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Abstract

To teach students what really happens while writing formal specifications, I
develop one for a simple genealogical system, show my mistakes, and collect
the “right” specifications into an appendix. I describe some rhetorical con-
ventions for using formal mathematics along with informal natural-language
explanations, and show how formalization fits into the software development
process.

1 Introduction

A question well put is half answered. – John Dewey, How We
Think, 1910.

Once upon a time I taught an undergraduate course about “formal meth-
ods in software engineering.” It wasn’t particularly fun for either me or the
students. A biased summary of the situation is that “the students were highly
resistant to the material;” I suspect that the students would have character-
ized things differently. What I eventually realized was that I shouldn’t be
teaching “formal methods.” What the students and I needed to study was
“how to make formalization interesting,” or perhaps even fun. Calling it “for-
mal methods” focuses on mathematics; “formalizing stuff you’re interested in”
focuses on making real-world requirements precise, which is the motivation for
learning the formal methods.

This paper is an example of what I now consider a better way to teach
formalization.

1.1 Pedagogy

Writing formal specifications is an issue of rhetoric: how to convey meaning
through language and notation. It is difficult to learn because we must master
and integrate three distinct forms of communication: how to read and write
mathematics, how to read and write natural language, and, in some cases, how
to write programs.1 With all three, we must cope with the differences between
our own assumptions as writers and those of others as readers.

1The absence of “read” for programs is a subject for a different discussion about pedagogy.
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One central difficulty is that students have no idea how to begin, and get
discouraged when they hit roadblocks – a problem common to both program-
ming and mathematics. The earliest formalization process most of us were
exposed to is the grade-school word problem: things like

Two people start at opposite ends of a 31-km forest trail; one walks
quickly at 5 kph, while the other manages only 4kph. Where in
the trail do they meet?

The point of the question is to get students to set up an equation involving
distances and speeds and solve it to find a time. The math-talented solve the
equations easily, but they hate translating the words into equations. For the
math-averse, the equations are boring or scary and the “story” in the problem
statement isn’t the least bit compelling.

When I started teaching introductory programming in the 1980s, a lot of
our assignments were of the same sort:

Here is a very simple problem you care nothing about that you
must solve in a particular way because there is a specific technique
we want you to master.

The simple assignments we use to teach basic techniques have their place; we
must walk before we run. Initially we must teach a notation unfamiliar to
the students, which requires using such very small exercises (the equivalent
of words and sentences). The trouble is that, once students learn the basics,
they need something more sophisticated. Small questions don’t go far enough
– or rather, don’t start far enough back: The original problem statement has
already isolated so much information that, once the student has learned the
technique, the formalization is straightforward. When programmers get to the
point of having to design a non-trivial program, they find that more realistic
problem statements are never so close to a solution.

When we try to introduce slightly larger examples (akin to the “5-paragraph
essays” of high-school English), we make two pedagogical mistakes. First, as
with small questions, we continue to present well-polished “right answers”
instead of showing the messy creative process with guesses, alternatives, re-
finements, blind alleys, and mistakes.2 Second, we focus on conveying the nuts
and bolts of the notation instead of the problem being solved. Few computing
students are pure mathematicians; they are likely to be uninterested in the

2I’m sure many people have written whole books about why people have trouble with
ambiguity, “mistakes,” and the notion that there can be more than one answer.
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mathematics for its own sake, and insofar as they’re willing to use math at all
they want to see its practical application.

One better approach is to present students with a case study: a description
of a suitably real problem, and the story of how someone addressed it, mistakes
and all (an approach apparently more common in law and economics than
in computing). If the case is interesting enough, it provides motivation for
learning the analytical material. This paper develops one such study. I was
inspired in part by Donald Knuth, who described in fictional form his own
exploration of John Conway’s definition of numbers.[5]

“Mistakes and all” means that early sections of the paper contain actual
mistakes – ones I made while developing the specification. This means you
must read the case study carefully, because what you first read may well be
the wrong way (or at least, not the best way) to do something.3 I expect
that seeing someone else’ mistakes will encourage students to persist when
they discover their own. Where I noticed such mistakes, I corrected or at
least mentioned them later in the paper; any that remain might be especially
instructive to readers who discover them.

I didn’t record some types of mistakes: those that had nothing to do with
the core intellectual task of developing a specification. I made dozens upon
dozens of “syntax errors” in the math, but an automated type checker caught
them, in the same way the spelling checker found spelling mistakes. I some-
times introduced unnecessary variables. I failed to follow my intended naming
conventions.4 Introducing the summary in Appendix B required rephrasing
some of the main text, and I made programming errors in the scripts that
generated it.

1.2 Problem Statement

Once upon a time, I heard that the British royal family is inbred enough
that Queen Elizabeth and Prince Philip are not only husband and wife, but
also cousins via two different paths (see Figure 1). I thought it would be
fun to write a small program to find and name their relationships. I had a
bit of trouble getting the “obvious” implementation to produce the answers
I expected. Writing an informal mathematical description (now long lost)
helped me set things straight, and wound up being fun in and of itself.

3This may be the right way to read almost any non-fiction; mistakes do sometimes make
it into publications that didn’t mean to include them.

4In one case such a misnaming led to a semantic error; see Section 4.2 on page 45.
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Figure 1: Relationships Between Queen Elizabeth and Prince Philip

The routes to George II overlap other routes. To avoid one too
many sets of crossed lines, the magenta route from Elizabeth
to George III (via Adolphus), and from Philip to Louise, are
omitted.
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The two relationships everyone describes are:

• via Danish king Christian IX, Elizabeth’s great-great-grandfather (4
steps) and Philip’s great-grandfather (3 steps), which makes them 2nd

cousins once removed.

– Elizabeth: George VI, George V, Alexandra of Denmark, Christian
IX of Denmark

– Philip: Andrew of Greece, George I of Greece, Christian IX of
Denmark

• via Queen Victoria, of whom both are great-great grandchildren (4 steps),
making them 3rd cousins.

– Elizabeth: George VI, George V, Edward VII, Queen Victoria.

– Philip: Alice of Battenberg, Victoria of Hesse, Princess Alice, Queen
Victoria

The conventional notion of common ancestor uses the shortest path and might
give only the first alternative. Allowing other paths requires generalizing it.

We might or might not want to list other possibilities. For example, the
two are related via George III:

• Philip (6 steps): Alice of Battenberg, Victoria of Hesse, Princess Alice,
Queen Victoria, Edward Duke of Kent, George III

• Elizabeth (5 steps): George VI, Mary of Teck, Mary Adelaide, Prince
Adolphus, George III

Thus they can be considered 4th cousins once removed. These are two paths
to a common ancestor different from the earlier ones, but someone using the
program might want to reject this path pair because one of the paths includes
Queen Victoria.

1.3 Where Formalization Fits Into Software Develop-
ment

The act of formalization is the focus of this case study, but you need to un-
derstand where it fits into a larger context. There is some “overhead” in
understanding someone else’ specification: you must first learn the culture in
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which it was written. Culture means more than the technicalities of a notation;
it includes conventions about how to use the notation (illustrated throughout
this study), the process into which such specifications fit (the subject of this
section), and pragmatics.5

I’m not entirely fond of definitions, since they often draw sharper bound-
aries than are appropriate, but we must start somewhere. For the purposes of
this paper:6

Formal software specification is a process of analyzing natural lan-
guage descriptions and translating parts of them into precise math-
ematical representations suitable for automated analysis or further
translation into executable programs.

Software development consists of several intermingled activities, the details
and order of which vary depending on the specific methods7 the developers use.

• The developer interacts with potential users8 to figure out what the soft-
ware should do. Sometimes this activity is called “requirements analysis”
but that’s only part of it. Requirements elicitation gets potential users
to say, in natural language and within their own worldview, what the
software ought to do. Requirements analysis applies the developer’s an-
alytical skill to find ambiguities, inconsistencies, and omissions in the
users’ statements. Requirements specification turns the initial analysis
into something precise. The three processes are inherently intermingled,
as analysis suggests new questions to ask the users, and specification
reveals difficulties with the analysis.

• The developer decides how to organize the software to meet the require-
ments: what the major components will be, and how they will interact

5Tennent[8] uses “pragmatics” in the context of programming languages to include “lan-
guage implementation techniques, programming methodology, and language evolution.”
Translating a specification into code resembles language implementation, rhetorical con-
cerns are part of programming methodology, and reflecting on notation is part of language
evolution. Morris[6] defined the term to mean “origins, uses and effects.”

6Other formalists would have other purposes and thus other definitions.
7Software people usually employ the term “methodology” instead of “methods” but to

me that ought to mean “the study of methods” rather than a specific collection of methods.
8Commonly, actual “end-users” aren’t consulted and the software developers talk with

their own marketing department or with a customer’s higher-level management, who will
never use the system or will just use summary reports it produces. This often means the
result is not as suited to its intended primary users as it could be.
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with each other. Names for these processes often use words like “archi-
tecture” and “design.”

• The developer implements the design using some specific technologies
(a particular programming language, a particular database management
system, and so on), reusing existing software components where appro-
priate.

• Various people verify whether the implemented software meets its re-
quirements – by inspecting the code, by applying mathematical meth-
ods, and by testing. In-house testing is usually called “alpha testing.”
Initial testing by the customer is usually called “acceptance testing” if
there’s a single customer, or “beta testing” if there’s a larger market.

• The software gets delivered to customers. This can sometimes be a lot
more complex than just putting something up on a website for down-
loading.

The first activity is the focus of this study.

1.4 Notes On Usage

I use “Canadian spelling” – a mixture of British for some word classes (such as
those ending in -our instead of -or, and -tre instead of -ter) and American for
others (such as those ending in -ize instead of -ise).9 I use the Spivak (1991)
gender-neutral pronouns (e, em, eir, emself) when referring to non-specific
individual people instead of plural pronouns or awkward constructions like
“s/he” or “his or her.” I use “I” to describe what I actually did and “we”
(instead of “one”) to describe what any specification author might do (in
addition to its conventional meaning of a plural group to which I happen to
belong). In some places I use “you” instead of “the reader.”

I use a variant of the Z specification notation[7]. Z has its limitations,
including relative obscurity, but is mostly normal math notation.10 It has four
advantages for this paper:

9As far as I can tell the informal rule Canadians use is to pick either American or British
spelling for any one class, then stick to it (at least in a single document). Thus some might
use -ise.

10I’ll explain the strange bits as we go along, often in footnotes; Appendix A summarizes
the parts of Z I use.
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• Unlike some formal verification systems available when I chose Z, it has a
publication format that looks much like regular mathematical notation,
which I find aesthetically pleasing.

• There are programs to verify whether a Z specification satisfies what
programming language people call “context-free and context-sensitive
syntax”: structural correctness and type checking.

• It has features, such as “schemas,” that make it especially suitable for
talking about state changes in computer programs.

• It uses a typed set theory, which makes error checking much easier.

Expanding on the last point: suppose (using an untyped theory) we have two
sets X and Y meant to be disjoint, subsets x1, x2 from X, and subset y from
Y. We could declare them via something like11

x1, x2 : P X
y : P Y

To say that y never overlaps either xi , we would need to either assert

(x1 ∪ x2) ∩ y = ∅

or prove it. In Z, the declaration

[X ,Y ]

guarantees that the two never overlap. The type checkers for Z will tell us
that the assertion isn’t even legal, since you can’t take the intersection of sets
of different types.

Standard Z has some technical issues that make specifications a bit harder
to read and write than strictly necessary. I’ve made some changes to the
publication form that appears here; Section 3.3 explains the differences.

While writing this paper I kept in mind that different readers might have
different intentions and different levels of sophistication, and organized the
document to take this into account. Someone who wants to understand every
detail can read the manuscript straight through. Someone who just wants
to see the correct specification can read Appendix B and possibly Section 2.

11[Y ] introduces a new type. y : P Y means that y is a set of Y s, or, equivalently, a
member of the power set of Y.

Revision: 1.0 8



Occasionally I divert from the main flow of the case study to discuss a related
but somewhat tangential issue that some readers might want to skip. For very
short diversions or for explaining a small bit of notation I use parenthetical
remarks or footnotes. For moderate diversions that I still expect students to
read, I label the section an “interlude.” For greater diversions, especially those
explaining a detailed technical concept not specifically needed to understand
the case study, I label the section an “aside.”

2 Basic Concepts of Ancestry

This section describes a reconstruction of my requirements analysis of the
problem from section 1.2 on page 3: finding and naming relationships between
pairs of people.12 Requirements analysis involves elicitation, analysis, and
specification (Section 1.3 on page 5); the three are necessarily intertwined.

The analysis will include some concepts that might seem “obvious” – people
(Section 3.1), names (Section 3.5), common ancestors (Section 3.4) – but that
is only because it’s likely that you already have some intuitive understanding
of the key ideas. Some concepts, such as paths through the graph of ancestry
relations (Section 3.6), are a little less obvious. To learn how to analyze more
complex things, where the analyst has to learn some unfamiliar concepts, it’s
important to see how the process works for simpler cases.

2.1 Requirements Elicitation

I find it useful to view the interaction between a requirements analyst and a
client as similar to an annoyingly persistent child trying to figure out rules by
questioning a parent.

Child: Why is Fred my “uncle?”
Mother: He’s my brother, so he’s your uncle.
Child: What about Uncle Alan?
Mother: He’s your father’s brother.
Child: So two different people’s brothers are both uncles?
Mother: ponders how to give a rule that unifies the two . . . Your

uncles are your parents’ brothers.

12The passage of time suggests we treat this as historical fiction of the kind that attempts
to be reasonably accurate.
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Child: Why is Billy my “cousin?”
Mother: He’s your Uncle Fred’s son.
Child: But Grace is my “cousin” and she’s a girl.
Mother: Gender doesn’t matter. They’re both Uncle Fred’s kids.
Child: What about Sally?
Mother: She’s Aunt Mary’s daughter. . . . wisely generalizing slightly

to short-circuit a lot of other questions . . . Anybody with the
same grandparent is a cousin.

Child: What about Andy? We both have the same grandmother
but he’s my brother.

Mother: sighs

At this point an appropriate rule might be hard to formulate, but the exas-
perated parent might have a glimmer that it would have something to do with
narrower terms and more specific relationships dominating broader and more
general ones – a common pattern.

Child: Alice says she’s my second cousin. What’s a second cousin?
Mother: Her mother Sandy is my first cousin, so Alice is your

second cousin.
Child: ponders briefly . . . So what is Alice to you?
Mother: She’s my first cousin once removed.

I’ve cheated slightly, since the child is likely to have asked some other questions,
too, such as:

Child: What about Uncle Mike?
Mother: He’s Aunt Mary’s husband, and she’s my sister.
Child: So what is he to you?
Mother: My brother-in-law.
. . .
Child: Cinderella had step-sisters . . .

These introduce other concepts a genealogical system might need to handle,
such as relationships changing over time: marriages, divorces, and an initially
unrelated person becoming an uncle or step-sister. Given all the things people
want to record about their ancestors’ relationships, it can be difficult to decide
on appropriate limits. Do godparents count? Honourary aunts and uncles?
“Served under General Grant in the Civil War?” Some programs merely use
the “catch-all” of textual annotations.
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2.2 Requirements Analysis

Analysis turns the elicited sentences into something more organized, precise,
and compact, but needn’t go all the way to fully mathematical specifications
(that being the job of the requirements specification activity). Since someone
will have to read and understand a description of the analysis, it’s important
to find ways of organizing it, such as dividing the problem into smaller parts.

