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Abstract

This paper is an overview of the current research on problems involving dynamic
sensor activation and communication in discrete-event systems. In problems of sensor
activation agents observing a discrete-event system can turn their sensors responsi-
ble for detecting observable event occurrences on / off dynamically. In problems of
communication agents communicate information such as observed event occurrences,
state or string estimates of a discrete-event system to each other when necessary.
Sensor activation and communication have been investigated in problems of control,
diagnosis and opacity of discrete-event systems. This paper attempts to provide a co-
herent categorization and presentation for works on these problems. Their strengths,
weaknesses and avenues for future research are highlighted.

1 Introduction

A Discrete-Event System (DES) is a system with a (usually) discrete state space and
event-driven dynamics. Events occur sequentially and asynchronously in such systems. As
an example, an elevator can be modeled as a DES. The events would be the opening and
closing of doors, the pressing of buttons, the arrival at a floor, etc. The states of the system
would be defined by information such as the current floor of the elevator, the set of floors in
which the elevator is to travel, the direction it is moving, etc. As events occur sequentially
in the model, the simultaneous pressing of two buttons is not modeled (but, in reality,
the low-level event processing unit ensures the sequencing of events). As events occur
asynchronously, the time between two event occurrences is not captured in the model. Even
though an elevator is a much more complicated system, in reality, the electronic control of
elevators uses a model similar to the one described. Other examples include computer and
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communication networks, automated manufacturing systems, air traffic control systems,
advanced monitoring and control systems in automobiles and distributed software systems.

The monitoring or controlling of discrete-event systems by agents external to the system
is of potential practical interest. Left uncontrolled, such systems may execute in a manner
that results in undesirable behaviour given some specification of desirable behaviour. The
control of DES was initiated by Ramadge and Wonham in their influential works [61, 62,
111] where agents referred to as supervisors observe the events of a DES and, depending
on the sequence of events that they observe, disable certain events from occurring in the
system to satisfy a specification of desirable behaviour.

When the control of a DES by agents is overly-restrictive or cannot be implemented
it may instead suffice to monitor the operation of the DES to determine when faults or
violations of desirable behaviour occur. The monitoring and diagnosing of faults in DES
by external agents was initially considered in [42] and [75].

Also, recently a new topic of opacity which is related to studies in computer security has
been gaining attention in the DES community. Opacity is used to study the effectiveness
of a system to keep secret a predicate of the system from a (potentially malicious) external
observer. A predicate is opaque if an observer of the system will never be able to determine
the truth of that predicate.

In problems of control, diagnosis and opacity agents may not have complete observation
of the system. Some events generable by the system may be observed by an agent while
others may not. In such cases we say that the agent’s observation of the DES is static.
To further complicate matters, individual occurrences of a given observable event may be
observed while others may not. In such cases we say that the agent’s observation of the
DES is dynamic. When sensor activation and communication is concerned typically an
agent’s observation is dynamic but in some cases it is static. We consider both cases in
this report.

In problems of sensor activation an agent has associated with it sensors responsible for
detecting the occurrence of events observable to the agent. Furthermore, the agent is capa-
ble of activating / deactivating these sensors following the observation of individual event
occurrences. When the sensor for observable event e is active (respectively, inactive) any
occurrence of e will (resp., will not) be observed by the agent. The criteria for determining
when an event sensor should be activated (resp., deactivated) is dependent on the problem
at hand and an agent’s state or string estimate of a DES. When sensor activation is con-
cerned, usually cost is associated with the activation of sensors or with active sensors and
the problems considered require that sensor activation maps be computed which minimize
this cost. Studies in minimizing the activation of sensors and duration of active sensors
are motivated by increasing the life span and availability of sensors, for conserving power
when only limited battery power is available or for security purposes.

In problems of communication in decentralized and distributed DES, information about
the DES required for satisfying a given objective (e.g., control or diagnosis of DES) is dis-
tributed among agents and typically agents individually do not have enough information
for satisfying the given objective. Then communication of some of the distributed informa-
tion amongst the agents is required. Typically the information communicated consists of
observed event occurrences or estimates of the state of the DES or of the string generated
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by the DES. Communicated messages may or may not incur delay. Also the topology of
the communication network may be variable. In all problems considered here communi-
cated messages are not corrupted or dropped by the channels that they travel through and
message delivery is in-order. Similar to problems of sensor activation, problems of com-
munication usually require that communication among agents be minimized in some way.
The motivation for this is also similar to that for sensor activation problems.

We proceed in Section 3 by first considering some early works on communication for
purposes of control in DES. These works include [88, 109, 98, 2]. In [88] the fundamental
questions whose answers affect the modeling of problems involving communication are
highlighted. In [109, 98, 2] various problems of minimal communication are proposed. In
[2] an approach is provided for solving one of these problems. It is also demonstrated in [2]
that, interestingly, for a specific class of control problems and communication maps, the set
of control problems solvable by agents which maintain and communicate state estimates
and anticipate future communications strictly contains the set of control problems solvable
by agents which maintain and communicate string estimates. These works and other early
works (e.g., [69, 65]) also identify that in order that agents be able to communicate to solve
control objectives the condition of observability ([46]) of a specification language needs to
be satisfied with respect to the DES and all collective controllable and observable events.
This condition is used in most subsequent works on communication to guarantee existence
of communication solutions.

Subsequently, we review the decidability of some control problems involving communi-
cation where communication does (resp., does not) incur delay in Section 4. The works
covered include [94, 26, 96]. In [94, 26] the authors prove that two different control problems
where agents communicate all observed event occurrences to one another with unbounded
delay are undecidable. When bounded delay communication is considered the resulting
problems become decidable. Furthermore, in [94] for bounded delay communication prob-
lems the author proves that an infinite hierarchy of strict containments of nonblocking
distributed control problems is induced as the maximum delay that a message incurs in
a communication channel decreases. The authors also prove that if a control solution is
nonblocking when communication incurs a delay of up to k + 1 event occurrences then the
control solution is also nonblocking when communication incurs a delay of up to k event
occurrences. Also, another case in [26] which is proven to be decidable is when any cycle in
G contains an event observable by all agents. In [96] the author explores the relationship
between two decentralized observation conditions: unbounded-memory joint observability
(JO) and finite-memory joint observability (FJO). In both cases decision of membership in
a given regular specification language depends on the events observed by all agents collec-
tively. As a result, an implementation would require communication among agents or that
each agent send their observations to a coordinator for determining membership in the reg-
ular specification language. The authors find that JO is strictly weaker than FJO. Under
certain conditions FJO is proven to be equivalent to JO. Decidability and undecidability
results are proven for the verification of JO.

In Section 5 we review work conducted on communication between agents for refining
state and string estimates of distributed DES. The works covered include [83, 82, 57, 112,
31]. In [83] the authors present a distributed protocol where agents iteratively exchange
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projections of their string estimates for refining the string estimate of the components that
they monitor in a modular DES which can only execute strings of bounded length. This
work is continued in [82] where algorithms are provided for computing string estimates
which satisfy conditions called local consistency and global consistency. Here the DES and
initial string estimates of agents may be of arbitrary expressivity, however termination when
computing estimates that satisfy local consistency is not guaranteed in some cases. In [57]
a complex distributed protocol for the exchange among agents of state-transition estimates
of a given DES is provided where communication incurs delay. A distributed protocol
where observed event occurrences are exchanged with delay is provided in [112] for refining
state estimates of a given DES. This protocol does not suffer the same shortcomings as
the protocol of [57]. Lastly, [31] considers the task where agents estimate the states of a
set of interacting processes modeled by communicating finite state machines where state
estimates and vector clocks are communicated with arbitrary delay between agents. The
authors present a method using abstract interpretation techniques for computing state
estimates.

In Section 6 we review communication in diagnosis and prognosis problems of DES.
The works covered include [5, 18, 78, 59, 58, 87]. A diagnosis problem involving two agents
is considered in [5] where one agent approximates the state estimate of the other agent
and communicates its own state estimate to the other agent under some circumstances to
ensure that occurrences of a failure event can be diagnosed by the other agent. Diagnosis
of faults by a coordinator is considered in [18]. In this work two agents maintain state esti-
mates of the DES and send their state estimates (along with some auxiliary information for
synchronization of state estimates) to the centralized coordinator following observed event
occurrences. However, the coordinator observes a totally ordered sequence of message re-
ceptions and so cannot determine the exact order in which messages were sent if messages
were timestamped with a global clock. Consequently, the authors consider messages re-
ceived from a specific agent are received in order but may be one step out of order with
respect to messages received from the other agent. The authors present an approach for
computing state estimates at the coordinator from which diagnoses can be performed and
characterize when this procedure satisfies diagnosability. In [78] the authors present “decen-
tralized diagnosability”, a type of joint diagnosability condition, and prove its verification
to be undecidable for some general cases. A stronger formulation of joint diagnosability,
called joint∞-diagnosability, is considered in [59] which allows for communication to in-
cur unbounded delay. Verification of this stronger formulation is shown to be decidable.
Motivated by this result, a joint diagnosability condition where communication incurs a
bounded delay of up to k ≥ 0, called jointk-diagnosability, is considered in [58]. The authors
provide an algorithm for verifying this condition, describe how diagnoser automata may be
synthesized when the condition holds, and demonstrate an infinite hierarchy of joint diag-
nosability conditions where joint∞-diagnosability is the weakest and joint0-diagnosability
the strongest. Analogously, a problem of prognosing failure occurrences some number of
events before their occurrence when communication of observed event occurrences between
agents is bounded is considered in [87]. The authors introduce the condition of jointk-
prognosability which they prove to be necessary and sufficient for solving a distributed
failure diagnosis problem where all failures are prognosed before their occurrence and no
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incorrect prognoses (i.e., false alarms) are made. An algorithm is presented for verifying
jointk-prognosability.

The control of DES where the decision to communicate is made on the knowledge of an
agent and inferences made from it will be reviewed in Section 7. The works covered include
[66, 67, 35, 23, 33, 52]. In [66] two-agent decentralized DES control problems are cast
in the knowledge theory of [25]. Here the authors formulate a knowledge-based condition
called Kripke-observability, which is analogous to controllability and coobservability. In [67]
the authors present a generalization of Kripke-observability called inference-observability
which, when satisfied, allows conditional disablement and “do not know” actions to be
used effectively for control purposes. When inference-observability is satisfied and such
agent control actions are employed, communication of individual agent control decisions
is required to compute final control decisions. An impressive work which subsumes [67] is
[35]. In [67] only one level of inferencing over the knowledge of other agents to determine
individual control decisions is conducted. However, in this work agents perform multiple
levels of inferencing over the knowledge of other agents. The authors introduce N -inference-
observability of a specification language which generalizes inference-observability. This
condition is necessary and sufficient to be able to synthesize controllers which conduct up to
N levels of inferencing and whose control on the system exactly equals a given specification
language. An algorithm for verifying this condition is provided. A problem where the
execution of transitions of a DES automaton must satisfy a safety specification and priority
specification are considered in [23]. Here transitions of the system are controlled by agents
in a disjunctive-antipermissive manner. Agents have a partial view of the state of the
system and use this to determine whether or not a safe, maximal priority transition whose
occurrence it controls can be executed or if some other agent knows that a safe, maximal
priority transition that it control can be executed. A model-checking algorithm is described
for determining when these knowledge propositions hold and, when neither proposition
holds, for determining with which other agents an agent needs to exchange its partial view
for refining its state estimate of the system until one of the propositions holds. This work
is continued in [33] where instead a 1-safe Petri Net is used to represent the DES and
only a safety specification is considered which is defined over state-transition pairs of the
net’s reachability graph. Associated with each controller is a set of transitions of the net
which they both observe and control. Controllers observe those input and output places
associated with transitions that it observes. Given this partial view of the state / marking
of the net, knowledge properties similar to those considered in [23] are used for dictating
the actions of a controller. When the controller does not know what action to take, it
can coordinate with other controllers given in a prespecified set. The authors present two
techniques for reducing the number of controllers involved in a coordination for refining
state estimates of the DES. This line of work is continued in [52] where uncontrollable
events are considered and controllers maintain a history of observed transition executions
(i.e., knowledge of perfect recall) in the net which is used to refine their state estimates
and, correspondingly, knowledge of the DES.

In Section 8 we briefly review approaches to synthesize controllers and a communication
protocol between them from and which realizes the control implemented by a centralized,
monolithic controller. Such approaches are useful in distributed settings where a monolithic
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controller cannot be feasibly implemented. The works covered include [47, 15, 16]. The
novelty of these works is that the nature of the information to be communicated between
the synthesized agents does not have to be specified beforehand. The information to be
communicated is an output of the synthesis procedures.

In Section 9 we consider problems of minimal and minimum communication, which
arise out of practical interest of minimizing bandwidth usage and for security purposes.
The works covered include [70, 45, 104, 103, 65, 41, 64, 73, 74]. In [70] a two-agent commu-
nication problem is considered. An automaton is associated with each agent. Transitions
in an agent’s automaton may be defined over events not observable by the agent but ob-
servable by the other agent. The problem considered is to compute communication maps
for each agent from strings generated in the synchronous product automaton to locally
observed events which: (1) yield observations for each agent that allow them to unambigu-
ously determine the state reached in their respective automata by any string generated in
the synchronous product automaton; (2) can be defined over the transitions of the syn-
chronous product of the agent automata; (3) allow each agent to unambiguously determine
what should be communicated by it and when; (4) is minimal with respect to the previous
three conditions. The authors propose an algorithm for computing such communication
maps which requires few iterations between updating one agent’s communication map and
the other agent’s communication map. The problem considered is generalized in [45] where,
instead of requiring each agent to precisely determine the current state of its automaton
representation, it is required that certain transitions in the agents’ automata representa-
tions be observed. An exhaustive algorithm is provided which computes all sets of minimal
communication maps for the two agents which solve this generalized problem. The work
of [104] considers a problem of state disambiguation where an arbitrary number of agents
which communicate with a central station and an automaton representation of the DES
which is absent of cycles besides self-loops on states is considered. Individual agents are
required to distinguish certain pairs of states in the DES automaton representation while
the central station must always know the exact state of the DES automaton representation.
Communication maps are defined over the transitions of DES automaton and must satisfy
similar requirements as those considered in [70] and [45]. The authors provide an algo-
rithm polynomial in all of its inputs for computing minimal communication maps for each
agent and the central station which satisfy these requirements. This work is generalized in
[103] to strongly connected communication topologies that do not require the presence of
a central station. A general algorithm is provided for computing minimal communication
maps for each agent. In [65] a two-agent control problem is considered where agents may
communicate their state estimates of an automaton representation of a DES to each other
from states in the representation to resolve control conflicts. The authors consider that
communication occur as early as possible. An algorithm is provided which takes as input
a set of states from which communication occurs from one agent to the other and com-
putes a minimal subset of these states where communication allows for the other agent’s
control conflicts to be resolved and where the communicating agent unambiguously knows
what to communicate based on its observation of the DES. In [41] the control of reac-
tive DES are considered with and without communication. It is required that interactions
between the DES and an unpredictable environment exactly satisfy a given regular lan-
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guage specification. Controllers are associated with components of the DES to achieve this.
The authors introduce necessary and sufficient conditions for solving the control problem
analogous to controllability and coobservability. An algorithm is provided for computing
minimal communication maps where communication of event occurrences occurs as early
as possible between agents. In [64] a method for computing communication maps between
agents which resolve violations of coobservability and which minimizes communication for
strings of infinite length is presented. This is in contrast to previous works on minimal
communication which consider a different notion of minimality and where communica-
tion maps considered are based on structural properties of the DES automaton model.
In [73] a previously published algorithm for computing a Nash equilibrium is applied for
computing communication maps for a set of controllers which have minimum cost, satisfy
coobservability and where agent communication decisions are unambiguous following any
string generable by the DES. In [74] a problem of computing minimum-cost control and
communication maps which generate behaviour in a given regular specification where cost
is associated with event enablement, disablement and communication is considered. The
authors describe the application of an evolutionary algorithm for computing minimal cost
solutions.

In Section 10 we study important conditions necessary for solving control and diagnosis
problems when an agent’s observation of an event is more specifically based on the transi-
tions between states of a given DES. The works covered include [29, 100, 51]. In [29] the
authors introduce and study a transition-based version of coobservability. An algorithm
is described for its verification given observation maps for two agents defined over the
transitions of the automaton representation of a DES. Also, an algorithm is described for
computing additional transitions to be observed to satisfy transition-based coobservability
for a given input set of transitions observed and events controllable by each controller. In
[100] a reduction from transition-based coobservability to transition-based codiagnosability
is proven. An algorithm for verifying transition-based codiagnosability is provided which
can also be applied for verifying transition-based coobservability for an arbitrary number
of agents. In [51] a reduction from transition-based coobservability to an observational
condition called decentralized no-opacity is provided.

In Section 11 we study problems of minimum and minimal sensor activation in problems
of control and diagnosis. The works covered include [92, 12, 106, 102, 101, 105, 30, 14, 79].
In [92] the authors present dynamic programming algorithms for computing minimum-cost
sensor activation maps for a single controller to satisfy observability. In [12] several con-
tributions are provided for computing and verifying sensor activation maps which satisfy
diagnosability. An algorithm for computing all sensor activation maps which allow a cen-
tralized diagnoser to diagnose faults following k event occurrences in a DES is provided.
Furthermore, an algorithm is provided for computing a minimum-cost sensor activation
map when cost is associated with active event sensors. An algorithm for verifying if a given
sensor activation map satisfies k-diagnosability is also provided. In [106] the authors con-
sider the computation of minimal sensor activation maps which can be used to disambiguate
user-specified pairs of states of a DES automaton representation. A polynomial-time algo-
rithm is provided for this purpose. This algorithm is also applied in the computation of
minimal sensor activation maps for a set of agents to satisfy transition-based coobservabil-
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ity. In [102] an algorithm is provided for computing minimal sensor activation maps for
satisfying diagnosability and codiagnosability using partitions of the DES language instead
of a state-transition representation. In [101] the computation of sensor activation maps for
satisfying diagnosability of a DES which are minimal with respect to the DES language,
not merely with respect to any specific representation of the DES (e.g., state-transition
structure or language partitions), is considered. In [105] an approach to computing sen-
sor activation decisions online following any event observation using one-step lookahead is
provided. The resulting sensor activation map allows user-specified pairs of states of an
automaton representation of a DES to be disambiguated following any string generated by
the DES and furthermore is a minimal sensor activation map. In [30] the authors propose
an online algorithm for computing sensor activation decisions following k ≥ 1 event occur-
rences, which generalizes the work of [105]. In [14] an alternative algorithm is provided for
computing the most permissive observer automaton of [12] which is used for defining all
sensor activation maps which satisfy k-diagnosability of a given DES automaton represen-
tation. This algorithm is more efficient by applying an optimization for reducing the state
set of the most permissive observer as it is constructed. In [79] the authors study detectabil-
ity of DES with dynamic observation maps. They present an algorithm for computing a
minimal sensor activation policy for satisfying one of their detectability conditions. The
approach used is similar to that used in [101].

In Section 12 we study problems of opacity where an agent’s observation is dynamic.
The works covered include [8, 10, 43, 3, 4, 51]. In [8] opacity of DES modeled by labelled
transition systems is studied. The authors demonstrate that verification of security prop-
erties such as anonymity and non-interference is reducible to verifying various forms of
opacity. They also prove that verifying opacity for labelled transition system and even
Petri Net representations of DES is undecidable. In [10] the authors consider the use of
dynamic observers introduced in [12] rather than intrusive means of control for enforcing
opacity. They prove that verifying opacity of a given secret for a given dynamic observer
and automaton representation of a DES is PSPACE-complete. They then present an ap-
proach for computing all dynamic observers which satisfy opacity of a given secret and for
computing a minimum cost dynamic observer in this set. In [43] the author introduces
strong and weak opacity of a given secret regular specification language with respect to
another non-secret regular language, both of which are contained in the language recog-
nized by an automaton representation of a DES. Observation maps are considered to be
defined over the transitions of the DES automaton representation. The author introduces
the notions of strong, weak and no-opacity of the given secret with respect to another non-
secret language. Algorithms are provided for their verification. The author demonstrates
that anonymity and secrecy, two properties in security and privacy, can be studied as spe-
cial cases of opacity. The modification of secret and non-secret languages for satisfying
strong (resp., weak, no)-opacity is studied in [3]. The authors prove a number of closure
properties for the various opacity conditions and demonstrate how super-languages and
sub-languages of secret and non-secret languages may be computed which satisfy opacity
conditions. In [4] the authors provide algorithms for computation of the supremal con-
trollable, normal sublanguage of a regular language modeling a DES for satisfying strong
(resp., no) opacity when the controller’s observation of the DES is static (i.e., given using
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a natural projection) and the external observer’s observation of the DES is string-based.
Problems of decentralized opacity are investigated in [51]. Decentralized variants of strong
(resp., weak, no)-opacity are introduced where each agent views the DES through its own
string-based observation map and no coordination is involved amongst the agents. Vari-
ants where coordination is incorporated among agents are also introduced. The authors
prove that for a specific setting where agents can coordinate, verifying if a secret is strongly
(resp., weakly, not)-coopaque (can be discovered by the coordinating agents) is reducible
to verifying if the secret is strongly (resp., weakly, not)-opaque with respect to a specific
observation map.

