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1 Introduction

Model Driven Architecture (MDA) [78] is a standardization effort led by the Object
Management Group (OMG) for developing systems using platform-independent
models or software abstractions. The application of MDA to software systems is
referred to as Model Driven Development (MDD). MDD is a relatively new software
development methodology that uses models as the basic building blocks in software
development. In MDD, software development starts off with abstract models that
are successively transformed into detailed models and finally into code. Thus, model
transformations are extensively used in MDD.

A model transformation is a program that maps one or more input models
(conforming to a source metamodel) to one or more output models (conforming
to a target metamodel). Mens and Van Gorp [57] proposed a multi-dimensional
taxonomy of model transformations where several factors were used to classify
model transformations. For instance, the heterogeneity of the manipulated meta-
models qualifies a transformation as exogenous or endogenous. A transformation
is exogenous if it manipulates different source and target metamodels, and is
endogenous otherwise. The abstraction levels of the manipulated models qualify
a transformation as a horizontal or a vertical transformation. A transformation is
horizontal if the input and output models are at the same abstraction level, and is
vertical otherwise. Conservation of the input model qualifies a transformation as an
in-place or an out-place transformation. A transformation is in-place if it directly
alters the input model, and is out-place otherwise. The transformation’s arity
or the number of models manipulated by a transformation is another factor that
can be used to classify model transformations. The study further discussed model
transformation characteristics, formalizations and tools proposed in the literature.

To verify and reason about the correctness of transformations, it is important
to develop effective techniques for model transformation analysis [4]. This paper
has three main objectives. First, we propose a taxonomy of model transformation
analysis techniques (Section 3). Second, we survey the current state of the art
in model transformation analysis techniques and classify them according to the
proposed taxonomy (Section 4 and Section 5). Third, following [3], we identify
three dimensions to the model transformation analysis problem:

1. First Dimension: The analysis technique used

2. Second Dimension: The property being analyzed

3. Third Dimension: The formalization used to specify the model transformation
of interest

Accordingly, for each surveyed study, we highlight the three dimensions of the
proposed approach (Section 7).
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This paper is organised as follows: Section 2 briefly summarizes the formaliza-
tions that can be used to specify model transformations; Section 3 demonstrates the
proposed taxonomy of model transformation analysis techniques; Section 4 details
static analysis techniques; Section 5 details dynamic analysis techniques; Section 6
discusses the proposed taxonomy from several perspectives; and finally Section 7
concludes the paper.

2 Background

Many model transformation analysis techniques use formalizations such as graph
rewriting systems and Petri Nets to define and formalize a model transformation
and its manipulated metamodels and models. Such formalizations are widely used
since they have well-established analysis techniques that can be leveraged to analyze
model transformations. In this section, we briefly overview the formalizations used
by the studies surveyed in this paper.

2.1 Graph Rewriting Systems

A graph rewriting system [75, 17] is a formal model in which the static states of
a system are represented as graphs, and the behaviour and evolution of a system
are represented as graph rewriting rules on those graphs [73]. The manipulated
graphs can be typed and attributed, where the graph rewriting rules must be
type-preserving and must handle rewriting the attributes. The terms graph
rewriting systems and graph transformation systems were used interchangeably in
the literature. In this paper we use the term graph rewriting systems to unify the
used terminology.

A graph rewriting system [75, 17] is composed of one or more graph rewriting
rules. A graph rewriting rule has a left-hand side (LHS), a right-hand side (RHS)
and optional negative application conditions (NACs). The LHS is a graph pattern
to look for in the host graph, the RHS is the graph pattern to create if the LHS was
found in the host graph, and the NACs are graph constraints which prohibit the
existence of certain patterns in the host graph. The execution of a graph rewriting
rule r on a host graph G is carried out as follows: (i) find a match for the LHS of
r in G, (ii) check whether the match found satisfies the NACs of r, (iii) remove all
the graph elements from G which have an image in the LHS but not in the RHS,
and (iv) create new graph elements in G for all elements that have an image in the
RHS but not in the LHS. Thus, the LHS and the NACs are the preconditions of
the graph rewriting rule while the RHS is the postcondition of the graph rewriting
rule. Two graph rewriting approaches were proposed in the literature: the Double
Pushout (DPO) approach and the Single Pushout (SPO) approach [75].

2



A graph rewriting system and an initial host graph is referred to as a graph
grammar [75]. A graph transition system generated from a graph grammar is the
state space of the graph grammar where nodes represent intermediate graphs, and
transitions represent possible graph rewriting rule applications [70].

Graph rewriting systems have been traditionally used to design terminating
and confluent transformations. Graph rewriting systems are considered to have
limited analysis capabilities in comparison to other formalizations especially if they
manipulate attributed graphs [74].

2.2 Triple Graph Grammars (TGGs)

One major disadvantage of graph rewriting systems is that they are usually re-
stricted to performing in-place graph rewriting between graph instances conforming
to the same graph. Thus, they cannot be easily used to track traceability links
between input and output graph instance elements. A Triple Graph Grammar
(TGG) [77] specification is a declarative definition of a bidirectional graph rewriting
system. TGGs overcome the disadvantage of graph rewriting systems by using
correspondence graphs or metamodels that maintain m-to-n relationships between
the input and output graph instance elements, hence maintaining consistency
between them. One TGG rule is composed of three rule components; a left rule, a
right rule and a correspondence rule, each responsible for matching and rewriting
the corresponding graphs. Each rule component has a LHS and a RHS. Thus, the
notion of triple captures the input, output and correspondence graph instances that
are rewritten in parallel in any TGG rule.

Using one TGG rule, one can perform source-to-target transformation, target-
to-source transformation, or correspondence analysis (i.e., analyzing the relation-
ships between the input and output graph instance elements) without having to
define three separate graph rewriting rules for each operation.

2.3 Petri Nets

Petri Nets [66] are formal models of information flow and control in systems,
especially asynchronous and concurrent systems. Petri Nets are composed of four
basic elements: places, transitions, edges and (optional) weights [81].

Places are represented graphically as hollow circles and are used to represent
states of a system. Places may contain one or more tokens, represented graphically
by black solid dots within the places. The distribution of tokens in different places
of a Petri Net is called the marking of the Petri Net. The initial marking of a
Petri Net refers to the initial distribution of tokens in a Petri Net. A transition
is represented graphically as a horizontal bar and represents a possible change in
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the system state. A transition can be connected to one or more input places by
incoming edges. Similarly, a transition can be connected to one or more output
places by outgoing edges. A transition is said to be enabled (i.e., the transition
may fire) if each of its input places contains at least as many tokens as specified by
the weights associated with the incoming edges. If no weights are specified, then
a weight of one is assumed. If a transition is enabled and fires, the marking of a
Petri Net changes. This is done by removing tokens from the input places of the
transition and producing tokens in the output places of the transition. The number
of tokens removed and produced by the firing of a transition is determined by the
weights associated with the edges. Timed Transition Petri Nets (TTPNs) are one
variant of Petri Nets that were used by one of the surveyed studies [26]. TTPNs
are similar to regular Petri Nets with the exception of associating a delay with each
transition, such that the transition has to be enabled for a number of time units
equal to the delay before firing.

Many studies transformed formal models such as graph rewriting systems to
some variant of Petri Nets due to their strong support for analysis (e.g., correctness
analysis, dependability analysis, performance analysis [31] and termination anal-
ysis [81]). For example, Varró et al. [81] abstracted graph rewriting systems into
Petri Nets to perform termination analysis. Node and edge types were represented
as places; rules were represented as transitions; the LHS and the RHS of a rule
were represented as weighted arcs between the place of the corresponding elements
type and the transition of the corresponding rule; and the input graph instance
determined the initial marking of the Petri Net.

2.4 Alloy

Alloy [42] is a declarative modelling language based on first order relational logic
with well-defined semantics. Signatures, relations, facts and predicates are used
to specify a model in Alloy. Signatures represent the entities of a system and
relations represent the relations between such entities. Facts and predicates specify
constraints on signatures and relations.

Alloy comes with an analyzer, the Alloy analyzer [41], that uses constraint
solvers to automatically analyze Alloy models. The Alloy analyzer supports
two kinds of analysis: consistency checking and assertion checking. Consistency
checking verifies that the specified Alloy model is consistent by generating a random
model instance that conforms to the Alloy model specification. Assertion checking
ensures that the Alloy model satisfies some assertions or constraints. If assertion
checking fails, the Alloy analyzer generates a counter example or an instance model
that violates one or more assertions. Although Alloy is a modelling language, it has
been used to specify model transformations (e.g., [54, 4]), thus allowing researchers
to take advantage of the Alloy analyzer.
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2.5 Maude

Maude [25] is a language and an engine that supports Membership Equational Logic
(MEL) [22] specifications and rewriting logic specifications. A Maude specification
of a system can have functional modules and system modules. A functional
module specifies membership equational theories that describe possible states of
the modeled system. A functional module also uses equations as simplification
rules to find unique and simplified forms of terms conforming to the membership
equational theories. System modules specify rewrite theories that rewrite terms
conforming to membership equational theories.

Maude supports three kinds of analysis: simulation, reachability analysis and
model checking linear temporal logic (LTL) properties. Simulation is the execution
of a Maude system specification. Reachability analysis builds the state space of a
Maude system specification to look for deadlocks (i.e., states on which no further
rewrite may take place) and to prove or disprove system invariants by generating
counter examples. Model checking LTL properties involves checking whether every
possible behavior of a Maude system specification, starting from an initial model,
satisfies a LTL property. LTL properties (i.e., properties that can be specified
in linear temporal logic) take the form of safety properties (i.e., ensuring that
something bad never happens) or liveness properties (ensuring that something
good eventually happens)1 [25]. If an LTL property is violated, Maude generates a
counter example too.

Maude has been used to represent model transformations and their manipulated
metamodels and models due to several reasons besides its support for analysis.
Maude’s rewriting logic preserves conformance of output models to metamodel
constraints. Maude also manipulates models in a consistent way, e.g., deleting
orphan nodes and dangling edges.

3 A Taxonomy of Model Transformation Analy-

sis Techniques

In this section, we propose and briefly discuss a taxonomy of model transformation
analysis techniques investigated in the literature. Figure 1 shows the proposed
taxonomy.

Model transformation analysis techniques can be categorized as static analysis
techniques or dynamic analysis techniques. Static analysis techniques do not
require executing the model transformation of interest, unlike dynamic analysis
techniques. Other informal analysis techniques include output model walkthroughs

1In the rest of this paper, we refer to safety properties and liveness properties as LTL properties.
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Figure 1: Taxonomy overview of model transformation analysis techniques

and inspection of code and documentation. Such informal analysis techniques are
out of the scope of this paper, and hence, will not be discussed further.

Static analysis techniques encompass formal methods; Type I formal methods
or Type II formal methods. Dynamic analysis techniques encompass Type III
formal methods, model checking, design space exploration, instrumentation and
testing. We explain static analysis techniques and dynamic analysis techniques in
more detail in Sections 4 and 5. Some studies used more than one technique to
analyze model transformations. For example, Narayanan and Karsai [61] used both
Type III formal methods (Section 5.1) and model checking (Section 5.2) to prove
bisimilarity and eventually analyze reachability. Other studies compared between
techniques belonging to the same class in the proposed taxonomy. For example,
Paige et al. [65] proposed and compared two different approaches of Type III formal
methods (Section 5.1).

In the dynamic analysis techniques, model transformation testing has been
attracting more interest due its usefulness in uncovering bugs while maintaining
a low computational complexity [37]. Some characteristics specific to model
transformations make their testing a challenging problem [11, 12, 33, 51]. Thus,
several challenges related to model transformation testing have been identified and
researched. We investigate these challenges and their proposed solutions in Section
5.5 of this paper.
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4 Static Analysis Techniques

Static analysis techniques analyze model transformations without executing them.
Formal methods have been explored by many studies in the literature to stati-
cally analyze model transformations. Other static analysis techniques developed
originally for analyzing code (e.g., examining dependency graphs) have also been
adapted for model transformations but are not extensively explored in the literature.
For example, Küster [45] discusses basic static analysis of model transformations.
The study proposed automatically checking that the variables used in a model
transformation occur in the source metamodel, and using non-terminal dependency
graphs to ensure that all rules are reachable and that non-terminals created by a
rule are deleted by later rule applications. The study discussed how to perform the
suggested static analysis in theory, but did not detail how it can be carried out in
practice.

