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1 Introduction

Nondeterminism plays a profound role in the theory of computation. Even more generally,
some of the most interesting problems in computer science arise from nondeterminism, some
examples are P vs. NP, NP vs. co-Np, NP vs. PP and many others. Nondeterminism en-
hances the power of some computational models, like pushdown automata. In others, such
as Turing machines and finite automata, nondeterminism does not enhance computational
power but may increase efficiency. For Turing machines, the relation between determinism
and nondeterminism can lead to questions about the difference between computational com-
plexity of these different models of computation. The computational complexity of Turing
machines is normally measured in time complexity. In the world of automata theory, a
time measure makes no sense. Hence, the computational complexity in finite automata is
measured by descriptional complexity.

The area of descriptional complexity of finite automata investigates the sizes of descrip-
tions of automata [15], deterministic or not. Most commonly, descriptional complexity mea-
sures the number of states, also another obvious measure could be the number of transitions.
In other words, for a given regular language we try to minimize the number of states for
deterministic and nondeterministic automata. We know that nondeterminism can produce
as much as an exponential savings [39, 40]. Furthermore, in the deterministic case we have
the answer from the Myhill-Nerode theorem [18], but in the nondeterministic case we don’t
have a clear solution. We only have some techniques that can work in some cases, but not
always. These techniques are the fooling set [9, 15], the extended fooling set [3, 20, 15] and
the biclique edge cover technique [13, 15]. It seems impossible to have a clear way of find-
ing a minimal nondeterministic finite automaton, since there can be multiple non-isomorphic
minimum finite machines for the same regular language. Additionally, the problem of finding
a minimal state nondeterministic automaton equivalent to a given deterministic automaton
is PSPACE-hard [25].

In order to study more closely the trade off of nondeterminism against state complexity, it
seems appropriate to treat nondeterminism as just one more resource by quantifying it [29].
This quantification of nondeterminism varies among authors. In [11], the authors suggest the
spectrum of a regular language. This way of quantifying nondeterminism is by multiplying
the number of nondeterministic choices that a machine does as it reads a word. The authors
of [23] consider various measures for quantifying nondeterminism. They give the “advice”
of a word, which is the number of nondeterministic choices during reading this word. The
leaf-size of a word is the number of leaves in the computation tree of the automaton and the
given word. The ambiguity of a word is the number of accepting leaves in the computation
tree of the automaton and the given word.

In this depth paper we survey the above work. The paper is divided mainly into two
sections. In the first section we deal with important results, in our opinion, in nondetermin-
istic state complexity and we give more emphasis in the techniques that we have until now
for giving lower bounds in terms of state complexity of nondeterministic finite automata.
In the other section we consider different measures of quantifying nondeterminism in finite
automata and we give a review of them. Additionally, we consider open problems and di-
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Figure 1: An NFA from [40].

rections for future work. These open problems deal, in particular, with comparing different
ways of measuring nondeterminism from the point of view of descriptional complexity. Also,
the state complexity of language operations for limited nondeterminism has not been inves-
tigated. In other words, it is an interesting problem to give upper and lower bounds for the
state complexity of a language resulting from a regularity preserving operation as a function
of the state complexity of the argument languages.

2 Lower Bound Techniques on Nondeterministic Finite

Automata

In this section of the paper we review some main points, in our opinion, of the basic results
on state complexity of nondeterministic finite automata. Moreover, we divide this section
into two subsections. In the first subsection we discuss the relation between the the number
of states of a DFA with an equivalent NFA. Moreover, we give some examples which make
the upper bound tight as shown in bibliography. We also discuss the algorithmic problem
of finding, for a given automaton A, an equivalent automaton B with a minimal number of
states. This is called the minimization problem. We also mention results for other types
of finite automata, as an example we mention results on multiple entry deterministic finite
automata. In the second subsection we review techniques which give lower bounds for the
number of states for NFAs.

2.1 Basic Results on State Complexity of Nondeterministic Finite
Automata

Nondeterministic finite automata (NFAs) were introduced in [44], where their equivalence to
deterministic finite automata (DFAs) was shown. This equivalence is established with the
very well known subset construction [18]. The subset construction transforms an NFA with
n states into a DFA with 2n states. It is well known that this bound can be tight [36, 39, 40].
Some examples are in Figure 1, in Figure 2, and in Figure 3.

For the particular case of unary languages the same question was raised in [49]. The
question is what is the relation between the state complexity of NFAs and DFAs in the case
that we have a unary alphabet. Chrobak in [6, 7] presents the asymptotic tight bound.
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Figure 2: Another NFA from [39].

Figure 3: Another NFA from [36].

The bound is that for n ≥ 1 and A be an n-state NFA accepting a unary language, then
eΘ(
√
n · lnn) states are sufficient and necessary in the worst case for a DFA to accept L(A).

Another relative question about state complexity of nondeterministic finite automata is
given an automaton can we find an equivalent automaton which is minimal from the state
complexity point of view. The answer to the same question for deterministic finite automata
is given by the Myhill-Nerode relation and it is an easy problem. Every DFA with n states
can be converted to a minimal equivalent DFA in O(n log n) time [17]. Moreover, in the case
of deterministic finite automata this minimal automaton is unique. But, this situation is not
equally simple in the case of nondeterministic finite automata. Let us see at the Figure 4,
from [1], there are two NFAs which both recognize the language {ab, ac, bc, ba, ca, cb}. Al-
though, these automata recognize the same language, there is no isomorphism between them.
Moreover, the problem of finding a minimal state nondeterministic automaton equivalent to
a given deterministic automaton is PSPACE-hard [25].

Furthermore, minimizing NFAs with very strong restrictions on the amount of nondeter-
minism remains NP-complete [4, 5]. Methods for quantifying the amount of nondeterminism
will be discussed in section 3.

Given all the above, we understand that it is useful to have techniques which give us
lower bounds in the case of nondeterministic finite automata. In other words, given a regular
language following some properties, can we prove that every NFA recognizing this language
has at least a specific number of states? We will deal with this question in the following
subsection. But, before we end this subsection let us mention that there are questions that
we could ask here.

We also mention some results concerning the size blow up occurring in restricted variants
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Figure 4: Two NFAs accepting the same language but there is no isomorphism between
them.

of NFAs. Firstly, we concentrate in the question of what is the relation of the number of
states between DFAs and NFAs when we deal only with finite languages. This question has
been considered in [38, 46, 47]. In [38] Mandl considers the case of finite languages over a
two letter alphabet, where he showed that for each n-state NFA accepting a finite language
there exists an equivalent DFA which has O(2n/2) states; more specifically, no more than
2

n
2

+1− 1 states if n is even and 3 · 2bn2 c− 1 states if n is odd. In [47], they show that O(2n/2)
is the worst-case optimal upper bound on the number of states of a DFA that is equivalent
to an n-state NFA accepting a finite language over an arbitrary k-letter alphabet, where
they generalize the previous result on binary alphabet. They show that, for any n-state
NFA accepting a finite language over an arbitrary k-letter alphabet, n, k > 1, there is an
equivalent DFA of O(kn/(log k+l)) states, and they show that this bound is optimal in the
worst case.

Finally, we mention results on another case of restricted variants of NFAs. Here, we
consider deterministic finite automata with multiple initial states (MDFA) [8, 51, 28]. An
k-entry deterministic finite automaton is a deterministic finite automaton with the difference
that it has k initial states. In other words there is a nondeterministic step, which is to choose
the initial state. In [16], they show that for every k-entry DFA M , with n states, there is a
DFA M ′ with at most

k∑
i=1

(
n

i

)
states such that L(M) = L(M ′). In the same paper they show that this bound can be tight.
The automaton which makes it tight is the following. Let k ≤ n, consider the k-entry DFA
Ml,n with state set Q = {1, . . . , n}, where 1 up to k are the initial states, and state n is the
only final state. Let a and b be two distinct input symbols. Set δ(i, a) = i+ 1 for 1 ≤ i < n
and δ(n, a) = 1, whereas δ(i, b) = i if 1 ≤ i < n, and δ(n, b) = 1. In Figure 5 there is the
automaton Mk,n for k = 3 and n = 4.
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Figure 5: The 3-entry deterministic finite automaton M3,4.

