
Personal Web Services: Architecture and Design
Technical Report 2012-597

Khalid Elgazzar, Hossam S. Hassanein, and Patrick Martin

School of Computing, Queen’s University, Canada
Kingston, Ontario, K7L 3N6

{elgazzar,hossam,martin}@cs.queensu.ca

Abstract. Mobile Web services promise to provide users with more per-
sonalized service provisioning and real-time access to context information
but the constraints inherent in the mobile environment and the lack of a
robust architecture have contributed to their slow realization. The smart-
phone culture and its pervasive use, however, highlight the inevitability
of mobile services. This paper introduces personal mobile Web services,
a new user-centric architecture that enables service-oriented interactions
among mobile devices that are controlled via user-specified authoriza-
tion policies. Personal mobile Web services exploit the user’s contact list
(ranging from phonebook to social lists) in order to publish and discover
Web services while placing users in full control of their own personal
data and privacy. We present a proof-of-concept implementation of an
example personal mobile Web service to demonstrate the usefulness and
feasibility of the concept.

Key words: personal mobile Web services, Web services, service provisioning,
mobile devices, mobile computing, smartphone

1 Introduction

There is no doubt that mobile devices are an integral part of our daily activities.
Smartphones, in particular, become more prevalent due to their convenience and
ability to provide pervasive and ubiquitous information access [1].

The successful convergence of resource-rich mobile devices, high-capacity
wireless technologies and service-oriented architecture has the potential to rede-
fine the mobile computing experience. It can introduce a new range of mobile ap-
plications that promise advanced mobile computing paradigms and seamless data
access. Mobile services, where the mobile devices act as the service providers,
have not yet seen wide adoption. This primarily due to the constraints imposed
by limited resources and power, and intermittent connectivity.

This paper introduces personal mobile Web services (personal services for
short), which are a subclass of mobile Web services that are not hindered by the
above constraints on resources, power and connectivity. Personal services are
intended to offer a range of user-centric data services to limited set of consumers
that are explicitly authorized by the user providing the service. Personal services



2 Elgazzar et al.

therefore do not require the same levels of power and resources as general mobile
Web services and are not required to be always available.

The privacy and security of personal information have been deemed, until
recently, at the lowest priority of businesses [2]. Lately, personal data and pri-
vacy preservation have become a global concern [3]. The user-centric nature of
personal services means that privacy is a key issue. The paradigm enables each
user to play a pivotal role in controlling their privacy and their personal data
communications. For example, personal service providers may expose reports
derived from raw data in contrast to allowing access to the data itself. In addi-
tion, providers may allow access to their personal information based on different
levels of access privileges. A user may categorize certain kinds of personal data
as private and restrict access to this data to close friends and family members.
At the same time, other kinds of data may be classified as public and made ac-
cessible to business partners or co-workers. The contributions of this paper
are as follows:

– We introduce personal mobile Web services, which is a novel architecture for
provisioning of user-centric Web services using mobile devices.

– We define the concept of cooperative service publishing and discovery for
resource-constrained environments. The architecture takes advantage of the
user’s contact list to advertise and discover services.

– We demonstrate the feasibility and utility of personal mobile Web services
through the development of a Smart contact List Management (SLiM) sys-
tem, inspired by the proposed novel architecture.

The remainder of this paper is organized as follows. Section 2 presents the
definition, architecture, design, and distinguishing characteristics of personal
mobile Web services. Potential application domains of personal services are pre-
sented in Section 3. Prototype implementation issues and validation scenarios
are discussed in Section 4. Section 5 concludes the paper and outlines future
research directions.

2 Personal Mobile Web Services

2.1 Definition

Personal mobile Web services are lightweight user-centric services hosted on
resource-constrained mobile devices. They offer personal and contextual infor-
mation to a limited subset of authorized users, in a given period of time, based
on a user-defined access control policy. They manage personal and contextual
information for a user give the user fine-grained control over access to that in-
formation.

Formally, a personal mobile Web service s exposes a set of methods (Web
resources) M to a list of users l ⊆ L, where L is the user’s contact list, L =
{c1, c2, . . . , cn} and c is one of the user’s contacts. Each method (Web resource)
m ∈M has a set of access rights Am set by the mobile user (provider) P . Each



Personal Services 3

contact ci has a set of credentials Rci . A contact ci is granted access to a Web

resource mj if Rci
match→ Amj .