We next provide a list of features distinguishing works in this report. Concepts and
notation necessary for reading the body of the paper are provided in Section 2. Following
the survey we conclude in Section 13 with some perspective on the research field, general
avenues for future research and open problems concerning specific works surveyed.

The following is a list of the key features that distinguish one work from another in this
survey:

� The model used to represent the system. Typically we will consider a regular language
/ automaton representation but in some instances we consider Petri Nets, labelled
transition systems or a formal language representation of greater expressivity.

� The particular problem to be solved. We consider problems of control, diagnosis,
opacity (a recent notion being explored in software security) and disambiguation of
certain pairs of states in state-based models of systems.

� The models used to represent a specification of desirable behaviour (for problems of
control), the occurrence of faults / failures (for problems of diagnosis) and a secret
to be protected from malicious observers / attackers in a system (for problems of
opacity). For example, typically we will consider a regular language / automaton
representations for these entities.

� For problems of control, how individual agent control decisions are computed and
how final control decisions are computed from them.

� How an agent’s observation of a system is defined. For instance, an agent’s ob-
servations may be defined over event occurrences labelling the transitions of state-
transition representations of systems.

� The information provided to and maintained by each agent about the system and
other agents. For example, an agent typically requires the model of the system and
the set of events that it (or other agents) observes and controls. The information it
typically maintains is an estimate of the state of the system or an estimate of the se-
quence of events that the system could have generated accounting for the observations
that the agent has made.

� For problems involving communication between agents:

– The number of communicating agents.
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– The type of information communicated (e.g., occurrence of system events, esti-
mates of system state).

– The constraints dictating which agents can interact with each other (i.e., com-
munication topology).

– Whether or not communication is point-to-point or broadcast.

– Whether or not communicated messages incur delay.

� For problems of optimal observation, the definition of optimality considered.

� The computational complexity of the problems considered as well as the proposed
algorithms for solving them.

2 Preliminaries

Here we attempt to cover the basic requirements for understanding the content of this
report. We refer the reader to the text [9] and monograph [110] for a more comprehensive
and detailed coverage of concepts used in DES.

2.1 Formal Languages & Automata

Given a set, S, we denote the cardinality of S by ∣S∣. An alphabet is a finite set of distinct
symbols (also called events, for our purposes). Let Σ represent an alphabet. Let Σ+ denote
the set of all finite sequences of symbols in Σ of the form σ1σ2 . . . σk where k ≥ 1 is arbitrary
and σi ∈ Σ for all i ∈ {1, . . . , k}. We refer to a sequence of length zero (i.e., consisting of no
symbols) as the empty sequence, denoted by ε ∉ Σ. The Kleene-closure of Σ, denoted by
Σ∗, is defined as Σ∗ = {ε}∪Σ+. An element of Σ∗ is a string over the alphabet Σ. We also
refer to ε as the empty string.

For s ∈ Σ∗ we say t ∈ Σ∗ is a prefix of s, denoted by t ≤ s, if s = tu for some u ∈ Σ∗.
Thus ε ≤ s and s ≤ s for all s ∈ Σ∗. The set of all prefixes of string s is denoted by s. If
L ⊆ Σ∗ then the prefix-closure of L is the language L consisting of all prefixes of strings of
L: L = {t ∈ Σ∗ ∣ t ≤ s for some s ∈ L}. Clearly L ⊆ L. A language L is prefix-closed if L = L.

A nondeterministic finite automaton (NFA), A, is defined as a tuple A = (Q,Σ, δ, q0,Qm)
where Q is the nonempty set of states, Σ is the alphabet, q0 is the initial state, Qm ⊆ Q the
set of accepting / marked states and δ ∶ Q×(Σ∪{ε})→ 2Q is the (state-)transition function,
a partial function which determines the transitions from state to state on occurrence of
symbols in Σ ∪ {ε}. We extend δ to a function δ ∶ Q × Σ∗ → 2Q by induction on length
of strings. The alphabet of A, Σ, is also denoted by alph(A). Automaton A is said
to be a deterministic finite automaton (DFA) if δ is more specifically of the form δ ∶
Q × Σ → Q. We say that A is live if there is a transition defined from every state in
A. We associate two languages with A: Lm(A) = {s ∈ Σ∗ ∣ δ(q0, s) ∩Qm ≠ ∅}; L (A) =
{s ∈ Σ∗ ∣ δ(q0, s) is defined}. Given A, a state-transition graph can be constructed ([27]).
The language Lm(A) (resp., L (A)) consists of the set of strings recognized / marked
(resp., generated) by A. Automaton A is said to be a recognizer for Lm(A). When A
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models a DES, Lm(A) (resp., L (A)) is intended to represent completed behaviour (resp.,
uncompleted behaviour) of the DES.

When A is an NFA an algorithm known as the subset construction can be used for
constructing a DFA DET (A) where Lm(DET (A)) = Lm(A) and L (DET (A)) = L (A)
([27]). The state space of DET (A) is a subset of the power set of the state space of A. A
state in DET (A) is an accepting / marked state if the subset of Q it represents contains
a state in Qm. For space considerations, we do not outline the operation of the subset
construction and instead refer the reader to [27].

Given two DFAs, A1, A2 with transition functions δ1, δ2 where L (A1) ⊆ L (A2), we
say that A1 is a subautomaton of A2, denoted by A1 ⊑ A2, if the state-transition graph of
δ1 is isomorphic to a subgraph of the state-transition graph of δ2 from the initial states of
A1,A2.

Given two DFAs, A1 = (Q1,Σ1, δ1, q0,1,Qm,1), A2 = (Q2,Σ2, δ2, q0,2,Qm,2), the syn-
chronous product of A1 and A2, denoted by DFA A1∣∣A2, recognizes the shuffle of strings
recognized by A1 or A2 where synchronization occurs on the occurrence of events in Σ1∩Σ2.
Specifically, it is defined as A1∣∣A2 = (Q1 × Q2,Σ1 ∪ Σ2, δ, (q0,1, q0,2),Qm,1 × Qm,2) where
δ ∶ (Q1 ×Q2) × (Σ1 ∪Σ2)→ (Q1 ×Q2) is defined as follows:

δ((q1, q2), σ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δ1(q1, σ), q2) if σ ∈ Σ1 ∖Σ2 and δ1(q1, σ) is defined
(q1, δ2(q2, σ)) if σ ∈ Σ2 ∖Σ1 and δ2(q2, σ) is defined
(δ1(q1, σ), δ2(q2, σ)) if σ ∈ Σ1 ∩Σ2 and both δ1(q1, σ) and

δ2(q2, σ) are defined

undefined otherwise.

Unless otherwise specified, we assume that the plant / system under consideration in
work to be surveyed is modeled by DFA G = (X,Σ, δ, x0,Xm). In some cases a Petri Net
(PN) representation of the plant is assumed. For an introductory reference to the PN model
we refer the reader to [53]. Knowledge of the basic operation of a PN in terms of firing of
transitions and execution semantics / reachability graph of PNs is required. We refer to
1-safe Petri Nets as the class of Petri Nets where the number of tokens in any place for
any marking of the net’s reachability graph is at most one.

2.2 Control & Observation of DES

We regard the plant, G, as a generator of events in its alphabet Σ. For control problems,
we wish to model controllers / supervisors which interact with G in a feedback manner.
Controllers control (enable / disable) the execution of events in Σ which are generated /
executed by G. While some events in Σ can be controlled, others cannot. This induces
a partition on Σ into the set of events controllable by controllers, Σc ⊆ Σ, and otherwise
uncontrollable events Σuc ⊆ Σ (i.e., Σuc = Σ ∖Σc). Formally, a controller, S, is specified as
a function from L (G) to the power set of Σ: S ∶ L (G) → 2Σ. For s ∈ L (G), S(s) ⊇ Σuc

represents the set of events whose generation / execution byG is enabled (i.e., not prevented
/ disabled) by controller S following s. Given G and a single controller S, the resulting
closed-loop system is denoted by S/G (read as “S controlling G”). We can characterize
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the generated and marked languages of S/G, denoted by L (S/G) and Lm(S/G). The
language generated by S/G is defined recursively as follows:

1. ε ∈L (S/G)

2. [(s ∈L (S/G)) ∧ (sσ ∈L (G)) ∧ (σ ∈ S(s))]⇔ sσ ∈L (S/G).

The language marked by S/G is defined as follows: Lm(S/G) =L (S/G) ∩Lm(G).
Closed-loop behaviour S/G is blocking if L (S/G) ≠Lm(S/G). Otherwise, S/G is non-

blocking. Blocking occurs when there exists behaviour in L (S/G) from which completed
behaviour in Lm(S/G) cannot be reached. Deadlock and livelock are instances of blocking
behaviour.

Given two alphabets, Σ1, Σ2, the (natural) projection from Σ1 to Σ2 is a function which
takes as input a string s ∈ Σ∗1 and erases all symbols from s that are not in Σ2. A controller
may not be able to “see” / “observe” all events in Σ generated by G. This induces a
partition of Σ into events observable to the controller, Σo ⊆ Σ, and events unobservable to
the controller, Σuo ⊆ Σ (i.e., Σuo = Σ ∖Σo). When Σuo ≠ ∅ the observation to S of strings
generated by G is modeled by a natural projection P ∶ Σ∗ → Σ∗o . For s ∈L (G), S observes
P (s). Note that for s ∈ Σ∗o , P −1(s) denotes the set of all strings in Σ∗ whose projection
onto Σo equals s. It is required that, for s1, s2 ∈ L (G), if P (s1) = P (s2) then S must
make the same control decision following s1 and s2. To capture this fact, S is respecified:
S ∶ P (L (G)) → 2Σ. Here the control decision of S can only change after the occurrence
of events observed in Σo. We require that, for s ∈ L (G), S(P (s)) ⊇ Σuc. When Σuo ≠ ∅,
the languages L (S/G) and Lm(S/G) are defined analogous to the previous definition but
where control decisions are based on P (s) (σ ∈ S(P (s)) in the third clause of 2) rather
than s.

The controller S is introduced because the behaviour of G is assumed to be unsatis-
factory and must be restricted to within a sublanguage or range of sublanguages of L (G)
/ Lm(G). For the control problems surveyed, usually a single prefix-closed specification
language L (K) ⊆ Lm(G) is considered and it is required that we construct S which has
partial observation of G such that Lm(S/G) = L (K). If multiple controllers are consid-
ered then we require that each controller be constructed such that the marked closed-loop
behaviour by the controllers acting together on G must equal L (K). When the closed-loop
behaviour is equal to L (K) we say that the behaviour satisfies L (K). Unless otherwise
specified, we assume that L (K) is a regular language and can be modeled by a DFA K.

In order that a controller(s) exist that can control G such that L (S/G) = L (K)
a condition of controllability is required ([60]): L (K)Σuc ∩ L (G) ⊆ L (K). Informally,
controllability states that the occurrence of any uncontrollable event in G from a behaviour
in L (K) will not lead to behaviour in L (G) outside of L (K). If controllability does not
hold for nonempty Σuc then no controller(s) exists whose closed-loop behaviour with G
satisfies L (K). If it is further required that Lm(S/G) = L (K), that is, that closed-
loop behaviour be nonblocking, then a condition of Lm(G)-closure of L (K) needs to be

satisfied: L (K) =L (K) ∩Lm(G).
When a controller observes G through a natural projection P and Σuo is nonempty

then, in addition to controllability, the observational condition that characterizes when
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closed-loop behaviour using the controller which bases its control decisions on P (s) for
s ∈ L (G) satisfies L (K) is observability. Informally, observability characterizes that if
an event following a string s must be disabled then it should be disabled following all
strings that appear the same / are indistinguishable with s according to the controller’s
observation function, P . Formally, L (K) is said to be observable with respect to L (G),
Σo and Σc if for all s ∈L (K) and for all σ ∈ Σc,

sσ ∉L (K) ∧ sσ ∈L (G)⇒ P −1(P (s))σ ∩L (K) = ∅.

Given L (K), L (G), when Σuc and Σuo are both nonempty the necessary and sufficient
conditions for the existence of a centralized controller S which controls events in Σc and
observes events in Σo such that L (S/G) =L (K) is controllability and observability ([46]).
Furthermore, if Lm(G) is nonempty and nonblockingness (Lm(S/G) =L (K)) is required
then L (K) needs to be Lm(G)-closed.

When we are dealing with ∣I ∣ > 1 controllers, it is assumed that each controller i ∈ I
controls (resp., observes) events in a given set Σi,c (resp., Σi,o). Each controller observes
G using its natural projection P ∶ Σ∗ → Σ∗i,o. Given an event σ ∈ Σc, the set of controllers
which control σ is denoted by Ic(σ).

Whether an event occurrence of σ ∈ Σc generable by G should be enabled or not depends
on the individual control decisions of controllers in Ic(σ) as well as how those individual
control decisions are used to define the final control decision. There are two common
methods by which individual control decisions are fused into a final control decision. One
method is to enable σ if its occurrence is enabled by all controllers in Ic(σ). This is known
as the conjunctive architecture and is the most commonly studied method. The other
common method is to enable σ if it is enabled by some controller in Ic(σ). This is known
as the disjunctive architecture.

If a controller i ∈ Ic(σ) is in doubt as to whether or not to enable or disable σ (i
observes string s and there exist two strings s1, s2 ∈L (K) where PΣi,o

(s1) = PΣi,o
(s2) = s,

s1σ ∈L (K), s2σ ∈L (G) and s2σ ∉L (K); we refer to such situations as control conflicts)
then it may choose to issue an enable or disable action (in some works “do not know”
decisions are also considered). When an enable action is issued we say that the controller is
being permissive with respect to its control conflicts. Otherwise, it is being antipermissive
with respect to its control conflicts.

When the conjunctive architecture is used and controllers are permissive with respect
to control conflicts we say that the architecture used is more specifically a conjunctive-
permissive (CP) architecture. This is the most commonly studied combination of decision
fusion architecture and individual decision policy for control conflicts. When the disjunctive
architecture is used and controllers are antipermissive with respect to control conflicts
we say that the architecture used is more specifically a disjunctive-antipermissive (DA)
architecture. Unless otherwise stated, the control architecture used in most works to be
surveyed is CP.

When the CP architecture is used, the observational condition that characterizes when
closed-loop behaviour using the controllers satisfies L (K) is CP-coobservability, which is
a natural generalization of observability: L (K) is said to be CP-coobservable with respect
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to L (G), Σi,o, Σi,c, i ∈ I if for all s ∈L (K) and for all σ ∈ Σc = ⋃i∈I Σi,c,

sσ ∉L (K) ∧ sσ ∈L (G)⇒ ∃j ∈ Ic(σ) such that P −1Σj,o
(PΣj,o

(s))σ ∩L (K) = ∅.

Given L (K), L (G), controller set I, Σi,o and Σi,c for all i ∈ I where ⋃i∈I Σi,c = Σc,

⋃i∈I Σi,o = Σo and the CP architecture is used, the necessary and sufficient conditions for
the existence of control maps for each i ∈ I to satisfy L (K) is controllability and CP-
coobservability ([72]). Furthermore, if Lm(G) is nonempty and nonblockingness (marked
closed-loop behaviour equals L (K)) of closed-loop behaviour is required then L (K) needs
to be Lm(G)-closed.

Given G, Σi,o and if i observes L (G) using its natural projection, PΣi,o
, then i’s un-

observable reach of a state x ∈ X is defined as {y ∈ X ∣ ∃s ∈ Σ ∖ Σ∗i,o, δ(x, s) = y}. The
unobservable reach is a generalization of ε-reach defined in [27].

Given DFA G, Σi,o, that i observes L (G) using its natural projection PΣi,o
and that

i knows / has provided to it G, one can construct i’s “observer” DFA which recognizes
PΣi,o
(Lm(G)) and generates PΣi,o

(L (G)). For any string s ∈ L (G), the state of i’s
observer DFA reached by PΣi,o

(s) represents the subset of states in X that are reached by
all strings in P −1Σi,o

(PΣi,o
(s)). That is, the state provides an estimate of the state that G is

in given i’s observation. The observer DFA is constructed by replacing events in Σ ∖ Σi,o

labeling transitions in G by ε then applying the subset construction.
Given its observation of strings generated by G, an agent i can maintain different

estimates of the actual string generated by G. If i only has bounded memory then it
can maintain a “state estimate” of G, provided by states reached by strings it observes
in its observer DFA. If i has unbounded memory then it can store the entire sequence of
events it observes which are generated by G and can instead compute the set of all strings
s ∈ L (G) where PΣi,o

(s) is equivalent to the sequence i observes. Such a set is referred
to as a “string estimate”. String estimates provide a more precise estimate of the system
behaviour than state estimates. Indeed, the set of all states reached by strings in a string
estimate is equivalent to a state estimate returned by i’s observer DFA. However, string
estimates require substantially more memory to maintain. Both state and string estimates
will be considered in the surveyed works.

2.3 Diagnosis of DES

Besides problems of control, other work in DES has considered problems of fault / failure
diagnosis. In such problems agents merely observe the behaviour generated by G and
do not interact with G. In these problems there exists a set of fault / failure events
Σf which are not observed by any agent. The basic problem considered is that if an
occurrence of a fault event σf ∈ Σf is generated by G then the agents should be able to
individually or collectively determine that a fault was generated by G a bounded number
of event occurrences following the occurrence of σf . More difficult problems consider that
the specific fault event be diagnosed (not just that an event in Σf occurred) or that every
fault event occurrence be uniquely diagnosed.

For solving the basic diagnosis problem in the centralized case, a “diagnoser” DFA may
be constructed. The construction of the diagnoser DFA is similar to the construction of
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the observer DFA except that it is performed from a modified version of G where the state-
transition function of G is refined and where states are labelled by an “N” if no fault event
occurs in all strings leading to the state and “Y” if a fault event occurs in all strings leading
to the state. This modified version of G can be computed by the synchronous product of
G and the “label automaton” depicted in Fig. 1.

..N. Y.
σf. σf

Figure 1: Label automaton for building diagnoser.

We denote the diagnoser DFA for σf by Diagσf
(G). If ∣Σf ∣ > 1 and we need to uniquely

diagnose σf,i ∈ Σf then a diagnoser DFA can be computed for each σf,i fromG synchronously
composed with a label automaton whose transitions are labelled with σf,i.

On-the-fly diagnosis of σf by a centralized diagnoser can be performed by tracking and
examining the diagnoser DFA’s current state in response to the observable events generated
in G (from [9]):

� If all the states of G in the current state of Diagσf
(G) have label “Y” (resp., “N”)

then event σf has (resp., has not) occurred at some point in the past.

� If the current state of Diagσf
(G) contains at least one state of G with label “N”

and at least one state of G with label “Y” then the event σf may or may not have
occurred in the past. We call such a state an uncertain state.

For solving the basic diagnosis problem, the diagnoser DFA can be used for diagnosing
the occurrence of a fault event if and only if a condition known as diagnosability is satisfied
([75]). Informally, unobservable event σf is not diagnosable in live G if there exist two
strings sN , sY ∈L (G) that satisfy the following conditions: (i) sY contains σf and sN does
not; (ii) sY is of arbitrarily long length after σf ; and (iii) P (sN) = P (sY ). When no such
pair of strings exist σf is said to be diagnosable in L (G).

Diagnosability can be verified by determining whether or not there exist certain cycles
of uncertain states in Diagσf

(G). For a more comprehensive and illustrative introduction
to problems of failure diagnosis in DES, the reader is referred to Section 2.5.3 of [9].