2.2 Lower Bound Techniques for Nondeterministic Finite Automata

As we have already mentioned in the previous subsection, the problem of minimizing a DFA
is easy. However, it is not the same case when it comes to NFAs. We have already seen in
Figure 4 that there are more than one state minimal NFAs recognizing the same language.
Also, we have already seen that finding a minimal NFA from a DFA is PSPACE-hard [25].
Then, it is useful to look at techniques which tell us how many states at least an NFA for a
given regular language requires. In other words, given a regular language we want to know
what is the lower limit for any NFA which recognize this language.

In this direction there are three techniques. These techniques are the fooling set [9, 15],
the extended fooling set [3, 20, 15] and the biclique edge cover technique [13, 15]. Each of
them are an extension of the previous one.

The first two techniques are simple to explain and to use. The biclique edge cover
technique is more complicated. All of these techniques use a set of pairs of strings. When
there is a set with n such pairs which they have some properties, which depend on the regular
language L, then we get that any NFA recognizing L has at least n states. Let us see the
theorems which give us these results.

Theorem 1 (Fooling Set Technique). Let L ⊆ Σ∗ be a regular language, and suppose there
exists a set of pairs P = {(xi, yi) | 1 ≤ i ≤ n} such that:

(a) xiyi ∈ L for 1 ≤ i ≤ n;

(b) xiyj /∈ L for 1 ≤ i, j ≤ n and i 6= j.

Then any NFA accepting L has at least n states.

Before we go to the next technique let us give some examples to help us understand this
technique better. The following examples are from [9].

Example 1. Let us have the language Lk = {0i1i2i | 0 ≤ i < k}, and let us take the set of
string pairs P = {(0i1j, 1i−j2i) | 0 ≤ j ≤ i < k}. Here we notice that for every (x,w) ∈ P
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Figure 6: Two NFAs where the fooling set technique works well.

the word xw is in Lk. Moreover, if (x,w) ∈ P and (x′, w′) ∈ P for some x 6= x′ and w 6= w′,
then the word xw′ is not in Lk and neither the word x′w. The set of string pairs P has
k(k+ 1)/2 elements, then from the fooling set technique theorem we have that for every NFA
recognizing Lk has at least k(k + 1)/2 states. In fact, Lk can be recognized by an NFA with
k(k + 1)/2 + 1 states. In Figure 6(a) we give an NFA for Lk for k = 5.

Example 2. Let us have the language of palindromes of length k over a binary alphabet
Ak = {w ∈ {0, l}k | w = wR}.1 Let us take the set of string pairs P = {(x, 0k−2|x|xR) | |x| ≤
k/2} ∪ {(x0k−2|x|, xR) | |x| ≤ (k − 1)/2}. Then, the smallest NFA accepting Ak has at least
2bk/2c+1 + 2b(k+1)/2c − 2 states. In fact, this bound is tight, as we can construct an NFA with
the given number of states that accepts Ak. In Figure 6(b) we give an NFA for Ak for k = 4.

Of course there are cases where the fooling set technique does not work well. In [9] they
give the language Hm = (0m)+ where there is no set of string pairs that has the properties
of Theorem 1 and also has more than 2 elements. Moreover, they argue that every NFA for
Hm has at least log(m+ 1) states.

Theorem 2 (Extended Fooling Set Technique). Let L ⊆ Σ∗ be a regular language, and
suppose there exists a set of pairs P = {(xi, yi) | 1 ≤ i ≤ n} such that:

(a) xiyi ∈ L for 1 ≤ i ≤ n;

(b) xiyj /∈ L or xjyi /∈ L for 1 ≤ i, j ≤ n and i 6= j.

Then any NFA accepting L has at least n states.

Now, let us give some examples to makes us understand better the extending fooling
set technique. In the second example [13] we compare the two previous techniques and we
show that the extending fooling set technique can be arbitrary bigger that the fooling set
technique. More specific, we give a family of languages that the biggest fooling set for them
can have size at most 3 but there are extending fooling sets with size n+ 2, for n ≥ 3.

1The word wR denotes the reverse of the word w.
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Example 3. Let L be the regular language recognized be the automaton in Figure 3. We
notice that the set of string pairs P = {(bbai, an−3−i) | 0 ≤ i ≤ n−3}∪{(ε, b2an−3), (b, ban−3)}
is an extending fooling set for L. The set P has n elements, since we already have an
automaton with n states we know that this set in a maximal extending fooling set and that
the technique works well in this case. We can also notice that the set P is a fooling set as
well.

Example 4. Let Σ = {ai | 1 ≤ i ≤ n}. Consider the finite language Ln = {aiaj | 1 ≤ i ≤
j ≤ n}. It is easy to see that Sn = {(ai, ai) | 1 ≤ i ≤ n}∪{(ε, a1a1), (a1a1, ε)} is an extended
fooling set for Ln of size n+2. Then the analysis that any fooling set for Ln has size at most
3 goes as follows: (i) First one observes, that any fooling set can only contain at most one
pair of the form (ε, w) and (w, ε). Then (ii) no two pairs of the form (ai, aj) and (ak, al) with
1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ l ≤ n can be members of any fooling set for Ln. Without loss
of generality assume that i ≤ k, then aial ∈ Ln, which contradicts the fooling set properties.
Hence, any fooling set for Ln can have at most 3 elements. This bound is tight, which is seen
by the fooling set S = {(ε, a1a1), (a1a1, ε), (a1, a1)} for the language Ln. Moreover, the bound
of the extending fooling set in tight since there is a DFA with n + 2 states which recognizes
Ln.

Here we also notice that there are cases where the extending fooling set technique does
not work well either. In [13] they give the language Hm = (0m)+ where there is no set
of string pairs that has the properties of Theorem 2 and also has more than 3 elements.
Moreover, they argue that every NFA for Hm has at least log(m+ 1) states.

From the previous two theorems we have the fooling set technique and the extended
fooling set technique, respectively. The last technique needs some more explanations before
we can state the corresponding theorem. We have to remind ourselves some graph theoretic
notions.

A bipartite graph is a 3-tuple G = (X, Y,E), where X and Y are the (not necessarily
finite) sets of vertices, and E ⊆ X×Y is the set of edges. A bipartite graph H = (X ′, Y ′, E ′)
is a subgraph of G, if X ′ ⊆ X, Y ′ ⊆ Y , and E ′ ⊆ E. The subgraph H ′ is induced if
E ′ = (X ′ × Y ′)∩E. Given a set of edges E ′, the subgraph induced by E ′ with respect to E
is the smallest induced subgraph containing all edges in E ′.

Now in [13] they relate pairs of strings with bipartite graphs. This relation happens quite
natural. Let us have any sets X, Y ⊆ Σ∗ and any language L ⊆ Σ∗, then we associate them
with the bipartite graph G = (X, Y,EL) where the set of edges EL is defined by (x, y) ∈ EL

if xy ∈ L, for every x ∈ X and y ∈ Y .
For the lower bound technique to come we need the notion of a biclique edge cover for

bipartite graphs. Let G = (X, Y,E) be a bipartite graph. A set C = {H1, H2, . . . } of non-
empty bipartite subgraphs of G is an edge cover of G, if every edge in G is present in at least
one subgraph. An edge cover C of the bipartite graph G is a biclique edge cover if every
subgraph in C is a biclique, where a biclique is a bipartite graph H = (X, Y,E) satisfying
E = X × Y . The bipartite dimension of G is denoted d(G) and is defined to be the size of
the smallest biclique edge cover of G if it exists and is infinite otherwise. Then the biclique
edge cover technique reads as follows:
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Theorem 3 (Biclique Edge Cover Technique). Let L ⊆ Σ∗ be a regular language and suppose
there exists a bipartite graph G = (X, Y,EL) with X, Y ⊆ Σ∗ (not necessarily finite) for the
language L. Then any non-deterministic finite automaton accepting L has at least as many
states as the bipartite dimension of G, i.e., nsc(L) ≥ d(G).

Corollary 1. Let L ⊆ Σ∗ be a regular language. Then the bipartite graph G = (Σ∗,Σ∗, EL)
has finite bipartite dimension.

