
Enabling Mobile Web Service Provisioning
Technical Report 2012-598

Khalid Elgazzar, Patrick Martin, Hossam S. Hassanein
School of Computing, Queen’s University, Canada

Kingston, Ontario, K7L 3N6
{elgazzar, martin, hossam}@cs.queensu.ca

Abstract—For many years mobile devices were commonly rec-
ognized as Web consumers. However, the advancements in mobile
device manufacturing, coupled with the astonishing achievements
in wireless communication developments are both key enablers
for shifting the role of mobile devices from Web service con-
sumers to Web service providers. This paradigm shift is a
major step towards the realization of pervasive and ubiquitous
computing paradigms. Mobile web service provisioning is the art
of hosting and offering Web services from mobile devices, which
actively contributes to the direction of Mobile Internet. In this
paper, we address the applicability, reliability, and challenges
of mobile Web service provisioning. We study the different
provisioning architectures along with the enabler technologies
for publishing, discovering, and maintaining up-to-date mobile
Web services. We point out the major open research issues in
each provisioning aspect. Different performance aspects due to
the resource constraints of mobile devices are discussed. Index
Terms—obile Web services, Service provisioning, Mobile devices,
Ubiquitous computing, Mobile computingobile Web services, Ser-
vice provisioning, Mobile devices, Ubiquitous computing, Mobile
computingM

I. INTRODUCTION

Hand-held devices and smart phones are traditionally rec-
ognized as resource-limited devices. Designers of mobile ap-
plications usually take these resource constraints into account
to achieve improved performance. While this is true to some
extent, the manufacturers of mobile devices have recently
achieved breakthroughs in extending mobile devices’ capa-
bilities in terms of memories, computational power, storage
capacities, and display screens. In addition, many devices such
as built-in cameras, infrared ports, bluetooth technology, and
a large variety of sensors are embedded within the devices
to expand their capabilities and functionalities. It is quite
common now to see a single mobile device that can offer
navigation information, measure ambient temperatures, control
home devices such as TVs and air conditioners, be used
as a wireless presentation remote control, and even perform
fingerprint secured transactions.

On the other hand, the revolution in wireless commu-
nications achieved astonishing developments in increasing
transmission rates and improving the spectrum efficiency.
Cellular networks are able to accommodate more users and
offer a wide range of customized services with different
degrees of quality of service (QoS). New services are being
offered to mobile users constantly. The evolving 3G and the
next generation of wireless mobile network (4G) introduce a
flexible and programmable platform to provide users access

to future services and applications from a single terminal.
Therefore, user expectations are constantly increasing with no
limits to their hopes of removing barriers between different
network technologies in order to foster flexible and agile
mobile applications that are able to fully benefit from the fact
that terminals are carried around.

With the advancements in mobile devices’ capabilities on
one hand and the revolutionary achievements in wireless
communications on the other hand, the global interest of
mobile applications are significantly increased worldwide.
Consequently, researchers and industry are inspired to pave
the road for mobile Web services provisioning [1]–[7].

The role of mobile devices as a Web service consumer is
fundamental. Shifting the role of mobile devices from Web
service clients to providers is feasible only if they can offer
standard Web services with acceptable performance and with
no impact on the regular use of mobile devices. The mobile
devices we refer to in this paper are defined as any handheld
device that is ready to connect wirelessly to the Internet and
can move freely in the space such as smartphones, PDAs,
iPads, etc.

In this paper, we describe the state-of-the-art of mobile Web
services provisioning, address its applicability and reliability,
point out the research efforts, and explore the challenges
and open research problems in the mobile Web services
provisioning paradigm.

The rest of this paper is organized as follows. Section
II gives a brief background on the Web services approach.
Section III discusses the current and potential applications
that benefit from mobile services provisioning. Section IV
presents different architectures for providing Web services
from mobile devices. Section V explores various publishing
and discovery techniques of mobile Web services. Section
VI discuss the performance of mobile services provisioning.
Section VII concludes the paper and outlines future research
directions.

II. WEB SERVICES

Service-oriented Architecture (SOA) has become a driving
force for Web applications development. SOA uses services
as the basic constructs to support rapid, low-cost, and easy
composition of distributed applications even in heterogeneous
environments [8]. In SOA, a service is defined by a Web
interface that supports interoperable operations between dif-
ferent software applications using a standard messaging pro-

tocol [9]. In the early nineties, SOA offered the promise of
robustness and agility to business enterprises to perform their
business efficiently by supporting software reuse, application-
to-application interoperability, design flexibility, and a loosely
coupled architecture. Web services are the most popular im-
plementation of SOA.

A Web service is a computational software entity which is
able to achieve a user’s objective by a remote invocation. Web
services allow applications written in different programming
languages to interact seamlessly through standard protocols
[10]. A service, in contrast, is the actual value provided by
the service invocation [11]. Web services have a wide scope of
applications ranging from simple stock quotes to very complex
applications such as Internet banking, weather forecasts, map
services. Figure 1 depicts a breakdown of the Web services
approach in terms of design style, interface and functionalities
description, and type categorization.

A. Web Services Design

Web services design techniques dramatically changed over
the course of the past two decades. Web services enable
software as a service to deliver software services over the
network using technologies such as XML. Web services that
comply with SOA architecture and use the SOAP protocol
to communicate between the client interface and provider are
called SOAP-based Web services.

In 2000, Fielding [12] proposed a new architecture style
for network-based applications called ”REpresentational State
Transfer (REST)”. REST aimed at the generalization of inter-
faces, scalability of interactions, and independent deployments
of software components. Web services built on top of REST
principles are called RESTful Web services. The next two
subsections shed light on these two architectural approaches
with a comprehensive comparison between them.

1) SOAP-based: SOAP-based Web services are designed
to allow RPC-like interactions with remote systems. In this
design style the service provider and potential consumers
need to establish a common understanding of the service
syntax and the operations it offers. Each SOAP-based Web
service has its own unique interface and is described by
means of the Web Services Description Language (WSDL)
[13], and that description is published in a public Universal
Description Discovery and Integration (UUDI) registry. The
UDDI manages and maintains these Web services’ entries and
keeps a reference for the Web service description file (WSDL
document). XML is used to construct the basic blocks of
Web service communication by means of some form of XML
messaging protocol, such as SOAP (Simple Object Access
Protocol) or XML-RPC (XML-Remote Procedure Call).

The basic idea of the SOAP protocol is to enable RPC-
like calling for remote software entities using XML, the
most widely accepted data format representation [14]. In the
interface description of SOAP-based Web services, there is
only one endpoint to communicate with, defined by a single
URI which points to the service location (address). This
address is posted on the UDDI and used by the Web service

to receive SOAP messages (requests). The Web service itself
is responsible for handling all the communications directed to
its internal operations.

Generally, the strength of SOAP as a messaging protocol
comes from its ability to work in heterogeneous environments
and independently of the underlying platform. For example,
SOAP handles the heterogeneity in data types across different
platforms using XML Schemas to define some simple XML
data types. By knowing these basic XML data types, each
system or platform is able to interoperate and map them ac-
cordingly to their internal data types. Nevertheless, SOAP has
a rigid type checking mechanism, by which SOAP performs
most of the standard data verifications. Additionally, SOAP
is just a messaging protocol; hence, a message can travel to
its destination through the network on top of any transport
protocol and is not tied to any particular current or future
transport protocol. This adds to SOAP’s heterogeneous nature.
Consequently, SOAP-based Web services have several years of
successful deployment within enterprisers. The SOAP-based
approach is heavily promoted by major software vendors who
offer fully automated solutions for migrating existing APIs
with SOAP code generation.

While SOAP-based Web services have been widely adopted
by the industry and supported by almost all development tools,
the SOAP-based approach has the following limitations [15]:

• Complexity: Deploying a SOAP-based service requires
much experience due the complexity of the Web service
protocol stack. Only capable developers understand how
to deploy a service. Additionally, serializing and dese-
rializing requests written in native languages into SOAP
messages is a time-consuming and resource-intensive pro-
cess, which contradicts the limitations of mobile devices.

• Accessibility and interface: The service is exposed to
the public using a single endpoint API. Therefore, all
the service functionalities and access information are
encapsulated within the service description file, hence,
all operations use the POST method.

• Interoperability: Each Web service has its own service
interface. The description information is unique for each
service and is exposed by a single WSDL file. Once the
client discovers the service, the enclosed binding infor-
mation in the WSDL file is used to communicate with
the service and to construct the requests. Whenever these
bindings change, the corresponding communications and
requests have to change accordingly.

• Performance: Using XML is costly in terms of memory
and processing power. Therefore, performance overhead
exists in SOAP-based Web service due to the usage of
XML and lengthy SOAP messages. Moreover, WSDL
file and SOAP messages usually, by design, include re-
dundant information which in turn increases the network
traffic and consumes mroe resources.

• Data Model: SOAP-based approach hides the data model
behind the Web service interface. The interface is not
designed to reveal any information about the underlying
data model. This feature dictates that the service con-

Web services

TypesDescription
Frameworks/

Middleware

Mobile

Web services

Stationary

 Web services
REST-basedSOAP-basedNon-semanticSemantic

Fig. 1. A general overview of Web service descriptions, design styles, and service types.

sumer and provider have to share a common model to
communicate. SOAP advocates argue that keeping the
data model away from the clients is safer and less risky.

• Scalability: SOAP-based Web services use the Web
strictly as a means of transportation for their messages.
The messages are interpreted only outside the Web by
different applications. Accordingly, the consumer and the
provider have to establish a common ground to their
communications, hence, scalability is an issue because
it fails to achieve the proper integration with the Web as
a shared information model.

2) REST-based: In contrast to the SOAP-based approach,
REpresentational State Transfer (REST) [12], also called Re-
source Oriented Architecture (ROA), is a style of software
architecture that relies on the fact that any resource (such
as Web services) can be identified by their URLs. In his
dissertation, Fielding defines the REST approach as follows
[12]: ”Representational State Transfer is intended to evoke
an image of how a well-designed Web application behaves:
a network of web pages (a virtual state-machine), where the
user progresses through an application by selecting links (state
transitions), resulting in the next page (representing the next
state of the application) being transferred to the user and
rendered for their use”.