2.4 Notes on Observation in DES

In some works to be surveyed instead of using a natural projection to observe G, a mask
is used instead. A mask M is a function M ∶ Σ ∪ {ε}→ Σoutput ∪ {ε} where Σ ∩Σoutput = ∅.
The set Σoutput contains the actual observed symbols. Events in Σuo∪{ε} are mapped to ε,
events in Σo are mapped not necessarily injectively to symbols in Σoutput. This differs for
natural projections where events in Σo are mapped injectively to their observed symbols.

Even more general than natural projections and masks, observation maps defined over
the transitions of G or over the strings of L (G) may be considered. Using such observation
maps, the observation of any two occurrences of an event σ ∈ Σo may differ. That is,
following some string s ∈ L (G) an occurrence of σ may be observed but following some
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other string s′ ∈L (G) an occurrence of σ may not be observed. This contrasts with natural
projections and masks where all occurrences of an event σ ∈ Σ are observed (resp., not
observed). For a DES control (resp., diagnosis) problem, when such observation maps are
considered we say that we are dealing with a problem of “dynamic observation”. Problems
where only natural projections or masks are considered are problems of “static observation”.
As different types of observation maps will be considered in this paper, when we say that two
strings / states appear identical / indistinguishable to an agent, this should be interpreted
in terms of the problem setting of the work being discussed.

3 Early Works on Communication For Control

To our knowledge, one of the first papers to consider inter-agent communication in problems
of DES is [88]. Here the author identifies some of the fundamental issues for incorporat-
ing inter-agent communication into decentralized control problems. The answers to these
questions affect the model design and the subsequent verification and synthesis of control
and communication solutions:

� Why should communication be introduced?

� Who should communicate with whom and when?

� What information should be communicated?

� Who should know what and when?

The initial proposals where these questions are addressed focus on agents communicat-
ing to maintain string estimates ([109, 98]) or state estimates ([2, 65]).

The CP control of DFA G by two given controllers is considered in [109]. Here con-
trollers maintain string estimates which are updated based on the observation of events in
Σ using their local natural projection, PΣi,o

∶ Σ∗ → Σ∗i,o. Additionally, a one-way communi-
cation channel from controller 2 to controller 1 is considered. Controller 2 communicates
its observed event occurrences to controller 1. If controller 2 communicates an event to
controller 1 then it does so immediately upon its observation of the event. Communica-
tion of events is assumed to be reliable and delayless. Communication and computation
of control decisions is performed between generation of events by G. The authors consider
the problem of deciding, following any string generated by G, which event occurrences that
controller 2 observes should be communicated to controller 1 in order for controller 1 to re-
fine its string estimate in such a way that the CP control of both controllers on G generates
exactly a prefix-closed, controllable L (K) ⊆ L (G). It is assumed that controller 2 does
not require any information from controller 1 to solve this problem. The authors assert
that a communication protocol from controller 2 to controller 1 exists if, and only if, L (K)
is observable with respect to L (G), Σ1,o ∪ Σ2,o and Σ1,c ∪ Σ2,c. That is, if a centralized
controller having the observational capabilities of both controllers does not know enough
to control G in a manner that only strings in L (K) are generated then no communication
protocol exists. This is not difficult to see. However, it is a necessary requirement for the
existence of communication protocols that is used by subsequent works on communication.
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The authors also consider minimal communication policies. Minimality is defined in
the sense that, for a minimal communication policy, if controller 2 communicates any
fewer occurrences then the control problem cannot be solved. This notion of minimality
is a logical one which is considered in several subsequent works. The authors assert the
existence of minimal communication protocols.

The work of [98] is a generalization of [109]. It considers an arbitrary number of con-
trollers. Of note, it proposes three communication problems where it is the objective to
compute communication and control maps for agents which result in the same control
decisions for each agent as given control maps which require observation of all events in
Σ by each controller. One of the problems considers that controllers request information
from other controllers. Solutions to this problem result in dynamic observation of event
occurrences for controllers. However, a solution approach remains open.

To our knowledge, [2] forms the first major study of communication for control in DES.
This work was conducted in parallel with [98]. The primary differences are: (i) Broadcast
communication is considered rather than point-to-point communication; (ii) The controllers
collectively control and observe all events in Σ, which is not a requirement in [98]. There
are also some similarities: (i) Communication is reliable and delayless; (ii) Communication
occurs between generation of events by the plant; (iii) Communication occurs in two phases:
once following the execution of an event in the plant, then once more modeling replies to
the initial communication.

Controllers maintain state (resp., string) estimates of G. When a controller initiates a
two-phase communication it broadcasts its estimate to all other controllers. In response,
these controllers broadcast their estimates to every other controller. Afterwards, each con-
troller’s estimate is refined by computing the intersection of its estimate with the estimates
received from all other controllers.

A controller’s decision to initiate a two-phase communication is based on a change in
its observation. Strings of L (G) are extended to incorporate two-phase communications
between event occurrences. These strings are referred to here as extended strings. Given
control and communication maps based on local observations of extended strings for the
∣I ∣ controllers, the CP closed-loop control of the controllers acting on G is defined using
extended strings. The general control problem to be solved is the computation of com-
munication and control maps for each controller such that the closed-loop control equals a
specification language L (K). This is different from [98] where the objective is to compute
communication and control maps which exert the same control decisions as given control
maps where it is assumed that controllers observe all events in Σ.

The authors first consider and compare two cases where estimates maintained and
communicated between controllers are: (1) based on the states of G or (2) based on the
maximum cardinality set of extended strings whose projection onto Σ is contained in L (G).

The authors prove that, when state estimates are maintained and communicated, the
problem is solvable if, and only if, L (K) is controllable with respect to L (G), Σuc and
observable with respect to L (G), Σo, Σc (i.e., can be solved by a centralized controller). In
the construction used in the proof, though each controller may not be able to unambiguously
predict what state estimates will be communicated to it, it does have knowledge of the
communication policy used by itself and all other controllers and can use this to refine its
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state estimate following any local observation of an extended string. In this case, it is said
that each controller can “anticipate future communications”.

Interestingly, the authors demonstrate that the set of problems solved by controllers
maintaining and communicating string estimates that do not anticipate future communi-
cations (i.e., are myopic) is strictly contained in the set of problems solved by controllers
maintaining and communicating state estimates that do anticipate future communications.

However, the authors argue that computing controllers which anticipate future commu-
nications is difficult due to dependencies between controller communication decisions and
controller inference maps for providing future estimates. So they consider computation of
myopic controllers and their communication maps.

The authors then consider problems of minimal communication for myopic controllers.
Three different notions of minimality are studied. The first is described below:

(C1) A communication policy θ is minimal if there exists a control policy such that the
control problem is solved under the communication-control policy pair and there does
not exist a communication-control policy pair which does solve the control problem
where the communication policy is obtained from θ by removing two-phase broadcast
communications from θ following any set of strings in L (G).

The second and third, denoted by (C2) and (C3), are successive refinements of (C1)
where communication must occur as late as possible. An approach is provided for comput-
ing communication policies for a specific class of control policy which are minimal in the
sense of (C1). Computing communication-control pairs that are minimal in the sense of
(C2)–(C3) remain open.

In the approach provided controllers maintain and communicate state estimates. Given
G, K, Σi,o, Σi,c, a “finite estimator” automaton is defined. Control and communication
policies are defined over the state set of this automaton. Each controller’s state estimate is
encoded into the states of the estimator which are used to define its control map.There may
exist reachable states in the estimator where an event should be disabled but none of the
controllers which control the event can unambiguously decide from their state estimates
whether or not to disable the event from occurring. Such states are referred to as conflict
states. It is the objective that control-communication policies used avoid conflict states.

For a specific control policy, the authors define a general communication rule R1* for
avoiding conflict states which may be realized by multiple different communication policies,
all of which are proven to be minimal in the sense of (C1).

The authors prove that computing the estimator structure is in O(∣Σ∣ ⋅ ∣X ∣ ⋅2∣I ∣⋅∣X ∣) where
X is the state set of G. It follows that verifying whether or not a control-communication
policy will avoid conflict states using the estimator suffers the same complexity. However,
the authors conjecture that more efficient verification algorithms exist.

4 Decidability of Control Problems Involving Com-

munication

In this section we survey some of the known decidability results for control and communi-
cation problems.
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One of the first important works on considering delays in communication between con-
trollers for distributed control problems is [94]. It establishes a hierarchy of control problems
with decreasing delay in communication between controllers as well as decidability results
for some bounded and unbounded delay communication problems.

In this work the plant and controllers are modelled as finite automata. Only two
controllers are considered. The controllers communicate all local observations of event
occurrences to one another. Communication is reliable but can incur delay. A message
sent from one controller to another incurs delay d if, during transmission of the message,
the plant generates d events. Communication channels between the controllers are first in,
first out (FIFO). Communicated messages incur a delay of up to some bound, k ≥ 0.

A restricted type of regular language specification referred to as a “responsiveness prop-
erty” is considered. A responsiveness property is a causality condition characterizing that
any occurrence of event e1 must be eventually followed by an occurrence of an event e2.
Though responsiveness properties can model many types of practically-relevant specifica-
tions, they are very restricted in comparison to the expressivity of the family of regular lan-
guages. The class of control problems considered are those where communication between
the two controllers incurs bounded or unbounded delay and any marked string generated
in the closed-loop control should satisfy a given set of responsiveness properties. Also, it
is required that the closed-loop control be nonblocking.

The author proves that an infinite hierarchy of strict containments of such nonblocking
distributed control problems is induced as the maximum delay that a message incurs in a
communication channel decreases. That is, the set of control problems where communicated
messages experience at most delay k ≥ 0 strictly contains the set of control problems where
communicated messages experience at most delay k + 1. Also, the author proves that if
communication can incur unbounded delay or if no communication occurs then determining
if there exists two communicating controllers that solve the control problem is undecidable.
The author also proves that the class of problems where no communication occurs are
strictly contained in the class of problems where communication can incur unbounded
delay.

Also, the author proves that if two controllers can be used to solve a given k+1-bounded
delay communication problem then they can also be used to solve the same problem but
where communication is k-bounded. Furthermore, if these controllers yield nonblocking
behaviour in the closed-loop control on the plant when communication is k + 1-bounded
then they also yield nonblocking behaviour when communication is k-bounded. However,
this is only proven when responsiveness properties are considered for the specifications.
The author provides an example demonstrating that this property does not hold for regular
language specifications in general.

Towards proving that, in general, control problems involving two controllers communi-
cating with bounded delay are decidable, the author proves the decidability of a specific
decentralized observation problem with bounded delay communication.The author intro-
duces the notion of k-bounded-delay joint observability, which characterizes that if a string
t is generated by G in L (K) and both observers have completed communicating their local
observations along t to one another then it is possible to use the observed sequence of local
and received communicated events by either observer to determine that t is in L (K). The
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author proves that verifying k-bounded-delay joint observability is decidable and provides
a decision procedure exponential in k for solving it.

While this result is an important step towards proving that control problems with
bounded delay communication are decidable, the joint observability condition is incomplete:
it only considers strings where communication between the controllers has completed and
does not consider when messages still exist in communication channels.

The work of [26] follows and is directly comparable to [94]. The main differences are
listed:

� Considers an arbitrary number of controllers.

� Communication topologies are not necessarily complete.

� Considers arbitrary regular language specifications contained in L (G) rather than
responsiveness properties.

� Considers that the automaton modeling CP closed-loop control, denoted by S/Gcom,
should be bisimilar ([49]) with a given specification automaton, K, rather than re-
quiring that PΣ(L (S/Gcom)) ⊆ PΣ(L (K)).

Bisimilarity between two automata is a stronger notion than equivalence of the pro-
jections from the languages recognized by two automata to the intersection of their al-
phabets. That is, if S/Gcom is Σ-bisimilar with K for Σ ⊆ alph(G) ∩ alph(K) then
PΣ(L (S/Gcom)) = PΣ(L (K)). The converse does not necessarily hold.

The author argues that, when the observations that a controller receives along a string
t ∈ L (G) are nondeterministic due to nondeterministic delays in receiving communicated
events, language equivalence between PΣ(L (S/Gcom)) and PΣ(L (K)) is “insufficient”
and instead Σ-bisimilarity between S/Gcom and K should be used for determining when
K is satisfied. Language equivalence is insufficient in that, for strings s, t, s′ ∈L (S/Gcom),
k ∈ L (K), PΣ(s) = PΣ(t), s ∈ s′ and PΣ(s′) = PΣ(k) but there may not exist any string
t′ ∈ L (S/Gcom) where t ∈ t′ and PΣ(t′) = PΣ(k). That is, when language equivalence
is satisfied it is not necessarily the case that any string generated in L (S/Gcom) can be
completed to a string whose projection onto Σ is in L (K) when another observationally
equivalent string can. When Σ-bisimilarity is satisfied this must be satisfied.

Communication is modeled by events which are controllable and observable by agents.
Though these communication events are not generable from the initial plant model itself
(G), FIFO communication channels between agents are modeled by automata transitioning
on these events, and these are synchronously composed with the plant to obtain the plant
model with communication between agents (Gcom). In the problem considered, there is a
bijection between the set of observable plant events and the set of communication events.
Basically, when an agent observes an event, it communicates its occurrence to the other
agents by generating a corresponding communication event. Under this setting, the author
shows that, given Gcom, K, Σ1,o . . .Σn,o, Σ1,c . . .Σn,c, computing a map for each agent from
their observations to control decisions such that S/Gcom is Σ-bisimilar with K and where
delay in communication of events can be unbounded is undecidable. This result is stronger
than the undecidability result for unbounded-delay communication in [94].
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The author also considers the two following cases where, under either case, it is proven
that computing control maps for controllers which satisfy the control objective is decidable:
(1) k-bounded delay communication; (2) any cycle in G contains an event observable by
all controllers. Case (1) and the decidability results of [94] strongly suggest that control
problems with bounded delay communication are decidable.

In [96] the author considers the relationships between observation conditions where
agents may have bounded or unbounded memory and communicate with one another or
send all local observations to a coordinator. In contrast to [94] communication is delayless.
Four different conditions of decentralized observability are defined. The first two conditions
are types of joint observability (an implementation would require communication among
agents) and the last two decentralized observability conditions where decisions are made
locally (no communication among agents).

The first and most general condition explored is that of unbounded-memory joint ob-
servability (JO). A regular specification L (K) is JO with respect to L (G) and (Σ1,o, . . . ,Σn,o)
if, and only if, there exists a total function f ∶ Σ∗1,o × . . . × Σ∗n,o → {0,1} such that for all
p ∈L (G), p ∈L (K) if, and only if, f(PΣ1,o(p), . . . , PΣn,o(p)) = 1. That is, JO holds if, and
only if, there exists some Boolean function that takes as input all local observations of the
string p generated by the plant and outputs 1. Obviously there must be some coordination
involved amongst the agents to decide when a string is in L (K) or the agents must send
their local observations of p to a coordinator which determines when p is in L (K). This
version of decentralized observability is referred to as “unbounded-memory” since p could
be of arbitrary (unbounded) length and each agent must remember its observation of p
(which could also be unbounded).

The second definition of decentralized observability is referred to as finite-memory joint
observability (FJO) and is defined as above but, instead of basing decisions of membership
of p ∈L (K) on PΣi,o

(p), which is potentially unbounded, decisions are based on the states
reached by PΣi,o

(p) in given DFA representations of agents.
The last two definitions of unbounded-memory local observability (LO) and finite-

memory local observability (FLO) are defined analogously to the previous two but differ
in that the decision of membership of a string p ∈L (K) is based on an individual agent’s
local observation.

The author proves that JO is strictly weaker than FJO, LO. Finite-memory joint ob-
servability is strictly weaker than FLO. Unbounded-memory local observability is weaker
than FLO.

The author considers a specific subclass of regular languages for the plant known as
trace languages. They prove that if L (G) is a trace language and all Σi,o are pairwise
disjoint then L (K) ⊆L (G) is JO with respect to L (G) and (Σ1,o, . . . ,Σn,o) if, and only
if, L (G) is FJO with respect to L (G) and (Σ1,o, . . . ,Σn,o). That is, in this particular
case, it suffices to base decisions on membership in L (K) using the states of the given
agents’ automata.

They also prove that, independent of the relationships among Σi,o, if L (G) and L (K)
are trace languages then verifying JO of L (K) with respect to L (G) and (Σ1,o, . . . ,Σn,o)
is decidable. In contrast, for more general cases, verifying JO of L (K) with respect to
L (G) and (Σ1,o, . . . ,Σn,o) is undecidable under the following conditions ([93]): (i) n ≥ 2
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agents and L (G) is not prefix-closed; (ii) n ≥ 3 agents and L (G) is prefix-closed. These
two general cases also render a problem of verifying “decentralized diagnosability” in [78]
to be undecidable.

5 Distributed Estimation Involving Communication

The work of [83] proposes a communication protocol between agents in a modular DES
problem setting for refining agent string estimates. Though the application is for diagnosis
of DES the protocol may be applied in other domains.

Here G is modeled as the synchronous product of a set of I DFA components Gi, i ∈ I.
The languages recognized by each Gi and consequently by G are assumed finite. Each Gi

is capable of generating unobserved fault events. A diagnoser Di is associated with each Gi

which observes events generated by Gi. Diagnoser Di maintains string estimates Ei of Gi

based on the observation of event sequences generated by Gi. Diagnosis decisions are based
on Ei, though no specific diagnosis problem is formulated. The authors consider that Di

and Dj can communicate projections of their string estimates, Ei and Ej, with each other
to refine Ei and Ej if Σi ∩ Σj ≠ ∅ where Σi (resp., Σj) denote the alphabets of Gi (resp.,
Gj). To this end they specify a communication protocol between Di and Dj that can be
used to compute a refinement of Ei and Ej. The authors do not specify how the protocol
should be implemented in terms of low-level message passing.

Computation and communication of estimates between diagnosers occurs at certain pre-
specified times during execution of G. It is up to the designer / practitioner to define these
times. Events generated by Gi observable by Di are buffered by each Di between consec-
utive specified times. At each specified time, Di updates Ei using its buffered observed
event sequence si in the following manner: Ei = {ss′ ∈ L (Gi) ∣ s ∈ Ei, PΣi,o

(s′) = si}. Fol-
lowing this Di communicates with all other Dj where Σi∩Σj ≠ ∅ until Ei cannot be refined
further using the string estimates PΣi,o

(Ej) received from Dj. The precise communication
procedure is provided in [83].

The authors assert that this procedure terminates after a finite number of iterations. No
bound on the number of iterations is claimed. It is useful for Di to apply such a procedure
when there exists another agent Dj that can observe events in Σi ∩ Σj that Di cannot
observe. The authors define the notion of a supremal estimate for all I diagnosers and
assert that the collection of estimates (E1, . . . ,En) computed using this procedure is the
supremal estimate. In a sense, each Ei in the supremal estimate is the best string estimate
of Gi observationally consistent with strings in Ej (PΣj,o

(Ei) = PΣi,o
(Ej)) where Σi∩Σj ≠ ∅

given the previous estimates of agents at the last specified time and observations that they
have buffered since. That is, knowing the estimate Ej of some other Dj will not refine Ei

when Σi ∩Σj ≠ ∅. The authors assert that the procedure computes the supremal estimate
for each Di at a given specified time.

Using the supremal estimates computed at specified times, diagnoses can be issued at
the local component level of Gi directly or at the global plant level of G by computing
global estimates from the supremal estimates. However, the authors assert that computing
the set of global estimates for a given set of agent supremal estimates ξ is NP-hard.

The authors assert that, for a given set of sequences si of events generated by Gi, if
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Di updates Ei using the outlined procedure an arbitrary number of specified times dur-
ing the generation of si followed by a final update after all si have been generated then
the Ei obtained is equivalent to only updating Ei once after all si have been generated.
This is a useful result which indicates that for more specific problems one can compute
a minimum cardinality set of prespecified times for updating Ei, depending on the ob-
servational condition to be satisfied (e.g., k-diagnosability, coobservability with respect to
a global specification, observability with respect to individual component specifications,
etc.). Computation of minimum cardinality of specified times for these specific problems
is a possible direction for future work.

