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Abstract

This document presents the formal de�nition of the πklt -calculus. The
πklt -calculus can be seen as an extension of the asynchronous π-calculus
with expressions, pattern-matching, local process de�nitions and timing
constructs. The formal de�nition comprises its syntax and semantics. The
operational semantics is presented in the style of Plotkin's Structural Op-
erational Semantics (SOS) [Plo81, AFV00]. The semantic domain is that
of contextual timed-labelled transition systems (CTLTS), a speci�c kind of
labelled transition systems (LTS) where labels include timing and contex-
tual (name) information in addition to actions. We build the transition
system of a term in two steps: �rst we de�ne a semi-symbolic labelled
transition system which is �nite-branching and includes only symbolic
states and labels, abstracting concrete executions. Then we de�ne the
corresponding concrete CTLTS as the (possibly in�nite) instantiation of
the semi-symbolic CTLTS. This LTS will contain the actual concrete ex-
ecutions of a term.

In addition to the SOS semantics we provide an alternative functional
characterization in terms of sets of enabled actions and successor states
and establish the equivalence between the two presentations.
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iomatch(α1, α2)Γ Substitution that results from an interaction . . . . . . 44

interactions(JP K, JQK)Γ Set of all possible semi-symbolic interactions between
P and Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

enablednowJP KΓ Set of all semi-symbolic instantaneous actions enabled
in P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

enableddelaysJP KΓ Set of all semi-symbolic delay actions enabled in P 46

enabledJP KΓ Set of all semi-symbolic actions enabled in P . . . . . .46

comm(JP K, JQK, α)Γ Set of all possible semi-symbolic successor states that
result from an interaction α between P and Q . . . . 46

succnow(JP K, α)Γ Set of all semi-symbolic successor states of P by in-
stantaneous action α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

succdelays(JP K, χ)Γ Set of all semi-symbolic successor states of P by delay
action χ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

succ(JP K, η)Γ Set of all semi-symbolic successor states of P by action
η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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1 Introduction

Designing, implementing and reasoning about concurrent systems is notoriously
challenging. One particularly strong way of dealing with this challenge is to use
mathematics. This is, to use mathematical concepts to describe or model con-
current systems, and use the corresponding mathematical techniques and tools
to analyze and reason about those models. An approach to the mathematical
modelling and analysis of concurrent systems exists in the form of process calculi
or process algebras. These are mathematical formalisms where systems, compo-
nents or processes can be represented as terms in an algebra, and the associated
algebraic theory provides a means to analyze and reason about their behaviour.

The �rst process calculi, developed in the 1970's, where CSP [Hoa78] and
CCS [Mil80]. CSP stands for Communicating Sequential Processes and was
devised by Tony Hoare. CCS which stands for Calculus of Concurrent Sys-
tems, was created by Robin Milner. Later, Bergstra and Klop introduced
ACP [BK84], the Algebra of Concurrent Processes, coining the term �process
algebra�. These �rst calculi are quite similar in terms of the set of language con-
structs and operations allowed, but their theories and analysis techniques dif-
fered considerably. Nevertheless, they all provide reasonable, useful and equally
valid approaches to concurrency.

After these basic process algebras where developed, many variants and ex-
tensions have been proposed to deal with a diversity of features and phe-
nomena, such as di�erent forms of process interaction. In 1989, Milner, Par-
row and Walker extended CCS to allow the modelling of channel mobility,
the ability of sending channels in messages, thus allowing the dynamic re-
con�guration of a network of processes. The new language was called the
π-calculus [MPW89]. The π-calculus itself has inspired several variations, in-
cluding the asynchronous π-calculus developed independently by Honda and
Tokoro [HT91] and Boudol [Bou92].

Process calculi are generally designed to be minimal, in order to extract a
core, fundamental set of features that is su�cient to reason about concurrency,
to abstract away from programming and implementation details which are not
directly relevant to the problems of concurrent systems, and to simplify the un-
derlying mathematical theory and facilitate its development. Nevertheless, in
order to leverage the power of process algebras, they must be linked to more
realistic languages, perhaps by endowing them with features that software de-
velopers expect. For example, few of the fundamental process algebras include
basic data types such as numbers or strings, but a language without these basic
features would be deemed useless by developers.

This document presents the formal de�nition of the πklt -calculus. The πklt -
calculus can be seen as an extension of the asynchronous π-calculus with expres-
sions, pattern-matching, local process de�nitions and timing constructs. The
motivation to de�ne this calculus was to provide a formal basis to the kil-

tera language introduced in [Pos08, Pos06, PV07]. kiltera itself was designed
as a language for modelling and simulation of real-time, discrete-event sys-
tems with dynamic structure. Earlier forms of the πklt -calculus were presented
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in [PD10, Pos09]. These were themselves based on the κλτ -calculus de�ned
in [Pos08].

While the πklt -calculus can be seen as an extension to the asynchronous
π-calculus, we do not de�ne the former directly in terms of the later. Rather
we de�ne explicitly its operational semantics following the standard approach
in process algebra with some small di�erences. We provide an operational se-
mantics of the calculus by de�ning a contextual timed labelled-transition system
(CTLTS ) for each πklt process term. A CTLTS is just a particular kind of la-
belled transition system (LTS ) that accounts for the passage of time and name
environments. The transition system is de�ned in the style of Plotkin's Struc-
tural Operational Semantics (SOS ) [Plo81, AFV00]. To de�ne the semantics we
proceed as follows. We �rst build a semi-symbolic CTLTS for a term, which
is �nite-branching and includes only semi-symbolic states and labels, abstract-
ing concrete executions. It is semi-symbolic rather than simply symbolic in the
sense that some expressions are evaluated, but not all, and in particular, the
input guards of listener processes are not evaluated. Once we have the CTLTS,
we de�ne the corresponding concrete LTS as its instantiation, i.e., where all
expressions have been evaluated and all variables unfolded to their set of possi-
ble values. This LTS, which in general will be in�nite, will contain the actual
concrete executions of a term. These two levels of abstraction in the description
of the languages' semantics can serve di�erent uses. For example, the semi-
symbolic representation can be the subject of �nitary methods of analysis.

In addition to the SOS-de�ned semantics, we also provide an alternative
functional characterization of the semantics which gives, for each state, the
set of actions enabled in it, and the set of successor states for each action.
This alternative characterization, which we prove to be equivalent to the LTS
semantics, provides yet another way to implement the languages. Since this
functional characterization is de�ned in terms of symbolic process terms and
actions, it is useful for the purpose of model-checking.

Disclaimer This document is intended to provide the formal de�nition of
the aforementioned semantics, but it does not develop its theory. In particular,
we do not study behavioural equivalences, the hallmark of process algebras. We
have presented some of those results in [PD10, Pos09], but they fall outside
of the scope of this report. The purpose of this report is solely to specify the
language, and serve as a reference.

Organization In Section 2 we present the formal syntax of the πklt -calculus.
In Section 3 we describe the semantics informally and present some examples
and common usage patterns. In Section 4 we present the operational semantics
formally. We do this by �rst introducing all the required preliminary de�nitions
in Subsection 4.1, then de�ning the labelled transition semantics in Subsec-
tion 4.2, de�ning the functional characterization in Subsection 4.3 and establish
the equivalence between these characterizations in Subsection 4.4. In Section 4.5
we de�ne the meaning of terms with sequential composition. In Section 5 we
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discuss some language design decisions. In Section 6 we discuss some related
languages. Appendix A contains the proofs of the propositions in Subsection 4.4.

2 Syntax

Assume the following sets are de�ned:

• Vars the set of expression variables. We typically use u, v, w, x, y, z for
variables.

• TVars ⊆ Vars the set of time variables. We typically denote them with
t, t′, t′′, ....

• EvtNames ⊆ Vars is a set of (channel or event) names. We typically
use a, b, c, ... for such names.

• ProcNames ⊆ Vars is the set of process names. We typically use
A,B,C, ... for such names.

• FuncNames ⊆ Vars is the set of function names. We typically use
f, g, h, ... for such names.

Note that variables may refer to channel/event names and to process/function
names, as well as to primitive values.

De�nition 2.1. (Process terms) The set of all πklt process terms, denoted
Procs, ranged over by P, P ′, ... is de�ned by the BNF in Figure 1 on page 16.
The same BNF de�nes:

• the set Expr of expressions, ranged over by E,E′, ...,

• the set Alts of alternatives or branches, ranged over by B,B′, ...,

• the set Guards of guards ranged over by G,G′, ...,

• the set Patts of patterns, ranged over by R,R′, ...,

• and the set Defs of de�nitions, ranged over by D,D′, ....

Operator precedence is as show in , from highest to lowest.

Notation 2.2. In the rest of this document, a list of items (names, expressions,
terms) x1, x2, · · · , xn will be denoted as ~x. Furthermore ~x will also denote the
set of those items, so we can use normal set operations on them (e.g. x1 ∈ ~x).
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Figure 1 πklt syntax

P ::= done Stopped process

| a!E Trigger/Output

| when {B1 | · · · |Bn} Listener/Input

| new a1 , ..., an inP New

| ifE thenP1 elseP2 Conditional

| waitE → P Delay/Timer

| A(E1 , ...,En) Instantiation/Call

| def {D1; ...;Dn} inP Local de�nitions

| P1 ‖ P2 Parallel composition

| P1;P2 Sequential composition

B ::= G→ P Listener alternative or branch

G ::= a?R@y Listener/input guard

D ::= procA(x1, ..., xn) = P Process de�nition

| func f (x1, ..., xn) = E Function de�nition

| var x = E Variable de�nition

E ::= null | true | false | r | “s” | x
| 〈E1, ..., Em〉 | f(E1, ..., Em) | ∞

R ::= null | true | false | r | “s” | x
| 〈R1, ..., Rm〉

Table 1 Operator precedence from highest (top) to lowest (bottom).

Operator Associativity

new a1 , ..., an inP

ifE thenP1 elseP2

waitE → P

def {D1; ...;Dn} inP
P1;P2 Left-to-right

P1 ‖ P2 Left-to-right
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3 Informal semantics

We now describe informally the language's semantics.

• Expressions E are either constants (null represents the null constant),
variables (x), tuples of the form 〈E1, ..., Em〉 or function applications
f(E1, ..., Em). The constant ∞ represents in�nity, with the natural in-
�nity arithmetic (e.g., for all r ∈ R, r < ∞, r + ∞ = ∞ + r = ∞,
∞−r =∞). Patterns R have the same syntax as expressions, except that
they do not include function applications.

• The process done represents the stopped process: it has no actions.

• The process a!E is a trigger ; it triggers an event a with the value of E.
Alternatively, we can say that it sends the value of E over a channel a.
This is an asynchronous message sending, with no speci�c bu�ering policy
mandated by the semantics. The expression E is optional: a! is shorthand
for a!null.

• A process when {B1 | · · · |Bn} is a listener consisting of branches or alter-
natives Bi of the form Gi → Pi. Each Gi is a guard of the form ai?Ri@yi
where ai is an event/channel name, Ri is a pattern, and yi is an optional
variable. This process listens to all channels (or events) ai, and when ai is
triggered with a value V that matches the pattern Ri, the corresponding
process Pi is executed with yi bound to the amount of time the listener
waited, and the alternatives are discarded1. The su�xes Ri and @yi are
optional: a? → P is equivalent to a?x@y → P for some fresh names x
and y.

• The process new a1 , ..., an inP hides the names ai from the environment,
so that they are private to P . Alternatively, new a1 , ..., an inP can be seen
as the creation of new names, i.e., new events or channels, whose scope is
P .

• The process waitE → P is a delay : it delays the execution of process P
by an amount of time equal to the value of the expression E.2

• The process ifE thenP1 elseP2 is a conditional with the standard mean-
ing. ifE thenP is shorthand for ifE thenP else done.

1Note that to enable an input guard it is not enough for the channel to be triggered: the
message must match the guard's pattern as well. Pattern-matching of inputs means that
the input value must have the same �shape� as the pattern, and if successful, the free names
in the pattern are bound to the corresponding values of the input. For example, the value
〈3, true, 7〉 matches the pattern 〈3, x, y〉 with the resulting binding {true/x, 7/y}. The scope of
these bindings is the corresponding Pi.

2The value of E is expected to be a non-negative real number. If the value of E is negative,
waitE → P cannot perform any action. Similarly, terms with unde�ned values (e.g., ,
wait 1/0→ P ) or with incorrectly typed expressions (e.g., , wait true→ P ) cause the process
to stop. Since the language is untyped we do not enforce these constraints statically.
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• The process P1 ‖ P2 is the parallel composition of P1 and P2. We also
allow an indexed parallel composition, written

∏
i∈I Pi to stand for P1 ‖

P2 ‖ · · · ‖ Pn for some index set I = {1, 2, ..., n}.

• The term P1;P2 is the sequential composition of P1 and P2.

• The term def {D1; ...;Dn} inP declares de�nitions Di and executes P .
The scope of these de�nitions is the entire term (so they can be invoked
in P and in other de�nitions). Each Di can be either a process de�nition
procA(x1, ..., xn) = P , a function de�nition func f (x1, ..., xn) = E or a
local variable de�nition var x = E.

• The term x := E assigns the value of E to the local variable x.

• The process A(E1 , ...,En) creates a new instance of a process de�ned by
procA(x1, ..., xn) = P , de�ned in some enclosing scope, where the ports
or parameters x1, ..., xn are substituted in the body P by the values of
expressions E1, ..., En, which may be channel names.

3.1 Some examples and common usage patterns

In order to give the reader some intuition about the semantics of πklt we present
some representative examples and common patterns.

Interaction

The process
a! ‖ when {a?→ P}

results in one interaction between the processes and then continues as done ‖ P
which is the same as just P .

Choice

The term
a! ‖ when {a?→ P |b?→ Q}

reduces to P , while the term

b! ‖ when {a?→ P |b?→ Q}

reduces to Q. If the environment of a listener triggers more than one of the
listener's guards, the choice is non-deterministic:

a! ‖ b! ‖ when {a?→ P |b?→ Q}

can reduce to either
b! ‖ P

or
a! ‖ Q
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Pattern matching

For interaction to happen, data received must match the expected pattern: the
process

a!“hi” ‖ when {a?“hi”→ P}

reduces to P . On the other hand,

a!“hi” ‖ when {a?“hey”→ P}

does not result in an interaction because the data sent over a (“hi”) does not
match the expected pattern (“hey”). Hence the two processes remain the same.
If the pattern has variables, a successful communication results in substituting
the corresponding variables by the received values:

a!“hi” ‖ when {a?x → P}

results in P{“hi”/x}, this is, substituting every free occurrence of x in P by “hi”.
The same holds for more complicated patterns: the term

a!〈“hi”, 6〉 ‖ when {a?〈“hi”, x 〉 → P}

results in P{6/x}.

Local channels

The new construct introduces new names and restricts their scope. For example,
in the term

a!1 ‖ new a in (a!2 ‖ when {a?x→ P})

the a in a!1 is di�erent from the one in a!2. The whole term reduces to

a!1 ‖ P{2/x}

Barriers and joining

It is common for a process to wait for several other processes before continuing.
This can be achieved with nested listeners: in

(wait 3→ a!) ‖ b! ‖ when {a?→ when {b?→ P}}

process P will begin only when both a and b have been triggered. This example
also shows that the triggers are persistent, this is, the trigger b! is not lost if no
other process is listening to b, and remains available until some process is ready
to accept it. So the whole process waits 3 time units and becomes

a! ‖ b! ‖ when {a?→ when {b?→ P}}

which then becomes
b! ‖ when {b?→ P}
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which �nally becomes P . This notion of nested listeners as barriers is so useful
that we will write

when {〈a, b〉?→ P}
as syntactic sugar for

when {a?→ when {b?→ P}}

The sequential composition operator is also useful for joining processes: in

(P ‖ Q);R

process R will start only after both P and Q are done.

Process de�nitions

Process de�nitions allow us to encapsulate processes, giving them a speci�c
interface and be reused in the scope of their de�nition. For example,

def { procP(x) = x !; procC (y) = when {y?→ Q} }
in new a in (P(a) ‖ C (a))

results in the same as the term

new a in (a! ‖ when {a?→ Q})

The parameters of a process de�nition can be thought of as its interface, its
ports, so when we invoke the process de�nition we can visualize it as creating
an instance of the process and �hooking up� channels to its ports; e.g., in P(a)
we are instantiating P and hooking-up the local channel a to the new instance's
port x. Nevertheless, parameters are not required to be only channels or events,
but they can be any value. This fact is used for example to keep track of
additional state variables.

Recursion

The body of a process can refer to itself, or even to other processes in the same
de�nition group (or any enclosing process de�nitions). Recursion is used by a
process to keep itself alive, and possibly change its connections by invoking itself
with di�erent parameters. For example consider the de�nition

procA(x, y) = when {x?z → (y ! ‖ A(z , y))}

Then, executing
A(a, b) ‖ a!c

will result in
when {a?z → (b! ‖ A(z , b))} ‖ a!c

which will then reduce to
b! ‖ A(c, b)
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Lexical scoping

This applies to names introduced with new, names introduced with def and
pattern variables. This is, the occurrence of a name x always refers to the
closest enclosing construct that declares it, e.g., in

procA(x, y, z) = when {x?y → new z in y !〈x, z〉}

in the innermost term
y !〈x, z〉

x refers to the �rst parameter of A, y refers to the pattern in the listener's guard
x?y (not A's second parameter) and z refers to the one introduced by new z (and
not to A's third parameter).

Channel mobility

Channels or events are �rst-class objects, so they can be included in messages:
reducing

a!b ‖ when {a?x→ x !c}

results in b!c. This is allowed even for private or local names. For example the
term

when {a?x→ x !c} ‖ new b in (a!b ‖ P )

reduces to the term
new b in (b!c ‖ P )

In this case, the right-hand sub-process sent a private channel b to the left-hand
sub-process via a. Hence the left-hand process evolves into

b!c

becoming aware of the private b. 3

Asynchronous message passing

As in the asynchronous π-calculus, asynchronous communication is modelled
by syntactically restricting the output operator by not allowing it to have a
continuation. In practice, however it is often desired to allow writing, e.g.,

a!1→ P

This however is only syntactic sugar for

a!1 ‖ P

as the process P is free to continue without having to wait for the output a!1
to be consummated.

3In the π-calculus literature this is known as scope extrusion as the lexical scope of the
private name is e�ectively extended beyond its original scope.
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Message acknowledgment and response

Since communication is asynchronous, when sending a message, the sender does
not wait for the receiver to get and acknowledge the message, e.g., in a!“hi”;Q
process Q can begin before any process receives the message sent over a. Never-
theless, we often wish to receive an acknowledgment or response from a receiver.
A common way to do this in the π-calculus is to use channel mobility: create
a local channel, say r where the sender will expect the acknowledgment or re-
sponse, send r as part of the query and listen to r before proceeding. The
response message on r may be empty to signal acknowledgement, or may in-
clude data, such as the answer to the query. This can also be seen as a simple
way to encode synchronous message passing or remote procedure calls. The
response channel needs to be local to remain private, avoiding interference from
other processes. For example, the sender could be

procS (q) = new r in (q !r ‖ when {r?x→ P})

and the receiver could be

procR(q) = when {q?r → (Q; r !“result”)}

Thus, the sender sends a query on channel q including its private channel r where
it will expect the response, and then listens to r. Once the response arrives, it
proceeds as P . The receiver waits for a query on q and when the query arrives
it is expected to come with a response channel r. Then it proceeds to do some
task Q and when it is done, it sends the result on channel r. We use this pattern
repeatedly throughout our translation.

Process names as parameters

In process de�nitions, process invocations, expressions and patterns, we allow
the names x to be process and function names as well. This is an essential
feature that allows us to write generic processes, for example:

def { procA(x) = x !1; procB(y, Z) = Z (y) }
in new u inB(u,A)

In this example, the second parameter passed to B is A, so executing B(u,A)
results in A(u).

Timeouts

A very common task is to impose a timeout on a listener. This can be achieved
with an explicit timeout event and a branch of the listener which listens to the
timeout event and performs the task associated with the timeout. For example,

new s in (wait t→ s! ‖ when {a1 ?→ P1| · · · |an?→ Pn|s?→ Q})
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In this term we create a timeout signal s (not occurring in any process
Pi or Q), setup a timer to trigger s after a period of t time units and then
listen to several events a1, ..., an. If none of the events ai has been triggered
before the deadline t, then s is triggered and the listener follows the last branch,
executing process Q (the task specifying what to do on timeout). If event ai
is triggered before the deadline t, then branch i is followed, executing process
Pi while discarding the other alternatives, including the last one. Since the last
alternative is discarded then when the deadline arrives and s is triggered, there
will be no process listening to s (as the name s does not occur in any Pi), and
therefore it is ignored. The fact that triggers are persistent doesn't change the
situation because is we chose s not to occur in any of Pi or Q, then no process
will ever listen to s, and thus the resulting process s! ‖ Pi is equivalent to simply
Pi.

Since this timeout pattern is so useful, we introduce a special syntax for it:

when {a1 ?→ P1| · · · |an?→ Pn} timeout t→ Q

4 Formal operational semantics

4.1 Common de�nitions

4.1.1 Values

Processes manipulate data values. A value can be a basic constant or a tuple
of values. A basic constant is an event or site name, a boolean, a real number,
a string, or the null constant. The set of all values is de�ned in terms of the
following sets:

• B = {T,F} is the set of boolean values.

• R is the set of real numbers. We typically use r, r′, r′′, ... to range over
number literals.

• R+
0 denotes the set of positive real numbers including zero.

• Str denotes the set of all character strings. We write string literals in
double quotes: “s”

• Evts denotes the set {a : a ∈ EvtNames} of all channels (or events).

The constants ∅,T,F denote the null, true and false values respectively.

De�nition 4.1. (Values) The set Const of constants is de�ned as:

Const
def
= {∅} ∪ B ∪ R ∪ Str ∪Evts ∪ {∞}
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Figure 2 From value to expression.

expr(∅)
def
= null

expr(T)
def
= true

expr(F)
def
= false

expr(r)
def
= r for r ∈ R

expr(∞)
def
= ∞

expr(s)
def
= s for s ∈ Str

expr(a)
def
= a for a ∈ EvtNames

expr(〈V1, ..., Vn〉)
def
= 〈E1, ..., En〉 where ∀i ∈ {1, ..., n}. Ei

def
= expr(Vi)

The set Vals of all possible values is de�ned as

Vals
def
= Const

∪ {〈V1, ..., Vn〉 : ∀i ∈ {1, ..., n}. Vi ∈ Vals}
∪ {λ~x.E : E ∈ Expr}
∪ {π~x.P : P ∈ Procs}

or, de�ned in BNF style:

K ::= ∅ | T | F | r | “s” | a | ∞
V ::= K | 〈V1, ..., Vn〉 | λ~x.E | π~x.P

where r ∈ R, s ∈ Str and a ∈ Evts.
Values of the form 〈V1, ..., Vn〉 are tuples. Values of the form λ~x.E are

functional abstractions or functional closures. Values of the form π~x.P
are process abstractions or process closures.

To provide a description of the semantics, it is useful to convert values to
expressions.

