
Comparison of Clone Detection Techniques
Technical Report 2012-593

Saeed Shafieian
QRST Group, School of Computing

Queen’s University, Kingston, Canada
saeed@cs.queensu.ca

Ying Zou
Department of Electrical and Computer Engineering

Queen’s University, Kingston, Canada
ying.zou@queensu.ca

Abstract— Many techniques for detecting duplicated source code
(software clones) have been proposed in the software
reengineering literature. However, comparison of these
techniques in terms of performance is not widely studied. There
are four general categories for clone detection techniques;
textual, lexical, syntactic, and semantic. This report presents an
experiment that evaluates different clone detectors based on four
Java programs of small to medium size scales. These subject
systems have been used in the recent literature, and can be
considered as standard systems for this purpose. At least one
clone detection tool has been tested for each category. The
comparison of different techniques is done based on performance
metrics for clone detection tools. The most widely used metrics,
precision and recall, have been used to calculate quantitative
values for the performance of different techniques so that they
can be compared with each other. The reference clones used in
the comparison are those in the Bellon corpus. Our goal was to
only evaluate systems that were not previously evaluated using
Bellon benchmark, and not to replicate the previous works in our
main experiment.

Keywords- software clones; clone detction techniques; clone
detection tools; comparison.

I. INTRODUCTION
Reusing code fragments by copying and pasting with or

without minor modifications is a common activity in software
development. As a result, software systems often contain
sections of code that are very similar, called code clones.
There are two main kinds of similarity between code
fragments. Fragments can be similar based on the similarity of
their program text, which is called textual similarity, or they
can be similar based on their functionality (independent of
their text), which is called functional similarity. There are four
clone types in total, in which the first three are textual and the
last one is functional [1][3]. In the first three groups, the
degree of textual similarity between clone pairs/group
decrease, so for example Type 3 clones are less similar to each
other than Type 1 clones are. This also means that detecting
Type 3 clones is harder than detecting Type 2 or Type 1.
Detecting Type 4 clones, which are also called semantic
clones, is undecidable in general [2], so we have only focused
on detecting Type 1, Type 2, Type 3 clones in this project.

Several studies show that software systems with code
clones are more difficult to maintain than the ones without

them [10][14]. The tendency of cloning not only produces
code that is difficult to maintain, but may also introduce
difficult to detect errors. Code clones are considered as one of
the bad smells of a software system and it is widely believed
that cloned code has several adverse affects on the
maintenance life cycles of software systems. Therefore, it is
beneficial to remove clones and prevent their introduction by
constantly monitoring the source code during its evolution.

Code cloning is found to be a more serious problem in
industrial software systems [4][12][14][17]. In presence of
clones, the normal functionality of the system may not be
affected, but without countermeasures by the maintenance
team, further development may become prohibitively
expensive [23]. Code clones may adversely affect the software
systems’ quality, especially their maintainability and
comprehensibility. For example, if a bug is found in a code
fragment, all of its similar cloned fragments should be
detected to fix the bug in question. Moreover, too much
cloning increases the system size and often indicates design
problems such as missing inheritance or missing procedural
abstraction [12]. Although the cost of maintaining clones over
a system’s lifetime has not been estimated yet, it is at least
agreed that the financial impact on maintenance is very high.
Grubb estimates the costs of changes carried out after delivery
at 40% - 70% of the total costs during a system’s lifetime.
Existing research shows that a significant amount of code of a
software system is cloned code and this amount may vary
depending on the domain and origin of the software system
[24].

Clone detection tools can be compared based on different
criteria. For example, they can be compared according to
usage (platform, external dependencies, availability),
according to interaction (user interface, nature of output, IDE
support), or based on language (language paradigm, language
support) [1]. However, in this project we will compare
different tools according to Bellon clone evaluation
benchmark [2]. The performance of different techniques will
be quantitatively and qualitatively compared with each other.
For this purpose, precision and recall metrics will be
calculated for each technique, and used as performance
evaluation metrics. The rest of the report is organized as
follows. Section II gives an overview of the related works
done for comparing and evaluating clone detection tools and

techniques. Section III discusses our proposed approach in
comparing different clone detection techniques, and
comparing them to Bellon results. Some of the tools used in
this experiment are new, and were not used by Bellon. Section
IV shows the results achieved using the mentioned approach.
In Section V some of the problems that we faced are
mentioned. Finally, Section VI concludes the report, and
illustrates the future work.