RESTful Web services [15] are Web services that conform
with the concepts of REST and avoid the performance degra-
dation resulting from the use of SOAP and XML. They are
tightly coupled with the HTTP protocol however and compro-
mise their flexibility and portability. RESTful Web services
gained much attention from the Web community due to their
simplicity and scalability. Major Web services providers such
as Google, Amazon, Yahoo, and eBay adopted the RESTful
Web services approach in their offered Web services. Since
2000 when Fielding proposed the REST architecture principles
for the first time, the global interest in RESTful Web services
have been constantly increasing.

The RESTful approach features the following advantages
over the SOAP-based approach that make it more desirable
and widely adopted [15].

• Scalability: The RESTful approach inherits its ability to
scale from the underlying scalability of HTTP.

• Addressability: Resources (services) are easily exposed
and accessed through a valid URI rather than requiring a
centralized repository such as UDDI to manage publish-
ing and discovery. Each resource has its own unique URI,
which can be fetched while the user navigates though the
link connections between resources.

• Links and Connections: Borrowing the notion of hyper-
links, resources can link to each other using hyperlinks.
More importantly, state transfer can be managed through
the referral to links.

• Stateless: Requests in the RESTful approach are self-
contained. This independence allows the ability to delete
the related information to a request once it is done.
REST principles dictate that HTTP messages should be
”self-descriptive”, which implies that any intermediary
node can fully interpret messages, understand it, and take
actions upon its content on behalf of the user.

• Unified Interface: All resources are dynamically handled
by a limited set of standard HTTP methods, namely,
GET, PUT, DELETE, and POST. Any HTTP client can
communicate directly with any HTTP server without any
further special configuration. In contrast, SOAP needs
both client and server (or consumer and provider) to
agree and be aware of method names, data types, and
addressing model. The main reason for this is because
SOAP is a protocol framework, whereas HTTP is an
application protocol [10].

Despite the aforementioned features and advantages for the
RESTful approach, there are some valuable lessons that SOAP
can teach RESTful to add beyond what HTTP can contribute
[10].

• Security: Data that needs to be secure can not be sent
inline with the URI. HTTP GET encapsulates data pa-
rameters in the request, which risks the data and becomes
itself a security threat. SOAP is the better solution when it
comes to wrapping a large amount of data. Though HTTP
has security features, adopting the WS-Security model
(supported by SOAP) would strengthen the RESTful
approach.

• Routing: Routing HTTP messages between different play-
ers is controlled by the underlying network. This means in
cases where control over routing is required to determine
a path between the client and the provider, HTTP is not
the best solution. For example, SOAP messages have the
ability to allow the headers to be directed to a particular
intermediary (i.e. a proxy or cache)

• Asynchronous Execution: It does not make sense to have
the client wait for a lengthy execution to complete. There
should be a way, such as a call back, for either the client
or the server to re-establish the communication channel
whenever the result is available. SOAP has the ability to
perform either synchronous or asynchronous execution.

• Service Level Agreement: Usually, SOAP-based services
have a contract between the service provider and con-
sumer. This contract includes terms and conditions, guar-
anteed QoS, reliability and availability, payments, etc. It
also specifies how to handle conflict between providers
and the consumers whenever terms or conditions are
violated.

Table I gives a summary of our comparison between SOAP-
based Web services and REST-based Web services design
style.

B. Web Services Description

The interactions of a Web service usually involve three
parties: a service provider, a service consumer, and occasion-
ally a service broker. Once a Web service is developed, the
provider has to define the specification of how to perform
service requests and describe the Web service functionalities
and how potential consumers can access and invoke the
required functionalities. Generally speaking, Web services can
be described using either semantic or non-semanticapproaches.

1) Non-semantic Description: In the non-semantic ap-
proach, Web services are described by the Web Service
Description Language (WSDL). WSDL is an XML-based
language that provides a model for describing non-semantic
Web services [13]. WSDL documents enable service providers
to describe their services and explain to potential customers
how to consume the services’ functionalities [13]. WSDL 2.0
is the latest WSDL standard specification [13]. It describes the
service in two levels; ”abstract” and ”concrete”. The abstract
level describes the operations that can be performed by the
service and the message structures used to communicate to
these operations, as well as an interface which combines
messages and operations. The concrete level specifies the
service bindings associated with the network endpoints.

A Web service description usually involves different aspects
such as information model, functional capabilities, nonfunc-
tional parameters, and technical specifications. The informa-
tion model defines the data model comprising input/output
messages and other data relevant to the service operation.
Functional capabilities determine the operations offered by
the service and how potential customers can interact with
the service. Nonfunctional parameters specify both the en-
vironmental and running parameters such as QoS, reliability,
availability, etc. Technical specifications are mainly concerned
with implementation details such as message structures, trans-
port protocols, service location, and access information. The
non-semantic description approach describes Web services at
a syntactic level [16]. According to the previously mentioned
description aspects, non-semantic approach describes the in-
formation model using XML schema, while a WSDL interface
describes the functional capabilities. The nonfunctional param-
eters are determined by a means of WS-specifications in terms
of policies and agreements. The technical details are defined
through service bindings and endpoints information.

A WSDL 1.1/WSDL 2.0 document describes a Web service
using six major components:

• <types>/<types> element is an XML data type def-
inition that describes the data containers used in message
exchanges. The element name did not change in WSDL
2.0.

• <message>/NA element is an abstract representation of
the transmitted information. Typically, a message contains
one or more logical parts (parameters). These parts are
associated with a type definition. In the skeleton of
WSDL 2.0 the message element is removed as a global
element and the description of messages is encapsulated
in the interface element.

• <port>/<endpoint> The port/endpoint defines the
access point of the Web service.

• <portType>/<Interface> is an important compo-
nent in WSDL documents, in which a set of abstract
operations (functions) that can be performed by the Web
service are defined. Each operation is associated with an
input and/or output message.

• <binding>/<binding> component specifies the
communication protocol and data format for each op-
eration and message defined in a particular port-
Type/interface element.

• <service>/<service> element is a composite oper-
ation that aggregates multiple related ports or functions.

WSDL 2.0 specifications enable the integration of the REST
approach and Web services through the introduction of HTTP
binding specifications. For each operation provided by the
service description, some HTTP parameters (if applicable)can
be defined such as URI, HTTP method, input/output data
serialization, etc. The main objective of providing such a
specification extension in WSDL 2.0 is to enable services with
both SOAP and HTTP bindings.

2) Semantic Description: Describing Web services seman-
tically relies on ontologies [17]. An ontology is a formal

TABLE I
A SUMMARY COMPARISON OF WEB SERVICES DESIGN APPROACHES

Feature SOAP-based REST-based
Architecture Style Service-centric Resource-centric
Coupling Tightly coupled Loosely coupled
Transport Protocol Any HTTP only
Access Scheme Single end-point URI for each resource
QoS WS specifications Transport-dependable (HTTP)
Invocation RPC-like HTTP methods
Interface Interface for each Web service Web browser
Description WSDL WSDL 2.0
Data Model Hidden Exposed
Data Representation XML XML
Scalability None Connected hyperlinks
Security WS-security-based HTTP-based

explicit specification of a shared conceptualization [18]. From
this conceptual definition the essential components are ex-
tracted which constitute the individual ontologies; they define
an agreed common terminology by providing concepts, and
relationships between the concepts [11]. Ontologies are struc-
tured in a class hierarchy; each class represents a property or
a function.

Semantic descriptions of web services aim to provide unam-
biguous definitions to the description terms and to address the
lack of understanding of the semantic meaning of messages
and data, which in turns makes the interactions between ser-
vices more logical and facilitate composition and integration
of Web services. In contrast to the non-semantic approach,
semantic description can incorporate non-functional specifica-
tions such as those requirements that can be observed at the
runtime such as availability, reliability, and security, or those
that can be realized at the design time such as extensibility and
scalability. Semantic Web services are anticipated to contribute
in the transformation of the Web from information-based to
knowledge-based services.

In the semantic approach, services are described by profiles,
models, and groundings. The service profile contains the
information related to the service functionalities, which is
needed by the service requester to match the service with
the required task. The service model describes the service
implementations, required inputs, and expected outputs. It also
can be used by the requester to refine the search results.
The service information model is defined through domain
ontologies. Functional details are represented by capabilities
and functional categories whereas non-functional parameters
are described using ontologies that describe different non-
functional properties. Technical issues such as bindings and
protocols are defined the same way as in WSDL documents
[16]. Service grounding defines the service accessibility. More
precisely, the service is advertised, registered, and discovered
through the service profile. Once the service is located, the
requester uses the service model and grounding together in
order to access it [19, 20].

Web services may use various semantic description lan-
guages such as Web ontology languages (OWL-S) [21],Web
Service Modeling Ontology (WSMO) [11], WSMO-Lite [16],

Web Services Semantics (WSDL-S) [22], and Semantic Web
Services Ontology (SWSO) [11, 23]. Even with the standard-
ization efforts, each description language has its own notation
and no universally accepted formal notations yet exist for se-
mantic descriptions. Services that are described in a particular
semantic description language would only be discovered by
requests constructed by the same semantic formalism.

With the enormous offerings of Web services, searching for
the right service/s for a particular objective is a key challenge.
The syntactic level of description, offered by non-sematic de-
scription, does not enable the automation of service discovery
and integration. Semantic annotations augment the capabilities
of service description and make it machine consumable based
on meaning and understanding not just the syntax.

Table II summarizes the differences between non-semantic
and semantic description approaches, emphasizing the advan-
tages and disadvantages of each approach.

C. Types of Web Services

We classify Web services based on the type of host. Web
services that are provided by fixed servers and consumed by
stationary clients are called stationary Web services, whereas
services that are hosted and provided or consumed by mobile
devices are called mobile Web services. Our focus in this paper
is on mobile Web services and how applicable it is to provide
them by resource-constrained mobile devices. However, the
next section explains and elaborates more on both of these
two types of Web services.

1) Stationary Web Services: Stationary Web services typ-
ically are location-dependant as they basically designed for
static networks and deployed on fixed servers. Usually station-
ary Web services are tied to the availability of local resources
such as databases hosted on the same server [24]. These
Web services can be accessed and consumed by fixed or
mobile clients through the announced address for the Web
service. Since they are that it is hosted on fixed servers,
stationary Web services normally are capable of providing
reliable performance and guarantee reasonable QoS. Compu-
tational resources can be added or shrunk according to the
service demands. Therefore, stationary Web services can serve,
theoretically, a huge number of users. Stationary Web services
can be replicated on multiple servers to support distributed

TABLE II
A COMPREHENSIVE COMPARISON BETWEEN SEMANTIC AND NON-SEMANTIC WEB SERVICE DESCRIPTION APPROACHES

Feature Non-semantic Semantic
Information model description XML-Schemas Domain ontologies
Functional descriptions WSDL interface Capabilities and functional categories
Nonfunctional descriptions NA Ontologies (policies and properties)
Behavioral descriptions NA pre & post-conditions
Technical descriptions WSDL bindings and communication proto-

cols
Same as in WSDL

Search Keyword based Semantic reasoning

provisioning and/or avoid a single point of failure and enhance
the service reliability and availability. Service replication could
be a static or dynamic decision or, in other words, at design
time or at runtime.