In this work, we lay the foundations for the general concept of personal mobile
Web services. Thus, in the remainder of the discussion, we consider that personal
services are offered for public access without any constraints. However, we point
out different scenarios where access constraints might apply, mostly for future
considerations.

2.2 Distinguishing Characteristics

Personal mobile Web services are direct descendants of mobile Web services
[4] and as such, they share both their advantages and constraints outlined in
[5, 6]. There are, however,the following unique characteristics that give personal
services advantages over mobile Web services:

– Personal services are primarily offered to people in contact list L which im-
plicitly indicates that these services are accessed by a limited number of con-
sumers. Therefore, the impact of resource constraints of mobile providers are
less-likely affect the quality of service provisioning.

– Personal services place the owner (service provider) at the core of the service
communications. Thus, the service owner P is in full control of how their data
is being accessed by others by determining the access rights A for each method
m and the privileges R for each customer c.

– Personal services are envisioned to typically include services such as personal
profile management, contact list update, and photo/video sharing. Therefore,
provisioning such services does not require continuous availability (which copes
the impact of intermittent connectivity). Service providers and consumers may
communicate with each other whenever a reliable network connection is avail-
able.

– Since personal services are hosted on mobile devices that are usually attached
to users P with a personal contact list L, the idea is to exploit contacts in L to
announce the existence of their services s, while consumers discover services
provided by those in their contact list. Contacts cooperate, using their own
resources, to extend the reachability of service providers when they announce
their service existence or service requesters when the look-up a service.

2.3 Architecture of personal mobile Web services

In this section we present the conceptual architecture for personal services.
Figure 1 depicts the proposed architecture of personal services. The Web

service is deployed on the mobile device, where an embedded lightweight Web
server exists to provide the essential functionalities of HTTP-based service com-
munications. In this architecture, the mobile device user/owner is the service
provider and the service consumer is a direct or indirect contact of the provider.
The mobile service provider advertises Web services to the members of his/her
contact list. According to the settings of the service advertisement and provider



4 Elgazzar et al.

Personal 
Web services

direct Contact

Contact List

Indirect 

Contact
republish

Com
m

unicate

P
u

b
lis

h

R
em

o
te d

isco
very

C
o

m
m

u
n

icatio
n

s

P
sj

L

Ci

discover
Local 

discovery

1

2

Fig. 1: A conceptual architecture of personal services

preferences, contacts who receive a service advertisement may be able to in turn
distribute the service announcement to their own contact list. Personal service
discovery looks up required services in the local service directory, if such a di-
rectory exists, (step 1). If no match is found, the discovery mechanism sends a
service discovery request to people in the contact list (step 2) and may delegate
to them the discovery task. The service communications (service request and
service response) are performed through a direct link between the provider and
a customer.

It is worth mentioning that, while personal services architecture is optimally
designed for mobile devices, there is no barrier for a non-mobile based contact
to participate, as it can be reached through either a mailing list or a social list.

2.4 Service directory

The standard Web service architecture uses a registry like UDDI (Universal
Description, Discovery and Integration)[7] to support service publication and
discovery. UDDI is a centralized service repository that manages and maintains
Web services entries and keeps a reference for their description file.A discussion



Personal Services 5

of UDDI and a comprehensive comparison between different service registration
and discovery techniques is given by Elgazzar et al [8].

For personal services, we adopt a distributed service directory approach,
where each mobile device manages its own offered Web services and maintains
references to services it knows about. Having a service directory is optional, for
participants who only participate as service customers. From this perspective,
there are two categories of services: local services and remote services. Local
services are hosted and provided by the local system, whereas remote services
are “active and running” services hosted on other mobile devices. Table 1 shows
a possible table structure for the personal service directory.

Column Type Description

contactID int (PK) A system generated reference to the
provider (contact) that services belong to

contactEndPoint String The provider’s base Internet address
sID int Service id
title String Service title
description String Service description
endPoint String A reference to the service description file
status int 0=“active” (default), 1=“inactive”

Table 1: A structure for the personal service directory

The contactEndPoint identifies the base Internet address at which the service
provider (contact) can be reached. It sets the default for two other registry-
related attributes: contactEndpoint/registry/publish, through which the
service publication mechanism gets access to the service directory and registers
services, and contactEndPoint/registry/discover, to which service discovery
requests are sent.