II. RELATED WORK

One of the first experiments done for comparing clone
detection tools was conducted by Burd and Bailey [5]. They
compared three state-of-the-art clone detection and two
plagiarism detection tools. They began by validating all the
clone candidates of the subject application obtained with all
the techniques of their experiment to form a human oracle,
which was then used to compare the different techniques in
terms of several metrics to measure various aspects of the
reported clones. Although they were able to verify all the
clone candidates, the limitations of the case study in terms of a
single subject system, a graph layout tool developed in 1999 at
the University Of Durham, modest system size and validation
subjectivity may make their findings not comprehensive.
Moreover, the intention of their analysis was to assist in
preventative maintenance tasks, which may have influenced
their clone validation process.

Considering the limitations of Burd and Bailey’s study,
Bellon et al. set out to conduct a larger tool comparison
experiment [2] on the same three clone detection tools used in
Burd and Bailey’s study and three additional clone detection
tools. They also used a more diverse set of larger software
systems, consisting of four Java and four C systems totaling
almost 850 KLOC. As in the study of Burd and Bailey, a
human oracle validated a random sample of about 2% of the
candidate clones from all the tools evenly and blindly. While
their study is the most extensive to date, only a small
proportion of the clone candidates were oracled and several
other factors may have influenced the results [25]. Bellon’s
framework has been reused in experiments by Koschke et al.
[6][7], Ducasse et al. [8] (partially), and Selim et al. [18].

Rysselberghe and Demeyer [9][23] have evaluated
prototypes of three representative clone detection techniques,
providing comparative results in terms of portability, kinds of
duplication reported, scalability, number of false matches, and
number of useless matches. However, they did not make a
reference set, used relatively small subject systems (under 10
KLOC) and did not provide the reliability of the oracle(s) that
validated the detected clones. Moreover, rather than
quantitative evaluation of the detection techniques, their
intention was to determine the suitability of the clone
detection techniques for a particular maintenance task
(refactoring) which might have influenced their clone
validation.

Roy and Cordy [1][3] have performed one of the most
comprehensive studies in comparing and evaluating clone

detection tools and techniques. They provide a qualitative
comparison and evaluation of the to date state-of-the-art in
clone detection techniques and tools, and organize the large
amount of information into a coherent conceptual framework.
They classify, compare and evaluate the techniques and tools
in two different dimensions. First, they classify and compare
approaches based on a number of facets, each of which has a
set of (possibly overlapping) attributes. Second, they
qualitatively evaluate the classified techniques and tools with
respect to taxonomy of editing scenarios designed to model
the creation of Type-1, Type-2, Type-3 and Type-4 clones.
They also provide examples of how one might use the results
of this study to choose the most appropriate clone detection
tool or technique in the context of a particular set of goals and
constraints.

One of the latest studies in this area was done by Selim et
al. [18]. They presented a hybrid clone detection technique,
which complements string or token-based clone detectors to
detect Type 3 clones by leveraging the intermediate
representation. They used systems from the Bellon benchmark
and through a manual quantitative and qualitative evaluation,
showed that their technique is able to detect Type 3 clones.
The recall rates for their technique were higher than those for
source-based clone detectors with minimal drop in the
precision using Bellon corpus, which has incomplete clone
groups. Their technique also has slightly higher precision than
the standalone string and token-based clone detectors.

III. OVERVIEW OF APPROACH

We have used three Java applications from the Bellon
benchmark, and one other Java application from apache
project as our subject and test systems. The reason for
choosing these systems as subject systems is to enable me to
compare our results to those of Bellon et al [2]. Furthermore,
Bellon benchmark has been used in the recent literature in
other papers like [18]; therefore we will be able to compare
the results with their results, too.

There are four major categories for clone detection
techniques, which are textual or text-based techniques, lexical
or token-based techniques, syntactic techniques, and semantic
techniques [1][3]. Syntactic approached can be further divided
into tree matching approaches and metrics-based approaches
[1]. Some authors consider these last two approaches as
different approaches, however we will use the general
classification performed by Cordy in this report.