The work of [83] is continued in [82]. Here plant component languages can be of any
language expressivity, not just regular. In [83] the notion of observational consistency of
string estimates (PΣj,o

(Ei) = PΣi,o
(Ej)), a property that the supremal estimates of [83]

satisfy, is referred to as local consistency here. Recall that this property, when satisfied,
characterizes that knowing the estimate Ej of Dj does not refine Ei when Σi ∩Σj ≠ ∅. A
set of estimates (E1, . . . ,En) which satisfy local consistency is referred to as a local support.
The supremal estimate of [83] is the supremal local support.

The authors introduce a strictly stronger consistency condition called global consis-
tency. This condition characterizes that knowing all other estimates Ej will not refine Ei,
independent of the relation between Σi and Σj. A set of estimates (E1, . . . ,En) satisfy-
ing global consistency is referred to as a global support. Given preliminary local estimates
(M1, . . . ,Mn) computed using each agent’s local observations and without communicating
with other agents, the supremal global support of (M1, . . . ,Mn) provides the best possible
string estimate for Di of Gi.

The authors prove that if the communication topology used by agents is acyclic then
(E1, . . . ,En) is a global support if, and only if, it is a local support. As a corollary, the
procedure of [83] for computing the supremal local support of preliminary local estimates
(M1, . . . ,Mn) can be applied to compute the supremal global support.

The authors provide centralized algorithms for computing individual Ei of the supremal
local and global supports. The algorithm for computing the supremal global support has
complexity of the same order as computing the synchronous product of all local preliminary
estimates. However, in practice the complexity may be improved by considering specific
orderings of I. The authors present a heuristic ordering algorithm for computing such
orderings. The algorithm for computing the supremal local support is recursive and not
guaranteed to terminate, even when the plant component languages are regular languages
([91]). However, the authors prove that termination is guaranteed when component lan-
guages are finite (as is the case in [83]) or when the communication topology used by agents
is acyclic. More general than the second case, it has been proven that if the communication
topology contains a special spanning tree called a skeleton then termination is guaranteed
([90]).

Though a distributed algorithm for computing supremal local supports is provided in
[83], the authors do not provide a distributed algorithm for computing supremal global
supports. This is a possible future research direction.

A communication protocol for refining agent state-transition (equivalently, string) es-
timates of G in the setting of [58] is presented in [57]. The proposed application is in the
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distributed diagnosis setting of [58] though modifications to the protocol may be useful in
other distributed observation problems.

Here it is required that there are no cycles of events unobserved by any agent inG. String
estimates are communicated rather than observed event occurrences in [58]. Estimates are
broadcast-communicated from an agent following every locally-observed event occurrence.
An agent’s estimate is updated based on local event observations and is truncated using
the estimates communicated to it by other agents over k-bounded delay channels.

This work is comparable to [83, 82]. In both, string estimates are maintained and
communicated, and communication occurs until some notion of observational consistency
is satisfied between the estimates of agents which communicate with one another. The
problem domain in this work differs in that communication incurs delay. The approach
differs in that agents communicate their entire string estimate rather than a projected
version of their estimate to other agents.

The authors present a complicated three-phase protocol for updating and communicat-
ing string estimates which is initiated every time an agent observes an event occurrence.
They assert with proof in [55] that L (G) is diagnosable with respect to L (K) and the
three-phase communication protocol when communication is k-bounded if, and only if,
L (G) is jointk-diagnosable with respect to L (K) and the mask-based local observation
maps of each agent. Jointk-diagnosability is an observational condition introduced in [58].
A verification procedure is provided for diagnosability under the three-phase communica-
tion protocol whose complexity is linear in the number of diagnosers but exponential in the
number of states of G, K and Σ.

Though the distributed communication protocol of [57] may be used when jointk-
diagnosability of G is satisfied, there are three problems with this protocol: 1) Each site /
agent communicates its entire state-transition estimate of G to all other sites, which can be
expensive; 2) It requires a complex distributed synchronization strategy for the truncation
of unnecessary history of local state-transition estimates; 3) It requires that there are no
cycles of events unobserved by any agent in G. The authors of [112] propose a protocol
that does not require all agents to communicate their entire string estimates, is conceptu-
ally much simpler than the protocol of [57] in that no synchronization with other sites is
necessary for truncating history of estimates and does not require the absence of cycles of
unobservable events in G.

State estimates of G are maintained by agents. Agents observe events through masks.
Every observed event occurrence is communicated by an agent to every other agent. Com-
munication incurs a delay of up to some bound. No specific observational condition such
as observability, diagnosability, etc. is considered. It is assumed that each agent knows a
priori what events are locally observed by every other agent.

A directed state estimate graph is maintained by each agent i for refining its state
estimate of G using local event observations and received communicated events which
incur delay. The states of this graph are copies of individual states in G where a transition
exists between two states in the graph if the transition exists between the corresponding
pair of states in G. Additionally, states are labelled by agent identifiers. Those states of
a graph labelled by agent i are in i’s state estimate. States of i’s state estimate graph are
also labelled by j ≠ i defining a subset of those states in j’s state estimate at the time of j
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sending its last communication which has subsequently been received by i.
States and transitions are added to i’s state estimate graph on the occurrence of i’s local

observations. Those states labelled by i are updated on the occurrence of i’s local obser-
vations. Those states labelled by j are updated on the occurrence of events communicated
and received at i from j. After states (resp., transitions) of i’s state estimate graph have
been updated and labeling of states has been performed on event observation / reception,
those states and transitions in the graph which are not reachable from any state labeled
by an agent identifier j ≠ i are pruned from the graph. We omit the precise details of how
an agent’s state estimate graph is updated.

The authors assert that the set of paths formed in the state estimate graph of an agent
after generation of any string in G forms a regular set, so the state estimate graph is finite.
They also assert that the true state of G is contained in an agent’s state estimate provided
by its graph. This property is referred to by the authors as “soundness”. Given a string
t ∈L (G), t may appear differently to an agent due to nondeterminism in communication
delays. Denote the set of strings that i may observe on occurrence of t by Oi(t). Two
strings t, t′ ∈L (G) are indistinguishable to i if Oi(t)∩Oi(t′) ≠ ∅. The authors assert that,
for any string s observed by i, the state estimate maintained by agent i is contained in the
union of all states reached by strings t ∈L (G) where s ∈ Oi(t). That is, the state estimate
only contains those states reached by strings whose observation to i is what i has observed.
This property is referred to by the authors as “completeness”.

The last work to exclusively consider distributed state estimation in DES is [31]. Here
the plant is modular and modeled by the asynchronous product of communicating finite
state machine (CFSM) representations of distributed processes. Processes communicate
with each other by the use of reliable, unbounded FIFO queues. Messages communicated
between processes can incur delay. Events considered in the distributed system which
change the state of a process’ CFSM are enqueue and dequeue message events associated
with its inter-process communication queues. A local state estimator is associated with
each distributed process. Estimators observe all events of its process’ CFSM. Each estima-
tor is presumed to know a priori the CFSM of each process. Each estimator maintains an
estimate of the global state of the plant (consisting of the states that each process CFSM
could be in and contents of each inter-process queue in the system) using observations of
events which change the CFSM state of its process as well as information piggybacked onto
messages sent from processes to its process by other estimators. An estimator piggybacks
information onto all messages sent from its process to another process. The information
piggybacked consists of an estimator’s state estimate and associated vector clock (intro-
duced in [40]). The vector clock is a vector of natural numbers of size n where n is the
number of processes in the system. The value at index i of j’s vector clock represents
the minimum number of event occurrences estimator j knows have occurred in process i’s
CFSM.

The authors present an algorithm for maintaining the state estimate of an estimator.
When an output / enqueue event occurs in process i, estimator i updates its state estimate
to the unobservable reach of its current state estimate following the occurrence of the
event. When an input / dequeue event occurs at process i from process j, estimator i
compares values of its vector clock with the vector clock from estimator j piggybacked on
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the message received at process i to determine how its state estimate should be updated
using its estimate and the estimate piggybacked from estimator j.

Specifically, computing a state estimate in the algorithm assumes that a reachability
operator on the global system states is provided. However, computation of the reachability
set for a distributed system modeled using CFSMs is known to be undecidable ([6]). So
the authors propose a method using abstract interpretation techniques (introduced in [13])
where the contents of a queue in the system are over-approximated using regular languages.
It is argued in [21] that a good abstract domain for approximating FIFO queue contents
are regular languages.

Soundness and completeness of state estimates are defined in a similar manner to [112].
The authors assert (with proof provided in an associated technical report) that if a given
reachability operator computes overapproximations of the global system state then an
agent’s state estimate is complete. If, on the other hand, a given reachability operator
computes underapproximations then an agent’s state estimate is sound. Soundness and
completeness can not be both satisfied. This is in contrast to the problem domain and
distributed state estimation algorithm of [112] where the authors assert that soundness
and completeness are both satisfied by their distributed state estimation algorithm.

The authors assert (with proof in an associated technical report) that the state estimate
maintained by an estimator using the presented algorithm and their defined overapproxi-
mation of the reachability operator is sound.

There are differences between this work and [82, 112]. Here the plant is modeled as the
product of CFSMs rather than automata. Furthermore, communication channels between
plant components may be unbounded, resulting in the plant being infinite-state. Estimators
are assumed to have complete observation of their associated processes, which was not
assumed in the previous two works. Communication differs in that state estimates and
vector clocks are communicated rather than string estimates or event observations. In
contrast to [82], agents maintain estimates of the global system (CFSM state estimates
and FIFO queue estimates) rather than local process estimates. In contrast to [112], the
plant is considered to consist of a modular set of processes rather than a single, monolithic
process and communication channels are modeled directly in the state of the plant.

This state estimate work has since been applied in [32] to solve a control problem for
state avoidance in the same setting.

6 Distributed Diagnosis & Prognosis Problems Involv-

ing Communication

One of the first works to consider communication in problems of diagnosis is [5]. The
problem setting is the same as [109] where two agents are considered and communication
is unidirectional from agent 2 to agent 1. The primary differences are that the problem
is of diagnosis, not control, and that state estimates are communicated from 2 to 1, not
event occurrences. Also, in this work agent 2 maintains a string estimate for computing
an overapproximation of agent 1’s state estimate. The decision to communicate is made
based on its state estimate and the overapproximation of agent 1’s state estimate. Agent 2

26



communicates its state estimate when it cannot be determined from its overapproximation
of agent 1’s state estimate whether or not a failure has occurred and it is not the case that
agent 2 can determine from its state estimate that a failure has not occurred. Only one
unobserved failure event σf is assumed to occur in G. The problem considered only requires
that if the failure event occurs then agent 1 will eventually be able to unambiguously
determine that a failure has occurred.

A different distributed diagnosis problem and approach is considered in [18]. Similar to
the previous work, a coordinator responsible for making diagnosis decisions receives state
estimates from individual, decentralized agents which only communicate to the coordinator,
do not receive messages from the coordinator and do not communicate with each other.
From this information diagnosis is performed by the coordinator. The coordinator observes
a totally ordered sequence of messages comprised of all messages sent by agents. However,
due to delay in communication, the order in which the messages were received does not
correspond with the order in which they were sent if sending of each message were to be
timestamped with a global clock. So the coordinator can infer that, in addition to the total
ordering of messages received, the true total ordering indicating when messages were sent
exists in a set of multiple possible total orderings of the messages. However, the coordinator
cannot infer directly which is the correct total ordering.

Each agent maintains a specific type of state estimate of G. Following each observed
event occurrence an agent communicates its state estimate, a specific type of unobservable
reach from this state estimate and status bits indicating whether or not the observed event
is also observable by other agents. This latter information allows for proper synchronization
of state estimates at the coordinator. As in most work on distributed state estimation, it
is presumed that each agent knows the events observable by other agents.

The objective is to determine conditions under which any failure event occurrence can
be diagnosed by the coordinator within bounded delay. However, different from many
works on diagnosis, the coordinator’s diagnostic procedure does not take as input the
state-transition structure of G. Only the information communicated to it by agents are
input.

The authors consider only two agents in this work. They consider that reception of
messages at the coordinator from a given agent is in-order. They also only consider that
messages received at the coordinator incur a delay between transmission and reception
of up to one received event occurrence (abbreviated hereafter by delay up to one). Under
these restrictions it is easy to compute the set of possible sequences explaining the observed
sequence.

The authors describe a procedure used by the coordinator for updating its state estimate
which buffers up to n+ 1 received messages when messages incur a delay of up to n. From
buffered messages all possible orders in which the messages could have been transmitted are
computed. For each order a state estimate is computed from the coordinator’s latest state
estimate before receiving the buffered messages. If all computed state estimates contain
only states in G where it is certain a failure event has occurred then a diagnosis can be
reported.

Under the delay of up to one assumption on messages where all agents communicate
their state estimates to the coordinator after an observed event occurrence the authors
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prove that the diagnostic procedure used by the coordinator can be used to diagnose all
failures in the system in the same manner as the centralized diagnoser of [75] which observes
all observable event occurrences if, and only if, there are no non-failure strings of arbitrarily
long length in L (G) that look the same to each agent as another string which contains a
failure occurrence. Under the delay of up to one assumption on messages the authors prove
that, in general, it will take longer for the coordinator to diagnose a failure occurrence than
a centralized diagnoser.

A similar result is obtained when regarding another communication protocol between
agents and the coordinator. Instead, state estimates are communicated from agents only
on commonly observed event occurrences in this protocol. This savings on communication
which still allows the same diagnoses as a centralized diagnoser is surprising.

The results of this paper only consider that messages are received with delay of up to
one. The authors conjecture that the results of this paper hold for the more general delay
of up to m ≥ 1. They also assert that the results of the paper are generalizable to ∣I ∣ ≥ 2
decentralized agents as the delay of up to n assumption is not affected by the number of
decentralized agents from which messages originate.

Though [18] is one of the first works to investigate bounded delay communication in
problems of diagnosis in DES subsequent works have investigated the decidability of general
diagnosis problems with bounded / unbounded-delay communication.

In [78] the authors present “decentralized diagnosability”, a type of joint diagnosability
condition, and prove, analogous to the results of [93] for verifying joint-observability, that
verifying if L (G) is decentralized diagnosable with respect to a set of unobservable fault
events and sets of diagnoser observable events is undecidable for the following conditions:
(i) n ≥ 2 agents and L (G) is not prefix-closed; (ii) n ≥ 3 agents and L (G) is prefix-
closed. Specifically, a regular language L (G) is decentralized diagnosable with respect to
a set of fault events Σf and sets of diagnoser observable events if ∃m ∈ N such that for all
t ∈L (G), if t contains a failure event in Σf followed by at least m event occurrences then
for all t′ ∈ L (G), if t is indistinguishable with t′ by all diagnosers then the failure event
must have occurred in t′. When decentralized diagnosability is satisfied diagnosis decisions
must be made jointly by all diagnosers by communicating their observations of t to one
another or to a coordinator. That verifying decentralized diagnosability is undecidable
immediately implies that verifying delay-based generalizations of the condition are also
undecidable. This corollary is one of the primary contributions of [78].

Not content with this decentralized diagnosability formulation when communications
incur delay, the authors of [59] propose a different formulation of decentralized diagnosabil-
ity. From [56] a diagnosability condition is recalled which generalizes the usual diagnos-
ability condition ([75]) in the following respects: faults are characterized by strings rather
than individual event occurrences; an agent’s view is determined by a mask, not a natural
projection.

The authors recall the codiagnosability condition of [56] which generalizes diagnosabil-
ity in the same manner that coobservability generalises observability: following n event
occurrences after execution of a string in the fault language there exists a diagnoser that
can unambiguously determine that a fault string occurred.

The authors then introduce the condition of joint∞-diagnosability, which characterizes
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plant languages where fault strings in a given fault language can be diagnosed some number
of event occurrences after their occurrence by a diagnoser when diagnosers can communicate
some of their event observations to one another and communication incurs up to an infinite
/ unbounded delay. The condition does not assume any specific communication policy.

The authors assume that a DFA representation of L (G) is deadlock-free. They then
prove that their codiagnosability and joint∞-diagnosability conditions are equivalent. As
verifying their codiagnosability condition is decidable [56], verifying joint∞-diagnosability
for a given L (G) and regular fault language is also decidable.

The authors also formulate a generalization of the decentralized diagnosability condition
of [78] in terms of fault strings and observation masks.

The authors prove that joint∞-diagnosability is strictly stronger than the generalization
of decentralized diagnosability condition of [78]. To satisfy either condition communication
is required. What is surprising is that communication can incur unbounded delay to satisfy
the former condition whose verification is decidable while communication does not incur
any delay in satisfying the latter condition whose verification is undecidable.

Motivated by the decidability of joint∞-diagnosability, the authors of [59] investigate
verification and synthesis algorithms for problems of diagnosability where communication
between diagnosers incurs a delay of up to some bound in [58].

The problem setting is refined to one where a diagnoser communicates locally observed
events to another agent that are not locally observed by the other agent over unidirectional
FIFO channels and G can execute up to k ∈ N events between transmission and reception
of a message. The authors consider two diagnosers but the approach presented can be
generalized to more where care must be taken so that an agent only receives one message
corresponding to a given event occurrence that it does not locally observe.

There exists a unique FIFO communication channel from a diagnoser to every other
diagnoser. A k-bounded delay FIFO communication channel from diagnoser i to diagnoser
j is modeled by a DFA Ci,j. Automata G and K can be extended to incorporate the
k-bounded communication between diagnosers by synchronously composing them with all
Ci,j. Denote the resulting automata by Gk, Kk.

Due to nondeterminism of when communicated event observations will arrive at a di-
agnoser i from Cj,i, a string t ∈ L (G) may appear differently to diagnoser i. A map Oi

is defined which maps strings t ∈L (G) to the set of possible observed sequences of t over
events locally observed and communicated to diagnoser i with delay up to k. Two strings
t, t′ ∈L (G) are indistinguishable to i if Oi(t) ∩Oi(t′) ≠ ∅.

The jointk-diagnosability condition is introduced. It is defined in the same manner as
the authors’ codiagnosability condition in [56] but where diagnoser i’s view of t is provided
by Oi(t) and indistinguishability of strings is defined as above.

The authors prove that L (G) is jointk-diagnosable with respect to L (K), O1, . . . ,Om

if, and only if, L (Gk) is codiagnosable with respect to L (Kk) and observation masks
Mi for each diagnoser i ∈ {1, . . . ,m} which remove events not locally observed or not
communicated to i. So the verification procedure for codiagnosability of [56] can be used to
verify jointk-diagnosability, reducing the problem involving communication to one without
communication. However, the authors present a more efficient algorithm for verifying
jointk-diagnosability.
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The authors demonstrate that verifying jointk-diagnosability is polynomial in the num-
ber of plant and specification states but exponential in the communication delay bound
(k) and the number of local diagnosers (m). To circumvent exponential complexity in
the number of diagnosers, the authors provide an alternative verification procedure in [57]
whose complexity is linear in the number of diagnosers but exponential in the number of
states of G, K and in Σ. So, depending on the problem at hand, one verification algorithm
may be preferable over the other.

The authors describe how diagnoser automata may be synthesized when
jointk-diagnosability is satisfied.

The authors also prove that there exists a hierarchy of joint diagnosability condi-
tions, with joint∞-diagnosability being the weakest which is strictly weaker than jointk+1-
diagnosability which is strictly weaker than jointk-diagnosability which is strictly weaker
than joint0-diagnosability which is equivalent to the diagnosability condition of [56]. This
hierarchy is analogous to the hierarchy of control problems established in [94].

Following [58], a similar problem regarding failure prognosis is considered in [87]. The
problem setting and solution approach used are very similar to that of [58]. In the problem
of failure prognosis it is required that agents observing a plant can collectively predict
when a given regular specification will be violated a number of event occurrences before
the violation for every violation of the specification. That is, there are no “missed failure
detections”. It is also required that no incorrect prognostic decisions are issued. That is,
there are no “false alarms”.

Generally speaking, the observational conditions which characterize when agents can
prognose a system (prognosability and its variants) are stronger than the conditions re-
quired for diagnosing specification violations in a system and weaker than conditions re-
quired for controlling a system in a nonblocking manner to prevent such violations from
occurring.

The notion of coprognosability (introduced in [37]) is recalled which is known to be
a necessary and sufficient condition for the existence of non-communicating decentralized
agents which ensure that there are no missed failure detections or false alarms.

As in [58], all event observations are communicated by an agent to all other agents.
Communicated messages incur a delay of up to k event occurrences before their reception.