The general Web service communication schemes are in-
dependent of the nature of service consumers and service
providers, which means that the communication strategies do
not care whether one or both of the communication parties
(consumer and providers)are fixed or mobile nodes [25].
Web services are typically, designed and developed to behave
synchronously, i.e users are blocked while executing even
if it is a lengthy execution until a response comes back or
the connection becomes timed out. In mobile domains, the
synchronous execution of long-lived processes is not the right
choice. Regular usage of mobile terminals has to be maintained
during the execution of Web services whether the mobile
terminal is a service consumer or provider.

2) Mobile Web Services: Mobile Web services are Web
services that can be delivered from mobile devices [1]. This
paradigm emerged from the successful coupling of the flexi-
bility offered by Web services and the convenience of mobile
devices. Mobile Web services are supported by advancements
in wireless communication technologies and benefit from the
swiftly expanding mobile customer base. In mobile services,
mobile devices can play the role of service client, service
broker, and/or service provider.

As in traditional Web services, the interactions in mobile
Web services encompass three main parties, service provider,
service registry, and service client. Occasionally a service
proxy may exist to facilitate the communication process be-
tween the provider and the client. The interactions in mobile
services differ from those with stationary services due to the
following characteristics.

• Limited Resources: Mobile devices are resource-
constrained. Although, there has been a revolutionary ad-
vancement in the capabilities of mobile devices in terms
of processing power, memory space, battery lifetime,
and embedded sensors, they are not capable of running
desktop applications as efficiently as desktop machines.
Additionally, the major constraint for mobile devices is
their limited display screens which can relatively display
little data at a time, resulting in compromising the us-
ability of applications. If mobile devices act as service
providers, these resource concerns become dominant.
For example, mobile providers cannot support too many

service consumers concurrently due to the limited com-
putation power and cannot claim or guarantee a particular
QoS due to limited bandwidth and the intermittent nature
of wireless connections.

• Dynamic Environments: Mobile devices are always on
the move and sometimes change the network operator
or even handover between different network technologies
within the same network. This results in challenges for
providing Web services in a highly dynamic mobile wire-
less environments. Services could be unreachable because
of frequent link failures. Mobile providers may change
location, IP address, point of attachments to the network,
which make services’ binding information invalid if not
properly updated. Moreover, discovering the right valid
Web service in such highly dynamic environments is a
crucial issue.

• Resource Heterogeneity: The operating systems and
software platforms on mobile devices span multiple ven-
dors and feature a wide range of characteristics and
supporting functionalities. Mobile providers are can make
use of the local context, functionalities supported by
different platforms, and runtime environment capabilities
provided by different operating systems to enhance their
services provisioning.

• Context-Aware Service: Traditional Web services are
designed for fixed networks. Most of the concepts and
developed mechanisms throughout the Web service in-
teractions are not personalized or make use of the user’s
context. The context can include the user location, device
storage, display screen, network bandwidth, transmission
rate, etc. Now, because of the emergence of mobile
Web services, these vital parameters can be exploited
and counted on for efficient delivery of adaptable and
personalized Web services.

• Uninterrupted Voice Service: During the provisioning
of Web services from mobile devices, the regular voice
functionalities should not be interrupted or affected by
services provisioning. Therefore, a trade off should be
made clear such that neither the service performance nor
the regular voice usage of mobile devices is seriously
affected.

Due to the aforementioned mobile wireless characteristics,
many conventional Web service protocols and mechanisms
have been adapted as well as new supporting platforms have
been developed suitable for the deployments on mobile wire-

less domains. We briefly highlight a non-exclusive list of these
platforms as follows.

• Personal Java: Also known as ”pJava” [26], it is
a lightweight Java programming environment with a
smaller memory footprint aimed to support developing
applications for resource-limited mobile devices. The
strategy of pJava is to use a reduced set of class libraries
with some substantial optimizations to provide acceptable
performance of Web applications on mobile devices.

• Java ME: Java platform, Micro Edition (J2ME) [27]
is the successor of PJava and is the most ubiquitous
Java application platform for mobile devices. A broad
range of embedded devices use J2ME as the Java run-
time platform. J2ME comes pre-installed on most of
the current smartphones. Currently, J2ME comes in one
of two platforms. The first one is Connected Device
Configuration (CDC) to support high end mobile devices
such as iPADs,PDAs, and some powerful smartphones
with the base set of APIs and virtual machine. The other
one is Connected Limited Device Configuration (CLDC)
to provide the same kind of support but for mobile devices
that experience intermittent wireless connections and
have relatively limited resources such as smartphones.
On top of CLDC and CDC, Mobile Information Device
Profile (MIDP) provides the Java runtime environment
for Java mobile applications on most of today’s mobile
devices.

• kXML2: kXML2 [28] is a lightweight XML parser
designed specifically for constrained environments.

• kSOAP2: kSOAP2 [29] is a lightweight SOAP imple-
mentation adapted for resource-constrained devices to
overcome the significant overhead of the original SOAP
implementation. kSOAP2 is an open source SOAP web
service client library that processes SOAP messages
based on kXML2 parser. The basic functionality of
kSOAP2 is to convert the data types in SOAP messages
into Java data objects. gSOAP is the kSOAP equivalent
for C and C++ with some additional capabilities for
creating Web services stubs from WSDL.

For the remainder of this paper we use the terms ”mobile
Web services provisioning” and ”mobile hosting” interchange-
ably. In the next section, we present the current and potential
mobile applications and domains that can benefit from the
mobile hosting computing paradigm.

III. MOBILE HOSTING APPLICATIONS

The Mobile Web services paradigm finds its way into real
life applications through the huge demands and interest from
the mobile users’ community. A wide range of applications in
domains such as social systems, collaborative learning, real-
time healthcare systems, emergency services, and communi-
cations are anticipated for this paradigm due to the robustness
and flexibility it offers. Next are some application examples
and corresponding domains, wherein mobile hosting could be
of interest.

• Multimedia Sharing: Mobile devices nowadays are
aided with a wide range of embedded devices and sensors.
Two of the important embedded devices that a smart
phone or mobile device might have are cameras and
a Global Positioning System (GPS) device. Each one
of these devices (or combined together) may have its
own interesting applications. For example, the terminal
location information via GPS data can be used to provide
assistance for people making a distress call in case of
emergencies. By knowing the exact location, supported
by pictures of the person in need this would greatly help
rescuers to come well prepared and provide the necessary
assistance accordingly. On the other hand, travelers might
be interested to share photos or videos of places they
have visited. These photos and/or videos could be offered
to interested people free or with a fee. With the help
of mobile Web services provisioning, owners of these
multimedia data services can host them on their mobile
devices without the need to rent a host or use a third
party Web service and pay for the hosting and consuming.
In such cases, mobile Web services provisioning enables
payment shifting to the actual consumer. Interestingly, a
traveler can make use of the GPS capability and make the
offered media even more interesting by mapping photos
and videos to the actual locations to which they belong.

• Location-based applications: Most users carry their
mobile phones with them for the majority of the time.
While users move, they may offer access (with various
privileges) to real-time context, such as location, air
pollution levels, luminosity, and noise levels. Location-
based applications are expected to benefit the most from
mobile Web services provisioning.

• M-learning: In learning media sharing scenarios, learners
can share videos, audio, documents, comments, make il-
lustrative figures, etc. In this regard, mobile Web services
provisioning has been well demonstrated in Collaborative
M-Learning [1]. In this scenario, learners can manage
their own learning profile including their advancements
and expertise and make it accessible for others. They
can search for experts in particular areas and seek their
advice, learners may be able to cache this information
to forward it later to other interested learners. Learners
can retrieve literature resources from other learners and
manage their own database of articles. They can write or
receive comments on certain topics

• Collaborative Journalism: Another interesting commer-
cial application envisioned by Srirama in his PhD thesis
[1] is collaborative journalism. Editors can coordinate
between their journalists and have immediate access to
their contents. Journalists themselves can collaborate and
synchronize with each other to better cover distributed
events. Organizations can make use of this paradigm
to track their employees and have them connected at
all times to the organization’s facilities, databases, and
information.

• Personal information: Personal profile and contact infor-

mation, personal photo/video sharing, and schedules are
amongst the applications that can potentially benefit from
the paradigm of mobile Web services. Skulason [2] in his
master’s thesis demonstrated the effectiveness of mobile
Web services provisioning through a demo application
called MobCal 1. The application extends the default
calendar of mobile devices. Users’ entries are retrieved
from their mobile devices into a public website. With
a username and password, users can access and manage
their calendar entries. Furthermore, users can synchronize
their mobile calendar with their Google calendar. Entries
that are marked as public will be made available on
the website, whereas private entries will be kept private.
Visitors to the website can request a meeting with a
particular authorized user, and if request approved, the
user’s calendar will be automatically updated.

• Healthcare Systems: In healthcare systems mobile host-
ing can be of great help as mobile devices, using any
short range wireless communication technology (such as
Bluetooth or ZigBee), may collect patients’ data and vital
parameters from sensors attached to the body and send
them to healthcare centers for the purpose of monitoring.
Once any of these vital parameters seriously changes, an
emergency alert can be issued and medical assistance may
be provided promptly and efficiently.

• Personal social networking: A clique of friends may
dynamically form a private social network while keeping
all their personal information, social status, posts, and
updates on their mobile devices [30, 31]. Mobile services
would enable users to maintain their social profile and
allow friends to access their social information without
sharing data with a third party.

IV. MOBILE HOSTING ARCHITECTURES

Over the past couple of years, several researchers have
proposed different architectures and frameworks for providing
Web services by mobile devices. These studies center around
the possibility of hosting Web services on resource-limited
devices. Each one of these approaches addresses and deals
with certain challenges facing mobile services provisioning
such as reachability, reliability, and scalability.