De�nition 4.2. (Values as expressions) The (partial) function expr : Vals⇀
Expr that gives the basic expression of a value is de�ned in Figure 2 on page 24.

4.1.2 Actions

A process can perform several basic types of actions: output actions, bound
output actions4, input actions, silent or internal actions, successful termination,

4Bound output actions are output actions that send in their message, bound or private
names.
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or delays (also called rests). We distinguish between concrete actions, whose
arguments have been fully evaluated and symbolic actions, whose arguments
are not yet evaluated.

De�nition 4.3. (Concrete and symbolic actions) A silent or internal
action is a constant τ . A concrete output action is a pair of the form a!V
where a ∈ EvtNames, and V ∈ Vals. A concrete input action is a pair of
the form a?V where a ∈ EvtNames, and V ∈ Vals. A concrete delay action
is denoted δ(r) where r ∈ R+

0 . The set of all concrete actions is de�ned by:

α ::= τ | a!V | a?V

η ::= α | δ(r)

A symbolic output action is a pair of the form a!E where a ∈ EvtNames,
and E ∈ Expr. A symbolic input action is a pair of the form a?R where
a ∈ EvtNames, and R ∈ Patts. There are several kinds of internal actions:
interactions, conditional evaluations, creation of new names, and process invoca-
tions. An interaction is denoted µa{E/R}, where a ∈ EvtNames, R ∈ Patts
and E ∈ Expr. A conditional evaluation is denoted ιc(E) where c ∈ B. A
name creation action is denoted ν~b where ~b is list of names. A process call
action is denoted εA( ~E). A symbolic (partial) delay action is denoted
δ(t 6 E) where t ∈ Vars and E ∈ Expr. A symbolic full delay action is
denoted δ̄(E) where E ∈ Expr. The set of symbolic actions is given by the
following BNF:

τ ::= µa{E/R} | ιT(E) | ιF(E) | ν~b | εA( ~E)

α ::= τ | a!E | a?R

χ ::= δ̄(E) | δ(t 6 E)

η ::= α | χ

• IOActions
def
= {a!V : a ∈ EvtNames, V ∈ Vals} ∪ {a?V : a ∈

EvtNames, V ∈ Vals} is the set of concrete I/O (input/output) actions.

• InstActions
def
= IOActions ∪ {τ} is the set of concrete instantaneous

actions, where τ 6∈ IOActions is a special symbol denoting silent or
unobservable actions. We typically use α, β, γ, ... for instantaneous action
labels.

• DelActions
def
= {δ(r) : r ∈ R+

0 } is the set of concrete delay actions or
rests, where R+

0 is the set of positive real numbers (including zero).

• Actions
def
= InstActions ∪DelActions is the set of concrete actions.

• SymIOActions
def
= {a!E : a ∈ EvtNames, E ∈ Expr} ∪ {a?R : a ∈

EvtNames, R ∈ Patts} is the set of symbolic I/O (input/output) actions.

25



• SymInterActions
def
= {µa{E/R} : a ∈ EvtNames, R ∈ Patts, E ∈

Expr} is the set of symbolic interactions.

• SymIntActions
def
= SymInterActions ∪ {ιc(E) : c ∈ B, E ∈ Expr} ∪

{ν~b : ∀b ∈ ~b. b ∈ EvtNames} ∪ {εA( ~E) : A ∈ ProcNames, ∀E ∈
~E.E ∈ Expr} is the set of symbolic internal actions.

• SymInstActions
def
= SymIOActions ∪ SymIntActions is the set of

symbolic instantaneous actions. We typically use α, β, γ, ... for symbolic
instantaneous action labels.

• SymDelActions
def
= {δ̄(E) : E ∈ Expr} ∪ {δ(t 6 E) : t ∈ Vars, E ∈

Expr} is the set of symbolic delay actions or rests.

• SymActions
def
= SymInstActions∪SymDelActions is the set of sym-

bolic actions.

Notation 4.4. We will write µa for µa{null/null}.

4.1.3 Free and bound names

There are three constructs which introduce names:

• new a1 , ..., an inP introduces the names a1, ..., an in the scope P

• def {D1; ...;Dn} inP introduces the names de�ned by each Di with the
entire term being their scope (both P and all de�nitions Di in the term)

• when {· · · | ai?Ri@yi → Pi | · · · } which introduces all the names in pattern
Ri and the name yi in the scope Pi.

These constructs are called binding operators.
Introducing a name x in a scope P means that the name is local in that

scope so any reference to x inside P (and not nested further inside another
binding operator introducing it) refers to the closest enclosing binding operator
that introduced it. This is, names are lexically scoped.

Informally, the free names of a term or expression are those which have not
been introduced by a binding operator, whereas the bound names are those
which have. We need to formally de�ne these in order to de�ne the substitution
of free names in a term by some other term.

De�nition 4.5. (Free and bound names) We de�ne the following sets:

• The set of names of an expression E, written nE(E), is de�ned in Figure 3
on page 27.

• The set of free names of an expression, is fnE(E)
def
= nE(E).

• The set of names of a pattern R, written nR(R), is de�ned in Figure 4 on
page 27.
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Figure 3 Names in an expression.

nE(null)
def
= ∅

nE(true)
def
= ∅

nE(false)
def
= ∅

nE(r)
def
= ∅ for r ∈ R

nE(“s”)
def
= ∅ for s ∈ Str

nE(x)
def
= {x} for x ∈ Vars

nE(〈E1, ..., En〉)
def
=

⋃
i∈I nE(Ei) for I = {1, ..., n}

nE(f(E1, ..., En))
def
= {f} ∪

⋃
i∈I nE(Ei) for I = {1, ..., n}

Figure 4 Names in a pattern.

nR(null)
def
= ∅

nR(true)
def
= ∅

nR(false)
def
= ∅

nE(r)
def
= ∅ for r ∈ R

nR(“s”)
def
= ∅ for s ∈ Str

nE(x)
def
= {x} for x ∈ Vars

nR(〈R1, ..., Rn〉)
def
=

⋃
i∈I nR(Ri) for I = {1, ..., n}
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• The set of free names of a pattern, is fnR(R)
def
= nR(R).

• The set of free names of a symbolic action α, written fnA(α), de�ned in
Figure 5 on page 29.

• The set of bound names of a symbolic action α, written bnA(α), is de�ned
in Figure 6 on page 29.

• The set of names of a symbolic action α is nA(α)
def
= fnA(α) ∪ bnA(α).

• The set of free names of a guard, written fnG(G), is de�ned by

fnG(a?R@y)
def
= {a}

• The set of bound names of a guard, written bnG(G), is de�ned by

bnG(a?R@y)
def
= {y} ∪ nR(R)

• The set of names of a guard G is nG(G)
def
= fnG(G) ∪ bnG(G).

• The set of free names of a listener branch, written fnB(B), is de�ned by

fnB(G→ P )
def
= (fnP(P )\bnG(G)) ∪ fnG(G)

• The set of free names of a de�nition, written fnD(D), is de�ned in Figure 7
on page 29.

• The set of bound names of a de�nition, written bnD(D), is de�ned in
Figure 8 on page 29.

• The de�ned name of a de�nition, written defnJDK, is de�ned in Figure 9
on page 29.

• The set of free names of a process term P , written fnP(P ), de�ned in
Figure 10 on page 32.

Notation 4.6. We will drop the subscript of the names, free names and bound
names functions whenever it is clear from the context which one we are applying,
so for example, if Q if a process term, we will write fn(Q) instead of fnP(Q).

De�nition 4.7. (Open and closed terms) A term with no free names is
called a closed term, whereas a term with one or more free names is called an
open term.
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Figure 5 Free names of a symbolic action.

fnA(a!E)
def
= {a} ∪ nE(E)

fnA(a?R)
def
= {a}

fnA(ιc(E))
def
= nE(E)

fnA(ν~b)
def
= ∅

fnA(εA( ~E))
def
= {A} ∪

⋃
E∈~E nE(E)

fnA(δ̄(E))
def
= nE(E)

fnA(δ(t 6 E))
def
= {t} ∪ nE(E)

Figure 6 Bound names of a symbolic action.

bnA(a!E)
def
= ∅

bnA(a?R)
def
= nR(R)

bnA(ιc(E))
def
= ∅

bnA(ν~b)
def
= ~b

bnA(εA( ~E))
def
= ∅

bnA(δ̄(E))
def
= ∅

bnA(δ(t 6 E))
def
= ∅

Figure 7 Free names of a de�nition.

fnD(procA(x1, ..., xn) = P )
def
= fnP(P )\{x1, ..., xn}

fnD(func f (x1, ..., xn) = E)
def
= nE(E)\{x1, ..., xn}

fnD(var x = E)
def
= fnE(E)

Figure 8 Bound names of a de�nition.

bnD(procA(x1, ..., xn) = P )
def
= {x1, ..., xn}

bnD(func f (x1, ..., xn) = E)
def
= {x1, ..., xn}

bnD(var x = E)
def
= ∅

Figure 9 Name de�ned by a de�nition.

defnJprocA(x1, ..., xn) = P K def
= A

defnJfunc f (x1, ..., xn) = EK def
= f

defnJvar x = EK def
= x
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4.1.4 Substitution

In an open term free names are variables in the sense that they can be replaces
by other terms yielding a valid term (which itself may be open or closed). As
with many process calculi and other languages the semantics makes use of name
substitution, that is, the substitution of free names in an open term by other
terms.

De�nition 4.8. (Substitution) Let V = {x, y, z, ...} be some set of variables
and L be some language where variables are valid sub-terms, i.e., V ⊆ L. A

(simultaneous) substitution is a partial function σ : V ⇀ L. Let dom(σ)
def
= {x ∈

V : ∃T ∈ L. σ(x) = T} denote the domain of the substitution and ran(σ)
def
=

{σ(x) |x ∈ dom(σ)} its range. Given a (partial) substitution σ : V ⇀ L we
de�ne the canonical extension of σ as the function σ̇ : V → L given by:

σ̇(x)
def
=

{
σ(x) if x ∈ dom(σ)

x otherwise

Also, if J ⊆ L, we de�ne the restriction of σ to J as the function σ|J :
V → J given by:

σ|J (x)
def
=

{
σ(x) if x ∈ dom(σ) and σ(x) ∈ J
x otherwise

If T ∈ L is a term, σ̂L(T ) is the term that results from simultaneously
replacing every free occurrence of each variable x ∈ dom(σ) with σ̇(x) in T .
This de�nes a function σ̂L : L → L which we call the lifting of σ to L, or simply
σ lifted to L or L-lifted σ.

Notation 4.9. If T1, ..., Tn are terms in some language L, we write {T1/x1, ..., Tn/xn}
or {x1 7→ T1, ..., xn 7→ Tn} for the substitution σ de�ned by σ(x1)

def
= T1,

..., σ(xn)
def
= Tn. For a given term T and a substitution σ, we write Tσ for

σ̂L(T ). We shall also write {T1,...,Tn/x1,...,xn} or {x1, ..., xn 7→ T1, ..., Tn} for

{T1/x1, ..., Tn/xn}, and they can be abbreviated as {~T/~x} or {~x 7→ ~T}.
The above de�nition is generic, language independent, but we must provide

a de�nition of the lifting of a substitution σ to expressions, patterns and process
terms in our language. We must de�ne this lifting with care, in order to avoid
name capture, this is, if {T/x} is some substitution and T ′ some term, it is
possible that the some free names in T become bound when performing the
substitution whenever x occurred within the scope of some binding operator
in T ′. In other words, suppose that y is a free name in T , but it is a bound
name in T ′. If a free occurrence of x is within the scope of y in T ′, then when
we replace x with T , the occurrence of y in T becomes bound in T ′. This is
undesirable, as the free y in T and the bound y in T ′ are di�erent, this is, they
refer to di�erent entities but in the result they become identi�ed, thus changing
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the syntactic structure and possibly the meaning of the terms involved. The
classic approach to deal with this is to perform α-conversion, this is, to rename
all bound names in T ′ with new, fresh names (in particular names di�erent from
x and from any free names in T ), before performing the substitution. Here we
provide an equivalent but slightly di�erent approach: we perform α-conversion
on-the-�y, as we do the substitution: this is whenever we encounter a bound
name, we recursively substitute it before applying the main substitution.5

De�nition 4.10. (Substitution on terms) Given a substitution σ : Vars⇀
Expr ∪Patts ∪Procs, we de�ne its liftings as follows:

• The lifting of σ to expressions σ̂E : Expr→ Expr is de�ned according to
Figure 11 on page 32.

• The lifting of σ to patterns σ̂R : Patts → Patts is de�ned according to
Figure 12 on page 32.

• The lifting of σ to listener branches σ̂B : Alts→ Alts is de�ned according
to Figure 13 on page 33.

• The lifting of σ to de�nitions σ̂D : Defs → Defs is de�ned according to
Figure 14 on page 33.

• The lifting of σ to process terms σ̂P : Procs→ Procs is de�ned according
to Figure 15 on page 34.

4.1.5 Name environments

In order to evaluate an expression, its free names must have a value. Similarly,
in order to execute a process term which contains calls to process de�nitions,
the process names must have a process de�nition associated to them.

De�nition 4.11. (Name environments) An association of a name to a
value is a pair (x, V ) where x ∈ Vars and V ∈ Vals, and it is written as x 7→ V .
A name environment is an ordered map associating names to values. We denote
name environments as Γ,Γ′, ... and Envs for the set of all possible environments.
A name environment is a list of associations

[x1 7→ V1; · · · ;xn 7→ Vn]

Given a name environment Γ, we write

lookup(Γ, x )

5To the reader familiar with α-conversion, it may seem as if we are doing much more work
than necessary by renaming all bound names. However, in order to determine when such
renaming is unnecessary, one must compute the free names of a term, which requires a full
traversal of the term's abstract syntax tree, and therefore requires the same amount of work
as renaming all bound names.
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Figure 10 Free names of a process term. In these de�nitions I = {1, ..., n}.

fnP(done)
def
= ∅

fnP(a!E)
def
= {a} ∪ nE(E)

fnP(when {B1 | · · · |Bn})
def
=

⋃
i∈I fnB(Bi)

fnP(new a1 , ..., an inP )
def
= fnP(P )\{a1, ..., an}

fnP(ifE thenP1 elseP2)
def
= nE(E) ∪ fnP(P1) ∪ fnP(P2)

fnP(waitE → P )
def
= nE(E) ∪ fnP(P )

fnP(A(E1 , ...,En))
def
= {A} ∪

⋃
i∈I nE(Ei)

fnP(def {D1; ...;Dn} inP )
def
= (fnP(P ) ∪

⋃
i∈I fnD(Di))\

⋃
i∈I defnJDiK

fnP(P1 ‖ P2)
def
= fnP(P1) ∪ fnP(P2)

fnP(P1;P2)
def
= fnP(P1) ∪ fnP(P2)

Figure 11 Lifting (application) of a substitution to an expression.

σ̂E(null)
def
= null

σ̂E(true)
def
= true

σ̂E(false)
def
= false

σ̂E(r)
def
= r for r ∈ R

σ̂E(“s”)
def
= “s” for s ∈ Str

σ̂E(x)
def
= σ|Expr(x) for x ∈ Vars

σ̂E(〈E1, ..., En〉)
def
= 〈σ̂E(E1), ..., σ̂E(En)〉

σ̂E(f(E1, ..., En))
def
= σ|FuncNames(f)(σ̂E(E1), ..., σ̂E(En))

Figure 12 Lifting (application) of a substitution to a pattern.

σ̂R(null)
def
= null

σ̂R(true)
def
= true

σ̂R(false)
def
= false

σ̂R(r)
def
= r for r ∈ R

σ̂R(“s”)
def
= “s” for s ∈ Str

σ̂R(x)
def
= σ|Patts(x) for x ∈ Vars

σ̂R(〈R1, ..., Rn〉)
def
= 〈σ̂R(R1), ..., σ̂R(Rn)〉
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Figure 13 Lifting (application) of a substitution to a listener branch.

σ̂B(a?R@y → P )
def
= a ′?σ̂′R(R)@σ′(y)→ σ̂P(σ̂′P(P ))

where a′
def
= σ|EvtNames(a)

where σ′(x)
def
= x′ for each x ∈ nR(R) ∪ {y}

with x′ being a fresh name such that

x′ /∈ dom(σ) ∪ fnP(P ) ∪ nG(a?R@y)

and ∀T ∈ ran(σ). x′ /∈ fn(T )

Figure 14 Lifting (application) of a substitution to a de�nition.

σ̂D(procA(x1, ..., xn) = P )
def
= procA′(x′1, ..., x

′
n) = σ̂P(σ̂′P(P ))

where A′
def
= σ|ProcNames(A)

where σ′
def
= {x1, ..., xn 7→ x′1, ..., x

′
n}

with each x′i being a fresh name
such that for each i ∈ {1, ..., n}
x′i /∈ fnP(P ) ∪ dom(σ) ∪ dom(σ′),
and ∀T ∈ ran(σ). x′i /∈ fn(T )

σ̂D(func f (x1, ..., xn) = E)
def
= func f ′(x′1, ..., x

′
n) = σ̂E(σ̂′E(E))

where f ′
def
= σ|FuncNames(f)

where σ′
def
= {x1, ..., xn 7→ x′1, ..., x

′
n}

with each x′i being a fresh name
such that for each i ∈ {1, ..., n}
x′i /∈ nE(E) ∪ dom(σ) ∪ dom(σ′)
and ∀T ∈ ran(σ). x′i /∈ fn(T )

σ̂D(var x = E)
def
= var x ′ = σ̂E(E)

where x′
def
= σ|Vars(x)
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Figure 15 Lifting (application) of a substitution to a process term. The primed
substitutions σ′ in this de�nition are intended to do α-conversion on-the-�y by
substituting each newly encountered bound name with a new, fresh name. These
σ′ are applied before the main substitution σ is applied thus guaranteeing any
name clash.

σ̂P(done)
def
= done

σ̂P(a!E)
def
= a ′!σ̂E(E)

where a′
def
= σ|EvtNames(a)

σ̂P(when {· · · |Bi | · · · })
def
= when {· · · | σ̂B(Bi) | · · · }

σ̂P(new a1 , ..., an inP )
def
= new a ′1 , ..., a

′
n in σ̂P(σ̂′P(P ))

where σ′
def
= {a1, ..., an 7→ a′1, ..., a

′
n}

with each a′i being a fresh name such that
∀i ∈ {1, ..., n}. a′i /∈ fnP(P ), a′i /∈ dom(σ)
and ∀T ∈ ran(σ). a′i /∈ fn(T )

σ̂P(ifE thenP1 elseP2)
def
= if σ̂E(E) then σ̂P(P1) else σ̂P(P2)

σ̂P(waitE → P )
def
= wait σ̂E(E)→ σ̂P(P )

σ̂P(A(E1 , ...,En))
def
= A′(σ̂E(E1 ), ..., σ̂E(En))

where A′
def
= σ|ProcNames(A)

σ̂P(def {D1; ...;Dn} inP )
def
= def {σ̂D(σ̂′D(D1)); ...; σ̂D(σ̂′D(Dn))}

in σ̂P(σ̂′P(P ))

where σ′(x)
def
= x′ for each x ∈ D

with D def
=

⋃
i∈{1,...,n} defnJDiK

and with each x′ being a fresh name
such that x′ /∈ dom(σ), x′ /∈ fnP(P ),
x′ /∈ D, x′ /∈

⋃
i∈{1,...,n} fnD(Di),

and ∀T ∈ ran(σ). x′ /∈ fn(T )

σ̂P(P1 ‖ P2)
def
= σ̂P(P1) ‖ σ̂P(P2)

σ̂P(P1;P2)
def
= σ̂P(P1); σ̂P(P2)
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for the last occurrence of x in Γ, or ⊥ if x is not in Γ. 6 More precisely:

lookup([x1 7→ V1; · · · ;xn 7→ Vn], x )
def
={

Vn if x = xn

lookup([x1 7→ V1; · · · ;xn−1 7→ Vn−1], x ) otherwise

We write
extend(Γ, x 7→ V )

for the result of appending the association x 7→ V to Γ, i.e.,

extend([x1 7→ V1; · · · ;xn 7→ Vn], x 7→ V )
def
= [x1 7→ V1; · · · ;xn 7→ Vn;x 7→ V ]

Given a list of associations

~x 7→ ~V = [x1 7→ V1; · · · ;xn 7→ Vn]

we write the extension of an environment with such a list as

ext(Γ, x̃ 7→ Ṽ )

for
extend(Γn, xn 7→ Vn)

where for each i ∈ {2, ..., n},

Γi
def
= extend(Γi−1, xi−1 7→ Vi−1)

and

Γ1
def
= Γ

In other words, extending an environment with a list of associations is done by
appending each association in order, to the environment.

A name environment can be seen as a substitution, where only the relevant
names are included in the substitution's domain. This is, given an environment
Γ, Γ̂ is the substitution de�ned as

Γ̂(x)
def
= lookup(Γ, x)

As any substitution, Γ̂P denotes the substitution lifted to process terms.
The binding of a de�nition D in an environment Γ, written bindJDKΓ is

an association of the de�ned name to the corresponding value. More precisely
bind : Defs→ Envs→ Vars×Vals is de�ned as

bindJvar x = EKΓ
def
= x 7→ evalJEKΓ

bindJprocA(~x) = P KΓ
def
= A 7→ π~x.P

bindJfunc f (~x) = EKΓ
def
= f 7→ λ~x.E

6Note that since Γ is a list, there may be multiple associations of a given name in the list.
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Notation 4.12. We abuse the notation for extending environments to allow
adding de�nitions as follows: ext(Γ, D) denotes ext(Γ, bindJDKΓ) and for lists

of de�nitions: if ~D = D1; · · · ;Dn is a list of de�nitions then ext(Γ, ~D) denotes
ext(Γ, [bindJD1KΓ; · · · ; bindJDnKΓ]).

4.1.6 Expression evaluation

Expressions are evaluated with respect to name environments (De�nition 4.11)
to determine the values of its free variables. Expressions may use two kinds of
functions: primitive and non-primitive.

De�nition 4.13. (Primitive functions) The primitive functions of πklt are
the standard arithmetic operators +, ∗, −, /, the standard boolean operators
not, and, or, and the standard comparison operators <, >, ≤, ≥, =, 6=. Com-
parison operators are applicable to strings and event names. In particular, if
x, y ∈ EvtNames are names, x = y if and only if x and y are the exact same
name, i.e. x = x but x 6= y. The in�nity constant ∞ can be used in arithmetic
expressions and comparison expressions, and it satis�es, for all r ∈ R: r < ∞,
r +∞ =∞+ r =∞, ∞+∞ =∞, and ∞− r =∞.

If f is a primitive function, we write f̂(V1, ..., Vn) for the result of applying
the primitive function to values V1, ..., Vn. So for example, +̂(1, 2) is 3.

De�nition 4.14. (Expression evaluation) For any name environment Γ, the
expression evaluation function eval : Expr→ Envs→ Vals is de�ned as shown
in Figure 16 on page 37: 7

4.1.7 Pattern matching

Pattern matching is formally de�ned by a function match which takes as input
a pattern, a datum (i.e., a concrete value) and a substitution and returns either
a new substitution which extends the original substitution with the appropriate
bindings, or ⊥ if the datum does not match the pattern. The substitution
provided as input is used to ensure that all occurrences of a variable in a tuple
match the same data. Here we call Subst the set of all substitutions. Recall
that Patts is the set of all patterns and Vals is the set of all values.

