

Technical Report No. 2012-595

Optimizing application execution on a computational grid by

employing task scheduling policies (research proposal)
1

Student Name: Rizwan Mian

Student Number: 6001533

School of Computing

Queen’s University

Kingston, Ontario, Canada

September 5, 2012,1

Preface: After my Mphil [1], I started working on a research proposal for a PhD program.

Majority of this work was done in 2007, with some minor updates in 2009 and 2010. With my

current research direction and interests, I won’t be able to pursue this actively. Nonetheless, I

share the work-so-far in this technical report.

1
 Acknowledgements: I acknowledge input from Dr. Rehan Hafeez at NUST.

Optimizing application execution on a computational grid by employing task

scheduling policies (research proposal)

Rizwan Mian

School of Computing, Queen's University

mian@cs.queensu.ca

Abstract
Simulations of complex biological and physical

systems have been enabled by advances in

computational technologies. This paper aims to study

the task scheduling policies that make redeployment

decisions for the components of the application to

improve application execution performance. The

policies are based on a cost model and performance

predictions. Time-series and application intrinsic

metrics based techniques are used for performance

predictions to enable effective decision making.

Keywords: scheduling, prediction, migration.

1. Introduction

 PerCo [2] is a performance control system that

improves the performance of an application execution

by reducing the overall execution time of the

application at runtime. Such an application is

constructed by composing previously independent or

pre-existing components together. These components

are seprately deployable computation units of well

defined functionality. The application is deemed

completed when all the components of the application

have finished executing. Application Performance

Steering (APS) part of PerCo manages the components

on a specified (fixed) set of resources. APS monitors

the relative rate of progress of the components on the

allocated set of resources; and provides performance

control by redeployment of components.

 An example application may be to observe the

interaction of an ocean simulation and an atmospheric

simulation to determine climate. The computation

requires interaction between these two simulations

through a series of iterations or phases. Note that there

are progress points between the phases as depicted in

Figure 1. These progress points include APS activity.

The APS activity, undertaken by task scheduling

policies, is essentially a decision-making process which

may lead to a new deployment for the components of

the application.

APS

CPS

component

component progress points

application progress points

Phase 1 Phase 2 Phase 3 Phase 4

0 1 2 3 4

Execution time
Figure 1: relationship between phases and progress

points

 There are roughly two classes of task scheduling

policies (or just policies); based on heuristics and

analytic modelling, respectively [2]:

1. The policies based on heuristics obtain a

performance history of the application on

certain resources, and then use some heuristic

to improve performance. Note that in this

method the performance prediction appears to

be implicit in the decision procedures and

heuristics.

2. In contrast, an analytical performance model

is developed for modelling based policies.

The performance model can be parameterized

by application, history and system

characteristics. Then the performance model is

used to generate performance predictions

using specific application, history and system

parameter values.

 A performance model based APS performance

control can have a number of parameters including

application, policy, cost model and prediction. Cost

model and prediction are themselves based on other

parameters. The goal is to minimize the application

execution time. The redeployment decision is based on

a cost model. A cost model allows to quantify

performance gains and losses produced by

redeployment activities. The more accurate a cost

model is, the better it can quantify performance gains

and losses. A cost model can have various parameters

which may be static (e.g. OS type) or dynamic (e.g.

CPU availability). Dynamic parameters, as the name

suggests, can vary during the execution of the

application. Therefore, an accurate value of the

dynamic parameter would give a more accurate cost

model. We also need to know the value of dynamic

parameter in the near-future. Prediction may be used to

forecast the value of dynamic parameter. Figure 2

specifies the relationship between different building

blocks discussed aforementioned and below. At every

progress point, the APS policy decides whether to

continue with the current deployment of components or

to redeploy.

 The rest of the paper is organized as follows.

Section 2 discusses the building blocks of effective task

scheduling policies, namely modelling the cost of

migration and prediction, to address the problem at

hand. Section 3 discusses existing approaches and

systems in related work. A summary and discussion of

the future work is provided in Section 4.

2. Building blocks
2.1 Migration

 The APS component contains the logic for

performance control. The APS policy may decide to

redeploy or migrate the components in order to balance

their rate of progress and keep overall application

execution time minimal, possibly at the expense of

increasing execution time of some components. This

may involve migrating a slower component to a faster

resource and vice versa. Recall, the goal is to minimise

the overall execution time of the application.