The critical conclusions from analyzing the words of Section 2.1 are:

• Mother named relationships between pairs of people based on the idea
of nearest common ancestor, and

• The process for naming relationships depended on the distance (number
of steps) between each person and that ancestor, and the genders of some
of the people involved.

This immediately lets us divide the problem into two parts: find a common
ancestor, and name the relationship based on the paths from each person
to that ancestor. A key insight is that changing the definition of common
ancestor requires no change in the naming, and changes in the naming (such
as via translation to different languages) requires no change in the definition
of common ancestor.

Another way of organizing requirements is to find some principle for unify-
ing them. We can use a bit of mathematical notation – variables, subscripts,
superscripts, mathematical operators – to make the analysis more precise than
what we recorded from the elicitation, but less precise than it will eventually
become. Thus we can turn Child and Mother’s dialog into a tabular semi-
mathematical summary (Table 1). Composing the table required asking a few
more questions for disambiguation, which is typical of requirements analysis:

• Without qualifiers, what does “cousin” mean? (“first cousin”).13

• Whose aunt is Mary? From the answer about cousins, and the assump-
tion that “cousin” means “first cousin” we could deduce she is Child’s
aunt, but it would be better to ask.

The conventional notion of nearest common ancestor of two people P1 and
P2 is usually defined by a process: trace back through the ancestors of each,
stopping upon finding a person P0 who is ancestor to both. If there are several

13In common English the word “cousin” is actually somewhat ambiguous, sometimes
extending to second, third, or even further.
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Table 1: Summary of Elicited Relationships
P1 is P2’s Relation via Ancestor n1 n2

Fred Child uncle Mother’s parents 1 2
Fred Mother brother Mother’s parents 1 1
Alan Child uncle Father’s parents 1 2
Alan Father brother Father’s parents 1 1
Billy Child (1st) cousin Mother’s (and

Fred’s) parents
2 2

Billy Fred son Fred 1 0
Grace Child (1st) cousin Mother’s (and

Fred’s) parents
2 2

Grace Fred daughter Fred 1 0
Sally Child (1st) cousin some parent’s

parents
2 2

Sally Mary daughter Mary 1 0
Andy Child brother Mother and Father 1 1
Alice Child 2nd cousin Mother’s

grandparents
3 3

Sandy Alice mother Sandy 0 1
Sandy Mother 1st cousin Mother’s

grandparents
2 2

Alice Mother 1st cousin
once removed

Mother’s
grandparents

3 2

Relationships are ordered as in the main text. Read each line
as:

P1 is P2’s Relation via Ancestor, with n1 steps from
P1 to Ancestor and n2 steps from P2 to Ancestor.
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such people, choose the ancestor whose distance from P1 and P2 is smallest.14

The terminology for describing the relationship between the original two people
depends on the number of steps n1 and n2 between them and the ancestor. In
English the name of the relationship between P1 to P2 depends only on the
values of n1 and n2.

• If n1 = 0, P1 is the common ancestor: identical to P2 if n2 = 0, parent if
1, grandparent if 2, and so on. Similarly, when n2 = 0, P2 is the common
ancestor and P1 is a descendant: self, child, grandchild, and so on.

• If n1 = 1, then P1 is sibling to P2 if n2 = 1, aunt or uncle if n2 = 2,
great-aunt or great-uncle if 3, and so on.

• When n2 = 1, names work out similarly to n1 = 1 but using “inverse”
relationship names: niece or nephew when n2 = 2, great-niece or great-
nephew if 3, and so on.

• If both numbers are 2 or greater, the two people are cousins. What kind
of cousins are determined by the two numbers, which, since cousinship
is symmetric, we can sort “without loss of generality” so that n1 ≤ n2.
n = n1−1 is the degree (nth cousins) cousins. r = n2−n1 is the number
of times removed (r removed, or omitted if r = 0).

3 The Original Specification

This section describes the specification as I originally developed it. Section 5
discusses how it might change in future. Appendix B collects the “correct”
portions of the specification together and omits explanations of the Z language.

3.1 People

The central concept of this formalization is “people.” In the Z language, basic
concepts become “types.” Conventionally, I name types in the singular, and
in capital letters.

[PERSON ]

14This begs the question about exactly what “smallest” might mean. For example, on gen-
eral principles (without considering real-world usage about genealogical relationship names)
the minimum, maximum, or sum of n1 and n2 might each make sense.
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Type PERSON is the set of all people we’d ever want to represent in the
eventual software system. Technically, it’s countably infinite; at any time a
computer system will only represent a finite subset. This is typical of math-
ematical specifications: we write definitions with unrealistic assumptions like
infinite sets and infinite-capacity integers, then implement a finite subset.

The next critical thing to specify is the notion of mother and father. At
this point many of my students would be thinking about a record or class
representing people, such as the Java definition:

public class Person {
private Person mother, father;

} // end class Person

Part of my job as a teacher is to get them to think in higher-level (more
abstract) terms.

The most common mathematical idiom corresponding to a class with in-
stance variables is to consider each variable a function from the class type to
the member type:15

father of: PERSON → PERSON
mother of: PERSON → PERSON

However, genealogists are used to having to deal with either or both being
unknown, or at least not represented in their current data. The person Java
class technically uses a special value, null, to represent “unknown.” We could
do something equivalent: introduce a distinguished value

unknown: PERSON
with the convention that if father of (x ) = unknown there is no information
about x’s father, rather than that the father is some specific person we’ve
called unknown. Mathematically, though, it is better to think in terms of
partial functions.16 Technically, a partial function is a set of ordered pairs
where each possible 1st element of a pair occurs at most once. In a total
function, every possible 1st element occurs exactly once. In this case the 1st

element is an arbitrary person and the 2nd element is eir father or mother,
respectively.17 If a person p’s father is unknown, there is no pair in the father
function with that person as the 1st element (or “p is not in the domain of
father”).

father of: PERSON 7→ PERSON
mother of: PERSON 7→ PERSON

15I commonly give functions names with an of suffix.
16 7→ means “partial function”; → means “total function.”
17This ignores the issue of distinguishing biological from foster or custodial parents; see

Section 5.
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It may be “obvious” what the function should mean (how it relates to the
natural language requirements), but the explanation should make it specific:

• father of (p) and mother of (p) are the father and mother of person p,
respectively.

Such connections to the natural-language requirements are even more impor-
tant for multi-parameter functions such as relation name of on page 36.

3.2 Interlude: “Knowledge,” State, and Schemas

We could continue to develop a specification along these lines. However, ul-
timately it will help guide a computer implementation, where operations like
“add a new person” and “specify that person’s parents” will be necessary.
Defining each such operation requires talking about information both before
and after the operation, so we can’t use a single global set of unchanging
definitions.

The “state” of a software system at a particular time is a representation
of what is “known” then. Basically state is a tuple: a list of mathematical
values,18 each corresponding to the representation of one item the software
“knows”. To represent state we introduce a special kind of typed tuple Z calls
a schema:19

People
people : P PERSON
father of : PERSON 7→ PERSON
mother of : PERSON 7→ PERSON

It shouldn’t be surprising to anyone familiar with software development that
this initial specification step is naive, and will need revision.

It is useful to think of the all-capitals sets as being all the people anyone
could ever define, while the lower-case sets are the set we’re “currently” talking

18“Values” leads non-mathematical programmers to think of scalars such as integers and
real numbers, but “mathematical values” includes things like relations and functions and
even functions that return functions.

19 I follow a convention of naming types in all capitals, schemas by capitalizing individual
words, and variables in lower case with an underscore ( ) between words. Z is case sensi-
tive; it is thus possible to have a type, a schema, and a variable of the same “name” but
different typographical conventions – which can be the least confusing thing to do in some
circumstances, once one knows the convention.
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about – those “known to” (that is, represented within the data of) the intended
software package at some particular point in its execution. Initially the package
knows nothing about any people; typically the program would read some data
file and add people according to what it found there.

A comprehensible formalization needs not only the precise, mathematical
portions, but also an informal explanation that connects the formalization to
something more understandable to the average technical reader. Thus, if the
intervening explanation of schemas were unnecessary, the following explana-
tions should have gone immediately after the People schema:

• people is the set (P) of currently-known PERSON s.

• We know some people’s mother or father or both.

The first sentence makes clear that people isn’t some arbitrary set of people;
it is meant to be the set of all PERSON s known to the system at a particular
point in time. A full software system might have many such sets. For example,
it is common to have “undo” operations to reverse prior edits; deleting several
people might require a set of recently-deleted PERSON s to restore. The 2nd

sentence is phrased to avoid simply reading off the function in English.
We’d also want to say something about the consistency of the data: that

any PERSON mentioned in the father and mother functions is in the set of
known people. If I weren’t explaining usage conventions piecemeal, I should
have said so when I first introduced the functions:

∀ p, f : PERSON | (p, f ) ∈ father of
• p ∈ people ∧ f ∈ people

A direct translation to English might be:

For every two PERSON s p and f such that (p, f ) is in the set
father of , it is the case that p and f are both members of set
people.

We ought instead to write it in a less formal and more reader-friendly way:

• Anyone mentioned in mother of or father of , in either role, is in the set
of known people, or

• mother of and father of only deal with known people.

The two descriptions, mathematical and natural language, complement each
other. The natural language gets across the main ideas, and relates the math-
ematics to the requirements, while the mathematics makes it precise.
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Many beginners think about individual elements like this, but it’s better
to think about entire sets and functions:

father of ∈ people 7→ people
mother of ∈ people 7→ people

people 7→ people is the set of all possible (partial) functions from people to
people. father of and mother of are each a single function from this mega-
set. Thus a better way to write the People schema is:

People
people : P PERSON
father of : PERSON 7→ PERSON
mother of : PERSON 7→ PERSON

father of ∈ people 7→ people
mother of ∈ people 7→ people

Everything before the bar is definitions; everything after is assertions. The
itemized list of explanations is (usually) in the same order as the parts of the
schema. It explains the definitions first and the assertions second. Wherever
possible, the explanation uses the terminology of the elicited requirements
instead of the mathematics.

3.3 Aside: Taking Liberties with Z

I’ve found that the official way to write Z is harder to teach than I’d like. It
would be much easier to get students started if I could say:

People
people : P PERSON
father of : people 7→ people
mother of : people 7→ people

• people is the set of PERSON s currently known to the genealogy system.

• Each person has at most one father recorded.

• Each person has at most one mother recorded.

Z has technical reasons for disallowing this. The definitions (above the bar)
can be in any order. Z has a strict definition-before-use semantics, and there’s
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no provision for some convenient topological sorting of the definitions. Fur-
thermore, Z allows a new schema to “include” an older one, which means a
adding a literal copy of the old to the new. This combination of features, and
a few other constraints, mean that people can’t be considered to be defined
until the assertion section.

I wrote the first draft of this case study using official Z syntax. Then
in a revision pass to improve readability, I realized that some fairly tricky
specifications would be shorter and easier to understand if I could write things
as in the previous section (Section 3.7.4 on page 31). Hereafter I’ll be using
my syntax. To continue to rely on the type checker, I wrote some Unix scripts
(using make, bash and awk) to translate my version to the official one.

3.4 Common Ancestors

The first level of defining ancestors is immediate ancestors (parents) and im-
mediate descendants (children).

Parent
People
parent : people ↔ people
child : people ↔ people

parent = mother of ∪ father of
child = parent∼

• Each person has have zero or more parents and zero or more children
recorded.20

• A parent is a mother or a father.

• If one person is another’s parent, the second is the first’s child.21

Listing People in the first line of Parent means that Parent includes everything
in People (definitions plus assertions), plus the newly-defined stuff; it is Z’s
way of letting us break up specifications into comprehensible parts. It will
turn out also to be essential in defining operations that change program state.

While mother of and father of are each functions, their union is a general
relation: if we know both parents, a person occurs as the 1st element in two

20Literally, parent and child are unrestricted binary relations between people.
21Literally, child is the relational inverse of parent .
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different pairs. Distinguishing functions from general relations is one reason
why I name functions with the of suffix and general relations without.

The natural definition of “ancestor” is a parent, or a parent of a parent,
and so on for as many steps as the available data provide. Z expresses that as
a transitive closure:

ancestor = parent+

Some specifications are simpler using a zero-step ancestor (“self”). That’s
a standard pattern in mathematical descriptions: to allow for a “trivial” or
“degenerate” case.

Ancestor
Parent
ancestor : people ↔ people
ancestor0 : people ↔ people

ancestor = parent+

ancestor0 = parent?
∀ p : people • p 7→ p 6∈ ancestor

• Someone’s ancestor is anyone found by following parent relations repeat-
edly (at least once).

• Someone’s ancestor0 is either an ancestor or emself.

• No one is eir own ancestor.22 23

It turns out that ancestor0 is used more often than ancestor in subsequent
specifications,24; why use the more complex name for the more often-used
concept? Instead of ancestor0 and ancestor we could use names ancestor and
ancestor1 respectively. There’s an important rhetorical issue about whether to
define things to be convenient to the specifications or convenient for the users
from whom we elicited the requirements. I aim to be reasonably convenient
for both audiences but favour the users; it’s hard enough to get students to

22x 7→ y is a notation used for rhetorical purposes. It means the same thing as (x , y) but
emphasizes that it is an ordered pair meant to be part of a function rather than a general
relation.

23This of course eliminates any possibility of representing the relationships in Robert
Heinlein’s classic time-travel story, All You Zombies.[3]

24At a late stage in editing, I had to go through all references to each version of “ancestor,”
and definitions derived from them, to verify whether 0 steps was acceptable. I haven’t listed
all the places I changed, but there were several errors to fix.
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deal with mathematics in the first place, and every step away from natural
language makes things harder.

The natural-language definition of a common ancestor is straightforward:
given two people, a common ancestor is anyone who is an ancestor to both.
To a mathematician a sentence like “given an x and a y, find a z” suggests a
function: f : x × y → z .

CommonAncestor
Ancestor
common ancestors of : people × people 7→ P people

∀ p1, p2 : people • common ancestors of (p1, p2) =
ancestor0(| {p1} |) ∩ ancestor0(| {p2} |)

• “Common ancestors” of two people are ancestors of both.25

The English phrasing doesn’t say whether we mean ancestor or ancestor0. It
is sometimes important to leave out a clarification because being picky about
that detail makes the sentence harder to understand. Formalization involves
removing ambiguities, but that’s what the math is for; the accompanying
English can remain somewhat ambiguous (though as unambiguous as is rea-
sonable to expect given the rhetorical needs of the prose). This does risk a
mismatch between the prose and the mathematics; it is a matter of judgement
to decide how far the two should differ in each case.26

3.4.1 Aside: Binary Function versus Ternary Relation

There is another way to think about common ancestors: as a ternary relation
among people. This is a general principle: whenever we see a function whose
result is a set, we should think about relations (sets of tuples) instead of
functions. Depending on what other mathematical formulas we must write, it
sometimes gives simpler specifications.

25Formally speaking, given an arbitrary binary relation r , r(| s |) is the set of 2nd elements
from all ordered pairs where any value from set s is the 1st element.