For each of the four major categories for clone detection
techniques, we have used at least one subject system, except
for the last one, as the representative of that category. The
availability of clone detectors in different categories varies, for
example there are some good text-based and token-based
clone detectors available, whereas finding a detector for the
semantic approach is really difficult. The reason for this is that
most of the tools are academic tools, and were mainly
developed for the purpose of the published papers based on

them. As a consequence, a downloadable and working version
does not exist for all of them.

The Bellon benchmark is an experimental setup suggested
by Bellon et al. [2] as a means of standardizing the evaluation
of clone detectors. In this benchmark, due to the time needed
to manually verify the results, only 2% of the clone groups
reported by the clone detectors are randomly selected and
evaluated by Bellon. Evaluation is done incrementally where
1% of the reported clone groups are ’oracled’ for evaluation,
and then another 1% is tested. Clone groups validated by
Bellon as correctly identified clone groups are used to build a
reference corpus. Each reported clone group is referred to as
a ‘candidate’, and each correctly identified clone group is
referred to as a ‘reference’. Further details of the original
setup are provided in [2].

Now, we will explain the four major categories for clone
detection approaches, and the tools we have used for each
category.

A. Textual Approaches
Textual approaches (or text-based techniques) use little or

no transformation/normalization on the source code before the
actual comparison, and in most cases raw source code is used
directly in the clone detection process [1].

There are a few clone detectors that find clones based on
similarity in code strings. These types of clone detection tools
are generally only able to find Type 1 clones [18]. For the
purpose of this study, we have used Simian [19], NiCad
[27][21], and SDD [28][22] as clone detectors for the textual
category.

Simian (Similarity Analyzer) identifies duplication in Java,
C#, C, C++, COBOL, Ruby, JSP, ASP, HTML, XML, Visual
Basic, Groovy source code and even plain text files. It runs
natively in any .NET 1.1 or higher supported environment and
on any Java 5 or higher virtual machine. In this project, we
have used the Java version of Simian, which is a command line
tool. It can generate outputs in plain text and XML formats.

NiCad is a flexible TXL-based hybrid language-sensitive,
text comparison software clone detection developed by James
R. Cordy and Chanchal K. Roy based on Chanchal’s PhD
thesis work. It uses syntactic pretty-printing with flexible code
normalization and filtering, then textual comparison with
thresholds. It provides output results in both XML form for
easy analysis and HTML form for convenient browsing. NiCad
is currently available for installation as a command-line tool on
Linux, Mac OS X and Cygwin. To run NiCad on a system,
FreeTXL compiler/interpreter must first be installed on that
system. NiCad runs in two modes, functions and blocks.
Functions mode only detects function clones, and blocks mode
only detects blocks of code. Therefore, it cannot detect
sequence of codes as code clones when they are neither
functions nor blocks. This makes comparing this tool with
other ones difficult. However, we decided to evaluate it in this
project because it was not evaluated using Bellon benchmark
before.

 SDD is a clone detection tool that can be used as an Eclipse

plugin. It uses data structure of an inverted index and an index
with n-neighbor distance concept. It has three properties,
which can be configured based on the specific subject system;
pattern for file matching: a pattern of the target files for SDD
that determines which types of files should be used for clone
detection, N-neighbor length: suitable values are 2 or 3, and
minimum chain size: the minimum size of similar parts, for
which normally 15 or more is good. In this project, we have
used 2 for n-neighbor length and 15 for minimum chain size.

 Comparing the results SDD clone detector with the Bellon
reference corpus was very difficult, because this tool generates
the results graphically in an Eclipse window, and there is not
any file associated with them.

 As stated before, our goal in this study is to evaluate the
tools that have not been evaluated before using Bellon
reference corpus. Therefore, we will not use Simian for the
main experiment, and will only use NiCad and SDD for this
purpose.

B. Lexical Approaches
Lexical approaches (or token-based techniques) begin by

transforming the source code into a sequence of lexical
‘tokens’ using compiler-style lexical analysis. The sequence is
then scanned for duplicated subsequences of tokens and the
corresponding original code is returned as clones. Lexical
approaches are generally more robust over minor code
changes such as formatting, spacing, and renaming than
textual techniques [1].