Similar with the previous lower bound techniques we are giving an example to help us
understand better the concept of biclique edge cover technique. This example [13] will be
about the language Hm = (0m)+ where we have seen before that the other techniques do
not work. Now by having that the biclique edge cover technique is more powerfull than the
fooling set technique or the extended fooling set technique [13], the following example will
also illustrate that the biclique edge cover technique is strictly more powerful than the other
two techniques.

Before we go to the next example let us recall the notion of an induced matching. A
matching in a graph is a set of edges without any common vertices. An induced matching
M of a graph G = (V,E) is a set of edges M ⊆ E such that M is a matching and no two
edges of M are joined by an edge of G.

Example 5. Let us have the language Hm = (0m)+ and the bipartite graph GHm = (X, Y,E),
where X = {0k | 1 ≤ k ≤ m}, Y = {0m−k | 0 ≤ k ≤ m − 1}, and we define (0i, 0j) ∈ E if
i + j 6= 0 mod m. We denote by GHm = (X, Y, (X × Y )/E) the complement of GHm with
respect to the edge set E.

We observe that GHm is an induced matching with m edges. The bipartite dimension of
graphs with the property that their complement with respect to the edge set is an induced
matching with m edges was determined in [2]. It was shown that it is equal to h, where h
is the smallest integer such that m ≤

(
h
bh
2
c

)
. Hence, we have that the biclique edge cover

technique tells us that any NFA for Hm has at least h states. Moreover, h increases as m
increases, then h cannot be bounded from any constant as it is in the case of extending fooling
set.

In the discussion above we compared the fooling set and extending fooling set techniques
with the state complexity of NFAs. We saw that there are cases where the bounds, which
these two techniques give us, are bounded by a constant but the size of the corresponding
NFAs increases. Now we would expect the comparison between bipartite dimension and
nondeterministic state complexity. The following theorem implies that the lower bounds
given by the biclique edge cover technique for an infinite sequence of regular languages
cannot be upper bounded by a constant.

Theorem 4. Let L ⊆ S∗ be a regular language and the bipartite graph G = (Σ∗,Σ∗, EL).
Then 2d(G) is greater or equal to the deterministic state complexity of L, i.e., 2d(G) ≥ sc(L).

From [13] we have that finding the properties that each of these techniques requires in
order to give lower bounds are difficult, even if these techniques some times do not give
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tight bounds compared with the real ones. Here we have to transform these techniques
into problems, which is done by the natural way. The problems are given a deterministic
finite automaton A and a natural number k in binary, i.e., encoding < A, k >, is there a
corresponding set S for the language L(A) of size at least k? Then we have the following
results. The fooling set problem is NP-hard and contained in PSPACE. The extended fooling
set problem and the biclique edge cover problem are PSPACE-complete.

2.3 Communication Complexity and Finite Automata

Yao [54] introduced communication complexity which is a very well studied sub-area of
complexity theory. It is closely related to other complexity measures of fundamental compu-
tational models (e.g., Boolean circuits, VLSI circuits, branching programs, Turing machines,
etc.). Here we take a glimpse of its connection to the model of finite automata.

Alice and Bob want to calculate a Boolean function. Neither Alice or Bob have the
whole input. Alice has the half one and Bob knows the other half. The only thing that they
can do is to send messages to each other until they have enough information for calculating
the function. At each time they can send only one bit, 0 or 1, through the communication
channel which are using. What we are interested in is the amount of information that is
necessary for them to send before they can know the output of the Boolean function. This
required amount of information is the communication complexity of the Boolean function.

Before we give a more formal definition let us give an example, hopefully to illustrate
better this concept. Let’s give to Bob the number i, and let’s give to Alice the number j,
both of the numbers are in binary. Now, the function they want to calculate is f(i, j) = i+ j
mod 2. It is sufficient for Bob to sent just the last bit of the binary number i and Alice
will be able to calculate the result of i + j mod 2. In this case, it is easy to see that the
communication complexity of the function f is just one.

Let M = {0, 1, 2, . . . ,m − 1}, N = {0, 1, 2, . . . , n − 1}, and f : M × N → {0, 1}. Let
i ∈ M , j ∈ N the numbers known to Alice and Bod respectively. At each time Alice first
sends a bit ak ∈ {0, 1} to Bob and Bob respond with a bit bk ∈ {0, 1}. Cooperatively, they
try determine the value of f(i, j). Alice starts by sending a1 to Bob, Bob knowing j and a1

calculates b1 and he sends it to Alice. Alice now knows i and b1, then she calculates and sends
a2. The calculation continues similarly until one of them calculates the answer. Precisely, an
algorithm P specifies the Boolean functions {hk(i, u1, u2, . . . , uk−1), lk(j, v1, v2, . . . , vk) | k =
0, 1, 2, . . .} and the bits ak = hk(i, b1, b2, . . . , bk−1), bk = lk(j, a1, a2, . . . , ak). Moreover the
algorithm P is also called a protocol. The cost α(P ) is defined to be the maximum number
of bits exchanged for any i ∈ M, j ∈ N . The two-way communication complexity of the
function f is defined as:

cc(f) = min{α(P ) | the protocol P computes f}

Let us give another example to illustrate the previous concept[54]. Let M = {0, 1, 2, 3, 4},
N = {0, 1, 2}, and the Boolean function f which is given from the following table:
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(i, j) 0 1 2
0 0 1 0
1 0 0 0
2 1 1 1
3 0 0 1
4 1 1 0

Let the protocol P be the following instructions. If i is 1 or 2, Alice would know the
outcome of f(i, j) and she halts. Now, she splits the rest possible inputs into two groups,
{0, 3} and {4}. She sends 0 if i = 0 or i = 3 and she sends 1 if i = 4. When Bob receives
a1 = 1 from Alice, he already knows the output f(i, j). When he receives a1 = 0 from Alice,
he cannot guess the output yet. Then, Bob has three possible inputs, 0, 1, 2, if j = 0 he
knows the output and he stops, if j = 1 he sends b1 = 1, and in the last case where j = 2
he sends b1 = 0. It is easy to see that when (i, j) = (4, 1), it takes just two messages for
Alice and Bob to calculate the output, they send a1 = 1 and Bob send the solution to Alice.
When (i, j) = (3, 2), Alice sends first a 0, Bob replies with 0, and Alice send back the output,
which is 1. Note that the cost of the protocol P α(P is 3 as we need 3 messages when i = 3
and j = 2.

We notice from the previous example that we can represent the initial problem in the
form of a Boolean matrix, also called communication matrix, and as we proceed with the
calculation we restrict on smaller and smaller submatrices. Further study of the very inter-
esting area of communication complexity goes outside of the purpose of this paper. For the
reader interested in further study of communication complexity we suggest [20, 30, 31].

Without getting into more details we also mention about nondeterministic communication
complexity and its relation to some combinatorial properties of M(f). A nondeterministic
protocol P computing a finite function f : U × V → {0, 1} consists of two nondeterministic
parties A and B that have a nondeterministic choice from a finite number of messages for
every input argument. For any input (a, b) ∈ U × V , we say that P computes 1 (or that P
accepts (a, b)) if there exists a computation of P on (a, b) that ends with the result 1. So,
P computes 0 for an input (a, b) if all computations of P on (a, b) end with the result 0.
The nondeterministic communication complexity of P , denoted ncc(P ), is the maximum of
the communication complexities of all accepting computations of P . The nondeterministic
communication complexity of f is the following:

ncc(f) = min{ncc(P ) | P is a nondeterministic protocol computing f}

Note here that the last two techniques, the communication complexity technique and
the biclique edge cover technique, are different representations of the same concept. The
communication complexity approach is in the language of Boolean matrices and the biclique
edge cover approach is in the language of graphs.

Now, we can establish a connection between communication complexity and finite au-
tomata as follows. We represent regular languages as communication matrices of infinite
size. For an alphabet Σ, the communication matrix of a language L is the infinite Boolean
matrix M(L) = {αx,y} for x ∈ Σ∗, y ∈ Σ∗, where αx,y = 1 if and only if xy ∈ L. Since every
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regular language has a finite index, form Myhill-Nerode theorem, the number of different
rows of M(L) is finite. Then, we can use the techniques from communication complexity
area. We have results on this direction by [19, 20] which say that for any n-state automaton
A recognizing the language L, if A is a DFA we have that n ≥ 2cc(L) and if A is an NFA
then n ≥ 2ncc(L).