26Perhaps a footnote can explain the picky details, to keep the main prose compact.
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CommonAncestorRelation
CommonAncestor
ancestry : P(people × people × people)

ancestry = {p0, p1, p2 : people
| p0 ∈ common ancestors of (p1, p2)
• (p1, p2, p0)}

• ancestry is a set of triples (3-tuple) of people

• ancestry is defined as the set ({...}) found by

– considering every combination of three people p0, p1, p2 (1st assertion
line: the one with ’{’)

– for which p0 is a common ancestor of p1 and p2 (2nd line, with “|”)

– and inserting the triple (p1, p2, p0) into the set (3rd line, with “•”).

It turns out that later specifications didn’t need this particular relation, but
in some formalizations the approach might make some assertions simpler.

3.5 Interlude: Dealing with Names

Genealogy involves relationships between people, but research starts with
names. Unfortunately the genealogist quickly finds that different people have
the same name. Handling this problem requires a great deal of work; the U.S.
Social Security Administration had to deal with at least one case where two
different people had the same full name, birth date, city of birth, and (if I
recall correctly) birth hospital. I’m evading such issues by assuming that each
PERSON is completely unique and that no two PERSON s indicate the same
real-world person. To deal with names we introduce

[NAME ]

• There is a set of NAME s, the details of which are (currently) outside
the scope of the specification.

Conventionally names are sequences of symbols from some written language,
but might be arbitrary glyphs.
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Names
People
names : P NAME
has name : people ↔ names

• The software will record some set of names.27

• There is an unconstrained relation, has name, between people and names.28

Different people may have the same name, the same person might have
multiple names (aliases, or changes of name), and some people might (at
least briefly) have no name recorded.

This specification derives from People, not CommonAncestor . Deriving a new
schema from one as far up in the hierarchy as possible helps make different
parts of the overall software more independent of each other, and makes it eas-
ier to talk about what portions of a program’s state each operation leaves alone
while changing other portions. Later, we’ll have to put the pieces together.

3.6 Ancestry Paths

Naming the relationship between two people requires tracing paths through
the ancestry relation. Defining nearest common ancestors (and possible gen-
eralizations of “nearest”) requires knowing at least the lengths of such paths.
Unlike computer programs, a mathematical specification has no need to define
structures that are as small and efficient as possible, so can describe very large
sets if that happens to be convenient.29 Thus we define the set ancestry paths
of all paths from each person to all eir ancestors.

27This implies nothing about how it will record names. There might be an explicit set,
but possibly there would be some indirect representation. For example, if the relation’s
representation were just a set of ordered pairs, the 2nd elements of all pairs correspond to
names.

28I originally used names of instead of has name, which led me to make the conceptual
error discussed in Section 4.2 on page 45.

29There is a process called “refinement” which augments a compact but “inefficient” spec-
ification into one whose components correspond more directly to typical efficient structures
from a chosen programming language. Section 4 on page 42 gives a very brief overview of
what that entails.
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AncestryPaths
CommonAncestor
ancestry paths : P(seq1 people)

∀ s : ancestry paths • ∀ i : 2 . . #s •
s(i) ∈ parent(| {s(i − 1)} |)

∀ p0, p1 : people | p0 ∈ ancestor0(| {p1} |)
• ∃ s : ancestry paths • s(1) = p1 ∧ s(#s) = p0

• ancestry paths is a set of non-empty sequences of people.30

• In every ancestry path s , each element s(i)31 is a parent of the previous
element s(i − 1).32

• There is an ancestry path from each person p1 to each of eir ancestors
p0

33.

The first version I wrote of the 1st assertion was excessively complex:

∀ s : ancestry paths ; n, i : N
| n = #s − 1 ∧ i ≥ 1 ∧ i ≤ n
• s(i + 1) ∈ parent(| {s(i)} |)

I had completely forgotten the a . .b expression, which means the set of numbers
between a and b inclusive.34 I had also introduced the unnecessary variable
n; it contributes nothing to either the meaning or the clarity of the assertion.

The first version of the last explanatory item was similarly unnecessarily
complex:

30seq would mean sequences of any length, including 0. seq1 excludes empty sequences
(those where #s, the size of s, is zero). I eventually realized that, since parent+ has no
cycles, it would be technically better to say “iseq,” injective sequences, instead of “seq,”
ordinary ones; injective sequences have no duplicate elements, which ordinary ones might
have.

31Technically a sequence s of some type T is a function from the integers 1..#s to elements
of T .

32The English is technically incorrect, since s(1) has no previous element, but that’s a
common situation: the prose follows intuitive phrasing while the math specifies the precise
details.

33Initially I used ancestor instead of ancestor0; I did not realize my mistake until I hap-
pened to review this specification and the Self schema on page 37.

34It is empty if a > b, which means the assertion is trivially true of empty and singleton
sequences.
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For every ancestor p0 of every person p1, there is an ancestry path
s with p1 as the 1st element and p0 as the last.

Somewhat better is:

ancestry paths records a path from each person to each of eir an-
cestors.

The final version is even better, since it takes one more step towards the in-
formal terminology without losing a connection with the formal specification;
the correspondence between the English “ancestry path” and the mathemat-
ical ancestry paths is clear enough. It thus took me three tries to write an
explanation I now consider to be at the right level of abstraction.

Quite a while after writing the AncestryPaths schema, I realized that the
assertion and all the versions of its second assertion have a common subtle
rhetorical problem. They say that ancestry paths has certain elements, but
allow the possibility that there are others.35 This is a common error of writing
specifications of sets (Section C.2). Specifying that ancestry paths is exactly
this set of sequences requires defining it explicitly via a set comprehension:

ancestry paths = {p0, p1 : people; s : seq1 people
| p0 ∈ ancestor0(| {p1} |) ∧ s(1) = p1 ∧ s(#s) = p0

• s}

• ancestry paths is the set of all sequences of people where the last element
of each sequence is an ancestor of the first.

Read more literally, the set comprehension means:

Form the set of ancestry paths by considering each pair of people
p0 and p1 and each possible sequence of people s . Include s in the
set if and only if p1 is the 1st element of the sequence, p0 is the
last, and p0 is an ancestor of p1.

36

Of course, any practical computer program will reify as few of these paths as
it needs.

35In this specific example it can be proven that there are no others, but in general there
might be. In any case it is better to define the set explicitly.

36There is a way to write this specification so that p0 and p1 are existentially quantified in
the “such that” clause (after |) and thus don’t appear in the list of variables at the start of
the comprehension. Some mathematicians find this more aesthetically pleasing, but I find
it harder to read.
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3.7 The Genealogical Relationship Problem

Section 2.2 on page 11 identified two sub-problems: finding (generalized) near-
est common ancestors (the subject of this section), and naming the resulting
relationships (Section 3.8 on page 33). We also have two choices of how to
define appropriate common ancestors based on whether to accept George III
as a common ancestor of Elizabeth II and Philip:

• Philip (6 steps): Alice of Battenberg, Victoria of Hesse,
Princess Alice, Queen Victoria, Edward Duke of Kent, George
III

• Elizabeth (5 steps): George VI, Mary of Teck, Mary Adelaide,
Prince Adolphus, George III

A priori (before writing a specification) there does not seem to be any tech-
nical reason to prefer either alternative; it would be entirely up to the client
being interviewed during requirements elicitation. During analysis it is wise to
specify both alternatives, and during implementation to permit either based
on end-user preferences.

3.7.1 Common Properties, Take 1

Any way of defining nearest common ancestor would correspond to assertions
about “acceptable” pairs of ancestry paths. Thus one acceptable path pair for
Elizabeth and Philip is

• Elizabeth: George VI, George V, Edward VII, Queen Victoria.

• Philip: Alice of Battenberg, Victoria of Hesse, Princess Alice, Queen
Victoria

Adding Edward of Kent to both paths wouldn’t be acceptable; it is still a
pair of ancestry paths leading to a common ancestor, but it isn’t “nearest”
in any sense. Traversing past a common ancestor such as Victoria would be
appropriate if we want to allow George III. Both possible definitions have
some common properties. A pair of ancestry paths define a “nearest common
ancestor” relationship only if:

1. Each path begins with one of the two people being compared.

2. Each path ends with the same common ancestor.
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3. The paths are distinct.

. This says nothing about what “distinct” should mean. At this point I had
very fuzzy ideas about it and wasn’t quite aware of that. I expected that I’d
define it more precisely as I wrote the specification.

To express these constraints formally, we must decide on a way to represent
“pairs of ancestry paths.” My first thought was to introduce new types:

ANCESTRY PATH == seq1 PERSON

PATHPAIR == ANCESTRY PATH × ANCESTRY PATH

and define a relation saying “for each pair of people, what are the appropriate
pairs of ancestry paths?”

ANCESTRY PAIRS : PERSON × PERSON ↔ PATHPAIR

While trying to figure out what assertions to write for a schema,37 it occurred
to me that there was no need for such a type. A simple relation is sufficient;
from an appropriate pair of paths we could deduce the two people and their
common ancestor. At this point I was still using the raw Z syntax:38

BasicCommonPaths
AncestryPaths
common ancestor paths :

ANCESTRY PATH ↔ ANCESTRY PATH

∀ s1, s2 : ancestry paths | (s1, s2) ∈ common ancestor paths
• s1(#s1) = s2(#s2)

• “Common ancestor paths” is a set of pairs of ancestry paths (which are
sequences of people).

• In every ancestry path pair, the last element of each of the sequences is
the same person.39

37This happened before I managed to complete something complicated that I’d have to
document given the intent of this study.

38I originally made a rhetorical error: BasicCommonPaths was called AcceptablePathPairs
and common ancestor paths was acceptable path pairs. The older names were chosen from
a technical perspective; the newer are closer to the user’s world-view.

39This assertion intentionally doesn’t fully define common ancestor paths, which is the
job of later specifications. Thus it is not an example that needs a set comprehension.
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As usual with Z specifications, at this point I needed to find an appropriate
way to restrict the declaration (which used type ANCESTRY PATH , which in
turn uses type PERSON ) to appropriate “sets of known things.” The informal
English I had in mind was roughly:

Everybody mentioned in either sequence of a pair is in people, and
every sequence is from ancestry paths .

That turned into:

ElementAncestryPath
BasicCommonPaths

∀ p : people; s : dom common ancestor paths∪
ran common ancestor paths

| p ∈ ran s • s ∈ ancestry paths

The phrase “either sequence of a pair” became variable s40 while the phrase
“everybody mentioned” became variable p.41 Unfortunately I had forgotten a
fundamental guideline for writing readable specifications: It’s usually clearer
to write assertions about sets rather than elements of sets. I made the mistake
in two places: neither s nor p was necessary. In fact the assertion about p was
already implied by the assertion about s .

In this case it’s far clearer to write:

SetsAncestryPath
BasicCommonPaths

common ancestor paths ∈ ancestry paths ↔ ancestry paths

• Both sequences in a “common ancestor path” are ancestry paths.

I then tried to think through what it meant for the paths in a pair to be
distinct.

40dom and ran are the sets of sequences in the 1st and 2nd positions of all pairs, respec-
tively.

41A sequence of people is a function from natural numbers to people, so the “range” (ran)
of the sequence is the set of people mentioned.
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AncestryPathDistinctness
BasicCommonPaths

∀ s1, s2 : seq1 people | (s1, s2) ∈ common ancestor paths •
s1(#s1) = s2(#s2) ∧
(#s1 > 1 ∨ #s2 > 1) ⇒ s1 6= s2

• The two sequences in every ancestry pair each end42 with the same person
(the common ancestor), and

• The two sequences aren’t identical (unless they are each of length 1)

Embarrassingly, my first version of the quantifier (∀ s1, s2 . . .) failed to note
that at least one of the sequences had to have more than one element, and
omitted the qualifier (#s1 > 1 ∨ #s2 > 1). A program based directly on the
specification would have had to say that “David Alex Lamb” is unrelated to
“David Alex Lamb” rather than that they are the same person – a problem
I originally only discovered in testing the program years ago. More embar-
rassingly, I forgot that incident when writing this specification; I only realized
the error when I reviewed the schema explicitly asking myself “what hap-
pens in the trivial case?” (Section 3.7.2) A definition of “acceptable ancestry
paths” requires both assertions. I could have included ElementAncestryPath
in AncestryPathDistinctness ; however, neither assertion depends on the other,
so there is no good reason to privilege one over the other.

3.7.2 Approach 1: No Other Common Ancestor

My first idea for defining “common ancestors” was:

An appropriate pair of paths has no common ancestors on either
path, except the last.

This rules out the relationship based on George III, since Victoria is a common
ancestor.

It occurred to me to check if this works for the special case when one person
is the ancestor of the other: in this case the ancestor’s path has just one ele-
ment: the ancestor itself. That works: the definition covers both the “normal”
case and the “trivial” one (sometimes called the “degenerate” case).43

42The idiom s(#s) literally means the sequence s (a function) applied to the size of the
sequence, which gives the last element of the sequence.

43This is where I realized my mistake in omitting the clause about sequence lengths in
schema AncestryPathDistinctness.
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The rhetorical issue here is finding a readable way to say “all elements but
the last” in a sequence. The last element is the one at position #s ; the other
elements are those from indices 1 to #s − 1. Thus an appropriate quantifier
would look something like

∀ i : 1 . . #s − 1; p : people | p = s(i) . . .

which can be read “for every index i from 1 to one less than the size of the
sequence s , and for every person p in the sequence at any such index, . . .”
This has the charm that, if the sequence has only one element, the quantifier
is trivially satisfied; it isn’t necessary for “. . .” to be true of the only element
in a length 1 sequence.

NoOtherAncestor
CommonAncestorPaths

∀ s1, s2 : seq1 people; p1, p2 : people
| p1 = s1(1) ∧ p2 = s2(1) ∧

(s1, s2) ∈ common ancestor paths •
(∀ i : 1 . . #s1 − 1 • s1(i) 6∈ common ancestors of (p1, p2))
∧ (∀ j : 1 . . #s2 − 1 • s2(j ) 6∈ common ancestors of (p1, p2))

The best natural language summary is the quote at the start of the section.
Taken line-by-line, a direct reading of the assertion is:

• For every pair of sequences s1 and s2

• with 1st elements p1 and p2 respectively

• for which s1 and s2 are a pair of “common ancestor paths,” it is the case
that

– no element of s1 (except the last) is a common ancestor of p1 and
p2

– and similarly for s2.

I could have used i in the second assertion instead of j , since the scopes of the
two quantifiers don’t overlap, but I judged that using a different name might
make the assertion a little clearer.
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The parallel structure of the two last clauses (not to mention the excessive
length of the schema) eventually caused me to wonder if there were a way to
combine them. Eventually I thought of

(s1(| 1 . . #s1 − 1 |) ∪ s2(| 1 . . #s2 − 1 |))
∩common ancestors of (p1, p2) = ∅

• . . . it is the case that

– the elements of both sequences, except the last,

– are not common ancestors of p1 and p2.

Once again this is an example of changing a specification written with elements
to one written with sets.

3.7.3 Approach 2: One Child Not a Common Ancestor

Even if we want to generalize “nearest common ancestor” to allow George III,
we wouldn’t want to allow extending both paths with George II; the longer
pair don’t give us any additional useful information. One thing that made
this example work is that there was a way to get from Elizabeth to George
III without going through Victoria; Victoria wasn’t on both paths. George II
would make sense as an “appropriate common ancestor” only if he had some
hypothetical child who was an ancestor of one without being an ancestor of
the other, which would give yet another distinct pair of paths.