4.1 Formal Methods

Formal methods use formalizations such as Petri Nets [66] (Section 2) to de-
fine and formalize model transformations and their input and output domains.
The formalized model transformations can then be used to analyze certain
transformation properties (e.g., termination) or output model properties (e.g.,
conformance to the target metamodel). It has been argued that formal methods are
computationally complex and hence are not scalable to complex transformations
and input models [37].

We differentiate between three types of formal methods used to analyze model
transformations. We previously discussed the differences between the three types
in [3] and we summarize them in Table 1. Type I formal methods analyze certain
properties for all transformations when executed on any input model, i.e., they
are transformation-independent and input-independent. Type II formal methods
analyze certain properties for a specific transformation when executed on any
input model, i.e., they are transformation-dependent and input-independent. Type
III formal methods analyze certain properties for a specific transformation when
executed on one instance model, i.e., they are transformation-dependent and input-
dependent. When a formal method is transformation-independent, it implies that
no assumptions are made about the input model. This explains the empty category
in Table 1 representing formal methods that are transformation-independent and
input-dependent.

Type I and Type II formal methods are discussed in this section since they are
input-independent, and hence are classified as static analysis techniques. Type III
formal methods are classified as dynamic analysis techniques and will be discussed
in Section 5.

7



Transformation-
Independent

Transformation-
Dependent

Input-Independent
Type I: [54], [31], [26], [19],
[81], [67], [79], [7], [20], [50],
[10]

Type II: [8], [36], [15], [53]

Input-Dependent -
Type III: [62], [9], [16], [4],
[65]

Table 1: Classification of approaches to model transformation analysis based on
formal methods.

4.1.1 Type I Formal Methods

Type I formal methods analyze certain properties for any model transformation
(i.e., transformation-independent) when run on any input model (i.e., input-
independent). Studies that fall into this category take one of two forms: proposing
an approach or criteria that can be used to build model transformations that
preserve certain properties by construction of the transformation (e.g., [54, 31,
26, 19, 81, 67, 79, 7, 20, 50]); or proposing a model transformation language that
preserves certain properties by construction of the language (e.g., [10]). In the
former class of studies, the proposed criteria can also be used to analyze properties
of a model transformation after building the transformation. We structure our
discussion in this section around the analyzed properties.

Analyzing algebraic properties: Algebraic properties include all properties
of model transformations or their output that can be expressed using algebraic
specifications. Examples of such properties include type consistency and semantical
properties. Stenzel et al. [79] used the interactive theorem prover KIV to
perform two kinds of analysis: analyzing semantical properties of operational
Query/Views/Transformations (QVT) [6] transformations2 and analyzing type
consistency and semantical properties of their generated output3. The approach
was demonstrated on a model-to-text QVT transformation that transforms UML
class diagrams to Java Abstract Syntax Trees (JASTs) and eventually to Java
classes. To analyze properties of QVT transformations, the study proposed
and implemented an algebraic formalization of a subset of the expressions and
operations of operational QVT in KIV. The model transformation properties
of interest were also formalized. KIV was then used to prove or disprove the
formulated properties using the KIV-compatible format of the QVT transformation.
To reason about properties generated output of the transformation, output JAST

2An example of a semantical property of a model-to-code transformation is that each UML
class is transformed to a Java class.

3An example of a semantical property of a transformation’s output code is that calling a setter
then the corresponding getter returns the setter’s argument.
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models were exported into a KIV-compatible format using an Eclipse plug-in. KIV
was then used to transform the JAST models in the KIV compatible format into an
abstract syntax tree with defined properties to analyze properties of the Java code.
The proposed approach can be used to analyze any property of operational QVT
transformations that can be expressed using the proposed algebraic formalization.

Analyzing semantics-preservation: A model-transformation is semantics-
preserving if the output model of the transformation preserves the semantics of
the input model. If the transformation manipulates structural models (e.g., class
diagrams), then the structural semantics must be preserved by the transformation.
On the other hand, if the transformation manipulates behavioural models (e.g.,
statecharts), then the behavioural semantics must be preserved by the transforma-
tion. Massoni et al. [54] presented an approach to develop a model refactoring that
preserves structural semantics of UML class diagrams with OCL [83] constraints4.
The study defined an equivalence relation between UML class diagrams with OCL
constraints that can be used to identify the equivalence of two class diagrams.
The equivalence relation was based on an alphabet and a mapping function. The
alphabet denoted the set of common elements in the input and output domain that
directly map to each other. The mapping function was used to define equivalence
between elements that are not common to the input and output domains. The
new equivalence relation was used to define a set of basic refactoring rules that are
semantics-preserving. The study proposed using such semantics-preserving, basic
refactoring rules to compose more complicated refactorings, which would be, in
effect, semantics-preserving too. To analyze the implemented model refactoring,
the study proposed a translational semantics for UML class diagrams and the basic
refactoring rules to Alloy. The generated Alloy models were used to argue that
the refactoring was semantics-preserving with respect to the defined equivalence
relation.

Analyzing Confluence: A confluent model transformation is a transformation
that has a deterministic, unique output for every unique input.

Plump [67] analyzed confluence of hypergraph rewriting systems using critical
pair analysis. Hypergraph rewriting systems are generalizations of graph rewriting
systems where an edge can connect more than two nodes [75]. In critical pair
analysis, all pairs of rules with a common left-hand side and which delete an element
to be used by the other rule are computed. Such rule pairs are referred to as critical
pairs since they are in conflict (i.e., both rules can be executed since they have a

4OCL [83] or the Object Constraint Language is a language originally developed to define
constraints on UML models. The language was later adapted to define constraints on model
transformations too.
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common LHS but execution of one rule inhibits the other). If each computed
critical pair is joinable (i.e., both rules in the pair reduce to a common hypergraph)
then the model transformation is confluent. Critical pair analysis needs only to
be performed for rules with a nondeterministic execution order. A hypergraph
rewriting system without critical pairs or with a deterministic execution order is
confluent. AGG [80] is a development environment for graph rewriting systems
that supports consistency checking and critical pair analysis. The AGG tool was
used in [31] and [26]to prove confluence of graph rewriting systems using critical
pair analysis. Critical pair analysis was used in other contexts too. For example,
Bottoni [21] used critical pair analysis as a prerequisite to parsing visual languages.

Assmann [7] used stratification to guarantee confluence of graph rewriting
systems. Stratification is carried out by ordering rules into a list of rule sets;
the strata, based on the rule dependency graph. Rules within a stratum are forced
to execute in an order that fulfills certain conditions. Such conditions guarantee
the generation of a unique output per stratum. Given that every stratum has a
unique output and the list of all strata are computed in their stratification order,
then the graph rewriting system has a unique output too and hence, is confluent.

Analyzing Termination: A terminating model transformation is a transfor-
mation that always stops executing after a finite number of steps. Although it is
undecidable in general whether a double pushout (DPO)-based (Section 2.1), graph
rewriting system is terminating [68], some studies proposed sufficient termination
criteria.Other studies proposed languages that guarantee termination for any model
transformation implemented using that language.

Varró et al. [81] proposed a sufficient termination criterion for DPO-based,
graph rewriting systems. The study proposed abstracting graph rewriting systems
into Petri Nets by tracking the number of objects in the graph rewriting system
for each node and edge type, regardless of the structure of the instance graph.
The abstraction was carried out as follows: node and edge types were represented
as places; negative application conditions (NACs) were represented as permission
places ; rules were represented as transitions; the LHS and the RHS of a rule
were represented as weighted arcs between the place of the corresponding elements
type and the transition of the corresponding rule; and the input graph instance
determined the initial marking of the Petri Net. A permission place corresponding
to a NAC gets a token from a preceding rule, if the rule creates an element in
the permission pattern of the NAC corresponding to the permission place. Thus,
the Petri Net captured the causality between different rules. After generating the
abstracted Petri Net, algebraic techniques were used to solve a matrix inequality to
determine whether the Petri Net runs out of tokens in a finite number of steps, and
hence whether the corresponding graph rewriting system terminates. Levendovszky
et al. [50] proposed sufficient termination criteria for DPO-based, graph rewriting
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systems with NACs that manipulate typed, attributed graphs. The study assumed
injective matches between rules and the host graph; i.e., each element in a rule is
matched to one element in the host graph. The criterion states that if the RHS
of a rule requires an extension to be mapped to the LHS of another rule,then the
rule terminates. For cases where the RHS of a rule can be mapped to the LHS
of another rule without extensions, then for infinite rule applications if each graph
appears finitely many times, then the rule eventually terminates. The criteria
provide a theoretical basis to prove termination and cannot be easily applied in an
algorithmic manner. The study used the proposed criteria to prove termination
of two model transformation examples. Assmann [7] proposed two concrete, non-
generalizable, criteria for termination, since the main focus of the study was to use
graph rewriting systems for program optimization and not to analyze termination.
The first criterion assumes that a graph rewriting system only adds edges and that
between any two nodes, only one edge of a certain label is allowed. Thus, if a
graph rewriting system only adds edges while checking that the edges added do
not already exist, then the graph rewriting system will eventually terminate since
there is a finite number of edges that can be created between any two nodes. The
second criterion assumes that a graph rewriting system only deletes nodes and
edges. Thus, elements are subtracted from the host graph until the graph rewriting
system terminates.

Bottoni et al. [19] proposed a property that a measurement function has to
satisfy to be a valid, sufficient termination criterion of DPO-based, high level
replacement units (HLRUs) without NACs. HLRUs are a generalised form of graph
rewriting systems (i.e., they allow manipulating different kinds of graphs) with a
control mechanism for rule applications, e.g., allowing sequential application of
rules, or applying just a single rule. The measurement function must measure
some commodity that decreases with every rule application, i.e., the value of
the measurement function for the LHS of the rule is greater than the value of
the measurement function for the RHS of the rule. A HLRU terminates if any
rule that is to be applied until its application is no longer possible has a valid
termination criterion that it satisfies. The proposed properties and proofs were
extended to attributed, graph rewriting systems. Accordingly, termination criteria
that satisfy the proposed property were defined. The proposed criteria required
that the number of nodes and edges on the LHS of a rule is greater than the
number of nodes and edges on the RHS of the rule. A model refactoring composed
of one rule was then shown to satisfy the proposed termination criteria. Bottoni
and Parisi-Presicce [20] later improved the workin [19] and proposed a sufficient
termination criterion for the repeated application of a single, non-deleting rule
with one NAC. The study discussed how to extend the criterion for a rule with
multiple NACs and for a sequence of rules with NACs. Instead of measuring
the consumption of some element as in [19], the study measured the distance
between the LHS and the NAC by measuring whether the number of matches
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increased or decreased after a rule application. This measurement was achieved by
constructing a labeled transition system where states correspond to matches of a
rule with all possible intermediate graphs between the LHS and the NAC of the
rule. Transitions in the labeled transition system represented rule applications that
moved the graph from one state to another state representing a graph instance closer
to the NAC. On each transition, the number of rule matches were measured before
and after applying a rule to determine whether the number of matches decreased
with rule applications, and hence whether the rule terminates. The approach was
demonstrated on simple model transformation examples. However, no case study
was carried out to rigorously evaluate the proposed criterion.