We conclude this section by considering other directions for further research. An obvious
question is if we can find other techniques for giving lowers bounds for the state complexity
of NFAs. As we know there are only the techniques which were discussed above. Another
question is to find other similar techniques when we have NFAs with limited resources. In
this direction in [43], we give a lower bound technique for NFAs with limited tree width.
Moreover, in the same direction Hromkovic et. al. in [23] combine communication complexity
to give lower bounds lower bounds with limited ambiguity. We will discuss quantifying
nondeterminism in more detail in the next section.

3 Quantifying Nondeterminism in Finite Automata

In the rest of this paper we consider quantifying nondeterminism in finite automata as this
subject appears in the literature. We have already seen in Subsection 2.1 some examples of
exponential blow up, from the state complexity point of view, as we transform some NFAs
into DFAs. A natural question here is how quick is this logarithmic saving in terms of
“allowing” more nondeterminism in finite automata. The previous question doesn’t make a
lot of sence before we explain how do we restrict the nondeterminism used by finite automata.

We can view nondeterminism as another resource that finite automata can use. In this
point of view, we can quantify nondeterminism and measure it. There are many possible
ways to do that. In this part of the paper we discuss different ways that have already
appeared in the literature. For each of these ways of measuring nondeterminism we have a
different subsection which also contains results on this measurement.

The terminology used in the literature for finite automata employing limited nondeter-
minism is not well established and the notations vary from paper to paper. Below we use
our own names and we attempt to make the notation, arguably, more consistent. We always
give references for the results and, when necessary, explain when the original paper used
significantly different terminology.

3.1 Branching and Guessing

In this subsection we consider the nondeterminisitc measures of branching and guessing.
These two measures appear in [11]. The only papers where the branching and guessing
measures are studied are [11],[28], [34], and [10].

Before we can define the measures of branching and guessing, we should define what
is a move of an automaton, moreover what is a computation. A move µ of an automaton
M = (Q,Σ, δ, q0, F ) is a triple (p, a, q) ∈ Q × Σ × Q where q ∈ δ(p, a). A computation of
an automaton M is a finite sequence of moves which has some specific properties. Let us
have the sequence of moves µ1µ2 . . . µk for a natural number k, also let the move µi be the
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triple (pi, ai, qi). If for every 1 ≤ i ≤ k − 1 we have that qi = pi+1 and p1 is the initial state
then we call the sequence of moves µ1, µ2, . . . , µk a computation of the automaton M for the
word w = a1a2 . . . ak. If additionally the state qk is a final state then we call the sequence of
moves µ1, µ2, . . . , µk an accepting computation of M for w.

Definition 1. For an automaton A = (Q,Σ, δ, q0, F ) the branching brhA(µ) and guessing
gsA(µ) of a move µ = (p, a, q) are defined to be:

brhA(µ) = #δ(p, a) and gsA(µ) = log2(#δ(p, a)).

Where #S denotes the cardinality of a set S.

Branching and guessing are extended to computations µ1µ2 . . . µt, for t ≥ 0, by setting:

brhA(µ1 . . . µt) = brhA(µ1)× . . .× brhA(µt)

and
gsA(µ1 . . . µt) = gsA(µ1) + . . .+ gsA(µt)

For a word x in the language L(A) defined by A, we define the branching brhA(x) and
guessing gsA(x) of the word x on A, when A is clear from the context we omit it from the
notation:

brhA(x) = min{brhA(µ1 . . . µt) | µ1 . . . µt is an accepting computation of A and reads the word x}

and

gsA(x) = min{gsA(µ1 . . . µt) | µ1 . . . µt is an accepting computation of A and reads the word x}

It is clear that for a deterministic automaton A and for any word x in L(A) the branching
brhA(x) will be always 1 and the guessing gsA(x) will be always 0.

Now, we define the branching and guessing of an automaton A to be the largest branching
and guessing among all the words accepted by the automaton.

Definition 2. If the language L(A) accepted by the finite automaton A is empty, let brhA = 1
and gsA = 0. Otherwise, let

brhA = sup{brhA(x) | x ∈ L(A)}

and
gsA = sup{gsA(x) | x ∈ L(A)}

The measures of branching brhA and guessing gsA is one way of quantifying the amount
of non-determinism that A requires to recognize L(A). Whenever either of them is finite,
we have that brh = 2gs. So, we will consider the branching brh and the guessing gs as
one measure and we will refer to only one of them. We will choose the one that is more
convenient for us, in each case.

Since we intend to study the trade-off between the amount of non-determinism and the
size of a finite automaton, we make the following definition.
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Definition 3. Let |A| be the number of states in the finite automaton A. Denote scbrhi(L) =
min{|A| | A is a finite automaton for L with brhA ≤ i}. We also call the spectrum scbrh(L)
of a regular language L to be the infinite sequence:

scbrh(L) = (scbrh1(L), scbrh2(L), . . . , scbrhi(L), . . . ; scbrh∞(L))

Note that scbrh1 ≥ scbrh2 ≥ . . . ≥ scbrh∞ ≥ 1 for every spectrum. Moreover, scbrh∞(L)
is the number of states in a minimal-state non-deterministic finite automaton for L. Finally,
scbrh1(L) is the number of states in a minimal-state incomplete deterministic finite automa-
ton for L. Moreover, with similar way we define scgsi(L) for guessing.

Moreover in [11] they consider about computability issues of this measure. They show
that the branching brhA of an automaton A is computable, as well as the spectrum of a
regular language is computable.

In [34], Leung gave an algorithm for finding if a given NFA has finite nondeterminism. He
also showed that the corresponding decision problem is PSPACE-complete. The algorithm
and his computational complexity result are too complicated for the purpose of this paper
and we avoid them here.

In [11] also continue by showing other interesting properties of the branching measure.
In the next lemma they show that there are languages where by allowing finite number of
nondeterminism does not produce any saving in the number of states.

Lemma 1. Let L be a regular language and $ a new symbol. Then for some possitive integers
k and n.

scbrh(($L$)∗) = (k, k, k, . . . ;n)

As a result of the previous lemma we have that there exist regular languages for which
any NFA with a finite branching cannot be smaller than a DFA. Moreover, there are lan-
guages where the exponential blow up that we have by transforming an NFA to a DFA
remains the same even if we transform the NFA to another NFA but with finite amount of
nondeterminism.

Theorem 5. For every regular language L,

scbrh(L) ≤ (2n−1, 2n−1, . . . , 2n−1, . . . ;n),

where n = scbrh∞(L). Moreover, the upper bound can be tight. For each n ≥ 1, there is a
regular language Ln with

scbrh(Ln) = (2n−1, 2n−1, . . . , 2n−1, . . . ;n).

From Lemma 1 we have that minimal NFAs with finite branching can have the same size
with the minimal equivalent DFAs. From Theorem 5 we have that this case can be happen
even when there is an exponential blow up in the number of states comparing DFAs and
NFAs. Here, we have to notice that the bound of the Theorem 5 doesn’t reach the general
exponential bound of 2n of comparisons NFAs and DFAs but half of it 2n−1. Intuitively, this
difference is because when we compare DFAs and NFAs with we use all the possible sets
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that come up from the power set construction, in the later case we have all the sets which
contain a specific state. This specific state is responsible for separating the languages that
involve in the star operation, as we do in Lemma 1. It turns out to be difficult to have
a result like Theorem 5 without having this separating state. This result is difficult to do
without separating the languages that involve in the star operation, and similar is difficult
to separate these languages without having a separating state.

Finely, in [28] Kappes consider comparing an NFA with finite branching with determinis-
tic finite automata with multiple initial states (MDFA). In other words, he consider the case
where the whole nondeterminism of the automata to be only in the beginning. His result is
that for each NFA M with n states and finite branching βM = k there is an MDFA M ′ with
k · n+ 2 states and L(M) = L(M ′).2

3.2 Advice

We have already seen one way of measuring the amount of non-determinism on a given
automaton. Now, we continue by giving three other ways of measuring non-determinism [21,
23]. The first one is based on the number of nondeterministic choices that we have to
make during a computation. The other two measures are similar and they are based on the
computation tree of a word, on a given automaton.