De�nition 4.15. (Pattern matching) Let match : Patts×Vals→ Subst→
Envs→ Subst ] {⊥} be the function de�ned in Figure 17 on page 37.

Note that the substitution returned by match is a substitution from variables
to expressions. This allows us to apply these substitutions to process terms.

4.1.8 Timed labelled-transition systems

Operational semantics are often de�ned in terms of labelled transition systems.
We recall their de�nition here.

7Function evaluation for non-primitive functions is lazy. Only primitive functions require
the fully evaluated arguments.
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Figure 16 Expression evaluation function.

evalJnullKΓ
def
= ∅

evalJtrueKΓ
def
= T

evalJfalseKΓ
def
= F

evalJrKΓ
def
= r for r ∈ R

evalJ∞KΓ
def
= ∞

evalJ“s”KΓ
def
= “s” for “s” ∈ Str

evalJ〈 ~E〉KΓ
def
= 〈V1, ..., Vn〉 where ~E = E1, ..., En

and ∀i ∈ {1, ..., n}. Vi
def
= evalJEiKΓ

evalJf( ~E)KΓ
def
= evalJE{~E/~x}KΓ if f is non-primitive, ~E = E1, ..., En,

where lookup(Γ, f) = λ~x.E

evalJf( ~E)KΓ
def
= f̂(V1, ..., Vn) if f is primitive, ~E = E1, ..., En,

and ∀i ∈ {1, ..., n}. Vi = evalJEiKΓ

evalJxKΓ
def
=

{
lookup(Γ, x)

x

if x ∈ Γ
otherwise

Figure 17 Pattern matching.

match(JnullK,∅)σ,Γ
def
= σ

match(JtrueK,T)σ,Γ
def
= σ

match(JfalseK,F)σ,Γ
def
= σ

match(JrK, r)σ,Γ
def
= σ for r ∈ R

match(J∞K,∞)σ,Γ
def
= σ

match(J“s”K, “s”)σ,Γ
def
= σ for “s” ∈ Str

match(J〈R1, ..., Rn〉K, 〈V1, ..., Vn〉)σ,Γ
def
= σn

where σi
def
= match(JRiK, Vi)σi−1,Γ

for i ∈ {1, ..., n}, σi 6= ⊥
and σ0

def
= σ

match(JxK, V )σ,Γ
def
= σ ∪ {expr(V )/x}

if x ∈ Vars and x /∈ dom(σ)

match(JxK, V )σ,Γ
def
= σ

if x ∈ Vars, x ∈ dom(σ)
and evalJσ(x)KΓ = V

match(JRK, V )σ,Γ
def
= ⊥ otherwise
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De�nition 4.16. (Labelled Transition Systems) A labelled transition
system or LTS is a tuple (S,L,→) where S is a set of states, L is a set of
labels, and →⊆ S ×L×S is an action transition relation . A rooted LTS
is a tuple (S, s0,L,→) where (S,L,→) is an LTS and s0 ∈ S is called the initial
state.

Notation 4.17. We write s
α→ s′ for (s, α, s′) ∈→ and we write s

a→ to mean

that ∃s′ ∈ S. s α→ s′.

The operational semantics of πklt is de�ned formally as a special kind of
labelled transition system that divides transitions into those that result from
the execution of an action, and those which result from the passage of time.

De�nition 4.18. (Timed labelled transition systems) A timed labelled
transition system or TLTS is a tuple (S,L,→, ) where and ⊆ S×R+

0 ×S
is a timed transition or evolution relation . A rooted TLTS (S, s0,L,→
, ) is a TLTS with a distinguished initial state s0.

Notation 4.19. We write s
d
 s′ for (s, d, s′) ∈ and we write s

d
 to mean

that ∃s′. s d
 s′.

Remark 4.20. A TLTS (S,L,→, ) can be de�ned as an LTS (S,L′,→′) where
L′ def= L ∪ {δ(r) : r ∈ R+

0 } and →′⊆ S × L′ × S is de�ned such that:

• (s, α, s′) ∈→′ i� (s, α, s′) ∈→ for all α ∈ L

• (s, δ(r), s′) ∈→′ i� (s, r, s′) ∈ for all r ∈ R+
0

In other words, s
d
 s′ is shorthand notation for s

δ(d)−−→ s′. So the set L′ of
labels includes delay or timed actions of the form δ(r), where r is the duration
or time.

De�nition 4.21. (Contextual labelled transition systems) A contextual
labelled transition system or CLTS is a tuple (C,S,L,→) where C is a set
of contexts, S is a set of states, L is a set of labels, and →⊆ C × S × L × S
is an action transition relation . A rooted CLTS is a tuple (C,S, s0,L,→)
where (C,S,L,→) is an CLTS and s0 ∈ C ×S is called the initial con�guration.

Notation 4.22. We write ρ . s
α−→ s′ or s

α−→
ρ
s′ for (ρ, s, α, s′) ∈→.

Remark 4.23. A CLTS (C,S,L,→) can be seen as an LTS (S,L′,→′) where

L′ def
= C × L and →′⊆ S × L′ × S is de�ned such that: (s, (ρ, α), s′) ∈→′ i�

(ρ, s, α, s′) ∈→ for all α ∈ L. In other words, ρ . s
α−→ s′ is shorthand notation

for s
(ρ,α)−−−→ s′. So the set L′ of labels includes the context.

This is also extended to a timed variant.

De�nition 4.24. (Contextual timed labelled transition systems) A con-
textual timed labelled transition system or CTLTS is a tuple (C,S,L,→
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, ) where C is a set of contexts, S is a set of states, L is a set of labels,
→⊆ C ×S ×L×S is an action transition relation and  ⊆ C ×S ×R+

0 ×S
is a timed transition or evolution relation . A rooted CTLTS is a tuple
(C,S, s0,L,→) where (C,S,L,→, ) is an CTLTS and s0 ∈ C × S is called the
initial con�guration.

4.2 Labelled-transition semantics

The following formalizes the operational semantics of πklt .

4.2.1 Semi-symbolic CLTS

We �rst present a semi-symbolic semantics for πklt . It is symbolic rather than
concrete in the sense that the labels for input and output transitions are not
fully evaluated, thus yielding a �nite representation of possibly in�nite sets
of transitions, but it is not fully symbolic in the sense that some expressions,
such as conditionals or parameters of a process instantiation are evaluated.
Note that this is not a CTLTS but at CLTS: A CTLTS is usually in�nite as
it may contain all transitions corresponding to each possible duration within
a time delay, whereas the semi-symbolic CLTS only records a single transition
with the deadline, the maximum delay. Note that the semi-symbolic transition
system may still be in�nite in the sense that its set of states can be in�nite,
but for each state the set of outgoing transitions will be �nite, i.e., the CLTS
is a �nite-branching, in�nite state transition system. Also note that we do not
provide a direct operational semantics for the sequential composition. Instead
this operator will be encoded in terms of the other operators in Subsection 5.4.3.

De�nition 4.25. (Semi-symbolic process transitions) Let P0 ∈ Procs.
The semi-symbolic CLTS of P0, denoted WJP0K is the rooted CLTS de�ned
to be the tuple (Envs,Procs, P0,SymActions,→) where the relation →⊆
Envs×Procs× SymActions×Procs is the smallest relations satisfying the
inference rules in Table 2 on page 40, Table 3 on page 41, Table 4 on page 41,
and Table 5 on page 42, and also satisfying the following constraint to guarantee
maximal progress (urgency of internal actions):8

if Γ . P
τ−→ then Γ . P

χ
−/−→

8Alternatively we could add a negative premise Γ.P
τ
−/−→ to all rules with Γ.P

χ−→ P ′ in the
conclusion. This requirement means that a term that has any internal transitions (

√
, µa{E/R},

ιc(E), ν~b or εA( ~E)) cannot have a delay transition, either a δ̄(E) or a δ(t 6 E), and therefore
internal transitions are urgent : a delay cannot happen before an internal transition, and
therefore as long as there are internal transitions they will be executed �rst, thus guaranteeing
maximal progress, but also permitting instantaneous divergence, this is, lack of progress in
time. Such behaviour is of course undesirable, but the semantics allows it, just as any language
allows errors.
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Table 2 Rules for semi-symbolic immediate action transitions for !, when, new,
if, A(Ẽ ) and def. In the (choice) rule Gi stands for a guard of the form
ai?Ri@yi.

−
(trig)

Γ . a!E
a!E−−→ done

−
(choice)

Γ . when {· · · |Gi → Pi | · · · }
ai?Ri−−−→ Pi{0/yi}

−
(new) |~a| = |~b| and ∀b ∈ ~b. b is fresh

Γ . new ã inP
ν~b−→ P{~b/~a}

evalJEKΓ = T
(if-l)

Γ . ifE thenP elseQ
ιT(E)−−−→ P

evalJEKΓ = F
(if-r)

Γ . ifE thenP elseQ
ιF(E)−−−→ Q

lookup(Γ, A) = π~x.P
(inst)

where ~E′ = E′1, ..., E
′
|~x|, and

∀i ∈ {1, ..., |~x|}.E′i
def
= expr(evalJEiKΓ)Γ .A(Ẽ )

εA(~E)−−−−→ P{ ~E′/~x}

ext(Γ, ~D) . P
α−→ P ′

(def)
Γ . def { ~D} inP α−→ P ′
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Table 3 Rules for semi-symbolic immediate action transitions for ‖. In rules
(comm-l), (comm-r), (close-l) and (close-r), σ = match(JRK, evalJEKΓ)∅,Γ

Γ . P
α−→ P ′ bn(α) ∩ fn(Q) = ∅

(par-l)
Γ . P ‖ Q α−→ P ′ ‖ Q

Γ . Q
α−→ Q′ bn(α) ∩ fn(P ) = ∅

(par-r)
Γ . P ‖ Q α−→ P ‖ Q′

Γ . P
a!E−−→ P ′ Γ . Q

a?R−−→ Q′ σ 6= ⊥
(comm-l)

Γ . P ‖ Q µa{E/R}−−−−−→ P ′ ‖ Q′σ

Γ . P
a?R−−→ P ′ Γ . Q

a!E−−→ Q′ σ 6= ⊥
(comm-r)

Γ . P ‖ Q µa{E/R}−−−−−→ P ′σ ‖ Q′

Table 4 Rules for semi-symbolic delay action transitions for stop, !, when,
wait and def. In the (tch) rule Gi stands for a guard of the form ai?Ri@yi.
In all rules with a symbolic partial delay action δ(t 6 E) in the label of the
transition, t ∈ TVars is a new, fresh time variable.

−
(tidle)

Γ . done
δ(t6∞)−−−−−→ done

−
(ttrig)

Γ . a!E
δ(t6∞)−−−−−→ a!E

−
(tch)

Γ . when {· · · |Gi → Pi | · · · }
δ(t6∞)−−−−−→ when {· · · |Gi → Pi{yi+t/yi} | · · · }

−
(tdelay)

Γ . waitE → P
δ(t6E)−−−−→ wait (E − t)→ P

−
(tfdelay)

Γ . waitE → P
δ̄(E)−−−→ P

Γ . P
χ−→ P ′(tdef)

Γ . def {D1; · · · ;Dn} inP
χ−→ def {D1; · · · ;Dn} inP ′
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Table 5 Rules for semi-symbolic delay action transitions for ‖. In all rules with
a symbolic partial delay action δ(t 6 E) in the label of the transition, t ∈ TVars

is a new, fresh time variable. Also, tevalJEKΓ
def
= evalJE{~0/~t}KΓ, where ~0 stands

for any list of all 0's, and ~t is the set of all time variables introduced by any rule

in the expression, i.e., ~t
def
= nE(E) ∩TVars, so in tevalJEKΓ we are evaluating

expression E with all its time variables t set to 0.

Γ . P
δ(t6E)−−−−→ P ′ Γ . Q

δ(t′6E′)−−−−−→ Q′ tevalJEKΓ 6 tevalJE′KΓ
(tpar-l)

Γ . P ‖ Q δ(t′′6E)−−−−−→ P ′{t′′/t} ‖ Q′{t′′/t′}

Γ . P
δ(t6E)−−−−→ P ′ Γ . Q

δ(t′6E′)−−−−−→ Q′ tevalJE′KΓ 6 tevalJEKΓ
(tpar-r)

Γ . P ‖ Q δ(t′′6E′)−−−−−−→ P ′{t′′/t} ‖ Q′{t′′/t′}

Γ . P
δ̄(E)−−−→ P ′ Γ . Q

δ(t′6E′)−−−−−→ Q′ tevalJEKΓ 6 tevalJE′KΓ
(tfpar-l)

Γ . P ‖ Q δ̄(E)−−−→ P ′ ‖ Q′{E/t′}

Γ . P
δ(t6E)−−−−→ P ′ Γ . Q

δ̄(E′)−−−→ Q′ tevalJE′KΓ 6 tevalJEKΓ
(tfpar-r)

Γ . P ‖ Q δ̄(E′)−−−→ P ′{E′/t} ‖ Q′
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Table 6 Concrete process transitions. Note that the (ctau) rule is a rule schema
for all internal symbolic actions de�ned in De�nition 4.3. Note also that this
de�nition implies that the concrete transitions of a term are derived from semi-
symbolic transitions containing only closed expressions, i.e., expressions whose
free variables are de�ned in the name environment.

Γ . P
a!E−−→ P ′ V = evalJEKΓ

(cout)
Γ̂P(P )

a!V−−→ cΓ̂P(P ′)

Γ . P
a?R−−→ P ′ match(JRK, V )∅,Γ 6= ⊥

(cinp)
Γ̂P(P )

a?V−−→ cΓ̂P(P ′)

Γ . P
τ−→ P ′(ctau)

Γ̂P(P )
τ−→ cΓ̂P(P ′)

Γ . P
δ̄(E)−−−→ P ′ V = evalJEKΓ

(ctime)
Γ̂P(P )

V
 c Γ̂P(P ′)

Γ . P
δ(t6E)−−−−→ P ′ 0 6 V 6 evalJEKΓ

(cinterv)
Γ̂P(P )

V
 c Γ̂P(P ′)

4.2.2 Concrete CTLTS

The symbolic CLTS of a term determines a concrete TLTS, in�nite in size,
resulting from instantiating all expressions.

De�nition 4.26. (Concrete process transitions) Given a πklt term P0, with
a semi-symbolic CTLTS WJP0K = (Envs,Procs, P0,SymActions,→), the
rooted concrete TLTS WJP0K is de�ned as the tuple (Procs, P0,Actions,→c

, c) where Actions is the set of (concrete) action labels and the relations
→c⊆ Procs× InstActions×Procs and  c⊆ Procs×DelActions×Procs
are the smallest relations satisfying satisfying the constraints in Table 6 on
page 43.

4.3 Functional characterization

An alternative characterization of the operational semantics is given in terms
of de�ning for each state, which actions are enabled, and for such actions, what
are the possible successor states. Subsection 4.3.1 de�nes the set of enabled
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actions for a term. The set of successor states of a term is de�ned below in
Subsection 4.3.2.

4.3.1 Enabled Actions

We need a preliminary de�nition: a function interact that determines if two
processes can interact or not. It is de�ned in terms of a function iomatch which
determines for a pair of actions α1 and α2 if they are �complementary actions�,
this is, one is an input and the other is a corresponding output. More precisely
this function returns the resulting substitution σ, so that when σ = ⊥, the
actions do not match. Recall that Procs is the set of all process terms, Envs
is the set of all variable environments, SymActions is the set of all symbolic
actions and Subst is the set of all substitutions.9

De�nition 4.27. (Interact) The function interact : Procs×Procs→ Envs→
B is de�ned as follows:

interact(JP1K, JP2K)Γ = T if and only if

∃α1 ∈ enablednowJP1KΓ, α2 ∈ enablednowJP2KΓ.

iomatch(α1, α2)Γ 6= ⊥ or iomatch(α2, α1)Γ 6= ⊥

where the function iomatch : SymActions×SymActions→ Envs→ Subst]
{⊥} is de�ned as follows:

iomatch(a!E, a?R)Γ
def
= match(JRK, evalJEKΓ)∅,Γ

iomatch(α1, α2)Γ
def
= ⊥ otherwise

De�nition 4.28. (Interactions) The function interactions : Procs×Procs→
Envs→ 2SymInterActions is de�ned as follows:

interactions(JP1K, JP2K)Γ
def
=

{µa{E/R} : ∃α1 ∈ enablednowJP1KΓ, α2 ∈ enablednowJP2KΓ.

α1 = a!E, α2 = a?R and iomatch(α1, α2)Γ 6= ⊥
or α1 = a?R, α2 = a!E and iomatch(α2, α1)Γ 6= ⊥}

The set of enabled actions includes both instantaneous actions (input, output,
silent actions and termination) and delay actions, but for clarity it is useful to
separate them in two functions.

De�nition 4.29. (Enabled instantaneous actions) The set of enabled
instantaneous actions of a given process term is de�ned by the function
enablednow : Procs → Envs → 2SymInterActions shown in Figure 18 on
page 45.

9The functions interact and interactions are de�ned in terms of enablednow which is itself
de�ned in terms of interact and interactions. These mutually recursive de�nitions are well-
de�ned as these functions are always de�ned in terms of their application to sub-terms.
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Figure 18 Enabled immediate actions.

enablednowJdoneKΓ
def
= ∅

enablednowJa!EKΓ
def
= {a!E}

enablednowJwhen {· · · |Gi → Pi | · · · }KΓ
def
=⋃

i{ai?Ri : Gi is of the form ai?Ri@yi}
enablednowJnew ã inP KΓ

def
= {ν~b : |~a| = |~b| and ∀b ∈ ~b. b is fresh}

enablednowJifE thenP elseQKΓ
def
=

{ιT(E)} if evalJEKΓ = T

{ιF(E)} if evalJEKΓ = F

∅ otherwise

enablednowJwaitE → P KΓ
def
= ∅

enablednowJA(E1 , ...,En)KΓ
def
=

{εA( ~E)} if lookup(Γ, A) = π~x.P

with ~E = E1, ..., En

∅ otherwise

enablednowJdef {D1; ...;Dn} inP KΓ
def
= enablednowJP KΓ′

where Γ′
def
= ext(Γ, D1; · · · ;Dn)

enablednowJP ‖ QKΓ
def
= S1 ∪ S2 ∪ S3

where

S1
def
= {α ∈ enablednowJP KΓ : bn(α) ∩ fn(Q) = ∅},

S2
def
= {α ∈ enablednowJQKΓ : bn(α) ∩ fn(P ) = ∅}

S3
def
=

{
interactions(JP K, JQK)Γ if interact(JP K, JQK)Γ = T

∅ otherwise
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Figure 19 Enabled delay actions. In all symbolic partial delay actions δ(t 6 E),
t is a new, fresh time variable (t ∈ TVars).

enableddelaysJdoneKΓ
def
= {δ(t 6∞)}

enableddelaysJa!EKΓ
def
= {δ(t 6∞)}

enableddelaysJwhen {· · · |Gi → Pi | · · · }KΓ
def
= {δ(t 6∞)}

enableddelaysJnew b̃ inP KΓ
def
= ∅

enableddelaysJifE thenP elseQKΓ
def
= ∅

enableddelaysJwaitE → P KΓ
def
= {δ̄(E), δ(t 6 E)}

enableddelaysJA(E1 , ...,En)KΓ
def
= ∅

enableddelaysJdef {D1; ...;Dn} inP KΓ
def
= enableddelaysJP KΓ

enableddelaysJP ‖ QKΓ
def
= S1 ∪ S2 ∪ S3 ∪ S4 where

S1
def
= {δ(t′′ 6 E) :

∃δ(t 6 E) ∈ enableddelaysJP KΓ, δ(t
′ 6 E′) ∈ enableddelaysJQKΓ.

tevalJEKΓ 6 tevalJE′KΓ}
S2

def
= {δ(t′′ 6 E′) :

∃δ(t 6 E) ∈ enableddelaysJP KΓ, δ(t
′ 6 E′) ∈ enableddelaysJQKΓ.

tevalJE′KΓ 6 tevalJEKΓ}
S3

def
= {δ̄(E) : ∃δ̄(E) ∈ enableddelaysJP KΓ, δ(t

′ 6 E′) ∈ enableddelaysJQKΓ.
tevalJEKΓ 6 tevalJE′KΓ}

S4
def
= {δ̄(E) : ∃δ̄(E) ∈ enableddelaysJQKΓ, ∃δ(t′ 6 E′) ∈ enableddelaysJP KΓ.

tevalJEKΓ 6 tevalJE′KΓ}

De�nition 4.30. (Enabled delay actions) The set of enabled delay ac-
tions of a given process term is de�ned by the function enableddelays : Procs→
Envs→ 2SymDelActions as shown in Figure 19 on page 46,

De�nition 4.31. (Enabled actions) The set of enabled actions of a given
process term is de�ned by the function enabled : Procs→ Envs→ 2SymActions

as

enabledJP KΓ
def
= enablednowJP KΓ ∪ enableddelaysJP KΓ

4.3.2 Successor states

We also divide the de�nition of successor states between those corresponding to
instantaneous actions and those corresponding to delays.

De�nition 4.32. (Successor instantaneous states) The set instantaneous
successor states of a given process term for a given action is de�ned by
the function succnow : Procs × SymInstActions → Envs → 2Procs as
shown in Figure 21 on page 47, where the function comm : Procs × Procs ×
SymInstActions→ Envs→ 2Procs is de�ned in Figure 20 on page 47.
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Figure 20 Communications between processes.

comm(JP K, JQK, α)Γ
def
= ∅ if α /∈ {µa{E/R}}

comm(JP K, JQK, µa{E/R})Γ
def
=

{P ′ ‖ Q′σ : a!E ∈ enablednowJP KΓ, P
′ ∈ succnow(JP K, a!E)Γ,

a?R ∈ enablednowJQKΓ, Q
′ ∈ succnow(JQK, a?R)Γ,

σ = match(JRK, evalJEKΓ)∅,Γ and σ 6= ⊥}
∪ {P ′σ ‖ Q′ : a?R ∈ enablednowJP KΓ, P

′ ∈ succnow(JP K, a?R)Γ,
a!E ∈ enablednowJQKΓ, Q

′ ∈ succnow(JQK, a!E)Γ,
σ = match(JRK, evalJEKΓ)∅,Γ and σ 6= ⊥}

Figure 21 Instantaneous successor states.

succnow(JdoneK, α)Γ
def
= ∅

succnow(Ja!EK, α)Γ
def
=

{
{done} if α = a!E

∅ otherwise

succnow(Jwhen {· · · |Gi → Pi | · · · }K, α)Γ
def
={

{Pi{0/y} : Gi = a?R@y} if α = a?R

∅ otherwise

succnow(Jnew ã inP K, α)Γ
def
=

{
{P{~b/~a}} if α = ν~b

∅ otherwise

succnow(JifE thenP elseQK, α)Γ
def
=

{P} if evalJEKΓ = T and α = ιT(E)

{Q} if evalJEKΓ = F and α = ιF(E)

∅ otherwise

succnow(JwaitE → P K, α)Γ
def
= ∅

succnow(JA(E1 , ...,En)K, α)Γ
def
=

{P{ ~E′/~x}} if lookup(Γ, A) = π~x.P and α = εA( ~E)

where ~E′
def
= E′1, ..., E

′
|~x|

with E′i
def
= expr(evalJEiKΓ) for each i ∈ {1, ..., |~x|}.

