 

Nevada, ACM. 

http://databasecolumn.vertica.com/database-architecture/database-parallelism-choices-greatly-impact-scalability/
http://databasecolumn.vertica.com/database-architecture/database-parallelism-choices-greatly-impact-scalability/


- 43 - 
 

Ranganathan, K. and I. Foster (2002). Decoupling computation and data scheduling in distributed data-

intensive applications. Proceedings of 11th IEEE International Symposium on High Performance 

Distributed Computing: 352-358, Piscataway, NJ, USA, IEEE Comput. Soc. 

Sanjay, G., G. Howard and L. Shun-Tak (2003). The Google file system. SIGOPS Oper. Syst. Rev. 37(5): 

29-43. 

SDSS, S. D. S. S. Mapping the Universe.  Retrived 15.12.10, from http://www.sdss.org/. 

Shatdal, A., C. Kant and J. F. Naughton (1994). Cache conscious algorithms for relational query processing: 

510, Santiago, Chile, Morgan Kaufmann Publ Inc. 

Sotomayor, B., R. S. Montero, I. M. Llorente and I. Foster (2009). Virtual infrastructure management in 

private and hybrid clouds. IEEE Internet Computing 13(5): 14-22. 

Stonebraker, M., S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem and P. Helland (2007). The end of 

an architectural era: (it's time for a complete rewrite). Proceedings of the 33rd international 

conference on Very large data bases. Vienna, Austria, VLDB Endowment. 

Sybase. (2007). Sybase IQ Powers World's Largest Green Data Warehouse Including Unstructured Data.  

Retrived 4.5.11, from http://www.sybase.com/detail?id=1054047. 

Thain, D., T. Tannenbaum and M. Livny (2005). Distributed computing in practice: the Condor experience. 

Concurrency And Computation-Practice & Experience 17(2-4): 323-356. 

Thusoo, A., J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff and R. Murthy 

(2009). Hive: a warehousing solution over a map-reduce framework. Proc. VLDB Endow. 2(2): 

1626-1629. 

Vaquero, L. M., L. Rodero-Merino, J. Caceres and M. Lindner (2008). A break in the clouds: towards a 

cloud definition. SIGCOMM Comput. Commun. Rev. 39(1): 50-55. 

Venugopal, S., R. Buyya and K. Ramamohanarao (2006). A taxonomy of Data Grids for distributed data 

sharing, management, and processing. ACM Comput. Surv. (CSUR) 38(1): 123-175. 

Vertica. (2009). Vertica Analytic Database for the Cloud gets an upgrade.  Retrived 22.2.11, from 

http://www.vertica.com/news/press/vertica-analytic-database-for-the-cloud-gets-an-upgrade/. 

Voorsluys, W., J. Broberg, S. Venugopal and R. Buyya (2009). Cost of virtual machine live migration in 

clouds: A performance evaluation. 1st International Conference on Cloud Computing 5931 LNCS: 

254-265, Beijing, China, Springer Verlag. 

Walker, E., J. P. Gardner, V. Litvin and E. L. Turner (2006). Creating personal adaptive clusters for 

managing scientific jobs in a distributed computing environment 2006: 95-103, Paris, France, Inst. 

of Elec. and Elec. Eng. Computer Society. 

Weissman, C. D. and S. Bobrowski (2009). The design of the force.com multitenant internet application 

development platform. Proceedings of the 35th SIGMOD international conference on 

Management of data. Providence, Rhode Island, USA, ACM. 

Yu, J. and R. Buyya (2005). A taxonomy of scientific workflow systems for Grid computing. Sigmod 

Record 34(3): 44-49. 

Zaharia, M., D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker and I. Stoica (2009). Job Scheduling for 

Multi-User MapReduce Clusters, Electrical Engineering and Computer Sciences, University of 

California at Berkeley. 

Zhang, H., G. Jiang, K. Yoshihira, H. Chen and A. Saxena (2009). Resilient workload manager: Taming 

bursty workload of scaling internet applications. 6th International Conference on Autonomic 

Computing, ICAC'09: 19-28, Barcelona, Spain, Association for Computing Machinery. 

Zhang, M., B. Niu, P. Martin, W. Powley, P. Bird and K. McDonald (2011). Utility Function-based 

Workload Management for DBMSs. Proceedings of the 7th International Conference on 

Autonomic and Autonomous Systems (ICAS 2011): 116-121, Mestre, Italy. 

Zhou, S. N., X. H. Zheng, J. W. Wang and P. Delisle (1993). Utopia - A Load Sharing Facility For Large, 

Heterogeneous Distributed Computer-Systems. Software-Practice & Experience 23(12): 1305-

1336. 

 

 

http://www.sdss.org/
http://www.sybase.com/detail?id=1054047
http://www.vertica.com/news/press/vertica-analytic-database-for-the-cloud-gets-an-upgrade/