The functions used in the service directory management to handle the basic
directory operations as shown in Table 2, where “object” could be a service
object or a list of services. It’s worth noting that publishing is a system function
and does not belong to the responsibilities of service directory.

Functionality Return Purpose
add(contactID, sID, title, description, endPoint) int adds a new service
update(contactID, sID, title, description, endPoint) int updates an existing service
delete(contactID, sID) int deletes an existing service
get(contactID, sID) object retrieves a service information
getall(contactID) object gets all services belong to a provider
status(contactID, sID) int queries the status of a service
search(capabilities[]) object searches for services that match a list

of capabilities

Table 2: The essential service directory functionalities



6 Elgazzar et al.

When a service is suspended or becomes invalid (not offered anymore), the
provider sends out an update message with the service ID to either deactivate
or delete the service. A service can be deactivated when the provider wants
to temporarily suspend the service with a high possibility that the service will
reactivated again. In order to avoid false discovery and maintain consistency, the
provider, in all cases, must use the same service publication depth used with the
service announcement to ensure that the message reaches everyone that holds a
reference to the service.

2.5 Personal service publication

Service discovery is a crucial component in a Web service architecture, especially
in heterogeneous mobile environments. Failure to find the services relevant to a
user’s objective renders the Web service approach useless. Limited resources on
mobile devices present unique challenges for service discovery [8]. The standard
Web service approach to discovery, which employs a registry like UDDI, has not
been widely adopted [9]. Therefore, providers usually resort to other methods to
publicize their services, for example, on their own websites.

In contrast, personal services take advantage of an individual’s contact list
to announce their existence. Such an approach enables the service provider to
selectively assign access rights to Web service resources. Hence, the service might
be offered to only a subset of the contact list, perhaps with different access
privileges.

To facilitate personal service publishing and discovery using the contact list,
we assume that each participating contact is reachable via an Internet address.
To achieve this we propose to add an entry contactEndPoint for each contact to
indicates how this contact can be reached over the Internet. This entry provides
a unique HTTP address for the contact. If contactEndPoint is empty, then the
contact cannot participate in service publishing or discovery.

The process of personal service publication using contact lists is shown in
Figure 1. Once a personal service is deployed on the mobile device, a publica-
tion procedure announces the service’s existence by sending a message to the
contactEndPoint of each (authorized) contact in the provider’s contact list.

The service’s sID, publicationDepth, title, description, and endPoint are suf-
ficient to define the service and how to obtain the service description and specifi-
cation file. The title and description attributes are used by the discovery process
to match a user objective. Hence, the description, in particular, should contain
sufficient detail about the service functionalities to permit successful service
discovery. The endPoint attribute is used to retrieve the service specification
details. The endPoint address is in the form of a Web service resource with a
generic format such as, http://device-URI/service-root/specifications.
Although some broadband network providers offer fixed (static) ip address for
mobile devices, perhaps for a charge, we remark that Internet addressing for
mobile devices is out of this paper’s focus. Nevertheless, there is a number of
research efforts on how to get a personal Uniform Resource Identifier (URI) for
mobile devices, viz. RFC6116 [10], which proposes a translation of a telephone



Personal Services 7

number into a URI using a special DNS record types. Hence, we assume that
mobile devices are reachable online.

If we assume that a contact’s personal information can be sent over the Inter-
net in an XML file, then a service summary information (service announcement)
could be part of such a file, or it could be sent in a separate message. The choice
of whether to send all the contact information (including all offered services
by this contact) or just to send the service portion separately depends on how
frequently the service is updated and whether any other contact information is
updated or not. Listing 1 shows an example of a separate service XML summary
document fsi for service si. Upon receiving a service summary message, the
recipient of the announcement checks to see if the service exists in the service
directory, and if so, updates the information. If the message is for a new service,
the service and related information is added to the service registry. If the ser-
vice provider is already an existing contact in the recipient’s contact list, then a
link between the service and contact is established. If not, the recipient would
have the option to pull the provider’s contact information, using the announced
contactEndPoint associated with the service advertisement, and add the service
provider as a new contact to the recipient’s contact list.