∅ otherwise

succnow(Jdef {D1; ...;Dn} inP K, α)Γ
def
= succnow(JP K, α)Γ′

where Γ′
def
= ext(Γ, D1; ...;Dn)

succnow(JP ‖ QK, α)Γ
def
= S1 ∪ S2 ∪ S3 where

S1
def
= {P ′ ‖ Q : P ′ ∈ succnow(JP K, α)Γ, and bn(α) ∩ fn(Q) = ∅}

S2
def
= {P ‖ Q′ : Q′ ∈ succnow(JQK, α)Γ, and bn(α) ∩ fn(P ) = ∅}

S3
def
= comm(JP K, JQK, α)Γ
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De�nition 4.33. (Successor delayed states) The set of delayed succes-
sor states of a given process term for a given delay action is de�ned by the
function succdelays : Procs× SymDelActions→ Envs→ 2Procs as shown in

Figure 22 on page 49 with the addition that: succdelays(Jnew ã inP K, χ)Γ
def
= ∅,

succdelays(JifE thenP elseQK, χ)Γ
def
= ∅ and succdelays(JA(Ẽ )K, χ)Γ

def
= ∅

De�nition 4.34. (Successor states) The function succ : Procs×SymActions→
Envs → 2Procs de�nes the set of successor states of a given process term
and is de�ned as

succ(JP K, η)Γ
def
=

{
succnow(JP K, η)Γ if η ∈ SymInstActions

succdelays(JP K, η)Γ if η ∈ SymDelActions

4.4 Equivalence of characterizations

The enabled and succ functions de�ned in Subsection 4.3.1 and Subsection 4.3.2
provide an alternative characterization of the semantics given by the CTLTS
de�ned in Subsection 4.1.8. We can also understand this as stating that the
enabled and succ functions are correct with respect to the operational semantics
given by the CTLTS. In this section we formalize this.

Lemma 4.35. (Agreement between enablednow and the CTLTS) For any
environment Γ ∈ Envs, any process term P ∈ Procs, and any symbolic instan-
taneous action label α ∈ SymInstActions,

α ∈ enablednowJP KΓ if and only if Γ . P
α−→

or equivalently

enablednowJP KΓ = {α ∈ SymInstActions : ∃P ′.Γ . P α−→ P ′}

Proof. See Appendix A.

Lemma 4.36. (Agreement between enableddelays and the CTLTS) For
any environment Γ ∈ Envs, any process term P ∈ Procs, and any symbolic
duration χ ∈ SymDelActions,

χ ∈ enableddelaysJP KΓ if and only if Γ . P
χ−→

or equivalently

enableddelaysJP KΓ = {χ ∈ SymDelActions : ∃P ′.Γ . P χ−→ P ′}

Proof. See Appendix A.

Proposition 4.37. (Agreement between enabled and the CTLTS) For
any environment Γ ∈ Envs, any process term P ∈ Procs, and any symbolic
action label η ∈ SymActions,

η ∈ enabledJP KΓ if and only if ∃P ′.Γ . P η−→ P ′
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Figure 22 Delayed successor states.

succdelays(JdoneK, χ)Γ
def
={

{done} if χ = δ(t 6∞)

∅ otherwise

succdelays(Ja!EK, χ)Γ
def
={

{a!E} if χ = δ(t 6∞)

∅ otherwise

succdelays(Jwhen {· · · |Gi → Pi | · · · }K, χ)Γ
def
={

{when {· · · |Gi → Pi{yi+t/yi} | · · · }} if χ = δ(t 6∞)

∅ otherwise

succdelays(JwaitE → P K, χ)Γ
def
=

{wait (E − t)→ P} if χ = δ(t 6 E)

{P} if χ = δ̄(E)

∅ otherwise

succdelays(Jdef {D1; ...;Dn} inP K, χ)Γ
def
=

{def {D1; ...;Dn} inP ′ : P ′ ∈ succdelays(JP K, χ)Γ}
succdelays(JP ‖ QK, δ(t′′ 6 E))Γ

def
= S1 ∪ S2 where

S1
def
= {P ′{t′′/t} ‖ Q′{t′′/t′} :

δ(t 6 E) ∈ enableddelaysJP KΓ, δ(t
′ 6 E′) ∈ enableddelaysJQKΓ,

tevalJEKΓ 6 tevalJE′KΓ,
P ′ ∈ succdelays(JP K, δ(t 6 E))Γ and
Q′ ∈ succdelays(JQK, δ(t′ 6 E′))Γ}

S2
def
= {P ′{t′′/t} ‖ Q′{t′′/t′} :

δ(t 6 E′) ∈ enableddelaysJP KΓ, δ(t
′ 6 E) ∈ enableddelaysJQKΓ,

tevalJEKΓ 6 tevalJE′KΓ,
P ′ ∈ succdelays(JP K, δ(t 6 E′))Γ and
Q′ ∈ succdelays(JQK, δ(t′ 6 E))Γ}

succdelays(JP ‖ QK, δ̄(E))Γ
def
= S1 ∪ S2 where

S1
def
= {P ′ ‖ Q′{E/t′} :

δ̄(E) ∈ enableddelaysJP KΓ, δ(t
′ 6 E′) ∈ enableddelaysJQKΓ,

tevalJEKΓ 6 tevalJE′KΓ,
P ′ ∈ succdelays(JP K, δ̄(E))Γ and
Q′ ∈ succdelays(JQK, δ(t′ 6 E′))Γ}

S2
def
= {P ′{E/t} ‖ Q′ :

δ(t 6 E′) ∈ enableddelaysJP KΓ, δ̄(E) ∈ enableddelaysJQKΓ,
tevalJEKΓ 6 tevalJE′KΓ,
P ′ ∈ succdelays(JP K, δ(t 6 E′))Γ and
Q′ ∈ succdelays(JQK, δ̄(E))Γ}
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or equivalently

enabledJP KΓ = {η ∈ SymActions : ∃P ′.Γ . P η−→ P ′}

Proof. It follows from De�nition 4.31, Lemma 4.35 and Lemma 4.36.

Lemma 4.38. (Agreement between succnow and the CTLTS) For any
environment Γ ∈ Envs, any process terms P, P ′ ∈ Procs, any symbolic instan-
taneous action label α ∈ enablednowJP KΓ,

P ′ ∈ succnow(JP K, α)Γ if and only if Γ . P
α−→ P ′

or equivalently
succnow(JP K, α)Γ = {P ′ : Γ . P

α−→ P ′}

Proof. See Appendix A.

Lemma 4.39. (Agreement between succdelays and the CTLTS) For any
environment Γ ∈ Envs, any process terms P, P ′ ∈ Procs, any symbolic duration
label χ ∈ enableddelaysJP KΓ,

P ′ ∈ succdelays(JP K, χ)Γ if and only if Γ . P
χ−→ P ′

or equivalently

succdelays(JP K, χ)Γ = {P ′ : Γ . P
χ−→ P ′}

Proof. See Appendix A.

Proposition 4.40. (Agreement between succ and the CTLTS) For any
environment Γ ∈ Envs, any process terms P, P ′ ∈ Procs, any symbolic action
label η ∈ enabledJP KΓ,

P ′ ∈ succ(JP K, η)Γ if and only if Γ . P
η−→ P ′

or equivalently

succ(JP K, η)Γ = {P ′ : Γ . P
η−→ P ′}

Proof. It follows from De�nition 4.34, Lemma 4.38 and Lemma 4.39.

4.5 Sequential composition

The semantics of the sequential composition operator are given by encoding it in
terms of the other operators in the language. This is done by a translation from
the full language into the subset of the language without sequential composition.
The idea is that when a process terminates successfully it triggers a termination
signal, while a process waiting in sequence listens to such termination signal.
Roughly speaking the encoding is as follows:
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P ;Q
def
= new g in (joinP(JP K, g) ‖ when {g?→ Q})

where the function joinP de�ned below translates the process P so that when
it �nishes it triggers the event g. This de�nition, however is not enough for
two reasons: �rst, the whole process itself might be inside another sequential
composition, e.g., (P ;Q);R, and second because either P or Q may invoke a
process de�nition A de�ned in an enclosing scope. The �rst issue is addressed
by making the translation recursive. The second requires us to translate process
de�nitions themselves, and to translate the entire process under consideration.

De�nition 4.41. (Translation of terms with sequential composition)
Given a term P ∈ Procs which contains the sequential composition operator,
its meaning is given by the term transseqJP K where

transseqJP K def
= new g in joinP(JP K, g)

where the function joinP : Procs × EvtNames → Procs is de�ned as shown
in Figure 23 on page 52 which depends on the function joinD : Defs → Defs
de�ned in Figure 24 on page 52.

Note that in the de�nition of joinP for a trigger a!E the result is to trigger
the termination signal in parallel with the trigger itself. This may seem strange,
but it is consistent with asynchronous message passing: the termination signal
does not signal the reception of the message sent, but rather it signals that
the output action is now enabled and may be consumed by a receiver. This is
necessary to support asynchrony in terms such as a!;P .

Also note that in the de�nition of joinP for the parallel operator we create
two termination signals g1 and g2 for the subprocesses P and Q respectively and
then listen to them in order g1 �rst and then g2. We call this listener a barrier.
The order g1, g2 of these events in the barrier is immaterial because triggers are
persistent, this is, if Q happens to �nish �rst and triggers g2, the barrier is not
yet ready to accept it, but the trigger is not lost and remains alive until the
barrier is ready. The fact that g2 ! remains enabled poses no problems because
g2 is a local name so no other process can accidentally consume it.

Process calls are handled by translating all de�nitions so that they have
an extra port to signal termination, and the call itself passes as parameter the
relevant termination channel.

5 Design notes

In this section we discuss several of the main design decisions made in the
conception of the πklt -calculus and provide a rationale for those decisions. These
design decisions concern several aspects, not only which language constructs
where chosen and their speci�c semantics, but also the computational model,
the form of communication and the presentation of the semantics itself.
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Figure 23 Process �join�: translation of terms with sequential composition.
In the clauses for new, ‖ and ; the new names (b′i, gi, g

′) are chosen to be
fresh, not occurring anywhere else. Also recall that the notation for a barrier
when {〈g1 , g2 〉?→ g !} is shorthand for when {g1 ?→ when {g2 ?→ g !}}).

joinP(JdoneK, g)
def
= g !

joinP(Ja!EK, g)
def
= a!E ‖ g !

joinP(Jwhen {· · · |Gi → Pi | · · · }K, g)
def
= when {· · · |Gi → joinP(JPiK, g) | · · · }

joinP(JifE thenP elseQK, g)
def
= ifE then joinP(JP K, g) else joinP(JQK, g)

joinP(JwaitE → P K, g)
def
= waitE → joinP(JP K, g)

joinP(Jnew b̃ inP K, g)
def
=

new b̃ in joinP(JP K, g) if g 6∈ ~b
new b̃′ in joinP(JP{b′i/bi}K, g) if g ∈ ~b

where b̃ = b1, ..., bi, ..., bn, g = bi

and b̃′ = b1, ..., b
′
i, ..., bn, with b

′
i /∈ fn(P )

joinP(JA(Ẽ )K, g)
def
= A(Ẽ , g)

joinP(Jdef {D1; · · · ;Dn} inP K, g)
def
=

def {joinDJD1K; · · · ; joinDJDnK} in joinP(JP K, g)

joinP(JP ‖ QK, g)
def
=

new g1, g2

in (joinP(JP K, g1) ‖ joinP(JQK, g2) ‖ when {〈g1 , g2 〉?→ g !})
joinP(JP ;QK, g)

def
=

new g ′ in (joinP(JP K, g′) ‖ when {g ′?→ joinP(JQK, g)})

Figure 24 Translation of de�nitions to signal termination in order to support
�join�. The new name g is chosen to be fresh.

joinDJprocA(~x) = P K def
= procA(~x, g) = joinP(JP K, g)

joinDJfunc f (~x) = EK def
= func f (~x) = E

joinDJvar x = EK def
= var x = E
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When designing a language, one of the basic decisions concerns the selec-
tion of the set of constructs that the language will have. The exact set of
πklt constructs has evolved since we introduced the earliest versions, but the
rationale for most of the constructs still remains. The main in�uences have
been the asynchronous π-calculus, Timed CSP [RR86, Sch00] and the DEVS
formalism [ZPK00, Zei84, ZPK76].

5.1 Abstract syntax and the asynchronous π-calculus

The core constructs are roughly the same as those of the asynchronous π-
calculus, shown in the BNF below. To these constructs we add explicit expres-
sions, pattern matching, conditionals, nested process de�nitions and function
de�nitions and timing constructs. The syntax of the asynchronous π-calculus is
as follows:

P ::= 0 | τ | x̄y |
∑
i∈I

xi(yi).Pi | (νx)P | P1|P2 | A(x)

The term 0 is the nil term, equivalent in πklt to done. The term τ represents
internal actions. We do not include it explicitly in the syntax of πklt . The term
x̄y is an output, equivalent to a trigger x !y. In the basic variant of the π-calculus
y is only one name, but in the polyadic variant it can be a tuple of names. The
obvious di�erence with πklt is that we allow expressions in the message part
of the trigger, which may evaluate to arbitrary data structures. The rationale
for this is simply one of practicality, as allowing only names, while theoretically
complete, is impractical for real applications. The term

∑
i∈I xi(yi).Pi is an

input-guarded choice, equivalent to a listener in πklt , where x(y) is a guard
like x?y. Other variants of the π-calculus allow mixed-guarded choice (choice
with both input and output guards) or free choice (P1 + P2 without restricting
the form of each Pi). The implementation of those variants can be signi�cantly
more complicated compared to the implementation of input-guarded choice, and
therefore we chose the latter. Another important di�erence is that in πklt the
input guards contain patterns allowing for pattern-matching on input. Again,
the rationale is practicality, allowing for readable structural requirements on
input. Another di�erence is our inclusion of the optional variable y in a guard
a?R@y. The inclusion of this variable, which allows the listener to record the
amount of time waiting for an event is derived both from Timed CSP [Ros98,
Sch00] and from DEVS [ZPK00, Zei84, ZPK76], intended to allow us to describe
behaviours that depend on how long we wait for an event. The term (νx)P
is the new or hiding operator. Intuitively it is essentially the same as the
new operator in πklt , but there are some semantical di�erences discussed in detail
in Subsection 5.4.1 below. Parallel composition P1|P2 is essentially the same.
We chose a single parallel composition operator instead of the three di�erent
composition operators of CSP [Hoa78, Ros98, Sch00], as it yields a computation
model that seems simpler to understand and it simpli�es the theory. A process
call A(~x) is also similar, but in πklt we allow the arguments to be any expressions.
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There is also an important di�erence in the operational semantics of process calls
discussed in detail in Subsection 5.4.2 below.

As for the constructs not in the asynchronous π-calculus we can say the
following. A basic addition is the explicit conditional construct (if). This is
one of the most common operations in any language and since we have included
expressions as primitive, it is only natural to include conditionals as well. The
construct for de�nitions (def) was included for practicality as well, allowing
process function and local variable de�nitions, and by making it a process term,
allowing the nesting of such de�nitions. An encoding of nested de�nitions is
possible in the asynchronous π-calculus, but this results in a �at set of de�nitions
which may not always be as readable. Finally, we added the delay operator wait
as the basic timing construct. This can be found in several timed calculi such
as Timed CSP [RR86] or real-time ACP [BB91]. It is possible to come up
with an encoding of a (discrete) timing mechanism in the pure π-calculus, but
having such an encoding would obscure timing analysis of process behaviour,
and therefore it is useful to have as a primitive.

5.2 Computational model

Here we discuss some of the decisions taken about the general computational
model of πklt .

5.2.1 Asynchronous vs. synchronous communication

The choice of the asynchronous π-calculus over synchronous variants was based
on three points: asynchronous communication is often easier to understand,
easier to implement, better suited to the distributed computation setting and
there is no fundamental loss of expressiveness. The �rst point is of course sub-
jective, but it does seem that an asynchronous message passing style is much
more common among programmers than the rendez-vous style of communica-
tion. With respect to the easiness of implementation, it could be argued that
the asynchronous style requires less bookkeeping thus making the implemen-
tation �lighter�. It should be noted, however that Turner's abstract machine
for the π-calculus from [Tur96] supports synchronous communication but with-
out the choice operator. This easiness of implementation is perhaps the reason
why asynchronous communication is the norm in distributed computation, as
it requires less assumptions about, and management of, the communications
infrastructure, and thus is often regarded as more �primitive�. Regarding ex-
pressiveness, basic rendez-vous communication is very easy to emulate with
asynchronous primitives, as shown for example in [Bou92]. Nevertheless, such
encoding works in the absence of mixed-guarded choice (choice with both input
and output guards). Synchronous variants of the π-calculus are very expres-
sive and powerful. In fact, [Pal97] proved the existence of an expressiveness
gap between the full synchronous π-calculus including mixed-guarded choice,
and the asynchronous π-calculus without the choice operator. However this gap
only proved that the former could not be encoded in the latter by means of a
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reasonable and �uniform� translation (a one-to-one mapping of processes). Nev-
ertheless, further investigation in [NP00] showed that by lifting such stringent
requirements, a translation would be possible, and thus there is no absolute loss
of expressiveness.

Asynchronous communication is often associated with bu�ered channels, but
following the existing presentations on the asynchronous π-calculus we have
chosen not to make any assumptions about the internal structure of channels.
This leads to a more general framework to reason about those systems and gives
more freedom to implementers.

5.2.2 Time: discrete vs. dense; relative vs. absolute; local vs. global

Discrete-event dense time

Many timed languages, specially the so-called synchronous reactive languages
such as Esterel [Ber00], Lustre [HCP91] and Signal [LGLBGLM91], favour
a discrete-time approach to the semantics of time. In a discrete-time approach,
the time-base is the natural numbers and computation proceeds by uniform
�clock ticks� or �cycles�. This is, the progress of time, the di�erence between
ticks, is �xed, and all computation occurs in these discrete steps. A dense-time
model uses the real numbers as the time base and therefore there is no notion of
�clock tick�. In order to implement a dense-time computational model in a real
machine there needs to be some discretization. The basic form of discretization
is to divide the time base into equal-sized chunks. In other words, projecting the
real-time behaviour on the natural numbers (cf. Euler integration). This may
be adequate for many applications, but it may also be wasteful in the case where
events in the system occur irregularly. For example suppose that some event a
occurs at time t0, event b occurs at time t1 and event c occurs at time t2 with
t0 ≤ t1 ≤ t2. If it is always the case that t1−t0 is approximately equal to t2−t1,
then using a discrete-time base is suitable. But if it is often the case that, for
example t1− t0 is much larger than t2− t1 (or vice-versa) then there would be a
lot of idle cycles, i.e., computation cycles where there is no computation being
performed. One approach to deal with discretization is known in the simulation
community as discrete-event modelling and simulation, where the time-base is
taken to be dense-time, but computation proceeds according to the time at
which events are scheduled. In the example above, a discrete-event simulator
would process or execute event a and then immediately proceed to event b (and
then c) without idling between events. An approach to modelling discrete-event
systems is provided by the DEVS formalism [ZPK00, Zei84, ZPK76], which has
inspired the development of the πklt -calculus.

Since the original purpose of the kiltera language was simulation of discrete-
event systems we have chosen a dense-time base with a discrete-event semantics.
While the discrete-event nature of the πklt -calculus may not be immediately
obvious from this report, it is evident in the abstract machine and implemen-
tation we have developed. To give the reader an intuition, the concrete transi-
tion systems presented in Subsection 4.2.2 makes the dense-time explicit by the
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rule (cinterv) where a single, semi-symbolic transition Γ.P
δ(t6E)−−−−→ P ′ results

in the in�nite, dense set of concrete transitions Γ̂P(P )
V−→ cΓ̂P(P ′) for each real

value V in the interval [0, evalJEKΓ], but at the level of semi-symbolic transi-
tions, we have only discrete steps. In particular, the rules for semi-symbolic
delay actions in Table 5 on page 42 make it explicit that in a parallel compo-
sition of processes which can advance in time, we chose the transition with the
smallest delay, i.e., the smallest time advance is chosen to go to the next state
that has instantaneous actions enabled, just as in discrete-event simulation.

Relative time

By relative vs. absolute time we mean whether the speci�cation of timing of
events in a model are given with respect to a unique initial point of reference
(absolute) such as the start of the execution, or with respect to the current time,
i.e., the time when the event of interest is executed (relative). In other words
the di�erence is between �wait until time is equal to ...� (absolute), vs. �wait
for ... time units� (relative). These alternatives have been explored extensively
in [BB91]. We have chosen to use relative time as it seems to yield a more
compositional semantics: the meaning, i.e., the behaviour of a model in a given
state, at a given point in time will not depend on the speci�c time when the
execution started or on time external to the system, but only on the current
state and the delays that follow.

Global time

Another decision concerning the nature of time is whether there is a unique,
shared clock for all processes (global time) or each process has its own clock and
can proceed at its own rate (local). There are advantages and disadvantages
in both cases. A global clock is not realistic in a truly distributed setting
(specially with large latencies) but leads to a simpler theory and is appropriate
for single-machine concurrency. Local time is more realistic but it may lead to
unnecessary complexity: in the πklt -calculus we can spawn processes very easily
and these processes may be as small and simple as a single trigger. Associating
a clock to each and every single process like this would be extremely wasteful
and complicated. One could introduce an additional notion of process with a
coarser granularity that would have clocks associated to them, but this would
also introduce complexity into the language.

Since the original purpose of kiltera was discrete-event simulation, we chose
global time as being su�cient. Even in the context of distributed simulation
we found this to be adequate thanks to the TimeWarp algorithm [Jef85] which
allows us to simulate in a truly distributed fashion a discrete-event system with
global time: the result of the simulation is a consolidated trace where all events
have timestamps from a global clock consistent with a common, global time-line.
See [Pos08] for details.
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5.3 General semantics issues

In this subsection we address some �meta-language� issues regarding the de�-
nition of the formal semantics itself, such as which approach or style of formal
semantics was chosen or the level of abstraction at which the semantics is de-
�ned.

5.3.1 Type of semantics

The next signi�cant design decision of importance concerns our approach to
de�ne the semantics of the language. The best known mathematical approaches
to semantics are: translational, denotational, operational, axiomatic, algebraic,
categorical or functorial and game semantics.

• A translational semantics, as the name suggests, provides meaning to a
language by translating its terms or models into another language whose
semantics are already de�ned. A translational semantics is often said to
be an encoding of the source language into the target language.