Most of the current mobile Web services provisioning archi-
tectures are immature and still in the early stages [32]. Pawer et
al. [33] discuss briefly different mobile services provisioning
approaches and classify them into three categories, namely,
proxy-based, Peer-to-Peer, and asymmetric infrastructure. In
this section, we discuss in details the current available archi-
tectures, illustrating the merits and shortcomings of each one,
and comparing them side-by-side.

A. Proxy-based Architecture

The proxy-based mobile services provisioning architecture
is the easiest approach for avoiding many challenges facing
the implementation of providing Web services from resource-
constrained devices such as traditional protocol compatibility

1http://mobilews.mobcal.com

Service

requester

Surrogate/

Proxy

Service repository/

broker

Publish
Disc

ove
r

Communications

Services

Description

Service

Mobile

Network

Fig. 2. An overview of proxy-based mobile Web services Provisioning.

and scalability. While at the same time it takes advantage of
being hosted on mobile devices to get an instant access to
the device resources (such as embedded sensors) or realtime
context information (such as location or any other environment
parameters). The proxy is usually a high end machine attached
to the fixed networks. Therefore, it theoretically has unlimited
bandwidth to minimize the bandwidth usage in mobile net-
works and enough processing power to off-load the resource-
constraint devices and perform the heavy load processes. The
proxy-based approach relies heavily on Jini technology [34].
Jini is an infrastructure based on Java to enable building
federated network services. The infrastructure is comprised
of a join/discovery protocol and lookup service. The lookup
service is the major component of the system which serves as
a repository of services, whereas the join/discovery protocol
publishes and discovers network services.

Figure 2 shows an overview of the proxy-based approach.
The architecture consists of a mobile device hosting Web
services and is connected wirelessly to a high-end machine
acting as a proxy. The proxy represents the endpoint of Web
services to the clients. Web services are published by the proxy
to the look-up directory/registry which represents a service
broker for both providers and clients. Potential clients discover
the requested services through the lookup directory, get the
binding information, and contact the proxy directly to use the
corresponding service. The intercommunication between the
mobile service provider and the proxy server ensures that the
provided service is up-to-date.

Relying on a proxy in mobile Web service architectures
resolves many challenges. For example, the proxy is more
capable than resource-limited mobile devices to serve a large
number of clients simultaneously with acceptable performance
and response time. Additionally, one of the most common
tasks for proxies is to deal with different protocol transla-
tions, since most of Web service protocols are not originally
designed for wireless communications and are not optimized
for low-rate transmissions, high error rates, higher latency, and
intermittent connections. Moreover, a proxy-based architecture
can guarantee a reasonable QoS in contrast to a fully wireless

P2P overlay network

In
te

rc
o
m

m
u
n
ic

a
ti
o
n
s

Service

requester
Rendezvous/

relay peer

Service repository/

broker

P
ublishDisc

ove
r

Communications

Services

Description

Service

Mobile

Network

Service

Intercommunications

Intercom
m

unications

Intercommunications = {publish, discover, communicate}

 P2P-based

 Hybrid Architecture

Fig. 3. P2P-based architecture of mobile Web services provisioning.

domain wherein providing a particular QoS is quite difficult.
Proxies can also hide the heterogeneity of various mobile
devices and support mobile terminals with disconnected states
[35].

B. P2P-based Architecture

P2P technology is a distributed, low-cost, and collaborative
computing paradigm. Over the past two decades, Peer-to-
Peer (P2P) technology has gained much popularity and its
applications acquired the interest of the research community.
P2P applications are classified into three main categories,
namely, content management applications, parallel executions
over anonymous peers, and collaborative P2P applications.
The most famous implementations for these three types are
Napster, SETI@Home, and Skype respectively. It is quite
interesting to combine the two technologies, P2P and mo-
bile Web services and take advantage of features from both
paradigms.

The vision of the P2P mobile Web services provisioning
architecture is to overcome the limitations of the centralized
approach of UDDI based registries and to take advantage of
the flexibility of the P2P network approach. Figure 3 illustrates
the basic architecture of providing Web services from mobile
devices over P2P networks. Figure 3 shows also how P2P-
based, proxy-based, and asymmetric architectures may coexist
to form a hybrid one. In a P2P-based approach, mobile devices
act as a Web service provider, whereas any Web client can
consume these services whether it is a mobile or a stationary
client. P2P provisioning relies on the P2P network advertising
mechanism to publish and discover Web services. The P2P
network advertising mechanism handles node mobility and
dynamically manages the location and binding information of
the Web service in WSDL documents through the lifetime
concept. P2P advertisements are associated with a lifetime
parameter, whenever the lifetime expires the advertisement
has to be re-published to stay valid, otherwise, it is removed
automatically or marked invalid. This mechanism of managing
the publication of services eliminates the task of keeping
centralized services registries consistent and up-to-date.

Publication and discovery of Web services in the P2P
architecture are handled using JXTA [36, 37]. JXTA advertises

Service

requester

Service

provider

Service repository/

broker

Publish
Disc

ove
r

Communications

Services

Description

Service

Mobile

Network

Fig. 4. Overview of asymmetric mobile services provisioning.

services as modules, where a module is composed of a module
class, a module specification, and a module implementation
[36]. This corresponds to WSDL and UDDI in the traditional
Web services approach. To discover Web services, Web clients
have to join the P2P network and get a PeerID. The mapping
between the client IP and the PeerID is managed by the
underlying JXTA protocols. After the clients get successfully
connected to the JXTA network, they can query/search the
network for the required services. Once the required service
is located, the client communicates with the service provider
through JXTA pipes in order to send and receive messages.

C. Asymmetric Architecture

The architecture of the asymmetric mobile services provi-
sioning approach follows the traditional Web services archi-
tecture as shown in Figure 4 except that the service provider
is a resource-limited mobile device. The term asymmetric was
coined by Porta [35] for those approaches that address the
resource limitations of mobile devices. Figure 4 shows the
architecture of asymmetric mobile services provisioning. To
make the performance of this architecture acceptable by the
Web services consumers and the services community, many
adaptations have been proposed for traditional Web service
protocols and mechanisms to cope with the limitations of
mobile devices. For example, asymmetric architecture supports
only simple XML data types (such as String, Integer, Char)
to avoid the complexity of complex type extraction [33].
Another example is the utilization of the Asynchronous Service
Access Protocol (ASAP) [38] in the communication of mobile
services. ASAP is specifically designed by OASIS to target the
service interactions in long-lived mobile services. ASAP en-
ables services to run asynchronously and independently from
their caller service. In such scenarios, the client invokes the
service and waits for the response without blocking the client
during the execution. The response is send back whenever it is
available or a later separate request can be made by the client
to communicate the results of the Web service operations.
ASAP implements asynchronous interaction techniques such
as ”Callback” and ”Polling”, which mean that the server sends
the response to the client whenever it is ready or the client has

to check back for the results respectively. However, ASAP
enables the client to query the Web service for its current
status during the execution time. Furthermore, due to the long-
term execution of the asynchronous services, the requirement
of the client may change during the course of the service
execution. ASAP enables the client to send an update or
modification message to change the previous information. The
asynchronous Web service should have the ability to update
itself accordingly at runtime.

As a proof-of-concept, Aijaz et al. [25] purpose asyn-
chronous mobile Web services middleware that supports the
asynchronous execution of long-lived services. The framework
supports both ”Callback” and ”Polling” service interaction
techniques. Due to the dynamic nature of mobile environ-
ments, Kim and Lee [4] propose a lightweight framework that
hosts Web services on mobile devices and supports service
migration. Their framework is composed of six modules,
namely, request and response manager, publication and dis-
covery manager, directory manager, migration manager, and
context information manager. The framework aims to achieve
a seamless Web services provisioning by mobile devices in
wireless ad-hoc networks. The migration and context managers
ensure that the service is uninterrupted and reliable through the
migration to a new suitable host whenever needed. Service
migration can be triggered upon a request from the provider
or due to a change in the provider’s context that makes the
service unavailable, such as CPU load or battery outage. The
framework is described generically without many details about
individual components or how they are actually deployed.

Table III provides a comparison between different mobile
services provisioning approaches. While the proxy-based and
P2P approaches rely on other technologies for setup such
as Jini and JXTA, the asymmetric approach needs no extra
infrastructure for running.

D. Open Research Issues

The distinct features of mobile Web services provisioning
and the constraints of mobile devices introduce a number
of critical design issues for architectures for this paradigm.
Despite the various proposed architectures, no perfect solution
has been identified that exploits the pervasiveness of mobile
devices to provide ubiquitous services. The simplicity and
scalability of the proxy-based architecture compromise its
portability and consistency, yet impose limitations on the
ubiquity of provided services.

The pervasive nature and agility of the P2P approach
sacrifice its performance. The performance of the asymmetric
approach suffers due to the resource limitations on mobile
devices as well as the possibility of intermittent connectivity.
The realization of mobile Web services provisioning is still
far from being achieved and open research problems requiring
further investigation include the following:

• Architecture: Current mobile Web services provisioning
architectures are basically adapted from traditional Web
services approaches. Adaptations often lead to ineffi-
cient solutions for different environments. Rethinking the

architecture could lead to better solutions for mobile
Web services provisioning; taking advantage of pervasive
mobile devices to fulfill ubiquity requirements. More
agile and robust Web service architectures that limit the
overhead on resource-limited providers and that meet the
requirement of pervasive environments are needed.

• Frameworks: SOAP/WSDL are the defacto standards
used by Web services. However, this framework is not
suitable for resource-limited environments. Optimizations
made for pervasive and mobile-related constraints in this
environment are at the expense of other issues that may
substantially impact the performance of services. Services
must be available in an ”anywhere, anytime” fashion,
irrespective of specific platform or device form factor. In
this regard, a generic and adaptable framework must be
developed that can be implemented efficiently on every
platform.

• Performance & Monitoring: A successful architec-
ture/framework for mobile service provisioning should
maintain the regular usage of mobile devices for voice
service as well as delivering ubiquitous Web service
with performance comparable with their counterparts on
fixed networks. Performance is a crucial requirement of
mobile services delivery, especially if the user is running
some important mobile applications that need the devices
resources (such as memory and processing power) to
function properly. To achieve reasonable performance
without seriously affecting the normal functionality of
mobile devices, mobile providers must process a rea-
sonable number of service requests. Thus, a lightweight
monitoring mechanism is required.

• Prototypes: Proof-of-concept applications and use case
scenarios, especially in pervasive environments, are at the
core of pushing forward the adoption of mobile services
provisioning approach.

