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Abstract 
Simulations of complex biological and physical 

systems have been enabled by advances in 

computational technologies. This paper aims to study 

the task scheduling policies that make redeployment 

decisions for the components of the application to 

improve application execution performance. The 

policies are based on a cost model and performance 

predictions. Time-series and application intrinsic 

metrics based techniques are used for performance 

predictions to enable effective decision making. 
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1. Introduction 

 PerCo [2] is a performance control system that 

improves the performance of an application execution 

by reducing the overall execution time of the 

application at runtime. Such an application is 

constructed by composing previously independent or 

pre-existing components together. These components 

are seprately deployable computation units of well 

defined functionality. The application is deemed 

completed when all the components of the application 

have finished executing. Application Performance 

Steering (APS) part of PerCo manages the components 

on a specified (fixed) set of resources. APS monitors 

the relative rate of progress of the components on the 

allocated set of resources; and provides performance 

control by redeployment of components. 

 An example application may be to observe the 

interaction of an ocean simulation and an atmospheric 

simulation to determine climate. The computation 

requires interaction between these two simulations 

through a series of iterations or phases. Note that there 

are progress points between the phases as depicted in 

Figure 1. These progress points include APS activity. 

The APS activity, undertaken by task scheduling 

policies, is essentially a decision-making process which 

may lead to a new deployment for the components of 

the application.  
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points 

 There are roughly two classes of task scheduling 

policies (or just policies); based on heuristics and 

analytic modelling, respectively [2]:  

1. The policies based on heuristics obtain a 

performance history of the application on 

certain resources, and then use some heuristic 

to improve performance. Note that in this 

method the performance prediction appears to 

be implicit in the decision procedures and 

heuristics. 

2. In contrast, an analytical performance model 

is developed for modelling based policies. 

The performance model can be parameterized 

by application, history and system 

characteristics. Then the performance model is 

used to generate performance predictions 

using specific application, history and system 

parameter values. 

 A performance model based APS performance 

control can have a number of parameters including 

application, policy, cost model and prediction. Cost 

model and prediction are themselves based on other 

parameters. The goal is to minimize the application 

execution time. The redeployment decision is based on 

a cost model. A cost model allows to quantify 



performance gains and losses produced by 

redeployment activities. The more accurate a cost 

model is, the better it can quantify performance gains 

and losses. A cost model can have various parameters 

which may be static (e.g. OS type) or dynamic (e.g. 

CPU availability). Dynamic parameters, as the name 

suggests, can vary during the execution of the 

application. Therefore, an accurate value of the 

dynamic parameter would give a more accurate cost 

model. We also need to know the value of dynamic 

parameter in the near-future. Prediction may be used to 

forecast the value of dynamic parameter. Figure 2 

specifies the relationship between different building 

blocks discussed aforementioned and below. At every 

progress point, the APS policy decides whether to 

continue with the current deployment of components or 

to redeploy.  

 The rest of the paper is organized as follows. 

Section 2 discusses the building blocks of effective task 

scheduling policies, namely modelling the cost of 

migration and prediction, to address the problem at 

hand. Section 3 discusses existing approaches and 

systems in related work. A summary and discussion of 

the future work is provided in Section 4. 

2. Building blocks 
2.1 Migration 

 The APS component contains the logic for 

performance control. The APS policy may decide to 

redeploy or migrate the components in order to balance 

their rate of progress and keep overall application 

execution time minimal, possibly at the expense of 

increasing execution time of some components. This 

may involve migrating a slower component to a faster 

resource and vice versa. Recall, the goal is to minimise 

the overall execution time of the application.  

 The current APS policy is driven by detecting 

symptoms in current deployment of components. High 

asymmetric progress rates of components are the 

symptoms. If the symptom is detected, a migration is 

considered based on the cost model of migration. This 

symptom, however, leads to the problem that all the 

components may not complete execution at the same 

time. Since an application is not considered completed 

until all components are deemed completed, the 

slowest component becomes the bottleneck for the 

whole application. 