So, perhaps an appropriate definition is that

OneChildNotCommon
CommonAncestorPaths

∀ s1, s2 : seq1 people; p1, p2 : people | p1 = s1(1) ∧ p2 = s2(1) ∧
(s1, s2) ∈ common ancestor paths •

s1(#s1 − 1) 6∈ common ancestors of (p1, p2) ∨
s2(#s2 − 1) 6∈ common ancestors of (p1, p2)

• In every ancestry path pair, at least one of the children of the common
ancestor (2nd last element of the sequence) is not a common ancestor.44

44I could have broken down this explanation line by line as with NoOtherAncestor , but
given that schema’s textual nearness and the need for an intuitive description at some point,
I omitted it.
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Long after writing this schema I realized that for the expression s(#s − 1) to
make sense, the set had to be of length 2 or greater. Thus a correct assertion
is:45

OneChildNotCommon
CommonAncestorPaths

∀ s1, s2 : seq1 people; p1, p2 : people; ca : P people
| p1 = s1(1) ∧ p2 = s2(1) ∧

(s1, s2) ∈ common ancestor paths ∧
ca = common ancestors of (p1, p2)

• ( #s1 > 1 ⇒ s1(#s1 − 1) 6∈ ca ) ∨
( #s2 > 1 ⇒ s2(#s2 − 1) 6∈ ca )

• In every ancestry path pair where at least one of the two sequences is of
length 2 or greater, at least one of the children of the common ancestor
(2nd last element of the sequence) is not itself a common ancestor.

3.7.4 Common Properties, Take 2

At some point a specification meant for other people to read needs an edit
for readability. After about the sixth reworking of Section 3.7 I decided the
basic Z syntax was less readable than it should be and introduced the variant
I described in Section 3.3. I then noticed that SetsAncestryPathAssertion was
redundant, and started shortening Section 3.7.1. That shortening brought
BasicCommonPaths and AncestryPathDistinctness close enough together that
I could notice they both contained the assertion

s1(#s1) = s2(#s2)

That caused me to look at AncestryPathDistinctness again, and I noticed that
I wanted to allow sequences of length 1 to be exempt. I happened to think
about what this might mean for longer sequences and came to yet another
embarrassing realization: the s1 6= s2 assertion added nothing useful. Any
“distinctness” between two paths in a pair is inherently bound up in how we
define the nearest common ancestor. Combined with my simplified syntax, all
the schemas of Section 3.7.1 could be rewritten as a single schema:

45With the assertions becoming textually longer, I introduced ca to shorten them again.
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AncestryPathPairs
AncestryPaths
common ancestor paths : ancestry paths ↔ ancestry paths

∀ s1, s2 : ancestry paths | (s1, s2) ∈ common ancestor paths
• s1(#s1) = s2(#s2)

• “Common ancestor paths” are pairs of ancestry paths.

• In every pair, the last element of both sequences is the same person (the
common ancestor).

One of the major advantages of writing specifications in small pieces is that, af-
ter making this change, no other parts of the specification needed to be edited.
This was especially important given that this version of CommonAncestorPaths
wasn’t the final one. After many proofreadings of Section 3.7.3, I finally re-
alized that OneChildNotCommon as written incorrectly allowed common an-
cestors to appear before the penultimate element of each class. Thus my my
initial vague concept of “distinctness” of the two sequences was important;
they should contain nothing in common except the last element. This led to
what I hope is the final version:

CommonAncestorPaths
AncestryPaths
common ancestor paths : ancestry paths ↔ ancestry paths

∀ s1, s2 : ancestry paths | (s1, s2) ∈ common ancestor paths
• s1(#s1) = s2(#s2)
∧ s1(| 1 . . #s1 − 1 |) ∩ s2(| 1 . . #s2 − 1 |) = ∅

• “Common ancestor paths” are pairs of ancestry paths.46

• In every pair, the last element of both sequences is the same person (the
common ancestor).

• The two sequences share no other elements besides the last.

46Ancestry paths are defined in Section 3.6 on page 22.
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3.7.5 Synthesizing the Result

There were two choices for the distinguishing assertion about ancestry paths.
Moreover, the assertions about names were in a separate schema that wasn’t
included in any of the schemas about acceptable ancestry paths. Thus we
could define a complete set of ancestry-concept definitions as either

AncestryDefinition
OneChildNotCommon
Names

or the alternative with NoOtherAncestor .

3.8 The Relationship Naming Problem

Section 2.2 on page 11 described how relationships are named in English.
This section formalizes those requirements. Applying the ideas from previous
specification, at this point we expect to define types and schemas for the
concepts needed to extend the existing specifications.

3.8.1 Gender

Since some relationship names depend on gender, we need a new type:47

GENDER == male | female

• There are two possible genders, male and female.48

The natural mathematical specification of finding a person’s gender is a func-
tion. Appropriate decisions at this point are:

• What are the appropriate assertions about gender? We should at least
specify a consistency constraint: fathers are male and mothers are fe-
male.

47Once upon a time some designers (including me) might have just introduced a variable
“male : boolean,” with the obvious gender bias. Fortunately Z lacks a boolean type, which
provides a bit of a push to define types with more appropriate problem-specific names.

48To any transgendered or intersex readers: remember what I said about the specification
containing mistakes?
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• Where in the chain of specifications should the new definitions go? One
temptation is to extend the most recent schema, AncestryDefinition.
However, it’s better to make the new definitions include a schema from
as high in the hierarchy as possible to make the later schemas as inde-
pendent of each other as possible.

These considerations lead to making Gender depend only on People:

Gender
People
gender of : people → GENDER

∀ p : ran father of • gender of (p) = male
∀ p : ranmother of • gender of (p) = female

• Every recorded person’s gender is known.49

• Every father (“range” of the father of function) is male.

• Every mother (“range” of the mother of function) is female.

Some later assertions need both ancestry and gender assertions; we can intro-
duce

AncestrySpecification
AncestryDefinition
Gender

3.8.2 Composing Relationship Names: Take 1

For names of people I decided to avoid details (Section 3.5 on page 21). For
naming relationships, the whole point is to specify details; the issue is how
much detail is appropriate. An intermediate step would be to introduce a
type that abstracts character sequences into “words” or “parts of relationship
names.” Some relationship names are straightforward: for example, a variable
sister can represent “sister” or “Sister” or possibly soeur (French) or transla-
tions to languages with non-Roman alphabets. Z allows for an abbreviation

49This was an implicit assertion in my original program. Once noticed it ought to have
set off mental alarm bells; I discuss the issue in Section 5.
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based on Backus-Naur Form that can represent a type with many specific
“constant” instances:

RELATION PART ::= father | mother | parent
| son | daughter | . . .

This is equivalent to introducing a new type RELATION PART and some
specific variables father , mother , and so on, along with an implicit assertion
that all these variables have distinct values.

Considering phrases like “fourth cousin twice removed” steps into territory
where the math gets excessively complex. We can at least remove the problem
of translating numbers into cardinals and ordinals by defining cousins with
simple integers:

cousin : N× N → RELATION PART

where the two parameters represent degree and removedness, respectively.
Similarly we can partly specify grandparent, grandchild, great grandparent,
and so on:

great : N → RELATION PART

with great(0) meaning “grand,” great(1) meaning “great grand”, and so on.
Great-great grandfather would then be the sequence 〈great(2), father〉. The
full declaration of relationship name parts is:

[RELATION PART ]

grand , self , father ,mother , parent ,
son, daughter , child , brother , sister ,
sibling , aunt , uncle : RELATION PART

great : N → RELATION PART
cousin : N× N → RELATION PART

disjoint〈{grand}, {self }, {father}, {mother}, {parent},
{son}, {daughter}, {child}, {brother}, {sister},
{sibling}, {aunt}, {uncle},
ran great , ran cousin〉

The disjoint declaration says that the RELATION PART s for individual sin-
gle names (grand, father, and so on), and the ranges (set of return values) of
each of great and cousin, are all distinct from each other.
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Z provides a simpler syntax for such situations. The words that make up
relationship names can be represented via a “free type:”

RELATION PART ::= grand | self | father | mother | parent
| son | daughter | child | brother | sister
| sibling | aunt | uncle
| cousin〈〈N× N〉〉
| great〈〈N〉〉

A relation name is a sequence of such parts:

RELATION NAME == seq1 RELATION PART

In Section 2.2 I inferred that relationship names in English depend only on
the lengths of the relevant ancestry paths and the genders of the two people
and their common ancestor.50

RelationNamingBasics
AncestrySpecification
relation name of : ancestry paths × ancestry paths

→ RELATION NAME
relation phrase : N1 × N1 ×GENDER ×GENDER ×GENDER

7→ RELATION NAME

dom relation name of ⊆ common ancestor paths

∀ s1, s2 : seq1 people; p1, p2, ca : people
| (s1, s2) ∈ common ancestor paths
∧ p1 = s1(1) ∧ p2 = s2(1) ∧ ca = s1(#s1)

• relation name of (s1, s2) =
relation phrase(#s1, #s2, gender of (p1), gender of (p2),

gender of (ca))

• relation name of (s1, s2) means “the name of the relation defined by
paths s1 and s2” in the direction indicated by the order of the sequences.51

50But see Section 5 on page 58.
51That is, the order of the first person in each sequence. I originally wrote

relation name of (p1, p2), applying it to people instead of sequences. The Z type checker
can’t help with informal, mid-sentence expressions. I happened to notice this during a
proofreading pass, but it could easily have lasted into the first draft I showed to other
people.

Revision: 1.0 36



For example, if s1 = 〈p1〉 and s2 = 〈p2, p1〉 and p1 is male, then p1

is p2’s father and relation name of (s1, s2) = 〈father〉 If p2 is female,
relation name of (s2, s1) = 〈daughter〉.

• The only relation names of interest are those involving ancestry path
pairs.

• The name of the relationship between two people is a phrase that depends
only52 on the lengths of the paths (#s) and the genders of the two people
and their common ancestor.

3.8.3 Specific Relationship Names

We can specify the names for each relationship in separate schemas, each of
which includes RelationNamingBasics . Each schema focuses on a particular
closely-related set of special cases. A good order in which to tackle things is
“simplest first,” which, when numbers are involved, often means starting with
1 or 0 and working up. For example, the simplest case is for distance 0, when
the “two people” are the same person.

Self
RelationNamingBasics

∀ g1, g2, g : GENDER • relation phrase(0, 0, g1, g2, g) = 〈self 〉

• If the distance between two given people and their common ancestor are
both zero, they are the same person.53

The phrase about “distance” reminds us that the first two parameters of
relation phrase are distances between people in the ancestry graph. We would
have needed to say something like this even if the assertion was based directly
on relation name of , but it is even more necessary when using a function
that doesn’t mention any people. While proofreading this specification, I
eventually realized that I was confusing “length of sequence” (#s) with “dis-
tance” (number of steps); the latter is one less than the former. I rewrote the
RelationNamingBasics to subtract one from the length of each sequence (see
Section B.6.2 on page 80).

52That is, “is a function with parameters . . . ”
53Reviewing this specification led me to realize I needed to use ancestor0 in AncestryPaths

on page 22.
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The next most complex case is direct ancestors and direct descendants,
where one distance is zero and the other is nonzero. What occurred to me
first was the following monstrosity, which I mistakenly wrote without initially
composing a natural-language specification.

DirectRelation
RelationNamingBasics
counting names : N1 → RELATION NAME

counting names(1) = 〈〉
counting names(2) = 〈grand〉
∀ n : N; rn : RELATION NAME | n > 2 •

counting names(n) = 〈great(n − 2), grand〉
∀ n1, n2 : N; g1, g2, g : GENDER; rn : RELATION NAME ;

rp : RELATION PART |
rn = relation phrase(n1, n2, g1, g2, g) ∧ rp = rn(#rn) •

( n1 = 1 ∧ n2 > 1 ⇒ rn = counting names(n2 − 1) a 〈rp〉 ∧
(g = male ⇒ rp = son) ∧ (g = female ⇒ rp = daughter) ) ∧

( n1 > 1 ∧ n2 = 1 ⇒ rn = counting names(n1 − 1) a 〈rp〉 ∧
(g = male ⇒ rp = father) ∧ (g = female ⇒ rp = mother) )

You needn’t try to puzzle it out; I quickly realized this was too complex –
specifically, it tried to do too many things in one large stretch of mathematical
notation. Indeed, it was sufficiently complex that I didn’t at first notice some
outright errors, which may themselves have arisen from the complexity.

3.8.4 Splitting up The Schema

One of the significant benefits of using schemas is being able to split up big
specifications into little ones, using schema inclusion to tie them together.
There was no need to specify names for ancestor and descendant relation-
ships together. Furthermore, thinking about a split led me to realize that
counting names , shared between the two, needed its own schema also.

One benefit of making mistakes is learning how to do better. I should
have thought of splitting out counting names from the beginning. I knew al-
ready that one benefit of separate schemas is that we can introduce auxiliary
functions that are only needed for a special case without cluttering the more
general case. Direct ancestry potentially involves several occurrences of the
word “great;” this suggests using a function that describes how many occur-
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rences of “great” are appropriate, given how many steps there are between the
descendant and the ancestor:

• 1 step: no prefix; the ancestor is father or mother.

• 2 steps: prefix “grand”

• 3 steps: prefix “great grand”

• n steps: prefix “greatn−2 grand”

CountingNames
RelationNamingBasics
counting names : N1 → RELATION NAME

counting names(1) = 〈〉
counting names(2) = 〈grand〉
∀ n : N | n > 2 •

counting names(n) = 〈great(n − 2), grand〉

In this case we gave the English version before the schema, so there is no need
for an itemized list afterwards.

The schemas for direct ancestors and direct descendants are similar:

DirectAncestor
CountingNames

∀ n1, n2 : N; g1, g2, g : GENDER; rn : RELATION NAME ;
rp : RELATION PART |

rn = relation phrase(n1, n2, g1, g2, g) ∧ rp = rn(#rn) •
( n1 = 0 ∧ n2 > 0 ⇒ rn = counting names(n2 − 1) a 〈rp〉 ∧

(g = male ⇒ rp = father) ∧
(g = female ⇒ rp = mother) )

• When p1 is the common ancestor (n1 = 0), the relation name ends
with “mother or “father,” preceded by an appropriate “great . . .” phrase
defined by n2.

I happened to notice at this point that n1 = 1 and n2 > 1 in DirectRelation
on page 38 were both wrong. The former corresponds to a nephew/niece

Revision: 1.0 39



relation rather than father/mother; the latter omits parents and starts with
grandparents. Off-by-one errors are common in programming; this is the same
problem in a mathematical context. Unfortunately they are so common that I
didn’t notice that n2−1 as the argument to counting names in DirectAncestor
was also off by 1; it should be n2.

Directly copying DirectAncestor (thus preserving its mistakes), flipping
which person was the ancestor, and editing the relation names led to:

DirectDescendant
CountingNames

∀ n1, n2 : N; g1, g2, g : GENDER; rn : RELATION NAME ;
rp : RELATION PART |

rn = relation phrase(n1, n2, g1, g2, g) ∧ rp = rn(#rn) •
( n1 > 0 ∧ n2 = 0 ⇒ rn = counting names(n1 − 1) a 〈rp〉 ∧

(g = male ⇒ rp = son) ∧
(g = female ⇒ rp = daughter) )

I also noticed I had to edit g also, changing it to g1. I suddenly realized that
g , the gender of the common ancestor, was irrelevant. A moment’s reflection
revealed that g2, the gender of the 2nd person, was also irrelevant: when you
say “X is the R of Y,” in English only the gender of X matters. relation phrase
only needed two distances and one gender as parameters.