Ehrig et al. [31] proposed an approach to build terminating, DPO-based graph
rewriting systems with NACs that manipulate typed, attributed graphs. The
approach is based on formulating a graph rewriting system as layers of graph
rewriting rules with deletion and non-deletion layers. Each rule and manipulated
model element is assigned to a layer. Deletion layers contain rules that delete at
least one element. Non-deletion layers contain rules that do not delete elements,
cannot be applied twice to the same match and cannot use a newly created item for
the match. The layers of the transformation must obey some layering conditions to
terminate. For example, for a deletion layer, the last creation of a node of a specific
type should precede the first deletion of the node of the same type. This ensures
that the graph rewriting system does not get into an infinite loop of deleting and
recreating any element type. The study formally proved that using the proposed
layering conditions and the assignment of rules and model elements to layers
guarantees termination of deletion and non-deletion layers of a graph rewriting
system. Hence, the entire graph rewriting system is guaranteed to terminate too.
The approach was demonstrated on a transformation from state charts to Petri Nets
and it was proved that the transformation terminates. Applicability of the approach
to other transformation examples was also demonstrated. However, the proposed
sufficient termination criteria where found not to apply to model transformations
where rules are causally dependent on themselves [81].

de Lara and Taentzer [26] proved termination of a model transformation that
transforms process interaction models to timed transition Petri Nets (TTPNs).
An intermediate metamodel composed of the source and target metamodels and
auxillary entities and links was used to represent the intermediate outputs of a
transformation. The transformation from process interaction models to TTPNs
was implemented using four layers of DPO-based graph rewriting rules. The
study informally discussed how the model transformation terminates and how
layering conditions [31] can be adopted to prove termination of the transformation.
Critical pair analysis was used to prove confluence of the model transformation
where only rules within the same layer were analyzed for conflicts. The study
informally discussed how the transformation was also found to produce output
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models that preserved syntactic consistency with respect to the target meta-model
and behavioural equivalence with the input models. Syntactic consistency was
proved by demonstrating how elements present in the intermediate metamodel but
not in the target metamodel were consistently removed by the transformation
rules and how the transformation rules created elements conforming to the
target metamodel. Behavioural equivalence was argued by discussing several
example process interaction models and showing how they behave similar to their
corresponding TTPNs. A prototype of the approach was implemented using AToM3
and AGG tools. AToM3 is a tool that can capture models and metamodels as graphs
and can execute graph rewriting systems. AGG was used to perform consistency
checking and to prove confluence using critical pair analysis. AToM3 was used to
implement the transformation instead of AGG since AToM3 is a multi-formalization
metamodelling tool and the aim of the study was to transform complex systems
expressed in multiple formalizations into a formalization that facilitates analysis.

Barroca et al. [10] proposed a Turing-incomplete, visual model transformation
language, DSLTrans, that guarantees termination and confluence for any model
transformation by construction. In DSLTrans, a model transformation is composed
of a set of ordered layers that are executed in sequence. Each layer contains one or
more transformation rules that are executed in a non-deterministic order. Each rule
is expressed as a (match, apply) pattern where a match pattern is a pattern of the
source metamodel and an apply pattern is a pattern of the target metamodel. The
syntax and the semantics of DSLTrans were formalized using concepts from graph
rewriting systems. The study proved that any model transformation in DSLTrans
terminates by requiring that the input model is acyclic and using the fact that a
transformation can only have a finite number of layers and each layer can have a
finite number of rules. Moreover, since DSLTrans does not support recursion or
loops, the limited expressiveness of the language further guarantees termination.
The study also proved that any model transformation in DSLTrans is confluent
albeit the fact that rules in a layer are applied in a non-deterministic order. The
non-determinism within one layer is controlled by amalgamating the output of each
rule in a layer to the final output using graph union, which is commutative. This
ensures that the only place where non-determinism exists in the language produces
a deterministic output.

4.1.2 Type II Formal Methods

Type II formal methods analyze certain properties for a specific model transfor-
mation (i.e., transformation-dependent) when run on any input model (i.e., input-
independent).
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Analyzing properties expressed as first-order logic: Asztalos et al. [8]
analyzed properties of model transformations by formulating transformation rules
and the property of interest as assertions in first-order logic. Formal deduction rules
were then used to deduce the assertion representing the property of interest from
the set of assertions representing the transformation rules. The more deduction
rules are defined and the more sophisticated they are, the stronger is the deduction
capability of the approach. Thus, the proposed approach can be used to prove
any property of a model transformation as long as the property is expressible
in first-order logic, such as a rule application deletes all edges of a certain type.
The approach was realized as a verification framework in the Visual Modeling and
Transformation System (VMTS) using SWI-Prolog to implement the deduction
rules. VMTS can automatically generate assertions representing the individual
transformation rules.VMTS also parses constraints and imperative code attached
to transformation rules and produces equivalent pattern attribute constraints. The
verification framework was used to prove a property for a refactoring of business
process models. The study claimed that their approach and verification engine are
extensible to different model transformation frameworks and can be used to prove
different properties. The study also discussed disadvantages of the approach which
include its inefficiency if complicated deduction rules were defined or if a large base
of assertions was used.

Analyzing property-preservation: Giese et al. [36] used the automated
theorem prover Isabelle/HOL to verify that a model-to-code transformation
specified using triple graph grammars (TGGs) [77] in the Fujaba tool suite5

preserves some safety property. In other words, assuming that a safety property
was verified on the input model, Isabelle/HOL was used to check whether
the transformation of interest preserves the safety property in the generated
code. To analyze a transformation using Isabelle/HOL, Isabelle/HOL algebraic
representations for metamodels were derived from the TGG structures in Fujaba.
Safety properties were then defined for such algebraic representations within
Isabelle/HOL. TGG rules were also formalized using Isabelle/HOL. The mapping
from metamodels, safety properties and TGG rules to Isabelle/HOL structures was
performed manually. Since TGG rules rewrite input and output models in parallel
(Section 2), Isabelle/HOL was used to prove that the code generated by a TGG
rule did not violate the equivalence of the input and output models with respect to
the defined safety property.

Becker et al. [15] proposed an approach to verify whether a model transformation
preserved constraints expressed as (conditional) forbidden patterns in output
models. The study formalized systems with dynamic structural adaptation as
graph rewriting systems where structural adaptations were formalized as graph

5http://www.fujaba.de/
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rewriting rules and system safety requirements were formalized as graph patterns.
To verify that a system will not violate any safety requirement, one can check
whether the graph rewriting rules can transform a safe system state to an unsafe
one. However, since the initial system state is unknown and the reachable set of
states can be unbounded, the study checked whether the backward application of
each rule to each forbidden pattern can result in a safe state. Since the number of
rules and forbidden patterns are bounded, this check is plausible. If the backward
application of a rule to a forbidden pattern would result in a safe state, then
the safe state and the rule are generated as a counter example. However, the
study did not address checking whether the safe state in a counter example is
reachable in the first place. The approach was demonstrated on a system of
autonomous shuttles running on rail tracks with dynamic structural adaptation. A
tool was implemented using traditional data structures for graph manipulations and
using symbolic representations that can be run on engines optimized for symbolic
computations (e.g., SAT solvers). Both implementations were integrated into the
Fujaba tool and were compared with model checking using GROOVE [71]. The
results showed that GROOVE and the explicit implementation of graph rewriting
systems were suitable for small examples. The symbolic implementation scaled
better to larger examples with much shorter execution times.

Analyzing preservation of syntactic relations: Lúcio et al. [53] implemented
a model transformation checker for model transformations formalized as graph
rewriting systems and specified in the DSLTrans language [10]. While tradi-
tional model checkers build a state space of models resulting from possible rule
applications, a model transformation checker builds a state space of possible rule
applications regardless the initial and intermediate graphs generated. Properties
and rules of a model transformation are expressed in DSLTrans as (match, apply)
patterns. The model checker builds the state space where each state is a possible
combination of the transformation rules in a given layer, combined with all states of
the previous layers. Hence, each state is a combination of (match, apply) patterns,
and the set of match patterns in a state are patterns that should exist in an
input model in order to reach that state. Using the generated state space, the
model transformation checker can be used to prove a satisfiable property, produce
a counter example for an unsatisfiable property or render a property as unprovable.
The model transformation checker proves that a property is satisfiable by traversing
the state space and finding a state that satisfies the match pattern of the property
and a subsequent state on the same path that satisfies the apply pattern of the
property. The model transformation checker proves that a property is unsatisfiable
by providing a counter example or finding at least one path where the match pattern
of the property exists but the apply pattern does not exist in any subsequent
state on the same path. Unprovable properties are properties that the model
transformation checker cannot prove since the match pattern of the property does
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not exist in the generated state space. The model transformation checker was
used to analyze a simple model transformation example and the study reported on
the size of the generated state space. However, the results were not described in
detail.
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5 Dynamic Analysis Techniques

5.1 Type III Formal Methods

Type III formal methods analyze certain properties for a specific model transfor-
mation (i.e., transformation-dependent) when run on a specific input model (i.e.,
input-dependent). We structure our discussion in this section around the analyzed
properties.

Analyzing structural correspondence between input and output models:
Narayan and Karsai [62] analyzed structural correspondence between the input
and output models of a model transformation to prove that the transformation
achieved its intended mapping. Analyzing structural correspondence was achieved
in three steps. First, a composite metamodel that contains the source and target
metamodels and structural correspondence rules defined between elements of the
two metamodels was generated. Second, the model transformation of interest
was extended to generate relations or crosslinks between input model elements
and their corresponding output model elements. Third, the crosslinks were used
to evaluate the structural correspondence rules for a specific pair of input and
output model instances. The GReAT model transformation framework [2] was
used to implement the approach. In GReAT, transformations are specified as
graph rewriting systems and crosslinks are automatically generated between input
and output model elements. Moreover, GReAT can be used to specify structural
correspondence nodes and vertices in a composite metamodel to define structural
correspondence rules. The approach was demonstrated on a transformation from
UML activity diagrams to communicating sequential process models. However, no
rigorous case study was carried out to assess the proposed approach.

Analyzing semantics-preservation: Baar and Marković [9] proposed an ap-
proach to prove that a refactoring of UML class diagrams with OCL constraints
preserved static semantics. According to the study, a model refactoring that
transforms a class diagram with OCL constraints and a set of conforming object
diagrams to a new class diagram with new OCL constraints and a new set of object
diagrams is said to preserve static semantics if evaluating the initial constraints
on the initial set of object diagrams produces the same results as evaluating the
refactored constraints on the set of refactored object diagrams. The refactorings of
class diagrams, object diagrams and OCL constraints were formalized as separate
graph rewriting rules of typed graphs. The evaluation of OCL constraints was
also formalized as graph rewriting rules. The study demonstrated how a sample
model refactoring was found to preserve static semantics according to the proposed
approach.
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Analyzing preservation of type consistency and multi-view consistency:
A model transformation preserves type consistency if it generates output models
that are well-formed with respect to the target metamodel and the constraints on
the target metamodel. A model preserves multi-view consistency if multiple views
of the generated model do not contradict each other.

Becker et al. [16] proposed an approach to verify that refactoring a metamodel
of a modelling language preserved type consistency with respect to well-formedness
constraints of the modeling language that cannot be specified as a (conditional)
forbidden patterns, e.g., two methods in the same class cannot have the same
signature. Model refactoring was formalized as a graph rewriting system. The
source metamodel was extended with predicate structures and indirect well
formedness constraints were specified as graph constraints that manipulate the
predefined predicate structures. Maintenance rules were evaluated after every
refactoring rule to add predicates to the model if the model has a forbidden pattern.
If the refactored model overlapped with a forbidden pattern, a counter example was
generated by executing the inverse of the rule on the overlap. The approach was
demonstrated on two refactorings of the java language metamodel that were proven
to be consistency preserving. The study further discovered two bugs in a refactoring
that was used by Eclipse, one of which was only recently fixed.