The first measure of these papers are called advice. Advice measures the maximum
number of nondeterministic choices in all possible computations on a given word. In other
words, for a path C the advice of C is the number of states in C which have more than one
successor. Now, let us define the advice measure.

Definition 4. For every NFA A we measure the degree of non-determinism as follows. Let
Σ denote the alphabet of A. For every input x ∈ Σ∗ and for every computation C of A on
x we define adv(C) as the number of non-deterministic choices during the computation C.
Then,

advA(x) = max{adv(C) | C is a computation of A on x}

advA(n) = max{advA(x) | x ∈ Σn}

advA = sup{advA(x) | x ∈ L(A)}

These measures haven’t been studied much. There are some results on this measure but
they are comparisons with other measures. Then, we will discuss more about this measure
in the subesection 4 where we study the relation between different measures.

Kintala and Wotschke [29] studied a somewhat related measure. They still count the
number of nondeterministic choices that we make as we read a word, the difference now is
that we count these nondeterministic choices only in accepting paths, i.e. the path ends
up in a final state after reading the input word, and among all these accepting paths we
take the one which gives us the smallest number of nondeterministic choices. We call this

2This result appears in Kappes’ paper with the formula k · n + 1. But we need an extra state since we
consider NFAs with only one initial states, and he considered the model where there are multiple initial
states.
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measure M-advice, from Mandl who first used this measure [38], and we denote it by mdl. For
completeness, we define mdlA(C) = advA(C) for an accepting computation C and mdlA(x) =
min{mdl(C) | C is an accepting computation of A on x}.

Kintala and Wotschke give the following language R′k = {x1y | x, y ∈ {0, 1}∗, |x| ≤
k − 1, |y| = k} and they prove the following theorem which gives us a lower bound for the
relation between deterministic finite automata and finite automata with finite M-advice.
Moreover, we should note that for every k ≥ 1, R′k can be accepted by a (2k + 1)-state
nondeterministic finite automaton.

There are automata where a limitation in M-advice doesn’t change much the succinct of
general NFA, and the exponential blow up in deterministic case still occurs. An example
of this is the language R′k, where it can be accepted by (4k − 3 · log k)-state NFA with M-
advice at most log k. Moreover any deterministic finite automaton for R′k must have at least
2k+1 states. We have to notice that it reached the tight bound O(2n/2) of the case of finite
languages [46, 47].

Moreover in the same paper, Kintala and Wotschke [29] give the language Lh,k = {x1y |
x, y ∈ {0, 1}∗, |x| ≤ k − 1, |y| = k, and x has at most h 1’s in it}. They prove that every
deterministic finite automaton accepting Lh,k must have at least

∑h
i=0

(
k
i

)
distinct states.

Moreover there is a O(k2)-state nondeterministic finite automaton accepting Lh,k with M-
advice at most log h.

Another interesting result that they have in the same paper is that there is a hierarchy
between the amount of M-advice in NFAs. For any two given function g1(n) < g2(n) < log n
there are NFAs with M-advice at most g2(n) which are more succinctness than any NFA
with M-advice at most g1(n). They come to this result by showing that for any given
function g(n) < log n, there is a class of n-state nondeterministic finite automata with at
most g(n) M-advice, and the equivalent minimal deterministic finite automaton has at least∑2g(O(

√
n))

i=0

(
O(
√
n)

i

)
states, for big enough n. Which intuitively the previous tells us that the

bigger function that we have, but smaller than log n, the more succinctness in the number
of states we can have.

3.3 Tree Width

The other two ways of measuring non-determinism are based on the computation tree of a
word. In this subsection we consider the case of the so called tree width measure.

Here, we should mention what is the computation tree. The computation tree of the
automaton A on input x, denoted by TA,x, is defined as follows. The root of TA,x is labelled
by the initial configuration of A on x. If a node u of TA,x is labelled by configuration K and
K1, . . . , Km are the configurations such that K ` Ki, i = 1, . . . ,m, then u has m children
that are labeled, respectively, by the configurations K1 . . . , Km.

We will call tree width of a word x for a given automaton A the number leaves of the
computation tree of the word x of automaton A, i.e., twA(x) is the number of leaves of TA,x.
We should mention here that the papers [21, 23], which use this measure, refer to it as leaf
size. We can now define the following notation.
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Figure 7: An NFA with 23 tree width.

Definition 5. We define the tree width of A on a word x, denoted by twA(x), to be the
number of leaves of TA,x. We also define the following:

twA(n) = max{twA(x) | x ∈ Σn}

twA = sup{twA(x) | x ∈ L(A)}

In [21, 23], they give the following lemma where the investigate the growth of the tree
width function. It is a variation of a result in [24].

Lemma 2. For every NFA A with n states, either twA(k) ≤ (k · n)n or twA(k) ≥ 2Ω(k).

Also in [23] they give the following theorem.

Theorem 6. For every NFA A, twA(k) is either bounded by a constant or in between linear
and polynomial in k, or otherwise 2Θ(k).

As it appears, this measure hasn’t been extensively studied in the literature. In [43] we
have studied the last measure, the tree width. After making the notice that a NFA with
finite tree width does not have cycles containing a nondeterministic transition, we prove the
following theorem.

Theorem 7. If A is an NFA with n states and no cycle contains a nondeterministic tran-
sition, then

twA ≤ 2n−2

A natural question that may appear to the reader is if there are examples where the
inequivalence of the previous theorem becomes an equality. It turns out that there are such
examples. Such example is the Example 6 where we also see an instance of it in Figure 7 for
5-states.

Example 6. Let n ≥ 2, Σ = {a, b} and A = (Q,Σ, δ, 1, {n}) where Q = {1, . . . , n} and
we define for i ∈ {1, . . . , n − 1}, δ(i, a) = {i + 1, i + 2, . . . , n}, δ(i, b) = {i + 1}, δ(n, a) =
δ(n, b) = ∅.

17



We have already mentioned that a NFA with finite tree width does not have cycles
containing a nondeterministic transition. It is easy to see that also for an NFA A which no
cycle of A contains a nondeterministic transition has finite tree width. In that case, we can
decide in polynomial time whether or not a given NFA has finite tree width.

An NFA A with finite tree width can be thought to consist of a finite number of deter-
ministic “components” that are connected by the reachability relation in an acyclic way. In
the same paper we show that this deterministic decomposition fully characterize NFAs with
finite tree with. First, let us formulate the DFA decomposition.

We have already seen that the tree width can be exponential compared to the number of
states for a finite automaton with finite tree width. In the case where we have small amount
of tree width we compare the number of states between DFAs and NFAs with finite tree width
and we see that the succinctness is polynomial. By noticing that after a nondeterministic
transition we can not come back to the initial state when we have finite tree width, we show
the following lemma.

Lemma 3. Let L be a regular language where sctwk(L) = n for some k ≤ n− 1. Then

sc(L) ≤ 1 +
k∑

j=1

(
n− 1

j

)
.

From the following theorem we get that the bound in the previous lemma is tight as we
show in [43]. The proof is based on a construction similar to [16], which we have discussed
in subsection 2.1.

Theorem 8. For every 1 ≤ k ≤ n−1 there exists an n-state NFA An,k such that tw(An,k) = k

and sc(L(An,k)) = 1 +
∑k

j=1

(
n−1
j

)
.

We know that minimization is NP-hard for any class of finite automata that contains a
restricted version of NFAs with tree width 2 [4, 5]. Thus, in order to establish lower bounds
for the size of NFAs with finite tree width we need to rely on ad hoc methods inspired by
the fooling set techniques that we have seen in the first section.

Let L be a regular language over Σ. We say that a finite set of strings {u1, . . . , ut},
ui ∈ Σ∗, 1 ≤ i ≤ t, is a t-separator set for the language L if

(∀1 ≤ i, j ≤ t, i 6= j)(∃z ∈ Σ∗) uiz ∈ L and ujz 6∈ L. (1)

Note that the above definition treats (i, j) as an ordered pair, and it is not sufficient if
z ∈ Σ∗ satisfies the corresponding condition where i and j are interchanged. On the other
hand, the condition (1) allows z to depend on the pair (i, j) and, consequently, for a given
regular language we can typically find a much larger separator set than a fooling set; see
Example 7.

