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1 Introduction

High-level software models are representations of software artifacts or processes
that are at a higher level of abstraction than source code. This includes structural
modeling techniques, like the use of the Unified Modeling Language’s (UML) class
diagrams; behavioral modeling, such as done with sequence diagrams; and data-flow
modeling techniques, most notably Simulink and Matlab.

A relatively new approach to software engineering is the use of Model-driven
Engineering (MDE). MDE involves using high-level software models as the main
artifacts within the development cycle. As MDE becomes more prevalent in the
software engineering community, the need for effective approaches for finding the
similarities and differences among high-level software models, or model comparison,
becomes imperative. Since MDE involves models being considered first class
artifacts by developers, it is clear model comparison is important as it assists model
management and may help facilitate analysis of existing projects and research on
MDE. It not only provides merit as a stand-alone task, but it helps engineers with
other MDE tasks such as model composition and model transformation testing [39].

In this technical report we will investigate the current state of model comparison
research. The goals in doing this are to a provide an overview of the area and also to
ascertain the capability of existing model comparison techniques to identify common
sub-structures or patterns within models. These patterns can ideally be used by
project engineers to facilitate analysis and assist in the development of future MDE
projects. This technical report will describe, in brief, the phases of comparison and
will also investigate and describe the various uses/applications of model comparison
including model versioning, model-clone detection, and others. This technical
report will also help those looking to use model comparison techniques by acting
as a quick reference guide organized by the types of models being compared.

This technical report begins by providing background information on MDE and
model comparison in Section 2 in order to facilitate understanding of the material
that follows to those not versed in these areas. Section 3 categorizes the existing
model comparison approaches by the type and subtype of models that they are used
to compare and provides summaries of the approaches, organized by both model
type and application. Section 4 provides a qualitative evaluation and generalization
of the approaches identified in the previous section in regards to their potential for
identifying sub-model patterns. Section 5 attempts to identify other techniques
and approaches related to the model comparison work discussed in this technical
report. Section 6 concludes the technical report.
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2 Background information

This section is intended to provide readers that may not have much experience
with software modeling or model-driven engineering with sufficient background
information so they can understand the remainder of the technical report. It begins,
in Section 2.1, with a description of high-level software models. It then continues
by describing how these models are used to achieve model-driven engineering
in Section 2.2. Within Section 2.2, we describe model versioning, model clone
detection, and the general idea and usage of model comparison.

2.1 High-level software models

As both the hardware on our computers becomes more advanced and the complexity
of the software tasks that we ’program’ on this hardware increases, so does the
need for abstracting away implementation details that are at a lower level. At the
basic level, a computer is reading what we call machine language, that is, electrical
signals that are either on or off. However, rather than programming all our tasks
in 0 or 1s, it became necessary to hide away, or ’abstract’, this language into a
higher level language known as assembly. As time progressed, however, assembly
language was inadequately suited to allow for complex software development, so
third-generation programming languages (3GL) arose. These are what we commonly
refer to as ’Programming Languages’ today and include late-3GL languages like
C++, Turing, Java, and many others. These languages allow developers to make
large systems capable of very advanced tasks, however, managing and implementing
the engineering of these systems has proven to be a very challenging endeavour.

One relatively recent approach for designing and implementing complex software
systems is representing the artifacts within these systems at an even higher
level of abstraction through the use of, what we call, high-level software models.
These models can describe the structure, behavior, and many other aspects of
the software system that would be difficult to explain through programming
languages alone. The most popular and widely used example of this is the Unified
Modeling Language(UML)1, which attempts to include the entire spectrum of
models. However, there are many others out there, many of which are suited to a
specific domain. These high-level software models are expressed through a modeling
language that expresses a meta model. A meta model is another model, typically
at the same level of abstraction, that describes a set of valid models. The most
notable meta modeling standard is the Meta-Object Facility (MOF) 2 model, which
UML happens to be defined in. Most recently, however, is the advent of Domain

1http://www.uml.org/
2http://www.omg.org/mof/
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Specific Models (DSM) [33]. Whereas UML models conform to a single meta model
and are meant to be general-purpose, DSMs are models that conform to a meta
model that is tailored to the domain that the models are operating within. This
domain specific meta model is known as the Domain-Specific Modeling Language
(DSML). Matlab and Simulink [8] can be seen as DSMLs that are used heavily in
the automotive domain for embedded control units.

2.2 Model-Driven Engineering

In Model-Driven Engineering (MDE), or Model-Driven Development [75], these
High-Level Software Models, or simply models, are the main artifacts used by
developers during the creation and evolution of software systems. The idea is
that, in the same way abstracting machine language into programming languages
allows us to efficiently develop and express more complex applications, representing
our systems as models rather than programming-language code should allow us to
develop more complex applications and express them in a better way. So, in an ideal
MDE environment, models are first-class artifacts. This means that in all stages of
a system’s existence, these models are the only things that are created, updated,
shared, analyzed, and used. In order to accomplish this, however, these models
must be powerful enough and have a sufficient support structure in place so that
they are easier to work with than the programming-language code they represent.
This includes the ability to automate code generation from models and being able
to verify these models are correctly representing the system [75]. Computer-Aided
Software Engineering 3 (CASE) is sometimes seen as the predecessor of MDE and
is occasionally used as a synonym or more general term for MDE.

While MDE affords many of the benefits discussed and more, these benefits
do not come easily or without challenges. Firstly, there are the problems that
are unique to the nature of MDE including redundancy of information; the need
for “round tripping”, or synchronization, between models and code; the possibility
that the complexity is being moved rather than reduced; and the need for modelers
to have an understanding of the entire system [34]. Aside from these problems
that stem from the essence of MDE, there are challenges that arise that are
also present when working with programming languages. While analogous, the
MDE equivalent of these problems are by no means identical nor trivial and
typically require a different approach in dealing with them. Some examples
include model transformation [78], cross-cutting concerns in models [23, 26], model
versioning/evolution, model clones, and problems encountered with the modeling
languages themselves [28, 34, 27]. For the purpose of this technical report, we
will elaborate on model versioning and model clones only, as these are topics that

3http://case-tools.org/
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involve model comparison. This will be done in Section 2.2.1 and Section 2.2.2,
respectively.