Anastasakis et al. [4] formalized a model transformation and its manipulated
metamodels as Alloy models that were analyzed using the Alloy analyzer. A tool
called UML2Alloy was used to translate the metamodels and their OCL constraints
to Alloy models. The model transformation was transformed to an Alloy model by
expressing the transformation rules in first-order logic and introducing a mapping
relation in Alloy to keep track of the mapping between input and output model
elements. The study discussed how the Alloy analyzer can be used to analyze
the model transformation. Using consistency checking, instances of the source
metamodel and the model transformation can be generated and used to produce an
output model. Failure to produce an instance of the model transformation signals
inconsistencies in the transformation specification which can be resolved using the
Alloy analyzer. The Alloy analyzer can also be used to produce several instances of
the model transformation to explore different possible mappings between the source
and target metamodels. Finally, the Alloy analyzer can be used to perform assertion
checking. The approach was demonstrated on a model transformation for business
process models. Analysis using the Alloy Analyzer produced a counter example
and revealed an error in the transformation. However, the approach was found
to be non scalable, inapplicable to non-declarative transformations, not capable of
analyzing non-integer properties of the Alloy model and not capable of reasoning
about dynamic properties of the transformation, i.e. Alloy does not have any
representation for a system’s behaviour such as state machines.

A model transformation can also be analyzed for preservation of type consistency
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and multi-view consistency by analyzing its output models only. Paige et al. [65]
used PVS [64] and Eiffel [58] to formalize BON [82] metamodels and perform
model conformance checking and multi-view consistency checking (MVCC) between
different diagrams of a model. BON is an object-oriented modeling language, that
does not have formally defined semantics. PVS is a general purpose theorem proving
environment that is not object-oriented. Eiffel is a declarative object-oriented
programming language that supports contracts. To represent the BON metamodel
and its constraints in PVS, entities of the BON metamodel were represented using
theory constructs and the BON metamodel constraints were represented as axioms
that manipulate the defined theory constructs. To prove model conformance in
PVS, a BON model was encoded as a set of PVS expressions and the PVS theorem
prover was used to prove that the encoded BON model satisfies the axioms encoding
the BON metamodel constraints. To perform MVCC between static and dynamic
diagrams in PVS, PVS was extended to represent different views of a system
and to define constraints on these views. To perform MVCC between contracts
of diagrams, preconditions of successive routines were composed into one axiom.
Then, a BON model was encoded as PVS conjecture that satisfied the axiom.
On the other hand, all constructs in BON have an equivalent in Eiffel. Thus,
representing the BON metamodel in Eiffel was mostly straight forward, besides
two issues that needed additional handling. First, code was added to initialize
structures and allocate memory to them. Second, class invariants were translated
into boolean functions whereas preconditions and postconditions were translated
into predicates that use quantifiers. To check model conformance in Eiffel, a BON
model was encoded as an object, and the metamodel rules were executed on the
object to determine if the model was a valid instance of the metamodel. MVCC
between static and dynamic diagrams was achieved in a similar manner to model
conformance checking. MVCC between contracts of different diagrams was achieved
by generating unit tests from the encoding of dynamic diagrams, and generating
Eiffel code from the encoding of class diagrams and running the unit tests against
the Eiffel code. The study compared using PVS and Eiffel for model conformance
checking and MVCC with respect to several qualitative measures. However, no
quantitative case study was carried out to evaluate the two approaches.

5.2 Model Checking

Many studies analyzed model transformations specified using some formalization
(Section 2) by model checking the state space of the transformation. In many cases,
studies also built tools that perform model checking for a specific formalization.

Model checking Maude specifications: Boronat et al. [18] used Maude
(Section 2.5) to formalize and model check endogenous (Section 1), non-
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confluent model transformations. The metamodel manipulated by a transformation
was formalized as a membership equational theory, and models conforming to
the metamodel were formalized as terms of the membership equational theory
corresponding to the source metamodel. Accordingly, a model transformation
with NACs was formalized as a rewrite theory that operates on terms of a
membership equational theory. Maude was then used to perform three types of
analysis: simulation to execute model transformations, reachability analysis to
prove satisfaction of invariants and analysis of linear temporal logic (LTL) [25]
properties. The proposed approach was implemented as an Eclipse plugin,
MOMENT2. MOMENT2 can create QVT-like transformations that manipulate
MOF metamodels and models defined in the Eclipse Modelling Framework (EMF).
MOMENT2 can also be used to specify invariants as OCL expressions over QVT
model patterns and LTL formulae that use predicates as propositions. Using
Maude as the underlying engine, MOMENT2 then compiles model transformations,
models, metamodels, invariants and LTL properties to perform model checking.
The tool and the proposed approach were demonstrated on a transformation
example. Analysis using Maude showed that an LTL property was violated and
the model transformation was corrected accordingly.

Rivera et al. [74] mapped graph rewriting systems to Maude and used Maude
analysis techniques to analyze the graph rewriting system. The proposed approach
automatically mapped graph rewriting systems to Maude due to the support for
analysis in Maude. The study integrated the Maude code generator with AToM3 as
a visual front-end to specify graph rewriting systems. A graph rewriting system and
its manipulated graphs were automatically transformed into Maude for analysis.
Reachability analysis results were transformed back to the visual language of
AToM3. Visual support for specifying LTL properties was left as future work. The
study demonstrated how the approach helped in revealing properties that were
not satisfied by an example transformation. However, no rigorous case study was
carried out to assess the proposed approach.

Model checking graph rewriting systems: Rensink [70] used model checking
to analyze temporal properties of graph transition systems. Temporal properties
of graph transition systems include logic expressions on edge labels, node set
expressions and formulae manipulating any of the two former expressions. The
study discussed the semantics of the temporal expressions and their evaluation
for a graph. Using the proposed semantics, temporal properties can be easily
analyzed for the states in a graph transition system. Later, Rensink [72] extended
his work in [70] to formally define graph-based, linear temporal logic and the
evaluation of temporal logic expressions for graphs with NACs. The proposed
approach was implemented as a tool called GROOVE (GRaph-based Object-
Oriented VErification) [71]. GROOVE was implemented in Java and supports SPO-
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based, graph rewriting systems with NACs. GROOVE supports both stepwise,
manual execution of rules on a graph and automatic generation of a graph transition
system. When generating the graph transition system, new states are compared
to previously-generated ones and matching states are merged. The current version
of GROOVE only simulates a graph rewriting system by generating the resultant
graph transition system (i.e., the state space). Model checking the graph transition
system for temporal properties was left for future work. The tool was demonstrated
on a sample model transformation and the results were discussed in terms of the
size of the generated state space and the number of outputs produced.

Rensink et al. [73] compared two tools, CheckVML and GROOVE, for model
checking graph rewriting systems. CheckVML transforms a graph rewriting system
system and an initial graph to a Promela model. In a Promela model, graphs are
encoded as fixed state vectors and graph rewriting rules are encoded as guarded
commands that modify the state vectors. The Promela model is then verified using
the SPIN model checker. On the other hand, GROOVE was used to execute a
graph rewriting system and build its state space for model checking. The two
approaches were evaluated on three model transformations with respect to the
size of the generated state space, the memory usage and the execution time. The
study concluded that GROOVE is better for problems with dynamic allocation
or symmetric nature (i.e., processes and resources are not distinguished from one
another; no concurrency).

Narayanan and Karsai [61] used the GReAT model transformation framework [2]
to analyze the bisimilarity between the input and output models of a graph
rewriting system. Two models are said to be bisimilar if one model simulates the
other and vice versa. The approach was demonstrated on a graph rewriting system
that transforms state charts to Extended Hybrid Automata (EHA) models. EHA
models provide formal operational semantics for state charts and hence are more
appropriate to use for analysis. An EHA model is bisimilar to a state chart model
with respect to reachability if a reachable state configuration in a state chart has an
equivalent reachable state configuration in an EHA model and vice versa. GReAT
maintains cross-links between input and output model elements that can be used
to prove bisimilarity. For every transition in a state chart model and its equivalent
transition in its corresponding EHA model, the minimal source state configuration
is computed for the transition in both models. Equivalence between the start and
end state configurations of each pair of equivalent transitions implies that the state
chart and the EHA models are bisimilar with respect to reachability. If the models
have been proven to be bisimilar, then the EHA model can be transformed to a
Promela model and analyzed for reachability using the SPIN model checker. The
trace generated by SPIN to prove reachability of a state configuration corresponds
to a transition sequence in an EHA model. Using the cross links in GReAT, the
transition sequence in the EHA model can be traced back to the transition sequence
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in the state chart. The proposed approach uses both Type III formal methods
(Section 5.1) to analyze bisimilarity and model checking to analyze reachability.

Model checking Petri Nets: König and Kozioura [44] proposed a tool, Augur2,
that approximates graph rewriting systems with Petri Nets for which several
analysis techniques have already been developed. The tool then analyzes structural
properties of the resultant Petri Nets for all reachable markings. The graph
rewriting system and the initial graph are used to generate the state space of graphs
which is transformed to a state space of Petri Net markings. The user can then
specify a property to be verified as a graph pattern which is transformed by Augur2
to an equivalent Petri Net marking. Accordingly, Augur2 either verifies that the
property is satisfied or produces a counter example which is an execution of the
Petri Net producing a marking that represents a graph violating the property being
analyzed.

Model checking programs generated by model-to-code generators: Ab
Rahim and Whittle [1] analyzed the semantic conformance of UML State Machine-
to-Java code generators with respect to the source language semantics, UML state
machines, using model checking. The approach used a code generator to transform
a UML state machine to its corresponding Java code. In parallel, assertions that
capture the semantics of state machines were defined and a transformation was
implemented which compiled the assertions into a single verification component.
The transformation also appended annotations within the generated code that
referred to the verification component. Using the appended annotations, Java Path
Finder (JPF) was used to model check the semantic-conformance of the generated
code to the source language semantics by checking if any of the assertions were
violated. The approach was implemented as a tool and was demonstrated on
a sample state machine-to-Java code generator. Two case studies were carried
out on the state machine-to-Java code generators of two commercial tools: IBM
Rhapsody [69] and Visual Paradigm [40]. The results revealed that the commercial
tools did not fully conform to the semantics of UML state machines. This was
mainly because some assertions were violated or because assertions could not be
verified since the commercial tools did not support the relevant UML notations
required in the assertions.

5.3 Design Space Exploration (DSE)

Design Space Exploration (DSE) involves analyzing several model transformation
outputs that meet some design constraints or that achieve acceptable values for
non-functional metrics [39]. DSE and model checking operate in the same way;
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both use the transformation to generate the state space of intermediate models and
both check each state for some property. However, DSE and model checking differ
in the intent of the analysis. DSE has been used to analyze different outputs of non-
confluent transformations, all of which are valid solutions with respect to the model
transformation specification (e.g., invariants or safety requirements) but represent
different design options or different values of non-functional metrics. On the other
hand, model checking analyzes the state space with respect to the specification of
the model transformation of interest (e.g., states that violate invariants are ruled
out).

Hegedus et al. [39] proposed a framework that performs guided DSE of graph
rewriting systems. The inputs to the framework are an initial graph, a graph
rewriting system, global constraints on all states, and goals on solution states.
Global constraints and goals are numerical or structural constraints on states. The
framework uses selection criteria and cutoff criteria to guide the DSE. Selection
criteria prioritize promising paths and are defined based on the dependencies
between the graph rewriting rules. Cut off criteria identify and prune unpromising
paths and are defined based on an algebraic analysis of the Petri Net abstraction
of the graph transition system. Using the defined criteria, DSE is executed in
a series of steps. For the current state, the framework evaluates all cutoff and
selection criteria and identifies the rules applicable to the current state. If one of
the cutoff criteria holds or if there are no applicable rules then the state is marked
as a dead end. Otherwise, the framework selects the next applicable rule based on
the selection criteria and applies it to the current state to generate a new state. If
the new state is a solution as specified by the goals, then the solution trajectory
(i.e., applied rules and final state) is saved and the next applicable rule is applied
to a new state or to the previous state. However, if the new state does not satisfy
the global constraints then search continues from the previous state. If the new
state is not a solution but satisfies the global constraints, search continues from the
same state. DSE stops if a predefined number of solutions are found or if the state
space was searched exhaustively. The framework was evaluated on two case studies.
The study concluded that using the guided DSE finds an optimal solution (i.e., a
trajectory that uses a minimal number of rule applications) much earlier than the
traditional depth first DSE and the additional load of evaluating the criteria is
negligible.