The other parameters weren’t exactly “wrong;” they were redundant. Irrel-
evant parameters aren’t a matter of correctness; they’re a matter of rhetoric.
Rhetoric is the study of how to convey meaning effectively; adding irrelevancies
makes something harder to understand.

3.8.5 Composing Relationship Names: Take 2

Fixing the problems of Section 3.8.2 requires changing relation phrase, which
was defined in RelationNamingBasics on page 36. The first issue is that, since
there turned out to be several ways to give a meaning to relation name of ,
the original RelationNamingBasics wasn’t quite as basic as it should have
been: it should just have defined one function, and left the assertions for later.
This allows flexibility for defining names in other languages with different
conventions.
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RelationNamingBasics
RelationNameOf
relation phrase : N1 × N1 ×GENDER

7→ RELATION NAME

∀ s1, s2 : seq1 people; p1, p2 : people
| (s1, s2) ∈ common ancestor paths
∧ p1 = s1(1) ∧ p2 = s2(1)

• relation name of (s1, s2) =
relation phrase(#s1 − 1, #s2 − 1, gender of (p1))

• The name of the relationship between two people is a phrase (relation phrase)
that depends only on the gender of the first person and the distances be-
tween the two and their common ancestor (#si − 1).

Schema CountingNames from page 39 remains unchanged. DirectAncestor ,
DirectDescendant , and Self are almost the same as in Section 3.8.3, with the
reduced number of parameters to relation phrase. A pair of auxiliary functions
can simplify the assertions:

ParentChildNames
child name : GENDER → RELATION PART
parent name : GENDER → RELATION PART

child name(male) = son
child name(female) = daughter
parent name(male) = father
parent name(female) = mother

Direct ancestors are those for which n1 is zero (and n2 isn’t).

DirectAncestor
CountingNames
ParentChildNames

∀ n1, n2 : N; g : GENDER; rn : RELATION NAME
| rn = relation phrase(n1, n2, g)
• n1 = 0 ∧ n2 > 0 ⇒

rn = counting names(n2) a 〈parent name(g)〉
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• When p1 is the common ancestor (n1 = 0), the relation name ends
with “mother or “father,” preceded by an appropriate “great . . .” phrase
defined by n2.

A “direct descendant” schema would reverse the roles of n1 and n2.
The most general (“everything else”) case is cousinship.

Cousin
CountingNames

∀ n1, n2,mn,mx : N; g : GENDER; rn : RELATION NAME
| mn = min{n1, n2} ∧ mx = max{n1, n2} ∧ mn > 1
• relation phrase(n1, n2, g) = 〈cousin(mn − 1,mx −mn)〉

• Cousinship is determined by mn and mx , the minimum and maximum
of the two numbers.

• If both numbers are 2 or greater (mn > 1), the two people are cousins.

• mn − 1 is the degree; mx −mn is the number of times removed.

3.8.6 Composing Relationship Names: Take 3

It bothered me that the collection of relation naming schemas (Self , DirectAncestor/Descendant ,
Cousin) was more complex than I wanted it to be. I thought about how to
simplify it, and came up with Table 2. A specification is meant to be precise
and rigorous, but that doesn’t necessarily mean mathematical assertions. The
table is rigorous enough; indeed, a fairly straightforward transformation could
rewrite each row as a formal assertion.

4 From Specification to Program

The motivation for formalizing something is to clarify what it is, so that we
can represent it in a concrete way in the rigid context of computer programs
and have them do what you intend. A full description of how to develop a
program from a specification is beyond the scope of this already rather long
paper, but this section describes a few of the basic ideas.

The specification developed in Section 3 is sufficient to define the mean-
ing of several operations the genealogy program might provide. In general a
program maintains some internal state (such as the genealogical database); in
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Table 2: Relationship Names in Tabular Form
d1 d2 Gender Name
0 0 any self
0 1 female mother
0 1 male father
0 ≥ 2 female great(d2−2)grandmother
0 ≥ 2 male great(d2−2)grandfather
1 0 female daughter
1 0 male son
≥ 2 0 female great(d2−2)granddaughter
≥ 2 0 male great(d2−2)grandson
≥ 2 ≥ 2 any (min(d1, d2) − 1)th cousin abs(d1 − d2)

removed

response to “operation” requested from outside, it receives inputs, produces
outputs, and changes its state.

Any method of formally representing state changes has to have a way to
talk about “the state before the operation” and “the state after the operation.”
A schema does a good job of representing one state; there needs to be a way to
talk about two at the same time. Since “state” means “a collection of values
for specific variables,” we need two versions of every variable, one meaning
“before the operation” and one meaning “after.” Several specification methods
conventionally represent “after” by adding a prime (′) after each variable name.
An operation-defining schema can use normal inclusion for the “before” copy.
Including a schema name ending with a prime means including a copy where
every variable gets a prime appended to its name.

SomeOperation
AncestrySpecification
AncestrySpecification ′

Since this is both redundant very common, it has a special syntax:

∆AncestrySpecification

This gives a way to write a schema that specifies a state change. Talking
about inputs and outputs just requires a convention for naming some variables
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to make clear that they’re not part of the overall state, but are just needed
to describe the operation. By convention input names end in a question mark
(?), and output names end in an exclamation mark (!); these are the only
places those special characters can occur.

4.1 Schemas for Basic Operations

An “initialization” operation, such as a constructor in an object-oriented lan-
guage, leaves the program in some well-defined initial state. For the genealogy
program, a suitable initial state might be:

InitDatabase
∆AncestrySpecification

people ′ = ∅
names ′ = ∅

• Initially, no people or names are known.

Strictly speaking, this means “after InitDatabase no people or names are
known.” The given wording is appropriate for a constructor, but not for a
reinitialization operation. In keeping with the principle of writing the English
to correspond to the requirements, we must distinguish which of the two was
intended rather than describing the mathematics literally.

Initialization need not leave empty state; Section 5.1 shows a state with
a set that starts with two specific elements, to which more elements could be
added.

Implicitly, because of all the assertions in AncestrySpecification, any re-
lation whose domain or range is defined as a subset of either of these sets
must itself also be empty. Thus there is not necessary to say anything about
has name; whether it is better to do so is debatable. Deciding on whether to
add redundant information is a rhetorical question (in the literal rather than
pejorative sense): does it make the meaning clearer to include it? Adding
any nontrivial amount of redundant information almost always overwhelms
the reader.

It is possible to say that the state, or part of it, doesn’t change. Using Ξ
instead of ∆ introduces the primed and unprimed copies but implicitly asserts,
for each variable, that the “before” and “after” versions are equal. Thus for
example:
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NumberOfPeople
ΞAncestrySpecification
count ! : N

count ! = #people

• NumberOfPeople leaves the database unchanged.

• Its output, count !, is the number of people in the database.

4.2 Adding New People

We need a way to add new people to the database. Since each PERSON is
meant to be unique, and in an implementation would likely correspond to some
unique object, we need to have the program “allocate” one.54 This corresponds
to producing an output for the new PERSON . As a first attempt we might
write an operation to add a new person with a new name:

AddPerson
∆AncestrySpecification
name? : NAME
person! : PERSON

person! 6∈ people
name? 6∈ names

person! ∈ people ′

name? ∈ names ′

has name ′ = has name ∪ {person! 7→ name?}

• AddPerson takes a name as a parameter and returns a person as a result.

• Before the operation neither person! nor name? can be in the database.55

• After the operation both are in the database.

54Of course a specification doesn’t “allocate” anything; it merely hypothesizes an element
from the infinite type that wasn’t already present in the finite subset we’re dealing with.

55Declaring has name as a general relation allows for duplicate names, but the English
specifically said that name? must be a new name. This ought to prompt us to make sure
that’s what the users really wanted, and how they expected to deal with duplicate names.
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• After the operation name? is the name of person!.56

A full specification should say what happens if the precondition about name? is
false, but that moves further in the direction of specific programming languages
(particularly their exception-reporting features).

Strictly speaking we should assert that nothing else in the state changes,
except as required by the assertions involving names and people. Thus for ex-
ample (were we using RelationNamingBasics instead of AncestrySpecification)
we should say

gender of ′ = gender of

Unfortunately people often forget such assertions, which allows an implementor
to change everything not mentioned. People also forget that simply saying

person! ∈ people ′

says nothing about whatever else might change from people to people ′. The
assertion should fully define exactly how each state variable changes:

people ′ = people ∪ {person!}
names ′ = names ∪ {name?}

If we are very, very careful (or lucky) about organizing our schemas, we
can use a combination of Ξ and ∆ to say that some things change while others
don’t. For example,

SpecifyGender
∆AncestrySpecification
ΞAncestryDefinition
p? : people
g? : GENDER

p? 6∈ dom gender of
gender of ′ = gender of ∪ {p? 7→ g?}

56Originally I used names of instead of has name, which led me to think it was a function
instead of a general relation. Thus I wrote

names of ′(person!) = name?

It turns out that Z can’t detect this semantic error; technically, we’d need to prove (or at
least informally check) each function invocation to be sure it is really a function.
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The state that could change is everything in AncestrySpecification, except
things from AncestryDefinition; what’s left is the components introduced in
Gender , though we have to refer back to its definition on page 34 to deduce
this.57 In particular, gender of might change. The 1st assertion requires
that p?’s gender be unknown; the 2nd gives the required addition of gender
information.

If we wanted to allow an operation that would change recorded information
about gender, we would omit the requirement that gender initially be unknown,
and say that the new information overrides the old.

gender of ′ = gender of ⊕ {p? 7→ g?}

The ⊕ operator applies to any relation, not just functions. It removes from its
1st argument any pair starting with anything in the domain of its 2nd argument
(p? in this case) before adding its 2nd argument.

4.3 Creation Versus Naming

A simple genealogy system like the one I was designing typically requires
unique names. An extended version would want to allow operations to add
multiple names, and even the simple system might want an operation to create
an initially nameless person (such as a newborn baby). In this case it is ap-
propriate to split AddPerson into two operations: define an initially nameless
person, and add a name to a known person.

NewPerson defines a new person.

NewPerson
∆AncestrySpecification
p! : PERSON

p! 6∈ people
people ′ = people ∪ {p!}
names ′ = names
has name ′ = has name
gender of ′ = gender of

father of ′ = father of
mother of ′ = mother of

57The schema summary in Section D on page 86 might be useful in tracing back through
the tree of schema inclusions.
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• NewPerson returns a new person (one not in the database beforehand,
but present afterwards).

• It changes nothing about names or gender.

• It changes nothing else about the set of known people, or mother/father
relationships. It thus doesn’t change anything from any schema that
deals only with ancestry.

Unfortunately I had to explicitly say what doesn’t change. We can’t include
ΞNames or ΞGender (though my initial incorrect specification did so), since
both include People, one of whose components (people) must change. Sec-
tion 4.6 discusses alternative ways to say such things.

AddName adds a name for a known person. In this case we happen to
be able to say that “only variables introduced in Name : can change” by
combining Ξ and ∆, but any change to the schema inclusions might invalidate
this.

AddName
∆AncestrySpecification
ΞGender
ΞParent
p? : people
n? : NAME

has name ′ = has name ∪ {p? 7→ n?}

Nothing is said about whether n? ∈ names , so it might or might not du-
plicate an existing name; this is the opposite of the choice I showed for
AddPerson, and, as with that choice, it should be verified with users. The
assertion about has name ′ in the schema and assertions about has name in
Names (and thus about has name in Names ′, which is implicitly included
by ∆AncestrySpecification) implies that n? ∈ names ′. Nothing need be said
about People, since it was included via ΞParent , nor anything about common
ancestry, since that depends only on parent .

4.4 Adding or Changing Relationships

An AddMother operation changes information about a person’s mother. Once
again we are fortunate in being able to implicitly specify that only mother of
can change by combining Ξ and ∆.
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AddMother
∆AncestrySpecification
ΞPeople
ΞNames
ΞGender
p? : people
m? : people

gender of m? = female
p? 6∈ ancestor0(| {m?} |)
mother of ′ = mother of ⊕ {p? 7→ m?}
father of ′ = father of

• The operation takes two people, the 2nd of whom is to be recorded as
the mother of the 1st .

• m? must be female.

• p? must not be an ancestor of eir supposed mother m?.

• After the operation, m? is known to be the the mother of p?, and fa-
therhood information doesn’t change.

The final two assertions are implied by assertions in the included schemas.
Were this an ordinary specification it would be a matter of judgement as to
whether to include them. I did so because they are things that the implemen-
tation would need to explicitly check. A full definition of AddMother would
be the conjunction of separate schemas for the normal case and each error
condition.

4.5 Interlude: Preconditions versus Postconditions

Any assertions that mention only unprimed variables in a schema are pre-
conditions: things that must be true before the operation in order for it to
execute successfully. Assertions that mention any primed variables are post-
conditions: things the operation must establish as true after it executes, if the
preconditions are met.

AddMother contained a subtle rhetorical error concerning parent ′. It in-
cludes ∆AncestrySpecification, which asserts that parent ′+ contained no cy-
cles. parent implicitly changed because mother of changed. Suppose that
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the database (incorrectly, but unknown to the genealogy program) records m?
as descendant of some p1, who in turn is a descendant of p?. There are no
cycles in this graph, but introducing p? 7→ m? introduces one. You might
think that the assertion that parent ′ would prevent this – but postconditions
are assertions that the operation must establish given only the preconditions.
As written, AddMother can’t guarantee that this will happen given the state
of the database. Thus we need to find a way to say that “adding this pair
won’t introduce a cycle.” We need a way to talk about parent ′ before we can
actually assert anything about it.

One way to do this is to introduce a mu-expression to give some names to
expressions to be evaluated before the operation takes place.

AcyclicAddMother
∆AncestrySpecification
ΞPeople
ΞNames
ΞGender
p? : people
m? : people

gender of m? = female
father of ′ = father of
mother of ′ =

(µ newMother : people 7→ people;
newParent : people ↔ people

| newMother = mother of ⊕ {p? 7→ m?} ∧
newParent = newMother ∪ father of ∧
(∀ p : people • p 7→ p 6∈ newParent+)

• newMother)

• AcyclicAddMother takes two parameters, a person p? and eir mother
m?.

• m? must be female.

• father of doesn’t change.

• Adding the new relationship mustn’t introduce any cycles. That is,
it must be the case that introducing the new p? 7→ m? relationship
to mother of gives a relation newMother that, when combined with
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father of , gives a newParent relation that has no cycles. If this precon-
dition is met, newMother is the new mother of ′ function.

The mu-expression is a bit like an existential quantifier. It is only defined if all
the conditions in the the “such that” clause (introduced by “|”) are true, and
those mention only unprimed variables. Thus the predicates that are meant
to allow the operation to work correctly are true preconditions.

4.6 Interlude: Rhetorical Issues about What Changes

Previous sections pointed out that combining Ξ and ∆ on different schemas to
specify what changes doesn’t always work and, in any case, is difficult to figure
out. It would be much simpler to specify what names do change; Z provides
an indirect way to do so. First we define a schema that omits certain names.