For lexical or token-based approaches, we have used
PMD’s CPD [20], which is able to detect clone Types 2 as
well as Type 1. This tool can be used as an Eclipse plugin, and
generates reports in plain text format, XML and in CSVs. It
gets the minimum number of tokens to be detected for each
clone pair as an input. In this project the default value of 25
was used. However, 25 tokens can build even a two-line code,
which is not an appropriate clone size according to Bellon
benchmark. Therefore, clone pairs/groups, which consisted of
less than six lines, were removed from the results manually.

 The other clone detector that we have used for the category
of token-based tools is iClones [26]. iClones is an incremental
clone detection tool that can extract clone evolution data from
a program’s history. For this purpose, it needs to have access
to the source codes of different versions of the program. It
generates an RCF (Rich Clone Format) file that contains clone
evolution data. This file can then be analyzed using another
tool called Cyclone or RCFViewer. However, since the goal of
this project is not analyzing clone evolutions among different
versions of a subject system, we have used iClones in the
single-version mode, which like other clone detectors,
operates on a single version of a subject system.

C. Syntactic Approaches
Syntactic approaches use a parser to convert source

programs into parse trees or abstract syntax trees (ASTs),
which can then be processed using either tree matching or

structural metrics to find clones [1][3]. In tree matching
approaches, or tree-based techniques, clones are detected by
finding similar sub-trees. Variable names, literal values and
other leaves (tokens) in the source may be abstracted in the
tree representation, allowing for more sophisticated detection
of clones. On the other hand, metrics-based approaches gather
a number of metrics for code fragments and then compare
metrics vectors rather than code or ASTs directly [1][3].

For this category of clone detectors, there are even more
limited tools available than the previous two categories,
especially for the metrics-based subcategory. We have tried
CloneDR [17] in our test experiment, and CloneDigger [29] for
the main experiment.

In CloneDr, a compiler generator is used to generate an
annotated parse tree (AST) and compares its sub-trees by
characterization metrics based on a hash function. Source code
of similar sub-trees is then returned as clones. The hash
function enables one to do parameterized matching and to
detect gapped clones, especially if the gaps are within a line.
Unlike other clone detection tools, CloneDr is a commercial
product, and the trial version only reports 10 sample clones of
medium size (max 50 lines). Therefore, it could not be used for
the main run, in which we need full results for calculating
precision and recall.

CloneDigger uses XML representation of ASTs and anti-
unification and code abstraction to find software clones in the
source code. This tool uses adapters, which convert source files
into an XML representation of their abstract syntax trees.
Currently there are adapters for two languages: Python and
Java. Adapters for other languages can be created, e.g. by using
parser generators or using internal compiler representations. It
takes several threshold values, including minimum clone size,
as input parameters. It then produces a nice HTML file with a
list of clones. Each pair is reported statement by statement with
a highlighting of differences.

D. Semantic Approaches
Semantics-aware approaches have also been proposed,

using static program analysis to provide more precise
information than simply syntactic similarity. In some of these
approaches, the program is represented as a program
dependency graph (PDG). The nodes of this graph represent
expressions and statements, while the edges represent control
and data dependencies. This representation abstracts from the
lexical order in which expressions and statements occur to the
extent that they are semantically independent. The problem of
finding clones is then turned into the problem of finding
isomorphic sub-graphs [1][3].

There are very few clone detection tools available for this
category. Therefore, in this project we did not evaluate any
semantic-aware clone detectors.

E. Performance Evaluation
We compare the performance of clone detection tools with

each other. Our goal is to find out which clone detection
technique performs better than the others, at least based on the

subject systems used in this project. We measure the
performance using Recall and Precision, which are calculated
as shown in equations (1) and (2). Precision is the number of
reference clone groups detected by each technique relative to
all the candidate clone groups detected by that technique.
Recall is the number of reference clone groups detected by
each technique relative to all of the reference clone groups
available in the Bellon benchmark for that specific system.

(1)

(2)

IV. CASE STUDY
This section describes our experiment with clone detection

tools. The experiment is divided into two phases; the test run
and the main run.