Drago et al. [29] proposed a framework, QVT-Rational, that performs DSE
of solutions that satisfy non-functional requirements or desired values for quality
metrics. QVT-Rational is executed in three phases. In the first phase, a domain
expert specifies the manipulated metamodels, the quality metrics of interest, a
quality prediction tool chain and a quality-driven model transformation.6 To build

6Quality-driven model transformations are implemented in model transformation languages
with constructs that support representing non-functional attributes of transformations.
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quality-driven model transformations, the QVT-Operational language was extended
with constructs to support the definition of more than one mapping (i.e., the
definition of a non-confluent transformation) and allow quality metrics to be bound
to them. In the second phase, a designer specifies the input model and the (hard or
soft) requirements of the quality metrics. In the third phase, the designer runs the
framework to get viable outputs and their corresponding quality predictions. The
framework provides an interactive mode and an automatic exploration mode. In the
interactive mode, every application of a predefined mapping requires the designer’s
intervention until a final output model is obtained. In the automatic exploration
mode, the transformation generates all possible outputs based on the defined
mappings, checks the generated outputs with respect to the specified requirements
and proposes the viable outputs. The framework was demonstrated on two model
transformation problems and was found to scale well for input models of varying
sizes. However, the framework was found to have a few disadvantages. To transform
large models, exploring the entire state space might be impossible, and thus the
generated solution might not be an optimal one. Moreover, the run time of the
quality prediction tool affects the efficiency of the framework. Also, the quality of
the viable outputs generated by the framework is dependent on the domain expert
who designed the model transformation and bound different mappings to different
quality metrics according to his/her experience.

Schätz et al. [76] formalized the solution space of non-confluent model trans-
formations using a relational, rule-based characterization of the transformation’s
constraints. Models were represented as Prolog terms and transformation rules
were represented as Prolog predicates that relate models before and after a rule
application. The state space of a model transformation was formalized using a
relational, rule-based description of design constraints in terms of the predicates
representing the transformation rules. The characterization was formalized as a
set of (pre-model,post-model) relations. This formalization was then interpreted
by Prologas a non-confluent transformation. The approach was implemented as an
Eclipse plugin and can be used to specify and execute transformations for EMF
Ecore models. The plugin transforms the resultant Prolog solutions back into their
equivalent EMF Ecore model. The approach was demonstrated for the deployment
of logical software components and buses to their corresponding physical units
and links. The possible solutions had to satisfy two non-functional constraints:
completeness and resource consistency. Completeness implies that all input model
elements are mapped to output model elements. Resource-consistency implies that
the load required by the input components and buses do not exceed the load
provided by the output units and links. Several viable outputs were generated and
the study proposed and implemented optimizations to the approach that helped
cutting down on the execution time and memory usage.
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5.4 Instrumentation

Instrumentation is a dynamic analysis approach originally developed for analyzing
source code. Instrumentation involves monitoring the inner workings of a model
transformation by adding instrumentation code to the transformation to debug or
analyze the transformation. Model transformation instrumentation may induce the
probe effect which can affect factors such as the execution time. A possible solution
to take the probe effect into account is to control the system clock as seen by
the transformation of interest [30]. Although instrumentation of source code has
been extensively researched, not many studies explored instrumentation of model
transformations.

Dhoolia et al. [27] used dynamic tainting or dynamic tagging to instrument
model-to-text transformations and debug faulty input models. In dynamic tainting,
tags or taints are added to input model entities (i.e., elements and attributes)
and the model transformation propagates the taints of input model entities to the
corresponding output substrings. The study differentiated between two kinds of
taints: data taints and control taints. Data taints are taints propagated by the
transformation to output substrings generated as a result of assignment statements
or statements that generate an output string. Control taints are taints propagated
by the transformation to output substrings generated as a result of a conditional
evaluating to a specific value. Loop taints are control taints which mark the scope
of a loop. The proposed approach is composed of three phases. First, the user
specifies markers in the output string to mark a faulty or missing output substring.
Second, the transformation is executed in the debug mode where the transformation
associates a unique taint with each input model entity and propagates the taints to
the corresponding output substrings. Execution of the transformation in the debug
mode generates a log file with taints, where each taint is identified by its type and
corresponding input model entity. Finally, the user analyzes the log file with the
preset fault marker to locate the faults in the input file. Backward traversal of the
faulty output is carried out so that if the initial taints do not identify the fault,
the next set of enclosing control taints are investigated iteratively until the fault is
identified. The approach was implemented as a framework and a case study was
conducted on six model-to-text transformations. For all faulty input models, the
fault search space was either significantly decreased or precisely identified. However,
the run-time and the size of the instrumented transformation significantly increased
in some cases. Although the approach was used to debug faulty input models, it
can be easily extended to debug and analyze faulty transformations. The generated
taints can save the statement in the transformation that was used to generate it,
besides the taint’s type and the corresponding input element. Thus, assuming that
the input model is correct and that a fault in the transformation resulted in a faulty
output, the taints can be used to identify which statements of the transformation
produced the fault.
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5.5 Testing

Testing executes a model transformation on input test models and validates that
the generated, actual output model or code matches the expected output model
or code [38]. Although testing does not fully verify the correctness of a model
transformation, it has been gaining increasing interest due to several factors. The
major advantage of testing is its usefulness in uncovering bugs while maintaining a
low computational complexity [37]. Other advantages of testing include the ease of
performing testing activities, the feasibility of analyzing the model transformation
in its target environment and the feasibility of automating most of the testing
activities [52].

In this section, we differentiate between a model transformation implementation
and a model transformation specification. A model transformation implementation
is the source code that carries out the expected mapping between the source
and target metamodels.7 Whereas, a model transformation specification includes
the source and target metamodels manipulated by the model transformation, the
constraints of the source and target metamodels and the contracts of the model
transformation. A contract is usually composed of three sets of constraints [24]:
(1) constraints on input models to classify them as valid inputs, (2) constraints on
output models to classify them as valid outputs and (3) constraints on relationships
that must be maintained between input model elements and output model elements.
Several studies proposed taxonomies of model transformation contracts. Baudry et
al. [11] defined three levels of contracts: contracts of transformations, contracts of
subtransformations and contracts of output models. Contracts of transformations
include preconditions and postconditions of transformations and transformations’
invariants. Contracts of subtransformations include preconditions and postcon-
ditions of subtransformations constituting the transformation of interest and
their invariants. Contracts of output models are expected properties of output
models such as the target metamodel and its constraints. Mottu et al. [60]
proposed another taxonomy where contracts were categorized as either syntactic
or semantic contracts. Syntactic contracts ensure that the transformation can
successfully run without errors. Examples of syntactic contracts are the source
and target metamodels of a model transformation. Semantic contracts are context-
dependent and can be subdivided in to three types of contracts: a transformation’s
preconditions on input models; a transformation’s postconditions on output models;
and constraints linking input and output model elements (usually specified in a
transformation’s postconditions).

We break down the process of model transformation testing into three phases,
inspired by those defined in [12] with minor changes. The first phase in

7In this section, we use the notion of a model transformation and a model transformation
implementation interchangeably.
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model transformation testing is test case generation which involves generating
a set of input, test models conforming to the source metamodel for testing the
transformation of interest. The generated models are referred to as the test
suite. Efficient criteria are necessary to generate an adequate test suite to test the
transformation. Such criteria are referred to as adequacy criteria. The percentage
of adequacy criteria satisfied by a test suite is referred to as the coverage achieved
by the test suite [55], shown in Equation (1).

Coverage =
|AdequacyCriteriaCoveredByATestSuite|

|AdequacyCriteria|
∗ 100% (1)

Thus, test case generation approaches aim to generate test suites that achieve full
coverage of predefined test adequacy criteria.

The second phase in model transformation testing is assessing the test suite
generated in the first phase. Although this step is not necessary, it can be used
to evaluate the test suite and the reliability of the testing process; test suites
that produce positive assessment results are more likely to result in a non-faulty
transformation that can be reused with a higher confidence. To this end, many
studies used mutation analysis to assess the fault detection capability of a test
suite.

The third phase in model transformation testing is building the oracle function.
The oracle function is the function that compares the actual output of a model
transformation with the expected output to evaluate the correctness of the
transformation [33]. If the expected output models are available, then the oracle
function is a model comparison or a model differencing task ( [51, 43, 52]) between
the actual and the expected outputs. However, in most cases, the expected output
is in the form of output specifications or output contracts ( [24, 23, 60, 37, 48]). In
that case, the oracle function ensures that the actual output of the transformation
conforms to the specified contracts.

In the following subsections, we first discuss the challenges in model transfor-
mation testing. Then, we explain the three phases of model transformation testing
in more details.

5.5.1 Challenges of Model Transformation Testing

Three characteristics of model transformations present challenges in model trans-
formation testing [12, 11]: complexity of the manipulated data, limitations of devel-
opment environments supporting MDD, and the diversity of model transformation
languages. We argue that all the other model transformation analysis techniques
face these challenges too.
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Complexity of the manipulated data Model transformations manipulate
input and output models that can vary in complexity, size and constraints [12].
Moreover, the input and output models can have multiple views which need to be
kept consistent throughout a transformation.

Complexity of the input models poses challenges in test case generation [12,
11, 46]. Several adequacy criteria were defined, and no study has been conducted
to evaluate the usefulness of the criteria. Moreover, the generated test suite must
conform to the source metamodel while satisfying the source metamodel constraints,
the transformation’s preconditions and the predefined adequacy criteria. Accord-
ingly, three approaches can be followed to generate a valid test suite. The first
approach involves manually building the test suite then checking that the test suite
conforms to the source metamodel constraints, the transformation’s preconditions
and the predefined adequacy criteria. Using the first approach, many of the
generated test models may turn out to be unfit for testing. The second approach
involves automatically generating a test suite using constraint solving techniques
to solve source metamodel constraints, the transformation’s preconditions and the
predefined adequacy criteria. The limitation of the second approach is the cost
of constraint solvers and that models generated automatically may not be easily
understood by testers. The third approach is an interactive one and involves
manually building an initial test suite that can be automatically assessed with
respect to some adequacy criteria. If the test suite is inadequate, a tool can provide
suggestions of the additional test models required.

Complexity of the output models or code poses challenges in building the
oracle function [12, 46, 11, 52]. Three approaches for building the oracle
function were identified. The first approach is applicable if the expected output
models are available. In that case, building the oracle function is a model
comparison or a model differencing task. In model differencing, models that are
syntactically different but semantically equivalent should be identified as equivalent
models. Visualizing techniques are also needed to capture model differences in a
comprehensive manner. The second approach is applicable if the expected output
models are not available. In that case, a partial oracle function can be built where
the expected properties of the output models, i.e., contracts, are described in a
suitable language. The oracle function checks the conformance of the output models
to such contracts. The third approach is applicable if the model transformation
produces an executable output. In that case, the oracle function should generate a
test suite to test the executable output produced by the model transformation of
interest.

Limitations of development environments supporting MDD Development
environments supporting MDD have not yet fully evolved to support model
manipulation, hence facilitating model transformation testing. Model manipulation
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includes model building, editing, visualization and analysis [12, 46]. Building and
editing models in such environments is usually error prone since there is little
support for automatic model checking and valid initialization of model properties.
Model visualization requires support for automatic layout of models. To support
model analysis, development environments should integrate model comparison and
versioning capabilities to ensure that the tester can analyze the transformation
and its input and output models in one environment. Moreover, to support model
transformation testing, debuggers for model transformations are needed [52].

Diversity of model transformation languages Due to the diversity of
model transformation languages currently in use, testing techniques that take this
language diversity into account are needed [12, 33]. If white-box testing (Section
5.5.2) will be used, then the choice of the transformation language affects the
implementation of the white-box testing approach. Black-box testing (Section
5.5.2) can be used instead since it is language-independent. However, black-box
testing does not take advantage of the purpose of the transformation and hence is
not as effective as white-box testing. One possible solution is to define different
white-box test adequacy criteria that account for different model transformation
languages.