2.2.1 Model versioning

The need for collaboration amongst teams in MDE projects is just as significant
as it is in traditional software projects. Traditional software projects achieve this
through Version Control Systems (VCS) such as CVS4 and Subversion5. Similarly,
for MDE, it is imperative that modelers are able to work on system models
independently but then be able to reintegrate their updated versions back into
the main project repository. However, while team member Alice is working on
their model(s), team member Bob may be making and submitting changes at the
same time to those models that need to be integrated into the latest version and
may even conflict with the updates being made by Alice. Consider the example in
Figure 1. Firstly, it shows an example of a model, V, being changed simultaneously
by one team member to model V’, which involves a reference from Person to
Passport, and by another team member to V”, which is a model that has combined
Person and Passport. More importantly, however, it shows an example of a conflict
that a traditional VCS would not be able to detect. V* contains the changes
made by both modelers, which, in this case, leaves us with a “dangling reference”
problem [6]. Section 5.1.2 discusses more shortcomings of traditional text-based
VCS approaches, however, the important thing to take away from the example is
that model versioning is a non-trivial area within MDE.

Model versioning is broken into different sets of phases by different people [2, 5,
36]. However, generally, it is seen to require a form of model comparison or model
matching, that is, the identification of what model elements correspond to what
other model elements; detection and representation of differences and conflicts;
and model merging, that is, combining the changes made to corresponding model
elements while taking conflicts into account. So, for example, we could break down
the phases of model versioning with respect to our example in Figure 1: model
comparison would identify that the model V’ and V” refer to the same root model
or concept; the conflict detection phase would identify the conflicting changes in V’
and V” and, ideally, how to resolve them; a merge of V’ and V” would be done by
the VCS yielding a correct version of V*. For the purpose of this technical report,
we focus mainly on the first phase, model comparison. While the other phases are
equally as important, we are mostly interested in the way in which various model
versioning approaches achieve model comparison.

4http://www.nongnu.org/cvs/
5http://subversion.tigris.org
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Figure 1: Example of conflicting changes to the same model [6]

2.2.2 Model clone detection

Another example of model comparison being used in a different and specific context
is model clone detection. We quickly provide background information in this section
about model clone detection as it is discussed in many of the sections that follow.

In 3GL software projects, a code clone refers to collections of code that are
deemed similar to one another through some measure of similarity [42]. One
common reason that code clones exist in these projects include the implementation
of a similar concept throughout the same system. The problem with code clones
is that a change in this one concept means that the system must be updated in
multiple places, which, sometimes, is forgotten or difficult to do. Despite the fact
that clones are generally seen as a negative, they are still introduced because of
factors like poor reuse practices, time constraints, lack of knowledge about cloning,
and others [42]. The research area devoted to the study, identification, evolution,
and refactoring of code clones is very mature and there are many techniques and
tools that are in existence to deal with them [69].

The analogous problem of model clones is having various sets of models or
model elements that are shown to be similar in some defined fashion. While the
cause of and the problems that arise from code cloning do not come as a result
of the programming languages themselves, techniques intended to deal with code
clones [69] are textual in nature and not well suited for model clones. In comparison
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to code clone detection, the research related to model clone detection is quite
limited [20].

An important consideration about model clone detection is that it is an NP-
complete problem because it is a special case of the largest common sub graph
problem [30]. This problem entails looking for common sub graphs within a single
graph. There are two main approaches that have evolved in the area of model
clone detection: Deissenboeck et al. [21] employ a heuristic approach that uses
Depth First Search (DFS) to choose the single path that appears the most likely
to be a clone match, while Pham et al. [63] propose an algorithm, entitled eScan,
that uses graph mining algorithms and some domain-(Simulink-) specific knowledge
to identify model clones. Both of these approaches are geared towards data-flow
modeling, specifically Simulink and Matlab. An example of a clone in data-flow
modeling is displayed in Figure 2. The clone set in the two models shown come
as a result of the same sub graph being present in both after being normalized, or
abstracted, in some fashion. In this case, the normalization has been done such
that the specific values within the nodes are ignored / not deemed necessary for
similarity [20]. There is also some preliminary work that looks at identifying model
clones in UML models [83].

Figure 2: Model clone example [20]

2.2.3 Model comparison

This section discusses model comparison as an individual task in MDE and refers
specifically to the act of identifying any similarities or differences between model
elements, either automatically or through some user input. Looking at what we
discussed already, it is clear that model clone detection employs some notion of
model comparison. Specifically, models, or sub models in this case, are being
compared and deemed similar or equivalent to one another based on some definition
of similarity. The difference between the comparisons done in model clone detection
and model versioning is that in model versioning the comparison is typically
executed by developers on models that have evolved from, or are a ’version of’, the
same root model whereas, in model clone detection, the comparisons are executed
by analysts on models that are contained within some larger model or group of
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models. As noted by Kolovos et al. [39] and Lin et al. [49], model comparison has
merit in other areas of MDE including being the foundation for model composition
and model transformation testing. Specifically, for model transformation testing,
it can be used for comparing the model transformations themselves, when they
are represented as models, and for verifying the correctness of the transformation
by comparing the input and output models the transformation is working with.
Beyond this, model comparison may be useful in performing specific analytical
tasks, such as looking for sub-model patterns as we discuss in Section 4.

Kolovos et al. attempt to provide a precise definition of model comparison by
saying it is an operation that classifies elements into four categories[39]. Figure 3
illustrates this idea and we use it in order to help explain what we consider to be
similar/matching and what is considered to be different/non-matching.

Figure 3: Model comparison definition [39]

Notion of similarity or matching For two elements to be similar, they must
match one another based on some criteria or represent the same conceptual idea or
artifact. Kolovos et al. further refine similarity to include a notion of conformance.
With conformance, elements from one model that have a match in another model
can be classified as being either elements that conform to their matching element or
elements that do not conform to their counterpart in the other model. In Figure 3,
white nodes are elements that conform, while grey elements are ones that do not
conform. An example of non conformance in a UML class diagram could be when
a class in both models has the same name but one is abstract. So while the grey
elements still match, that is, likely represent the same artifact, they do ’match
enough’ or conform to one another [39]. The specific definition of conformance is
dependent on the current comparison context and goal. We can attempt to extend
this notion of similarity to what we have already discussed. Matching elements in
model versioning can be seen as those that are present within the same version tree,
that is, are all derived from a common ancestor. Conformance in this context is
the case where versions are considered identical or have changes that are consider
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trivial. For model clone detection, matching elements can be described as those
that represent the same conceptual idea, or node in data-flow modeling, such as the
I-Delay block in Figure 2, and conformance can be seen as the difference between
elements that match after the normalization process and those that do not.