• Context-awareness: One of the very distinct features of
Web services provisioning from mobile devices is the
use of available context to personalize services. Context
information such as mobile capabilities, available add-on
devices, location and user profiles can augment mobile
services provisioning in terms of publishing, discovery,
and usage to achieve highly ubiquitous services.

• Data Formats: Though XML is very portable, XML
messages are very verbose. XML parsing is a heavy
weight process that is resource (CPU and memory) in-
tensive. Less complex data formats should be considered
for use in the mobile domain.

• Toolkits: Mobile devices have limited resources such as
small screens and limited input capabilities. Web service
toolkits are required to facilitate the development and
deployment of mobile web services, and leverage the
usage of these services through automatic user interface
creation, scalable discovery, etc.

• Asynchronous Execution Support: Pervasive mobile
domains are characterized by limited bandwidth and
intermittent wireless connectivity. Offline mode may be

TABLE III
COMPARISON SUMMARY BETWEEN DIFFERENT MOBILE WEB SERVICES PROVISIONING ARCHITECTURES

Feature Proxy-based P2P-based Asymmetric
Architecture style Decentralized Distributed Centralized
Core technology Jini architecture JXTA protocols Traditional Web services architec-

ture
Communications Through the proxy Peer talk to Peer Clients talk directly to providers
Addressing Announce the proxy address Unique PeerID IP-based
Service publishing Jini Join request JXTA advertisements UDDI
Service discovery lookup service discovery (UDDI-

like)
JXTA resource discovery Query the UDDI

Service invocation Access the proxy + RMI Communicate the provider peer +
HTTP

Access the provider + HTTP

Scalability Can serve large number of concur-
rent customers

Scale as peers join Limited number of concurrent cus-
tomers

Consistency Synchronization between the proxy
and the mobile provider

Advertisements associated with
lifetime

Consistent

QoS Guaranteed Unguaranteed Unguaranteed

required because of these limitations or to unblock user
terminals while executing lengthy Web service processes.
Clients of mobile Web services may lose the connection
while they are moving or may voluntarily choose to
disconnect while the service continues execution. Asyn-
chronous Service Access Protocol [38] is one step to
achieve this objective, however, more research is required
in this direction.

• User Feedback: Mobile users are typically concerned
about quality of service and completeness of coverage for
their voice service. When it comes to data services they
have different requirements such as simplified data entry,
efficient utilization of network resources, asynchronous
operations and service personalization. Therefore, im-
proving user experience is critical to the ultimate success
of data service providers.

V. WEB SERVICES PUBLISHING AND DISCOVERY

Publishing a Web service is the process of notifying Web
user of that Web service and providing all the information
required to access it. Publishing is a simple process where
providers typically have two options; either registering their
services with a service broker in a public service repository,
using the UDDI standard, or publishing the services in a local
service directory and advertise these services. Service brokers
usually provide a Web interface for their service registry that
accepts information about providers, their service technical
interface (tModel), and description files. In contrast, Web
service discovery is the process of finding a Web service that
fulfils a certain task. Service discovery is a crucial component
of any service centric system. The possibility of such system
failure is a 100% if the discovery process fails to find the
correct service.

Most of the existing discovery techniques belong to one of
three main categories [39]: UDDI Business Registry (UBR),
specialized search engines and generic search engines. Each
one of these approaches has advantages and disadvantages as
follows:

UDDI Business Registry: UBR is the discovery approach
used by the standard Web service architecture. It relies on

centralized repositories which providers use to publish their
services; and customers use to discover services that satisfy
their requirements. Usually, UBR provides information about
the service description, publisher, endpoint, tModel, imple-
mentation, etc. This approach has not been widely adopted
by the Web services community, which explains why major
UBRs shut down their services in 2006 [40]. However, there
are still a few public registries offering their services with
different capabilities such as RemoteMethods, StrikIron, and
X-Methods. Problems with UBRs include their centralized
architecture, limited scalability, single point of failure, consis-
tency maintenance, keyword search or category browsing only,
and outdated service records. However, UBRs enable service
subscription for interested users to keep them updated. UBRs
provide extra features such as service trail, transaction facili-
tation, WSDL parser, different pricing schemes, performance
monitoring, programmatic interface, and ratings.

Specialized search engines: This approach aims to distin-
guish a Web service search from a Web content search. The
basic idea is to make use of Web service functionalities,
operations, and other information provided in the description
files in order to perform a meaningful search for services that
best match a particular request. These search engines collect
service description files from public UBRs and Web contents,
extract the semantic meaning of these Web services from
their description files, and perform semantic matching between
requests and service capabilities. Woogle [41] and WSCE [42]
are examples of these search engines. Web service search
engines are able to find services that are more relevant to users’
requests; as the search does not solely rely on keywords, but
also on functionalities and other running parameters such as
QoS. Additionally, the retrieved services should all be valid
and running as these engines are able to catch any updates or
status changes while crawling the descriptions of Web services
from the source. User ratings and feedback can also be taken
into account in ranking the retrieved list of services. However,
so far this approach only supports searching for non-semantic
Web services.

Generic Web search engines: Web content search engines

are another alternative to finding Web services using ”keyword
search”. Major providers of Web services, such as Google,
Amazon and Yahoo, have decided to publish their Web ser-
vices through their own websites instead of using UBRs.
This trend is forcing users to discover Web services through
Web content search engines. Users can use search engines,
such as Google, to locate Web services by customizing the
search query to look for specific files types (ex. wsdl and
owl files). The major drawback of search engines is that
they cannot understand Web service functionalities outlined
in the description files and only rely on keywords to find
services. The advantages of using generic search engines
include, robustness, scalability; and no extra infrastructure is
required.

Service discovery should demand minimal user involve-
ment, especially in mobile domains where users have limited
input capabilities. A comparison between current discovery
mechanisms focusing on the autonomic capability of service
discovery is presented in [43]. The comparison is carried
out based on eight criteria that evaluate how autonomous
these approaches are. These criteria are service description,
matchmaking/reasoning, scalability, robustness, service com-
position, Quality and cost of service, up-to-dateness , and
service replacement.

As mentioned earlier, Web services can be described se-
mantically or non-semantically (WSDL-based). The discovery
process is quite different according to the Web service descrip-
tion method. Semantic Web services are discovered by high
level match-making approaches [5], whereas non-semantic
Web services discovery use information retrieval techniques
[38].

A. Non-semantic Discovery

WSDL documents are used to describe the functionalities
and binding information of the Web services they describe.
WSDL documents are usually accessible by standard proto-
cols such as HTTP and SOAP. In the WSDL-based service
discovery approach, a web service discovery engine partially
matches the search terms entered by the user with the Web
service name, location, business, or tModel [44] defined in the
service description file. The use of these types of keywords is,
by design, limited in WDSL specifications. A relevant service
may not be retrieved if the search terms do not include part
of the Web service name. A user may even miss services that
use synonyms or variations of these keywords. For example,
a service that contains ”car” in its name may not be retrieved
by a query looking for ”vehicle” service. A solution to this
problem is proposed by Elgazzar et al. [45] via clustering
WSDL documents based on functional similarity.

The WSDL-based service discovery approach works on
the syntactic level and lacks the understanding of the se-
mantics of Web service functionalities. Thereby, building a
common ground between the provider and the consumer is
hardly achievable, especially in pervasive environments [46].
In these environments, service discovery should be robust
and lightweight enough to cope with the network’s dynamics

and resource-limited mobile devices. Furthermore, important
parameters such as QoS, user context, and other non-functional
parameters cannot be exploited in discovering the most appro-
priate Web service to the requested task using WSDL-based
approach. The semantic approach introduces solutions to these
discovery issues using semantic reasoning.

B. Semantic Discovery
Semantic Web service discovery relies on domain ontologies

to discover relevant Web services for user requests. The
foundation of a semantic discovery method is the semantic
description formalism used to describe Web services. The
most prominent semantic formalisms adopted, to date, are
OWL, WSMO, and WSDL-S [47]. Amigo-s [46] is a seman-
tic description language developed to advertise and discover
Web services in pervasive and resource-constrained computing
environments using a dedicated Service Discovery Protocol
(SDP). A number of optimizations were considered such
as, offline classification for offered ontologies, hierarchical
categorization for requested capabilities, and distributed ser-
vice directories. However in the case of resource-constrained
mobile providers/brokers, the overhead of service classification
could be infeasible; especially if the set of available services
is constantly changing as providers/brokers move around. A
common problem for all current semantic approaches is that
they must apply the same formalism to describe the service
capabilities and the service request (a solution is introduced to
tackle this problem in [48]). Then, a matchmaking process is
performed to match the request requirements with the offered
capabilities.

The matchmaking process comprises three steps, namely:
(1) parsing both the user request and service advertisement
profile for requirement and capabilities, respectively; (2) us-
ing a semantic reasoner to load the ontologies used by the
user request and service advertisement, and (3) finding the
semantic relation between inputs, outputs, and properties of
the requested and provided functionalities and capabilities.
Step 2 and 3 are carried out by a semantic reasoner such
as Racer 2 and Fact++ 3. A service is discovered if a
”match” relation holds between advertised capabilities (CA)
and requested capabilities (CR). In such a relation, a semantic
match means that CA subsumes CR. More precisely, all
required inputs, expected outputs, and required properties of
CR are matched with the expected inputs, offered outputs, and
provided properties by CA, respectively. The result would be a
group of Web services which are ranked according to a best-fit
criteria.

The performance parameters that distinguish one semantic
reasoner from another are: (1) the response time, which is the
time taken to match a request with the capabilities provided by
Web services (2) the computational resource requirements used
in matching. Thus, in order to feasibly employ the semantic
discovery approach in mobile services, the matching process
should be optimized for these performance metrics.

2Racer: http://www.sts.tu-harburg.de/r.f.moeller/racer/
3Fact++: http://owl.man.ac.uk/factplusplus/

C. Service Discovery in Mobile Environments

In mobile environments, limited resource availability on
mobile devices and unreliable communication in wireless
networks present unique challenges for service discovery. A
vision for discovery schemes in open mobile environments is
presented by Bashah et al. [49]. Mobile providers and users
are constantly changing their locations and might offer, or be
interested in, location-based services. Mobile users’ attitude,
preferences and demands for location-aware mobile services
are discussed from the user perspective by Kaasinen et al. [50].