5.5.2 Phase I: Test Case Generation

Test case generation involves defining test adequacy criteria and building a test suite
that achieves coverage of the adequacy criteria. The test suite can be generated
automatically, manually or interactively as explained in Section 5.5.1.

Defining test adequacy criteria, and hence test case generation, can follow
a black-box, grey-box or white-box approach. A black-box test case generation
approach assumes that the implementation of the transformation of interest is
not available and builds a test suite based on the specification of the model
transformation (i.e., source metamodel or contracts). A grey-box test case
generation approach assumes that the implementation of the transformation of
interest is partially available and builds a test suite based on the accessible parts of
the implementation [38]. A white-box test case generation approach assumes that
the full implementation of the transformation of interest is available and builds a
test suite based on the implementation of the transformation. We discuss black-box
and white-box test case generation in more details. We do not discuss grey-box
test case generation any further, since it has been rarely investigated for testing
model transformations. Moreover, grey-box test case generation can use the same
approaches as those proposed for white-box test case generation but only on the
accessible parts of the implementation.
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Black-Box Test Case Generation Based on Metamodel Coverage Differ-
ent adequacy criteria have been proposed in the literature to achieve coverage of
the source metamodel of the model transformation of interest.

Adequacy criteria for class diagrams were heavily investigated. Andrews et
al. [5] proposed three adequacy criteria for class diagrams: the association-end
multiplicity (AEM) criterion, the generalization (GN) criterion and the class
attribute (CA) criterion. The AEM criterion requires that each representative
multiplicity-pair of two association ends gets instantiated in at least one test model.
The GN criterion requires that each subclass gets instantiated in at least one test
model. The CA criterion requires that each representative attribute value gets
instantiated in at least one test model. In AEM and CA criteria, representative
values are used since the possible values of multiplicities and attributes can
be infinite. Representative values are created using partition analysis where
multiplicity and attribute values are partitioned into mutually exclusive ranges of
values. A representative value from each range must be covered in the test suite.
For building partitions, either default partitions can be automatically generated or
knowledge-based partitions can be generated by the tester. Other studies [33, 35]
also used the AEM and CA criteria and proposed the notion of a coverage item
which is a constraint on the test suite that requires certain combinations of
representative attribute values, representative AEM values and objects of classes
to be instantiated in the test suite. A test adequacy criterion can then be defined
for each coverage item. Fleurey et al. [32] also combined classes, representative
attribute values and representative AEM values into coverage items. A coverage
item for an object was referred to as an object fragment. A coverage item for
a model was referred to as a model fragment and is composed of several object
fragments. The study then proposed different adequacy criteria, each criterion
specifying a different way of combining object fragments into a model fragment. The
Meta Model Coverage Checker (MMCC) tool was built to implement the proposed
criteria. MMCC takes a coverage criterion and a source metamodel as inputs and
generates the required model fragments to guide the tester in test case generation.
MMCC can then be used to assess if a test suite achieves coverage of the generated
model fragments and points out model fragments that were not covered to aid
the tester in improving the test suite. A case study was conducted on a model
transformation and the tool was found to be useful in test case generation with
the drawback of suggesting model fragments that are not feasible, e.g., MMCC
suggested a model fragment with zero transitions and one transition in an input
state machine.

Adequacy criteria for interaction diagrams were also discussed in the literature.
Five adequacy criteria were proposed in [5]: condition coverage (Cond), full
predicate coverage (FP), each message on link (EML), all message paths (AMP)
and collection coverage (Coll). The Cond criterion requires that each condition
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gets instantiated in the test suite with with both true and false. The FP criterion
requires that each clause in every condition gets instantiated in the test suite with
both true and false such that the value of the condition will always be the same
as the value of the clause being tested. The EML criterion requires that each
message on a link connecting two objects gets instantiated in at least one test
model. The AMP criterion requires that each possible sequence of messages gets
instantiated in at least one test model. The Coll criterion requires each interaction
with collection objects of various representative sizes gets instantiated in at least one
test model. Similar to class diagrams, coverage items can be created for interaction
diagrams and test adequacy criteria can be defined accordingly. Ghosh et al. [35]
also used the Cond Criterion, the FP criterion, the EML criterion and the AMP
criterion. Wu et al. [84] used the AMP criterion, the transition coverage criterion
and proposed the all content-dependency relationships criterion for collaboration
diagrams. Transition coverage criterion requires that each transition type gets
instantiated in at least one test model. The all content-dependence relationships
criterion is based on extracting data-dependency relationships between system
components and requires that each identified relationship gets instantiated in at
least one test model.

Offutt and Abdurazik [63] proposed four adequacy criteria for UML statecharts:
the transition coverage criterion, the full predicate coverage criterion, the transition
pair coverage criterion, and the complete sequence coverage criterion. The
transition coverage criterion requires that every transition type in a state chart gets
instantiated in at least one test model and was reused in [84]. The full predicate
coverage criterion is similar to the FP criterion of collaboration diagrams and works
on the predicates of each available transition. The transition pair coverage criterion
requires that each pair of adjacent transitions gets instantiated in at least one
test model. The complete sequence coverage criterion requires that each complete
sequence of transitions that makes full use of the system of interest gets instantiated
in at least one test model. Due to the infinite possible complete sequences, a
domain expert must define a set of expected sequences that are crucial to be
tested. The study further developed a tool, UMLTest, that generates test suites for
UML state charts built using IBM Rational Rose. An experiment was conducted
and test suites were created for a system of moderate size. Mutation analysis
(Section 5.5.3) was used to assess and compare the proposed criteria. It was found
that the full-predicate coverage criterion had the best fault detection capability
followed by the transition pair coverage criterion. Haschemi [38] proposed the all-
configurations-transitions criterion for statecharts with parallelism. The criterion
requires that all transitions between all state configurations in the reachability tree
of a state chart get instantiated by the test suite. Wu et al. [84] proposed the all
content-dependency relationships criterion for statecharts. The criterion is based on
extracting data-dependency relationships between system components and requires
that each identified relationship gets instantiated in at least one test model.
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Mc Quillan and Power [55] surveyed black-box, adequacy criteria proposed in
the literature for class diagrams, sequence diagrams, communication diagrams, state
machine diagrams, activity diagrams and use case diagrams. No studies discussed
adequacy criteria for deployment diagrams, component diagrams, composite
structure diagrams, interaction overview diagrams and timing diagrams. The study
also reviewed how the different criteria were evaluated for effectiveness and how were
they compared with each other. The paper concluded that little work was done on
evaluating the effectiveness of the criteria in detecting faults and on comparing the
criteria in terms of the coverage they provide.

Black-Box Test Case Generation Based on Contract Coverage Different
adequacy criteria have been proposed in the literature to achieve coverage of the
input contracts of the model transformation of interest. Fleurey et al. [33] proposed
constructing an effective metamodel composed of the source metamodel elements
referenced in the preconditions and postconditions of a model transformation. The
effective metamodel can then be used to define test adequacy criteria by partitioning
the values of attributes and multiplicities in the effective metamodel, generating
coverage items from the resultant partitions and deriving a test adequacy criterion
for each coverage item. No case study was conducted to verify the usefulness of the
proposed approach.

Bauer et al. [13] proposed a combined specification-based coverage approach for
testing a model transformation chain, where contract-based and metamodel-based
adequacy criteria were generated from the transformations in the transformation
chain. Traditional metamodel-based adequacy criteria, such as the AEM criterion,
were used. Contract-based adequacy criteria were generated that require the
execution of each contract by at least one test model in the test suite. Using
the generated coverage criteria and an initial test suite, a footprint was generated
for each test model. A footprint is a vector of the number of times a test model
covers each adequacy criterion. The quality of the test suite was then measured
using the footprints of all the available test models to assess the covered adequacy
criteria, the uncovered adequacy criteria and the redundant test models. The
generated information was used to guide the tester to add or remove test cases to
improve the quality of the test suite. The study proposed a tool that implements
the proposed approach called the Test Suite Analyzer for Model Transformation
Chains. A case study was conducted on a commercial model transformation chain
with a test suite of 188 test models. Several test adequacy criteria were found to
be unsatisfied and adding test models to cover these criteria revealed faults in the
model transformation chain. Moreover, 27 redundant test models were identified,
19 of which were removed after manual examination. Bauer and Küster [14]
investigated the relation between specification-based (black-box) test adequacy
criteria proposed in [13] and code-based (white-box) test adequacy criteria derived

32



from the control-flow graph of a transformation chain. Such a relation can be useful
in many ways. First, the relation can be used to determine parts of the specification
that are relevant to a code block and vice versa. Second, the relation can be used
to identify code and specification relevant to a test model to facilitate debugging
the transformation for failing test models. Third, the relation can be used to
determine how closely related the two types of criteria are and hence how closely
the implemented code reflects the specification. The relation between specification-
based and code-based test adequacy criteria was generated using the test suite in
the following manner: if a test model satisfies a code-based test adequacy criterion
c1 and a specification-based test adequacy criterion s1, then c1 and s1 are related.
The coverage of the two types of criteria were computed for each test model and
was used to generate a scatter plot and a correlation coefficient for the test suite.
A positive linear scatter and a correlation coefficient close to one implied that the
code implemented its specified behavior. The study used the same tool and model
transformation chain used in [13] to investigate the relation between the two types
of criteria using the proposed approach. Several conclusions were reached. For
example, the coverage achieved for the code-based and specification-based criteria
were found to be linearly correlated. Thus, properties of code blocks were deduced
from their related specifications without having to manually analyze the code.

White-Box Test Case Generation Different adequacy criteria have been
proposed in the literature to achieve coverage of the implementation of the
model transformation of interest. Since the criteria are transformation language-
dependent, different criteria have to be defined for model transformations imple-
mented in different languages.

Fleurey et al. [33] proposed statically analyzing a model transformation to build
an effective metamodel from the model transformation implementation that can be
used to define test adequacy criteria. The effective metamodel is composed of the
source metamodel elements referenced in the model transformation implementation.
The effective metamodel can be generated automatically using a static type checker
of the transformation language used. During type checking, all metamodel elements
referenced in the transformation are collected to form the effective metamodel.
Attributes and multiplicities that constitute the effective metamodel can then be
partitioned to choose representative values of the input domain and the defined
partitions can be used to generate coverage items. Accordingly, a test adequacy
criterion can be generated for each coverage item to ensure coverage of the effective
metamodel. No case study was conducted to verify the usefulness of the proposed
approach.

Küster and Abd-El-Razik [46] investigated white-box test case generation for
business process development. The study proposed three white-box test case
generation approaches to test five business process model transformations built
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using IBM WebSphere Business Modeler. The five model transformations were
specified as a set of conceptual transformation rules that were later used to
implement the transformation in Java. The first white-box test case generation
approach was based on transforming a conceptual rule into a source metamodel
template, from which model instances can be created automatically. To create
a source metamodel template from a transformation rule, abstract elements in
conceptual rules must be made concrete, i.e., parameterized. Thus, several source
metamodel templates were generated from each rule to ensure source metamodel
coverage per rule. The second white-box test case generation approach was
proposed to experiment with output models with constraints. Output model
elements affected by the transformation of interest were identified, then constraints
dependent on these output model elements were identified. For each identified
constraint, a test case that affects the constraint of interest was generated. The
third white-box test case generation approach used rule pairs for generating test
cases. The approach was based on the idea that errors can occur due to the
interplay of rules if the transformation of interest is not confluent. Critical input
models were constructed that contain overlapping match patterns of rule pairs. The
output of the transformation was then analyzed to test confluence of the model
transformation. After evaluating the three approaches, the study concluded that
the approach based on rule pairs revealed fewer errors than the first two approaches.
However, no detailed results were demonstrated in the study.