 Careful deployment of such components is required 

to achieve performance potential. At each progress 

point, the APS policy must be able to evaluate the 

performance characteristics of the application and its 

components. 
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 It must be able to quantify the performance gains 

and losses produced by migration activities. Typically, 

at every progress point, the APS policy  must consider 

estimating: 

1. the performance of the application if a 

migration is not performed; 

2. the performance cost of a particular migration, 

using cost model; and 

3. the performance of the application if the 

migration is carried out. 

 We can use a prediction model to estimate (1) and 

(3), i.e. by component prediction on current resource 

and component prediction on a new resource, 

respectively.  

2.2 Modelling the cost of migration 

 A cost model is required to quantify the 

performance gains and losses produced by a migration. 

The cost model includes the time to: 

a. determine a new deployment, 

b. checkpoint the current state of the component, 

c. transfer the checkpoint to the new resource, 

and 

d. restart the component on the new resource 

from the check-pointed file. 

 We expect that (b) and (d) are negligible compared 

to other two factors, but would be experimentally 

verified. The time for (c) depends on the network load. 

Prediction can be used to estimate network load. We 

can determine (a) by traversing through the search 

space. The search space consists of performance 



predictions of components on current and new 

resources.  

 The above cost model for migration is based on [3]. 

We need to take network load into account, since 

migration strategies that are purely based on CPU load-

factors are inferior to strategies that also take network 

performance into account [4]. 

2.3 Prediction 

 First, we need the ability to predict how the 

components would perform on the current resources 

given some history. Second, we need the ability to 

predict how the components would perform on 

different resources. Third, we need the ability to predict 

the network load before initiating a migration. 

2.3.1 Network load prediction: Wolski [5] describes a 

system, Network Weather Service (NWS), to predict 

network performance; and available CPU percentage 

for each resource that is being monitored. Prediction 

algorithms are based on time-series techniques. These 

algorithms are generic and can be applied for 

predicting other parameters. We will use them for 

predicting component performance on current 

resources. 

2.3.2 Component prediction on current resources:   

We propose to reuse the algorithms in NWS [5] to 

predict the performance of a component on the current 

resource. We will record the history of a component on 

the resource. Then, the algorithms would be used to 

make a prediction using history. 

2.2.3 Component prediction on new resources:  

Initially, we do not have history available for a 

component on a new resource. Therefore, we cannot 

use prediction based on history. We need a 

performance model that can be parameterized by a 

number of factors. An example of such a performance 

model is described in [6]. Application intrinsic metrics 

are solely dependent on the application code and 

problem parameters. These metrics express the 

demands of application on resources, and are 

independent of resources. Therefore, given that we can 

generate application intrinsic metrics and can obtain 

predicted CPU availability of a resource from NWS, 

we can predict how a component would perform on 

that resource.  

3. Related Work 
 Paton et al. [7] proposed an abstract methodology 

for optimizing utility (could be execution time) in 

Cloud Computing through Autonomic Workload 

Execution. There is no discussion on the possible 

candidates for the building blocks. This makes the 

suggested methodology so abstract that it can be 

applied to grids and clusters – though the target domain 

is Cloud Computing. Nevertheless, the building blocks 

would be the key differentiating factors that would 

determine the effectiveness of a methodology to a 

particular paradigm. 

 Migration has been studied in [3]. This study 

successfully demonstrates the improvements in 

(Jacobi) application execution time when migration is 

used over one-time assignment of deployment. 

However for Jacobi, every processor needs to obtain 

information from its neighbouring processors at every 

iteration, therefore, the processors need to be 

synchronized after every iteration. Whereas PerCo 

assumes that inter-component communication is 

somewhat less and, therefore, does not require the 

components on different resources to synchronize at 

every iteration. Consequently, components can proceed 

with different rates of iteration cycles. 

 Job scheduling policies deals with the allocation of 

programs or jobs to processors according to the 

specified priority of the jobs and availability of 

resources [8]. These balance the workload among 

resources and optimizes system throughput – a system-

oriented metric. It assumes no relationship between the 

jobs. 