Yang et al. [51] propose an architecture for mobile Web
service discovery. Their approach aims at avoiding intermittent
connections and overcoming delay and bandwidth limitations
that characterize wireless communications. Their architecture
is based on fixed providers, mobile users, and a single broker
per particular area. The main idea of their architecture is to
have mobile users downloading and executing the requested
service locally; to avoid back and forth communication.
However, this approach overlooks many issues that typically
exist in mobile Web service such as, the services’ need to
access local resources such as databases, exploiting user’s
valuable resource (ex. battery, memory, and processing power),
and management overhead if there are multiple brokers and
frequent service updates.

Although semantic Web services are promising, their dis-
covery architectures present a significant challenge in mobile
domains. A typical semantic reasoner, the core of the semantic
matchmaking process, is a resource-intensive process and is
only suitable for deployment on high-end servers. Recently,
some researchers have focused on optimizing specific parts of
current semantic discovery approaches to adapt to resource-
constrained mobile domains. Steller et al. [52]–[54] propose
the mTableaux algorithm to optimize the reasoning process
and facilitate Web services selection for limited-resource mo-
bile providers. Similarly, Gu et al. [55] discuss, in their frame-
work, the design principles and implementations of supporting
ontology and reasoning for mobile context-aware applications
on handheld devices.

Composing multiple services is an alternative to resolving
a user request if no atomic services were found to satisfy
the user’s objective. Service composition is more feasible
with semantic descriptions rather than non-semantic ones.
Bhuvaneswari et al. [56] propose a framework for semantic
Web service composition in mobile environments. It converts
WSDL files into an OWL-S specification and generates a
service profile for the request. Then, it performs sematic rea-
soning between the advertised service profile and the requested
one. Accordingly, the composer generates composition plans
and stores them in a plan repository in a cloud.

Much focus has been given for context-aware service dis-
covery in heterogeneous mobile environments (context in-
cludes: user preferences, device profiles, environment context
and service ratings). Garcı́a et al. [57] propose a detailed
user preferences model that can be applied as an extension
to the existing semantic description languages. The model

distinguishes between mandatory requirements and preferred
ones. Al-Masri et al. [58] have developed a device-aware
service discovery mechanism that is capable of selecting
Web services that adhere to mobile device constraints. The
mechanism takes advantage of HTTP sessions to collect device
information and store it at the server side. This information is
later used to ensure that the discovered services will function
properly within the user’s device. User feedback and rating
is also another important aspect that could be exploited to
improve Web service discovery [59]. However, mechanisms
that collect the feedback should prevent false ratings as well
as providers who dishonestly claim a certain QoS for their
advertised services to deceivably attract interested customers
[60]. Maamar et al. [61] discuss the development, discovery,
and composition of capacity-driven Web services, which are
services that have the capability of changing their behavior ac-
cording to environment changes. Similar research on services
with different qualities to cope with environment context is
presented in [62].

D. Discovery in P2P Networks

As mentioned earlier, P2P technology is being used in
ubiquitous computing environments, and particularly in mobile
Web services provisioning. Peers in P2P networks are always
on the move and their point of attachment to the network
keeps changing. Consequently, the binding information of an
advertised mobile Web service needs to change; otherwise the
point of service attachment would be void, resulting in a failed
invocation. Maintaining this binding information is costly and
difficult. Therefore, a more dynamic, robust, and distributed
publishing and discovery mechanism is required in the mobile
wireless domain. Using a UDDI-based approach is not the best
way to deal with service advertisement and discovery in P2P
networks.

In contrast to the traditional Web services model, adver-
tising and discovery of mobile Web services in P2P follows
the announce-listen model. Publishing and discovery in P2P
networks relies heavily on JXTA. A Web service is often
published as a JXTA module, which includes module class,
module specification, and module implementation [36]. The
module class represents the information needed to declare the
services. The module specification contains the information
required for the potential consumer to access the service.
Its implementation indicates the methods (possibly across
different platforms) of the advertised specifications. Modules
are searchable and can be queried for a certain Web service
requirement or functionality. Its class maps to the UDDI entry
in the traditional Web service architecture as shown in Figure
5, while the module specification and module implementa-
tion together map to the WSDL document information [3].
Advertisements in JXTA are represented as XML documents
and broadcast/multicast over the P2P network. A determined
lifetime is associated with each advertisement; once it expires
the corresponding service or advertisement becomes invalid
or automatically deleted. This feature reduces the need of
maintaining up-to-date centralized registries. To keep a service

Service

registration

JXTA Module

Module class

Advertisement information

Module specification

Access information

Module Implementation

Implementation specifications

Interface

specifications

Implementation

details

WSDL

UDDI

Fig. 5. Mapping between JXTA advertisements and traditional Web service
publishing architecture.

advertisement valid, the service should be periodically re-
published or re-announced.

Peers discover the required services by sending a search
request over the network [63]. Similar to WSDL-based service
discovery, the JXTA API only supports keyword-based search
in advertised modules. Usually, the user’s query matches the
information in the module class. Therefore, information such
as the user’s context is not used to find the relevant service
using the basic JXTA search. Sirarma [3] propose an advanced
search mechanism by proper categorization to the advertise-
ments based on functionalities, then filtering the retrieved
services to find out the most relevant services. The filtering
algorithm relies on the word importance calculation across all
the retrieved advertisements considering the word frequency
and its distribution. However, such search mechanisms need
a high-end JXME peer due to the resource limitations of
the regular mobile devices [64]. The scalability of P2P-based
mobile Web service discovery is also studied by Zhu [65].

Sioutas et al. [66] take advantage of P2P overlay networks
and proposed a fault tolerant search infrastructure based on
indexing techniques to leverage Web service discovery in
P2P networks. Sets of descriptive keywords are extracted
from WSDL description files, indexed, then stored at peers.
Request-query matching then supports keyword-matching on
service name, category and tModel. Also, Vu et al. [60]
propose a decentralized service discovery framework based on
indexed P2P service registries. A semantic service description,
including functional and non-functional properties, is stored on
a peer registry on P2P overlay network. The requirements of a
potential requester are expressed in the same ontology concept
used to describe the characteristic vector of the service.

E. Open Research Issues

In addition to the publishing/discovery approaches discussed
above, several open issues still exist and dictate improvements
or possibly require new mechanisms all together, most impor-
tantly, to achieve ubiquitous access to services.

• Publishing Techniques: Mobile providers need to adver-
tise their Web service to potential customers. In pervasive
mobile domains, centralized solutions are not the optimal
one. In contrast, distributed publishing approaches entail

much overhead in maintaining the consistency of service
registries. This raises critical research issues, including
whether location-based publishing is beneficial in reduc-
ing network traffic and latency to provide better service or
functional-based publishing is more appealing for mobile
users. From the network operator perspective, would it
be possible to promote Web services offered from inside
their own networks at the expense of other services, with
the same functionality, offered outside their networks?

• Context-Awareness Discovery: With the adoption of
mobile Web services provisioning, a significant number
of services are to be offered. This will make the discovery
of the most relevant Web services to a certain user
objective more complex, and probably inefficient, using
the current mechanisms. Proper discovery techniques
that exploit context information, such as location, device
profiles, and user profiles, are crucial to the success of
the mobile service provisioning approach.

• Persistent Discovery: In pervasive mobile domains,
mobile devices are frequently changing their point of
attachment to the network or making handoff between
networks or different access technologies. The services
they provide then become inaccessible as their binding
information become invalid. Service discovery should be
an active process even while the service is executing
to support ubiquitous service access either by providing
an alternative access to the same service or by quickly
finding another equivalent service [67].

• Lightweight Semantic Discovery: Semantic Web service
discovery architectures present a significant challenge in
resource-constrained domains. The discovery of semantic
Web services requires a heavyweight matchmaking pro-
cess at the server side which could be a provider with
limited resources. Semantic reasoning, the core of the
semantic matchmaking process, is a resource-intensive
process and only suitable for deployment on high-end
servers. Therefore, highly optimized semantic reasoners
for mobile environments are required.

• User Interface: Toolkits are required for the automatic
creation of multimodal user interfaces; whether at runtime
or deployment. The decision of whether a user interface
should be created at runtime (service discovery time) or
deployment-time is a significant research question itself
when it comes to mobile and pervasive environments;
taking into account mobile device constraints and the
characteristics of wireless networks.

VI. MOBILE HOSTING PERFORMANCE

Web services, by design, usually incorporate high overhead
due to the usage of XML in message interactions. XML
messages are verbose and costly to be processed in terms
of memory, cpu, and network bandwidth. The performance
of Web services hosted on mobile devices is crucial to the
realization of this computing paradigm. Successful deployment
of Web services on mobile devices requires that clients should
not notice that these services are provided from a resource-

limited host. On the other hand, the regular functionalities
of mobile devices have to be maintained without a serious
impact while provisioning Web services. Therefore, the perfor-
mance of mobile services provisioning needs to be extensively
explored and analyzed. Researchers use various performance
factors to evaluate the performance of Web services hosted on
mobile devices, including: response time, battery consumption,
how the system scales to accommodate an increasing number
of service requests, the number of service requests processed
per unit of time, and service request rejection rate [68, 69].
From the customer’s perspective, response time is an important
factor that indicates the perceived Web service performance.
So far, little research has been done in this direction. Four
different approaches proposed in the literature to tackle the
performance issue of mobile services provisioning are as
follows:

• XML Compression: Compression of XML messages is
one option to boost the mobile Web services performance;
however, the benefits of compression may be compro-
mised by the decompression overhead, even with the
increasing computing power of mobile devices. In such
cases, a tradoff between bandwidth and computing power
has to be made clear. Most of the proposed XML com-
pression schemes [70, 71] allow users to choose whether
they prefer to receive XML messages compressed or not.

• REST Design: The RESTful approach is another option
to enhance the performance of mobile Web services
[72]–[74]. AlShahwan and Moessner [32] developed two
frameworks, SOAP-based and REST-based, to provide
Web services from mobile devices. The study com-
pares the performance of the two approaches in wireless
resource-constrained domains. The authors claimed that
REST-based Web services have proved to be more lighter,
scalable, and have less footprint than SOAP-based Web
services.