McQuillan and Power [56] assessed the coverage of ATL rules by profiling the
operation of each rule during the execution of the transformation. ATL has two
features which allow it to support such profiling. First, compiled ATL rules are
stored in XML files and are executed on top of a special purpose virtual machine.
Second, ATL can run in debug mode and can print out a log file of the executed
instructions. To assess rule coverage of ATL transformations, the study proposed
a two phase-approach. In the first phase, the XML file resulting from compilation
of the model transformation is processed to extract statistics about ATL code
structures in the transformation. From the first phase, compiled ATL code was
found to have three main classes of code structures: irrelevant scaffolding code
(e.g., routines for resolving references); code corresponding to rules (i.e., each rule
had two functions used to match input model elements and to generate output
model elements) and code corresponding to helpers (each functional or attribute
helper had a corresponding function). The study extracted the available rules and
helpers from the XML file. Scaffolding code was not considered in the study. In
the second phase, the transformation was executed using the available test suite.
For each test model, the resulting log file was processed to find out how much
of the code structures extracted from the first phase were covered according to
three white-box coverage criteria: rule coverage, instruction coverage and decision
coverage. Accordingly, the cumulative coverage achieved by the entire test suite
was calculated by accumulating the coverage results achieved for each test model.
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The approach was applied to two transformations from the ATL transformation
zoo [34]. The results revealed that improving the decision coverage can improve
coverage of the transformation as a whole.

Lämmel [47] used white-box test case generation for grammar testing. Although
the study proposed an adequacy criterion for grammar testing, the criterion can
be leveraged for model transformation testing since using a grammar or a parser
to transform a language is similar to using a transformation to transform models.
The study proposed a modified version of the rule coverage criterion that requires
at least one test model in the test suite to trigger each rule in the grammar. The
modified version of the criteria, referred to as context-dependent branch coverage,
requires at least one test model in the test suite to trigger each rule in every possible
context. For example, if the outcome of rule r1 can trigger either rule r2 or rule
r3, then there must be one test model that triggers r1 then r2, and another test
model that triggers r1 then r3. However, no case study was conducted to evaluate
the efficiency of the proposed criterion in detecting model transformation faults.

5.5.3 Phase II: Test Suite Assessment

Many studies used the coverage achieved by a test suite with respect to some
adequacy criteria as an assessment of the quality of test suites ( [5, 33, 35, 32, 84,
63, 38, 55, 13, 14, 46, 56]). Other studies used mutation analysis instead ( [60, 48,
55, 59, 63]). We discussed in Section 5.5.2 how to measure the coverage achieved
by a test suite with respect to black-box or white-box adequacy criteria. In this
section, we discuss mutation analysis in more depth.

Mutation analysis [59] is a technique used to assess the quality of a test
suite by evaluating the sensitivity of the test suite to faults or mutations in the
model transformation of interest. Mutation analysis involves injecting faults in
a transformation to generate mutants or faulty versions of the transformation.
Mutants are generated by applying mutation operators or operators that inject
faults in the original transformation. The injected faults represent fault models
or common errors committed by developers when building transformations. The
mutants and the original transformation are then executed using each test model
in the test suite under assessment. For each mutant, the output of the mutant is
compared to the output of the original transformation. If one test model produces
different results for the transformation and the mutant, then the mutant is killed ;
i.e., a test model from the test suite detected the injected fault. The mutant stays
alive if no test model detects the injected fault. A mutant that can not be killed
by any test model is an equivalent mutant and has to be discarded from the set
of mutants. A mutation score is computed to evaluate the test suite as shown in
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Equation (2).

MutationScore =
|KilledMutants|

|Mutants| − |EquivalentMutants|
(2)

A high mutation score indicates that the test suite is sensitive to faults in the
transformation and that the test suite is adequate. A low mutation score indicates
that the test suite needs to be improved. Unlike measuring the coverage of adequacy
criteria, mutation analysis evaluates a test suite in terms of its fault revealing power.

Mottu et al. [59] proposed semantic mutation operators to assess test suites
of model transformations. Semantic mutation operators model semantic faults
which are normally not detected when programming, compiling or executing a
transformation. Four basic operations were identified in any transformation: input
model navigation, filtering of the navigation result, output model creation or input
model modification. The study then proposed fault models and hence, mutation
operators related to each of the four operations. An example of a mutation
operator related to the navigation operation is navigating the wrong association.
An example of a mutation operator related to the filtering operation is removing
the filtering applied to the result of a navigation operation. An example of a
mutation operator related to output model creation or input model modification is
creating or modifying a model element compatible with the desired model element.
Using all the proposed mutation operators, mutants were generated for a Java
transformation and were compared with the mutants generated using a commercial
tool called MuJava. MuJava uses classical mutation operators that exist in any
programming language and are not dedicated to MDD. MuJava generated almost
double the number of mutants generated from the proposed operators, with more
mutants being not viable, i.e., detected at compile-time or run-time. The study
concluded that the easiness of implementing a mutation operator is dependent on
the mutation operator and the language used. For example, it was found more
difficult to implement mutation operators in Java than in any other language.

Dinh-Trong et al. [28] discussed fault models and mutation operators for UML
models. Although the study focused on mutation analysis of models and not model
transformations, we discuss how the ideas can be leveraged for transformations.
Three main fault models were identified: design-metric related faults, faults
detectable without execution and faults related to behavior. Design metric related
faults result in undesirable values for design metrics, such as cohesion. Undesirable
values for such metrics do not necessarily imply a fault, but can imply problems in
non-functional properties of the transformation, such as understandability. Faults
detectable without execution result from syntactic errors and are easily killed by
MDD development environments. Faults related to behavior are usually more
difficult to detect. They arise due to incorrect specification of a transformation that
is syntactically correct, hence can easily go undetected. Several mutation operators
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were discussed and classified according to the proposed taxonomy. Proposed
mutation operators included mutating assignments of class attribute values and
swapping compatible parameters in an operation definition. The study claimed
that equivalent mutants usually occur if the mutation operator results in a weaker
constraint, e.g., a mutation operator that removes the filtering applied on navigation
results can result in an equivalent mutant. Only static analysis techniques can
detect equivalent mutants.

5.5.4 Phase III: Building the Oracle Function

In model transformation testing, an oracle function compares the actual output
with the expected output to validate the transformation of interest. If the expected
output is known, then the oracle function is a model differencing or a model
comparison task. However, if the expected output is not known, then the oracle
function validates the transformation’s output with respect to some predefined
output contracts.

Model differencing or model comparison has been identified as a major task
in model transformation testing [43]. Lin et al. [52] proposed a complete
model transformation testing framework which was integrated with the model
transformation engine C-SAW and used model comparison as the oracle function.
The model transformation language used in C-SAW is ECL, an extension of OCL.
In ECL, a transformation specification can be either a strategy or an aspect. A
strategy specifies the required transformation, while an aspect specifies the binding
of a strategy to an input. The proposed framework has three components: a test
case constructor, a test engine and a test analyzer. The input of the test case
constructor is a set of test cases composed of the paths of the input models and their
expected output models, and the strategy specifying the transformation. For each
test case, the test constructor generates an executable test case with defined aspects.
The study assumed that the input models and their expected output models were
manually built. Automation was in the execution of the tests and in integrating all
the testing steps into one framework. The test engine executes the generated test
cases and compares the generated output models with the expected output models.
The output of the test engine (i.e., the result of the comparison) is then passed
to the test analyzer. The test analyzer visualizes the comparison’s result using
different colors and shapes to facilitate analysis. The study demonstrated a case
study to show how the framework helped detect errors in a model transformation
example.

However, model comparison is a complete field and has many dimensions that
need to be addressed to be carried out successfully [51]. These dimensions include
syntactic differencing, semantic differencing and visualisation of model differences.
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Thus, in this paper, we do not discuss model comparison or differencing any further.
In this section, we only discuss using contracts as oracle functions.

Contracts as Oracle Functions Contracts can be used as partial oracle
functions, where contracts specify expected properties of the transformation and
its output, and are used to verify that the specified properties hold.

Many specification languages for defining model transformation contracts were
proposed. For example, Java Modeling Language (JML) [49] is a language that can
be used to define contracts for model transformations in Java. However, OCL [83]
has been used in many studies for specifying model transformation contracts.
Cariou et al. [24] discussed how to use OCL to specify model transformation
contracts. Constraints on input and output models were specified using OCL
invariants on profiles of the UML metamodel. Constraints on relationships between
input and output models were specified using two approaches. In the first
approach, OCL expressions that manipulate model elements were specified in the
postcondition of the transformation. In the second approach, OCL expressions
that manipulate models as packages were specified in the postcondition of the
transformation. The first approach has several advantages. The mapping between
input and output model elements is implicit, i.e., input model elements that are not
manipulated in the postcondition will automatically be maintained in the output
model. Moreover, OCL navigational expressions are simple due to the common
metamodel. On the other hand, a major disadvantage of the first approach is that
it can only be used in transformations where the source and target metamodels
are the same since the transformation operation must be owned by a classifier
(e.g., a class or a data type) of one metamodel. For transformations with different
source and target metamodels, a common metamodel needs to be defined and a
classifier of the common metamodel must be chosen to own the transformation
operation. Finding a common metamodel is not always easy; the metamodels may
have contradicting constraints. Further, the classifier must be carefully chosen
to enable all elements in the OCL expressions to be referenced and to make OCL
navigational expressions as simple as possible. The first approach was demonstrated
on two transformations [23]. The first transformation is a simple model refactoring
where the target metamodel is a constrained profile of the UML metamodel.
Both the source and target metamodels conform to the UML metamodel which
was used as the common metamodel and a contract was defined. The second
transformation was more complex where the source and target metamodels had
conflicting constraints. The constraints on the target profile were relaxed so that a
common metamodel can be found and a classifier of the common metamodel was
chosen to define the contract. In the second approach, contracts were specified as
OCL expressions in the postcondition of a model transformation that manipulate
models as packages. The main advantage of the second approach is that it can
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be used to define contracts for model transformations that manipulate different
source and target metamodels. However, disadvantages of the second approach
include the need for an OCL extension to define explicit mappings between input
and output model elements and their relationships. Since explicit mappings are
required, the transformation specification becomes more verbose, hence difficult to
read and maintain. Further, OCL navigational expressions can also be verbose due
to the use of different metamodels. The study demonstrated the second approach
to define contracts for a model transformation example. An extension for OCL was
defined and accordingly, contracts were specified for the packages containing the
source and target metamodels.

Mottu et al. [60] proposed an integrated design and test approach for building
vigilant model transformations using contracts. Vigilant model transformations
have contracts that are precise enough to detect errors at run time. Vigilant
transformations were built by checking the consistency between a transformation’s
test suite, implementation and contracts using mutation analysis (Section 5.5.3)
in three iterative steps. First, an initial test suite was analyzed repeatedly using
mutation analysis until an acceptable mutation score was achieved. Second, the
optimized test suite was used to test the implementation of the transformation and
fix errors. If the final model transformation implementation after fixing errors differs
significantly from the original implementation, mutation analysis was repeated since
different mutants can be generated. Finally, the accuracy of the transformation’s
contracts as an embedded oracle for the test suite was evaluated using mutation
analysis to assess the percentage of mutants detected by running the contracts. If
a mutant was killed by a test model but was not killed by any contract, then a
contract had to be added to reflect an accurate oracle function of the test suite.
The study demonstrated their approach on a simple model transformation example.
It was found that successive iterations of the approach increased the mutation score
of the contracts to detect up to 90% of the mutants detected by the test suite.