Listing 1: Sample illustration of a personal service XML summary document
fsi.

<?xml ve r s i on =”1.0” encoding=”ut f −8”?>
<WebService>

<contactID>id</ contactID>
<contactEndPoint>HTTP−address</ contactEndPoint>
<sID>s i d</sID>
<publ icat ionDepth>d</ publ icat ionDepth>
< t i t l e>t i t l e −s t r</ t i t l e>
<d e s c r i p t i o n>desc−s t r</ d e s c r i p t i o n>
<endPoint>HTTP−address</ endPoint>

</WebService>

Algorithm 1 outlines the proposed publication mechanism for personal services.
The publication process is distributed and recursive in that providers can allow
contacts to propagate the publication of the service on their behalf using their
own resources. The publication depth d indicates how far the service provider
wants the advertisements to reach. The contact list L is initially set to the
providers’ contact list Lp. A contact ci receives the service advertisement, re-
duces d by 1 and republishes the service to its contact list Lci , according to a
prespecified pattern of access rights for indirect contacts. These access rights
are set by providers via appropriate mechanisms. The publication stops when
d reaches “0”. If the service provider sets d to “0” for a particular service s, it
means that s is only offered to the provider’s direct contacts and the recipient
of the announcement is not allowed to republish it.



8 Elgazzar et al.

Algorithm 1: Personal service publication.

Input: service XML summary document fsi
Output: null

1 Function Publish(fsi)
2 Parse fsi
3 Set the provider P
4 Set the publication depth d
5 // start with the local contact list
6 L = Llocal

7 foreach contact ci in L do
8 // check if service already exists in the service directory
9 if s exists in sdir then

10 update s
11 end
12 else
13 add s
14 end
15 // check if forwarding is allowed
16 if d > 0 then
17 d = d− 1
18 update d in fsi
19 //delegate publication to the contact
20 //distributed recursive call
21 Call Publish(fsi) //at the contact side

22 end
23 else
24 return null
25 end

26 end

2.6 Personal service discovery

Personal service discovery begins with a service request (SR). The service re-
quest describes the required functionalities that fulfill a particular user objective
in plain text. A simple feature extraction approach can be applied [11] to iden-
tify the required functionalities (RF ) from a user request (SR) and to extract
service capabilities (SC) from the service description field desription in the ser-
vice header message fs. Since Web service discovery is, by default, a resource-
intensive process [12], the matching technique uses a keyword-based search to
reduce the resource consumption. More sophisticated service discovery is unnec-
essary in this environment since it can be assumed that because services are
being shared with a provider’s contacts, it is likely that the contacts are familiar
with the types of services that might be offered.

The discovery mechanism applies Algorithm 2 to find Web services relevant
to a user’s request by matching the required functionalities with capabilities
offered by Web services. The algorithm is also distributed and recursive like the



Personal Services 9

publication algorithm. It ranks the retrieved relevant services (RelS) according
to the similarity between the required functionalities by a user request and the
offered capabilities by a Web service.

Algorithm 2: Personal service discovery.

Input: Web service request SR, discovery depth d
Output: set of relevant Web services RelS

1 Function Search(SR,d)
2 extract functionalities RF from SR
3 // search local service directory first
4 foreach s in sdir do
5 extract capabilities SC from desriptions

6 rank=match(RF ,SC)
7 add s to RelS indexed by rank

8 end
9 if RelS is null then

10 // check if deep search is allowed
11 if d > 0 then
12 d = d− 1
13 //delegate discovery to contacts
14 // using their own resources
15 L = Llocal

16 foreach contact ci in L do
17 //distributed recursive call
18 Call Search(SR, d) // at the contact side

19 end

20 end

21 end
22 return RelS

The “match” function applies the formula in Equation 1 to match the re-
quired functionalities with the offered capabilities.

match(RF, SC) =
M(rfi, scj)

LRF
(1)

where rf ∈ RF and sc ∈ SC, M(rf, sc) is the number of distinct matched pairs
between request functionalities RF and Web service capabilities SC, and LRF

is the total numbers of extracted functionalities from request SR.
The discovery algorithm assumes that services are publicly accessible. How-

ever, if services are provider-protected and some access constraints apply, then
the algorithm would need to be augmented to limit service discovery to only
those who have proper access rights.