• A denotational semantics maps terms or models in the language into some
abstract domain, independent of any implementation. The abstract do-
main is typically a set of certain class of mathematical objects of interest
which is intended to capture some essential characteristics of the language.
The set itself typically carries some structure (e.g., it is a complete par-
tial order, a dI-domain, a metric space, etc.) which might be required to
guarantee that terms are well de�ned, and which can be used to establish
properties that give some insight into the nature of the language. Typ-
ically, denotational semantics are considered an abstract approach, as it
intends to associate a term or model with an abstract object, such as sets
of traces, not necessarily related to a concrete implementation. Since a
denotational semantics is often given by de�ning a function from the syn-
tactic domain to the semantic domain and since elements of the semantic
domain must be described in some language, denotational semantics is
often confused with translational semantics.

• Operational semantics is concerned with describing how a term or model
in the language is executed. It takes the view that a term is something to
be executed, and specifying such execution involves specifying the steps to
be taken by the �executor�, i.e., a machine. The standard mathematical
approach to operational semantics is based on interpreting terms or models
as state-transition diagrams. Then the notion of execution is de�ned in
terms of following paths along such diagrams. This is generally considered
the more concrete approach to semantics, as it is intended to be closer to
implementation than the other approaches.

• The axiomatic approach is similar to some extent to the operational ap-
proach, but it is generally intended for a particular kind of language. The
meaning of a term or model is given in terms of the state of the system
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before and after the execution of the model. This usually takes the form of
Hoare triples, specifying axiomatically the set of pre-conditions and post-
conditions for the execution of each construct in the language. It is most
often used to specify and prove correctness of programs with respect to a
speci�cation of requirements.

• The algebraic approach de�nes a language in terms of algebraic concepts
such as signatures and sorted algebras. The meaning of terms and models
is given by equations which are to be satis�ed. These equations are taken
to be axioms, rather than derived, as is the case with other approaches.
The meaning of a term could be said to be its equivalence class, according
to the equations. This approach does not specify how to obtain such
meaning or how to execute models. Therefore it is considered an abstract
approach.

• A categorical or functorial semantics is a generalization of denotational
semantics, where the elements of the interpretation are given in terms of
Category Theory: the source and targets of the map, i.e., the set of terms
or models, and the semantic domain, are taken to be categories in the
formal sense, while the map itself is a functor between categories. This
approach allows the use of Category Theory to reason about the language
at a very high level of abstraction. Furthermore, it allows to use the
categorical framework to establish relationships with other languages, for-
malisms and mathematical theories in a uniform manner. This is arguably
the most abstract approach to semantics.

• In game semantics the meaning of programs are described in game-theoretic
terms, typically with two adversaries playing a game, the system and its
environment, playing the roles of defender and attacker, and the execution
or meaning of a program given by a strategy.

All of these approaches have advantages and disadvantages. Since we are in-
terested in de�ning the basis of a language which can be realistically imple-
mented and for which we can build concrete tools, we focus on the more concrete
approaches, namely operational and translational semantics, and in particular
Structural Operational Semantics, pioneered by Plotkin [Plo81, AFV00].

As mentioned above, πklt -calculus extends the (asynchronous) π-calculus, so
it is natural to follow the translational approach and provide an encoding of the
former in terms of the latter. Nevertheless we chose to de�ne the operational
semantics of the language directly. The main reason to do so has to do with the
ability to reason at the level of the source language (πklt), for if we adopted the
translation approach, then the analysis of complex models would have to be done
at the level of the target language (the asynchronous π-calculus) obscuring many
features that would be otherwise trivial. For example, the π-calculus does not
have numbers or booleans as primitive data. This may be �ne for a foundational
calculus, but if we have a model that includes numbers or booleans, even a trivial
program that checks a condition such as n < m+ 1 would result in a π-calculus

58



term which is not immediately obvious. A standard encoding of numbers in the
π-calculus involves representing them as processes, and operations on them (such
as comparisons or increments) are done using the π-calculus communication
primitives. If we analyze a system for some concurrency-related property (e.g.,
safety or liveness) then our analysis would have to include those parts that
encode the internals of numbers and their operations. This is an unacceptable
overhead for any practical application. A practical language must abstract such
details, and therefore a formal semantics for such a practical language must
make the same abstractions. In other words, the semantics of the language
must be such that it abstracts away the inner workings of primitive data types,
allowing us to assume that such primitive data types work in order to focus our
analysis e�orts where they are needed.

5.3.2 Labelled transition semantics

Having decided to de�ne an operational semantics rather than any other form,
then next decision is which approach, semantics framework or meta-language
to use. One possibility is to de�ne an interpreter for the language. This ap-
proach however has the disadvantage of being a speci�c implementation, and
therefore it is not general. In other words, the semantics of the language is tied
to a speci�c implementation, when the semantics could be more abstract and
implementation-independent. Instead, we chose another approach, the most
widely used in the process algebra literature, which is to use Plotkin's Struc-
tural Operational Semantics or SOS for short [Plo81, AFV00]. The idea of this
approach is to de�ne the meaning of terms compositionally, this is, providing
an inductive (i.e., recursive) de�nition, based on the structure of terms, of a
transition relation, which captures the �steps� that an abstract machine would
perform when executing a term. Supposing that a �step� is written as P → P ′,
an SOS de�nition takes the form of a set of inference rules of the form

ϕ1 ϕ2 · · · ϕn
ψ

where each ϕi is called a premise and is of the form P → P ′ for some terms
P, P ′, or it is a predicate on terms, and where ψ is called the conclusion and is
of the form P → P ′. This inference rule can be read as �if ϕ1 and ϕ2 and · · ·
and ϕn, then ψ�. A rule with no premises is called an axiom. As in any logical
system, these rules of inference are used to infer all the possible steps P → P ′

in the language for a given term by constructing a proof or derivation of the
step.

An SOS semantics given by such inference rules does not mean that an inter-
preter must actually construct proofs for each step. Rather, the SOS semantics
de�nes the set of steps that any implementation must satisfy.

Labelled vs. unlabelled semantics Generally speaking there are two ap-
proaches when de�ning an SOS for a language: labelled and unlabelled. In the
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�rst approach, the inference rules de�ne a labelled-transition system or LTS for
short, this is, a triple (S,L,→) where S is a set of states, L is a set of labels,
and →⊆ S × L× S is a transition relation, where a triple (s, α, s′) ∈→ is often

written as s
α−→ s′. Typically, in the process algebra literature, the terms are

considered to be states, and the labels are actions which a term can perform or
engage in. Nevertheless, it is possible to include more information and structure
both in the states and the labels, as we have done with our de�nition of a CLTS
(De�nition 4.21). In this approach, the rules of inference de�ne the transition
relation →. The similarity between LTSs and traditional automata are one of
the reasons for favouring this style.

In the second approach, we de�ne an unlabelled transition system (S,→)
where→⊆ S×S is commonly called a reaction relation, and a pair (s, s′) ∈→ is
written as s→ s′. As with LTSs, the states are usually taken to be just terms,
but they could contain more structure. One of the advantages of this approach
is that the description of reactions tend to be quite intuitive and compact. Take
for instance the reaction rule for the asynchronous π-calculus:

x̄y | · · ·+ x(z).P + · · · → P{y/z}

On the other hand, the LTS semantics for the same operation in given by:

P
x̄y−→ P ′ Q

x(z)−−−→ Q′

P |Q τ−→ P ′|Q′{y/z}

The two styles are, or should be equivalent. In the theory of the π-calculus
it is established that for any pair of terms P, P ′, P → P ′ if and only if P

τ−→ P ′.
In other words, reactions correspond to internal steps, that is, the computations
performed by P alone. This points to the most important di�erence between the
two approaches: granularity. In reactive semantics we look at the behaviour of a
system P as a whole, whereas in LTS semantics we can describe and reason about
the behaviours of individual parts of the system. For instance, in the reactive
semantics, a term x(y).P doesn't have any transitions on its own. Only when we
consider a whole composite system, e.g., x̄z|x(y).P can we speak of transitions.
On the other hand, with an LTS semantics, the term x(y).P has transitions on
its own, so we can reason about such term individually, independently of the
context. Alternatively, the reactive approach looks only at closed systems, i.e.,
systems that do not interact with an external environment, whereas the LTS
approach allows us to analyze open systems, i.e., systems that can interact with
an external environment.

Both approaches have their uses, but we feel that it is more general to focus
on the LTS approach as it is often easier to close an open system if one needs to
do so, than the other way around. Furthermore, the open system assumption
is more in line with the idea of symbolic execution, which we believe provides a
useful mechanism for analysis.

60



Small-step vs. big-step semantics Another issue that often appears in
the de�nition of a semantics is related to the size of each computational step,
in the sense of how much computation happens in each individual step. This is
related to the previous discussion on granularity. Labelled transition semantics
provide a high level of granularity and could be considered small step, while
reduction semantics can be considered big-step semantics. Nevertheless, that
is not the only issue. In our case, the language πklt includes expressions. A
small-step semantics would describe in detail how expressions are computed.
However since most languages already have expressions with very similar ways
of computing them and since the internal computation of an expression does
not entail any di�erence in behaviour in our language, we chose to de�ne a big-
step semantics for expressions. We accomplish this by de�ning the evaluation of
expressions in a denotational way with a function eval, given in De�nition 4.14.
Similarly we give a big-step semantics for pattern-matching (function match, in
De�nition 4.15).

Using big-step semantics for expression evaluation and pattern matching al-
lows us to consider these operations as atomic, and thus we do not have to worry
about how the exact details of their evaluation is a�ected by the interleaving
of concurrent actions. This simpli�es concurrency analysis by raising the level
of abstraction, in line with the objective of πklt as a language to reason about
concurrency. This is, when we write a πklt speci�cation our analysis goals are
concerned with questions regarding for example safety and liveness properties
in relation to how the processes behave and interact with one another, rather
than how they evaluate expressions internally.

Level of abstraction The issue of small-step vs. big-step semantics is one
of abstraction: how much detail we describe. But this issue can be carried
out further. Take for instance traditional abstract machines such as the SECD
machine [Lan64]. These machines typically consist of several components such
as a term to be evaluated, a data register and a stack. A tuple with these items
is sometimes called a con�guration. The workings of the abstract machine is
given as a table specifying for each possible con�guration C the next possible
con�guration(s) C ′. This can be seen as unlabelled reactive transition systems
where all the rules are axioms of the form C → C ′. Now, while an abstract
machine abstracts away from a concrete hardware architecture, it is low-level
compared to typical SOS speci�cations. The reason for this is that in order
to reason about and analyze system behaviour the description of an abstract
machine often contains much more information than it is required. Take for
example the case of process calls. In a traditional imperative or functional
language they would be dealt with in an abstract machine by some stack. In
the case of πklt , a queue would be more appropriate. But in either case, to reason
at the level of a model speci�cation, the only thing that matters is that a call

A( ~E) to a process de�nition procA(~x) = P behaves like the process P{~E/~x}.
Knowing that the underlying data structure to implement it is a queue does not
help with behaviour analysis.
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For this reason we chose to de�ne the semantics at a higher-level of abstrac-
tion. Nevertheless, we have also de�ned elsewhere an abstract machine for a
subset of the language (see [PD10]), which serves as the basis for our implemen-
tation.

Two level de�nition of the LTS One of the important decisions that we
took was to de�ne the operational semantics in two steps, a semi-symbolic tran-
sition system and a concrete one. The fundamental reason behind this is that
direct de�nition of the operational semantics as a concrete LTS yields an in�nite
structure, which is not directly usable, e.g., for the purpose of model-checking.
The structure is in�nite because of the use of variables and timed transitions.
In particular, a listener when {a?x→ P} in the traditional semantics for CSP,
and value-passing CCS will have a transition for every possible value that x can
take. To do model-checking we need a �nite, or at least �nite-branching repre-
sentation10. Similarly, the timed behaviour of systems is in�nite in the concrete
semantics in the following sense: a concrete timed transition P

r
 P ′ implies

that there are in�nitely many (in fact uncountably many) intermediate states

P ′′ such that P
r1 P ′′ and P ′′

r2 P ′ where r = r1 + r2. On the other hand, the

(semi)symbolic transition P
δ(t6E)−−−−→ P ′ is a unique transition, where t is just a

(symbolic) variable. Hence, the resulting semi-symbolic transition system has a
structure that captures sets with an in�nite number of concrete transitions in
single transitions, thus making it more readily analyzable.

Structure of transitions In the most basic process algebras transitions have
the form P

α−→ P ′ where P and P ′ are terms and α is an action label. It is
common to endow labels with more information required to describe and fully
capture the intended behaviour. In our case labels are pairs (Γ, α) with a name

environment in addition to the action, so we write transitions as Γ.P
α−→ P ′. A

natural alternative would have been to include in a transition the state of the
name environment before and after the transition, e.g., (Γ, P )

α−→ (Γ′, P ′). This
de�nition would make the semantics closer to an abstract machine where an en-
vironment/process pair (Γ, P ) could be seen as the machine's con�guration and
the states of the LTS would be such con�gurations. In this case the (def) rule
would be replaced by

−
(def)2

(Γ, def { ~D} inP )
ν{defnJDK:D∈~D}−−−−−−−−−−−→ (ext(Γ, ~D), P )

Other rules would have to be adapted as well. In particular, the (new) rule
and the (comm-l) and (comm-r) rules could be replaced so that instead of

10The system may not be �nite because of recursion: take for example a process
def {procA(n) = A(n + 1 )} inA(0 ). This will result in an in�nite semi-symbolic LTS but
each state has a �nite number of branches. Traditional model-checking may not be fully
achievable here, but if we impose transition bounds we will be able to do more analysis that
with an in�nite branching system.
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substitution they would extend the name environment accordingly, and rules
such as (trig) and (choice) would have to perform a lookup operation on the
environment. This would make the semantics closer to a realistic implementa-
tion.

While there is some appeal in this, at the time of this writing we feel that
we have not explored the consequences of such change in the rules enough to
guarantee the intended semantics. We also feel that the �rst form is more
suitable to leverage the techniques and results from the π-calculus and process
algebras in general.

5.3.3 Structural congruence

A common style of presentation of SOS semantics for process algebra, proposed
by Milner in [Mil90] and inspired on the Chemical Abstract Machine of Boudol
and Berry [BB90] is based on the axiomatic de�nition of a structural congruence
upon which the de�nition of inference rules for transition rests. The idea is to
de�ne an equivalence relation ≡ on terms which is structural in the sense of
identifying terms based on their structure, and more speci�cally identifying
terms which di�er on their structure alone but not on their behaviour. For
example the following are some of the axioms for ≡ for the π-calculus:

P ≡ Q if P is α− convertible to Q
P |0 ≡ P
P |Q ≡ Q|P

(P |Q)|R ≡ P |(Q|R)
(νx)0 ≡ 0

(νx)(νy)P ≡ (νy)(νx)P
P |(νx)Q ≡ (νx)(P |Q) if x is not free in P

In addition, ≡ must be a congruence, that is, an equivalence relation which
is preserved by all operators. For example, if P ≡ Q then (νx)P ≡ (νx)Q, and
P |R ≡ Q|R for any R.

Once a structural congruence has been de�ned, the following inference rule
is provided in the SOS:

P
α−→ P ′ P ≡ Q

(congr)
Q

α−→ P ′

or its variant

P ≡ Q P
α−→ P ′ P ′ ≡ Q′

(congr)
Q

α−→ Q′

One of the advantages of de�ning the SOS this way, is that then the number
of SOS rules can be reduced. For example, without structural congruence, we
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need two rules for parallel composition (without communication):

P
α−→ P ′ bn(α) ∩ fn(Q) = ∅

(par-l)
P |Q α−→ P ′|Q

and its dual

Q
α−→ Q′ bn(α) ∩ fn(P ) = ∅

(par-r)
P |Q α−→ P |Q′

But if we have the (congr) above, only one of the rules for parallel compo-
sition is required, since the other one can be easily recovered with the axioms
for ≡, as the following derivation shows (assuming (par-l) we derive (par-r)):

Q|P ≡ P |Q
Q

α−→ Q′ bn(α) ∩ fn(P ) = ∅
Q|P α−→ Q′|P Q′|P ≡ P |Q′

P |Q α−→ P |Q′

De�ning such structural congruences is appealing for several reasons: 1) it
clearly distinguishes equations about static, non-behavioural operators from
equations between terms with di�erent transition graphs; 2) in Milner's words,
it separates �[...] the laws governing the neighbourhood relation among pro-
cesses from the rules that specify their interaction� [Mil90]; 3) it allows us to
focus on the behaviour of processes by identifying their transitions up-to struc-
tural congruence, i.e., it allows us to generalize properties of a process to all
processes in its equivalence class de�ned by ≡; 4) it reduces the number of SOS
rules, which in turn may simplify some proofs by reducing the burden in terms
of the number of cases to take into account.

However there are also at some disadvantages: 1) it may be required to check
for structural congruence by an interpreter or model-checker, but this is not a
trivial problem, as witnessed in [EG04] and [KM08], so implementing such check-
ers may be di�cult and the checking itself may be ine�cient; 2) not all proofs are
simpli�ed as the burden of proof may not be reduced, but rather shifted11; and
3) it has been shown in [MR05, MR04] that combining structural congruence
with SOS is not always straight-forward and can be problematic in the follow-
ing sense: the rule format meta-theorems of SOS (e.g., [GV92, Gro93, GMR06])
which guarantee the existence and uniqueness of the induced transition system
and the property that bisimilarity is a congruence in the corresponding process
algebra, may not hold when we add the (congr) rule. This implies that at
best, the applicability of such meta-theorems comes into question, and at worst

11For example, when proving some statement about a transition using induction on the
derivation, one must consider all the possible rules applied as the last step in the derivation.

If the last step in the derivation was the application of the (congr) rule with P
α−→ P ′ as the

conclusion, then the previous step was a transition Q
α−→ Q′ for some Q ≡ P and Q′ ≡ P ′.

Then one may have to consider all the potential forms of Q and Q′ which in turn depends on
the number of axioms on ≡. In some cases this may result in more cases to consider compared
to a system without the (congr) rule.

64



that the SOS rules may even fail to de�ne a transition system. Thus ensuring
these properties, specially that of well-de�nedness, would require manual proof.

At the time of this writing we believe that the disadvantages outweigh the
advantages and therefore we choose a presentation of the semantics without
structural congruence.

5.3.4 Name environments and substitution

In our semantics we have two related mechanisms for dealing with names: name
environments, usually denoted with Γ, and name substitutions, usually written
as σ. They play di�erent roles. Name environments are used to store locally
de�ned process, function and variable names, and to evaluate expressions. They
implement lexical scoping. Substitutions, on the other hand, are used for several
purposes: a) the act of receiving a message (assigning the input pattern's vari-
ables the received data), b) instantiating or calling a process (assigning the call's
arguments to the process's parameters), c) synchronizing processes (decrement-
ing the delay �countdown� timer's value, and setting the time variables values
according to the progression of time). This contrasts with other process cal-
culi, and with the λ-calculus where a single mechanism (substitution) is used
to deal with names. Thus, having two separate mechanisms seems super�uous
or wasteful. It is conceivable that a simpler model with a single mechanism
may be envisioned to cover both aspects, but it seems that such mechanism
would require some signi�cant changes to the syntax and the de�nition of the
semantics. A future version of the calculus may unify these, but at the time
of this writing we have opted for a practical choice, given that the theoretical
burden is not too great and the practical gains seem worth it, particularly from
the point of view of implementation.

5.3.5 Labels

As we have discussed, we have chosen LTSs as the semantics domain, choosing
terms to represent states, and as pointed out in Remark 4.23, a contextual LTS is
an LTS where labels are pairs (ρ, α) consisting of a context ρ and an action label
α. In our presentation contexts are name name environments, and actions, in
the semi-symbolic semantics are divided into instantaneous actions and delay
actions. This is a distinction with precedent on several other approaches to
time in process algebra, more speci�cally Timed CSP [RR86, Sch95, Sch00]
and Timed ACP [BB91]. We inherit their rationale for this separation. While
this may contrast with the intuitive idea that actions take time and therefore we
could annotate each action with the time it takes or with timing constraints, it is
useful to follow the alternative approach in which actions, specially interactions
are considered orthogonal to the passage of time. This is, when we separate
instantaneous actions from passage of time we are making an abstraction: we
abstract the actual execution time of actions. One can think of this abstraction
as representing for any given action, the instant of time in which the action
is actually committed, rather than the duration from the time when the action
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begins until the action ends. This distinction is, nevertheless, somewhat arti�cial
and an alternative characterization could be given. Our decision to make this
distinction was to be in line with the literature mentioned above in hopes we
could leverage some of the existing theoretical frameworks. This allows us to
express and reason about questions regarding actions independently of questions
regarding time.

Instantantaneous actions are themselves divided into internal actions and
external or I/O (input/output) actions. External actions are the sending and
reception of messages. Internal actions are actions such as termination (

√
),

creation of new names (ν~b), conditional evaluation (ιc(E)), process instantiation

(εA( ~E)) or interactions (µa{E/R}). Collectively these are all denoted by τ ,
as is traditional in the process algebra literature. Note that interactions are
considered internal because they represent the communication between sub-
components of a process, rather than the interaction between a process and its

environment. This is, when we say Γ . P
µa{E/R}−−−−−→ P ′ we are saying that some

sub-processes of P are interacting, not that P is interacting with some external
process.

As mentioned above, the process algebra literature abstracts internal actions
and writes them as τ , since the analysis focuses on how processes interact with
one another, rather than on their internal behaviour. Nevertheless we �nd
it useful to give these labels some additional structure, partly for pragmatic
reasons, and partly for aiding the de�nition of the semantics itself. In terms of
pragmatics, having this extra information means that the event traces that we
obtain tell us about internal behaviours as well, which is useful particularly for
debugging. Furthermore, information on internal behaviour may complement
analysis of external interactions. From the point of view of the de�nition of the
semantics itself, it allows us to treat the new operator as a dynamic operator
rather than a static one, which has some advantages (see the discussion below

in Subsection 5.4.1). In particular, the fact that in the action ν~b the names ~b are
considered bound names is used in the rules (par-l) and (par-r) to ensure that
private names remain private, no name clashes occur and scope extrusion can
be emulated. This allows us to get rid of the traditional (open) and (close)
rules for scope extrusion. More details on this are discussed in Subsection 5.4.1.

Another reason for endowing internal actions with structure is related to
the labels for conditionals. In the current de�nition they simply annotate a
transition with the boolean value of the expression of the conditional and this
value is completely determined. Nevertheless, in a future presentation of the
semantics we can allow the expression to be open and not have a de�ned value.
This means that the generated transition system would gave two branches: one
for the case when the conditional is true and one when it is false. In other words,
what we obtain is a fully symbolic transition system, in the sense of symbolic
execution. This allows us to explore entire families of computation where the
exact values of variables are not known a priori. Hence these annotations lay the
basic machinery that we will need to describe such symbolic transition systems.

It should be noted that adding this additional structure to labels of internal
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actions does not invalidate any of the applicable theory. For example, weak
bisimulation can be de�ned in the traditional way, where a τ transition can be
any πklt internal action.