 In contrast, task scheduling policies has a global 

view of an application. These prioritize and schedule 

components of an application to minimize application 

execution time – an application-oriented metric. These 

take into account dependencies between components, 

and offers co-scheduling when there is inter-component 

communication [8]. 

 MARS [4] and Dome [9] both support check-

pointing and migration by providing a custom runtime 

systems. The schedulers use migration to achieve load-

balancing of unrelated and independent jobs [10], 

which is a system-oriented metric. In contrast, PerCo 

uses the underlying infrastructure i.e. Globus [11] for 

an initial deployment of related components, and then 

migration. The metric here is to minimise application 

execution time, which is an application-oriented metric. 

  Similarly, systems such as Phish [12] and CARMI 

[13] allow workload rebalancing at runtime. Such 

systems focus primarily on redistribution of jobs to 

utilize idle workstations, which is, again, a system-

oriented metric. Resources dynamically join and leave 

the pool of available resources. PerCo assumes that a 

list of resources stays constant during the execution of 

the application. 



 GrADS [14] provides a redeployment mechanism, 

which is activated by a performance contract violation; 

which happens when the difference in the actual 

execution time and predicted execution time is beyond 

certain tolerance. The monitoring of execution times in 

GrADS is based on Autopilot toolkit. Autopilot 

assesses the application's progress using performance 

contract [6], which also uses application intrinsic 

metrics and resource capabilities to make a prediction. 

Benchmark executions are required to capture 

application intrinsic metrics prior to real runs of 

application. However, we intend to use: (a) application 

intrinsic metrics and resource capabilities to make a 

prediction, without the need for benchmarking new 

resources; and (b) time-series techniques studied in 

NWS to make a prediction on current resources.  

 Condor [15] is a hunter for idle resources. The 

system aims to maximize utilization of resources, 

which is a system-oriented metric, with minimal 

interference. When Condor detects interactive usage of 

a resource, it migrates the job from that resource to 

another resource. Condor assumes the job is 

autonomous and the focus is local. Notice, the trigger 

for redeployment is interactive usage of the resource 

not the different rate of progress of related components, 

as in the case of PerCo.  

4. Conclusion and Future Work 
 The proposed research has many parameters that 

can be used for evaluation. Following parameters are of 

particular interest: application, policy, cost and 

prediction model, heuristics, performance and 

efficiency, and meta-data. In particular, we can 

1. compare policies, cost models and prediction 

techniques in terms of application performance 

improvements they provide, 

2. evaluate  PerCo in terms of performance and 

efficiency. In this context, performance is a 

measurement of how well the resources are being 

used, whereas efficiency is a measurement of how 

much overhead does performance control exhibit, 

3. compare against similar systems (e.g. Dome and 

MARS), and 

4. do performance improvements with introducing 

policies in CPS 

 Scheduling has been studied for a long time in 

distributed computing [16]. As far as the author knows, 

time-series techniques have not been studied to predict 

performance of components on resources. Moreover, a 

technique for establishing application intrinsic metrics 

without benchmarking has not yet been established. 

Specifically, these techniques have not been used for 

migrating components to reduce the application 

execution time on a standard grid infrastructure i.e. 

Globus. 

 There is already a test bed for experimenting with 

policies, and that is the PerCo prototype. Various 

policies, cost models and prediction methods can be 

developed and evaluated using the PerCo prototype. 

Thereafter, the policies can also introduced in 

Component Performance Steerer (CPS), which 

improves the performance of an individual component. 

The APS can also be enhanced to perform dynamic 

selection, exhibiting adaptive-ness, from these policies 

based on, say, dynamic history as is done in [5]. 

Heuristics based on meta-data can be used to start the 

initial deployment with previously best performing 

policy. In the absence of PerCo prototype, various grid 

simulators may be considered such as GridSim [17] 

and SimGrid [18]. 
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