 The current APS policy is driven by detecting

symptoms in current deployment of components. High

asymmetric progress rates of components are the

symptoms. If the symptom is detected, a migration is

considered based on the cost model of migration. This

symptom, however, leads to the problem that all the

components may not complete execution at the same

time. Since an application is not considered completed

until all components are deemed completed, the

slowest component becomes the bottleneck for the

whole application.

 Careful deployment of such components is required

to achieve performance potential. At each progress

point, the APS policy must be able to evaluate the

performance characteristics of the application and its

components.

performance model

application
cost model

(of migration)

Static parameters

e.g. OS type
Dynamic parameters e.g.

CPU availability

prediction

Network load
Performance on new

resources

Performance on

current resources

Figure 2: Building blocks

 It must be able to quantify the performance gains

and losses produced by migration activities. Typically,

at every progress point, the APS policy must consider

estimating:

1. the performance of the application if a

migration is not performed;

2. the performance cost of a particular migration,

using cost model; and

3. the performance of the application if the

migration is carried out.

 We can use a prediction model to estimate (1) and

(3), i.e. by component prediction on current resource

and component prediction on a new resource,

respectively.

2.2 Modelling the cost of migration

 A cost model is required to quantify the

performance gains and losses produced by a migration.

The cost model includes the time to:

a. determine a new deployment,

b. checkpoint the current state of the component,

c. transfer the checkpoint to the new resource,

and

d. restart the component on the new resource

from the check-pointed file.

 We expect that (b) and (d) are negligible compared

to other two factors, but would be experimentally

verified. The time for (c) depends on the network load.

Prediction can be used to estimate network load. We

can determine (a) by traversing through the search

space. The search space consists of performance

predictions of components on current and new

resources.

 The above cost model for migration is based on [3].

We need to take network load into account, since

migration strategies that are purely based on CPU load-

factors are inferior to strategies that also take network

performance into account [4].

2.3 Prediction

 First, we need the ability to predict how the

components would perform on the current resources

given some history. Second, we need the ability to

predict how the components would perform on

different resources. Third, we need the ability to predict

the network load before initiating a migration.

2.3.1 Network load prediction: Wolski [5] describes a

system, Network Weather Service (NWS), to predict

network performance; and available CPU percentage

for each resource that is being monitored. Prediction

algorithms are based on time-series techniques. These

algorithms are generic and can be applied for

predicting other parameters. We will use them for

predicting component performance on current

resources.

2.3.2 Component prediction on current resources:

We propose to reuse the algorithms in NWS [5] to

predict the performance of a component on the current

resource. We will record the history of a component on

the resource. Then, the algorithms would be used to

make a prediction using history.

2.2.3 Component prediction on new resources:

Initially, we do not have history available for a

component on a new resource. Therefore, we cannot

use prediction based on history. We need a

performance model that can be parameterized by a

number of factors. An example of such a performance

model is described in [6]. Application intrinsic metrics

are solely dependent on the application code and

problem parameters. These metrics express the

demands of application on resources, and are

independent of resources. Therefore, given that we can

generate application intrinsic metrics and can obtain

predicted CPU availability of a resource from NWS,

we can predict how a component would perform on

that resource.

3. Related Work
 Paton et al. [7] proposed an abstract methodology

for optimizing utility (could be execution time) in

Cloud Computing through Autonomic Workload

Execution. There is no discussion on the possible

candidates for the building blocks. This makes the

suggested methodology so abstract that it can be

applied to grids and clusters – though the target domain

is Cloud Computing. Nevertheless, the building blocks

would be the key differentiating factors that would

determine the effectiveness of a methodology to a

particular paradigm.

 Migration has been studied in [3]. This study

successfully demonstrates the improvements in

(Jacobi) application execution time when migration is

used over one-time assignment of deployment.

However for Jacobi, every processor needs to obtain

information from its neighbouring processors at every

iteration, therefore, the processors need to be

synchronized after every iteration. Whereas PerCo

assumes that inter-component communication is

somewhat less and, therefore, does not require the

components on different resources to synchronize at

every iteration. Consequently, components can proceed

with different rates of iteration cycles.