10 Elgazzar et al.

3 Potential Application Domains for Personal services

Personal services open up opportunities for users who wish to share personal
information and functionalities, yet still maintain full control over their personal
data. The utility of personal services may extend to domains that are deemed
beyond the capabilities of mobile devices. Such domains include:

Location-based applications. Most users carry their mobile phones with them
for the majority of the time. While users move, they may offer access (with
various privileges) to real-time context, such as location, air pollution levels,
luminosity, and noise levels. Location-based applications are expected to
benefit the most from personal services’ ability to guarantee privacy under
the provider’s control.

Healthcare monitoring. Mobile devices may provide low-cost mobile and efficient
remote health monitoring by utilizing the personal services approach. Mobile
devices can collect a patient’s vital signs using the sensors embedded in the
mobile device, where applicable, or via communication with a body sensor
network without interfering with the activities of the patient [13]. Using
personal services, real-time data could be sent to caregivers or made available
upon request to those identified within the patient’s contact list. Personal
services could also provide instant access to continuously changing context
attributes, such as a patient’s location.

Personal publishing. An author writing articles or blog posts may request feed-
back from contacts using personal services. While giving a lecture or pre-
sentation, a speaker could also receive questions and comments from the
audience via personal services.

Mobile learning. In mobile learning (m-learning) scenarios [14], learners can
share resources such as videos, audio, documents and comments. Partici-
pants in m-learning may also assume one or more roles including learners,
mentors and peer-tutors. With personal services, participants can manage
their own learning profile, including their progress and expertise, and share
their experience with friends or learning partners while maintaining their
privacy.

Personal information. Personal profile, photo/video sharing, and schedules are
amongst the applications that can potentially benefit from the concept of
personal services.

Personal social networking. A clique of friends may dynamically form a private
social network while keeping all their personal information, social status,
posts, and updates on their mobile devices [15, 16]. Personal services would
enable users to maintain their social profile and allow friends to access their
social information without sharing data with a third party.



Personal Services 11

4 Smart Contact List Management (SLiM): A
proof-of-concept application

We demonstrate the feasibility and usefulness of personal services with an im-
plementation of an application for automated contact list management called
SLiM for Smart Contact List Management. Implementing this application with
personal services benefits both mobile users and their contacts. A user’s con-
tact information is automatically kept up-to-date, as long as the contacts are
reachable online. This saves users both time and effort from having to manually
maintain their contact information.

The architecture of SLiM is illustrated in Figure 2. The basic idea is to let
users each maintain their own record of contact information on their smartphone.
Users then grant access to their contacts to perform requests such as pulling
information from the contact list or updating their records in the user’s contact
list. For example, as shown in Figure 2, user Adam maintains his contact list
and grants permission to his contacts John and Mike to search for and retrieve
information from his contact list as well as update their records in his list.

Personal contact 
Web service

Adam’s 
contact List

Publish

Pu
bl

is
h

Contact
Contact

U
pdate contact req.

U
pdate contact req.

Adam

JohnMike

d=0

Co
nt

ac
t i

nf
o

C
on

ta
ct

 in
fo

.

Fig. 2: A high level overview of the architecture of SLiM.

4.1 Contact List

Each mobile device user maintains a contact list of friends, family members,
business partners, or others on his/her phone. A typical contact record has two
main categories of information: contact-related information and user-related in-
formation. The former category includes information about the contact person



12 Elgazzar et al.

(or entity), such as a name and photo, and how the contact can be reached,
such as a phone number, email, and address. The latter category describes the
contact from the perspective of the mobile user based on personal preferences,
such as the group to which this person belongs (eg. close friend, relative, business
contact, etc), the user-assigned ringtone for this person, etc. Both categorizes
are currently entered and maintained manually by the phone user.

SLiM aims to automate the maintenance of the first category while allowing
the contact person (to whom this information belongs) full control of granting
access rights, perhaps with fine-grained control levels. This automatic manage-
ment of contact information might also open new opportunities to expand the
contact information with new entries or parameters that enable taking smart
actions. For example, adding time attributes to the phone entry would indicate
that the person desires to be reached at that phone number only during the
associated time slots.