Lemma 4. Suppose that a regular language L has a t-separator set {u1, . . . , ut}, t ≥ 1. If L
has a tw(k)-NFA A with n states, where k ≤ n

2
, then(

n

k

)
≥ t.
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We end our study of the tree width measure by giving an example where we use the
previous lemma to give lower bound on the number of states for a NFA with finite tree
width.

Example 7. Recall the unary language Hm = (0m)+ we consider earlier. The language Hm

has a separator set {ε, 0, 02, . . . , 0m−1, 0m}. According to Lemma 4, if Hm has tw(k)-NFA
with n states where k ≤ n

2
, we have the estimation

(
n
k

)
≥ m+ 1. This is exponentially better

than the lower bound obtained for the size of (general) NFAs with the bipartite dimension
method, remember Example 5. Recall that the bipartite dimension method is guaranteed to
give at least as good bounds as (and often better bounds than) the fooling set methods [13, 15].

However, also our bound does not coincide with the real lower bound except in the case
k = 1.

3.4 Ambiguity

Our final measure of the amount of non-determinism is ambiguity. The ambiguity of a
nondeterministic computation refers to the number of accepting paths in the computation
tree. This measure is the most well studied in the literature, it appears in many papers
[10, 12, 14, 21, 23, 33, 35, 36, 37, 41, 42, 45, 50, 52, 53]. The ambiguity of the word x for
automaton A, denoted by ambA(x), is the number of all accepting leaves of the computation
tree of the word x of automaton A. In other words, ambA(x) is the number of all accepting
paths of A when it reads x. We define the concept of bounded ambiguity later in this
subsection.

Here we split this subsection into two parts. In the first part, we study unambiguous
finite automata (UFA), which are nondeterministic finite automata with ambiguity one.
In other words, each accepted word has a unique accepting path. In the second part, we
study bounded ambiguity which can be considered a generalization of unambiguous finite
automata.

3.4.1 Unambiguous Finite Automata

In a survey of ambiguity in finite automata and pushdown automata Holzer and Kutrib [14]
summarize some results of different papers [48, 50, 35, 32, 36] in the following theorem. This
theorem compares NFAs with UFAs and UFAs with DFAs.

Theorem 9. Let n ≥ 1 and A be and n-state NFA. Then 2n − 1 states are sufficient and
necessary in the worst case for a UFA to accept L(A). If automaton A is a UFA, then 2n

states are sufficient and necessary in the worst case for a DFA to accept L(A).

The first property that we consider about UFAs is their relation with DFAs. We have
already seen in Figure 3 that there is an NFA with n states that the minimal equivalent
DFA needs 2n states, or 2n − 1 states in the case where we don’t count the ‘dead’ state.

The corresponding question of comparing the state complexity of UFAs with DFAs for
unary alphabets was investigated recently by Okhotin in [41, 42]. He presents that if A is
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an n-state UFA, for n ≥ 1, accepting a unary language, then eΘ(
3√
n·ln2 n) states are sufficient

and necessary in the worst case for a DFA to accept L(A).
On the other hand if we want to simulate a unary NFA by a UFA in the same papers

[41, 42] it was shown that one cannot do asymptotically better than in the unary NFAs to
DFAs transformation, which we have seen in the previous section.

For the trade off between MDFAs and UFAs a tight bound in number of states was given
in [37, 36]. Again, let n ≥ 1 and A be an n-state MDFA. Then, 2n − 1 states are sufficient
and necessary in the worst case for a UFA to accept L(A).

We are closing this part of unambiguous finite automata by mentioning a similar concept
which Leung investigated in [37]. A variation of UFAs is the so called structurally unam-
biguous finite automata. An NFA A = (Q,Σ, δ, q0, F ) is structurally unambiguous (SUFA)
if for every word w ∈ Σ∗ and every state q ∈ Q there is at most one computation from the
initial state q0 to state q reading word w. Note that compared to the original definition of
unambiguity the computations need not be accepting/rejecting but to end with the same
state. Thus, unambiguity is a semantic concept, while structural unambiguity is a syntactic
one, which is independent of the choice of the set of final states. Notice that when in the
set of final states we have only one state then SUFA is UFA as well. In the same paper
Leung showed that a SUFA can be exponentially more succinct in the number of states than
a UFA.

Now for the comparison between SUFA and DFA, UFA, or MDFA we have the following
results. Let n ≥ 1 and A be an n-state SUFA. Then 2n states are sufficient and necessary in
the worst case for a DFA to accept L(A). Moreover, 2n−1 states are sufficient and necessary
in the worst case for a UFA or MDFA to accept L(A) [37, 14].

3.4.2 NFAs with bounded ambiguity

A natural generalization of unambiguous finite automata is to relax the condition that for
each accepted word we have only one accepted path but a certain number of them. In other
words, for each accepting word we can have a maximum of a fixed number of accepting
paths, this brings us to the concept of quantified ambiguity. Let us define now this concept
more formally.

Definition 6. We define the ambiguity of an automaton A with respect to a word x, denoted
by ambA(x), to be the number of accepting leaves of TA,x. Also, we define the following:

ambA(n) = max{ambA(x) | x ∈ Σ≤n}

ambA = sup{ambA(x) | x ∈ L(A)}

As usual, we need a different notation for denoting the number of states which an au-
tomaton has with ambiguity less that a given number. Then, denote scambi(L) the size of
a smallest NFA for L having ambiguity at most i. More formally, we have the following.

scambi(L) = min{|A| | A is a finite automaton for L with ambA ≤ i}

20



Figure 8: NFAs with different degrees of ambiguity: (a) UFA, (b) FNA with ambA is constant
2, (c) PNA with linear ambA, and (d) ENA.

Firstly, we bound the function ambA(n) by a function f , ambA(n) ≤ f(n). We will
call an automaton A finitely ambiguous if the function f is a constant, similar we call the
automaton A polynomially or exponentially ambiguous if the function f is polynomial or
exponential, respectively we denote them by FNA, PNA, and ENA. The first easy result is
that for any NFA A we have that ambA(n) ≤ |Q|n, where Q is the set of states of A [14].
This is because as we read any word of length n, in each step we have at most as many
choices as the number of states. Hence, every NFA is exponentially ambiguous, i.e. an ENA.
Figure 8 shows us some examples of NFAs with different ambiguity [14, 12].

In the papers [14, 24, 45, 53] they give the following theorem which is a structural
characterization of NFAs ambiguities. Before we give the theorem we have to mention when
an automaton is strictly ambiguous. An automaton is strictly ambiguous of a certain degree,
if it is ambiguous of this degree, but not of any lower degree in the ambiguity hierarchy
induced by the classes above.

Theorem 10. Let A be an NFA with state set Q and input alphabet Σ, in which all states
are useful. Then we have the following structural characterizations of finitely, polynomially,
and exponentially ambiguity on finite automata:

1. An automaton A is strictly exponentially ambiguous if and only if there exists a state
q ∈ Q and a word w ∈ Σ+ such that there is more than one computation from state q
to q reading word w.

2. An automaton A is strictly polynomially ambiguous if and only if A is not exponentially
ambiguous and there exist different states p, q ∈ Q and a word w ∈ Σ∗ such that there
are computations from state p to itself, from state p to q, and from state q to itself, all
reading the same word w.

3. An automaton A is finitely ambiguous if and only if A is neither strictly exponentially
nor strictly polynomially ambiguous.
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Of course an interesting problem would be the comparison of state complexities of au-
tomata of different degrees of ambiguity. This question fits nicely with the whole paper so
far. Results on that direction will be summarized in the following theorem [14]. More specif-
ically, the comparison of DFAs and UFAs was studied in [32, 36, 48, 50]. The comparison
between UFAs and FNAs was studied in [36, 45, 48, 50]. The comparison of PNAs and NFAs
was studied in [23, 35]. Finally, the comparison of FNA and PNA turned out to be a dificult
problem, some attempts on giving an answer initially failed [23, 45] and a solution was given
in [22].