To solve the distributed failure prognosis problem where communication must be used,
the authors introduce the notion of jointk-prognosability. This is defined relative to co-
prognosability as jointk-diagnosability (introduced in [58]) is defined relative to the codi-
agnosability condition of [56].

The authors demonstrate that jointk-prognosability is a necessary and sufficient condi-
tion for solving the distributed failure prognosis problem.

They also demonstrate that verifying jointk-prognosability cannot be reduced to ver-
ifying coprognosability using extended versions of the plant and specification automata
synchronously composed with communication channel automata. By contrast, as stated
before, verifying jointk-diagnosability can be reduced to verifying codiagnosability using
extended versions of the plant and specification automata ([58]). However, the authors
present an algorithm for verifying jointk-prognosability which relies on searching the state
set of an automaton constructed from extended versions of the plant and specification au-
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tomata. The complexity of the algorithm is polynomial in the cardinalities of the state set
of the plant and specification automata, the event set of the plant and the set of symbols
communicated among agents but is exponential in the delay bound (k) and the number of
agents (m).

7 Knowledge and Inference-Based Approaches to Solv-

ing Problems Involving Communication

Recently, there has been growing interest and activity in casting decentralized / distributed
observation problems in the knowledge / modal logic domain. Here agents have knowledge
ascribed to them and are capable of inferring from their knowledge whether or not a given
predicate holds. When agents do not have sufficient knowledge to determine if a predicate
holds they may communicate with one another to increase their knowledge from which
inferences are conducted.

The first work to model decentralized control problems in this domain is [66]. This work
recasts two-agent decentralized DES control problems in the knowledge theory of [25]. The
motivation for this is to allow formal reasoning about what agents need to know to solve
control problems.

Associated with each agent i is a tuple consisting of a DFA, Si, and a map from states
of Si to control decisions (set of enabled events). The CP closed-loop control of G under
controllers can be defined.

In the knowledge model considered agents believe the system could be in a set of possible
worlds. A world is modeled as a triplet containing a state of G and a state from each Si.
Associated with each world are atomic propositions defined over the events of G. Given
a world (x,x1, x2), σG (resp., ¬σG) is a proposition stating that σ can (resp., cannot) be
generated from state x in G. Symbol σK (resp., ¬σK) is a proposition stating that σ does
(resp., does not) occur from state x in the specification DFAK ⊑ G. In addition to standard
propositional logic, modal operators are introduced. Symbol Kiϕ means that agent i knows
ϕ to be true. Modal operators may be used to express complex statements that could guide
decision-making in reaching a control solution such as “agent 1 knows that agent 2 does
not know to disable event σ”. However, statements considered here are restricted to the
form of “agent 1 knows to disable event σ”.

Kripke structures are introduced and used for formalizing the semantics of the knowl-
edge model. A Kripke structure is a tuple consisting of a set of worlds, an interpretation
function that maps atomic propositions to truth values for each world and a possibility
relation, one for each agent, which is a binary relation defining those pairs of worlds that
are indistinguishable to each agent. Given a world, w, agent i knows the truth of a propo-
sition if that proposition is true at every world in the Kripke structure which is associated
to world w in i’s possibility relation (is indistinguishable from world w according to agent
i).

Given G and Si for each agent i, the set of worlds and consequently the interpretation
function and possibility relation for each agent can be computed.

The control objective considered is that the CP closed-loop control of both agents on
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G should equal L (K). The authors introduce the condition of Kripke-observability, which
characterizes that if an event occurrence violates the specification then at least one agent
that can control the occurrence knows that it should be disabled. This condition is anal-
ogous to coobservability and controllability, but is expressed in the knowledge model dis-
cussed thus far. When Kripke-observability fails agents may be able to pool their knowledge
(intersect their possible worlds) by communication to increase their respective knowledge
to resolve control conflicts. The authors introduce the notion of distributed observability
which characterizes that if an event occurrence violates the specification then, by inter-
secting their possible worlds, the agents can collectively know that the event should be
disabled.

In a subsequent work ([67]) the authors provide an algorithm for verifying Kripke-
observability. They prove that this algorithm is in O(∣Σc∣ ⋅ ∣W ∣2 ⋅ ∣I ∣) where W is the set
of possible worlds of the Kripke structure. No efficient algorithm is provided for verifying
distributed observability though one can exhaustively analyze the set of worlds of the
Kripke structure using the possibility relations of agents to determine if it holds.

The authors of [66] continue their work in [67]. The setting is the same. However, they
also consider that the actions of an agent may not simply be to disable or enable an event.
An agent could also issue a “do not know” action. They also consider that the control
actions of an agent could be conditional on the actions of the other agent. Specifically,
they consider a conditional action known as conditional disablement (“disable if the other
agent does not enable”), which is derived from [115].

They present a generalization of Kripke-observability called inference-observability. When
satisfied, it allows controllers to use conditional disablement and “do not know” actions
effectively for control purposes. Informally, this condition states that, for every controllable
event σ, for every possible world, there exist two agents (not necessarily unique) that can
control σ where one of the following holds: (i) σ is not generable from G; (ii) σ is legal;
(iii) one of the agents knows that σ should be disabled or that the other agent knows to
enable σ.

Agents issue individual control actions based on their knowledge. When an agent knows
that an event is legal or is not generable by G then it issues the enable action. When it
knows that the event should be disabled it issues the disable action. If it does not know
unambiguously that an event should be disabled in all possible worlds indistinguishable
from the true world but conjunct (iii) of inference-observability holds (for all possible
worlds the event should be disabled or the other agent knows to enable the event) then a
conditional disablement action is issued. If even this conjunct does not hold then a “do
not know” action is issued.

A table mapping agent 1 and 2 decisions to one final control decision is provided.
To implement the control policy of the table individual agent control decisions must be
communicated amongst the agents or sent to a coordinating agent where they are mapped
to the final control action.

The authors prove that if agent decisions are enable, disable, conditional disable and
“do not know”, and are fused according to the table provided then inference-observability is
the necessary and sufficient condition for there to exist knowledge-based controllers whose
closed-loop control on G generates exactly L (K).
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There are generalizations and alternatives to inference-observability that could be ex-
plored. One such generalization is where multiple levels of agent inferencing are conducted.
An impressive, subsequent work which explores this generalization is [35]. The results of
this paper subsume those of [67] as well as other works using control decisions besides just
event disablement / enablement and other control decision fusion rules besides just the CP
fusion rule (e.g., [113, 115]). While not cast directly in the knowledge theory domain of
[25], it effectively considers that an agent’s control decision of an event, when ambiguous to
a certain degree, can depend recursively on the knowledge of other agents whose knowledge
of whether or not the event should be disabled is less ambiguous.

The following is a list of the extensions this work provides over the previous works:

� An agent’s control decision can be based on a bounded number of levels of agent
inferences.

� Considers conditional enablement decisions in addition to conditional disablement
decisions

� The specification is not assumed to be represented as a subautomaton of G.

This work differs from the previous works in that string estimates are maintained by
agents rather than state estimates. Also, agents observe events using masks instead of
projections.

Following any string s ∈ L (G), for each event σ controllable by a given agent i where
sσ ∈ L (G), an ambiguity level can be attributed to the disablement and enablement of
σ following s by i. The ambiguity level of a decision is based on whether or not the
agent itself is ambiguous about the decision as well as ambiguity levels other agents. The
ambiguity levels of a decision for all agents can be greater than 0. An agent can compute its
ambiguity level for enablement and disablement decisions for σ by recursive application of
its observation mask and the observation masks of other agents which are assumed provided
to it at the outset. That is, no communication is necessary for computing its ambiguity
level. However, for control decision fusion, communication of agents’ ambiguity levels for
decisions is required to determine the final control decision.

Following any string s ∈ L (G), the decision to enable / disable an event σ where
sσ ∈ L (G) is based on the decisions of agents in Ic(σ) whose ambiguity level for σ is a
minimum. If the ambiguity level of an agent’s decision to enable (resp., disable) an event
is less than the ambiguity level of its decision to disable (resp., enable) the event then
its control decision is to enable (resp., disable) with its corresponding ambiguity level. If
ambiguity levels are equal for disable and control decisions then the agent issues a “do not
know” decision. If the agents with minimum ambiguity levels all make the same enablement
or disablement control decision then this final control decision is executed. Otherwise, a
“do not know” decision is executed. If the minimum ambiguity level of a control decision
by agents is N then here we say that N levels of agent inferencing are performed.

The notion of N -inference observability of a specification language L (K) with respect
to L (G) is introduced, which is a generalization of the inference observability condition
considered in [67]: for all strings s ∈L (G), for all controllable events σ ∈ Σc, by performing
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up to N levels of agent inferencing a final control decision (of the type enable / disable)
for σ following s can be issued.

The authors introduce N -inferring decentralized supervisors, where control actions of
agents are based on at most N levels of agent inferencing. The closed-loop control of G
under such supervisors is defined. The authors prove that N -inference observability is the
necessary and sufficient condition for there to exist N -inferring decentralized supervisors
that ensure the closed-loop control of G equals L (K).

The authors describe a procedure for verifying N -inference observability of individual
events, σ ∈ Σc. The complexity of the procedure is expensive though no formal complexity
analysis is performed.

The authors prove that L (K) is CP-(resp., DA) coobservable if, and only if, L (K) is
0-inference observable for disablement (resp., enablement) actions on events. Conditional
coobservabilities which are used when agents’ actions are conditional on actions of others
(e.g., conditional disablement) are also characterized in terms of 1-inference observable
languages.

The authors continue this stream of work in [84]. There they demonstrate that N -
inference observable specification languages are not closed under union. They also provide
an algorithm for computing decentralized controllers which synthesize an N -inference ob-
servable sublanguage of a specification language or the specification language itself if it
is N -inference observable. Also, in [85] the authors consider synthesizing decentralized
controllers which synthesize an N -inference observable superlanguage of a specification
language that is not N -inference observable.

In [36] diagnosis is considered. They prove that their work subsumes the work of
[56, 107, 108]. Also, they consider failure prognosis similarly in [86].

In a different direction, the knowledge-based approach of [66] is applied in [23] for the
synthesis of coordination protocols among controllers. This work differs from the previous
surveyed knowledge and inference-based approaches in that:

� A controller’s observation is based on its partial view of the state of the system.

� Specifications are transition-based, not language-based.

� Both safety and priority specifications on transitions are considered.

� Considers completely distributed coordination among controllers, not fusing control
decisions using a coordinator.

Here a system is considered to be modeled by a DFA, G. The states of G are defined
over a set of finite variables, V , each ranging over a finite domain. Transitions in G change
the values of subsets of these variables. Each controller observes a subset of the variables
in V and can control a subset of the transitions in G. Control is disjunctive-antipermissive.

The closed-loop control of G under a set of controllers is defined. Associated with G is a
safety specification, K, on its transitions. Also a priority specification, P , on the transitions
is considered. Priorities on transitions are partially-ordered. The control objective to be
satisfied is that the controllers must disjunctive-antipermissively control G such that only
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transitions in the safety specification, K, are executed and, furthermore, the priority of
each transition executed is maximal in P among transitions from the state of G.

The authors consider that if any two states in G have the same values for the variables
that a controller observes then these two states are indistinguishable by the controller.
Under this possible worlds model knowledge can be ascribed to controllers in the same way
as considered in the possible worlds model of [66]: the controller knows a proposition is
true if it holds in all states indistinguishable with the true state of G. Propositions are
defined over maximal priority transitions in G and over the knowledge of other controllers.
Specifically, the knowledge properties ascribed to a controller are the following, which are
very similar to the properties used in [67] for characterizing inference-observability:

(a) The controller knows that a maximal priority transition whose occurrence it can
control is executable by G;

(b) (a) is false and the controller knows that there exists another controller j which knows
that a maximal priority transition whose occurrence it can control is executable by
G;

(c) (a) is false and (b) is false.

When (a) is true the controller can enable the execution of a maximal priority tran-
sition. Otherwise, when (b) is true, the controller does nothing as it knows that another
controller will execute a maximal priority transition. Otherwise (when (c) is true), the
controller must coordinate with other controllers to refine its set of indistinguishable states
(correspondingly, refine its knowledge) until (b) is true or (a) is true. During coordina-
tion controllers send to one another the values of the variables in V that they observe.
The additional variables are used by a controller to refine the set of states of G it finds
indistinguishable.

The coordination problem considered is, for every controller i, determine which other
controllers i should coordinate with such that following coordination (b) is true or (a) is
true. When this has been determined a control map for each controller can be computed
which results in satisfaction of the control objective.

To solve this problem, the authors propose a model checking algorithm. For all con-
trollers, the first iteration determines in which states of G (a) holds. In the second iteration
those remaining states of G in which (b) hold are determined. In the third iteration co-
ordination is determined among pairs of controllers for states s where (a) or (b) do not
hold for either controller at s but combining their observed variables in V refines the set
of indistinguishable states in such a way that (a) holds. That is, by combining their views
(a) holds for at least one controller and (b) for the remaining controllers. In subsequent
iterations coordination is determined among incrementally increasing sets of controllers.
This iteration is performed until, in all states s of G, (a) or (b) holds for every controller
after potentially performing coordination with other controllers.

Though the proposed algorithm solves the coordination problem it does not necessarily
compute a minimal set of coordinations among controllers. The authors then consider a
minimization problem which they reduce to another problem known to be NP-complete
([23]).

35



The authors also prove that determining the existence of decentralized controllers which
do not communicate and can achieve the control objective is undecidable. Before this it
was already known that this problem is undecidable for safety specifications ([89, 95]).
However, this problem is even more specific as it also regards a priority specification on
transitions.

Though controllers can observe transitions in G, reachability analysis using the obser-
vations of transitions and knowledge of the transition structure of G could be used to refine
the set of states of G a controller finds indistinguishable. However, this is not considered
here but is in subsequent works.

The work of [23] is continued in [33]. However, here a 1-safe Petri Net (PN) instead of
a DFA is used for modeling the plant and the specification is defined over the reachability
graph of the net. The control objective considered is that the controlled execution of the
system only executes sequences of state-transition pairs of the reachability graph which
exist in the specification and furthermore is deadlock-free.

Controllers observe and control a subset of transitions in the PN. These sets are not
necessarily pairwise disjoint. A controller has two local views of the current state (i.e., PN
marking) of the system: (1) the assignment of tokens in the state to input / output places
of the transitions it observes / controls (this set of places is denoted as the “neighborhood”
of the controller), termed weak knowledge; (2) the assignment of tokens to a subset of such
places that cannot be affected by the execution of transitions outside of those transitions
the controller controls / observes (and this set of places is said to be “owned” by the
controller), termed strong knowledge.

Given a controller’s view of a state s, those states which are indistinguishable with
s from the controller’s observation are those states in the reachability graph where the
controller’s view is the same. Under this possible worlds model knowledge can be ascribed
to controllers as considered before. Specifically, the knowledge properties ascribed to a
controller are the same as properties (a)–(c) outlined previously in the context of [23] but
where the set of possible worlds is characterized by a controller’s weak knowledge. The
actions taken by each controller for each case are also the same.

Specifically, during coordination, controllers send to one another their strong knowledge
/ assignment of tokens to places that they own. This additional information is used by a
controller to refine the set of states in the reachability graph it finds indistinguishable.

In [23] coordination was considered among arbitrary subsets of controllers. Here the
authors assume that a partition on the set of controllers is provided. A controller may only
coordinate with other controllers in the set to which it has been assigned in the partition.
The set is referred to as the controller’s “supervisor”.

The coordination problem considered is similar to [23]. The problem considered is, for
every controller i, determine when the controller should coordinate with other controllers
in its supervisor set and also which other controllers it should coordinate with such that
following coordination (b) is true or (a) is true.

To determine if coordination will work model checking can be conducted to test if
coordination with all other controllers in a controller’s supervisor set can refine the set
of indistinguishable states in such a manner that (a) or (b) holds in all states where a
controller’s weak knowledge is insufficient ((a) or (b) is not satisfied).
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In cases where coordinating with all other controllers works, one can consider reducing
the number of coordinations and controllers involved in coordinations. The authors propose
two different techniques for reducing coordinations. The authors do not claim whether or
not these techniques compute coordination policies which are minimal in some respect.

The first technique considers a partial ordering on controllers. Instead of coordinating
when a controller’s weak knowledge is insufficient to satisfy (a) or (b), the controller first
determines if it knows that the combined strong knowledge of all controllers which have
order greater than it (according to the partial ordering) in some supervisor set is sufficient to
support the execution of one of their transitions in the PN. If so, it does not coordinate with
other controllers in its supervisor set. Otherwise, it “hangs” on its supervisor. At any given
state in the reachability graph coordination is conducted among controllers in a supervisor
(set) for controllers that hang on their supervisor. The weak knowledge of a controller
which hangs on its supervisor may change due to the execution of transitions enabled by
other controllers which change the assignment of tokens to places in its neighborhood.
In such situations the controller may drop out of the coordination if its weak knowledge
becomes sufficient to satisfy (a) or (b). The authors assert that under this modification
the control objective is satisfied.

In the interest of fairness of participating in coordinations, a problem with the previous
technique is that, for any two controllers i and j where i ≺ j, j will participate in coordina-
tions more often than i. To resolve this, the authors consider that under certain conditions
a controller randomly determines whether or not it will hang on its supervisor. Specifically,
instead of hanging on its supervisor when a controller does not know that the combined
strong knowledge of all controllers which have order greater than it in some supervisor set
is sufficient to support the execution of one of their transitions in the PN, it determines if
it knows the converse. In this case the controller must hang on its supervisor. When this
condition does not hold, the controller tosses a coin to determine whether or not it will
hang on its supervisor. The authors assert that this modified controller decision policy also
satisfies the control objective.

Though the combined view of strong knowledge of coordinating controllers will not
change as transitions are enabled by other controllers and subsequently executed, sets of
places in the neighborhoods of coordinating controllers that are not owned by any of the
coordinating controllers may only be marked by a strict subset of all possible markings
in the reachability graph of the PN. The authors refer to such sets of places as stable
properties of the PN. Traps and siphons ([53]) defined over a set of places are particular
cases of stable properties. The authors propose a procedure for computing traps and siphons
in the neighborhood of coordinating controllers hanging on a supervisor which coordinate
their strong knowledge and do not change their strong knowledge. Once such traps and
siphons have been identified by the controllers (by some means of additional communication
amongst the controllers or amongst the controllers and an entity modeling the supervisor)
then the set of possible markings that the traps and siphons can occupy can be included in
the coordination allowing one to further refine the knowledge of coordinators than if just
the strong knowledge of each coordinator was used.

The authors of [33] continue their work in [52] where they handle the presence of
automatically-enabled uncontrollable transitions which was lacking before. In addition
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to using weak knowledge and strong knowledge introduced in [33], the history of a con-
troller’s observations of executions of its transitions in the PN is also used to refine the set
of system states that it finds indistinguishable. The set of possible states that a process
believes the system could be in (and from which its knowledge is based) upon observing a
particular history of transition executions can be computed by performing a type of subset
construction on the reachability graph of the controlled PN where transitions not observed
by an agent are replaced by the empty string.

Given a forbidden state-transition specification defined over the reachability graph,
an extended, state-based version of the specification can be computed. In the controlled
execution of the PN a state in F must not be entered for otherwise it is possible that an
execution of a sequence of transitions may result in the state-transition specification being
violated. The controlled PN can be defined as a subgraph of the uncontrolled reachability
graph which does not have transitions to / from states in the state-based specification.
The authors assert that computation of the controlled PN is exponential in the number of
places of the plant PN and furthermore is EXPTIME-complete.

Once the controlled PN has been computed, model checking of knowledge properties
(same as (a)–(c) in [23]) is done to determine when processes know enough based on their
view of the system that a transition that they control can be supported or if they know that
one of the other processes knows that it can support one of its transitions. The authors
assert that model checking of such properties is in EXPTIME.

8 Approaches to Computing Distributed Communi-

cating Controllers from a Monolithic Controller

An alternative means for constructing distributed communicating agents is to first compute
a monolithic, centralized solution to an observational problem then to construct distributed
agents and a communication protocol amongst the agents which effectively implements the
centralized solution. This is the approach taken in the works of [47, 15, 16].