Notion of difference The idea of elements being different to one another means
that they do not match based on some criteria nor represent the same conceptual
idea or artifact. Figure 3 represents these different elements as black nodes. Kolovos
et al. further classifies non-matching elements into those that are within the domain
of the comparison operation, or what we called matching criteria, and those that are
not within the domain. Non-matching elements that are not within the domain of
comparison can exist due to a case where the matching criteria is either incomplete
or intentionally ignoring them. The grey box in Figure 3 represents the domain
and black nodes outside of it are those that are not within the domain. We must
also attempt to extend our notion of differences to include elements that match
but do not conform, that is, the grey elements in Figure 3. The differences in
this case can be broken into two categories, as was initially done in work on
model versioning [25]: symmetric deltas and directed deltas. A symmetric delta
between two models contains all the elements that are in one model but not the
other and vice versa. A directed delta is operational in that it contains all the
steps necessary to get from one model to another. Konemann investigates ways
of describing differences that are independent of the models they came from [40],
which can be useful for patches, and later extends this idea to discuss grouping
these differences together semantically in order to generalize them so they can be
used in other instances [41]. Kehrer et al. [35] do something similar by trying to
derive semantics that come from differences among various versions of a model. It
differs from Konemann’s work in that Konemann’s relies on a lot of user-interaction
while the work done by Kehrer et al. is a more automatic approach that can be
run before Konemann’s.

Phases of model comparison In the context of model versioning, model
comparison has been decomposed into three phases [11]: calculation, representation,
and visualization. However, we believe these phases can be applied to model
comparison in general as there is nothing about this decomposition that is specific
to model versioning. In the following paragraphs, we elaborate on the phases and
provide examples of approaches.

Calculation Calculation is the initial step of model comparison and is the act
of identifying the similarities and differences between two different models. Using
the definition we described earlier, it can seen as the classification of elements into
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the four categories. Calculation techniques can work with specific types of models,
such as done with UML-model comparison methods [2, 32, 36, 60, 89]. However, it
is also possible for techniques to do comparisons that are not meta model dependent
as demonstrated in an approach that works with Domain Specific Models [48]
and other approaches [68, 77, 85]. Kolovos et al. [38] break down calculation
methods into four different categories based on how they match corresponding
model elements. They are static identity-based matching, which uses persistent
and unique identifiers; signature-based matching, which calculates its comparison
approach dynamically based on an element’s uniquely-identifying signature that
is calculated from a user-defined function; similarity-based matching, which uses
the composition of the similarity of an element’s features; and custom language-
specific matching algorithms, which is a calculation approach that uses matching
algorithms designed to work with a particular modeling language. In the remainder
of this technical report we focus mainly on the calculation phase, particularly the
model element matching aspect, as this is the phase that will most impact our
ability to discover common sub-patterns among models. Also, calculation is the
most researched of the three phases.

Representation This phase deals with the underlying form that the dif-
ferences and similarities detected during the calculation will take. One such
approach to representation is the notion of edit scripts [2, 55]. Edit scripts are an
operational representation of the changes necessary to make one model equivalent
to another and can be comprised of primitive operations such as add, edit, and
delete. They tend to be associated with calculation methods that use model-
element identifiers and may not be user-friendly due to their imperative nature.
In contrast, model-based representation [60] is an another approach that is more
declarative. It represents the differences by recognizing the elements and sub-
elements that are the same and the ones that differ. Most recently, an abstract-
syntax-like representation [11] has been proposed that represents the differences
declaratively and also allows further analysis. Cicchetti et al. [15] and, later, Van
den Brand et al. [85], propose properties that representation techniques should
strive for in order to be separable from calculation approaches and for them to
be ideal for MDE environments. Cicchetti et al. [16] then extend this work to
demonstrate that their representation is ideal for managing conflicts in distributed
environments.

Visualization Lastly, visualization involves displaying the differences in a
form that is desirable to the end user. Visualization is considered somewhat sec-
ondary to calculation and representation and may be tied closely to representation.
For example, model-based representation can be visualized through colouring [60].
Newer visualization approaches try to make visualization more separable from
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representation [86, 87, 88]. There is also an approach [71] that attempts to extend
visualization techniques for comparing text files to work with models by including
additional features unique to higher level representations, such as folding, automatic
layout, and navigation.

10



3 Model comparison methods and applications

This section categorizes existing model comparison methods by the specific types
of models they compare and discusses the applications of the comparisons. We
decided on organizing the approaches in this manner in order to allow this technical
report to act as reference for those working with specific model types and looking
to engage in model comparison. We first present model comparison methods
that work with more than one type of model in Section 3.1. This is followed
by comparison techniques that compare behavioral, structural, product line, and
software development process models in Sections 3.2, 3.3, 3.4, and 3.5, respectively.
Within each section, we further classify the approaches by the sub type of model
they are intended for and also discuss the intended application of each. While some
of the methods claim that they can be extended to work with other types of models,
we still place each one only in the category they have demonstrated they work with
and make note of the claimed extendability.

3.1 Methods for multiple model types

This section looks at approaches that are able to deal with more than one type of
model. Approaches like this have the benefit of being more general but are not able
to use specific model-type information to their benefit.

3.1.1 UML models

The UML is a meta model defined by the MOF and is the most prominent and
well known example of a MOF instance. This section looks at model comparison
approaches intended to compare more than one type of UML model.

Alanen and Porres [2, 3] perform model comparison as a precursor to model
versioning. Their model matching is achieved through static identity-based
matching, that is, it relies on the UML’s universally unique identifiers(UUID)
contained within each model element. Their work is more focused on identifying the
differences between matched models. They calculate and represent differences as
directed deltas, that is, operations that will turn one model into the other and that
can be reversed through a dual operation. Their difference calculation is achieved
through the following steps that results in a sequence of operations

1. Given a model V and V’, this algorithm creates a mapping between the
matched model elements, which they achieve through UUID comparison.

2. The next two steps involve the algorithm adding operations to create the
elements within V’ that do not exist in V and then adding operations to
delete the elements that are in V that are not in V’.
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3. Lastly, for all the elements that are in both V and V’, any changes that have
occurred to the features within these elements from V to V’ are converted to
operations that ensure that feature ordering is preserved.

Rational Software Architect (RSA) 6 is an IBM product that is intended to be
a versatile and complete development environment for those working with software
models and MDE. It works primarily with UML models. Early versions of RSA (6
and earlier) allow for two ways of performing model comparison on UML models,
both of which are a form of model versioning: Comparing a model from its local
history and comparing a model with another model that belongs to the same
ancestor [45]. In both of these cases, model matching is done using UUIDs in
that matched elements must have the same identity. The calculation for finding
differences between matched elements is not shared/is proprietary.