A. Test Run
The goal of the test run was to identify potential problems

for the main run. The test phase analyzed three Java programs,
EIRC, Suple, and Apache Ant. Eteria IRC Client (EIRC), is an
Internet Relay Chat client program written in Java. Spule,
Secure Practical Universal Lecture Evaluator, is a Java
application that automates the evaluation of lecture polls. And
the last one, Apache Ant, is a Java library and command-line
tool whose mission is to drive processes described in build
files as targets and extension points dependent upon each
other. The main known usage of Ant is the build of Java
applications. Table I shows the characteristics of these
systems.

In the test run, it was noticed that some tools report the
start and end lines of the code fragments a line earlier or later
if the lines consist of only a brace. In practice, this difference
is irrelevant, but it complicates the comparison of clones from
different tools. For this reason, the source code for the main
run need to be normalized, such that blank lines are removed
and lines containing only opening or closing braces are
removed and the braces are added to the line above. Therefore,
we used a normalized Java application from Bellon benchmark
for the main run.

The results of the test run on the previously mentioned
applications are shown in Tables II, III, IV, and V. Clone
detection tools used in the test run were Simian, NiCad,
PMD’s CPD, and CloneDr. Therefore, two text-based, one
token-based, and one tree-based clone detectors were used in
the test experiment.

Table II shows an overview of the results found by Simian
for the three test systems. The parameters used for Simian were

Candidates

ReferencesDetected
Precision

References

ReferencesDetected
Recall

TABLE I
OVERVIEW OF TEST SUBJECT SYSTEMS

System KLOC in Java # Java Files

EIRC 12 65

Spule 13 58

Apache Ant 254 1176

TABLE II
CLONE DETECTION RESULTS IN THE TEST RUN USING SIMIAN

System # Clone pairs/groups
detected

Max # of
Lines

Clone
Types

EIRC 29 23 Type 1

Spule 46 19 Type 1

Apache Ant 435 94 Type 1

its default parameters. This tool reports the detected clones as
clone groups. The output generated in XML format was used
during the test run. As the table shows, this tool was only able
to detect Type 1 or exact clones. Clones less than six lines
were removed from the results and not counted.

NiCad operates in two modes: functions and blocks. With
the functions granularity, only function clones are detected,
and with blocks granularity, clones that make a block are
found. As a consequence, NiCad does not detect sequences of
statements as code clones. This makes the comparison of this
tool with other ones difficult. However, since it is a new tool,
and generated good results in the run, it was used for the main
run too. Table III shows the results obtained from running
NiCad on the three test systems. As the table shows, this tool
was able to detect all the three types of software clones.

NiCad reports results with the thresholds of 0%, 10%,
20%, and 30%. The results shown in Table III are for the
blocks granularity and the threshold 30%, because these are
the most comprehensive results, and other thresholds are also
covered. This tool reports the found clones in clone groups.
Clones less than six lines were removed from the results and
not counted. Table IV illustrates the results of clone detection
by CPD for the test systems. CPD was unable to detect clones
of Apache Ant due to lexical error. This tool was able to find
clones of Type 1 and Type 2.

The clone detection tool tested in the category of syntactic
tools was CloneDr. Table V shows the results obtained using
this commercial tool for finding clones in the test systems. Like
the previous tool, CloneDr was not able to find clones in
Apache Ant due to parsing error. The similarity threshold used
for the test run was 95%. As Table V shows, this tool was able
to detect Type 1 and Type 2 clones for EIRC, and only Type 1
clones for Spule. Clones of the sizes less than six were
removed, and not counted in the results.