The mobile phone-based contact list information contains basic information
about contacts. Perhaps the reason, by design, is to ease the input burden on
mobile users when they add a new contact given the typical input limitations
of a mobile device. Table 3 shows the basic contact information on a typical
mobile device address book, where S/M denotes whether the entry allows Single
instance or Multiple instances.

Entry S/M Options

Photo S Album, Take Photo
First Name S
Last Name S
Phone M Mobile, Home, Work, . . .
Internet call S sip uri
Email M Gmail, Yahoo!, Hotmail, . . .
Instant Messenger(IM) M Skype, Google Talk, Yahoo!, . . .
Postal Address M Home, Work, . . .
Organization M Work, Other

Table 3: Typical contact information on a phone-based contact list

Some smartphone platforms, such as Android, offer a consolidated contact
list. It integrates contacts from multiple accounts, and from various underlying
data sources (such as the phone address book, social network lists, and emailing
lists) in a single place, the contact list. It also allows for combining different
records that belong to the same contact into a single, aggregate record. These
features render automatic contact list management even more beneficial.

4.2 Implementation details

As mentioned earlier, the main objective of the proof-of-concept prototype is
to demonstrate the concept of personal services. A Web service that provides



Personal Services 13

the core functionalities of SLiM is developed in compliance with the “RESTful”
principals; using the Python programming language. It is based on the guide-
lines of provisioning Web services from resource constrained devices proposed
by Elgazzar [5]. The choice of Python is motivated by the fact that the standard
Python library comes with a lightweight Web server that can provide essen-
tial HTTP functionalities. The Python-based REST Framework Web.py [17] is
used to handle low-level details of Web service developments such as protocols,
sockets, and process management.

The personal service is deployed on a Samsung Galaxy II smartphone with
a rooted Android Gingerbread OS [18], connected to a WiFi network. On this
mobile device, the user maintains a record of his/her own contact information,
which the personal service exposes to the user’s contact list. Table 4 shows the
basic methods and functionalities, exposed by the Web service, pertaining to
the user’s contact details. Each method represents a Web resource that can be
accessed using the HTTP-based resource identifier by an authorized user. The
generic format of the resource address is http://root-address/service-name/
resource-name/[parameters]. The root-address is the server (mobile) ad-
dress, contactEndPoint, service-name is the name of the personal service, and
the resource-name represents a service method name.

Resource Relative resource address Purpose
Service Description /contactInfo/description Get the service description and spec-

ifications
Contact Info /contactInfo/details Get the complete contact info
Phone /contactInfo/details/phone Get the phone portion of the user

contact
Email /contactInfo/details/email Get the email portion of the contact

info
Search /contactInfo/search/[contactName,depth] Search for contacts

Table 4: Functionalities and methods exposed by the personal service

The version of SLiM implemented here focuses on personal service provision-
ing and does not include the personal service discovery aspects described earlier.
However, the search functionality that SLiM presents is very similar to the pro-
cess of personal service discovery in terms of depth search and matching, given
that participants are reachable online. For reachability purposes, SLiM employs
an entry called Internet Call, which is an existing entry in Android’s contact
information that is supposedly dedicated to hold the contact SIP address in-
formation for Internet call, to hold the contactEndPoint. Eventually the entry
contactEndPoint can be proposed as an expansion to the contact information.

SLiM employs an individuals’ contact list to announce the existence of the
personal service. It sets the publications depth d to “0” to limit the service
announcement to members of the provider’s contact list. Then, it initiates the
publishing process for contacts with their Internet Call (contanctEndPoint) set.
The default publication URI path that provides access to the local service direc-



14 Elgazzar et al.

tory for each contact is configured to be contactEndPoint/registry/publish

as per the service directory settings.
In our implementation, the Web service offers different representations of

the same service response, namely, XML, JSON and HTML using mimerender

[19], which is a Python library for RESTful resource representation using MIME
Media-Types. We set the XML format as the default representation when no
HTTP “Accept” header is identified. Therefore, when a Web service resource is
called, an XML-formatted response is dispatched to the HTTP request handler’s
result. Other formats (HTML, JSON) are created for testing purposes such that
the Web service can be invoked via a mobile or a standard web browser (i.e.
customer application) and the response is dispatched in HTML format.