In [47] a regular plant, G, defined over alphabet Σ and prefix-closed, controllable and
observable specification language, L (K) ⊆ L (G), with respect to Σo ⊆ Σ and Σc ⊆ Σ
are given. Since L (K) is controllable and observable a centralized controller S may be
computed such that L (S/G) =L (K). The authors consider the problem of distributing S
over a set of communicating agents I = {1, ..., n}. For each agent i ∈ I a set of controllable
events Σi,c ⊆ Σc and observable events Σi,o ⊆ Σo are assumed given.

In most works events, state estimates or string estimates are communicated between
agents. This work introduces a novel means of communication. Here Boolean variables
encode the states of a centralized controller which are used for defining guards on when
events should be enabled. Boolean variables Xi are owned and updated locally by an agent
i ∈ I according to event observations in Σi,o and are communicated asynchronously to other
agents j ∈ I if j needs to know the value of variables in Xi to determine whether or not an
event σ ∈ Σj,c should be disabled (i.e., if the guard condition on σ is not satisfied).

To distribute the centralized controller over the set of I agents, an alternative represen-
tation of the centralized controller, denoted by automaton S′, is computed from S which, in
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the worst case, has state cardinality twice the size of the state cardinality of S. Afterwards,
the states of S′ are labelled by vectors of n natural numbers. The natural number stored
at the ith position of a vector v labelling a state of S′, denoted by v(i), is the ith agent’s
label. The set of label schemes mapping states of S′ to vectors of agents labels considered
are referred to as Agent-Wise Label Maps (ALMs).

The authors demonstrate how a specific type of ALM can be computed for S′. Given
an ALM, the number of different values for v(i) can be represented by a set of Boolean
variables, Xi, which are owned by agent i and can be used instead to label states in S′.
Guard conditions over the Boolean variables owned by all agents can then be defined for
characterizing when events should be enabled as well as when a Boolean variable owned by
an agent should be updated on event occurrences observed by the agent. Guard conditions
can be defined over a minimal set of variables by applying “don’t care” conditions ([48]).
Agents will be required to know the most up-to-date values of Boolean variables in the
set of variables which guard conditions are defined over to determine if an event should be
enabled or if it needs to update one of its Boolean variables. In the former / latter case we
say that communication is required for i’s control / observation.

Though communication may be required for an agent to make a control decision or
update its local Boolean variables, the authors only consider that at the level of message
passing communication occurs asynchronously. In some cases if agents poll other agents
for the values of their Boolean variables then communication may be reduced.

The authors then study the class of ALMs where no communication is required for
an agent’s observation. That is, updating an agent’s local Boolean variables does not
depend on the values of Boolean variables owned by other agents. However, for such
ALMs, communication may be required for an agent’s control. A condition stronger than
observability but weaker than unbounded-memory joint observability of [96] referred to
as modified joint observability is introduced. The authors prove that if there exists an
ALM for S′ where communication is not required for observation then L (K) is necessarily
modified joint observable.

The authors then provide an example where they demonstrate that only two Boolean
variables are communicated using their approach whereas two states must be communicated
using the estimator approach of [2] where communication is state-based. Their approach
results in fewer bits being communicated in such a case. However, they do not provide an
exhaustive comparison of their work with [2]. It is difficult to determine how the approach
of this work compares in general with the approaches of other works on communication in
DES.

The works [15] and [16] present an approach for constructing a monolithic PN controller
S such that, given G, regular specification sublanguage L (K):

(O1) L (S/G) is equal to the supremal controllable and observable sublanguage of L (K)
when such a language exists;

(O2) in the case where the supremal controllable and observable sublanguage of L (K)
does not exist or cannot be enforced by a monolithic PN controller (the class of
which is strictly weaker than finite state controllers) L (A) ⊆ L (S/G) ⊆ L (K) for
some given minimal acceptable behaviour L (A).
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A method for distributing the monolithic controller over n agents modeled by message-
passing automata is presented when the controller is a bounded PN for strings generated
by G and a condition referred to as distributability is satisfied.

Petri Net controllers are defined. For every event generable by G there exists only one
transition in the net modeling the event occurrence. This is extremely restrictive. It is
required that (C1) unobservable event occurrences (transitions) do not change the marking
of the net, and (C2) for any sequence of transitions in the PN that corresponds to a string
in L (G), the number of tokens in any place of the net is bounded. Customarily, the
closed-loop control of a net controller S on G, denoted by S/G, consists of those strings
generable by both the net S and G.

The author describes a general synthesis algorithm for computing net controllers which
satisfy (O1) or (O2). The algorithm is an iterative one which proceeds until a bounded
net representation is obtained where unbounded net representations are computed at in-
termediate iterations. In the worst case the algorithm executes 2 ⋅ ∣Σ∣ + 1 iterations before
it terminates. No complexity analysis is provided.

The computed net controller can be distributed into a set of n individual PNs whose
reachability graphs are asynchronous message passing automata (AMPA) if it satisfies the
condition of distributability: every event in the net is associated with one distributed
location / agent and every place in the net only provides input to transitions associated
with the same location.

A merit of this work is that bounded, distributable nets considered belong to a class of
PNs known as the free-labeled and bounded PNs and that such PNs can be synthesized
efficiently and produce compact representations of controllers ([22]).

There are many similarities between this approach for distributing a centralized con-
troller with the approach of [47]:

� Communication is asynchronous.

� The encoding of the information to be exchanged between agents is automated. That
is, in both works, it is not defined a priori what type of information will be commu-
nicated among agents.

However, the approach does have many limitations compared with [47]:

� An event can only label a single transition in the PN representation of the net con-
troller from which AMPA are derived.

� For distributization purposes, it is assumed that any two agents’ set of controllable
(resp., observable) events are pairwise disjoint. This is not required in [47].

� If an event is associated with a given location, then the input places of its correspond-
ing transition are also exclusively associated with the location.

� The approach is only applicable when bounded, distributable net controllers exist for
satisfying (O1) or (O2). Such class of PNs are a strict subclass of finite automata. So
it is possible that a finite-state controller may exist for satisfying (O1) or (O2) but
no bounded, distributable PN exists for satisfying one of the objectives. By contrast,
the approach of [47] is applicable to any finite-state controller.
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� The author themself states that “the näıve algorithm we used to expand a dis-
tributable PN into a [expanded] PN results in high cost of communications”.

� The author remarks in [16] that this approach cannot be applied when the control
objective is avoiding deadlocks (more generally, nonblockingness must be satisfied).
Extending the approach so that nonblockingness is satisfied is future work. The
approach of [47] can be applied to compute distributed versions of finite-state non-
blocking controllers when they exist.

9 Approaches to Computing Minimal Communication

Policies

In this section we focus on approaches for computing inter-agent communication protocols.
We concentrate on when observations of the plant and communications made between
controllers are based on event occurrences labelling transitions of a DFA representation
of the plant. We also concentrate on approaches for the computation of communication
protocols that satisfy a set-theoretic notion of minimality.

One of the first works on transition-based communication in DES is [70]. This work
considers two agents, associated with which are DFA modeling the actions of the agent. The
DFA model could be a supervisory controller, diagnoser, or other application-dependent
DFA agent model, depending on the specific problem at hand. A plant for generating
events is assumed to exist but is not modeled explicitly. Each agent’s DFA model can have
transitions between different states labelled by events not directly observed by the agent.
The objective of introducing communication between the agents is that they are each able
to determine precisely which state their respective DFA representation is in after any string
generated by the plant. Observed event occurrences are communicated between the agents
reliably, without delay and immediately upon their observation. The assumption is that
without communication each agent cannot unambiguously determine the state of its DFA
representation and that if all observed event occurrences are communicated between agents
then they can.

In addition to computing a communication protocol between the agents that allows
them to determine the states of their respective DFA representations, it is also required
that the communication protocol be minimal. Minimality is defined in the following sense
for a communication protocol: after any string generated by the plant, if any fewer events
are communicated from one agent to another then either: (a) one of the agents cannot
properly distinguish which state its respective DFA model is in; (b) one of the agents
cannot unambiguously determine whether or not it should communicate an event to the
other agent; (c) a structural requirement on the communication protocol is not satisfied.
In the setting of this paper two communication protocols may be incomparable. This
arises from the fact that following any string generated by the plant the set of events to
be communicated from one agent to another, upon their occurrence, may be incomparable.
Thus no minimum communication protocol exists between the two agents and so only
minimal communication protocols can be considered.
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To compute minimal communication protocols, a structural requirement is considered
which restricts attention to a specific subset of communication protocols. Communica-
tion protocols are to be derived from the (synchronous) product of the two agents’ DFAs,
denoted here by R. The subset of communication protocols considered must satisfy the
following structural requirement: if any two strings lead to the same state in R then the
decision to communicate an event from one agent to another must be the same following
both strings. Communication protocols satisfying this requirement are said to be imple-
mentable with respect to R. If a communication protocol satisfies the implementability
requirement then it can be characterized by a subset of transitions of R.

In addition to the structural implementability requirement another requirement is in-
troduced: if any two strings generated by the plant appear identical to an agent due to
the observation of event occurrences in its observable event set and due to event occur-
rences which are communicated to it by the other agent, then the decision to communicate
an event to the other agent must be the same following both strings. Informally, this
requirement states that, after the observation of any string of events, an agent should
unambiguously know exactly what events it will communicate to the other agent upon
their next occurrence. Communication protocols satisfying this requirement are said to be
feasible.

Apart from the procedure introduced for computing minimal communication protocols,
the modeling requirements of implementability and feasibility of communication protocols
are arguably the primary contributions of this paper and are used for modeling purposes
in subsequent works on transition-based communication and sensor activation in DES.

There is an apparent difficulty in this communication problem (in fact, in most commu-
nication problems) due to the mutual dependency of observation and communication: what
agent 1 communicates to agent 2 affects agent 2’s observation which, in turn, affects what
agent 2 communicates to agent 1 which affects agent 1’s observation which, in turn, affects
what agent 1 communicates to agent 2, etc. Given this mutual dependency, a solution
approach is to alternate between adding communications from agent 1 to agent 2’s set of
essential communications (communications that agent 2 requires from agent 1 for precisely
identifying its state) and from agent 2 to agent 1’s set of essential communications until
feasibility of the resulting sets of communications is satisfied. Alternation may occur in
multiple successive iterations, bounded by the transition cardinality of R. However, inter-
estingly enough, the algorithm presented by the authors is asymmetric and only requires
one iteration. Unfortunately, there are some issues with the algorithm. It is exponential
in the state and transition cardinalities of R. Also, the algorithm provided cannot be used
to compute all possible minimal communication protocols satisfying the implementability
and feasibility requirements.

Another algorithmic approach one may conjecture could be used is to begin with each
agent communicating all event occurrences to the other then iteratively remove communi-
cations from one agent to another until removing any communication (besides the essential
communications) violates feasibility. Unfortunately, such an approach will not work in
general. By further removing communications from sets of communications computed by
such a procedure feasibility may become satisfied! This is due to an interesting property
of transition-based communications: in some instances, by communicating less any two
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strings which were previously indistinguishable by the other agent can become distinguish-
able. This counterintuitive phenomenon is referred to as “lack of monotonicity” in [99]
where a more detailed examination and example illustrating it is provided.

Due to the computational expense of the algorithm considered, the restriction that each
agent’s DFA have total transition functions, that communication of events be reliable and
instantaneous, that only two agents are considered, and that only a strict subset of the
minimal communication protocols can be computed, the applicability of the approach of
[70] is limited.

A generalization of [70] is provided in [45]. The problem considered is the same as in
[70], but instead of introducing communication for purposes of each agent distinguishing
exactly which state its DFA is in following any string generated by an underlying plant, a
more general goal needs to be satisfied where each agent is required to have communicated
to it any transition which exists in some set of essential transitions labelled by events
observable exclusively by the other agent and defined over the set of transitions of its DFA.
It is still required that communication protocols considered are feasible and implementable
with respect to the synchronous product of the agents’ DFAs (R).

The algorithm considered for computing a minimal solution is a näıve and exhaustive
one. The advantage of the algorithm provided is that it is capable of computing all minimal,
feasible, implementable communication protocols where all of the essential transitions of
an agent’s DFA are communicated to it. However, the complexity of the algorithm is in
the worst-case exponential in the state and transition cardinalities of each agent’s DFA
representations.

The setting of [70] and [45] are used to study a problem of minimal communication in
[104]. This work considers ∣I ∣ ≥ 2 agents and an explicit DFA representation of the plant, G,
is provided. Agents observe the transitions of G and are required to communicate observed
event occurrences to one another to disambiguate certain pairs of states in G. However,
there are several restrictions on the problem setting: the agents collectively can observe all
event occurrences generated by G; the agents can only communicate bidirectionally with
a coordinator; the coordinator observes all event occurrences generated by G; G is acyclic
besides self-loops on its states.

Under the above restrictions, the authors provide an algorithm for computing feasi-
ble, minimal communication policies between each agent and the coordinator which is of
polynomial complexity in all parameters: number of states of G, Σ, and I.

The solution procedure starts by fixing a minimal set of communications from each agent
to the coordinator which guarantees that the coordinator observes all event occurrences.
This asymmetry in the solution procedure is similar to the solution procedure of [70]. It
remains to compute feasible, minimal sets of communications from the coordinator to each
agent that allows each agent to satisfy its state-based specification.

Unfortunately, the lack of monotonicity phenomenon also occurs here. In spite of this
difficulty, the authors provide an efficient algorithm for computing minimal sets of tran-
sitions to be communicated from the coordinator to each agent. The algorithm relies on
computing a partition of the set of strings defined from states of G processed recursively
from states with only self-loops on events to the initial state. The authors prove that the
algorithm is in O(∣I ∣ ⋅ ∣Σ∣3 ⋅ ∣X ∣3) where X is the state set of G.
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Besides the severe restrictions on the problem setting, one drawback of this work is
that, for a given assignment of communications from the agents to the coordinator, the
computation of a minimal communication policy from the coordinator to any agent is
uniquely determined. It is not possible to compute other minimal communication policies
from the coordinator to agents.

The previous work is generalized in [103] for the computation of completely distributed
communication protocols where agents can communicate with each other without the pres-
ence of a coordinator. Here it is assumed that communication topologies are strongly
connected. Like the previous work, the plant, G, is assumed to be acyclic except self-loops
on states. Events are communicated between agents without delay, even if communication
must pass indirectly (due to topology limitations) through a set of intermediate agents.

To solve the minimal communication problem the authors present a generalized ver-
sion of the algorithm used in [104]. Due to the communication topology being a general
strongly connected one where the communications of any agent can affect the observations
of any other agent, this problem does not enjoy the same optimization based on a language
partition as that considered in [104]. We have determined that the complexity of the algo-
rithm is in O(∣X ∣ ⋅ 2∣Σ∣⋅∣I ∣⋅(∣I ∣−1) ⋅ (∣X ∣2 ⋅ ∣Σ∣)) (but this bound may not necessarily be tight).
As a result we can see that, even in the context of acyclic systems with general strongly
connected communication topologies, the problem of computing minimal communication
policies is difficult.

Minimal state-based communication is studied in [65] following the preliminary versions
of [2] and [70]. It studies asynchronous communication between two agents for controlling
G to satisfy exactly L (K).

Here it is assumed that K ⊑ G. As in [2] agents locally observe strings generated by G
using a projection and maintain state estimates of G. Control decisions are based on an
agent’s state estimate. Control conflicts exist for an event σ that agent i ∈ {1,2} controls
when i’s state estimate contains a state of K from which σ labels a transition to another
state in K and i’s state estimate also contains a state of K where σ labels a transition
to a state in G outside of K. When control conflicts exist agents may communicate state
estimates to one another to refine estimates and resolve such conflicts. This is the problem
considered in this work.

Analogous to previous works, the authors prove that communication of state estimates
can eliminate control conflicts if L (K) is observable with respect to L (G), Σo, Σc. Specif-
ically, the authors prove that if L (K) is observable then, whenever agent i cannot make
the correct control decision about σ ∈ Σi,c following the observation of a string in G, agent
j (j ∈ {1,2}, j ≠ i) can communicate its state estimate at prefixes of the string which will
allow agent i’s control conflict to be eliminated. The authors identify such prefixes for pairs
of strings causing control conflicts for an agent. Communication of state estimates from
states in G reached by such prefixes can be used to resolve control conflicts. Communicat-
ing from all such states is in some cases not necessary and so minimal communication is
considered.

It is required that agent communications be feasible ([70]). Given a set of communi-
cation states of an agent for resolving control conflicts, the set of states which are indis-
tinguishable with these states by the agent can be computed from which communication
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must also occur to satisfy feasibility.
The notion of minimal communication considered is that if any single communication

of a state estimate from one agent to another is removed then either there exist control
conflicts that are not resolved or feasibility of communications is not satisfied. An algorithm
is proposed which takes as input a set of communication states of G from agent i to j
for resolving control conflicts as well as the set of additional communication states from
which communication is required to satisfy feasibility according to i’s observations. The
algorithm computes a subset of communication states from the input set which the authors
claim satisfy minimality, feasibility and resolve i’s control conflicts.

However, there are some drawbacks to [65]. The specification is required to be expressed
as a subautomaton of the plant automaton. Also, the proposed algorithm for computing a
minimal set of communication states only considers that communication occur as early as
possible. This restricts the set of possible solutions considered. Alternative solutions are
where communication occurs as late as possible (as considered in [2]) and everywhere in
between communicating as early and as late as possible. An initial proposal for exploring
alternative solutions in this range of communication solutions is [63].

In [41] reactive DES are considered. These are systems where the plant can be decom-
posed into a set of component DFA which interact with each other and an unpredictable
environment. Interactions between the components and the environment / other com-
ponents and the operation of components are modeled by events. Interactions can be
point-to-point or broadcast. The overall plant is modeled as a type of synchronous product
where synchronization occurs on events modeling interaction between the components.

It is required that plant components be controlled in such a manner that any inter-
actions between the components and the environment satisfies exactly a regular language
specification defined over the set of input-output events modeling interactions between the
components and the environment. Controllers are associated with components to achieve
this. A controller controls and observes events generated and used internally by its associ-
ated component, events modeling initiation of an interaction by its associated component,
and observes events modeling initiation of an interaction with its component. It is assumed
that controllable event sets of components are pairwise disjoint.

The authors prove that the usual controllability and coobservability conditions on the
specification language are not the necessary and sufficient conditions for there to exist con-
trollers associated with each component such that the specification language is synthesized
in the closed-loop control with G. The authors introduce conditions of Pex-controllability,
Pex-observability and Pex-coobservability on the specification language. They demonstrate
that Pex-controllability, Pex-observability are instead the necessary and sufficient condi-
tions.

When G is Pex-observable but not Pex-coobservable then communication between con-
trollers can be incorporated for solving the control problem. The authors consider the
“communicate-as-early-as-possible” strategy of [65]. Communication of an event occur-
rence from one controller to another is handled differently depending on the event (e.g.,
internal, input, or output event) which, when communicated, will remove a violation of
Pex-coobservability.

The authors then consider minimal communication in the same sense as [65]: a commu-
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nication policy is minimal if it is feasible, the control problem can be solved and removing
the communication of any single event occurrence violates feasibility or violations of Pex-
coobservability (i.e., control conflicts) are introduced (i.e., the control problem cannot be
solved). They present a greedy algorithm similar to that of [65] for computing minimal
communication policies. This algorithm assumes that all violations of Pex-coobservability
when controllers do not communicate are provided as input and that a map from event oc-
currences labelling transitions in component DFA to violations of Pex-coobservability that
are removed upon communication of the event occurrence to the appropriate controller is
provided as input.

The work of [64] considers computation of asymptotically minimal inter-agent commu-
nication policies. Specifically, it is the objective to minimize the number of event commu-
nications along infinite strings of G. For strings of bounded length, the procedure used to
compute communication policies may not generate communication policies which satisfy
any of the notions of minimality considered previously in this section. However, the au-
thor asserts that, for strings of infinite length, the policies generated do satisfy a notion of
optimality in terms of asymptotic throughput.

The problem of finding minimal communications is reduced to an optimization problem
for a set of Markov chains. The solution approach proceeds first by considering K ⊑ G.
The author illustrates how to compute a finite state-transition structure which recognizes
violations of coobservability (i.e., control conflicts). Denote this structure by U .

From U sets of transitions which, when forced to be communicated among controllers,
avoid violations of coobservability can be defined. Using these sets of transitions “admis-
sible” DFA can be defined. The authors demonstrate how to compute a unique, feasible
communication policy satisfying coobservability from a given admissible DFA.