• Partitioning: Partitioning the execution of Web service
components is a third direction that has been proposed to
hide the limitations of mobile devices [75]. Typically the
Web service execution environment encompasses many
components to facilitate the hosting and execution of
services, such as request listener, SOAP/XML engine,
and encryption and decryption modules. Most of these
components are computationally intensive and require
more resources. Deploying all the required components
on mobile devices is very difficult due to their resource
constraints. Asif et al. [76, 77] propose a partitioning
technique to execute some of the Web service components
on an intermediate node, called a surrogate node. Their
basic idea is to build a distributed SOAP engine, a static
partition resides on the surrogate node and a mobile
partition resides on the mobile device, to improve the
response time and extend the scalability. The static SOAP
engine processes part of the incoming SOAP message and
delivers the rest to the mobile partition. Web services have
to be built with this concept in mind, as XML elements

would have assignment attributes for each SOAP engine.
It is worth noting that providing mobile Web services
with this partitioning technique follows the proxy-based
architecture.

• Service Replication: Availability and reliability are also
major challenges for mobile web services due to the
intermittent connections of wireless communications and
potential server down time due to the increase in the
number of invocation requests [78]. Guaranteeing the
availability of Web services in mobile wireless domains is
difficult and as Sheng [24] point out, there is a significant
difference between things that work and things that work
well. Sheng et al. in their work [24] propose an on-
demand replication approach on idle potential providers
(ex. idle or less-loaded mobile devices in P2P architec-
ture) for robust Web services provisioning. According to
their approach, the service provider has to maintain a
ready-to-deploy (a bundle that contains all the necessary
files) version of the Web service for different platforms.
To accommodate more execution needs, a Web service
manager can seek, on-demand, for a potential service host
(from a pool of Web service hosts) to deploy the service
on, if the invocation requests exceed a certain limit or to
guarantee a particular performance or availability.

VII. SUMMARY

It has been recognized that mobile devices are the most
convenient interfaces for pervasive and ubiquitous computing.
The advancements in the manufacturing of mobile devices
coupled with the latest achievements in wireless technology
contribute to extend the role of mobile devices to not only
consume Web services and Internet applications, but also to
host and provide them. The chief advantage of providing
Web services from mobile devices is that both provider and
consumer can utilize the context information to personalize
mobile services provisioning. In this paper, we discuss the idea
of mobile Web services provisioning, point out its enabling
technologies, and its envisioned applications.

Mobile Web services design may use the SOAP protocol as
a messaging framework (SOAP-based) or comply with REST
principles (REST-based). RESTful Web services are more
suitable for resource-constrained mobile providers as they are
scalable, lightweight and flexible, and easy to deploy. Several
architectures are proposed in the literature for providing Web
services by mobile devices to accommodate the constraints of
mobile devices and the characteristics of wireless networks.
Current provisioning architectures include: proxy-based, P2P-
based, and asymmetric architecture. Despite the fact that a
proxy-based architecture can hide the limitations of mobile de-
vices, such a solution compromises the portability of services
provisioning. The P2P-based service provisioning architecture,
however, is promising. In a P2P-based architecture mobile
devices can be a service provider, a service consumer, or both
simultaneously.

Existing publishing and discovery mechanisms were origi-
nally developed for fixed hosting and wired networks. Mobile

networks are dynamic and their users constantly change their
point of attachment to the network, handoff between different
networks, and frequently and unpredictably change their lo-
cation and context information. It is important that publishing
and discovery mechanisms in this highly dynamic environment
take into account all these characteristics. Though the JXME
network offers many advantages in the discovery of services
and access mechanisms in P2P networks, novel publishing
and discovery mechanisms that are capable of exploiting the
context information are crucial to the success and widespread
adoption of the mobile services provisioning paradigm.

For efficient mobile services provisioning, different chal-
lenges and open research directions are identified, includ-
ing: robust architecture that limits the overhead on resource-
constrained providers, flexible provisioning frameworks that
are able to make proper optimizations for mobile-related con-
straints, context-awareness mechanisms to personalize services
provisioning, and data formats which are less complex yet
flexible and agile.

It is important to keep in mind that the normal functionality
of mobile devices should not be compromised while provi-
sioning Web services. In conclusion, although hosting Web
services on mobile devices is possible and proof-of-concept
applications have been demonstrated, this concept remains far
from realization and much more research work is yet to be
done.

REFERENCES

[1] S. N. Srirama, Mobile Hosts in Enterprise Service Integration. PhD
thesis, RWTH Aachen, Germany, September 2008.

[2] M. A. Skulason, “Mobile devices as web service providers,” Master’s
thesis, Technical University of Denmark, Denmark, September 2008.

[3] S. N. Srirama, M. Jarke, and W. Prinz, “Mobile web service provi-
sioning,” in Proceedings of the Advanced International Conference on
Telecommunications andInternational Conference on Internet and Web
Applications and Services, AICT/ICIW’06, pp. 120–125, 2006.

[4] Y.-S. Kim and K.-H. Lee, “A lightweight framework for mobile web
services,” Computer Science - Research and Development, vol. 24,
pp. 199–209, 2009.

[5] S. Srirama, M. Jarke, and W. Prinz, “Mobile host: A feasibility anal-
ysis of mobile web,” in Service Provisioning, Proc. UMICS 2006, @
CAiSE06, pp. 942–953, 2006.

[6] A. Meads, A. Roughton, I. Warren, and T. Weerasinghe, “Mobile service
provisioning middleware for multihomed devices,” in Proceedings of
the 2009 IEEE 5th International Conference on Wireless and Mobile
Computing, Networking and Communications(WIMOB 2009), pp. 67–
72, 2009.

[7] A. van Halteren and P. Pawar, “Mobile service platform: A middleware
for nomadic mobile service provisioning,” in IEEE International Con-
ference on Wireless and Mobile Computing, Networking and Commu-
nications, 2006 (WiMob’2006)., pp. 292–299, IEEE Computer Society
Press, June 2006.

[8] M. N. Huhns and M. P. Singh, “Service-oriented computing: Key
concepts and principles,” IEEE Internet Computing, vol. 9, pp. 75–81,
2005.

[9] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Fer-
ris, and D. Orchard, “Web services architecture,” February 11 2004.
http://www.w3.org/TR/ws-arch.

[10] P. Prescod, “Roots of the rest/soap debate,” August 2002.
[11] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg,

A. Polleres, C. Feier, C. Bussler, and D. Fense, “Web service modeling
ontology,” Applied Ontology, vol. 1, pp. 77–106, November 2005.

[12] R. T. Fielding, Architectural styles and the design of network-based
software architectures. PhD thesis, University of California, Irvine,
USA, 2000.

[13] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web
services description language (wsdl) version 2.0 part 1: Core language,”
June 26 2007. http://www.w3.org/TR/wsdl20.

[14] E. Wilde, “What are you talking about?,” in IEEE International Con-
ference on Services Computing (SCC 2007), pp. 256 –261, July 2007.

[15] J. Meng, S. Mei, and Z. Yan, “Restful web services: A solution for dis-
tributed data integration,” in International Conference on Computational
Intelligence and Software Engineering, 2009. CiSE 2009., pp. 1–4, 2009.

[16] D. Fensel, F. Fischer, J. Kopeck, R. Krummenacher, D. Lam-
bert, and T. Vitvar, “Wsmo-lite: Lightweight semantic descrip-
tions for services on the web.” W3C Member Submission, 2010.
http://www.w3.org/Submission/WSMO-Lite/.

[17] L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, V. Tanasescu, C. Pedri-
naci, and B. Norton, “Irs-iii: A broker for semantic web services based
applications,” in In proceedings of the 5 th International Semantic Web
Conference (ISWC 2006), pp. 201–214, 2006.

[18] T. R. Gruber, “A translation approach to portable ontology specifica-
tions,” Knowledge Acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[19] M. Klusch, B. Fries, and K. Sycara, “Automated semantic web service
discovery with owls-mx,” in Proceedings of 5th International Confer-
ence on Autonomous Agents and Multi-Agent Systems (AAMAS), 2006.

[20] J. D. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. K. Tsakalidis,
“Contemporary web service discovery mechanisms,” Contemporary Web
Service Discovery Mechanisms, vol. 5, pp. 265–290, September 2006.

[21] M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, S. Mcilraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan,
K. Sycara, and D. M. (ed.), “Owl-s: Semantic markup for web services.”
W3C Member Submission, 2004. http://www.w3.org/Submission/OWL-
S.

[22] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt, A. Sheth,
and K. Verma, “Web service semantics - wsdl-s.” W3C Member Sub-
mission, November 2005. http://www.w3.org/Submission/WSDL-S/.

[23] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull,
M. Kifer, D. Martin, S. McIlraith, D. McGuinness, J. Su, and S. Tabet,
“Semantic web services ontology (swso).” W3C Member Submission,
2005. http://www.daml.org/services/swsf/1.0/swso/.

[24] Q. Z. Sheng, Z. Maamar, J. Yu, and A. H. H. Ngu, Information Systems:
Modeling, Development, and Integration, ch. Robust Web Services
Provisioning through On-Demand Replication, pp. 4–16. Springer Berlin
Heidelberg, April 2009.

[25] F. Aijaz, B. Hameed, and B. Walke, “Towards peer-to-peer long lived
mobile web services,” in Proceedings of the 4th International Confer-
ence on Innovations in Information Technology, (Dubai, UAE), pp. 571–
575, IEEE, November 2007.

[26] S. Microsystems, “Personaljava,” 2007.
http://javasun.com/products/personaljava/.

[27] S. Microsystems, “The java me platform - the most
ubiquitous application platform for mobile devices,” 2007.
http://java.sun.com/javame/index.jsp.

[28] N. Balani, “Using kxml to access xml files on j2me devices,” 2003.
http://www.ibm.com/developerworks/edu/wi-dw-wi-kxml-i.html.

[29] kSOAP2. http://ksoap2.sourceforge.net/.
[30] K. Church, J. M. Pujol, B. Smyth, and N. Contractor, “Mobilehci’10

workshop summary: social mobile web,” in The 12th international
conference on Human computer interaction with mobile devices and
services, MobileHCI ’10, (New York, NY, USA), pp. 509–512, ACM,
2010.

[31] D. Brooker, T. Carey, and I. Warren, “Middleware for social networking
on mobile devices,” in The Australian Software Engineering Conference
(ASWEC’10), (Auckland, New zealand), pp. 202–211, 2010.

[32] F. AlShahwan and K. Moessner, “Providing soap web services and
restful web services from mobile hosts,” International Conference on
Internet and Web Applications and Services, vol. 0, pp. 174–179, 2010.