The service registry is implemented using SQLite [20] (the Android de-
fault Database engine). The built-in package android.database handles general
database operations, while android.database.sqlite contains classes specific
to SQLite [20].

A user interface (UI) for SLiM is developed on an Android platform using the
Android SDK [21]. As mentioned earlier, we employ the existing contact entry
Internet Call to act as the proposed extension contactEndPoint. Once this entry
is filled in with the proper HTTP-based address, the associated contact is con-
sidered a participant in SLiM, whether offering personal contact information as a
service, or receiving automatic updates from contacts about changes in their in-
formation. Figure 3b shows a screenshot of the UI, in which the contacts marked
with a SLiM icon (to their right), have a valid and active contactEndPoint and
are enabled for participation in automatic contact update. The new contacts API
defined in android.provider.ContactsContract [22] is used to handle basic
contact operations, insert, update, delete, and Query. When a new contact is to
be inserted, the underlying Android system handles the insertion and checks to
see if there is an existing contact representing the same person (or entity). If
a match is found, then the system gets the contact’s CONTACT ID and adds the
new contact information. Otherwise, a new contact record is created.

4.3 Prototype Validation

We have carried out a number of experiments to validate the operation of SLiM
in order to ensure that it functions as expected. In the first test scenario, Adam
changes his contact information (in particular, his phone number and email
address) on his smartphone. When John, one of Adam’s contacts taps the SLiM
icon right after Adam’s name, his contact information is automatically updated,
as shown in Figure 3c.

The second test case examines the operation of the search function offered
by SLiM. Adam exposes a functionality that enables his contacts to search his
contact list. John is looking for Mike’s contact information. John sends Adam a
Web service request to look up Mike’s contact information (if found). The service
request has the form http://172.1.6.36:8080/contactInfo/search/Mike,0,
where http://172.1.6.36:8080/ is Adam’s contactEndPoint, contactInfo is
the personal service name offered by Adam, search is the method name, Mike



Personal Services 15

(a) Adam’s contact
information before
update (seen on John’s
smartphone).

(b) SLiM presents
contacts.

(c) Adam’s contact
information after
update.

(d) Searching for
contacts with
SLiM.

Fig. 3: SLiM test case scenarios.

is the search term, and “0” is the search depth, which indicates that John only
wishes to search his direct contacts (i.e. whoever offers the service). Utilizing
the comma-separated approach in passing parameters to the HTTP request is
merely an implementation issue.

Figure 3d shows the service response presenting the search results obtained
from Adam’s contact list. The service request is sent only to Adam. Our current
implementation to the search function presents the results (if found) with a
contact name, photo, city, and phone, if the person shares his/her information.
Otherwise, The system only presents the contact name and conceals all other
information. Each row of the presented results is linked to the corresponding
contactEndPoint that the requester can use to retrieve the contact information.
When the requester clicks on the contact name, it sends a service request to that
person to retrieve the contact information. We realize that not all contacts might
be reachable online, but we have left that for future expansions.

5 Conclusion

This paper introduces personal mobile Web services, a new user-centric Web
service architecture hosted on mobile devices (in particular smartphones). The
personal services architecture takes advantage of the provider’s contact list to
announce service existence and discovery. Contact list members cooperate to dis-
seminate service advertisement and discovery requests, if needed, using their own
resources. The motivation of proposing such an architecture is twofold: overcom-
ing the barriers of mobile service provisioning on resource-limited mobile devices
and placing users at the core of controlling their personal data. Moreover, per-
sonal services, intrinsically, inherit the flexibility and dynamicity that mobile



16 Elgazzar et al.

services offer. We have discussed the domains and applications which can poten-
tially benefit from such an architecture, both as currently applicable and in the
future.

A prototype is developed to demonstrate the usability of the personal service
architecture, and to depict how different tasks of personal service provisioning
can be performed. The implementation of the prototype does not cover all the
proposed aspects of the personal service architecture. The opportunities made
possible by the development of such a prototype, and validation scenarios, have
made mobile devices an increasingly attractive platform for every-day life tasks.