However, such a communication policy may not necessarily be minimal with respect to
strings of infinite length. The authors propose an approach to evaluate the mean asymptotic
throughput for policies which are uniquely associated with admissible DFA. The approach
consists of reducing each admissible DFA to a Markov chain induced on a Markov model,
evaluating the asymptotic throughput over an infinite horizon, then selecting the admissible
DFA which corresponds to the chain with lowest cumulative cost.

The work of [73] lies in the same setting as and follows [64]. It applies game theory
to compute minimal communication protocols. Depending on the nature of G, different
automata may be used in computing a solution. If G is acyclic then it is used. Otherwise,
an automaton isomorphic to the U structure of [64] is used.

For computing a minimal communication policy, the authors use an algorithm for com-
puting a Nash equilibrium (introduced in [50]) of communications among an arbitrary
number of agents. They formulate the communication problem as a normal-form game and
define a Nash equilibrium for this game. The Nash equilibrium is essentially an inter-agent
communication protocol which has logically minimal cost, is coherent (analogous to fea-
sibility) and produces observations in such a manner that the control problem is solved.
Nash’s result asserts that “every normal-form game has at least one Nash equilibrium”
([50]). Hence there exists a Nash equilibrium which represents a solution for this minimal
communication problem.

The authors then leverage an algorithm referred to as the “Support Enumeration
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Method” published in [54] for computing a Nash equilibrium in the context of the normal-
form game posed. The authors assert that the algorithm described is in O(2T ) where T
represents the number of transitions in the plant representation (G or the U structure,
depending on the cyclicity of G). The authors assert that for acyclic G, using uniform cost
for all communications is appropriate. However, they assert that more appropriate cost
models need to be used in the cyclic case.

Finally, the application of evolutionary algorithms to compute approximately optimal
solutions for a quantitative cost control & communication minimization problem involving
any number of agents where cost is associated with event enablement, event disablement
and with event communication is considered in [74]. Evolutionary algorithms are known for
being able to compute approximate optimal solutions for solving problems where exhaus-
tive search is computationally prohibitive and multiple, conflicting constraints need to be
optimized. Control and communication are two such constraints: to minimize the number
of event occurrences disabled controllers must typically (presuming the more a controller
sees the better its distinguishing power) communicate more and, on the other hand, to
minimize communication controllers must typically disable more event occurrences.

Communication is reliable, instantaneous and point-to-point. No specific communica-
tion topology is assumed. Controllers maintain string estimates of G. An agent’s control
and communication maps are assumed to be string-based. It is assumed that G is acyclic.
When considering cyclic G, the cost functions considered should calculate the mean cost
over an infinite horizon. When this is the case the approach of [64] can be used for com-
puting the cost of an inter-agent communication policy.

The association of cost with event enablement, disablement and communication is in-
spired by the centralized control cost function of [77]. Any cost function from an agent’s
actions on individual event occurrences following a string in L (G) to the real numbers can
be considered. It is preferred that control & communication maps used by controllers are
defined such that the closed-loop control on G synthesizes exactly a regular specification,
L (K). However, the minimization problem considered permits minimum-cost control /
communication maps which, when used, results in a nonempty strict subset of L (K) being
synthesized. To discourage over-restricting plant behaviour, a user-defined penalty can be
applied to increase the cost of those disablement actions where the string estimate main-
tained by the controller disabling a particular event occurrence, σ, contains a string t where
tσ ∈L (K).

Assuming L (G) is finite, an agent’s control cost is simply the sum of the costs of its
event enablement and disablement decisions following all strings in L (G). The communi-
cation cost is defined similarly. Though communication is point-to-point if more than one
controller requires observing an event occurrence communicated by controller i then i only
incurs the cost of communicating the event occurrence to a single recipient.

In addition to computing control & communication maps which synthesize behaviour in
L (K), it is also required that communication policies be feasible. The problem considered
is, given some function f from control and communication actions of all controllers to the
real numbers, compute control and communication maps which satisfy these aforementioned
criteria and, furthermore, is minimum with respect to f .

A modified version of the Non-Dominated Sorting Genetic Algorithm - II (NSGA-II)
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(introduced in [17]) is applied for computing approximate optimal solutions to this prob-
lem. Though other evolutionary algorithms could be used (Strength Pareto Evolutionary
Algorithm of [118], Pareto-Archived Evolution Strategy of [34]), the authors assert that
they use NSGA-II as good solutions from previous generations computed by the algorithm
are preserved (i.e., all children of generation k compete for membership in generation k+1)
and because the algorithm features a strong fitness assignment procedure.

However, the authors do not propose what properties the initial generation or individual
candidates within the initial generation should have. They also do not propose mutation
or crossover operators and do not detail any fitness function.

10 Transition-Based Observation Conditions

The work in the previous section focused primarily on transition-based observations. In
[29] the authors study a transition-based version of coobservability. Its study is continued
[100] where additionally a relation with a transition-based version of codiagnosability is
established.

A decentralized control problem involving two controllers whose observation of G de-
pends on the transitions of G is studied in [29]. Transition-based observation maps for
each controller are assumed given. That they are provided as input to the problem is in
contrast with the previous surveyed works on transition-based observations and communi-
cation where the objective is to compute transition-based observation maps.

The authors introduce the notion of transition-based coobservability of a specification
language L (K) with respect to G and observation maps P1,G, P2,G defined over the transi-
tions of G. This notion is simply a generalization of coobservability where observation maps
defined over the transitions of G are used to capture the observations of each controller
rather than natural projections.

Controllers are assumed to be modeled using DFA with a map from states to control de-
cisions (enable / disable) on events. The CP control ofG by two controllers (S1∧S2/G) is de-
fined as usual. Given G, K ⊑ G, Σ1,c, Σ2,c and transition-based observation maps P1,G, P2,G,
the authors assert (with proof provided in [28]) that transition-based coobservability and
controllability is necessary and sufficient for there to exist two controllers S1, S2 which
control events in Σ1,c,Σ2,c and observe G using P1,G, P2,G such that L (S1∧S2/G) =L (K).

The authors then describe an algorithm for verifying transition-based coobservability.
The algorithm proceeds by construction of a modification of a so-called “M-machine”,
an NFA which was originally introduced in [71] for verifying coobservability. We have
determined that the construction of the M-machine is in O(∣XK ∣3 ⋅ ∣XG∣ ⋅ ∣Σ∣) (but this
bound may not necessarily be tight) where XK (resp., XG) is the state set of K (resp., G)
(note that the authors assume K ⊑ G).

The authors then describe an iterative algorithm for making transitions of G observable
to controllers to satisfy transition-based coobservability for given input transition-based
observation maps and controllable events of each controller. No complexity analysis is
provided for the algorithm in this paper or in the thesis [28] where it was originally defined,
though we have determined that an upper bound is O(∣XK ∣5 ⋅ ∣XG∣ ⋅ ∣Σ∣) (but this bound
may not necessarily be tight), which is polynomial in XK , linear in XG and Σ.

48



The results of [100] subsume the verification procedure based on M-machines of [29]
when an arbitrary number of agents is considered. This work also considers decentral-
ized diagnosis problems where observations are transition-based. The authors provide a
polynomial-time reduction in the state and event cardinalities of the plant DFA G from
the problem of verifying coobservability (resp., observability) to the problem of verify-
ing codiagnosability (resp., diagnosability). This result leverages the approaches of many
works where sensor activation and communication protocols are computed for purposes of
satisfying (co)diagnosability to similar problems where (co)observability is to be satisfied.

Specifically, the reduction presumes that K ⊑ G and observation maps for controllers
are defined over the transitions of K (not G). The authors prove that the algorithm for
transforming problems of coobservability to problems of codiagnosability is in O(∣X ∣ ⋅ ∣Σ∣2)
where X (resp., Σ) is the state (resp., event) set of G.

The authors demonstrate that, for a problem of minimizing transition-based sensor ac-
tivations (a topic to be covered in the next section) in satisfying coobservability in cases
where communication is not required between controllers, if the aforementioned transfor-
mation from a problem of coobservability to a problem of codiagnosability is applied then
if observation maps (more specifically, sensor activation maps) for agents are optimized
for satisfying the codiagnosability problem then the same observation maps are optimal
for satisfying the coobservability problem. This result leverages the sensor activation op-
timization algorithms of [12] or [102] for problems of (co)diagnosability to problems of
(co)observability.

In addition to providing a reduction from coobservability to codiagnosability, the au-
thors also provide a method of verifying transition-based codiagnosability. For a given G
with state set X, set of agents I with respective transition-based observation maps and set
of fault event types F , the authors prove that the complexity of the verification procedure
is in O(∣F ∣ ⋅ ∣X ∣∣I ∣+1).

A previous algorithm for verifying diagnosability (not codiagnosability) with dynamic
observations was provided in [12]. However, this algorithm does not require that observation
maps be restricted to the transitions of G. Instead, a deterministic, finite transducer
representation of the dynamic observation map is required as input. Using the complexity
results of this work, we have determined that the complexity of this algorithm is in O(∣F ∣ ⋅
(∣X ∣ ⋅ ∣Y ∣)2) where Y is the state set of the transducer. So in cases where observations are
transition-based, the algorithm of [100] is preferable in the worst-case.

From the algorithm of [100], the complexity of verifying coobservability in the case of
two agents with C ⊆ Σ controllable events is the cost of the transformation and the cost
of the verification procedure provided for codiagnosability: O(∣X ∣ ⋅ ∣Σ∣2 + ∣C ∣ ⋅ ∣X ∣3). Until
tighter complexity bounds on the verification procedure of [29] are established, it is not
clear when the verification procedure of [29] is preferable over the verification procedure of
[100] and vice versa. However, from the strict upper bound provided for [29], it is likely
that this depends on the cardinality of Σ.

The last known approach for verifying transition-based coobservability is provided in
[51]. Here the authors reduce the verification of transition-based coobservability to verifica-
tion of an observational condition called decentralized no-opacity. When L (K) is regular,
the complexity of the reduction and verification using their approach is in the worst-case
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linear in the number of agents, which contrasts with the reduction and verification algo-
rithm of [100] which is exponential in the number of agents. In the two-agent case the
choice of using the transformation and verification procedure of [51] or the verification pro-
cedure of [29] for transition-based coobservability depends on K, L (G), Σ and Σc. Also,
here it is not assumed that the specification language L (K) is regular whereas in [100]
and [117] L (K) is taken to be regular.

11 Approaches to Solving Sensor Activation Prob-

lems

Up until now we have focused on communication as the only means under which an agent’s
observation of a plant may change dynamically. However, recent work has considered sensor
activation problems. Here an agent has sensors associated with events that it can observe
locally. When a sensor is active occurrences of the event to which it is associated are
observed by the agent. Otherwise, they are not observed. In such problems it is assumed
that agents have control over their own sensors and not over the sensors of other agents.
Problems of sensor activation are, for analytical and implementation purposes, simpler
than problems of communication. Analytically they are simpler as agents have complete
control over their own observations. They are simpler for implementation purposes as no
communication channels between agents are required.

Problems of sensor activation are different from problems of sensor selection which have
already been considered in the literature (e.g., [24, 114, 116, 68]). Sensor selection concerns
computing a set of observable events having minimum cost / cardinality where observational
properties such as observability or diagnosability are satisfied. Sensor selection problems for
diagnosability, observability and normality (a property that is stronger than observability)
have been proven to be NP-complete ([114]).

When event occurrences have non-uniform cost computing minimum-cost sensor acti-
vation policies is also expensive ([92, 12]). However, when event occurrences have uniform
cost there exist efficient algorithms for computing solutions to sensor activation problems
([106] and related works).

The first work to consider sensor activation in the domain of DES is [92]. This work
considers centralized control (resp., diagnosis) of systems modeled by automata, timed au-
tomata and stochastic automata. We restrict attention to logical / untimed automata. A
centralized agent is considered which maintains a string estimate of L (G). The determi-
nation of which sensors to activate is based on the string estimate. A cost function for
activating event sensors is given. The problem considered is to compute a minimum-cost
sensor activation map which satisfies observability (resp., diagnosability).

The authors consider the cases of acyclic and cyclic automata separately. For both cases
dynamic programming algorithms are provided for computing a solution. However, these
algorithms are expensive due to the fact that string estimates are maintained. In the acyclic
case, the dynamic programming solution is implemented over a state set which is in the
worst case doubly-exponential with respect to the maximum length of strings recognized
by the system DFA. In the cyclic case, the solution is in the worst case exponential in the
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state set of the system DFA.
The authors also consider computing suboptimal solutions using similar dynamic pro-

gramming solutions where a limited lookahead window is used to prune the state sets. The
algorithms are in the worst case doubly-exponential with respect to the lookahead window
size. No results or claims are provided for quantifying the cost of the computed suboptimal
sensor activation maps or how the cost relates to the cost of minimum solutions.

Algorithms to compute sensor activation maps for a centralized diagnoser to diagnose
faults following k event occurrences in a system modeled by an NFA, G, when G is k-
diagnosable are presented in [12]. Cases where both cost is / is not associated with active
event sensors are considered. When cost is considered, an algorithm to compute a minimum-
cost diagnoser is presented. This problem is similar to the one considered in [92]. However,
it differs in three ways:

1. k-diagnosability is addressed, not just diagnosability.

2. Sensor activation decisions are modeled by a finite state transducer (FST), which
has only bounded memory for recording observations. As such, only state estimates
rather than string estimates can be maintained by an agent.

3. Cost is associated with the activation of an event sensor as well as the duration
(number of event occurrences) for which the sensor is active, not just activation of
the sensor.

The algorithm for computing a minimum cost sensor activation map that enables a
diagnoser to diagnose all faults after k event occurrences is proven by the authors to be in
O(∣Σ∣ ⋅ ∣T ∣ ⋅2∣X ∣2+2∣Σ∣+k) where X is the state set, T the transition set and Σ the event set of G.
In the case of cyclic G, this approach is more expensive than [12] for computing a minimum
cost sensor activation map. The approach relies on computing all sensor activation maps
that enable diagnoses of all faults after k event occurrences. The algorithm presented to
do this is proven by the authors to be in O(2∣X ∣2+2∣Σ∣+k).

Also, given an FST representation of a sensor activation map, denoted here by D, an
algorithm for deciding if G is diagnosable with respect to D is provided. One can verify
that the algorithm is in O(∣F ∣ ⋅(∣X ∣ ⋅ ∣Y ∣)2) where F is the number of fault events and Y the
state set of D. An algorithm for computing the minimum k such that G is k-diagnosable
with respect to D is also provided. As the authors prove that this algorithm is of the same
complexity as verifying if G is diagnosable with respect to D, one can verify that it is in
O(∣F ∣ ⋅ (∣X ∣ ⋅ ∣Y ∣)2).

After having considered problems of communication which inherited features from [70]
the authors of [104, 103] have since turned their attention towards problems of sensor
activation in DES in [106]. Here the specific objective of control is considered.

The problem and solution approach in [106] primarily differs from [92] and [12] in that

1. The notion of an optimal sensor activation map is logical, not numerical.

2. Sensor activation maps can be computed in polynomial time in all input parameters.
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It is assumed that K ⊑ G. The authors first consider a centralized control problem. It
is assumed that if the centralized controller observes all of its observable event occurrences
then, for any string s generated in K, the set of strings which yield the same observation
as the observation of s according to the controller’s observation map are all followed by the
same control decision for any event controllable by the controller. State-based (equivalent
to transition-based) observation maps for the centralized controller are introduced which
map from states of G to a subset of the controller’s observable events which label outgoing
transitions from that state. These maps are referred to as sensor activation maps. For a
given state, if an event exists in the set mapped to by the state-based observation map for
the state then we say the sensor is activated for that event at the state. If the sensor is
activated for an event then the controller will observe the event upon its occurrence.

From K a state-based specification condition is derived which characterizes observabil-
ity. Specifically, it is a set containing all pairs of states where there exists a control conflict
with respect to the controller’s set of controllable events. To satisfy the specification, the
controller needs to activate sensors dynamically in such a manner that no two states in any
state pair of the specification condition be indistinguishable.

As was the case with communication, sensor activation maps are required to be feasible.
That is, if any two strings of events appear identical according to a map then the sensor
activation decisions following both strings need to be the same.

The problem considered then is to compute a sensor activation map from states to
transitions which is feasible, satisfies the specification condition and is logically minimal.
As in previous problems of communication for logical DES, there is no minimum solution
when set inclusion is used as the optimality criterion.

The authors demonstrate that, contrary to problems of communication, the “lack of
monotonicity” phenomenon is not encountered for feasible sensor activation maps. That
is, for feasible sensor activation maps: the more that sensors are activated the fewer strings
/ states become indistinguishable. Effectively, the more an agent sees, the more it is able
to distinguish.

Using this constructive result, the authors prove that the union of any two feasible sensor
activation maps is also a feasible sensor activation map. A consequence of this is that, for
any given state-based sensor activation map ω (not necessarily feasible), there exists a
unique maximum feasible state-based sensor activation map ω′ such that, ∀s ∈ L (G),
ω′(s) ⊆ ω(s). The authors then present an algorithm for computing the maximum feasible
sensor activation map and associated pairs of indistinguishable states of G for a given input
map. They prove that this algorithm is in O(∣X ∣2 ⋅ ∣Σ∣) where Σ is the event set and X the
state set of G. Using this an algorithm is provided for computing a feasible, minimal sensor
activation policy for the controller which satisfies its specification condition. The authors
prove that this algorithm is in O(∣X ∣3 ⋅ ∣Σ∣2). The authors prove that any feasible, minimal
sensor activation map defined over the transitions of G which satisfies the specification
condition can be computed by a choice of the input permutation of the transitions labeled
by events observed by the centralized controller provided to the algorithm.

The authors then consider the case of decentralized control in the absence of communi-
cation. It is the objective to compute minimal sensor activation policies for all agents such
that transition-based coobservability is satisfied. It is assumed that some procedure for
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verifying coobservability is given, such as the algorithms of [29, 100] or [51]. Using a sim-
ple generalization of the algorithm for calculating a centralized controller’s minimal sensor
activation policy, the authors provide an algorithm for calculating a solution to the decen-
tralized problem. Similarly, all solutions can be computed by an appropriate permutation
of the input arguments to the algorithm. The algorithm is proven to be of polynomial
complexity in all parameters of the system.

In conjunction with the previous work for minimizing sensor activations for purpose of
control, the same authors also investigated minimizing sensor activations for purposes of
diagnosis in [102]. This work presents a general algorithm for computing minimal sensor
activation maps which guarantee (co)diagnosability holds where no fixed state-transition
structure of the plant is provided. Instead, a fixed partition of the language of the plant is
assumed to be given over which sensor activation policies are defined. By considering more
refined language partitions one can obtain more refined minimal sensor activation maps.
This is analogous to a refinement in sensor activation maps derived from more refined
state-transition structures of the plant.

This work differs from the previous works on sensor activation for event diagnosis (e.g.,
[92, 12]) for the same reasons listed in [106]. It also differs in that no specific state-transition
representation of the plant is considered. However, when the plant is modeled by a DFA,
the computation of minimal sensor activation maps is in the worst-case polynomial in the
state set of the plant, as opposed to the previous works, although it is exponential in the
size of a so-called language window size (to be introduced later). In the decentralized case
it is also exponential in the number of agents. When the plant is modeled by a DFA the
sensor activation maps considered can be modeled by FSTs. In the general case no specific
model is assumed for the sensor activation maps.

The general algorithm proceeds in a manner very similar to the algorithm in [106] where
active sensors for events following all strings in a partition are attempted to be deactivated,
one partition at a time in a prespecified order, until a minimal, feasible sensor activation
map is computed. The complexity of the general algorithm cannot be established precisely.
It depends on the complexity of algorithms for verifying diagnosability and for calculating
the maximum feasible sub-policy of a given sensor activation policy, which are dependent
on the class of languages to which the language recognized by the plant belongs.

When regular language representations of the plants are assumed diagnosability can be
verified using the algorithm of [100]. Additionally, when the language partition is based
on the last n event occurrences leading to a state of an automaton representation of the
plant (we say such a partition has window size n), the maximum feasible sub-policy of a
given sensor activation policy can be computed. We have determined that the complexity
of calculating the maximum feasible sub-policy is in O(∣X ∣2 ⋅ ∣Σ∣2n+3). This is worse than
the algorithm in [106] for computing maximum feasible sub-policies over transitions of
an automaton representation (rather than partitions). Consequently the algorithm for
computing minimal sensor activation maps is exponential in the window size (specifically,
O(∣X ∣3 ⋅ ∣Σ∣3n+4)).