TABLE III
CLONE DETECTION RESULTS IN THE TEST RUN USING NICAD

System
Clone

pairs/groups
Detected

Max # of
Lines

Clone
Types

EIRC 40 18
Type 1,
Type 2,
Type 3

Spule 46 46
Type 1,
Type 2,
Type 3

Apache ant 727 148
Type 1,
Type 2,
Type 3

TABLE IV

CLONE DETECTION RESULTS IN THE TEST RUN USING CPD

System # Clone pairs/groups
detected

Max # of
Lines

Clone
Types

EIRC 91 44 Type 1,
Type 2

Spule 202 24 Type 1,
Type 2

TABLE V

CLONE DETECTION RESULTS IN THE TEST RUN USING
CLONEDR

System # Clone pairs/groups
detected

Max # of
Lines

Clone
Types

EIRC 50 46 Type 1,
Type 2

Spule 63 47 Type 1

B. Main Run
Bases on the test run, and problem we realized during that

phase, we selected the following clone detection tools: NiCad
and SDD as text-based clone detectors, iClones and CPD as
token-based clone detectors, and CloneDigger as the tree-based
clone detector. The goal of this phase is to compare the
performance of these tools according to precision and recall
metrics.

We have chosen Netbeans Javadoc as our subject system.
Therefore, the performance of these five clone detection tools
will be compared based on clones they find in the subject
system.

As mentioned before, we have used Bellon reference corpus
for the purpose of comparison. We have also used the
normalized version of the source code for the subject system as
used by Bellon et al. In this version of Netbeans Javadoc, all
blank lines have been removed, and lines containing only curly
braces are adjusted. Table VI shows an overview of the subject
system used for the main experiment. Two of the tools were
tested for the first time in the main run, iClones and
CloneDigger. Table VII shows an overview of the clone
detection results for these tools. For iClones, the default
configurations were used. As the Table VII shows, this tool
was able to detect all the three clone types in the subject
system. This tool is able to generate the output in RCF format,
which makes the comparison process simpler.

TABLE VI
OVERVIEW OF THE SUBJECT SYSTEM FOR THE MAIN RUN

System # Java
Files

Comment
Lines

Code
Lines

Total
KLOC in

Java

Netbeans Javadoc 101 4780 9580 14

TABLE VII
OVERVIEW OF RESUTLS FOR NETBEANS-JAVADOC USIING

ICLONES AND CLONEDIGGER

Clone Detector
Clone

pairs/groups
detected

Max # of
Lines

Clone
Types

iClones 43 110
Type 1,
Type 2,
Type 3

CloneDigger 680 54 Type 1,
Type 2

For the CloneDigger tool, only one parameter was changed
during the experiment; size-threshold. This parameter
determines the minimum clone size to be detected, so when this
parameter is used, there is no need to removes clones less than
six lines manually. CloneDigger was considerably slower than
the other tools, but was able to find considerably much more
clones pairs than the other tools. It can operate in a fast mode,
which is faster, but finds fewer clones. As Table VII shows,
this tool was able to find clones of Type 1 and Type 2 only. In
fact, it can find clones only if they have exactly the same size.
This tool was more successful in finding the first two type
clones than the other tools.

The most important part in the main run is evaluating the
performance of the discussed clone detection tools. For this
purpose, precision and recall metrics values are calculated
based on the Bellon reference corpus for the subject system.
The parameters used for the clone detectors are the same as
those used in the test run. Table VIII shows the performance
results of the tools used for the main experiment.

The number of reference clones pairs found was very
similar for the four text-based and token-based tools. However,
the tree-based tool, CloneDigger, found considerably more
clone pairs. As a consequence, the recall value for the first four
tools are similar, but it is higher for the tree-based tool. The
low precision value for the tree-based tool is because of the fact
that it found much more clone pairs than the other tools.
Therefore, for this tool there is a trade-off between precision
and recall.

Figure 1 and Figure 2 show the Precision and Recall values
for the five tested clone detection tools in comparison with
each other. As Fig. 1 shows, iClones has the highest Precision
value and CloneDigger has the lowest one among all the five
tested clone detection tools. However, as Fig. 2 shows,
CloneDigger has the highest Recall value and iClones has the
lowest one among all the tested clone detectors. Therefore, it
seems that there is a trade-off between high Precision and high
Recall values for these tools.

TABLE VIII

PERFORMANCE OF TOOLS IN THE MAIN RUN FOR NETBEANS-
JAVADOC

Category Clone Detector Precision Recall

Text-Based
NiCad 0.17 0.22

SDD 0.24 0.22

Token-Based
iClones 0.26 0.20

CPD 0.11 0.24

Tree-Based CloneDigger 0.03 0.36

V. PROBLEMS
One of the first problems we faced during this study was

finding working clone detection tools. In fact, there are many
clone detection techniques based on the software
reengineering literature, however the real developed tools for
all of these techniques are not available online, or at least are
very hard to find. The other issue in this regard was setting up
the tools. These trivial problems took a lot of time during the
whole period of the experiments.