Theorem 11. The following separation results on NFA with different degrees of ambiguity
are known:

1. For every n ≥ 1, there is an n-state ENA A (an NFA having exponential ambiguity)
such that any PNA accepting L(A) has at least 2n − 1 states.

2. For every k, r ≥ 1, there is a k · rO(1)-state NFA with ambiguity O(nk) such that any
NFA accepting L(A) has an exponential (in k and r) number of states, if ambiguity
o(nk) or finite ambiguity is required.

3. For every n ≥ 1, there is an n-state FNA A such that any UFA accepting L(A) has at
least 2n − 1 states. This also holds when changing FNA to UFA and UFA to DFA.

The given bounds in the first and last results are known to be tight.

We continue by studying the relationship of the number of states and the degree of ambi-
guity. Already in Figure 8 we show that there is a 2-state finite automaton with exponential
ambiguity. What happens in the case that we have finite ambiguity. This problem was first
considered in [53] and the following result was established there.

Theorem 12. Let A be an n-state FNA. Then ambA is at most 5n/2nn.

We have already discussed earlier about MDFAs. Another relevant question arises, this
is the relation between MDFAs and UFAs. We have already seen that a DFA can be expo-
nentially larger than a UFA, see Figure 3, moreover a DFA sometimes is polynomially larger
than a MDFA [16]. Then, someone would think that simulating a MDFA by a UFA can save
us some number of states, but the opposite is true. From the next theorem [36] we have that
an UFA can be exponentially larger than a MDFA. Leung defined a MDFA as appears in
Figure 9, and he calls it Mn. In this MDFA, with n states and over a two letter alphabet,
by reading one letter we always go to the next state modulo n, and by reading the other
letter we always stay in the same state except from the first state that we go to the second.
Moreover, all the states are initial states and states alternative are final.

Theorem 13. The smallest UFA equivalent to the MDFA Mn has 2n − 1 states.

Continuing with the next results we have to remember the connection of communication
complexity with finite automata as we have briefly discussed is Subsection 2.3. By using
communication matrices of regular languages Hromkovic et al. [21, 23] give the following
lower bounds for the size of NFA with finite ambiguity.
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Figure 9: The MDFA Mn from [36].

Theorem 14. For every regular L ⊆ Σ∗ and k ∈ N

a. scamb1(L) ≥ rankQ(M(L))

b. scambk(L) ≥ rankQ(M(L))1/k − 1

c. scambk(L) ≥ 2
√

cc(L)/k − 2.

Here we should mention that similar results were given earlier by Schmidt [48]. Now
by using the previous lemma they show the following corollary which compares the sizes of
NFAs with NFAs with finite ambiguity.

Corollary 2. There is a language NIDm with the following properties:

1. The language NIDm can be recognized by an NFA A with ambiguity O(m) and size
O(m)

2. Any NFA with ambiguity k for NIDm has size at least 2m/k − 1, and in particular any
UNFA for NIDm must have 2m states

3. No NFA with ambiguity o(m/ logm) for NIDm has polynomial size in m.

4 Comparison of Different Measures of Nondetermin-

ism and Future Work

By concluding the paper we discuss in this final section the relations between the different
measures of nondeterminism. We discuss more on this relation in the first subsection. The
second subsection is devoted in discussing open problems and general directions on further
research in the topics that we have discussed here.

4.1 Comparison of the Different Measures

In the previous section we have seen different ways of measuring nondeterminism in finite
automata. In this subsection we take a look into the relation that these measures have with
each other. There are two ways that we can look at this problem. We can search the relation
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between the degrees of nondeterminism of the different measures in a given NFA. Such an
example is that for any NFA A, the ambiguity of A is always less or equal to the tree width
of A, i.e. ambA ≤ twA. The reader could be easily convinced for the previous statement by
noticing that every accepting path of an automaton is also just a computational path of the
same automaton. Another way of comparing two measures of nondeterminism is to relate
the sizes of minimal NFAs where the nondeterminism is, respectively, bounded by the two
measures. For example take the language Lp,q = {w ∈ a∗ | p or q divides |w|}, and let p, q
be primes. Then the minimal NFA with tree width 2 has p + q + 1 states and the same
number of states has the minimal NFA with ambiguity 2. On the other hand, for all n ≥ 4,
there exists a UFA A with n states such that every equivalent NFA B with finite tree width
has 2n−1 states [43].

We just saw the easy case of comparing the ambiguity and the tree width measures. Let’s
compare now the ambiguity with advice. In the case of comparing advice and ambiguity on
the same automaton, it appears that, we can not have any equation. Remember the language
Lp,q that we just saw, and expand it to have all the strings w ∈ a∗ where their length are
divided by one of the prime numbers p1, . . . , pk, denote this new language Lp1,...,pk . Let us
have now the minimal NFA recognizing Lp1,...,pk , this is the one which has an initial state
and k disjointed cycles of length pi for each prime pi. This automaton has advice one and
ambiguity k. On the other hand, remember the automaton from Example 6, this automaton
has advice n−1 and it is unambiguous. From the same examples, we can see that comparing
these two measures from the state complexity point of view is still difficult. In the case of
the language Lp1,...,pk as we have already noticed p1 + . . .+ pk + 1 states are sufficient for an
NFA recognizing it, but for unambiguous automata we need p1 · . . . · pk. For the automaton
from the Example 6 n states are sufficient but it seems that 2 · (n− 1) states are required in
the case of advice one. Of course, it would be an interesting question to figure out the exact
bounds concerning the relationship between these measures.

We mentioned earlier a similar measure with the measure advice, the M-advice. Since,
M-advice counts the nondeterministic choices only from accepting paths it is immediate that
M-advice is always smaller than ambiguity. M-advice chooses the accepting computational
path with the smallest number of nondeterministic steps. Then, it is always smaller than
advice. That means that M-advice is smaller than all other measures that are greater than
advice. Finishing the discussion for M-advice we could also mention that M-advice is smaller
than guessing as well. The guessing measure counts the number of bits needed to represent
the number of nondeterministic choices on the ‘best’ accepting path on the given input. on
the other hand, the M-advice counts just the total number of nondeterministic computation
steps, again on the ‘best’ accepting path. Of course, the maximum of each case can be
produced by different accepting paths, but still M-advice cannot be more than guessing.

Parenthetically, let us remind to the reader the direct relationship between guessing and
branching. When at least one of them is finite, it holds that brhA = 2gsA , for all NFA
A. Hence, we can consider them as one measure and to use the one which best fits in the
context.

Let us move now to our next comparison, the one between advice and tree width. It is
easy to see that the advice of any NFA is always less or equal than the tree width. For every
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computation when we have a nondeterministic choice, and we count plus one for advice, we
have at least one additional leaf in the computational tree since from that point we have
at least two different computational branches. Moreover, as they notice in [21, 23], the tree
width is bounded by the exponent of the advice measure, i.e. twA(n) ≤ 2O(advA(n)) for every
NFA A and n ∈ N. Notice here that the width, number of leaves, of a tree is less than
the exponent of its depth multiplied by the maximum number of nondeterministic choices
that we can have in one step. In the same paper, they also give some other results in this
direction. They give the two following lemmata.

Lemma 5. Let as have an NFA A with n states, then either

a. advA(k) ≤ n and twA(k) ≤ nn or

b. advA(k) ≥ k/n− 1 and twA(k) ≥ k/n− 1.

Lemma 6. Every minimal NFA A, with n states satisfies the following equation for every
x ∈ Σ∗.

twA(x) ≤ advA(|x|+ n) · |x| · n ·+1

Here we should note that the previous lemma was stated in a more general form in the
original papers [21, 23]. The lemma holds for every NFA with at most one, as they call,
terminally rejecting state. Terminally rejecting state is a state which is not co-reachable by
a final state. Clearly there is at most one terminally rejecting state in a minimal automaton.

Moreover, Hromkovic et. al. [21, 23] give another result which combines the measures
of advice, ambiguity, and tree width. This result is for the case where the automaton is
minimal, in other words there is no other equivalent NFA with a smaller number of states.
They say that for minimal automata, the tree width is asymptotically at most the multiple
of advice and ambiguity.