Figure 4 shows an example of the ’compare model with local history’ RSA
window. The bottom pane is split between the two versions while the top right
pane describes the differences found between the two. The window and process for
comparing a model with another model within the same ancestry is very similar. In
RSA version 7 and later a facility is provided by the tool for comparing and merging
two software models that are not necessarily from the same ancestor [46]. This is
accomplished manually through user interaction, that is, there is no calculation
really taking place other than the option to do a relatively simple structural and
UUID comparison. The user selects elements from the source that should be added
to the target, maps matching elements from the source and target, and chooses the
final names for these matched elements.

Similarly, another example of a technique that compares UML models and
utilizes their UUIDs is the one proposed by Ohst et al. [60]. This technique entails
transforming the UML models to graphs and then traversing each tree level with the
purpose of searching for identical UUIDs. The technique then takes into account the
differences among the matched model elements, such as features and relationships,
and continues its traversal.

Selonen and Kettunen [77] present a technique that attempts to accomplish
the model matching aspect of model comparison for a variety of UML models by
deriving the signature-match rules based on the abstract syntax of the meta model
describing the modeling language. Specifically, they say that two models match
if they have the same meta class, the same name, and same primary context,
which includes the surrounding structure of the model comprised of neighbours
and descendants. This matching criteria can be relaxed depending on the scenario.
They state that this technique should be extendable to work with any MOF-based
modeling languages. Also, additional rules can be added by extending the meta
model with appropriate stereotypes that he technique that interpret.

6http://www.ibm.com/software/awdtools/architect/swarchitect/
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Figure 4: RSA ’Compare Model with Local History’ window (adapted from [45])

Odyssey VCS (Version Control System) [61] is a model versioning tool that
is intended to work with all types of UML models in CASE environments. It
does not perform model matching as all elements are linked to a previous version,
starting with a baseline version. Differences or conflicts are detected by processing
XMI files and using UML-specific knowledge to calculate what elements have been
added, modified, or deleted. A class can be defined as a unit of comparison (UC)
for one given project, while attributes and operations may be defined as the UCs
in another project. This flexibility provided by Odyssey-VCS allows for a more
precise definition of configuration elements. Specifically, users can configure a
behavior descriptor that determines which elements are UC and which are UV
(unit of versioning).

Strolle [83] developed the MQlone tool in order to experiment with the idea of
detecting UML model clones. They convert XMI files from UML CASE models and
turn them into Prolog 7. Once in Prolog, they attempt to discover clones by trying
both static identity matching and some similarity metric matching, such as size,
containment relationships, and name indexing/similarity. The potential clones are
then reported back to the user.

7www.swi-prolog.org
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3.1.2 EMF models

Eclipse Modeling Framework (EMF) models 8 are MOF meta-meta models that
can be used to define meta models, such as UML. They are intended for use within
the Eclipse development environment.

EMFCompare [11] is an Eclipse project that performs model comparison on
EMF models. Rather than relying on EMF models’ UUIDs, they choose to use
similarity based-matching to allow the tool to be more generic and useful in a variety
of situations. The calculation for matching is based on various statistics and metrics
that are combined to generate a match score. This includes analyzing the name,
content, type, and relations of the elements and returning a value from 0 to 1, which
is later combined with “additional factors”. They also filter out element data that
comes from default values. It should be noted that while EMFCompare is specific to
EMF models, the underlying calculation engine is meta model independent, similar
to the approaches discussed in Section 3.1.3

TopCased [24] is a project providing an MDE environment that uses EMF
models and is intended specifically for safety critical applications and systems. It
performs its matching and differencing in a similar fashion to Alanen et al., using
static identity-based matching.

SmoVer [65] is another model versioning tool that can work with any EMF-
based model. In this approach they do both version-specific comparisons like
Odyssey VCS, termed syntactical, and semantic comparisons. Semantic com-
parisons are those that are carried out on semantic views. Semantic views,
in this context, are the resulting models that come from a user-defined model
transformation that SmoVer executes on the original models being compared in
order to give the models meaning from a particular view of interest. These
transformations are specified in the Atlas Transformation Language (ATL) 9. Thus,
the models are first compared syntactically, then transformed, then compared
once again. Matching is accomplished through static-identity based matching
and differences are calculated by comparing structural changes, such as attribute,
reference, role, and its referenced elements’ updates. The authors note that the
amount of work required for creating the ATL transformations is not too large and
that “the return on investment gained in better conflict detection clearly outweighs
the initial effort spent on specifying the semantic views.” The examples they
discussed required roughly 50 to 200 lines of ATL transformation language code.

Riveria and Vallecillo [68] employ similarity-based matching in addition to
checking persistent identifiers for their tool, Maudeling. They use Maude [17],
a high-level language that supports rewriting-logic specification and programming,

8http://www.eclipse.org/emf/
9http://eclipse.org/atl/
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to facilitate the comparison of models from varying meta models specified in EMF.
They provide this in the form of an Eclipse plugin called Maudeling. Using Maude,
they specify a difference meta model, shown in Figure 5, that represents differences
as added, modified, or deleted elements that inherit from DiffElement. Matching
is accomplished through the Match meta model, shown in Figure 5. Each match
element represents the link between two elements, or objects, that represent the
same thing. Rate is a ratio between 0 and 1 that represents their similarity. The
process for discovering this ratio first begins by using UUIDs. If there is no UUID
match, they then rely on a variant of similarity-based matching that calculates
the similarity ratio by checking a variety of structural features. Such features
include shared inheritance relationships; weighted structural features, as done in
SiDiff ; numerical attributes; and references. Then, to calculate differences, they go
through each element and categorize it based on one of four scenarios: it appears
in both models A and B and has not been modified, it appears in both models
A and B and has been modified, it appears in model A but not model B, or it
appears in model B but not model A. It then creates a difference model based on
this information that conforms to its difference meta model. There is no user work
required as Maudeling has the ATL transformations within it that transform the
EMF models into their corresponding Maude representations. Operations are then
executed in the Maude environment automatically, meaning that there is no reason
why the user will have to work with the Maude representation of models or meta
models.

Figure 5: Meta models from Maudeling. Modified from [68]

3.1.3 Metamodel-agnostic approaches

This section discusses approaches that deal with models that can conform to an
arbitrary meta model that adheres to specific properties.

Examples of Metamodel-independent approaches that use similarity-based
matching stratigies include the Epsilon Comparison Language [37] and DSMD-
iff [48]. DSMDiff is an extension of the work done on UML model comparison
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techniques except it works with DSMs. DSMDiff uses both similarity- and
signature- based matching in order to discover matched model elements. The
similarity-based matching focuses on the similarity of edges among different model
nodes. DSMDiff evaluates differences between matched elements and considers
them directed deltas, namely new, delete, and change. While DSMDiff was
developed using DSMLs specified in the Generic Modeling Environment (GME),
the techniques within it can be extended to work with any DSML creation tool.
The creators of DSMDiff also discuss allowing user-interaction that will allow one
to choose the mappings (matches) from a list of applicable candidates.