WithoutNames =̂ AncestrySpecification \ (names , has name)

This means that WithoutNames is the same as AncestrySpecification without
the definitions of names and has name and the assertions that mention them.
I had to explicitly list all the names newly introduced in Names , which is
awkward but serves as yet another reason to introduce few new names in any
one schema. We can then say that components of Names might change but
WithoutNames doesn’t:

JustNames
ΞWithoutNames
∆Names

Since “∆Names” just introduces copies of variables and assertions, it doesn’t
mean that everything in them changes; the ΞWithoutNames asserts that com-
ponents of People included in Names (people, father of , mother of , and
parent) don’t change, leaving just name and names .

Unfortunately Z syntax doesn’t permit the \ (“hide”) expression as a
schema inclusion; this approach requires introducing a new schema every time
we want to specify a specific set of components to change.

Another approach is to split Names into one schema to introduce compo-
nent names and another that include it for any assertions that require including
other schemas. that combines them. Thus we might say
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NamesComponents
names : P NAME
has name : PERSON ↔ NAME

Names1
People
NamesComponents

has name ∈ people ↔ names

along with a similar split for Parent and Gender . Then NewPerson becomes

NewPerson1
∆AncestrySpecification
ΞNamesComponents
ΞGenderComponents
ΞParentComponents
p! : PERSON

p! 6∈ people
people ′ = people ∪ {p!}
father of ′ = father of
mother of ′ = mother of

Each approach introduces one new schema for each old schema. The first
approach (with \) is more flexible, since it allows any list of names to be
specified near the place where they are used. However, it introduces what
programmers call “coupling:” it requires the same list of names to occur in
two widely separated places. The second approach requires a strict discipline
when introducing new variables, and and a naming convention that relates the
declaration schema to the corresponding assertion schema.

Yet another approach is to avoid thinking of AncestrySpecification as the
state each operation must deal with:
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NewPerson2
∆People
p! : PERSON

p! 6∈ people
people ′ = people ∪ {p!}
father of ′ = father of
mother of ′ = mother of

Since People is the highest schema in the inclusion hierarchy, it happens not
to have any changeable state other than the parts we’re interested in. The
main flaw is that it is not always applicable to schemas lower in the hi-
erarchy unless combined with the separate-component-declaration approach
(NamesComponents and so on).

A better than any of the three would be some operator like ∆ and Ξ
that means “only the components introduced in the given schema, excluding
anything included from other schemas.”

4.7 A Sketch of an Algorithm

The specification so far does not define an algorithm, but does give us termi-
nology for describing a method of discovering common ancestors, and suggests
some aspects of what an algorithm needs to do. Since common ancestors of
is defined solely via ancestor0, which is defined via parent , finding the set of
all known common ancestors involves following parent relationships at most
until no new parents are found. Even without formally defining the mean-
ing of “nearest common ancestor,” we could guess “nearest” would be defined
via number of steps taken in tracing parents and stopping upon finding some
“first” common ancestor.

This is about the point where I wrote my original program that looked
only for conventional nearest ancestors. I had an informal version of the spec-
ification in my head, but not a formal definition of the core algorithm’s re-
quirements. It is a little dangerous to start programming at this point; it it
better to go a little further and write formal requirements for the algorithm
(pre- and post-conditions), and a loop invariant for demonstrating that the
program meets those requirements. In fact many formalists would argue that,
without a precise definition of what the program should do, we can’t really
claim anything about whether or not it “works correctly.”
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Informally, it might suffice to follow parent relationships until one per-
son’s newly-discovered parent were in the set of ancestors of the other parents
(including the most-recently-discovered), or we run out of ancestors. Thus:

• For each person keep track of known ancestors and ancestors discovered
in the most recent iteration.

• At each step, find the parents of the people discovered in the previous
step.

• If the new parents are already in the set of known ancestors of the other
person, we’ve found a common ancestor (or set of common ancestors)
and can stop.

• Add the newly-discovered ancestors to the corresponding set of known
ancestors and continue.

The basic process will work if we start with empty sets of known ancestors
and have the initial “newly discovered” ancestors be the two people.

Figure 2 shows pseudocode for this algorithm. Presumably the implemen-
tor would try to find an existing representation of sets where the particular
operations needed were efficient. It’s also appropriate to try to refine the
pseudocode to replace potentially expensive set operations, such as unions
and intersections, with potentially less expensive operations on individual set
elements.58 Thus a concrete implementation might “optimize” some of this;
for example,

while p1New ∪ p2New 6= ∅ do
might become

while p1New.size() > 0 or p1New.size() > 0 do
Similarly, Figure 3 eliminates explicitly forming the relational images parent(|
. . . |). In this refinement the program operates on elements instead of sets –
exactly the opposite of the approach with mathematical formulations discussed
in Section 3.2 on page 16.59

The algorithm requires some revisions. Naming the relationships requires
knowing how long the paths are from each person to the common ancestor,
which requires complicating the algorithm to keep track of paths. As written,

58If we know the latter are less expensive.
59This shouldn’t be a surprise; the mathematics should be more abstract, and the code

more concrete.
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Figure 2: Sketch of a Nearest-Common-Ancestor Algorithm

function getCommon(p1, p2: people) returns P people

declare
p1Known, p2Known, p1New, p2New: P people;

begin
p1Known := p2Known := ∅;

p1New := { p1 }; p2New := { p2 };
while p1New ∪ p2New 6= ∅ do

p1Known := p1Known ∪ p1New;

p2Known := p2Known ∪ p2New;

common := ( p1New ∩ p2Known ) ∪
(p2New ∩ p1Known);

if common 6= ∅ then return common fi
p1New := parent(| p1New |);
p2New := parent(| p2New |);

od
end

Set operations are Z symbols; a conventional object-oriented
programming language might replace

p1Known := p1Known ∪ p1New;
with

p1Known.add(p1New);
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Figure 3: Operating on Elements Instead of Sets

P1Temp P2Temp := ∅;

foundCommon := foundNew := false;
while not foundCommon do

forall t1:PEOPLE ∈ P1New do
f := t1.father of();

if f 6= null then
foundNew := true; P1Temp.add(f);

if P2Known.hasMember(f) then
foundCommon := true;
common.add(f)

fi
fi . . . -- and similarly for mother of

od . . . -- and similarly for P2New

od

Tests for whether a set is empty become setting of boolean flags
when new members are added.

Revision: 1.0 56



the algorithm stops with the shortest path from a person to a common ances-
tor; this happens to find both of the usually-mentioned relationships between
Queen Elizabeth and Prince Philip, since both require 4 steps from the most
distant descendant to the common ancestor – (3,4) and (4,4) respectively. It
would not find any hypothetical (5,5) relationship (were Edward of Kent the
common ancestor instead of Victoria), since it would stop with the length
4 paths, and thus doesn’t implement NoOtherAncestor . It will not find the
(6,5) paths to George III, so doesn’t implement OneChildNotCommon either.
It can find multiple common ancestors (other than spouses) if paths to those
ancestors appear on the same iteration.

4.8 Specifying and Proving the Algorithm

The formal specification of the “find common ancestor paths” operation is
straightforward.

GetCommon
ΞAncestrySpecification
p1? : people
p2? : people
ca! : ANCESTRY PATH ↔ ANCESTRY PATH

ca! ⊆ common ancestor paths
∀ s1, s2 : seq1 people | (s1, s2) ∈ ca! •

s1(1) = p1? ∧ s2(1) = p2?
∃ s1, s2 : seq1 people | (s1, s2) ∈ common ancestor paths ∧

s1(1) = p1? ∧ s2(1) = p2?
• ca! 6= ∅

• The GetCommon algorithm changes nothing in the database.

• It takes two people as inputs and returns a set of common ancestor paths.

• Every pair in the result starts with p1? and p2?, respectively.

• If the two people have any common ancestors, there is at least one path
pair in the result.60

60That is, if there is any sequence pair in the set of common ancestry paths that start
with the two people, at least one such pair must be in the output ca!.
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The definition is straightforward (and the last assertion is minimal) because the
“work” of the specification is in AncestryDefinition and its included schemas.

What is difficult is discovering whether the algorithm does this – which
it doesn’t – or, more important, proving that a suitably altered algorithm
does. Z semantics are declarative: they specify what the code must do, but
say nothing about how. To proved an algorithm correct, we must use an
axiomatic semantics such as weakest preconditions,61 (and, of course, translate
the pseudo-code into a programming language for which someone has defined
such a semantics). Making the transition between the two is possible but
beyond the scope of this paper.

At its core the algorithm is a single loop that adds information to some
control variables at each step, and terminates when that information runs
out. Informally, we can argue that it stops by observing that it follows parent
relationships, and since ancestor has no cycles (is non-reflexive) and people
is finite, that process ends after at most as many steps as there are people
in the database.62 Arguing that the program works requires finding some
mathematical statement of what happens each time around the loop – a loop
invariant – and proving that when the algorithm stops, the invariant implies
the post-condition.

5 Evolving the Package: Domain Analysis

The activity that formulated Section 3 is sometimes called “problem analy-
sis” because it looks at the requirements of a single problem. Faced with a
long history of relatively simple problems, programmers are tempted to look
too closely at the specific narrow details they’re given, and ignore the wider
context. It’s incredibly common that as soon as you write a program that
“solves the problem” you get asked to change it to solve slightly different
problems. This sometimes means throwing out much of what you did for the

61Often called predicate transformer semantics, which I first encountered in Dijkstra’s
book.[1]

62Formally speaking, for a finite set S of type T and binary relation R on S,

S : F T ; R : T ↔ T

R ∈ S ↔ S ⇒
(∃n : 1 . . #S •⋃

{i : 0 . . n • Ri} = R+)

In our case S is people and R is parent .
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first problem, since it embodied assumptions no longer relevant once you have
two problems to look at.

When things get more complex, we must shift from “problem analysis” to
“domain analysis:” not just “how do I solve this one problem?” but “how do I
think about a collection of related problems?” The term “analysis” gets used
for both the process and the recorded results of the process.

Note the change from “solve” to “think about;” there’s a fundamental
shift from specific details to general concepts. Both are forms of requirements
analysis, but domain analysis has a larger scope. The domain may contain
more concepts than the problem; conversely, the problem may omit some
concepts from the domain.

The following are a few changes to the requirements that might be appro-
priate.

• Given a relationship name like “brother” and the data of previous spec-
ifications, it should be possible to find all the brothers of a given person.
The best way to do this might involve finding some way of associating
RELATION NAME s to paths through the ancestry graphs, then defin-
ing both “find the relationship between two people” and “find the people
in a certain relationship to a given person” via these associations. For
example, one finds maternal uncles by the path: “mother, either parent,
male children,” and all uncles via “parent, parent, male children.”

• Normally we expect to know the gender of anyone represented in a ge-
nealogical database, which means we expect gender to be a total function
people → GENDER as in Section 3.8.1 on page 34. However, it would be
better to define gender as a partial function because in some languages
some names have ambiguous gender (such as “Leslie” in English) and
some genealogical data sources can be incomplete. Thus some old letter
might list “Fred X” as having child “Leslie X” without specifying Leslie’s
gender; in the absence of additional information (such as “Leslie X” be-
ing someone’s mother) Leslie’s gender has to be “recorded as unknown”
which normally means a partial function in mathematics.

• The software might perform additional consistency checking, recording
each person’s gender and verifying that a father is male and a mother is
female.63

63In fact my original software did so, but I left this aspect out of the earlier discussion for
simplicity.
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• There is a natural bias in a genealogical system towards ancestry re-
lationships, and thus to biological parents and two genders. However,
doing a thorough specification of gender would have to recognize that
those are not the only two possibilities (Section 5.1). Users typically
want to record information about all relatives, not just ancestors; thus
they might, for example, want to record infertile XXY children. More
speculatively, a chimera (a person with DNA from two merged zygotes)
might be capable of both siring and bearing children.64

• When I ran the program built from the specifications of the previous sec-
tion, I immediately noticed that it always reported pairs of relationships,
one for a male ancestor and one for a female. For example, siblings would
be reported twice, once for their mother and once for their father. Re-
solving this issue requires recognizing some concept of a mother/father
pairing – and, indeed, GEDCOM[2] (a standard for representing ge-
nealogical information) does so. Section 5.2 considers this modification.

• Revisions might require handling relationships that violate some of the
initial core assumptions. Section 5.3 considers maternal and paternal
uncles. Section 5.4 considers half-siblings.

5.1 Gender

Predefining a set of genders might not be appropriate. A “free type” like

GENDER == male | female

is not the best approach under these circumstances. A better choice is:

[GENDER]

• There is a set of genders.

male, female : GENDER

male 6= female

• There are at least two distinct genders, male and female.

64The protagonist of a Heinlein science fiction story[3] would have been such a chimera.
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Gender
People
genders : P GENDER
gender of : people 7→ genders

{male, female} ⊆ genders

• There is a set of known genders.

• People have at most one gender recorded.

• Male and female are two of the known genders; they might be the only
ones recorded but there might be others.

Rather than pre-specify all possible sets of genders (in an era when the def-
inition of gender has become flexible), the software might provide operations
to dynamically add genders. Consistency checking for parenthood might then
require specifying which genders can serve what parenting roles.

ParentRole
Parent
Gender
mother role : P genders
father role : P genders

male ∈ father role
female ∈ mother role
gender of (| dommother of |) ⊆ mother role
gender of (| dom father of |) ⊆ father role

• Some set of genders can serve the role of “father,” and similarly for
“mother.”

• Males can be fathers, and females can be mothers.

• Everyone who is recorded as a mother must have a gender capable of
playing the role of mother, and similarly for fathers.

5.2 Families

A genealogy program really needs to embody some notion of family. At a
minimum, eliminating duplicate output makes this necessary. The software
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as written from the specification followed parent relationships defined from
mother of /father of functions; it could thus (and usually did) find a path
from each person to both a male and a female common ancestor. For example,
referring to Figure 1 on page 4, it would find that both Christian IX and
Louise (husband and wife) were common ancestors, and report the same 2nd

cousinship twice.
One solution is to deduce a set of couples from the existing data.

Couples
People
couple : people ↔ people

couple = {m, f : people
| (∃ p : people • m = mother of (p) ∧ f = father of (p))
• (m, f )}

• Couples are pairs of people.

• Couples are exactly the pairs of people where the 1st is the mother and
the 2nd the father of the same known person.

The software might then combine paths ending in members of a couple, re-
porting the relationship as “X and Y are Zs via A and B.”

It might at first seem better to introduce a more explicit representation of
known couples:

BioParents
mother , father : PERSON

• Biological parents are a mother and a father.65

ParentCouples
Parent
couples : P BioParents
parents of : people 7→ couples

∀ p,m, f : people | m = mother of p ∧ f = father of p
• ∃ c : couples • m = c.mother ∧ f = c.father

65We might eventually decide to represent gestational mothers as well as biological ones,
defaulting gestational mother to biological one.
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• The software represents a set of couples and, for some people, records
what couples are their biological parents.

• Every person whose mother and father are both recorded has a corre-
sponding “biological parent couple” with them as mother and father,
respectively.

The algorithm for finding ancestors would then follow parents of relationships
instead of parent relationships. Unfortunately this representation doesn’t han-
dle all cases, since there would be no BioParent instance where either parent
is unknown; using the couple relationship directly might be more appropriate.

A complete representation of “family” would require recording social con-
ventions, marriage relationships, step-relationships, adoption, and fostering.

5.3 Additional Relationship Names

Sections 3.8.2 and 3.8.5 deduced that we could reduce relationship names to
distances and gender of the people directly involved. Had Child asked a few
more questions, we might have realized this was wrong:

Child: What’s a “paternal uncle?”
Mother: Your father’s brother.
Child: Like Uncle Alan?
Mother: Yes. And Fred is your maternal uncle.