The other issue was finding the appropriate reference clone
pairs. We were only able to find reference clones for Netbeans
Javadoc application, which was used in the main run. We
tested another reference clone set, which was for EIRC
application, but it did not match any of the three available
versions of EIRC. The other reference sets were very large,
and could not be used in the time frame we had for this study.

The last problem was the ambiguity in setting the right
parameters for the tools. These settings can greatly affect the
number and quality of clones found by some of the tools. As
there was no standard for this purpose, we used the default
values as far as possible.

VI. CONCLUSION AND FUTURE WORK
Four Java applications ranging from 12 to 254 KLOC were

used as subject systems in this study. Clone detection was done
on these systems using five clone detectors from three different
categories. Each tool represents a different technique, since
even all the tools in the same category do not use the same
algorithm for finding software clones. In order to compare the
quality of different clone detection tools and techniques, we
used Precision and Recall as the performance evaluation
metrics.

The text-based and the token-based tools had very similar
recall values, but their Precisions were different due to the fact
that they found different numbers of clone pairs. Nevertheless,
the tree-based tool had a noticeably higher recall value, and a
noticeably less precision value than the tools in the other
categories. All of these tools reported clones as clone groups,
except for CloneDigger that reported results in clone pairs.

Fig. 1. Precision values of the different techniques

Fig. 2. Recall values of the different techniques

The results were graphical only for the SDD tool. For the other
tools, the results were mainly in plain text, html, or CSVs.

All the empirical results reported in this report were done
using a Mac OS X Lion machine, except for CloneDigger and
CloneDr, which were tested on a Windows machine due to the
lack of Mac OS versions. All the comparisons done in this
study were performed manually, which was very time
consuming. One of the future works may be writing a program
to automatically compare candidate clones with reference
clones, and calculates precision and recall values. This will
greatly help in reducing the time required in performing the
tests, and will enable us to focus more on other aspects of the
study.

One of the other future works may be including the
evaluation of semantic-aware clone detection tools based on
Bellon reference corpus. The other one could be automating the
comparison and evaluation process, so that more tools can be
compared in a certain amount of time. The other improvement
could be including other benchmark metrics other than quality
metrics for comparing the results. The other improvement can
be involving more subject systems in the evaluation process.

ACKNOWLEDGMENT

We would like to thank Dr. Rainer Koschke for providing
us with the iClones tool. We also thank Peter Bulychev for
providing us with the latest version of CloneDigger. The first
author thanks Dr. Cordy for answering his inquiries regarding
NiCad.

REFERENCES

[1] Roy CK, Cordy JR, Koschke R. Comparison and evaluation of clone
detection techniques and tools: A qualitative approach. Science of
Computer Programming 2009; 74:470–495.

[2] Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, Comparison and
evaluation of clone detection tools, Transactions on Software
Engineering 33 (9) (2007) 577–591.

[3] Roy CK, Cordy JR. A survey on software clone detection research. TR
2007-541, Queen’s School of Computing, 2007; 115.

[4] T. Kamiya, S. Kusumoto, K. Inoue, CCFinder: A multi linguistic token-
based code clone detection system for large scale source code, IEEE
Transactions on Software Engineering 28 (7) (2002) 654–670.

[5] E. Burd, J. Bailey, Evaluating clone detection tools for use during
preventative maintenance, in: Proceedings of the 2nd IEEE International
Workshop on Source Code Analysis and Manipulation, SCAM 2002,
2002, pp. 36–43.

[6] R. Koschke, R. Falke, P. Frenzel, Clone detection using abstract syntax
suffix trees, in: Proceedings of the 13th Working Conference on Reverse
Engineering, WCRE 2006, 2006, pp. 253–262.

[7] R. Falke, R. Koschke, P. Frenzel, Empirical evaluation of clone
detection using syntax suffix trees, Empirical Software Engineering
13(2008)601–643.