ECL was developed after DSMDiff and SiDiff, which is discussed later, and
attempts to address the fact that its predecessors do not allow for modellers to
configure language-specific information that will assist in matching model elements
from different meta models [37]. It attempts to accomplish this in a imperative yet
high-level manner. ECL allows modelers to specify model comparison rule-based
algorithms and then execute them to identify matched elements within different
models. The trade off in doing this however is that, while complex matching criteria
can be expressed using ECL, it requires more time and a knowledge of ECL. Kolovos
acknowledges that metamodel-independent approaches that use similarity-based
matching typically perform fairly well, but there often are “corner cases” that ECL
is well suited to identify.

Mehra et al. [53] developed a plug-in for meta-Case applications that can
perform model comparison for any set of models that can be defined by a meta-Case
tool. Meta-Case applications are those that operate similarly to CASE applications,
except they are not constrained by a particular schema or meta model. This plugin
first matches all the elements by their unique identifiers and then calculates the
differences by representing them as directed deltas. It is intended to be used for
model versioning. Oda and Saeki [59] describe a graph-based VCS that is quite
similar in that it works with meta-Case models and matches them using baselines
and unique identifiers. Differences are calculated as directed deltas with respect to
earlier versions.

Nguyen [58] proposes a VCS that can be used for model versioning that can
detect both structural and textual differences between versions of a wide array of
software artifacts. This approach utilizes similarity-based matching by assigning
all artifacts an identifier that encapsulates the element and represents the artifacts
as nodes within a directed attributed graph, similar to model clone detection
approaches.

Van den Brand et al. [85] argues that current meta-modeling techniques, such as
MOF, are not able to satisfy a reasonable set of requirements, defined by them, that
a difference representation should satisfy. As such, they present their own meta-
modeling technique and define differences with respect to it. They then provide
a model comparison approach and prototype that allows the user to configure
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which or what combination of the four model matching strategies they want to
employ. The authors provide examples where they extend the work done by Kelter
et al. [36] but then combine it with other matching techniques, like using a UUID.
This generality comes at a cost of a large amount of configuration, work, and user-
interaction.

There are methods that translate models into another language or notation
that both maintain the semantics, or meaning, of the models and are then able to
facilitate model comparison. One example is the work done by Gheyi et al. [31]
in which they propose an abstract equivalence notion for object models, in other
words, a way of representing objects that allows them to be compared. The key
in achieving this and preserving the semantics is their use of an alphabet, which is
the set of relevant elements that will be compared, and views, which are mappings
that express the different ways that one element in one model can be interpreted
by elements of a different model. They then define equivalence between two models
being the case when, for every interpretation or valid instance that satisfies one
model, there exists an equivalent interpretation that satisfies one in the other model.
They illustrate their approach using Alloy models 10, which are models based on
first-order logic including facts and predicates, and demonstrate that it is abstract
enough to work with other modeling languages. Similarly, Maoz et al. [52] present
the notion of semantic diff operators, which represent the relevant semantics of each
model, and diff witnesses, which are the semantic differences between two models.
Semantic diff operators are composed by leveraging existing work on representing
the semantics of both class (structure) and activity (behavioral) diagrams through
the use of mathematical formalisations. Diff witnesses are generated that represent
the semantic object model that is in one model and not the other, for class diagrams,
and represent the path that is possible in one model but not the other, for activity
diagrams. From these ideas, Maoz et al. provide the tools cddiff and addiff to
do class diagram differencing and activity class diagram differencing, respectively.

Lastly, the Query/View/Transform(QVT) standard provides the outline for
three model transformation languages. These languages act on any arbitrary
model or metamodel as long as they conform to the MOF specification. One of
these languages, QVT-Relations(QVT-R) allows for a declarative specification of
two-way (bi-directional) transformations and, according to Stevens [82], is more
expressive than the other QVT languages. Specifically, Stevens discusses how using
game-theoretic semantics for QVT-R facilitates a better semantic definition. This
improvement allows for a form of model comparison through its checkonly mode,
which is the mode when models are being checked for consistency rather than
making changes. In brief, game theory is applied to QVT-R by using a verifier
and refuter. The verifier attempts to confirm that the check will succeed and the
refuter’s objective is to disprove it. The semantics of QVT are then expressed

10http://alloy.mit.edu
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in such a way that implies “the check returns true if and only if the verifier
has a winning strategy for the game”. This improvement would allow one to
compare models assuming we expressed a transformation in this language that
represented the differences or similarities we were looking for. In this case, the
transformation would yield true if the pair/set of models are consistent according
to the transformation.

3.2 Methods for behavior/data-flow models

3.2.1 Simulink and Matlab models

This section looks at model comparison techniques that work with Simulink and
Matlab models.

CloneDetective [21] is an approach used to perform clone detection in models.
It uses ideas from graph theory and is applicable to any model that is represented
as a data-flow graph. It is comprised of three steps. The first step taken by
CloneDetective includes pre processing and normalisation. Pre processing involves
flattening, or inlining, all of the models and removing any unconnected lines.
Normalisation takes all of the blocks and lines found within the models and assigns
them a label that consists of information that is considered important for comparing
them. The information described in the label changes according to the type of clones
being searched for by the tool. Figure 6 displays the result of this step on the models
presented earlier in Figure 2, including the labels that come from normalisation,
such as UnitDelay and RelOp:〈. The grey portions within the graph represent
a clone. This is accomplished by CloneDetective in its second phase: clone pair
extraction. This phase is the most similar to the model matching discussed thus
far, however, rather than matching single elements it is attempting to match the
largest common set of elements. It likely falls in the category of similarity-based
matching because the features of each element are extracted, represented as a label
during normalisation, and compared.

Figure 6: Normalised model graph of model clone example [21]
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Similarly, eScan and aScan algorithms attempt to detect exact-matched and
approximate clones, respectively [63]. Exact-matched clones are groups of model
elements having the same size and aggregated labels, which contain topology
information and edge and node label information. Approximate clones are those
that are not exactly matching but fit some similarity criteria. aScan uses vector-
based representations of graphs that account for a subset of structural features
within the graph. The main difference between these algorithms and CloneDetective
is that these algorithms group their clones first and from smallest to largest. They
claim that this will help detect clones that CloneDetective can not. This is later
refuted, however, by the authors of CloneDetective [20]. aScan is able to detect
approximate clones while CloneDetective is not. Much like CloneDetective, these
algorithms utilize similarity-based matching.