Had Mother and Child been speaking Swedish, the issue would have come up
immediately with farbror and marbror (father’s brother and mother’s brother,
respectively). Similarly, in some matrilineal cultural contexts a man’s heir
was his sister’s eldest son, and there might have been a specific word for
that relationship. In English only parents’ genders are relevant to naming,
but once the door is open we can’t be sure whether some potential future
language requirement might force us to use additional generations. Thus some
relationship names might depend on the gender of two or more people. To
handle the most general case, relation phrase ceases to be useful and we must
base everything on relation name of directly. Thus, for example:
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SwedishUncle
RelationNameOf
uncles : ancestry paths ↔ ancestry paths

uncles = {s1, s2 : seq1 people | (s1, s2) ∈ common ancestor paths ∧
#s1 = 2 ∧ #s2 = 3 ∧ gender of (s1(1)) = male}

∀ s1, s2 : seq1 people; sib : people | (s1, s2) ∈ uncles ∧ sib = s2(2)
• gender of (sib) = female ⇒ relation name of (s1, s2) = 〈marbror〉

∧ gender of (sib) = male ⇒ relation name of (s1, s2) = 〈farbror〉

• Uncle relationships are common ancestor paths with lengths 2 and 3,
respectively, where the 1st person (the uncle) is male.

• For every uncle relationship, where sib is the uncle’s sibling (2nd person
in the 2nd path), the relationship is “farbror” if the sibling is male and
“marbror” if the sibling is female.

The relationship names would presumably be defined in a revised RELATION PART .
Were we to talk to someone from a traditional Chinese family, we’d find out

about needing to distinguish “eldest brother” from other brothers; this might
mean recording where each person fit in birth order within their eir family,
complicating Section 5.2.

5.4 Half-Siblings

Section 3.8 defined siblings as people with the same parent, which means
those with at least one shared parent. A half-sibling is someone who shares
one parent but not the other.

HalfSiblingRelation
Parent
half sibling : people ↔ people

half sibling = half sibling∼

∀ p : dom half sibling • p ∈ dom father of ∧ p ∈ dommother of

• Half-siblinghood is a symmetric relationship between people: if p1 is p2’s
half-sibling then p2 is p1’s.

66

66I originally wrote this as

∀ p1, p2 : people | p1 7→ p2 ∈ half sibling •
p2 7→ p1 ∈ half sibling
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• We know both the mother and the father of every half-sibling.67

I put the critical defining assertion in a separate HalfSibling schema to break
the specification up into easier-to-understand pieces.

HalfSibling
HalfSiblingRelation

∀ p1, p2 : people | p1 7→ p2 ∈ half sibling •
#(parent(| {p1, p2} |)) = 1

• Half-siblings have exactly one parent in common.

Because of the second assertion in HalfSiblingRelation we can distinguish half-
siblinghood from situations where one or both people have only one parent
recorded, with nothing known about the other.

It is possible that some users might require that the system be able to record
that two people are half-siblings without recording complete information about
their parents. In that case we would need to distinguish three relations:

• deduced half sibling , a renaming of the half sibling already specified.

• declared half sibling , those declared so explicitly.

• half sibling , the union of the previous two.

This approach (renaming the original half sibling and introducing a new def-
inition for the old name) permits as much as possible of the rest of the speci-
fication to remain unchanged.

An operation recording such a declared relationship would have to check
if the declaration contradicted anything already known, particularly whether
we already knew both parents of both people to be the same. Similarly, an
operation to enter parent information would need to check if it contradicted
any declarations about half-siblings.

which was another example of writing about elements instead of sets.
67The symmetry assertion makes it unnecessary to mention ran half sibling along with

dom.
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5.5 Vital Statistics

Typical commercial genealogical systems record much more information, such
as birth and death dates. It is straightforward to add more (partial) functions
such as

[DATE ]

Dates might or might not include times at this point in the analysis. Common
speech treats them as different, but computer “dates” usually also represent
times of day.

We might need to compare dates. Equality testing is built into Z, but
comparisons require explicit definitions:

less : DATE ↔ DATE
greater : DATE ↔ DATE

greater = less∼

∀ d1, d2, d3 : DATE | (d1, d2) ∈ less ∧ (d2, d3) ∈ less
• (d1, d3) ∈ less
∀ d : DATE • d 7→ d 6∈ less+

• less and greater are relations on dates.

• greater is the inverse of less .

• less (and thus also greater) is transitive.

• less has no cycles (is irreflexive).

This defines a partial order, which might be necessary if the system had to
handle vague dates such as “around 1930.”

We can then record information involving dates.

VitalStatistics
People
birth : people 7→ DATE
death : people 7→ DATE
living : P people

living = people \ dom death

• Living people are those without a recorded death date.
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With date information, the system might be able to answer queries such
as “who is Y’s oldest living relative?”68. and “is there a living descendant
of P0 along the female line?” Matrilineal descent can be used to confirm a
suspected relationship between someone and a long-dead female ancestor. If
P1 is a direct descendant of a female P0, and all the people in the ancestral
chain are female, and if P2 (of any gender) shares P1’s mitochondrial DNA,
then P2 is likely a descendant of P0 also.

Matrilineal
VitalStatistics
AncestrySpecification
matrilineal : people ↔ people

matrilineal = {p0, p1 : people; path : ancestry paths
| p1 = path(1) ∧ p0 = path(#path) ∧
(∀ i : 2 . . #path • gender of (path(i)) = female)

• (p0, p1)}

• Some people have matrilineal descendants; the 1st person in a pair is the
ancestor, and the 2nd the descendant.

• p1 is a matrilineal descendant of p0 whenever p0 and all her descendants
between them are female.

For suitable mitochondrial DNA donors for ancestor p0, we find living matri-
lineal descendants.

matrilineal(| {p0} |) ∩ living

5.6 Additional Features

Some issues are beyond the scope of this study.
With modern reproductive technologies, it is possible to have four different

parental roles: biological father, biological mother, gestational mother, and an
arbitrary number of custodial and foster parents.69 Tracing ancestry might
care only about biological parents, but a complete genealogical system might

68This might presume that the lack of a recorded death date means someone is alive
69Genetic engineering might introduce much more information; I recall one science fiction

story[4] where someone’s body was constructed with chromosome pairs from 23 different
people.
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want to record all such relationships, which might require a general scheme of
binary relations and relational expressions. Representing step-parents requires
at least some of this complexity

Every piece of genealogical information has a source, and some sources
might contradict other ones. Many of the variables defined in earlier sections
might not be primary data, but instead be derived from presumed “facts”
which identify their source. For example, information about parents might
come from a birth certificate, which could be considered a tuple:

BirthCertificate
person,mother , father : NAME
attendant : NAME
birthdate : DATE
hospital : NAME
uniqueIdentifier : SOURCE

This particular representation requires explicit values for sources, names, and
dates, so might require specific values for “unknowns” of each type. An alter-
native might group a collection of separate functions:

Sources
People
Names
sources : P SOURCE

BirthData
Sources
certificate person : sources 7→ names
certificate birthdate : sources 7→ DATE
certificate mother : sources 7→ names
certificate father : sources 7→ names
certificate hospital : SOURCE 7→ NAME
certificate attendant : sources 7→ NAME

The last two variables use type NAME because hospitals aren’t people and
attending physicians might not otherwise be in the database.
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Other sources might be a conversation or letter about someone mentioning
eir father. We might use any or all of the three sources construct a father of
function, or check different sources for consistency. Similarly, we might for-
malize different genealogical file formats as sequences of records defined by a
free type, then give assertions that relate the file information to that of earlier
sections.

6 Conclusion

I have shown an example of how an experienced teacher develops a formal
specification, including mistakes and false paths, accompanied by a polished
version of the same. I claimed that this would make it easier to motivate
students to learn formal methods.

It is possible to provide evidence for such a claim in two ways, both of
which are beyond the scope of this study.

• Appeal to existing pedagogical literature on teaching methods. I have
been exposed to some such material through our Centre for Teaching
and Learning, and expect to research further.

• Perform an experiment to compare this approach with a “show them
the right answer right away” approach. Designing such an experiment
requires careful work and consideration for ethics. I don’t expect to have
the resources for such an experiment in the near future, but I hope that
someone reading this study might be able to do so.

There remains one motivational difficulty: Z is a declarative notation, and
students in Computing Science might prefer something executable. There are
systems based on operational semantics, such as Alloy, that can do so. In
future work I expect to investigate to what extent it can help detect errors
beyond those the Z type checker can find.
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A Z Summary

This section describes the subset of Z I used in the paper.
Z includes most basic mathematical notation:

logical operations ∧ and ∨ or ¬ not ⇒ implies
set operations ∩ intersect ∪ union ∈ member 6∈ not member

∅ empty set ⊆ subset ⊂ proper subset

sequences a concatenation 〈x1 . . . xn〉 explicit definition

A.1 Quantifiers

Syntax Meaning
∀ x : S | P(x ) • Q(x ) For all x from set S for which P(x ) is true, it is the

case that Q(x ) is true.
∃ x : S | P(x ) • Q(x ) There exists at least one x from set S for which

P(x ) is true, such that Q(x ) is true.
{x1 : T1; · · · ;
xn : Tn

| P(x1, · · · , xn)
• Q(x1, · · · , xn)}

Set comprehension: for every combination of values
for x1, · · · , xn from sets T1, · · · ,Tn for which
predicate P(x1, · · · , xn) is true, the resulting set
contains the value of expression Q(x1, · · · , xn).

A.2 Z-Specific Notation

Notation Description

Z Integers
N Non-negative integers (natural numbers)
N1 Positive integers
[T ] New type T
T == expr Name for type expression
P T Set of T
#T Size (cardinality) of set T
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Notation Description

n . . m Set of integers from n to m inclusive:
{i : Z | n ≤ i ∧ i ≤ m • i}

X × Y Type consisting of ordered pairs with first element
from X, second from Y

x 7→ y Ordered pair (x,y)
X ↔ Y Relation on X and Y: P(X × Y )
dom z Domain of z: set of first elements of the relation:

∀ z : X ↔ Y • dom z =
{x : X ; y : Y | (x , y) ∈ z • x}

ran z Range of z: set of second elements of the relation:
∀ z : X ↔ Y • ran z =
{x : X ; y : Y | (x , y) ∈ z • y}

z∼ Inverse of relation Z (same set of ordered pairs in
reverse order): {x : X ; y : Y | (x , y) ∈ z • (y , x )}

r+ Transitive closure of relation r : T ↔ T : r ∪ r 2 ∪ . . .
r? reflexive transitive closure of relation r
r(| s |) Relational image, the extension of function

application to relations:
∀ r : X ↔ Y ; s : P X •

r(| s |) = {x : s ; y : Y | x 7→ y ∈ r • y}
Z == X 7→ Y Partial function from X to Y: relation with no

duplicate first element:
∀ z : Z ; x : X • #z (| {x} |) ≤ 1

Z == X → Y ∀ z : X 7→ Y ; x : X • #z (| {x} |) = 1 Total function from X to Y: partial function where
each X occurs exactly once:

seqX Sequence of X: S == N1 7→ X where
∀ s : S • dom s = 1 . . #s .

S == seq1 X Nonempty sequence of X: ∀ s : S • #s ≥ 1
S == iseqX injective sequence of X (no duplicate X’s): S == N1 7� X where ∀ s : S • dom S = 1 . . #S .
s −C r Domain anti-restriction: given s : P S ; r : S ↔ T ,

keep only ordered pairs from r whose first element is
not in s : ∀ s : P S ; r : S ↔ T • s C r = {x : S ; y :
T | x 7→ y ∈ r ∧ x 6∈ s • x 7→ y}

r1 ⊕ r2 Override (part of) relation r1 with r2.
r1 ⊕ r2 = ((dom r2)−C r1) ∪ r2
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A.3 Variable Definitions and Assertions

Syntax Meaning

. . . xi : Ti . . .

assertions
Definitions of new global variables xi , with
assertions about their values.

name
. . . xi : Ti . . .

assertions
New schema name with tuple of definitions of
variables xi , with assertions about their values.

name1
name0

Schema inclusion: new schema name1 with copies
of all definitions and assertions from name0

name1
∆name0

New schema name1 with two copies of all
definitions and assertions from name0, one
identical and one with all variables primed (’).

name1
Ξname0

As ∆ with additional assertions that all variables
from name0 are unchanged (primed version
equals unprimed one).

B The Right Stuff: A Full Specification With-

out Commentary

This appendix gives a version of the specification without all the explanations
of Z concepts, introductory material on how to write specifications. and explo-
ration of (sometimes mistaken) alternatives. You could view it as the “final”
version of the specification arising from the process detailed in earlier sections.
It is (almost entirely) literal copies of earlier material, extracted by an awk

script; any awkwardness in wording results from the need to use the same text
in two slightly different contexts.

B.1 People

The central concept of this formalization is “people.”

[PERSON ]
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Type PERSON is the set of all people we’d ever want to represent in the
eventual software system. Schema People is the basic state of the software: a
representation of a specific set of PERSON s and their parents.

People
people : P PERSON
father of : people 7→ people
mother of : people 7→ people

• people is the set of PERSON s currently known to the genealogy system.

• Each person has at most one father recorded.

• Each person has at most one mother recorded.

B.2 Common Ancestors

The first level of defining ancestors is immediate ancestors (parents) and im-
mediate descendants (children).

Parent
People
parent : people ↔ people
child : people ↔ people

parent = mother of ∪ father of
child = parent∼

• Each person has have zero or more parents and zero or more children
recorded.

• A parent is a mother or a father.

• If one person is another’s parent, the second is the first’s child.

The natural definition of “ancestor” is a parent, or a parent of a parent,
and so on for as many steps as the available data provide. Some specifications
are simpler using a zero-step ancestor (“self”).
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Ancestor
Parent
ancestor : people ↔ people
ancestor0 : people ↔ people

ancestor = parent+

ancestor0 = parent?
∀ p : people • p 7→ p 6∈ ancestor

• Someone’s ancestor is anyone found by following parent relations repeat-
edly (at least once).

• Someone’s ancestor0 is either an ancestor or emself.

• No one is eir own ancestor.

The natural-language definition of a common ancestor is straightforward: given
two people, a common ancestor is anyone who is an ancestor to both.

CommonAncestor
Ancestor
common ancestors of : people × people 7→ P people

∀ p1, p2 : people • common ancestors of (p1, p2) =
ancestor0(| {p1} |) ∩ ancestor0(| {p2} |)

• “Common ancestors” of two people are ancestors of both.

B.3 Interlude: Dealing with Names

Genealogy involves relationships between people, but research starts with
names. Unfortunately the genealogist quickly finds that different people have
the same name. I’m evading such issues by assuming that each PERSON is
completely unique and that no two PERSON s indicate the same real-world
person. To deal with names we introduce

[NAME ]

• There is a set of NAME s, the details of which are (currently) outside
the scope of the specification.
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Names
People
names : P NAME
has name : people ↔ names

• The software will record some set of names.

• There is an unconstrained relation, has name, between people and names.

B.4 Ancestry Paths

Naming the relationship between two people requires tracing paths through
the ancestry relation. Defining nearest common ancestors (and possible gen-
eralizations of “nearest”) requires knowing at least the lengths of such paths.
Thus we define the set ancestry paths of all paths from each person to all eir
ancestors.