 Job scheduling policies deals with the allocation of

programs or jobs to processors according to the

specified priority of the jobs and availability of

resources [8]. These balance the workload among

resources and optimizes system throughput – a system-

oriented metric. It assumes no relationship between the

jobs.

 In contrast, task scheduling policies has a global

view of an application. These prioritize and schedule

components of an application to minimize application

execution time – an application-oriented metric. These

take into account dependencies between components,

and offers co-scheduling when there is inter-component

communication [8].

 MARS [4] and Dome [9] both support check-

pointing and migration by providing a custom runtime

systems. The schedulers use migration to achieve load-

balancing of unrelated and independent jobs [10],

which is a system-oriented metric. In contrast, PerCo

uses the underlying infrastructure i.e. Globus [11] for

an initial deployment of related components, and then

migration. The metric here is to minimise application

execution time, which is an application-oriented metric.

 Similarly, systems such as Phish [12] and CARMI

[13] allow workload rebalancing at runtime. Such

systems focus primarily on redistribution of jobs to

utilize idle workstations, which is, again, a system-

oriented metric. Resources dynamically join and leave

the pool of available resources. PerCo assumes that a

list of resources stays constant during the execution of

the application.

 GrADS [14] provides a redeployment mechanism,

which is activated by a performance contract violation;

which happens when the difference in the actual

execution time and predicted execution time is beyond

certain tolerance. The monitoring of execution times in

GrADS is based on Autopilot toolkit. Autopilot

assesses the application's progress using performance

contract [6], which also uses application intrinsic

metrics and resource capabilities to make a prediction.

Benchmark executions are required to capture

application intrinsic metrics prior to real runs of

application. However, we intend to use: (a) application

intrinsic metrics and resource capabilities to make a

prediction, without the need for benchmarking new

resources; and (b) time-series techniques studied in

NWS to make a prediction on current resources.

 Condor [15] is a hunter for idle resources. The

system aims to maximize utilization of resources,

which is a system-oriented metric, with minimal

interference. When Condor detects interactive usage of

a resource, it migrates the job from that resource to

another resource. Condor assumes the job is

autonomous and the focus is local. Notice, the trigger

for redeployment is interactive usage of the resource

not the different rate of progress of related components,

as in the case of PerCo.

4. Conclusion and Future Work
 The proposed research has many parameters that

can be used for evaluation. Following parameters are of

particular interest: application, policy, cost and

prediction model, heuristics, performance and

efficiency, and meta-data. In particular, we can

1. compare policies, cost models and prediction

techniques in terms of application performance

improvements they provide,

2. evaluate PerCo in terms of performance and

efficiency. In this context, performance is a

measurement of how well the resources are being

used, whereas efficiency is a measurement of how

much overhead does performance control exhibit,

3. compare against similar systems (e.g. Dome and

MARS), and

4. do performance improvements with introducing

policies in CPS

 Scheduling has been studied for a long time in

distributed computing [16]. As far as the author knows,

time-series techniques have not been studied to predict

performance of components on resources. Moreover, a

technique for establishing application intrinsic metrics

without benchmarking has not yet been established.

Specifically, these techniques have not been used for

migrating components to reduce the application

execution time on a standard grid infrastructure i.e.

Globus.

 There is already a test bed for experimenting with

policies, and that is the PerCo prototype. Various

policies, cost models and prediction methods can be

developed and evaluated using the PerCo prototype.

Thereafter, the policies can also introduced in

Component Performance Steerer (CPS), which

improves the performance of an individual component.

The APS can also be enhanced to perform dynamic

selection, exhibiting adaptive-ness, from these policies

based on, say, dynamic history as is done in [5].

Heuristics based on meta-data can be used to start the

initial deployment with previously best performing

policy. In the absence of PerCo prototype, various grid

simulators may be considered such as GridSim [17]

and SimGrid [18].

5. References
[1] R. Mian, “Managing distributed information

for performance control of Grid-based applications,”

Department of Computer Science, University of

Manchester, Manchester, 2005.