Al-Batran et al. [1] notes that the previous two approaches discussed deal with
syntactic clones only, that is they can detect syntactically/structural similar copies
only. Using normalization techniques that utilize graph transformations, they
extend these approaches to cover semantic clones that may have similar behavior
but different structure. So, a clone in this context is now defined as two (sub)sets of
models that have “equivalent unique normal forms” of models. These unique normal
forms are acquired by having any of the existing tools, such as CloneDetective,
perform forty semantic-preserving transformations, some of which are presented in
their paper and are structural modifications on Simulink models. It was found that
extending the clone detection strategy in this way yields more clones than simple
syntactic comparison.

3.2.2 Sequence diagrams

Ren et al. [66] devised a technique to refactor sequence diagrams to remove
duplication. They do not actually detect duplication. Instead, they describe
various refactorings that can be done once duplication is discovered: namely
creating, deleting, changing, and moving a sequence diagram element. Liu et
al. [50] attempt to complete this work by actually detecting duplication in sequence
diagrams. They convert sequence diagrams into an array and represent that array
as a suffix tree. A suffix tree is a compressed tree that contains all the ending
elements of a string organized in an optimal way for performing search operations.
The suffix tree is then traversed and duplicates are extracted by looking for the
longest common prefix, or elements that lead to the leaf node, of two suffixes.
Duplicates are defined as a set of sequence diagram fragments that contain the
same elements and have the same sequence-diagram specific relationships. Figure 7
demonstrates an example of a duplicate. In this case, the largest common prefix
included the 4 elements highlighted within each diagram: login requirement,
login page, id and password, and success. The image is taken from their tool
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DuplicationDetector. Much like the model clone detection approaches discussed,
this technique employs a variation of similarity-based matching as it is comparing
a graph representation of a fragment‘s features/elements.

Figure 7: Duplicate sequence fragment [50]

3.2.3 Statechart diagrams

Nejati et al. [56] matches state chart diagrams for the purpose of model merging.
They accomplish this by using heuristics that include looking at terminological,
structural, and semantic similarities between models. The heuristics are split into
2 categories: static heuristics that use attributes that have no semantics, such as
the names or features of elements; and behavioural heuristics, which find pairs
that have similar dynamic behavior. Due to the use of heuristics, this approach
requires a domain expert look over the relations and add or remove relations,
accordingly, to acquire the desired matching relation. A desireable relation is one
that does not yield too many false positives or false negatives. This approach
employs both similarity-based matching through static heuristics and custom-
language specific matching through dynamic heuristics. The results are combined
and weighted equally by the approach when calculating overall similarity. After
similarity is established between two state charts, the merging operation calculates
and represents differences as variabilities, or guarded transitions, from one model
to the other.
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3.3 Methods for structural models

This section discusses approaches that are designed explicitly to work with models
that represent the structure of a system. They benefit from the domain knowledge
gained by working with structural models only.

Early work on comparing and differencing software structural diagrams was
done by Rho and Wu [67]. They focused on comparing a current version of an
artifact to its preceding ancestor. They attempt to define the characteristics of
such diagrams and outline and describe the potential directed deltas within this
domain.

3.3.1 UML structural models

UMLDiff [89], by Xing and Stroulia, uses custom language-specific matching in that
it uses name-similarity and UML structure-similarity to identify matching elements.
These metrics are combined and compared against a user-defined threshold. It
is intended to be used as a model versioning reasoner in that it is supposed to
discover changes made from one version of a model to another and assumes that
when making its calculations.

UMLDiff cld [32], by Girschick, is a tool that focuses on UML class diagram
differencing. It uses a combination of static identity-based and similarity-based
matching within its evaluation function, which measures the quality of a match.
Similarly, Mirador [7] is a plugin created for the Fujaba (From Uml to Java
and Back Again)11 tool suite that allows for user directed matching of elements.
Specifically, it allows users to select match candidates that are ranked according to
a similarity measure that is a combination of static identity-based and similarity-
based matching, like UMLDiff cld.

Reddy et al. [64] uses signature-based matching in order to compare and
compose two UML class models in order to assist with Aspect-oriented modeling [23,
26]. Aspect-oriented modeling is a modeling technique that allows separating
crosscutting concerns from other features. In this comparison approach, models
are matched based on their signatures, or property values associated with the class.
Each signature has a signature type, which is the set of properties that a signature
can take. Using KerMeta12, a model querying language, the signatures used for
comparison are derived by the tool based on the features it has within the meta
model.

Beradi et al. [9] translate UML class diagrams into ALCQI, a “simple”
description logic representation. They show that it is possible for one to reason

11http://www.fujaba.de/
12http://www.kermeta.org
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about UML class diagrams as ALCQI description logic representations, or DLs,
and they provide an encoding from UML class diagrams to ALCQI. While the
translation does not maintain the entire semantics of the UML classes, it preserves
enough of it to be able to check for class equivalence. Equivalence is defined
as the case where two classes represent “the same set of instances whenever the
requirements imposed by the class diagram are satisfied”. Because they use UML
specific semantics, we can argue that they are using custom-language specific
matching.

Maoz et al. [51] later extend their work on semantic differencing discussed
previously and provide a translation prototype, called CD2Alloy, that converts
UML classes into Alloy. This Alloy code specifically contains constructs that
determines the matching elements of two UML class diagrams and also perform
semantic comparisons such as if one model is a refinement of another. It can also
be considered to be an instance of a custom-language specific comparison matching
approach because of its use of UML semantics.

3.3.2 Metamodel-agnostic approaches

Preliminary work on model comparison was done by Chawathe et al. [12] in which
they devised a comparison approach intended for any structured document. They
convert the data representing the document structure into a graph consisting of
nodes that have identifiers that are based on the corresponding elements they
represent. This approach, which is analogous to the model clone detection
techniques, uses similarity-based matching and describes differences in terms of
directed deltas.