5.3.6 Early vs. late semantics

In the theory of the π-calculus two basic forms of semantics have been proposed
early semantics and late semantics. In early semantics the rule for input is as
follows:

−
(inp-e)

x(y).P
x(z)−−−→ P{z/y}

and the rule for interaction is the same as the rule in CCS:

P
¯̀
−→ P ′ Q

`−→ Q′
(comm-l)e

P |Q τ−→ P ′|Q′

where ` is of the form x(y) and ¯̀ is of the form x̄y.
By contrast in late semantics, the rule for input is

−
(inp-l)

x(y).P
x(y)−−−→ P

and the rule for interaction is the same as the rule in CCS:

P
x̄z−→ P ′ Q

x(y)−−−→ Q′
(comm-l)l

P |Q τ−→ P ′|Q′{z/y}
The di�erence is that in early semantics the received value is substituted

when applying the input rule, whereas in late semantics the substitution occurs
when applying the interaction rule.

In [MPW89] the late semantics scheme is adopted because, as the authors
state, �[...] this will admit a notion of equivalence for which the algebraic theory
appears somewhat simpler; [...]�. Besides this there is another powerful reason
to prefer late semantics from our perspective: in early semantics, a term x(y).P
has an in�nite number of transitions, one for each possible instantiation of y.
By contrast, the late semantics gives only one transition for the same term.
This is quite critical and becomes apparent in the functional characterization
of the semantics: the set enablednowJwhen {a?x→ P}KΓ is the �nite set {a?x}
containing exactly one semi-symbolic action. By contrast, if we adopted early
semantics, this set would be the in�nite set {a?V : V ∈ Vals}, containing
every possible assignment of a value V to x. This in turn means that computing
enablednowJP ‖ QKΓ would require obtaining an in�nite set (e.g., if P or Q is of
the form when {a?x→ P}). Even if this is done lazily it would mean iterating
over an in�nite set until an appropriate value is found. This is an impractical
way to implement process interaction. Instead, we chose to look for possible
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matching input and output actions in P and Q, and this is easily done if we
have semi-symbolic action labels and �nite enabled-action sets.

5.4 Semantics of speci�c constructs

Having decided to de�ne the operational semantics of the πklt -calculus directly
using Plotkin-style SOS rules, the reader familiar with π-calculi might note
certain important di�erences regarding some rules for certain constructs such
as the new operator, the �call� operator (A(Ẽ )) and the listener operator and
parallel composition.

5.4.1 The new operator

The new operator seems to correspond to the ν in the π-calculus, but there are
important di�erences. The reader may note that there is no �bound output�
action (x̄(y)), and no �open� and �close� rules of inference for this operator, and
instead the rule for this operator is labelled with an internal action. The rule
for the ν operator for the asynchronous π-calculus is as follows:

P
α−→ P ′ x /∈ n(α)

(hide)
(νx)P

α−→ (νx)P ′

This rule states that (νx)P can perform an α action as long as the name x
is not mentioned in the action. This is the essentially the same as the rule for
the hiding operator in CCS. However, the π-calculus supports scope extrusion,
the ability to send private, local names and extend their scope dynamically. For
example, the following behaviour is possible in the π-calculus:

y(z).(z̄u|P ) | (νx)(ȳx|Q)
τ−→ (νx)((x̄u|P ) | (0|Q))

Here, the scope of x has been extended from the right-hand part of the
process term to include both terms of the top-level parallel composition. But
without any additional rules, such transition would not be possible because
while the term ȳx|Q has a transition labelled ȳx, we cannot deduce from the
application of the (hide) rule that the term (νx)(ȳx|Q) has a transition rep-
resenting the output ȳx. Furthermore, in general, a term of the form (νx)ȳx
would be equivalent to the nil term 0 as it does not have any transitions.

In order to support scope extrusion there have been two styles of presen-
tation proposed. One is via structural congruence over terms, as described in
Subsection 5.3.3. One of the axioms for structural congruence is the scope ex-
trusion axiom: P |(νx)Q ≡ (νx)(P |Q) if x is not free in P . This axiom and
the addition of an inference rule for structural congruence (congr) described
above, allow us to derive transitions with scope extrusion.

Including structural congruences in an operational semantics brings some
advantages in particular a smaller set of inference rules, but it may also result
in some technical di�culties in certain proofs, and in implementation. So the
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alternative approach12 has been to include an additional action label x̄(y) rep-
resenting a bound output, that is the sending of a private name, and add two
rules, known as �open� and �close�13:

P
x̄y−→ P ′ x 6= y

(open)

(νx)P
x̄(y)−−−→ (νx)P ′

P
x(z)−−−→ P ′ Q

x̄(y)−−−→ Q′
(close)

P |Q τ−→ (νx)(P ′{y/z}|Q′)

Since we do not follow any of these two approaches it would seem that the
semantics of πklt does not support scope extrusion. This, however, is not the
case. The semantics does allow for the sending of private names, in the sense
that the rule for new generates a new fresh name, a name that does not occur
anywhere else, and thus cannot clash. In our semantics the transition is labelled
with an action ν~b listing the new, fresh names. By de�ning the bound names
of such an action to be the new fresh names, the side condition on the (par-
l) and (par-r) rules ensure that no con�icts or undesired name capture will
occur. Furthermore, the (new) rule ensures that a process such as new a in b!a
will have a transition (labelled b!a) and thus it will not be equivalent to the
term stop.

What is true is that the new operator is not a structural operator (static
combinator in Milner's terminology) but a dynamic operator, whereas in the
π-calculus, the ν operator is structural: the new operator results in creating a
new transition, rather than hiding transitions (which is what ν does), and the
new operator disappears from the term permanently, whereas the ν operator
remains unless one is sending a private name. This would seem at �rst to imply
that the scope of the new name becomes wide open and global, but the new name
occurs only in its original scope and the process which is its scope can explicitly
send the newly created name to other processes, thus extending its actual scope.
More precisely, in the π-calculus with the (open) and (close) rules, the ν
operator �disappears� temporarily when the (open) rule is applied, and reap-
pears with the (close) rule and in our calculus, the (new) rule, much like the
(open) rule, �opens up� the term and records the bound name(s) in the action
label, but we need not close it as the bound name is a fresh name guaranteed
to be present only in the scope of the new construct. The (close) rule in the
π-calculus makes the new, extended scope explicit in the term, so the scope
is explicitly captured syntactically, i.e., structurally. While this is a very nice
feature, we don't think it is truly essential, as long as we can guarantee that
the newly created names are fresh. The key here is, of course that the newly
created names are truly fresh and do not occur elsewhere. Such freshness is of
course, a global property, however in practice it is easy to enforce a reasonable
approximation, by a name generator.14 Now, while making the new operator

12This approach was historically the �rst.
13In fact it would consist of adding two variants of the �close� rule corresponding to each of

the processes in the parallel composition performing the output.
14One could argue that in a distributed implementation this may be di�cult, but in fact a

very simple solution is at hand: pre�xing names produced by the name generator with the IP
address of the machine executing the new.
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a dynamic one, this means that we �loose� an explicit marking of scope for
(channel) names in the terms as they execute, and we are adding new (inter-
nal) transitions to the system, but the advantage is that we need fewer rules to
describe the semantics (which simpli�es many proofs) and the implementation
of the new construct does not require a recursive call, making it more e�cient,
and it could be argued, more intuitive.

Another consequence of our semantics is that several equations valid in the π-
calculus no longer hold (assuming the equations as either structural congruence
or strong bisimilarities). For example, in the π-calculus we have (νx)0 ∼ 0. But
in πklt , new x in done 6∼ done, as the left-hand has a ν transition and the right
hand doesn't. More importantly, in the π-calculus we have that P |(νx)Q ∼
(νx)(P |Q) if x is not free in P . But in πklt , P ‖ new x inQ 6∼ new x in (P ‖ Q)

because the left-hand side has a transition Γ.P ‖ new x inQ α−→ P ′ ‖ new x inQ
for each transition Γ . P

α−→ P ′, whereas the right hand side only has a single

transition Γ.new x in (P ‖ Q)
νx′−−→ (P ‖ Q){x′/x}. This re�ects the nature of the

new operator as a dynamic combinator in πklt . Nevertheless, the new operator
does behave in a way that is consistent with the traditional scope extrusion
law, and while we will not provide a formal proof of that fact here, the reader
may observe that intuitively, moving the scope of x �up� from P ‖ new x inQ
to new x in (P ‖ Q), provided that x is not free in P , has no signi�cant e�ect
on the overall behaviour of the term, as it simply adds an internal transition,
and since the newly introduced name must be fresh, no possible unexpected
interactions may be introduced by such rearrangement.

5.4.2 Process instantiation

Another issue is the semantics of process calls. In process calculi without an
explicit term for process de�nitions it is assumed that such de�nitions are given
by (de�ning) equations, which are not themselves process terms. Thus a process
name is treated as a variable in the conventional algebraic way. If a process name

(process constant in Milner's terminology [Mil89]) is de�ned as A
def
= P then the

semantics of a process call A is then the transitions A
α−→ P ′ such that P

α−→ P ′,
i.e., as an SOS rule

P
α−→ P ′ A

def
= P

A
α−→ P ′

This rule thus allows for recursion, when A occurs in P . If we allow process
de�nitions to have parameters, as is usually done in π-calculi, proper substitu-
tion of parameters have to be taken into account. This is, given a de�nition

A(x)
def
= P , a call A(y) has transitions A(y)

α−→ P ′ if P{y/x} α−→ P ′. In both
cases a �call� is a structural concept. It does not add any transitions per se. A is
only a stand-in for P , thus just a name. But this some consequences: For exam-

ple, the recursive de�nition A
def
= A has no transitions at all, because any such

transition would require an in�nite (derivation) tree. But this contrasts with
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the programmer's intuition where calling A will result in taking a (silent) step,

and repeating, yielding an in�nite execution A
τ−→ A

τ−→ A
τ−→ · · · . Furthermore,

when adopting the conventional rule for transitions we have an additional com-
plication when doing proofs: the most common technique to prove statements
about the language is induction, and more speci�cally induction on the struc-
ture of a term or on the derivation of a transition. But very often, to prove such
a property we have that when dealing with the case corresponding to a �call� or
�name� term A, we cannot use an induction hypothesis, because the body P of

the de�nition A
def
= P is not a sub-term of the call term �A�. There are some

alternative solutions to this, for example including an explicit �x-point operator
in the syntax. But here we have adopted a simple one which corresponds better
with the intuition of a �call�, rather than a name: our (inst) rule is of the form

A
ε−→ P , this is, a call executes a single (internal) step to become its body P .

Therefore a call is a dynamic, rather than structural operator, as it introduces
a transition. While it introduces a transition into the LTS, the rule does not
require to check transitions of the body, thus the succ function does not need to
recurse in this case. Furthermore, in the context of proofs, we no longer have
the problem of applying the induction hypothesis, as the �call� case becomes
one of the base cases of the induction. And the rule matches well the intuition
of a �call�.

5.4.3 Sequential composition

As stated in Subsection 4.2.1 we do not treat the sequential composition op-
erator ; as primitive and encode it in terms of the other operators in Subsec-
tion 5.4.3. There are a few reasons for doing so. The �rst one is simplicity,
to limit the number of inference rules. But the main reason is that existing
approaches cause complications with asynchronous message passing and time.
To see this, consider the two main existing approaches: the CSP approach and
the ACP approach.

In the CSP approach we have an explicit action label
√

to represent suc-
cessful termination, and we have rules as follows:

Γ . P
α−→ P ′ α 6=

√
(seq-l)

Γ . P ;Q
α−→ P ′;Q

Γ . P
√
−→ P ′ Γ . Q

α−→ Q′
(seq-r)

Γ . P ;Q
α−→ Q′

Γ . P
√
−→ P ′ Γ . Q

√
−→ Q′

(join)

Γ . P ‖ Q
√
−→ P ′ ‖ Q′

−
(done)

Γ . done
√
−→ stop

The �rst rule (seq-l) states that as long as P has non-termination actions,
it can perform them. The second rule, (seq-r), states that when P can ter-
minate, then Q can proceed. The third rule, (join), is used to join parallel
process, as a barrier, that is, P ‖ Q can terminate only when both P and Q
terminate. The last rule (done) states that the term done can successfully ter-
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minate and become the process stop which has no transitions. In addition, the
rules (par-l) and (par-r) must have α 6=

√
as an additional premise. These

rules could in principle be extended to include time delays χ.
The problem with this approach is that it fails to account for asynchronous

communication, particularly in when taking time into account. Consider the
following:

P0
def
= P1 ‖ P2

P1
def
= (a! ‖ done);P

P2
def
= wait 3→ when {a?→ Q}

In P1 the trigger of a is asynchronous: once the process has sent the signal
it is deemed to have successfully terminated, whether the event is received or
not by another process. In particular, P must be able to start before P2 has
received the message. Furthermore, the trigger is persistent : the triggered event
must persist until there is a listener to it, in this example, P2. Also, the parallel
composition a! ‖ done should behave exactly as just a!, and �nish immediately.
Unfortunately, the above rules do not allow us to infer this behaviour. The

trigger only has the transition Γ.a!
a!null−−−−→ done and done only has a transition

Γ . done
√
−→ stop. This means that we cannot use the (join) rule to infer

that a! ‖ done terminates, in turn preventing us from using the (seq-r) rule
to infer that P can begin executing. The only possible behaviour would be

to delay 3 time units, until the transition Γ . a!
a!null−−−−→ done can be combined

with Γ . when {a?→ Q} a?null−−−−→ Q with the (comm-l) rule, but this means that
only then could P begin, in other words, the trigger is acting as a synchronous
trigger!

The rule (seq-r) can be replaced with this one:

Γ . P
√
−→ P ′(seq-r)

Γ . P ;Q
τ−→ Q

Here, when the �rst process �nishes, the transition to the sequel is considered
an internal action. This rule, however, does not solve the problem above.

The ACP approach would be to use the following rules, as well as the
(join) rule:

Γ . P
α−→ P ′ P ′ 6≡ done

(seq-l)
Γ . P ;Q

α−→ P ′;Q

Γ . P
α−→ done(seq-r)

Γ . P ;Q
α−→ Q

Γ . P
a!E−−→ P ′ Γ . Q

a?R−−→ done σ 6= ⊥
(comm-l)2

Γ . P ‖ Q µa{R/E}−−−−−→ P ′
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Γ . P
a!E−−→ done Γ . Q

a?R−−→ Q′ σ 6= ⊥
(comm-l)3

Γ . P ‖ Q µa{R/E}−−−−−→ Q′σ

In these rules, ≡ could be interpreted as a structural congruence, which as
discussed above, may simplify the presentation but may also complicate certain
aspects of the semantics.

Again, these ACP-like rules su�er from the same problems as the CSP-like
rules: they fail to treat asynchronous message passing properly.

Yet another alternative, suggested by Milner in [Mil89] is to use the (seq-
l) rule above in combination with an alternative rule (seq-r) like this:

Γ . Q
α−→ Q′

(seq-r)2
Γ . done;Q

α−→ Q′

This solution, as pointed out by Milner, is doomed, because this rule cannot
be applied to a process such as (done ‖ done);Q since it is not in the right
format. The alternative would be to use structural congruence, including the
axiom P ‖ done ≡ P , the (congr) rule and the following:

P ≡ done Γ . Q
α−→ Q′

(seq-r)3
Γ . P ;Q

α−→ Q′

But we are back to relying on structural congruence which, as we have
pointed out, may be problematic. Furthermore, this solution fails to address
the issue of asynchronous message passing as the previous approaches.

So what other alternatives are there? We see three:

1. Modifying the transition system to represent the contents of channels ex-
plicitly within an environment.

2. Modifying the language to represent �deferred outputs�, and adding ap-
propriate inference rules.

3. Encoding sequential composition as done in Subsection 5.4.3

The �rst approach is intuitive and feasible, but makes the name environments
much larger and requires additional bookkeeping in the inference rules. Essen-
tially it results in more complicated inference rules, and may make automated
analysis more complicated as well. The second approach has the drawback
that it introduces a language-level construct which the end-user doesn't see or
use, but is required to understand how the language works. We don't �nd this
particularly appealing. The last approach has the disadvantage of introducing
additional triggers, listeners and process parameters, resulting in a potentially
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larger transition system, but at the time of this writing, is the only approach
which we know to be guaranteed to work. To see how it works, we look at the
encoding of the process P0 above:

transseqJP0K
def
= new g0 inP

′
0

P ′0
def
= joinP(JP0K, g0)

= new g1 , g2 in (P ′1 ‖ P ′2 ‖ when {〈g1 , g2 〉?→ g0 !})

P ′1
def
= joinP(JP1K, g1)

= new g3 in (P ′′1 ‖ when {g3 ?→ P ′})

P ′′1
def
= joinP(Ja! ‖ doneK, g3)

= new g4, g5 in

(joinP(Ja!K, g4) ‖ joinP(JdoneK, g5) ‖ when {〈g4 , g5 〉?→ g3 !})
= new g4 , g5 in ((a! ‖ g4 !) ‖ g5 ! ‖ when {〈g4 , g5 〉?→ g3 !})

P ′
def
= joinP(JP K, g1)

P ′2
def
= joinP(JP2K, g2)

= wait 3→ when {a?→ Q′}

Q′
def
= joinP(JQK, g2)

Putting it all together:

transseqJP0K =
new g0 in

new g1, g2 in

(new g3 in

(new g4, g5 in

((a! ‖ g4 !) ‖ g5 ! ‖ when {〈g4 , g5 〉?→ g3 !})
‖ when {g3 ?→ joinP(JP K, g1)})

‖ wait 3→ when {a?→ joinP(JQK, g2)}
‖ when {〈g1 , g2 〉?→ g0 !})

Now, this term, after a few internal transitions resulting from creating new
names (a fresh name g′i for each gi) results in the following:

transseqJP0K
νg′0−−→ νg′1,g

′
2−−−−→ νg′3−−→ νg′4,g

′
5−−−−→

((a! ‖ g ′4 !) ‖ g ′5 ! ‖ when {〈g ′4 , g ′5 〉?→ g ′3 !})
‖ when {g ′3 ?→ joinP(JP K, g′1)})
‖ wait 3→ when {a?→ joinP(JQK, g′2)}
‖ when {〈g ′1 , g ′2 〉?→ g ′0 !})

It can be seen that the trigger a! is now parallel with the rest of the term
and will persist until there is a listener available. Furthermore, the interactions
between g′4, g

′
5 and the barrier 〈g′4, g′5〉 are internal actions and therefore urgent,

implying that they must take place before the time advance required by wait 3:
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µg′4−−→
µg′5−−→ ((a! ‖ done) ‖ done ‖ g ′3 !)

‖ when {g ′3 ?→ joinP(JP K, g′1)})
‖ wait 3→ when {a?→ joinP(JQK, g′2)}
‖ when {〈g ′1 , g ′2 〉?→ g ′0 !})

This interaction results in triggering g′3, which also can immediately interact
with the guard of process P ′ = joinP(JP K, g3):

µg′3−−→ ((a! ‖ done) ‖ done ‖ done)
‖ joinP(JP K, g′1))
‖ wait 3→ when {a?→ joinP(JQK, g′2)}
‖ when {〈g ′1 , g ′2 〉?→ g ′0 !})

Thus P ′ is now free to proceed independently of the interaction through a,
as we expect.

5.4.4 Time-related constructs

The only time-related constructs are wait, to specify that a process must be
delayed a speci�c amount of time, and @y in listener guards, to record the
amount of time it takes to receive a message. The timeout construct is de�ned
in terms of the rest, as explained in Subsection 3.1. One could argue that
this is quite limiting if we contrast this with other formalisms used to model
real-time systems, particularly Timed Automata [AD94]. In Timed Automata,
there are clocks which are time variables, i.e., variables recording the time at
which transitions are taken, and each transition is labelled with constraints on
time variables and possibly a reset of some of these variables. This formalism is
indeed quite powerful and popular, allowing us to specify (impose) constraints on
the duration of certain activities, and thus one such speci�cation will describe a
(possibly in�nite) family of behaviours, rather than a particular timing of events
(unless the constraints are all of the form x = t, where x is a time variable and
t is a speci�c duration). In other words, the formalism of Timed Automata is
a speci�cation formalism: a language to specify requirements on a system. On
the other hand, we view πklt more as a language closer to an implementation.
Nevertheless, we should point out that it is possible to express constraints of
the form x ≤ t in πklt with the timeout construct. Basically when we write the
following process term:

when {a?R@y → P} timeout t→ Q

we know that if a message is received before time t, then P will be executed
with y being the time the term spent waiting, and we know that such time is
less than t: y ≤ t. On the other hand, if no message was received before time t,
the process proceeds as Q.15

15In the current syntax we do not bind that time to a time variable in Q if the time is longer
than the timeout, but the syntax could be easily extended to do so.
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6 Related languages and calculi

In this report we do not show formally how exactly does the πklt -calculus extend
the (asynchronous) π-calculus in the sense that we do not provide an encoding
of the former in the latter, and we simply recall the existing π-calculus the-
ory which encodes several extensions, starting with functional programming
by Milner [Mil90, Mil89, Mil99, MPW89], the Pict language by Pierce and
Turner [Pie94, PT00], extending the π-calculus with expressions, types and poly-
morphism by Turner [Tur95, Tur96], the Spi-calculus [AG97] and the Applied
π-calculus [AF01, RS11] which add data structures to encode messages, encod-
ings of objects by Sangiorgi [San98] and Milner [Mil99], encodings of functions
and data-types [Vas99], the Extended π-calculus of Johansson, Parrow, Victor
and Bengston [JPVB08].

There have been several timed extensions to process algebras, perhaps most
notably timed variants of ACP [BB91] and CSP [RR86, Ros98, Sch95, Sch00],
but since we are concerned with systems which support channel mobility we
review timed variants of the π-calculus. We now contrast them with πklt .

16 Most
of the timed extensions assume a discrete time model, and none include a time-
observing construct as @y in πklt listeners. Most are based on the synchronous
π-calculus, whereas πklt is based on asynchronous communication. The only
languages in this family, apart from ours, with an actual implementation is the
TDπ-calculus and the stochastic π-calculus, as far as we are aware at the time
of this writing.

The Spi-calculus, the Applied π-calculus and the Extended π-calculus

The Spi-calculus [AG97] and its natural extension, the Applied π-calculus [AF01,
RS11] are themselves extensions of the (synchronous) π-calculus with data-terms
and aliases. Data-terms correspond roughly to what we call expressions, al-
though a data-term of the form f(t1, ..., tn) is not a function application but a
data-structure, in the style of functional languages with a Hindley-Milner type
system [Mil78, Mil83] such as ML [MTHM97, MTH90] where f is a data con-
structor. Aliases are process terms of the form {M/a} where M is a data-term
and a is a channel. The idea is that sending a data-term M does not send
the term directly but rather sends an alias a of the term and results in {M/a}
which, via structural congruence, can be used by the receiver to manipulate the
data. The motivation for this is security: sending an alias rather than the term
ensures that names appearing in M cannot be seen by third-parties.

The extended π-calculus of Johansson, Parrow, Victor and Bengston [JPVB08]
is quite similar to the Applied π-calculus, but it goes further by making the op-
erators more symmetric, allowing data-terms M in the position of channels in
both input and output, so one could write M̄N.P and M(N).P .

16We focus here on the di�erences in language constructs and the computational model.
We do not contrast here their respective meta-theories as this is beyond the scope of this
document.