[2] K. Mayes, G.D. Riley, R.W. Ford, M. Lujan

and T.L.Freeman, “The Design of a Performance

Steering System for Component-Based Grid

Applications.,” Performance Analysis and Grid

Computing, V. Getov, et al., eds., Kluwer Academic

Publishers, 2003, pp. 111-127.

[3] G. Shao, R. Wolski and F. Berman,

“Modeling the cost of redistribution in scheduling,”

Proc. Proceedings of the Eighth SIAM Conference on

Parallel Processing for Scientific Computing, 1997,

pp. 9-17.

[4] J. Gehring and A. Reinefeld, “MARS -- a

framework for minimizing the job execution time in a

metacomputing environment ” Future Generation

Computer Systems, vol. 12, no. 1, 1996, pp. 87-99.

[5] R. Wolski, “Forecasting Network

Performance to Support Dynamic Scheduling Using the

Network Weather Service,” Proc. Proceedings of the

Sixth IEEE International Symposium on High

Performance Distributed Computing., 1997, pp. 316-

326.

[6] F. Vraalsen, R.A. Aydt, C.L. Mendes and

D.A. Reed, “Performance Contracts: Predicting and

Monitoring Grid Application Behavior ” Proc.

Proceedings of the Second International Workshop on

Grid Computing Springer-Verlag, 2001 pp. 154-165

[7] N.W. Paton, M.A.T. Aragão, K. Lee, A.A.A.

Fernandes and R. Sakellariou, “Optimizing Utility in

Cloud Computing through Autonomic Workload

Execution.,” IEEE Data Engineering Bulletin, vol. 32,

no. 1, 2009, pp. 51-58.

[8] J. Cao, A.T.S. Chan, Y. Sun, S.K. Das and M.

Guo, “A taxonomy of application scheduling tools for

high performance cluster computing,” Cluster

Computing, vol. 9, no. 3, 2006, pp. 355-371.

[9] J.N. Arabe, et al., Dome: Parallel

Programming in a Heterogeneous Multi-User

Environment, CMU-CS-95-137, Carnegie Mellon

University, 1995. http://www.dtic.mil/cgi-

bin/GetTRDoc?AD=ADA295491

[10] F. Berman, et al., “Adaptive computing on the

grid using AppLeS,” IEEE Transactions on Parallel

and Distributed Systems, vol. 14, no. 4, 2003, pp. 369-

382.

[11] I. Foster and C. Kesselman, “Globus: A

Metacomputing Infrastructure Toolkit,” The

International Journal of Supercomputer Applications

and High Performance Computing, vol. 11, no. 2,

1996, pp. 115-128.

[12] R.D. Blumofe and D.S. Park, “Scheduling

large-scale parallel computations on networks of

workstations,” Proc. Proceedings of the Third IEEE

International Symposium on High Performance

Distributed Computing., 1994, pp. 96-105

[13] J. Pruyne and M. Livny, “Parallel Processing

on Dynamic Resources with CARMI ” Proc.

Proceedings of the Workshop on Job Scheduling

Strategies for Parallel Processing, Springer-Verlag,

1995 pp. 259-278.

[14] F. Berman, et al., “New Grid Scheduling and

Rescheduling Methods in the GrADS Project,”

International Journal of Parallel Programming, vol.

33, no. 2, 2005, pp. 209-229; DOI 10.1007/s10766-

005-3584-4.

[15] M.J. Litzkow, M. Livny and M.W. Mutka,

“Condor-a hunter of idle workstations,” Proc. 8th

International Conference on Distributed Computing

Systems., 1988, pp. 104-111

[16] K. Krauter, R. Buyya and M. Maheswaran, “A

taxonomy and survey of grid resource management

systems for distributed computing,” Software: Practice

and Experience, vol. 32, no. 2, 2002, pp. 135-164.

[17] R. Buyya and M. Murshed, “GridSim: a

toolkit for the modeling and simulation of distributed

resource management and scheduling for Grid

computing,” Concurrency and Computation: Practice

and Experience, vol. 14, no. 13-15, 2002, pp. 1175-

1220.

[18] A. Sulistio, C.S. Yeo and R. Buyya, “A

taxonomy of computer-based simulations and its

mapping to parallel and distributed systems simulation

tools,” Software: Practice and Experience, vol. 34, no.

7, 2004, pp. 653-673.

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA295491
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA295491