SiDiff [36] is very similar to UMLDiff except SiDiff uses a simplified underlying
comparison model in order to be able to handle any models stored in XML Metadata
Interchange (XMI) format. Therefore, SiDiff can work with any models defined
by a meta model that uses XMI. This approach is described by the authors in
relation to UML class diagrams, however, they state that it can be extended
to state charts as well. Similarly to UMLDiff, it uses similarity-based metrics.
In contrast to UMLDiff, as shown by the up arrow in Figure 8, its calculation
begins bottom-up by comparing the sub elements of a pair of model elements
starting with their leaf elements. This is done with respect to the elements’
similarity metrics. An example of a weighted similarity is having a class element
consider the similarity of its class name weighted the highest followed by operations,
attributes, and generalizations/interfaces. So, in the case of the two Class elements
being compared in Figure 8, all of the Classifier elements are compared first.
If a uniquely identifying element is matched, such as a class name, they are
immediately identified as a match. This is followed by a top-down propagation
of this matching pair. Figure 8 shows the algorithm finding a match and stopping
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the bottom-up comparison at Class and, subsequently, beginning its top-down
propagation at this point. This top-down approach allows for the algorithm to
deduce differences by evaluating the correspondence table that is the output of the
matching phase. Schmidt [73] demonstrates that SiDiff can be used to construct a
standard framework for detecting model differences for version management tools.
Treude [84] improves the data structure used within SiDiff in order to increase the
SiDiff algorithm’s speed. Because the elements in this algorithm are compared in
a type wise manner, it requires the users to define a function that compares two
elements of the same type. This function should return between 0 and 1, where
0 means no similarity and 1 means extremely similar. This is accomplished by
having users setting up this function/similarity criteria for each element type in a
configuration file.

Figure 8: Example of SiDiff Comparison [36]

Similarly to the translation of UML class diagrams into ALCQI, d’Amato et
al. [19] propose a comparison measure for description logics, such as those used in
the Semantic Web 13, using existing ontology, or concept and relation, semantics.
They describe a semantic similarity measure that is able use the semantics of the
ontology that the concepts refer to.

3.4 Methods for product line architectures

Chen et al. [14] presents work intended to do comparisons of product line models
for the purpose of merging. The assumption in this work is that the comparison is

13http://semanticweb.org/
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being done on one version of an artifact with respect to another version of the same
artifact. Comparison is done recursively and is more fine grained as the algorithm
gets deeper into the product line hierarchy. This approach employs similarity-based
matching: lower elements in the hierarchy compare interfaces, optionality, and type;
and higher level elements compare the elements contained by them. Differences are
represented as directed deltas.

Rubin and Chechik [70] devise a framework for comparing individual products
that allows for them to be updated automatically to a product line conforming to
those used in product line engineering. They use similarity-based matching, that is,
products are viewed as model elements and a match is defined as the case where a
pair of model elements have features that are similar enough to be above a defined
weighted threshold. Specifically, they have a heuristic function that determines the
similarity between two elements, represented as a number between 0 and 1, based on
the comparison of each element’s features and the empirically determined weights
assigned to each feature. The authors note that “(their) refactoring framework is
applicable to a variety of model types, such as UML, EMF or Matlab/Simulink, and
to different compare, match and merge operators”. The foreseeable user work that
would be required in using this framework would be having a domain expert specify
the similarity weights and features of interest and also determining the optimum
similarity thresholds.

3.5 Methods for process models

Soto and Munch [80] discusses the need for ascertaining differences among software
development process models and outlines what such a difference system would
require. They devise an approach called Delta-P [79], which they also argue can
work with various UML models. Delta-P converts process models into Resource
Description Framework (RDF) 14 notation, in order to have them represented
in a normalized triplebased notation, and performs an identity-based comparison
and calculates differences. They employ static-identity based matching as they
use unique identifiers. RDF is chosen because it is inexpensive and easy to
convert to from models, the models are easily understandable to humans, and they
already have a notation for expressing patterns in RDF graphs known as SPARQL.
Differences are represented as directed deltas, however, they provide examples of
where they are able to group directed deltas together to form higher level deltas.

Similarly, Dijkman et al.[22] discuss three similarity metrics that will help
compare stored process models: node matching similarity, which compares the
labels and attributes attached to process model elements; structural similarity,
which evaluates labels and topology; and, behavioral similarity, which looks at

14http://www.w3.org/RDF/
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labels in conjunction with causal relations from the process models. According to
the authors, “structural similarity slightly outperformed the other two metrics.”
They have no tool developed yet.

3.6 Summary

Table 1 on the next page summarizes the approaches discussed in this section
organized by the type and sub type of model they are able to compare. It is
clear from Table 1 that similarity-based matching is the most commonly employed
strategy by the techniques investigated in this technical report. Most approaches,
especially those that are more recent, are able to work with any model that conforms
to an arbitrary meta model. This is assuming the meta model conforms to approach-
specific requirements, such as the existence of unique identifiers or subscription to a
particular meta-meta modeling language. This result is consistent with the recent
trend in domain-specific modeling.

Lastly, the majority of work in model comparison thus far appears to be geared
towards model versioning, however a number of these comparison methods can be
extended for other purposes. The last column attempts to showcase the relative
amount of user work required to accomplish model comparison. This is based on
the research performed for this technical report. The justification for each tool that
has 1 * or more can be found in the textual descriptions provided previously. ECL
and the approach presented by Van den Brand et al. require the most amount
of user work, however this is intentional to allow for more power and generality.
Many approaches require no user work or interaction as they operate under specific
conditions or are dynamic enough to understand the context or meta models they
are working with.
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Table 1: Summary of Model Comparison Approaches
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4 Potential for pattern analysis

An interesting idea in MDE is providing software engineers or researchers the ability
to extract common sub-structures or patterns from a set of models. This kind of
analysis can improve existing projects by providing refactoring suggestions, helping
with discovering best practices and antipatterns within MDE, and advancing the
field of MDE in general. To accomplish this, one would need to be able to perform
a type of model comparison that is tailored to this specific task.

There are two different types of pattern analysis within MDE projects. The first
is inferring patterns or antipatterns by looking at existing projects and the second
is detecting existing patterns or antipatterns within projects. The output of the
first pattern analysis type can be the input to the second. We briefly look at both
in the following sections.

4.1 Inferring patterns

Looking at the approaches we discussed in the previous section, there are a number
of observations that we can make. Firstly, approaches using static-identity based
matching will not be of use. This is because we are not looking for elements that
represent the same concept, but rather had a similar intention in being constructed
in a particular way. Model clone detection techniques could yield some interesting
results as they are already designed to match the largest common sub sequence of
elements. If we look at the semantics of the clones extracted, likely through the
assistance of a domain-expert and the techniques discussed by Al-Batran et al. [1],
we may be able to deduce pattern- or antipattern-like subgraphs. It would be
interesting to compare the exact clones found through CloneDetective or eScan to
approximate clones found through aScan. We may not want exact clones because
they may indicate a true “copy and paste scenario”, while approximate clones may
represent a non-trivial pattern or antipattern. It should be noted that, currently,
model clone detection tools work only with behaviour models [20] because it is
difficult to strictly define the notion of a clone for structural models, according
to the authors. However, we have discussed in the previous section approaches
that detect similar elements within structural and other types of models. Of these,
similarity-based matching looks the most promising. We could tailor similarity
metrics to fit the types of patterns or sub-structures that we are looking for and
maybe even extend these techniques to consider some kind of semantic information
or definition. Lastly, we could investigate the possibility of extending some of the
behavioral similarity heuristics used for state charts [56], depending on the types
of models we are looking at.