AncestryPaths
CommonAncestor
ancestry paths : P(iseq1 people)

∀ s : ancestry paths ; i : N • i ∈ 2 . . #s ∧
s(i) ∈ parent(| {s(i − 1)} |)

ancestry paths = {p0, p1 : people; s : iseq1 people
| p0 ∈ ancestor0(| {p1} |) ∧ s(1) = p1 ∧ s(#s) = p0

• s}

• An ancestry path is a non-empty sequence of people.

• In an ancestry path, each element is a parent of the previous element.

• There is an ancestry path from each person to each of eir “ancestors”
(including emself).

B.5 The Genealogical Relationship Problem

Section 2.2 on page 11 identified two sub-problems: finding (generalized) near-
est common ancestors (the subject of this section), and naming the resulting
relationships (Section B.6 on page 79). We also have two choices of how to
define appropriate common ancestors based on whether to accept George III
as a common ancestor of Elizabeth II and Philip:
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• Philip (6 steps): Alice of Battenberg, Victoria of Hesse,
Princess Alice, Queen Victoria, Edward Duke of Kent, George
III

• Elizabeth (5 steps): George VI, Mary of Teck, Mary Adelaide,
Prince Adolphus, George III

A priori there does not seem to be any technical reason to prefer either alterna-
tive; it would be entirely up to the client being interviewed during requirements
elicitation. During analysis it is wise to specify both alternatives, and during
implementation to permit either based on end-user preferences.

B.5.1 Common Properties

Any way of defining nearest common ancestor would correspond to assertions
about “acceptable” pairs of ancestry paths. Thus one acceptable path pair for
Elizabeth and Philip is

• Elizabeth: George VI, George V, Edward VII, Queen Victoria.

• Philip: Alice of Battenberg, Victoria of Hesse, Princess Alice, Queen
Victoria

Adding Edward of Kent to both paths wouldn’t be acceptable; it is still a
pair of ancestry paths leading to a common ancestor, but it isn’t “nearest”
in any sense. Traversing past a common ancestor such as Victoria would be
appropriate if we want to allow George III. Both possible definitions have some
common properties.

CommonAncestorPaths
AncestryPaths
common ancestor paths : ancestry paths ↔ ancestry paths

∀ s1, s2 : ancestry paths | (s1, s2) ∈ common ancestor paths
• s1(#s1) = s2(#s2)
∧ s1(| 1 . . #s1 − 1 |) ∩ s2(| 1 . . #s2 − 1 |) = ∅

• “Common ancestor paths” are pairs of ancestry paths.71

• In every pair, the last element of both sequences is the same person (the
common ancestor).

• The two sequences share no other elements besides the last.

71Ancestry paths are defined in Section 3.6 on page 22.
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B.5.2 Approach 1: No Other Common Ancestor

My first idea for defining “common ancestors” was:

An appropriate pair of paths has no common ancestors on either
path, except the last.

This rules out the relationship based on George III, since Victoria is a common
ancestor.

NoOtherAncestor
CommonAncestorPaths

∀ s1, s2 : iseq1 people; p1, p2 : people
| p1 = s1(1) ∧ p2 = s2(1) ∧

(s1, s2) ∈ common ancestor paths
• (s1(| 1 . . #s1 − 1 |) ∪ s2(| 1 . . #s2 − 1 |))

∩common ancestors of (p1, p2) = ∅

The best natural language summary is the quote at the start of the section.
Taken line-by-line, a direct reading of the assertion is:

• For every pair of sequences s1 and s2

• with 1st elements p1 and p2 respectively

• for which s1 and s2 are a pair of “common ancestor paths,” it is the case
that

– the elements of both sequences, except the last,

– are not common ancestors of p1 and p2.

B.5.3 Approach 2: One Child Not a Common Ancestor

Even if we want to generalize “nearest common ancestor” to allow George III,
we wouldn’t want to allow extending both paths with George II; the longer
pair don’t give us any additional useful information. One thing that made
this example work is that there was a way to get from Elizabeth to George
III without going through Victoria; Victoria wasn’t on both paths. George II
would make sense as an “appropriate common ancestor” only if he had some
hypothetical child who was an ancestor of one without being an ancestor of
the other, which would give yet another distinct pair of paths.

Revision: 1.0 78



So, perhaps an appropriate definition is that

OneChildNotCommon
CommonAncestorPaths

∀ s1, s2 : iseq1 people; p1, p2 : people; ca : P people
| p1 = s1(1) ∧ p2 = s2(1) ∧

(s1, s2) ∈ common ancestor paths ∧
ca = common ancestors of (p1, p2)

• ( #s1 > 1 ⇒ s1(#s1 − 1) 6∈ ca ) ∨
( #s2 > 1 ⇒ s2(#s2 − 1) 6∈ ca )

• In every ancestry path pair where at least one of the two sequences is of
length 2 or greater, at least one of the children of the common ancestor
(2nd last element of the sequence) is not itself a common ancestor.

B.5.4 Synthesizing the Result

There were two choices for the distinguishing assertion about ancestry paths.
Moreover, the assertions about names were in a separate schema that wasn’t
included in any of the schemas about acceptable ancestry paths. Thus we
could define a complete set of ancestry-concept definitions as either

AncestryDefinition
OneChildNotCommon
Names

or the alternative with NoOtherAncestor .

B.6 The Relationship Naming Problem

Section 2.2 on page 11 described how relationships are named in English. This
section formalizes those requirements.

B.6.1 Gender

Since some relationship names depend on gender, we need a new type:

GENDER == male | female
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• There are two possible genders, male and female.

Gender
People
gender of : people → GENDER

∀ p : ran father of • gender of (p) = male
∀ p : ranmother of • gender of (p) = female

• Every recorded person’s gender is known.

• Every father (“range” of the father of function) is male.

• Every mother (“range” of the mother of function) is female.

Some later assertions need both ancestry and gender assertions; we can intro-
duce

AncestrySpecification
AncestryDefinition
Gender

B.6.2 Composing Relationship Names

For names of people I decided to avoid details (Section B.3 on page 75). For
naming relationships, the whole point is to specify details; the issue is how
much detail is appropriate. The words that make up relationship names can
be represented via a “free type:”

RELATION PART ::= grand | self | father | mother | parent
| son | daughter | child | brother | sister
| sibling | aunt | uncle
| cousin〈〈N× N〉〉
| great〈〈N〉〉

A relation name is a sequence of such parts:

RELATION NAME == seq1 RELATION PART
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B.6.3 Specific Relationship Names

We can specify the names for each relationship in separate schemas, each of
which includes RelationNamingBasics . Each schema focuses on a particular
closely-related set of special cases. A good order in which to tackle things is
“simplest first,” which, when numbers are involved, often means starting with
1 or 0 and working up. For example, the simplest case is for distance 0, when
the “two people” are the same person.

Self
RelationNamingBasics

∀ g : GENDER; p : people • relation phrase(0, 0, g) = 〈self 〉

• If the distances between two given people and their common ancestor
are both zero, they are the same person.

Direct ancestry potentially involves several occurrences of the word “great;”
this suggests using a function that describes how many occurrences of “great”
are appropriate, given how many steps there are between the descendant and
the ancestor:

• 1 step: no prefix; the ancestor is father or mother.

• 2 steps: prefix “grand”

• 3 steps: prefix “great grand”

• n steps: prefix “greatn−2 grand”

CountingNames
RelationNamingBasics
counting names : N1 → RELATION NAME

counting names(1) = 〈〉
counting names(2) = 〈grand〉
∀ n : N | n > 2 •

counting names(n) = 〈great(n − 2), grand〉

A pair of auxiliary functions can simplify the assertions:
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ParentChildNames
child name : GENDER → RELATION PART
parent name : GENDER → RELATION PART

child name(male) = son
child name(female) = daughter
parent name(male) = father
parent name(female) = mother

Direct ancestors are those for which n1 is zero (and n2 isn’t).

DirectAncestor
CountingNames
ParentChildNames

∀ n1, n2 : N; g : GENDER; rn : RELATION NAME
| rn = relation phrase(n1, n2, g)
• n1 = 0 ∧ n2 > 0 ⇒

rn = counting names(n2) a 〈parent name(g)〉

• When p1 is the common ancestor (n1 = 0), the relation name ends
with “mother or “father,” preceded by an appropriate “great . . .” phrase
defined by n2.

A “direct descendant” schema would reverse the roles of n1 and n2.
The most general (“everything else”) case is cousinship.

Cousin
CountingNames

∀ n1, n2,mn,mx : N; g : GENDER; rn : RELATION NAME
| mn = min{n1, n2} ∧ mx = max{n1, n2} ∧ mn > 1
• relation phrase(n1, n2, g) = 〈cousin(mn − 1,mx −mn)〉

• Cousinship is determined by mn and mx , the minimum and maximum
of the two numbers.

• If both numbers are 2 or greater (mn > 1), the two people are cousins.

• mn − 1 is the degree; mx −mn is the number of times removed.
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C Common Mathematical Mistakes

Everyone makes unconscious assumptions: we presume something is true with-
out being aware of it. For example, English-speakers once assumed “doctor”
meant “male doctor.” People writing mathematical specifications make uncon-
scious (and wrong) assumptions, too. This section summarizes some common
ones.

C.1 Translation Errors

Expressions in English sometimes mean different things from similar-seeming
expressions in mathematics, so in formalizing the English we must be careful
to match the two.

In common English, if two things of the same kind are mentioned, they are
assumed distinct. Thus if we write the English equivalent of

∀ p1, . . . pn : person . . .

every pi is distinct from every other; in mathematics, some might equal others.
Either write the . . . so that it is true with duplicate persons, or specify that
they are distinct. For a pair we write p1 6= p2. For a long list, we use a Z
idiom:

disjoint〈{p1}, . . . , {pn}〉

“Or” in English is mutually exclusive: the phrase “A or B or C,” if spoken
by a user during requirements elicitation, likely means exactly one is true.
“Or” in mathematics is inclusive: at least one of A, B, or C must be true, but
they might all be true, too. For two possibilities, the proper translation of the
English is

(A ∨ B) ∧ ¬ (A ∧ B)

This rapidly becomes unreadable for more than two possibilities. However, if
the predicates P1, . . .Pn correspond to sets S1, . . . Sn with intuitive meanings
(that is, their characteristic sets mean something natural to the user), in Z we
can say

disjoint〈S1, . . . Sn〉
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People sometimes think two conditions exclude each other when they actu-
ally don’t. Thus if A ∨ B is mathematically correct, the English explanation
should read “A or B or both’ or “at least one of A or B or . . ..”’72

The word “some” implies a subset, and in common English a subset is
smaller than the set. Thus “Some X are Y” should be translated X ⊂ Y . On
the other hand, the imprecision of natural language usage means that perhaps
all X could be Y: X ⊆ Y ; during elicitation the analyst should have the user
clarify this detail.

C.2 Technical Errors

An off-by-one error uses a number n when n ± 1 is correct. Examples include
N versus N1 or writing an assertion about a sequence s with indices from 1 . .n
instead of 2 . .n or 1 . .n − 1; another is assuming that s(0) makes sense, when
by definition only positive indices are legal.

A function is a kind of relation, a set of ordered pairs; writing f (x ) = y
assumes there is exactly one pair in f whose first element is x . If f were in fact
a general relation, we must write f (| {x} |). I made this mistake with name of
in Section 4.2.

A subtle mistake is to define a set by saying each element has a certain
property when we really should have said it is all the elements with that
property. Thus instead of

S : P PERSON

∀ x : S • P(x )

it might be appropriate to say

S = {y : PERSON • P(x )}

An example is the definition of ancestry paths in Section 3.6 on page 24; it
should have said that it was exactly the set of pairs of paths where each pair
ended with the same person.

72This suggests that in the “mutually exclusive” case we might rephrase the English in
the specification as “at most one of A or B or C” despite this seeming a little awkward to
native speakers.
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C.3 Formalization Errors

By “formalization error” I mean mistakes of trusting the elicited requirements
to be accurate, ignoring possible ambiguities or rare possibilities. Technically
“some” and “or” from previous sections are examples, albeit minor ones.

Elicited requirements may mistake the majority for the universe, with se-
rious effects on the evolution of a program. One example was the number
of genders (Section 5.1); another was the assumption that only gender of the
first person was relevant to a relationship name. If requirements say “people
are either male or female,” perhaps the formalization process could discover
that “most people are either male or female.” Similar examples include lists
of specific political parties (such as Republican and Democrat in the US,73),
specific races in a survey, or specific units of measure. The formalization might
wind up defining an initial set of possibilities and allowing for its expansion.

“Most” isn’t directly representable in the formalization, nor should it usu-
ally be:74 a particular invocation of the final system might involve primarily
(one might say “mostly”) the minority. It might be appropriate to add a foot-
note telling implementers that, given a choice of representations, they should
pick one that is fastest for the majority case.

A formalization might fail to deal with absent information. For example,
everyone has a biological mother or father, so we might write

mother of : people → people

However, no genealogy system can represent more than a finite chain of par-
ents, so → should be 7→. A more complex example was “half-sibling” (Sec-
tion 5.4). We can define what it means to be a half-sibling – having exactly
one parent in common – but given that some parental information might be
absent, real-world data might say that two people are half-siblings without
identifying their parents. This requires introducing declared half sibling ver-
sus deduced half sibling , with half sibling as their union.

73The list of parties with seats in Parliament in Canada in 2012 (Bloc Québécois, Conser-
vative, Green, Independent, Liberal, and New Democrat) might be long enough to suggest
the need for a general scheme.

74If elicitation and analysis can discover a quantitative way to clarify the qualitative
“most” or “some” the specification should of course record it somehow.
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D Schema Summary

Tables 3 summarizes where to find each schema, what schemas (if any) included
them, and whether inclusion was via Ξ or ∆ or neither.

Table 3: Schema Summary

Schema Page Included in
AddMother 48
AddName 48
AddPerson 45
Ancestor 19 CommonAncestor
AncestryDefinition 33 SpecifyGender (via Ξ)
AncestryPathDistinctness 27
AncestryPaths 76 CommonAncestorPaths
AncestrySpecification 34 SpecifyGender (via ∆)
BasicCommonPaths 26
BioParents 62
BirthCertificate 68
BirthData 68
CommonAncestor 20 AncestryPaths
CommonAncestorPaths 77 OneChildNotCommon
CommonAncestorRelation 20
CountingNames 81 DirectAncestor
Couples 62
Cousin 42
DirectAncestor 41
ElementAncestryPath 27
Gender 34 AncestrySpecification
GenderComponents NewPerson1 (via Ξ)
GetCommon 57
HalfSibling 65
HalfSiblingRelation 64
InitDatabase 44
JustNames 51
Matrilineal 67
Names 21 JustNames (via ∆)
NamesComponents Names1, NewPerson1 (via Ξ)
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Table 3: Schema Summary (cont’d)

Schema Page Included in
NewPerson 47
NoOtherAncestor 78
NumberOfPeople 44
OneChildNotCommon 31 AncestryDefinition
Parent 18 Ancestor
ParentChildNames 41 DirectAncestor
ParentComponents NewPerson1 (via Ξ)
ParentCouples 62
People 17 Parent
RelationNameOf 80 RelationNamingBasics
RelationNamingBasics 36 Self
Self 37
SetsAncestryPath 27
Sources 68
SpecifyGender 46
SwedishUncle 63
VitalStatistics 66
WithoutNames 51 JustNames (via Ξ)
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