Gogolla and Vallecillo [37] proposed a framework for testing model transfor-
mations based on a generalized type of contracts called tracts. A tract defines a
set of constraints (source tract constraints, target tract constraints, source-target
tract constraints) and a tract test suite. Source tract constraints are constraints
on input models; target tract constraints are constraints on output models that
must be satisfied together with the target metamodel constraints; source-target
tract constraints are constraints on relationships between input models and their
corresponding output models; the tract test suite is a test suite built to satisfy
the source tract constraints and the source metamodel constraints. OCL was used
to specify the tract constraints. The context of the tract constraints was a tract
class that contained functions and attributes used to specify the tract constraints.
A framework was implemented as a proof of concept and was used to verify an
ATL transformation. The framework integrates different tools into UML-based

39



Specification Environment (USE). USE was used to define the tract class and
tract constraints. A Snapshot Sequence Language (ASSL) was used to implement
a program that automates the generation of a test suite that covers the source
metamodel constraints and the source tract constraints. The ASSL program was
specified and executed within USE. The generated test suite was transformed by
the transformation of interest, and the output models were verified with respect to
the tract constraints and the target metamodel constraints. The paper discussed
the advantages of using tracts in model transformation testing. However, no case
study was carried out to evaluate the framework and report on the results.

Le Traon et al. [48] used contracts to improve the vigilance and diagnosability of
a system. Vigilance is the probability that the contracts dynamically detect errors
caused by faulty statements in a model transformation. Diagnosability is the effort
needed to locate a fault once it has been detected by a contract. Although the study
focused on improving the vigilance and diagnosability of systems captured as models
with OCL constraints, the approach can be leveraged for model transformations
with contracts. A systems vigilance was expressed as a function of the isolated and
local vigilance of its constituent components and the probability that this specific
component causes a failure in the system. Similarly, a system’s diagnosability was
expressed as a function of two attributes: the probability that a faulty statement
in a set of statements bounded by two consecutive contracts is detected by any
contract that comes after the fault and the diagnosis scope. Three case studies were
conducted in Eiffel, an object-oriented language that supports contracts. The case
studies proved that a systems vigilance and diagnosability improved significantly
with the addition of contracts.
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6 Discussion

In this section we discuss the surveyed studies from different perspectives. First,
we collectively discuss the surveyed studies with respect to the three dimensions,
mentioned in Section 1. Then, we independently discuss each of the three
dimensions for the surveyed studies and any lessons learnt from them. We also
discuss relations between the three dimensions, and how can such relations be
useful to developers and researchers.

6.1 Overview of the Surveyed Studies with Respect to the
Three Dimensions

For each surveyed study, we show what analysis technique was used from the
proposed taxonomy (first dimension), the property analyzed (second dimension)
and the formalization used to specify the model transformation of interest (third
dimension). Table 2 summarizes this information for the surveyed static analysis
techniques. Table 3 summarizes this information for the surveyed dynamic analysis
techniques.

Analysis
Technique

Property Formalization Surveyed Studies

Type I
Formal
Methods

Type Consistency and
Semantical Properties

Algebraic
Formalization

[79]

Semantics Preservation Alloy [54]

Confluence
Graph Rewriting Sys-
tems

[67], [31], [26], [21],
[7]

Termination Petri Nets [81]

Termination
Graph Rewriting Sys-
tems

[68], [50], [7], [19],
[20], [31], [26], [10]

Type II
Formal
Methods

Assertions First-Order Logic [8]

Property Preservation TGGs [36]

Property Preservation Graph Rewriting Sys-
tems

[15]

Preservation of Syntac-
tic Relations

Graph Rewriting Sys-
tems

[53]

Table 2: Projection of the three dimensions for static analysis techniques
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Analysis
Technique

Property Formalization Surveyed Studies

Type III
Formal
Methods

Structural Correspon-
dence

Graph Rewriting Sys-
tems

[62]

Semantics Preservation
Graph Rewriting Sys-
tems

[9]

Type Consistency
and Multi-View
Consistency

Graph Rewriting Sys-
tems

[16]

Type Consistency
and Multi-View
Consistency

Alloy [4]

Type Consistency
and Multi-View
Consistency

PVS and Eiffel [65]

Model
Checking

Invariants Petri Nets [44]

Invariants, Safety and
Liveness Properties

Maude [18], [74]

Invariants, Safety and
Liveness Properties

Graph Rewriting Sys-
tems

[70], [72], [71], [73]

Bisimilarity
Graph Rewriting Sys-
tems

[61]

Semantics Preservation Java [1]

DSE

Design Options Graph Rewriting Sys-
tems and Petri Nets

[39]

Non-functional
Requirements

QVT Operational Lan-
guage

[29]

Design Options Prolog [76]

Instrumentation Faults XSL Language [27]

Testing Faults
Declarative/
Imperative Languages

[38], [5], [33], [35],
[32], [84], [63], [55],
[13], [14], [46], [56],
[47], [59], [28], [60],
[48], [43], [52], [51],
[49], [24], [23], [37],
[11], [12]

Table 3: Projection of the three dimensions for dynamic analysis techniques
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6.2 First Dimension: The Analysis Technique Used

Based on Table 2 and Table 3 several conclusions can be drawn with respect to the
analysis techniques used.

Testing has been heavily investigated, followed by Type I formal methods. The
interest in testing can be mainly attributed to the fact that many of the well-
established ideas of source code testing were adapted to model transformation
testing (e.g., white-box and black-box testing, and mutation analysis). However,
we noticed that testing model transformations has been mainly researched for
imperative and declarative languages and not for other formalizations such as graph
rewriting systems. Type I formal methods have also been heavily investigated due
to the many studies that proposed sufficient termination criteria.

On the other hand, we found that instrumentation was the least analysis
technique investigated, despite its ease of implementation (as was demonstrated
in [27]) and despite the existence of many studies for instrumenting source code.
Thus, instrumentation of model transformations presents potential for further
research. Its minimal need for a rigorous mathematical background and its
usefulness for debugging model transformations are bound to attract more studies
to investigate instrumentation.

We also found that for certain classes in the proposed taxonomy, all techniques in
the same class suffer from common disadvantages. For example, all Type I formal
methods require a rigorous mathematical background which not all researchers
have, and are costly to implement. Thus, despite their usefulness in guaranteeing
properties for any model transformation when run on any input model, they cannot
be easily used. Model checking can not guarantee a property for transformations
with a large state space, which are common for real world model transformations.
Similarly, DSE can not guarantee optimal design options or optimal values of quality
metrics for transformations with a large state space. For testing, many studies
proposed different white-box and black-box adequacy criteria. However, to the best
of our knowledge, no study evaluated the usefulness of different adequacy criteria
for uncovering different fault models. Such an evaluation is crucial for testers to
help them choose an adequacy criteria based on the expected faults.

6.2.1 A Comparison Between the Three Types of Formal Methods

We can not compare different classes in the proposed taxonomy with each other
since each class is best suited for analyzing different properties and for use with
different formalizations. However, we provide a comparison between the three
types of formal methods due to their common use of formal methods for model
transformation analysis. Type I formal methods (Section 4.1.1), Type II formal
methods (Section 4.1.2) and Type III formal methods (Section 5.1) represent a
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continuous spectrum in the ease of implementation, generalization and required
automation.

Type I formal methods are the most challenging to implement since they require
a rigorous mathematical background. However, Type I formal methods are the most
generalizable since they can be used to analyze certain properties for any model
transformation when run on any input model based on some mathematical proof.
Since Type I formal methods are implemented once and reused for many model
transformations, they require little automation. For example, studies that propose
sufficient termination criteria ( [54, 31, 26, 19, 81, 67, 79, 7, 20, 50]) or studies
that propose languages that preserve termination for any model transformation
( [10]) usually demonstrate a hand-written mathematical proof for their criteria
and languages. Nevertheless, some studies still automate their approaches using
existing tools such as theorem provers (e.g., [79]).

Type II formal methods and Type III formal methods are easier to implement
than Type I formal methods since they attempt to analyze properties for a certain
transformation (Type II formal methods) or a certain transformation execution
(Type III formal methods) and are not intended for any transformation. More
specifically, Type III formal methods are considered light-weight since they do not
analyze a transformation per se; they analyze a transformation execution. However,
since they are not intended for any transformation, they are less generalizable
than Type I formal methods. Such methods can be used repetitively to analyze
different transformations (Type II formal methods) or different executions of the
same transformation (Type III formal methods) and thus, they require automation
to be used effectively. For example, we surveyed studies that automate Type II
formal methods using model transformation checkers [53]. We also surveyed studies
that automate Type III formal methods using constraint solvers such as Alloy [4].

6.3 Second Dimension: Property Analyzed

Model transformation faults have been heavily investigated followed by termination.
All the other properties listed in the second column of Table 2 and Table 3 have
been almost equally investigated. This highlights the need for further research in
analyzing such properties.

One major issue we noticed is that different studies have different definitions
for some properties. For example, studies analyzing semantics-preservation had
different definitions for the property. Some used conformance to the target
metamodel constraints as a definition for semantics-preservation, while other
studies statically analyzed input and output models of a model transformation to
prove semantics-preservation. A standardized definition of properties with broad
definitions is needed to allow comparing different approaches analyzing the same
property.
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6.4 Third Dimension: The Formalization Used to Specify
the Model Transformation of Interest

Although imperative and declarative languages have been heavily used for testing
model transformations to analyze faults, graph rewriting systems have been used to
analyze a broader range of properties using different analysis techniques. The high
interest in graph rewriting systems lends itself to the fact that they are a graphical
formalization and an intuitive way for capturing transformations.

However, the former conclusion highlights the need for more studies investigat-
ing the analysis of different properties for model transformations implemented in
imperative and declarative languages due to the widespread use of such languages
in the real world. This will help developers analyze existent model transformations
implemented in imperative and declarative languages without having to transform
them to an intermediate formalization.

6.5 Relations Between the Three Dimensions

Table 2 and Table 3 can be used to deduce binary relations between the three
dimensions. Between the used analysis technique and the analyzed property, Type
I formal methods have been heavily used to analyze termination, model checking
has been heavily used to analyze invariants and LTL properties, and testing has
been heavily used to analyze faults.

Between the used formalization and the analyzed property, graph rewriting
systems have had a widespread use to analyze many properties, with termination
being the most well-researched. Further, imperative and declarative languages have
had a widespread use to analyze faults.

Between the used analysis technique and the used formalization, instrumen-
tation and testing have been researched only for transformations implemented in
imperative and declarative languages. While the rest of the analysis techniques have
been researched for model transformations implemented in different formalizations,
with graph rewriting systems being the most widely used formalization.

Such binary relations can be used by researchers to determine what other
combinations require further investigations. The binary relations can also be used
by developers as a reference to determine, for example, what analysis technique to
use if they would like to analyze a certain property.

Table 2 and Table 3 can be used as a reference such that given two dimensions
(e.g., a transformation implemented in some formalization and an available analysis
technique), what property (i.e., third dimension) can be analyzed. Further, a
researcher interested in one of the three dimensions (e.g., analyzing a certain
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property) can use the two tables to determine the combination of the other two
dimensions to use (e.g., the formalization and analysis techniques to use to analyze
the property of interest).

7 Conclusion

In this paper we proposed a taxonomy for model transformation analysis techniques
(Section 3), and we grouped the techniques proposed in the literature according to
the proposed taxonomy (Section 4 and Section 5). The techniques surveyed ranged
from formal methods (Section 4.1) to light-weight testing (Section 5.5). We also
investigated our taxonomy from the perspective of three dimensions (Section 6):
the analysis technique used, the property analyzed and the formalization used.
The relation between the three dimensions and how such a relation can be useful
was also discussed.

The proposed taxonomy extends a former taxonomy we proposed in [3], with
additions and minor changes. In this paper, we included testing, instrumentation
and design space exploration (DSE) to our taxonomy, which were not surveyed
in [3]. Further, in this paper, we consider model checking as a separate class of
analysis techniques, and not a subclass of formal methods as we did in [3]. This
is mainly due to the existence of a large base of studies on model checking for
transformations specified in different formalizations. We also introduced in this
paper another level of classification in our taxonomy, static analysis techniques and
dynamic analysis techniques, which were not used in [3]. Accordingly, all the classes
of analysis techniques were grouped as static or dynamic analysis techniques.

Due to the numerous studies discussing model transformation analysis tech-
niques, this work surveyed only a sample of the studies in the literature that fall
under each class of techniques in the proposed taxonomy. More work is needed to
make the survey a complete one.
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