In this paper we have laid the foundation of a new Web service architecture
for mobile devices that would expand the horizon of mobile applications and
their domains. However, we believe that significant research is still needed to
achieve the full potential of personal services. We plan to expand on many of
the issues we have identified here in our future research. In particular, we plan
to investigate the incorporation of access control aspects, ranging from service
advertisement to limiting service access to those with sufficient access privileges.

References

1. Roussos, G., Marsh, A.J., Maglavera, S.: Enabling pervasive computing with smart
phones. IEEE Pervasive Computing 4(2) (2005) 20 – 27

2. Kirkham, T., Winfield, S., Ravet, S., Kellomaki, S.: A personal data store for
an internet of subjects. In: The International Conference on Information Society
(i-Society). (June 2011) 92–97

3. : European Union, The Stockholm Programme: An open
and secure Europe serving and protecting citizens, Official
Journal of the European Union, 2010, [Online]. Available:
http://europa.eu/legislation summaries/human rights/fundamental rights within
european union/jI0034 en.htm, [Accessed: Feb 25, 2012].

4. Srirama, S.N., Jarke, M., Prinz, W.: Mobile web service provisioning. In: The In-
ternational Conference on Internet and Web Applications and Services (ICIW’06).
(Febraury 2006) 120–126

5. Elgazzar, K., Martin, P., Hassanein, H.: A framework for efficient web services
provisioning in mobile environments. In: The 3rd International Conference on
Mobile Computing, Applications, and Services(MobiCASE’11), Springer’s LNICST
(October 2011)

6. Mizouni, R., Serhani, M., Dssouli, R., Benharref, A., Taleb, I.: Performance eval-
uation of mobile web services. In: The 9th IEEE European Conference on Web
Services (ECOWS. (September 2011) 184 –191

7. Clement, L., Hately, A., von Riegen, C., Rogers, T.: Uddi version 3.0.2 (January
19 2004) http://uddi.org/pubs/uddi-v3.0.2-20041019.htm.

8. Elgazzar, K., Hassanein, H., Martin, P.: Effective web service discovery in mo-
bile environments. In: P2MNETS, The 36th IEEE Conference onLocal Computer
Networks (LCN). (October 2011) 697–705

9. Legner, C.: Is there a market for web services? In: Service-Oriented Computing -
ICSOC 2007 Workshops. (2009) 29–42

10. : The E.164 to Uniform Resource Identifiers (URI) Dynamic Delegation Discovery
System (DDDS) Application (ENUM), http://tools.ietf.org/html/rfc6116.



Personal Services 17

11. Elgazzar, K., Hassan, A.E., Martin, P.: Clustering wsdl documents to bootstrap
the discovery of web services. In: The 8th IEEE International Conference on Web
Services (ICWS’10). (July 2010) 147–154

12. Steller, L.A.: Light-Weight and Adaptive Reasoning for Mobile Web Services. PhD
thesis, Monash University, Australia (May 2010)

13. Elgazzar, K., Aboelfotoh, M., Martin, P., Hassanein, H.S.: Ubiquitous health moni-
toring using mobile web services. In: The 3rd International Conference on Ambient
Systems, Networks and Technologies. (August 2012)

14. Wang, C.S., Wang, Y.H.: Design of an soa-based ubiquitous learning environment.
In: The IEEE International Conference on Granular Computing (GrC). (November
2011) 697–702

15. Church, K., Pujol, J.M., Smyth, B., Contractor, N.: Mobilehci’10 workshop sum-
mary: social mobile web. In: The 12th international conference on Human computer
interaction with mobile devices and services. MobileHCI ’10, New York, NY, USA,
ACM (2010) 509–512

16. Brooker, D., Carey, T., Warren, I.: Middleware for social networking on mobile
devices, Auckland, New zealand (2010) 202–211

17. : Web Framework for Python, http://webpy.org/.
18. : Android 2.3.4 Platform, http://developer.android.com/sdk/android-2.3.4.html.
19. : Mimerender Python Module, http://code.google.com/p/mimerender/.
20. : Android SQLite, http://developer.android.com/reference/android/database/

sqlite/package-summary.html.
21. : The Android SDK, http://developer.android.com/sdk/index.html.
22. : Android: Using the Contacts API, http://developer.android.com/resources /ar-

ticles/contacts.html.