76



While these calculi are intended to make the π-calculus more practical, they
have a very di�erent motivation than the πklt -calculus. While they are concerned
with secure data transmission, we are concerned with timing behaviour.

The Tπ and TDπ-calculi

Of the timed-π calculi we surveyed, the Tπ and its distributed extension, the
TDπ-calculi [PC05] have one of the most developed theories. This algebra
extends the π-calculus in several ways: 1) computation proceeds with respect
to a global clock over discrete time; 2) input and output actions (i.e., listeners
and triggers), have associated timers, which represent timeouts; 3) it supports
distributed computation in a sense similar to kiltera, where processes execute in
locations, and can move between locations; 4) it has a type system which assigns
capabilities to channels (e.g., read or write), and locations (e.g., can move).

There are several obvious similarities as well as di�erences between πklt and
this calculus. First, both have a notion of timed execution with respect to a
global clock, but while in TDπ time is discrete, in πklt it is continuous. Sec-
ond, the timer tags on channels of TDπ are easily emulated with timeouts in
πklt , but while πklt provides a mechanism to observe the elapsed time, TDπ
does not. Furthermore, unlike πklt , time values are not transmittable as data.
Third, TDπ provides a type system, while πklt 's processes are untyped. Also,
unlike the πklt -calculus, the Applied π-calculus or the Extended π-calculus, the
TDπ-calculus does not provide a mechanism for the transmission of arbitrary
data structures. The remaining distinctions are with respect to the model of
distributed processing, so we leave the comparison of these features to a future
paper.

The TDπ-calculus has been implemented [?]. Nevertheless, this implemen-
tation is quite di�erent from ours, both in terms of semantics (particularly
regarding time) and architecture.

The �rst major di�erence concerns the treatment of time. Since the TDπ-
calculus is a discrete-time formalism its time model is based on clock ticks, which
contrasts with the event-scheduling approach used in kiltera. Secondly, regarding
distributed simulation, each site maintains a local clock, but it is not clear in [?]
how time consistency is maintained. For example, it is not clear whether the
time intervals associated to actions (including the �go� action) refer only to
local times. Assuming local times only does not help much clarifying this. For
instance, if a message is sent but it arrives later than the sender's local deadline,
is it discarded by the receiver? The semantics of the language assumes global
time, but the implementation does not seem to enforce or guarantee this. By
contrast, our implementation for distributed systems is based on the TimeWarp
algorithm [Jef85] thus guaranteeing the global time semantics.

Concerning the architecture some di�erences have important e�ects. At the
core of their implementation is a framework called MCTools for distributed and
mobile computing written in Java. They translate their source language (TiMo)
to an intermediate Java-like representation (TLang) which is then translated to
Java code which extends and uses the MobileCalculi framework of MCTools. A
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consequence of this is that processes are implemented as independent threads
in the underlying language (Java) which may prove costly in the case of models
with large numbers of processes, given the costs of thread management and
context switching. In our approach, by contrast, there is only a single thread,
which executes the abstract machine's scheduler. Another consequence is that
the communication primitives of the TDπ calculus are implemented using the
communication primitives of this underlying framework, which, in the case of
message reception, are blocking primitives. By contrast in our implementation
the semantics of communication is implemented fully in terms of the abstract
machine's operations, none of which are blocking, even in the distributed setting,
since the TimeWarp algorithm is an optimistic (non-blocking) algorithm. The
blocking vs. non-blocking nature of the implementation does not necessarily
imply an advantage for either implementation, but rather, it highlights the
di�erent intention of these implementations: the TiMo/MCTools framework
seems to be intended as a �production� system, while the kiltera implementation
is intended as a simulator.

The stochastic π-calculus

The stochastic π-calculus [Pri95] makes a small but signi�cant modi�cation to
the syntax and semantics of the (synchronous) π-calculus, by associating rates
to (input and output) actions. The meaning of this rate is that the given action
is completed only after an amount of time which is drawn from an exponential
distribution determined by the rate. As πklt , processes execute with respect to
a global clock over continuous time. But, unlike πklt , the amount of delay is a
random variable over a distribution, and therefore, transitions and their timing,
are probabilistic. This can be emulated in πklt by adding a pseudo-random
number generator for use in delay expressions. Semantically, each transition
also has a rate, which depends on the rate of the corresponding term. This
implies that communication between processes has a rate which depends on the
rates of the participating input and output actions.

The πRT -calculus

The calculus introduced in [LZ02] extends the π-calculus with a timeout oper-
ator from Timed CSP [Sch00, Sch95] as well as allowing transmission of time
values. Like πklt , it has a model of computation based on a global clock, but un-
like πklt , time is discrete. The model of computation includes several properties
similar to πklt 's, such maximal progress, time determinacy and time continuity.
Nevertheless, the status of these properties in their theory is not clear: are they
assumptions or derived properties? To the best of our knowledge, the theory of
this calculus has not been developed. The authors do not report any results re-
garding the issues we have treated in this paper, namely legitimacy, equivalence
and compositionality.
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The πt and πmlt-calculi

The πt and πmlt-calculi [Ber04, BY07] are similar to the Tπ and TDπ-calculi.
They support time, and in the case of πmlt, locations and message failures. As in
πklt communication is asynchronous. Nevertheless, time is discrete. Their timer
construct corresponds to a single-branching listener with a timeout in πklt .

The timed-π calculus

Another timed extension to the π-calculus was provided in [Fis04]. This exten-
sion introduces a delay operator and an integral operator, which is nothing but
a sum (a choice operator) over a continuous time domain.

The SpacePi calculus

Another related process algebra recently introduced is SpacePi [JEU08], an ex-
tension to the π-calculus with both continuous time and space. In this language,
processes have an associated position in the Euclidean vector space Rn, as well
as a movement function which updates the process's position. Communication
channels have an associated radius, which determines how far a process can
send or receive a message. Time, while continuous, is divided into computation
intervals, so that the movement function speci�es where a process will be at the
end of the interval, if it does not interact with other processes.

This calculus is quite di�erent than πklt . While it presents some novel fea-
tures, like radius for channels, it seems to impose a rather unnatural structure
on time in the form of time-intervals, apparently, to justify the meaning of the
movement functions. The result is that the modeller is forced to be aware of
such imposition, and develop models accordingly.

The φ-calculus

The φ-calculus [RS02] is another timed variant of the π-calculus for hybrid,
embedded systems. Its distinguishing characteristic is the ability to describe
hybrid systems consisting of an environment which runs over continuous time
and a process expression which performs discrete actions which may change the
continuous environment. The emphasis of this calculus is on hybrid systems,
whereas πklt is concerned with discrete-event systems.

Pict

Our language has much in common with another π-calculus extension: the Pict
language [PT00, Tur96]. Following the same design philosophy, our calculus
is intended to help bridge the gap between foundational process algebras and
realistic languages and therefore, and therefore, like Pict, it supports basic data
structures and pattern matching. However, unlike Pict, our language does not
have a type system. On the other hand, Pict does not have a notion of time.
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Erlang

Another related language of note are Erlang [AV91, AWV93], which has a strong
support for concurrency and a functional style and in particular it supports
pattern matching of inputs. Erlang is a mature language with an industrial-
strength implementation which supports distributed computation. It is used
mostly in telecommunications applications. The language, however, was not
designed with a formal semantics from the ground up, does not trace its heritage
to the π-calculus and does not place too much emphasis on timing aspects.
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A Proofs

Lemma 4.35. (Agreement between enablednow and the CTLTS) For any
environment Γ ∈ Envs, any process term P ∈ Procs, and any symbolic instan-
taneous action label α ∈ SymInstActions,

α ∈ enablednowJP KΓ if and only if Γ . P
α−→

or equivalently

enablednowJP KΓ = {α ∈ SymInstActions : ∃P ′.Γ . P α−→ P ′}

Proof. Take any Γ ∈ Envs, and any P ∈ Procs. We �rst show the �only if�
and then show the �if� part of the statement.

(⇒) Take any α ∈ enablednowJP KΓ. We show, by induction on the structure

of P , that there is a P ′ such that Γ . P
α−→ P ′.

Case 1. P is done. Then enablednowJP KΓ = ∅ by De�nition 4.29 which means
that there are no α in enablednowJP KΓ and therefore, the conclusion is trivially
true.17

Case 2. P is of the form a!E. Then enablednowJP KΓ = {a!E} by De�nition 4.29.
Since α ∈ enablednowJP KΓ then α = a!E, and the only applicable rule is (trig),

which allows us to conclude that Γ . P
a!E−−→ done. Hence we can take P ′ to be

done.

Case 3. P is of the form when {· · · |Gi → Pi | · · · }. In this case we have that
enablednowJP KΓ = ∪i{ai?Ri : Gi is of the form ai?Ri@yi} by De�nition 4.29.
Since α ∈ enablednowJP KΓ then α = ai?Ri for some i. The only rule applicable

is (choice), which allows us to conclude that Γ . P
ai?Ri−−−→ Pi{0/yi}. We can

take P ′ to be Pi{0/yi}.

Case 4. P is of the form new ã inQ. Then enablednowJP KΓ ={ν~b : ∀b ∈
~b. b is fresh} by De�nition 4.29. Since α ∈ enablednowJP KΓ then α = ν~b, and

the only rule applicable is (new) which allows us to obtain Γ . P
ν~b−→ Q{~b/~a}.

We can take P ′ to be Q{~b/~a}.
17A false premise implies anything. Alternatively, we do not have to consider this case, as

we only need to prove the conclusion of an implication only when its premise holds.
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Case 5. P is of the form ifE thenP1 elseP2. Then, we have three possibili-
ties: enablednowJP KΓ = {ιT(E)} if evalJEKΓ = T, enablednowJP KΓ = {ιF(E)} if
evalJEKΓ = F, and enablednowJP KΓ = ∅ otherwise. Since α ∈ enablednowJP KΓ

then we only have to consider the �rst two possibilities, and the only applicable
rules are (if-l) and (if-r), depending on whether E evaluates to true or false:

(i) evalJEKΓ = T. The the only rule applicable is (if-l), from which we obtain

that we have that Γ . P
ιT(E)−−−→ P1 where P ′ = P1.

(ii) evalJEKΓ = F. The the only rule applicable is (if-r), from which we obtain

that we have that Γ . P
ιF(E)−−−→ P2 where P ′ = P2.

Case 6. P is of the form waitE → Q. Then, enablednowJP KΓ = ∅, which means
that there are no α in enablednowJP KΓ and therefore, the conclusion is trivially
true.

Case 7. P is of the form A(Ẽ ). Then we have two cases:

(i) lookup(Γ, A) = π~x.P . Then enablednowJP KΓ = {εA( ~E)} and so α = εA( ~E)

and by (inst), we conclude that Γ . P
α−→ P{~E′/~x} where ~E′ = E′1, ..., E

′
|~x|

with each E′i
def
= expr(evalJEiKΓ). We then take P ′ = P{~E′/~x}.

(ii) lookup(Γ, A) 6= π~x.P . Then enablednowJP KΓ = ∅. Hence there are no α in
enablednowJP KΓ and therefore, the conclusion is trivially true.

Case 8. P is of the form def { ~D} inQ. Then enablednowJP KΓ = enablednowJQKΓ′

where Γ′ = ext(Γ, D1; · · · ;Dn). Since we assume α ∈ enablednowJP KΓ then α ∈
enablednowJQKΓ′ so by induction hypothesis, there is a Q′ such that Γ′.Q

α−→ Q′

which by (def) implies Γ . P
α−→ Q′. We can take P ′ = Q′.

Case 9. P is of the form P1 ‖ P2. Then enablednowJP KΓ = S1 ∪ S2 ∪ S3

where S1
def
= {α ∈ enablednowJP1KΓ : bn(α) ∩ fn(P2) = ∅}, S2

def
= {α ∈

enablednowJP2KΓ : bn(α) ∩ fn(P1) = ∅}, and S3 = interactions(JP1K, JP2K)Γ

if interact(JP1K, JP2K)Γ = T and S3 = ∅ otherwise. We consider these two sub-
cases:

(i) interact(JP1K, JP2K)Γ = T. Then S3 = interactions(JP1K, JP2K)Γ. Since
enablednowJP KΓ = S1 ∪ S2 ∪ S3 we have three sub-subcases:

(a) α ∈ S1. Then α ∈ enablednowJP1KΓ and bn(α) ∩ fn(P2) = ∅. By

induction hypothesis there is a P ′1 such that Γ . P1
α−→ P ′1 which by

(par-l) implies Γ . P
α−→ P ′1 ‖ P2. Hence we can take P ′ = P ′1 ‖ Q.

(b) α ∈ S2. This is symmetric to the previous case, applying (par-r).

(c) α ∈ S3. Then, by the de�nition of the interactions function, α is
of the form µa{E/R} and there are actions α1 ∈ enablednowJP1KΓ

and α2 ∈ enablednowJP2KΓ such that α1 = a!E, α2 = a?R and
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iomatch(α1, α2)Γ 6= ⊥ or α1 = a?R, α2 = a!E and iomatch(α2, α1)Γ 6=
⊥. By induction hypothesis we obtain that there are P ′1 and P ′2 such

that Γ.P1
α1−→ P ′1 and Γ.P2

α2−→ P ′2. We consider the two possibilities
depending on the form of α1 and α2:

i. α1 = a!E and α2 = a?R. Since iomatch(α1, α2)Γ 6= ⊥ then σ
def
=

match(JRK, evalJEKΓ)∅,Γ 6= ⊥, and so by (comm-l), we get Γ .

P
α−→ P ′1 ‖ P ′2σ. We can take P ′ = P ′1 ‖ P ′2σ.

ii. α1 = a?R and α2 = a!E. This is symmetric to the previous case,
applying (comm-r).

(ii) interact(JP1K, JP2K)Γ = F, then S3 = ∅. Again, Since enablednowJP KΓ =
S1 ∪ S2 ∪ S3 we have three sub-subcases: α ∈ S1, α ∈ S2 or α ∈ S3. The
�rst two cases are the same as Subcase 1a and Subcase 1b above, and the
third case is impossible since S3 is empty.

(⇐) Assume that there is a P ′ such that Γ . P
α−→ P ′. We show by induction

on the derivation of Γ . P
α−→ P ′ that α ∈ enablednowJP KΓ.

Case 1. The last step of the derivation was (trig). Then P is of the form
a!E and α = a!E. But by De�nition 4.29, enablednowJP KΓ = {a!E}, so α ∈
enablednowJP KΓ.

Case 2. The last step of the derivation was (choice). Then P is of the form
when {· · · |Gi → Pi | · · · } and α = ai?Ri for some Gi = ai?Ri@yi. Hence, by
De�nition 4.29, α ∈ enablednowJP KΓ.

Case 3. The last step of the derivation was (new). Then P is of the form

new ã inQ and α = ν~b. By De�nition 4.29, α ∈ enablednowJP KΓ.

Case 4. The last step of the derivation was (if-l). Then P is of the form
ifE thenP1 elseP2, α = ιT(E) and evalJEKΓ = T. So by De�nition 4.29,
α ∈ enablednowJP KΓ.

Case 5. The last step of the derivation was (if-r). This is symmetric to the
previous case.

Case 6. The last step of the derivation was (inst). Then P is of the form

A(Ẽ ), α = εA( ~E) and lookup(Γ, A) = π~x.P . So by De�nition 4.29, α ∈
enablednowJP KΓ.

Case 7. The last step of the derivation was (def). The P is of the form

def { ~D} inQ and Γ′.Q
α−→ Q′ where Γ′ = ext(Γ, ~D). So by induction hypothesis

α ∈ enablednowJQKΓ′ , which by De�nition 4.29, implies α ∈ enablednowJP KΓ.

Case 8. The last step of the derivation was (par-l). The P is of the form

P1 ‖ P2, Γ . P1
α−→ P ′1 and bn(α) ∩ fn(P2) = ∅. So by induction hypothesis

α ∈ enablednowJP1KΓ which implies by De�nition 4.29 that α ∈ S1 and therefore
α ∈ enablednowJP KΓ.
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Case 9. The last step of the derivation was (par-r). This is symmetric to the
previous case.

Case 10. The last step of the derivation was (comm-l). The P is of the form

P1 ‖ P2, Γ . P1
a!E−−→ P ′1, Γ . P2

a?R−−→ P ′2, σ
def
= match(JRK, evalJEKΓ)∅,Γ 6= ⊥ and

α = µa{E/R}. By induction hypothesis a!E ∈ enablednowJP1KΓ and a?R ∈
enablednowJP2KΓ. Since iomatch(a!E, a?R)Γ = σ then interact(JP1K, JP2K)Γ = T
(by De�nition 4.27), which entails that α ∈ interactions(JP1K, JP2K)Γ and so
α ∈ enablednowJP KΓ.

Case 11. The last step of the derivation was (comm-r). This is symmetric to
the previous case.

Lemma 4.36. (Agreement between enableddelays and the CTLTS) For
any environment Γ ∈ Envs, any process term P ∈ Procs, and any symbolic
duration χ ∈ SymDelActions,

χ ∈ enableddelaysJP KΓ if and only if Γ . P
χ−→

or equivalently

enableddelaysJP KΓ = {χ ∈ SymDelActions : ∃P ′.Γ . P χ−→ P ′}

Proof. Take any Γ ∈ Envs, and any P ∈ Procs. We �rst show the �only if�
and then show the �if� part of the statement.

(⇒) Take any χ ∈ enableddelaysJP KΓ. We show, by induction on the struc-

ture of P , that there is a P ′ such that Γ . P
χ−→ P ′.

Case 1. P is done. Then enableddelaysJP KΓ = {δ(t 6 ∞)} by De�nition 4.30
and so χ = δ(t 6 ∞). The only applicable rule is (tidle), which allows us to

obtain Γ . P
χ−→ done so we can take P ′ = done.

Case 2. P is of the form a!E. Then enableddelaysJP KΓ = {δ(t 6 ∞)} by De�-
nition 4.30 and so χ = δ(t 6 ∞). The only applicable rule is (ttrig), which

allows us to obtain Γ . P
χ−→ a!E so we can take P ′ = a!E.

Case 3. P is of the form when {· · · |Gi → Pi | · · · }. Then enableddelaysJP KΓ =
{δ(t 6 ∞)} by De�nition 4.30 and so χ = δ(t 6 ∞). The only applicable rule

is (tch), which allows us to obtain Γ . P
χ−→ when {· · · |Gi → Pi{yi+t/yi} | · · · }

so we can take P ′ = when {· · · |Gi → Pi{yi+t/yi} | · · · }.

Case 4. P is of the form new ã inP ′. Then enableddelaysJP KΓ = ∅ by De�ni-
tion 4.30 and so there is no χ in enableddelaysJP KΓ and therefore in this case
the implication is trivially true.
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Case 5. P is of the form ifE thenP1 elseP2. Then enableddelaysJP KΓ = ∅ by
De�nition 4.30 and so there is no χ in enableddelaysJP KΓ and therefore in this
case the implication is trivially true.

Case 6. P is of the form waitE → Q. So enableddelaysJP KΓ = {δ̄(E), δ(t 6 E)}
by De�nition 4.30, and hence there are two possibilities for χ:

(i) χ = δ̄(E). Then, by rule (tfdelay) we obtain Γ.P
χ−→ Q and we can take

P ′ = Q.

(ii) χ = δ(t 6 E). Then, by rule (tdelay) we obtain Γ.P
χ−→ waitE − t→ Q

and we can take P ′ = waitE − t→ Q.

Case 7. P is of the form A(Ẽ ). Then enableddelaysJP KΓ = ∅ by De�nition 4.30
and so there is no χ in enableddelaysJP KΓ and therefore in this case the impli-
cation is trivially true.

Case 8. P is of the form def { ~D} inQ. So enableddelaysJP KΓ = enableddelaysJQKΓ

by De�nition 4.30 and hence χ ∈ enableddelaysJQKΓ which by induction hypoth-

esis implies that there is a Q′ such that Γ . Q
χ−→ Q′. Then by rule (tdef) we

obtain Γ . P
χ−→ def { ~D} inQ′ so we can take P ′ = def { ~D} inQ′.

Case 9. P is of the form P1 ‖ P2. Then enableddelaysJP KΓ = S1 ∪ S2 ∪ S3 ∪ S4

by De�nition 4.30 and hence we have four sub-cases depending on which Si we
�nd χ:

(i) χ ∈ S1. Then χ = δ(t′′ 6 E) and there are δ(t 6 E) ∈ enableddelaysJP1KΓ

and δ(t′ 6 E′) ∈ enableddelaysJP2KΓ such that tevalJEKΓ 6 tevalJE′KΓ.
Therefore, by induction hypothesis we obtain that there is a P ′1 such that

Γ . P1
δ(t6E)−−−−→ P ′1 and there is a P ′2 such that Γ . P2

δ(t′6E′)−−−−−→ P ′2. Hence,

by (tpar-l) we conclude that Γ . P
χ−→ P ′1{t

′′
/t} ‖ P ′2{t

′′
/t′} and we take

P ′ = P ′1{t
′′
/t} ‖ P ′2{t

′′
/t′}.

(ii) χ ∈ S2. This case is symmetric to the previous one, using rule (tpar-r).

(iii) χ ∈ S3. Then χ = δ̄(E) and there are δ̄(E) ∈ enableddelaysJP1KΓ and δ(t′ 6
E′) ∈ enableddelaysJP2KΓ such that tevalJEKΓ 6 tevalJE′KΓ. Therefore, by

induction hypothesis we obtain that there is a P ′1 such that Γ.P1
δ̄(E)−−−→ P ′1

and there is a P ′2 such that Γ . P2
δ(t′6E′)−−−−−→ P ′2. Hence, by (tfpar-l) we

conclude that Γ . P
χ−→ P ′1 ‖ P ′2{E/t′} and we take P ′ = P ′1 ‖ P ′2{E/t′}.

(iv) χ ∈ S4. This case is symmetric to the previous one, using rule (tfpar-r).

(⇐) Assume that there is a P ′ such that Γ . P
χ−→ P ′. We show by induction

on the derivation of Γ . P
χ−→ P ′, that χ ∈ enableddelaysJP KΓ.

Case 1. The last step of the derivation was (tidle). Then P is of the form done

and χ = δ(t 6∞). But by De�nition 4.30, enableddelaysJP KΓ = {δ(t 6∞)}, so
χ ∈ enableddelaysJP KΓ.

89



Case 2. The last step of the derivation was (ttrig). Then P is of the form a!E
and χ = δ(t 6∞). But by De�nition 4.30, enableddelaysJP KΓ = {δ(t 6∞)}, so
χ ∈ enableddelaysJP KΓ.

Case 3. The last step of the derivation was (tch). Then P is of the form
when {· · · |Gi → Pi | · · · } and χ = δ(t 6 ∞). But by De�nition 4.30, we know
that enableddelaysJP KΓ = {δ(t 6∞)}, so χ ∈ enableddelaysJP KΓ.

Case 4. The last step of the derivation was (tdelay). Then P is of the form
waitE → Q and χ = δ(t 6 E). But by De�nition 4.30, enableddelaysJP KΓ =
{δ̄(E), δ(t 6 E)}, so χ ∈ enableddelaysJP KΓ.