[8] S. Ducasse, O. Nierstrasz, M. Rieger, On the effectiveness of clone
detection by string matching, International Journal on Software
Maintenance and Evolution: Research and Practice 18 (1) (2006) 37–58.

[9] F. Rysselberghe, S. Demeyer, Evaluating clone detection techniques
from a refactoring perspective, in: Proceedings of the 9th IEEE
International Conference Automated Software Engineering, ASE 2004,
2004, pp. 336–339.

[10] J. Johnson, Identifying redundancy in source code using fingerprints, in:
Proceedings of the 1993 Conference of the Centre for Advanced Studies
on Collaborative Research, CASCON 1993, 1993, pp. 171–183.

[11] J. Johnson, Visualizing textual redundancy in legacy source, in:
Proceedings of the 1994 Conference of the Centre for Advanced Studies
on Collaborative research, CASCON 2004, 1994, pp. 171–183.

[12] S. Ducasse, M. Rieger, S. Demeyer, A language independent approach
for detecting duplicated code, in: Proceedings of the 15th International
Conference on Software Maintenance, ICSM 1999, 1999, pp. 109–118.

[13] B. Baker, A program for identifying duplicated code, in: Proceedings of
Computing Science and Statistics: 24th Symposium on the Interface,
vol. 24, 1992, pp. 49–57.

[14] B. Baker, On finding duplication and near-duplication in large software
systems, in: Proceedings of the 2nd Working Conference on Reverse
Engineering, WCRE 1995, 1995, pp. 86–95.

[15] R. Komondoor, S. Horwitz, Using slicing to identify duplication in
source code, in: Proceedings of the 8th International Symposiumon Static
Analysis, SAS 2001, 2001, pp. 40–56.

[16] J. Krinke, Identifying similar code with program dependence graphs, in:
Proceedings of the 8th Working Conference on Reverse Engineering,
WCRE 2001, 2001, pp. 301–309.

[17] I. Baxter, A. Yahin, L. Moura, M. Anna, Clone detection using abstract
syntax trees, in: Proceedings of the 14th International Conference on
Software Maintenance, ICSM 1998, 1998, pp. 368–377.

[18] G. M. K. Selim, K. C. Foo and Y. Zou. “Enhancing Source-Based Clone
Detection Using Intermediate Representation”, Proc. WCRE, 2010, pp.
227-236.

[19] Simian Website [Online]. Available:
http://www.harukizaemon.com/simian/, last accessed in December 2011.

[20] PMD’s CPD Website [Online]. Last Accessed November 2011. URL
http://pmd.sourceforge.net/cpd.html.

[21] NiCad Website [Online]. Last Accessed December 2011. URL
http://www.txl.ca/nicaddownload.html.

[22] SDD Website [Online]. Last Accessed December 2011. URL
http://wiki.eclipse.org/Duplicated_code_detection_tool_(SDD).

[23] Filip Van Rysselberghe, Serge Demeyer. Evaluating Clone Detection
Techniques. In Proceedings of the International Workshop on Evolution
of Large Scale Industrial Applications (ELISA’03), 12pp., Amsterdam,
The Netherlands, September 2003.

[24] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner:
Finding Copy-Paste and Related Bugs in Large-Scale Software Code. In
IEEE Transactions on Software Engineering, Vol. 32(3): 176-192,
March 2006.

[25] B. Baker, Finding clones with dup: Analysis of an experiment, IEEE
Transactions on Software Engineering 33 (9) (2007) 608–621.

[26] iClones Website [Online]. Last Accessed December 2011. URL
http://softwareclones.org/iclones.php.

[27] C. K. Roy, J. R. Cordy, NICAD:Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,
in: Proceedings of the 16th IEEE International Conference on Program
Comprehension, ICPC 2008, 2008, pp. 172–181.

[28] S. Lee, I. Jeong, SDD: High performance code clone detection system for
large scale source code, in: Proceedings of the Object Oriented
Programming Systems Languages and Applications Companion to the
20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA
Companion 2005, 2005, pp. 140–141.

[29] P. Bulychev, M. Minea, Duplicate code detection using anti-unification,
in: Spring Young Researchers Colloquiumon Software Engineering,
SYRCoSE 2008, 2008, p. 4.