[33] P. Pawar, S. Srirama, B.-J. van Beijnum, and A. van Halteren, “A
comparative study of nomadic mobile service provisioning approaches,”
in The 2007 International Conference on Next Generation Mobile
Applications, Services and Technologies (NGMAST 2007), pp. 277–283,
2007.

[34] S. Microsystems, “Jini architecture specification,” 2001.
http://www.jini.org/wiki/Jini Architecture Specification.

[35] T. F. L. Porta, K. K. Sabnani, and R. D. Gitlin, “Challenges for nomadic
computing: Mobility management and wireless communications,” Mo-
bile Networks and Applications, vol. 1, no. 1, pp. 3–16, 1996.

[36] L. Gong, “Jxta: a network programming environment,” IEEE Internet
Computing, vol. 8, pp. 88–95, 2001.

[37] S. Microsystems, “Jxta(tm) community project.”
https://jxta.dev.java.net/.

[38] J. Fuller, M. Krishnan, K. Swenson, and J. Ricker, “Oasis asyn-
chronous service access protocol (asap,” May 18 2005. http://www.oasis-
open.org/committees/documents.php?wg abbrev=asap.

[39] S. Hagemann, C. Letz, and G. Vossen, “Web service discovery - reality
check 2.0,” in Proceedings of the Third International Conference on
Next Generation Web Services Practices, NWESP ’07, (Washington, DC,
USA), pp. 113–118, IEEE Computer Society, 2007.

[40] C. Legner in Service-Oriented Computing - ICSOC 2007 Workshops
(E. Nitto and M. Ripeanu, eds.), ch. Is There a Market for Web Services?,
pp. 29–42, Berlin, Heidelberg: Springer-Verlag, 2009.

[41] X. D. Alon, X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang,
“Similarity search for web services,” in In Proceedings of VLDB’04,
pp. 372–383, 2004.

[42] E. Al-Masri and Q. H. Mahmoud, “Wsce: A crawler engine for large-
scale discovery of web services,” Web Services, IEEE International
Conference on, pp. 1104–1111, 2007.

[43] M. Rambold, H. Kasinger, F. Lautenbacher, and B. Bauer, “Towards
autonomic service discovery a survey and comparison,” in Proceedings
of the 2009 IEEE International Conference on Services Computing, SCC
’09, (Washington, DC, USA), pp. 192–201, IEEE Computer Society,
2009.

[44] R. Nayak, “Data mining in web services discovery and monitoring,” in
International Journal of Web Services Research, vol. 5, pp. 63–81, 2008.

[45] K. Elgazzar, A. E. Hassan, and P. Martin, “Clustering wsdl documents to
bootstrap the discovery of web services,” in The 8th IEEE International
Conference on Web Services (ICWS’10), Miami, Florida, USA, July
2010.

[46] S. Ben Mokhtar, A. Kaul, N. Georgantas, and V. Issarny, “Efficient
semantic service discovery in pervasive computing environments,” in
Middleware ’06: Proceedings of the ACM/IFIP/USENIX 2006 Interna-
tional Conference on Middleware, (New York, NY, USA), pp. 240–259,
Springer-Verlag New York, Inc., 2006.

[47] L. D. Ngan, M. Kirchberg, and R. Kanagasabai, “Review of semantic
web service discovery methods,” IEEE Congress on Services, pp. 176–
177, 2010.

[48] M. Junghans, S. Agarwal, and R. Studer, “Towards practical semantic
web service discovery,” in ESWC (2)’10, pp. 15–29, 2010.

[49] N. S. K. Bashah, I. Jørstad, and D. v. Thanh, “Service discovery in
future open mobile environments,” in Proceedings of the 2010 Fourth
International Conference on Digital Society, (Washington, DC, USA),
pp. 47–53, IEEE Computer Society, 2010.

[50] E. Kaasinen, “User needs for location-aware mobile services,” Personal
and Ubiquitous Computing, vol. 7, pp. 70–79, 2003.

[51] X. Yang, A. Bouguettaya, and B. Medjahed, “Organizing and accessing
web services on air,” IEEE Transactions on Systems, Man, and Cyber-
netics Part A: Systems and Humans, vol. 33, pp. 742–756, 2003.

[52] L. Steller and S. Krishnaswamy, “Efficient mobile reasoning for perva-
sive discovery,” in Proceedings of the 2009 ACM symposium on Applied
Computing, SAC ’09, (New York, NY, USA), pp. 1247–1251, ACM,
2009.

[53] L. A. Steller, S. Krishnaswamy, and M. M. Gaber, “Cost efficient, adap-
tive reasoning strategies for pervasive service discovery,” in Proceedings
of the 2009 international conference on Pervasive services, ICPS ’09,
pp. 11–20, 2009.

[54] L. A. Steller, Light-Weight and Adaptive Reasoning for Mobile Web
Services. PhD thesis, Monash University, Australia, May 2010.

[55] T. Gu, Z. Kwok, K. K. Koh, and H. K. Pung, “A mobile framework
supporting ontology processing and reasoning,” in Proceedings of the
2nd Workshop on Requirements and Solutions for Pervasive Software
Infrastructures (RSPSI ’07)in conjunction with the 9th International
Conference on Ubiquitous Computing (Ubicomp ’07), (Austria), Septem-
ber 2007.

[56] A. Bhuvaneswari and G. Karpagam, “Reengineering semantic web
service composition in a mobile environment,” International Test Con-
ference, pp. 227–230, 2010.

[57] J. M. Garcı́a, D. Ruiz, and A. Ruiz-Cortés, “A model of user preferences
for semantic services discovery and ranking,” in ESWC 2010, Part II,
vol. 6089 of LNCS, pp. 1–14, 2010.

[58] E. A.-M. Q. H. and Mahmoud, “Mobieureka: an approach for enhancing

the discovery of mobile web services,” Personal Ubiquitous Computing,
vol. 14, pp. 609–620, October 2010.

[59] A. Averbakh, D. Krause, and D. Skoutas, “Exploiting user feedback to
improve semantic web service discovery,” in Proceedings of the 8th In-
ternational Semantic Web Conference, ISWC ’09, (Berlin, Heidelberg),
pp. 33–48, Springer-Verlag, 2009.

[60] L.-H. Vu, M. Hauswirth, and K. Aberer, “Towards P2P-based Semantic
Web Service Discovery with QoS Support,” in BPM 2005 Workshops,
LNCS 3812, pp. 18–31, Springer Berlin / Heidelberg, 2006.

[61] Z. Maamar, S. Tata, D. Belaid, and K. Boukadi, “Towards an approach
to defining capacity-driven web service,” International Conference on
Advanced Information Networking and Applications (AINA’09), vol. 0,
pp. 403–410, 2009.

[62] A. Tao and J. Yang, “Context aware differentiated services development
with configurable business processes,” in Proceedings of the 11th
IEEE International Enterprise Distributed Object Computing Confer-
ence, (Washington, DC, USA), pp. 241–252, IEEE Computer Society,
November 2007.

[63] S. Dustdar and M. Treiber, “Integration of transient web services into a
virtual peer to peer web service registry,” Distrib. Parallel Databases,
vol. 20, no. 2, pp. 91–115, 2006.

[64] S. N. Srirama, M. Jarke, and W. Prinz, “Scalable mobile web service
discovery in peer to peer networks,” in 3rd International Conference on
Intenet and Web Applications and Services, pp. 668–674, 2008.

[65] H. Zhu, “Scalability of p2p based mobile web services discovery,”
Master’s thesis, RWTH Aachen University, Germany, 2008.

[66] S. Sioutas, E. Sakkopoulos, C. Makris, B. Vassiliadis, A. Tsakalidis, and
P. Triantafillou, “Dynamic web service discovery architecture based on
a novel peer based overlay network,” Journal of Systems and Software,
vol. 82, pp. 809–824, May 2009.

[67] K. Elgazzar, H. Hassanein, and P. Martin, “Effective web service discov-
ery in mobile environments,” in P2MNETS, The 36th IEEE Conference
onLocal Computer Networks (LCN), pp. 697–705, October 2011.

[68] R. Mizouni, M. Serhani, R. Dssouli, A. Benharref, and I. Taleb, “Perfor-
mance evaluation of mobile web services,” in The 9th IEEE European
Conference on Web Services (ECOWS, pp. 184 –191, September 2011.

[69] F. AlShahwan and K. Moessner, “Providing soap web services and
restful web services from mobile hosts,” in The Fifth International
Conference on Internet and Web Applications and Services (ICIW’10),
pp. 174 –179, May 2010.

[70] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J. Schiller, “Performance
considerations for mobile web services,” Elsevier Computer Communi-
cations Journal, vol. 27, pp. 1097–1105, 2003.

[71] Y. Natchetoi, H. Wu, and G. Babin, Euro-Par 2007 Parallel Processing,
ch. A Context-Dependent XML Compression Approach to Enable
Business Applications on Mobile Devices, pp. 911–920. Springer Berlin
Heidelberg, August 2007.

[72] H. Hamad, M. Saad, , and R. Abed, “Performance evaluation of restful
web services for mobile devices,” International Arab Journal of e-
Technology, vol. 1, pp. 72–78, January 2010.

[73] F. Aijaz, S. Z. Ali, M. A. Chaudhary, and B. Walke, “Enabling high
performance mobile web services provisioning,” in Proceedings of the
2009 IEEE 70th Vehicular Technology Conference Fall, p. 6, September
2009.

[74] F. Alshahwan, K. Moessner, and F. Carrez, “Distribute provision strate-
gies of restful-based mobile web services,” in GLOBECOM - IEEE
Global Telecommunications Conference, pp. 1–6, 2011.

[75] M. Asif and S. Majumdar, “Partitioning frameworks for mobile web
services provisioning,” International Journal of Parallel, Emergent and
Distributed Systems, vol. 26, no. 6, pp. 519 – 544, 2011.

[76] M. Asif, S. Majumdar, and R. Dragnea, “Partitioning the ws execution
environment for hosting mobile web services,” Services Computing,
IEEE International Conference on, vol. 2, pp. 315–322, 2008.

[77] M. Asif and S. Majumdar, “A graph-based algorithm for partitioning
of mobile web services,” in 2009 IEEE International Symposium on
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2009.

[78] K. Elgazzar, P. Martin, and H. Hassanein, “A framework for efficient
web services provisioning in mobile environments,” in The 3rd In-
ternational Conference on Mobile Computing, Applications, and Ser-
vices(MobiCASE’11), Springer’s LNICST, October 2011.