Case 5. The last step of the derivation was (tfdelay). Then P is of the form
waitE → Q and χ = δ̄(E). But by De�nition 4.30, enableddelaysJP KΓ =
{δ̄(E), δ(t 6 E)}, so χ ∈ enableddelaysJP KΓ.

Case 6. The last step of the derivation was (tdef). Then P is of the form

def { ~D} inQ and by one shorter inference, Γ . Q
χ−→ Q′ which by induction

hypothesis implies that χ ∈ enableddelaysJQKΓ, but by De�nition 4.30, we know
that enableddelaysJP KΓ = enableddelaysJQKΓ, so χ ∈ enableddelaysJP KΓ.

Case 7. The last step of the derivation was (tpar-l). Then P is of the form

P1 ‖ P2, χ = δ(t′′ 6 E) and by one shorter inference, Γ . P1
δ(t6E)−−−−→ P ′1, Γ .

P2
δ(t′6E′)−−−−−→ P ′2 and tevalJEKΓ 6 tevalJE′KΓ. By induction hypothesis we obtain

that δ(t 6 E) ∈ enableddelaysJP1KΓ and δ(t′ 6 E′) ∈ enableddelaysJP2KΓ, so by
De�nition 4.30, δ(∈ 6 S)1 and therefore χ ∈ enableddelaysJP KΓ.

Case 8. The last step of the derivation was (tpar-r). This is symmetric to the
previous case with δ(∈ 6 S)2.

Case 9. The last step of the derivation was (tfpar-l). Then P is of the

form P1 ‖ P2, χ = δ̄(E) and by one shorter inference, Γ . P1
δ̄(E)−−−→ P ′1, Γ .

P2
δ(t′6E′)−−−−−→ P ′2 and tevalJEKΓ 6 tevalJE′KΓ. By induction hypothesis we ob-

tain that δ̄(E) ∈ enableddelaysJP1KΓ and δ(t′ 6 E′) ∈ enableddelaysJP2KΓ, so by
De�nition 4.30, δ(∈ 6 S)3 and therefore χ ∈ enableddelaysJP KΓ.

Case 10. The last step of the derivation was (tfpar-r). This is symmetric to
the previous case with δ(∈ 6 S)4.

Lemma 4.38. (Agreement between succnow and the CTLTS) For any
environment Γ ∈ Envs, any process terms P, P ′ ∈ Procs, any symbolic instan-
taneous action label α ∈ enablednowJP KΓ,

P ′ ∈ succnow(JP K, α)Γ if and only if Γ . P
α−→ P ′
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or equivalently
succnow(JP K, α)Γ = {P ′ : Γ . P

α−→ P ′}

Proof. Take any Γ ∈ Envs, any P ∈ Procs, and any α ∈ enablednowJP KΓ. We
�rst show the �only if� and then show the �if� part of the statement.

(⇒) Take any P ′ ∈ succnow(JP K, α)Γ. We show, by induction on the struc-

ture of P , that Γ . P
α−→ P ′.

Case 1. P is done. Then enablednowJP KΓ = ∅ by De�nition 4.29 which means
that there are no α in enablednowJP KΓ and therefore, the conclusion is trivially
true.

Case 2. P is of the form a!E. Then there are two sub-cases depending on the
form of α:

(i) α = a!E. Then succnow(JP K, α)Γ = {done} and so P ′ = done, but rule

(trig) allows us to conclude that Γ . P
α−→ P ′.

(ii) α 6= a!E. Then succnow(JP K, α)Γ = ∅ and therefore there is no P ′ ∈
succnow(JP K, α)Γ. Hence the conclusion is trivially true.

Case 3. P is of the form when {· · · |Gi → Pi | · · · }. Then there are two sub-cases
depending on the form of α:

(i) α = ai?Ri for some Gi = ai?Ri@yi. Then succnow(JP K, α)Γ = {Pi{0/yi}}
and so P ′ = Pi{0/yi}, but rule (choice) allows us to conclude that Γ .

P
α−→ P ′.

(ii) α 6= ai?Ri for any Gi = ai?Ri@yi. Then succnow(JP K, α)Γ = ∅ and so
there is no P ′ ∈ succnow(JP K, α)Γ and therefore, the conclusion is trivially
true.

Case 4. P is of the form new ã inQ. Then there are two sub-cases depending
on the form of α:

(i) α = ν~b with all b ∈ ~b fresh.18 Then succnow(JP K, α)Γ = {Q{~b/~a}} and so

P ′ = Q{~b/~a}, but rule (new) allows us to conclude that Γ . P
α−→ P ′.

(ii) α 6= ν~b. Then succnow(JP K, α)Γ = ∅ and therefore there is no P ′ ∈
succnow(JP K, α)Γ. Hence, the conclusion is trivially true.

Case 5. P is of the form ifE thenP1 elseP2. Then we have three cases de-
pending on the form of α and value of E:

(i) α = ιT(E) and evalJEKΓ = T. Then succnow(JP K, α)Γ = {P1} and so

P ′ = P1, but rule (if-l) allows us to conclude that Γ . P
α−→ P ′.

18All b ∈ ~b are fresh because α ∈ enablednowJP KΓ and De�nition 4.29 imposes this require-
ment.
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(ii) α = ιF(E) and evalJEKΓ = F. Then succnow(JP K, α)Γ = {P2} and so

P ′ = P2, but rule (if-r) allows us to conclude that Γ . P
α−→ P ′.

(iii) Otherwise. Then succnow(JP K, α)Γ = ∅ and therefore there is no P ′ ∈
succnow(JP K, α)Γ. Hence, the conclusion is trivially true.

Case 6. P is of the form waitE → Q. Then succnow(JP K, α)Γ = ∅ and therefore
there is no P ′ ∈ succnow(JP K, α)Γ. Hence, the conclusion is trivially true.

Case 7. P is of the form A(Ẽ ). Then we have two cases depending on the form
of α and whether A is in Γ or not:

(i) α = εA( ~E) and lookup(Γ, A) = π~x.P . Then succnow(JP K, α)Γ = {P{ ~E′/~x}}
where ~E′ = E′1, ..., E

′
|~x| with E

′
i = expr(evalJEiKΓ). Hence, P ′ = P{ ~E′/~x},

but by rule (inst) we conclude that Γ . P
α−→ P ′.

(ii) α 6= εA( ~E) or lookup(Γ, A) 6= π~x.P . Then succnow(JP K, α)Γ = ∅ and
therefore there is no P ′ ∈ succnow(JP K, α)Γ. Hence, the conclusion is
trivially true.

Case 8. P is of the form def { ~D} inQ. Then we have succnow(JP K, α)Γ =

succnow(JQK, α)Γ′ where Γ′ = ext(Γ, ~D). So P ′ ∈ succnow(JQK, α)Γ′ which im-

plies by induction hypothesis that Γ′ .Q
α−→ P ′, which in turn, by rule (def) al-

lows us to conclude that Γ . P
α−→ P ′.

Case 9. P is of the form P1 ‖ P2. Then succnow(JP K, α)Γ = S1 ∪ S2 ∪ S3

where S1
def
= {P ′1 ‖ P2 : P ′1 ∈ succnow(JP1K, α)Γ, and bn(α) ∩ fn(P2) = ∅},

S2
def
= {P1 ‖ P ′2 : P ′2 ∈ succnow(JP2K, α)Γ, and bn(α) ∩ fn(P1) = ∅} and S3

def
=

comm(JP1K, JP2K, α)Γ. We have three cases depending on which Si does P ′

belong to:

(i) P ′ ∈ S1. Then P
′ = P ′1 ‖ P2 for some P ′1 such that P ′1 ∈ succnow(JP1K, α)Γ

and bn(α) ∩ fn(P2) = ∅. Then, by induction hypothesis, Γ . P1
α−→ P ′1 and

so by rule (par-l) we conclude Γ . P
α−→ P ′.

(ii) P ′ ∈ S2. This case is symmetric to the previous one.

(iii) P ′ ∈ S3. Then, if α 6= µa{E/R}, S3 = ∅ by de�nition of comm (De�ni-
tion 4.32), so there cannot be a P ′ in S3 and the result follows trivially.
However, if α = µa{E/R} then there are two cases depending on whether
P1 is the sender and P2 the receiver or vice-versa. Both cases are sym-
metric so we show only the �rst case. In that case, according to the
de�nition of comm, P ′ = P ′1 ‖ P ′2σ for some P ′1 ∈ succnow(JP1K, a!E)Γ

and P ′2 ∈ succnow(JP2K, a?R)Γ and σ = match(JRK, evalJEKΓ)∅,Γ 6= ⊥, with
a!E ∈ enablednowJP1KΓ and a?R ∈ enablednowJP2KΓ. Then, by induction

hypothesis, Γ.P1
a!E−−→ P ′1 and Γ.P2

a?R−−→ P ′2. Hence, by rule (comm-l) we

obtain Γ . P
α−→ P ′.
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(⇐) Assume that Γ . P
α−→ P ′ for some P ′. We show by induction on the

derivation of Γ . P
α−→ P ′ that P ′ ∈ succnow(JP K, α)Γ.

Case 1. The last step of the derivation was (trig). Then P is of the form a!E,
α = a!E and P ′ is of the form done. But by De�nition 4.32, succnow(JP K, a!E)Γ =
{done}, so P ′ ∈ succnow(JP K, α)Γ.

Case 2. The last step of the derivation was (choice). Then P is of the form
when {· · · |Gi → Pi | · · · }, α = ai?Ri and P ′ is of the form Pi{0/yi}. But by
De�nition 4.32, succnow(JP K, ai?Ri)Γ = {Pi{0/yi}}, so P ′ ∈ succnow(JP K, α)Γ.

Case 3. The last step of the derivation was (new). Then P is of the form

new ã inQ, α = ν~b with all b ∈ ~b fresh, and P ′ is of the form Q{~b/~a}. But by

De�nition 4.32, succnow(JP K, ν~b)Γ = {Q{~b/~a}}, so P ′ ∈ succnow(JP K, α)Γ.

Case 4. The last step of the derivation was (if-l). Then P is of the form
ifE thenP1 elseP2, α = ιT(E), P ′ = P1 and evalJEKΓ = T. But by De�ni-
tion 4.32, succnow(JP K, α)Γ = {P1} and so P ′ ∈ succnow(JP K, α)Γ.

Case 5. The last step of the derivation was (if-r). This is symmetric to the
previous case.

Case 6. The last step of the derivation was (inst). Then P is of the form A(Ẽ ),

α = εA( ~E), and P ′ = P{ ~E′/~x} where lookup(Γ, A) = π~x.P and ~E′ = E′1, ..., E
′
|~x|

with each E′i = expr(evalJEiKΓ). But by De�nition 4.32, succnow(JP K, α)Γ =
{P{ ~E′/~x}} and so P ′ ∈ succnow(JP K, α)Γ.

Case 7. The last step of the derivation was (def). Then P is of the form

def { ~D} inQ and by one shorter inference, Γ′ . Q
α−→ P ′ where Γ′ = ext(Γ, ~D).

Then, by induction hypothesis, P ′ ∈ succnow(JQK, α)Γ′ , but by De�nition 4.32,
succnow(JP K, α)Γ = succnow(JQK, α)Γ′ and so P ′ ∈ succnow(JP K, α)Γ.

Case 8. The last step of the derivation was (par-l). Then P is of the form

P1 ‖ P2, P
′ is of the form P ′1 ‖ P2 and by one shorter inference, Γ . P1

α−→ P ′1
with bn(α)∩fn(P2) = ∅. Then by induction hypothesis, P ′1 ∈ succnow(JP1K, α)Γ.

Hence, P ′ ∈ S1 where S1
def
= {P ′1 ‖ P1 : P ′1 ∈ succnow(JP1K, α)Γ and bn(α) ∩

fn(P2) = ∅} but by De�nition 4.32, S1 ⊆ succnow(JP K, α)Γ and therefore P ′ ∈
succnow(JP K, α)Γ.

Case 9. The last step of the derivation was (par-r). This is symmetric to the
previous case.

Case 10. The last step of the derivation was (comm-l). Then Then P is of the
form P1 ‖ P2, α = µa{E/R}, P ′ is of the form P ′1 ‖ P ′2σ and by one shorter

inference, Γ.P1
a!E−−→ P ′1 and Γ.P2

a?R−−→ P ′2 with σ = match(JRK, evalJEKΓ)∅,Γ 6=
⊥. Then, by induction hypothesis, we obtain that P ′1 ∈ succnow(JP1K, a!E)Γ

and P ′2 ∈ succnow(JP2K, a?R)Γ. But this implies, by De�nition 4.32, that P ′ ∈
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comm(JP1K, JP2K, α)Γ and since comm(JP1K, JP2K, α)Γ ⊆ succnow(JP K, α)Γ we
obtain that P ′ ∈ succnow(JP K, α)Γ.

Case 11. The last step of the derivation was (comm-r). This is symmetric to
the previous case.

Lemma 4.39. (Agreement between succdelays and the CTLTS) For any
environment Γ ∈ Envs, any process terms P, P ′ ∈ Procs, any symbolic duration
label χ ∈ enableddelaysJP KΓ,

P ′ ∈ succdelays(JP K, χ)Γ if and only if Γ . P
χ−→ P ′

or equivalently

succdelays(JP K, χ)Γ = {P ′ : Γ . P
χ−→ P ′}

Proof. Take any Γ ∈ Envs, any P ∈ Procs, and any χ ∈ enableddelaysJP KΓ.
We �rst show the �only if� and then show the �if� part of the statement.

(⇒) Take any P ′ ∈ succdelays(JP K, χ)Γ. We show, by induction on the

structure of P , that there is a P ′ such that Γ . P
χ−→ P ′.

Case 1. P is done. Then there are two sub-cases depending on the form of χ:

(i) χ = δ(t 6∞). Then succdelays(JP K, χ)Γ = {done} and so P ′ = done, but

by (tidle) we conclude that Γ . P
χ−→ P ′.

(ii) χ 6= δ(t 6 ∞). Then succdelays(JP K, χ)Γ = ∅ and there is no P ′ ∈
succdelays(JP K, χ)Γ so the conclusion is trivially true.

Case 2. P is of the form a!E. Then there are two sub-cases depending on the
form of χ:

(i) χ = δ(t 6 ∞). Then succdelays(JP K, χ)Γ = {P} and so P ′ = P , but by

(ttrig) we conclude that Γ . P
χ−→ P ′.

(ii) χ 6= δ(t 6 ∞). Then succdelays(JP K, χ)Γ = ∅ and there is no P ′ ∈
succdelays(JP K, χ)Γ so the conclusion is trivially true.

Case 3. P is of the form when {· · · |Gi → Pi | · · · }. Then there are two sub-cases
depending on the form of χ:

(i) χ = δ(t 6∞). Then succdelays(JP K, χ)Γ = {when {· · · |Gi → Pi{0/yi} | · · · }}
and so P ′ = when {· · · |Gi → Pi{0/yi} | · · · }, but by (tch) we conclude that
Γ . P

χ−→ P ′.

(ii) χ 6= δ(t 6 ∞). Then succdelays(JP K, χ)Γ = ∅ and there is no P ′ ∈
succdelays(JP K, χ)Γ so the conclusion is trivially true.
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Case 4. P is of the form new ã inP ′. Then succdelays(JP K, χ)Γ = ∅ and so there
is no P ′ ∈ succdelays(JP K, χ)Γ so the conclusion is trivially true.

Case 5. P is of the form ifE thenP1 elseP2. Then succdelays(JP K, χ)Γ = ∅
and so there is no P ′ ∈ succdelays(JP K, χ)Γ so the conclusion is trivially true.

Case 6. P is of the form waitE → Q. Then we have three cases depending on
the form of χ:

(i) χ = δ(t 6 E). Then succdelays(JP K, χ)Γ = {wait (E − t) → Q} and so

P ′ = wait (E − t)→ Q. But by rule (tdelay) we have that Γ . P
χ−→ P ′.

(ii) χ = δ̄(E). Then succdelays(JP K, χ)Γ = {Q} and so P ′ = Q. But by rule

(tfdelay) we have that Γ . P
χ−→ P ′.

(iii) Otherwise. Then succdelays(JP K, χ)Γ = ∅ and therefore there is no P ′ ∈
succdelays(JP K, χ)Γ so the conclusion is trivially true.

Case 7. P is of the form A(Ẽ ). Then succdelays(JP K, χ)Γ = ∅ and so there is no
P ′ ∈ succdelays(JP K, χ)Γ so the conclusion is trivially true.

Case 8. P is of the form def { ~D} inQ. Then succdelays(JP K, χ)Γ = {def { ~D} inQ′ :

Q′ ∈ succdelays(JQK, χ)Γ} and so P ′ is of the form def { ~D} inQ′ for some Q′ ∈
succdelays(JQK, χ)Γ. By induction hypothesis, Γ . Q

χ−→ Q′ and by (tdef) we

get Γ . P
χ−→ P ′.

Case 9. P is of the form P1 ‖ P2. Then we have two cases depending on the
form of χ:

(i) χ = δ(t′′ 6 E). Then succdelays(JP K, χ)Γ = S1∪S2 with S1 and S2 de�ned
as shown in Figure 22 on page 49. Then we have two dual possibilities,
depending on whether P ′ ∈ S1 or P ′ ∈ S2. We consider only the �rst
case. The other is symmetric. Since P ′ ∈ S1, then P ′ is of the form
P ′1{t

′′
/t} ‖ P ′2{t

′′
/t′} where δ(t 6 E) ∈ enableddelaysJP1KΓ, δ(t

′ 6 E′) ∈
enableddelaysJP2KΓ,tevalJEKΓ 6 tevalJE′KΓ, P

′
1 ∈ succdelays(JP1K, δ(t 6 E))Γ

and P ′2 ∈ succdelays(JP2K, δ(t′ 6 E′))Γ. But these are exactly the condi-

tions that allow us to conclude by rule (tpar-l) that Γ . P
χ−→ P ′. The

case for P ′ ∈ S2 uses (tpar-r).

(ii) χ = δ̄(E). Then succdelays(JP K, χ)Γ = S1 ∪ S2 with S1 and S2 de�ned
as shown in Figure 22 on page 49. Then we have two dual possibil-
ities, depending on whether P ′ ∈ S1 or P ′ ∈ S2. We consider only
the �rst case. The other is symmetric. Since P ′ ∈ S1, then P ′ is of
the form P ′1 ‖ P ′2{E/t′} where δ̄(E) ∈ enableddelaysJP1KΓ, δ(t

′ 6 E′) ∈
enableddelaysJP2KΓ,tevalJEKΓ 6 tevalJE′KΓ, P

′
1 ∈ succdelays(JP1K, δ̄(E))Γ

and P ′2 ∈ succdelays(JP2K, δ(t′ 6 E′))Γ. But these are exactly the condi-

tions that allow us to conclude by rule (tfpar-l) that Γ . P
χ−→ P ′. The

case for P ′ ∈ S2 uses (tfpar-r).
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(⇐) Assume that Γ . P
χ−→ P ′ for some P ′. We show by induction on the

derivation of Γ . P
χ−→ P ′, that P ′ ∈ succdelays(JP K, χ)Γ.

Case 1. The last step of the derivation was (tidle). Then P is of the form
done, χ = δ(t 6∞) and P ′ is of the form done. Then P ′ ∈ succdelays(JP K, χ)Γ

follows from De�nition 4.33.

Case 2. The last step of the derivation was (ttrig). Then P is of the form a!E,
χ = δ(t 6∞) and P ′ is of the form a!E. Then P ′ ∈ succdelays(JP K, χ)Γ follows
from De�nition 4.33.

Case 3. The last step of the derivation was (tch). Then P is of the form
when {· · · |Gi → Pi | · · · }, χ = δ(t 6∞) and P ′ = when {· · · |Gi → Pi{0/yi} | · · · }.
Then P ′ ∈ succdelays(JP K, χ)Γ follows from De�nition 4.33.

Case 4. The last step of the derivation was (tdelay). Then P is of the form
waitE → Q, χ = δ(t 6 E) and P ′ is of the form wait (E − t) → Q. Then
P ′ ∈ succdelays(JP K, χ)Γ follows from De�nition 4.33.

Case 5. The last step of the derivation was (tfdelay). Then P is of the form
waitE → Q, χ = δ̄(E) and P ′ is of the form Q. Then P ′ ∈ succdelays(JP K, χ)Γ

follows from De�nition 4.33.

Case 6. The last step of the derivation was (tdef). Then P is of the form

def { ~D} inQ, P ′ is of the form def { ~D} inQ′ and by one shorter inference

Γ . Q
χ−→ Q′. Then by induction hypothesis, Q′ ∈ succdelays(JQK, χ)Γ, but by

De�nition 4.33, succdelays(JP K, χ)Γ = {def { ~D} inQ′ : succdelays(JQK, χ)Γ}
and therefore P ′ ∈ succdelays(JP K, χ)Γ.

Case 7. The last step of the derivation was (tpar-l). Then P is of the form
P1 ‖ P2, χ = δ(t′′ 6 E), P ′ is of the form P ′1{t

′′
/t} ‖ P ′2{t

′′
/t′} and by one shorter

inference, Γ.P1
δ(t6E)−−−−→ P ′1, Γ.P2

δ(t′6E′)−−−−−→ P ′2 and tevalJEKΓ 6 tevalJE′KΓ. But
by Lemma 4.36 we conclude that δ(t 6 E) ∈ enableddelaysJP1KΓ and δ(t′ 6
E′) ∈ enableddelaysJP2KΓ, and by induction hypothesis we obtain that P ′1 ∈
succdelays(JP1K, δ(t 6 E))Γ and P ′2 ∈ succdelays(JP2K, δ(t′ 6 E′))Γ. This is we
have all the conditions required to have that P ′ ∈ S1 where S1 is de�ned as
shown in Figure 22 on page 49, and since S1 ⊆ succdelays(JP K, χ)Γ we obtain
that P ′ ∈ succdelays(JP K, χ)Γ.

Case 8. The last step of the derivation was (tpar-r). This is symmetric to the
previous case.

Case 9. The last step of the derivation was (tfpar-l). Then P is of the form
P1 ‖ P2, χ = δ̄(E), P ′ is of the form P ′1 ‖ P ′2{E/t′} and by one shorter in-

ference, Γ . P1
δ̄(E)−−−→ P ′1, Γ . P2

δ(t′6E′)−−−−−→ P ′2 and tevalJEKΓ 6 tevalJE′KΓ. But
by Lemma 4.36 we conclude that δ̄(E) ∈ enableddelaysJP1KΓ and δ(t′ 6 E′) ∈
enableddelaysJP2KΓ, and by induction hypothesis, P ′1 ∈ succdelays(JP1K, δ̄(E))Γ
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and P ′2 ∈ succdelays(JP2K, δ(t′ 6 E′))Γ. This is we have all the conditions re-
quired to have that P ′ ∈ S1 where S1 is de�ned as shown in Figure 22 on page 49,
and since S1 ⊆ succdelays(JP K, χ)Γ we obtain that P ′ ∈ succdelays(JP K, χ)Γ.

Case 10. The last step of the derivation was (tfpar-r). This is symmetric to
the previous case.
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