It may be hard to define what we are looking for in terms of patterns or
antipatterns. A good starting point could be to think of model patterns or
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antipatterns that are analogous to those associated with software code [10, 29, 72].
It is important to note, that if we do not know what patterns or antipatterns we
are looking for, then graph based approaches may be inefficient and we may have
to look at inference techniques from other domains, such as grammar inference [62].

4.2 Detecting known patterns

This type of pattern analysis may be easier to facilitate than inference. We
could likely leverage some of the work done in model versioning by expressing
the patterns or antipatterns as a model that can be compared to other models
within projects. Given a threshold, models that correspond sufficiently will be seen
as being instances of the pattern or antipattern we are searching for. A variation
of this was accomplished by us previously [81] when we were able to express Java
Enterprise Edition (J2EE) antipatterns as a framework specific model and check
for antipattern instances among specific J2EE framework instances. However,
this approach works only with software frameworks. Extending the approaches
discussed in the previous section would require a non-trivial amount of work as the
majority of them deal with a single element at a time. Early model clone detection
approaches would not be very useful in their current form. However, as shown in
the extension done by Al-Batran et al. [1], we may be able to use the semantic-based
techniques they discuss to establish a correspondence between known patterns and
a normalized representation of our models. For example, if we wanted to detect the
Composite Pattern[29] or other design patterns, we could represent the pattern in
a normalized form and look for both syntactic or semantic matches in our models.
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5 Related work

5.1 Other comparison approaches

This section briefly discusses other comparison techniques and why they are not
transferable to the modeling domain.

5.1.1 Code comparison techniques

There is an abundance of work done in comparing software artifacts at the level
of programming code. In Section 2.2.1 we illustrated just one example of why
traditional versioning comparison approaches are insufficient. Altmanninger [6]
presents many more including incorrect conflict detection, conflict resolution, and
merged model versions.

5.1.2 Textual model comparison

There are approaches that serialize models to text. Cobena et al. [18] attempt to
check differences in versions of XML documents while Xlinkit [57] compares XMI
representations of models. Both of these approaches suffer from working on too
low a level of abstraction in that they can not account for model-specific features
such as inheritance and cross referencing [39]. Xlinkit results are also quite large
and difficult to work with compared to the techniques discussed in this technical
report.

5.1.3 Code clone detection

As discussed earlier, code clone detection techniques [69] have difficulty or are
unable to account for model-specific relations since they are strictly textual. Also,
the notion of a code clone and model clone can be seen as two different things.

5.1.4 Translation to formalisms

A number of examples where models were translated into formalisms capable of
performing comparison were discussed in this technical report including the work
by Gheyi et al. [31] and Berardi et al. [9]. However, there are other examples
of models being translated into such formalisms including UML state machines
into Promela/SPIN models [13, 44, 47] and, likely, others. While this material is
related, we focused mostly on approaches that were intended to performing model
comparison and differencing explicitly.
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5.2 Graph comparison

Similarity Flooding [54] is an example of a graph matching algorithm. It can
be seen as a similarity-based matching approach in that it uses the similarity of
an element’s neighbouring nodes to discover matching elements. If two node’s
neighbours are similar then their similarity measure increases. The initial similarity
is calculated using nodes’ names. The problem with this approach is that it works
on too high of a conceptual level and is not able to use diagram- or context- specific
information [25]. This is unacceptable for our purposes because it is unlikely that
meaningful matches or patterns will be discovered with very little or no context.
A similar problem is experienced by the method presented by Krinke [43] in which
similar code is discovered through program dependency graph analysis.

5.3 Related survey papers

This section discusses and contrasts other reviews that overlap the model compar-
ison review done in this technical report.

Altmanninger et al. [6] perform a survey on model versioning approaches. This
survey differs from the work done in this technical report in that they focus very
little on matching, investigate versioning systems only, and discuss only a subset of
the model comparison approaches discussed in this technical report. Furthermore,
they are much more concerned with merging than comparison.

Sebastiani and Supiratana [74] provide a summary of various differencing
approaches, however, they look only at 3 specific approaches at a high level and
compare them: SiDiff, UMLDiff, DSMDiff. This is done with a focus on how these
3 techniques can trace a model’s evolution.

Lastly, Selonen [76] performs a brief review of UML model comparison
approaches. It looks at 5 specific approaches, all of which are covered in this
technical report. It compares them by looking at their various properties including
the evaluation provided with each tool, if they are dependent on identifiers, how
customizable they are, and others. Similar to this technical report, they also note
the various usage scenarios or applications of the approaches. In contrast, this
technical report looked at techniques that deal with various types of models and
included additional UML diagram approaches not identified by Selonen. Also, this
technical report looked at model matching and differencing in a lot more detail
than Selonen’s survey.
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6 Conclusion

Model comparison is a relatively young research area that is very important
to MDE. It has been implemented in various forms and for various purposes,
predominantly model versioning, merging, and clone detection.

We provided an overview of the work done in model comparison, focusing on the
type and sub types of models that the approaches work for, the intended application
of the approaches, and the way in which they accomplish the model matching aspect
of model comparison. We observed that the majority of recent approaches attempt
to work with models from an arbitrary meta model. Also, similarity-based matching
is the approach taken by most of the model matching methods discussed in this
technical report. Lastly, model versioning appears to be the most common goal in
performing model comparison up to this point. However, much of the comparison
work done can be modified for other purposes. Some approaches require more user
effort to perform model comparison, however this is to facilitate more power and
generality. Many of the approaches require no user interaction because they operate
under specific constraints or are dynamic enough to deal with multiple situations.
Based on our qualitative evaluation of the approaches, we believe that methods
that use similarity-based matching, such as model clone detection, would be the
most adept in inferring useful sub-structures or patterns within one or more models.
It might also prove fruitful if we were to utilize the notion of approximate clones
and to incorporate behavioral comparison heuristics, if applicable. For detecting
existing patterns or antipatterns, it may be possible to build on techniques intended
for model versioning by expressing the patterns or antipatterns as a model that is
a potential match. Graph techniques may also prove useful in achieving this goal
if we compare our patterns expressed in graph form against normalized versions of
our models.

In the future, we plan on either extending existing model comparison approaches
or developing our own to analyze models provided to us from industrial partners to
find patterns or common structures within them. This may yield model comparison
techniques that are specifically tailored for this kind of analysis.
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