Theorem 15. Every minimal NFA A satisfies the following:

twA(n) ≤ O(advA(n) · ambA(n))

Especially for any such NFA, advA(n) = Θ(twA(n)).

Hromkovic et. al. [21, 23] also study the state complexity point of view of comparing the
above measures. In the following theorems they show that there are cases where we have
polynomial advice, exponential tree width , and polynomial size, while every equivalent NFA
with polynomial tree width or ambiguity needs an exponential number of states. Moreover,
they show that there are cases where as we degrease the ambiguity the number of states
increases exponentially.

Theorem 16. There is a family of languages KLm such that KLm can be recognized by an
NFA with advice Θ(n), tree width 2Θ(n), and size poly(m), while every NFA with polynomial
tree width - ambiguity needs size at least 2Ω(m) to recognize KLm.
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Theorem 17. Let KONm = {0, 1}∗0Mm0{0, 1}∗, where Mm contains all words in {0, 1}∗
with a number of 1’s that is divisible by m. KONm can be recognized by an NFA A with
ambA(n), twA(n) = Θ(n), and size m+ 2, while any NFA with ambiguity k for KONm needs
at least 2(m−1)/k − 2 states.

Goldstine et. al [12] study the relation between the measures of ambiguity and guessing.
Firstly, they show that finite automata with constant or linear guessing can be of all types
of ambiguous automata, UFA, FNA, PNA, and ENA. The interesting result of this paper
is that in the case of a non-constant but sublinear guessing, the automaton must have an
infinite degree of ambiguity. The key result of this paper is the following lemma which has
as a consequence the following theorem.

Lemma 7. If A is an n-state NFA and x ∈ L(A) is such that there is no word w ∈ L(A)
with |x| < |w| and gsA(x) ≥ gsA(w), then

nambA(x) · (ambA(x) · gsA(x) + 1) > 2−n · |x|

Theorem 18. Every NFA with a non-constant but sublinear guessing function has an infinite
degree of ambiguity.

Continuing with comparing the guessing measure with the other measures we notice
that gsA(x) ∈ O(advA(x)), gsA(x) ≤ twA(x), and gsA(x) = Θ(mdlA(x)). For the relation
gsA(x) ∈ O(advA(x)) let c be the number of the maximum number of nondeterministic
choices that automaton A can have in one step. Then, guessing is at most the product of c and
advice, i.e. gsA(x) ≤ c · advA(x). The relation gsA(x) ≤ twA(x) is trivial from the definition
of the two measures. For the relation gsA(x) = Θ(mdlA(x)), similar with the advice, it holds
that gsA(x) ≤ c ·mdlA(x) and as we have already mentioned mdlA(x) ≤ gsA(x).

We notice here that some measures are more related than others. For the ones that are
more related, it makes easier to establish relations between then. By noticing that, we can
try to classify the different measures that we have seen so far. In this direction we could try
to classify them as follows:

• Measures that are based on the best accepting computation.
In this category there are the measures of guessing,branching, and M-advice.

• Measures that are based on the worst accepting computation.
The advice measure belongs to this category.

• Measures that count only accepting computations.
In this category falls the ambiguity measure.

• Measures that count all possible computation paths.
The tree width measure belongs to this category.

Having this classification in mind we can see why some relations are easier to establish.
Let as take the relation between tree width and ambiguity. Both of them measures number
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Figure 10: A nondeterministic finite automaton over {a, b, c}.

of paths in the computation tree. The difference between them is that the one measures all
possible computations, on a given word. Even the ones that they don’t reach an acceptance
state or even the ones that the computation becomes blocked before reaching the end of the
input. On the other hand, the other measure counts only the computations which reach an
acceptance state.

Similarly, we can have an intuition of which measures are more difficult to relate. Let us
show for example that measures from the first type, which are based on the best accepting
computation, do not have a clear relation with measures from the fourth type, where mea-
suring all possible nondeterministic paths. Let us choose the branching measure from the
first type and the tree width measure from the fourth type. Moreover, let A be the automa-
ton from the Figure 10. We are searching for strings x, y such that twA(x) < brhA(x) and
twA(y) > brhA(y). Let us choose first the string x = (a2b3)n, we notice that twA(x) = 2·n+1
and brhA(x) = 4n. In other words, there is string x such that twA(x) < brhA(x). On the
other hand, let us choose the string y = cn, we notice that twA(y) = 2n and brhA(y) = 2n−1.
Then, there is a string y such that twA(y) > brhA(y).

We just showed a case where two measures are difficult to relate. Then some interesting
open problems can come from finding relationships between different measures. Such a
question could be to find a clear relation for branching and tree width for minimal NFA. On
the other hand, it could also hold that even in the case of minimal NFA we don’t have a
clear relation. We will discuss similar open problems in the next subsection.
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4.2 Open problems and future work

At various points in the in the depth paper several open problems have been mentioned.
While descriptional complexity of finite automata is a central research topic, relatively little
work has been done on quantifying nondeterminism. In the following we briefly describe
some open problems and future research directions dealing with limited nondeterminism.

A major research direction would be to compare the descriptional complexity of regular
languages with respect to the different measures for limited nondeterminism. In the depth
paper we have surveyed, to the best of our knowledge, most existing results in this direction.
As was seen in the previous sections, the literature contains only some relatively scattered
results and, in particular, the relationships between different measures are not properly un-
derstood. Different authors have introduced different ways of measuring nondeterminism,
and besides the few results surveyed in section 3.5., very little is known about their relation-
ships.

As observed in Section 4.1, for example, comparing the branching and the tree width
measure is challenging even for a fixed NFA. In order to obtain a proper understanding of
descriptional complexity, we need to consider regular languages instead of particular NFAs.
The following types of questions would be challenging: for a regular language L establish
upper and lower bounds for the size of a minimal NFA for L with branching k as a function
of the size of a minimal NFA for L with tree width k′, and vice versa.

Similar comparisons could be attempted between other pairs of measures for limited
nondeterminism. Perhaps the simplest comparison would be between MDFAs with k initial
states and NFAs of tree width k. Even in this seemingly very restricted case, the precise
comparison of the descriptional complexity of the two models remain unknown.

Recently there has been very much interest in the state complexity of regularity preserving
operations both for DFAs and NFAs [HK2010,Shal08,Y1997]. Naturally one can consider
similar questions for NFAs with limited nondeterminism. This is a huge area of research and
practically nothing is known about operational state complexity for limited nondeterminism.
Okhotin [Okhotin12] has studied the operational state complexity of unambiguous NFAs on
unary languages, but no results are known for regular languages over non unary alphabets.
We have studied the state complexity of union and intersection for finite tree width NFAs in
[PSA12], but, even in the case of finite tree width, no lower bounds are known for the state
complexity of other basic operations such as complementation, concatenation of Kleene star.

As is known from [BM2008], determining the size of a minimal NFA with very limited
nondeterminism is intractable. In particular, [BM2008] shows that minimization of δNFA’s
is NP-complete, where δNFAs are a subclass of tree width two automata. This means that
for establishing lower bound results that are needed for a proper understanding of NFAs
with limited nondeterminism we need some, more or less, ad hoc techniques to prove lower
bounds. In the depth paper we have surveyed the fooling set, extended fooling set, biclique
edge cover and communication complexity techniques that have been developed for general
NFAs. As discussed in Section 2.3 the communication complexity technique also yielded
useful lower bounds for NFAs with finite ambiguity. A major open problem is to find useful
lower bound techniques for NFAs with limited nondeterminism with respect to the various
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nondeterminism measures. Naturally a general NFA lower bound applies also to limited
nondeterminism NFAs, however, in order to yield useful descriptional complexity results the
new techniques need to give stronger lower bounds, that is, the technique needs to somehow
exploit the fact that the corresponding NFA has finite tree width, or finite branching etc.

In the depth paper we have restricted consideration to single tape one-way finite au-
tomata. Naturally notions of limited nondeterminism can be considered for the more gen-
eral two-way automata or multitape finite automata and nothing is known about limited
nondeterminism for such models. The descriptional complexity of various types of two-way
deterministic and (general) nondeterministic automata has been studied in [26, 27], and the
questions are significantly more challenging than for ordinary one-way automata.
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