The authors also consider the case of minimal sensor activation in decentralized diagno-
sis. Their generalization to the decentralized case is exactly the same as the generalization
to the decentralized case considered in [106]. However, when automaton representations of
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the plant and window partitions are considered, the authors prove that the algorithm is in
O(∣P ∣I+2 ⋅ ∣Σ∣) where ∣P ∣ ≤ ∣X ∣ ⋅ ∣Σ∣n+1. So the decentralized algorithm is in the worst-case
exponential in I and n. The authors do not indicate whether or not all minimal sensor
activation maps can be computed from a choice of language partition.

By reduction from the problem of deciding transition-based (co)observability to transition-
based (co)diagnosability and Theorem 4 of [100] the approach of this work may also be
applied for solving the same problems considered in [106]. However, the algorithms of [106]
are significantly more efficient than converting the problem to a diagnosability one and
applying the algorithm of this work when considering a fixed automaton representation of
the plant.

The merits of this work are that it provides algorithms for computing minimal sensor
activation policies for satisfying diagnosability and codiagnosability where language parti-
tions of the plant language are provided instead of a state-transition structure representa-
tion and, when automata representations of the plant are assumed, for fixed computational
resources it allows one to compute the best possible refinement of minimal sensor activation
maps by refining parameterized window partitions and their window sizes.

However, in both cases of [106, 102] the solution space is considered to be fixed, either
by a fixed state set representation or fixed language partition. The solutions computed are
minimal with respect to the state set or given language partition. By refining the state set
or language partition of a plant further, one can compute sensor activation maps where
strictly fewer sensors need to be activated following some strings generated by the plant.
In [101], the authors provide an algorithm for computing sensor activation maps which are
minimal not merely with respect to a state set or language partition of a plant, but minimal
with respect to the plant language. That is, for such sensor activation maps, by refining
the state set of the plant to any degree, it is not possible to compute a sensor activation
map where fewer sensors are active without violating correctness criteria of diagnosability
and feasibility of the sensor activation map.

Only the centralized diagnosis problem is considered in [101]. The approach is not
explained very well and the algorithm is extremely complicated. No correctness proofs or
complexity analysis are provided. The approach can only be used to compute a subset of
the class of sensor activation maps which are minimal with respect to the plant language as
the algorithm utilizes the refinement of a given plant state-transition structure in a specific
manner.

The previous approaches of [106, 102, 101] all compute minimal sensor activation maps
for centralized (resp., decentralized agents) offline to be used for control (resp., diagnosis)
purposes. In [105], the authors consider computing minimal sensor activation maps online
using one-step lookahead of event occurrences that the plant is capable of generating. Here
a fixed automaton representation of the plant, G, and a state-based specification condition
over pairs of states in G are assumed to be given. The problem is to compute a sensor
activation map which is implementable with respect to G, feasible, prevents any pair of
states in the specification from being indistinguishable and is minimal.

An online approach to sensor activation has been considered previously in DES in [92].
However, in [92], variable cost may be incurred when sensors are activated for different
events. In [105] the cost incurred for activating a sensor is the same for all events. Also,
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only suboptimal solutions may be computed using the online method of this previous work
and the complexity of the procedure is expensive relative to this work due to the fact that
string estimates are maintained instead of just state estimates.

The authors prove that, for a given state estimate of G after the observation of any
string in G, if no pair of states formed from the estimate are contained in the specification
then upon observing an event corresponding to any activated sensor a state estimate will
be produced such that none of the pairs from the resulting estimate are contained in the
specification. However, if a sensor for an arbitrary observable event is deactivated then
this property is not guaranteed. This result suggests that only one-step lookahead of
sensor activation decisions is required for solving the problem at hand online.

The online algorithm suggested by this result is an iterative one which considers de-
activating sensors in a prespecified total order until a certain set of sensors must remain
active for otherwise state pairs from the specification may become indistinguishable, etc.
In this manner it is similar to the algorithmic approach of [106]. The algorithm can be
applied in scenarios where the time to update the state estimate following an observation
and for computing a sensor activation decision from this estimate online is less than the
time between any two consecutive event occurrences. The complexity of the procedure for
computing the current sensor activation decision using the one-step lookahead is polyno-
mial in the state set of G. It is proven that the sensor activation map computed by the
algorithm satisfies feasibility, implementability, satisfaction of the specification and mini-
mality. By considering different orders on deactivating sensors, different sensor activation
decisions can be made online.

In [30] the authors attempt to generalize the online sensor activation algorithm for
state disambiguation provided in [105]. Here, instead of making sensor activation changes
after every observed event occurrence, the authors consider only making sensor activation
changes after k ≥ 1 observed event occurrences. The authors claim that the proposed online
algorithm is polynomial in all plant parameters (state / event sets of G). Though the work
is a generalization in terms of the number of observed event occurrences allowed before a
change in active sensors, it relies on assumptions not made in [105]: (1) G is deadlock-free,
i.e., for any state of G, at least one event labels a transition from that state; (2) there are
no cycles of unobservable events in G.

The work of [14] concerns computing sensor activation maps for a centralized diagnoser
to diagnose faults following k event occurrences in a plant modeled by a DFA, G, when G
is k-diagnosable. This work follows from [12]. It presents an alternative way to compute
the most permissive observer (MPO), an NFA which encodes all sensor activation maps
that enable diagnoses of all faults after k event occurrences in a plant. The MPO was first
defined in [12] and forms the basis for computing minimum-cost sensor activation maps
when cost is associated with activating event sensors and the duration over which they are
active. A cost function for active sensors and an algorithm for computing a minimum-cost
sensor activation map from the MPO was provided in [12].

For a given fault event, every occurrence of the fault can be tracked using the constructed
MPO. We omit the details on how the MPO is defined in this work, which is a different
procedure for defining the MPO than that used in [12]. However, the authors do introduce
and incorporate an optimization for reducing the state set of the MPO which can be used
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during construction of the MPO.
The authors propose a depth-first search algorithm for computing the MPO. The au-

thors prove that the algorithm is in O([(2(k + 2))∣X ∣][2∣Σs∣][∣X ∣2]) where Σs is the set of
event sensors that can be activated / deactivated by the diagnoser. This outperforms the
algorithm of [12] for computing the MPO which is in O(2∣X ∣2+2∣Σ∣+k).

The authors assert that if multiple faults can be generated by G then an MPO should
be created for each fault type instead of a single MPO maintaining a separate count for
each fault type.

The last work to be surveyed on sensor activation is [79]. This work investigates a
recently introduced notion of detectability in DES. Detectability refers to the ability of
an agent to determine the current and subsequent states of a DFA G based on event
observation. In prior work ([81]) the authors assumed that event observation was static.
In this work they consider that observation is based on the transitions of G.

Automaton G is considered to have multiple possible initial states. The actual initial
state of G is not known to an agent. As usual, G’s events can be partitioned into events
unobservable and observable by the observer. Some assumptions regarding G are made:
(1) G is deadlock-free, i.e., for any state of G there exists at least one outgoing transition
labeled by an event; (2) there are no cycles of unobservable events in G.

Four different type of detectability conditions are introduced, given G and observations
made using observation map M defined over the transitions of G:

� Detectability (resp., Strong Detectability): G is detectable (resp., strongly detectable)
with respect to M if it can be determined, after a finite number of event occurrences,
the current state and subsequent states of G for some (resp., all) infinite strings of
G.

� Periodic Detectability (resp., Strong Periodic Detectability): G is periodically (resp.,
strongly periodically) detectable with respect to M if the current state of the system
can be determined at a period of event occurrences for some (resp., all) infinite strings
of G.

The authors demonstrate that detectabilities can be verified using the observer automa-
ton computed by G using the subset construction. However, the authors also introduce
nondeterministic detector automata, which are similar to the product automata of [97], for
verifying strong and strong periodic detectabilities. Detector automata can be constructed
in O(∣X ∣2 ⋅ ∣Σ∣) ([80]) whereas the subset construction is in the worst case exponential in
∣X ∣. Verification can be performed online during construction of the detector automata,
thus incurring the same complexity. No mention is made of whether or not there exist
efficient approaches for verifying detectability and periodic detectability.

The authors then consider the problem of computing a minimal sensor activation policy
for satisfying a given detectability condition. The setup is very similar to the centralized
minimal sensor activation problem of [106]. The notions of implementability and feasibility
of sensor activation policies are recalled. Generalizing the results of [106], the authors prove
monotonicity of feasible sensor activation policies and provide an algorithm for computing
the maximum feasible sub-policy of a given sensor activation policy. These results are a
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generalization in that the initial state of G is uncertain by the agent, whereas in [106] the
initial state is certain.

The authors then present an algorithm for computing a minimal, feasible sensor acti-
vation policy satisfying a given detectability condition. The algorithm is similar to the one
used in [106]. Analogous to the algorithm of [106], all minimal, feasible sensor activation
policies can be computed using the algorithm by a choice of the input permutation provided
on the transitions of G labelled by observable events.

12 Approaches to Solving Problems of Opacity In-

volving Dynamic Observation

Though control and diagnosis are the most commonly studied topics of DES when dynamic
observation is concerned, recently a new topic of opacity which is related to studies in
computer security has been gaining attention. Opacity is used to study the effectiveness of
a system to keep secret a predicate of the system from a (potentially malicious) external
observer. A predicate is opaque if an observer of the system will never be able to determine
the truth of that predicate.

One of the first works in opacity of DES is [8]. Here systems are considered to be
modeled using deterministic labelled transition systems (LTS) which may be infinite-state
and whose initial state may be uncertain to an external observer. An external observer
is assumed to have knowledge of the transition-structure of LTS and has an observation
map. Predicates are defined over strings generated by the LTS. A predicate is opaque with
respect to the LTS and an observation map used by an external observer if any string in the
predicate is indistinguishable, according to the observation map, from a string generable
by the LTS that is not in the predicate. Additionally, state-based opacity can be defined
in terms of the states reached by prefixes of strings in the predicate. This can be used to
model requirements in which the initial (resp., intermediate, final) states of strings in a
predicate must be kept secret.

The authors demonstrate that verification of security properties such as anonymity
([76]) and non-interference ([20]) can be reduced to verifying various forms of opacity for
LTS. The authors then prove that checking opacity (string-based / state-based) for LTS is
undecidable even when static observation maps are considered. This is done by showing
that the reachability problem for Turing Machines is reducible to this problem. So the
authors then investigate PN representations of systems, as reachability is decidable for this
class of systems. The authors prove that even checking initial-state opacity for reachability
graphs of PNs is undecidable for dynamic observation maps. This suggests that system
models weaker than PNs should be employed when decidability of verifying opacity is
required.

The work of [10] applies a similar approach, used in [12] for solving a sensor activation
problem of k-bounded diagnosis, to solving a problem of opacity. As in [12], the authors
assume the plant is to be modeled by an NFA. The secret of the plant to be protected from
an external attacker / observer is defined as a subset of the states of G. It is said that the
secret is opaque if, for the observation of any string in G, the state estimate following the
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observation is not included in the set of secret states. This definition of opacity is different
from the string-based version considered in [8].

Dynamic observers were introduced in [12] as FSTs for mapping strings generated by
G to their observation according to some sensor activation map. They are recalled in this
work for ensuring opacity of a secret. However, their application is different. In [12] the
external observer is assumed to have control over the sensors for events it can observe. In
this work, this is not the case. Instead, some entity which wants to protect the secret of
G from the external observer has control over sensors for events observable by the external
observer.

Using dynamic observers is a non-intrusive approach to opacity-enforcement. It differs
from previous works (e.g., [1, 19]) where observation masks are static and, instead, control
is imparted on the plant in an intrusive manner to guarantee that the secret of the plant
remained opaque.

The authors consider the problem of verifying if a secret is opaque with respect to G
and a dynamic observer D. They prove that this problem is PSPACE-complete. So, even
for automata models, checking opacity is expensive. This is in stark contrast to a similar
verification problem concerning k-diagnosability which is proven to be in PTIME in [12].

The authors then consider computation of the most permissive observer for opacity, a
structure which encodes all dynamic observers that ensure opacity of the secret in G. They
describe its computation and prove the complexity of the computation to be in O(2∣X ∣ ⋅2∣Σ∣).
In a subsequent work ([11]), the authors prove that computation of the most permissive
observer for opacity is in EXPTIME and this is a lower bound.

When cost is associated with sensor activations and the duration for which sensors
are active a minimum-cost dynamic observer can be computed. The authors consider this
problem next. They use the same approach and tools of [12] to solve this problem and
demonstrate that it is in O(∣X ∣ ⋅(2∣X ∣ ⋅2∣Σ∣)). They prove that computing the cost of a given
dynamic observer with respect to G is in PTIME.

The work of [43] follows from [10]. However, here G is a DFA, dynamic observation
maps are defined over the transitions of G and the secret of G is string-based.

Let the secret be modeled by a regular language L (K) ⊆L (G). In this work, opacity
of L (K) is considered with respect to another regular language L ⊆ L (G), not merely
L (G) ∖L (K). This is in contrast to the previous surveyed works.

The author considers two types of opacity: strong and weak opacity. Specification
L (K) is strongly opaque with respect to L and observation map θ if θ(L (K)) ⊆ θ(L).
Specification L (K) is weakly opaque with respect to L and θ if θ(L (K)) ∩ θ(L) ≠ ∅.
Otherwise, L (K) is not opaque with respect to L and θ if θ(L (K)) ∩ θ(L) = ∅. In
previous works only strong opacity has been considered.

The author provides an algorithm for checking strong opacity. This algorithm requires
determinization of NFA and so is in EXPTIME. It is not difficult to see that the notion of
opacity here is a generalization of that considered in [10]. From this fact, the author asserts
that exponentiality in verifying their generalized version of opacity is “unavoidable” since
verifying opacity of [10] is PSPACE-complete ([10]).

Though the author initially thought verifying weak opacity was also in EXPTIME
([43]), he and colleagues have since published a work ([117]) illustrating that verifying
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weak opacity can be done in PTIME by using the nondeterministic detector automaton of
[79].

Similar to the work of [8], the author demonstrates that security properties of anonymity
and secrecy can be formulated in terms of their generalized opacities.

Following from [43, 3] focuses on modification of secret and non-secret regular languages
to satisfy opacity when transition-based observation maps are considered. This work is the
first step in an alternative direction for opacity synthesis to previous works where either
control is imposed on the system or observation maps are modified to satisfy opacity.

The authors prove a number of closure properties for the various opacities under union
and intersection of secret / non-secret languages. Counterexamples are also provided for
demonstrating cases where opacity is not closed under intersection.

The authors then use these closure properties to define super-languages and sub-languages
of L (K), L which satisfy strong (resp., weak, no)-opacity if L (K) is not strongly (resp.,
weakly, no)-opaque with respect to L.

For satisfying strong opacity, one can either (1) shrink L (K) or (2) enlarge L. Due to
closure under union, it is possible to compute the unique supremal sublanguage of L (K)
that is strongly opaque with respect to L. However, due to one of the counterexamples,
the unique infimal superlanguage of L such that L (K) is strongly opaque with respect to
this language may not exist. The authors provide an example demonstrating that minimal,
incomparable superlanguages of L exist such that L (K) is strongly opaque with respect
to them. However, no algorithm is suggested for computing any minimal superlanguage.

For satisfying weak opacity, one can either (1) enlarge L (K) or (2) enlarge L. By one
of the counterexamples, there may not exist a smallest superlanguage of L (K) which is
weakly opaque with respect to L. As before, they demonstrate an example where minimal,
incomparable superlanguages of L (K) are found such that these languages are strongly
opaque with respect to L. However, no algorithm is suggested for computing such lan-
guages. The case for enlarging L is symmetric to enlarging L (K).

For satisfying no opacity, one can either (1) shrink L (K) or (2) shrink L. By a previous
union closure property, it follows that a supremal sublanguage of L (K) that is not opaque
with respect to L can be found. The case is symmetric for shrinking L.

The authors of [3] then proceed to consider an intrusive approach where control is
imposed on G to ensure that strong (resp., weak, no) opacity of a secret language L (K) ⊆
L (G) with respect to language L ⊆L (G) is satisfied in [4].

In the problem of this paper the set of events observed by the controller controlling G
is assumed to contain the set of events observed by an external observer. The controller
observes the system through the static natural projection defined over its set of observable
events. The external observer, however, views the system through a string-based observa-
tion map. It is also assumed that the controller observes all events it controls.

For a given L (K) and L, a desirable control solution for enforcing strong (resp., no)
opacity between L (K) and L is the largest controllable, observable sublanguage of L (G),
denoted by M , such that L (K)∩M is strongly (resp., not) opaque with respect to L∩M .
It is obvious that by restricting the behaviour of G weak opacity cannot be satisfied if
L (K) is not weakly opaque with respect to L.

The authors define an operator, which applied to a sublanguage H ⊆L (G), generates
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the largest sublanguage of H that yields strong opacity. Since the controller observes events
it controls, an operator can be defined for computing the supremal controllable and normal
(stronger than observable) sublanguage ([7]). An algorithm is then proposed for computing
a control solution which simply iterates between the two operators until a sublanguage of
L (G) is computed which yields strong opacity.

The authors prove that if L (K), L and L (G) are regular and the external observer’s
observation map θ preserves regularity1 then the algorithm terminates.

The authors then consider the no opacity control problem. The approach taken here is
similar to the previous one. They first consider computation of the largest sublanguage of
L (G), denoted by M , such that L (K) ∩M is not opaque with respect to L ∩M . The
authors prove that the supremal controllable, normal sublanguage of M is a solution to
the no opacity control problem. They do not have to formalize a no-opacity preserving
operator and iterative algorithm for computing it, which contrasts with the computation
of the largest controllable, normal, strongly-opaque sublanguage of L (G).

Decentralized opacity problems following the work on centralized opacity in [43] are
investigated in [51]. The authors introduce decentralized versions of strong, weak and
no-opacity considered in [43].

The authors take L (G) to be regular. The authors assert that verifying transition-
based coobservability (introduced in [29]) of a prefix-closed languageH ⊆L (G) is reducible
to verifying decentralized no-opacity of multiple secret languages with respect to other non-
secret languages using the same agent transition-based observation maps.

The authors then consider opacity of a secret from the perspective of a coordinator that
receives communications from agents observing G. Here agents compute inferences from
their observations of G then send them to the coordinator where a final inference is made.
This is intended to model situations in which multiple external agents may coordinate their
efforts to infer whether or not the system executed a behaviour in the secret language,
L (K).

The following assumptions are made on the observation map of each agent, the inference
map of each agent, and the inference map of the coordinator:

1. The observation map of each agent is based on the transitions of G.

2. The domain of an agent’s inference map is L (G). The codomain of the map can be
any set of symbols / strings. For example, an agent’s string (resp., state) estimate of
L (G) (resp., G).

3. The inference map of an agent is monotonic: if an agent sees more then its inference
will be more precise.

4. The coordinator utilizes all the inferences provided to it by all agents after generation
of a string in L (G) and only these inferences in computing its final inference. Also,
the final inference made is a refinement over any inference communicated to it by any
individual agent.

1For regular language J , θ(J) and θ−1(J) are regular.
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Strong, weak and no coopacity are introduced in terms of agent inference maps. Infor-
mally, L (K) is strongly coopaque with respect to L if all strings in L (K) are indistin-
guishable with strings in L even with the help of the coordinator. Weak and no coopacity
are defined similarly.

The authors prove that under the aforementioned set of assumptions the most useful
class of symbols that could be communicated from agents to the coordinator for computing
its inference are the event occurrences observed locally by agents. This is a useful result.
Let θ denote the transition-based observation map formed by the union of the transition-
based observation maps of all agents. A corollary of the previous result is that if L (K)
is strongly (resp., weakly) opaque with respect to L and θ then L (K) is strongly (resp.,
weakly) coopaque with respect to L under any agent and coordinator inference maps where
the same observation maps for agents are used. Under the set of assumptions, this result
implies an easy test for verifying whether or not a secret remains opaque / not opaque from
the perspective of coordinating agents regardless of the specific inference maps used by the
agents. However, defining algorithms for verifying strong (resp., weak) coopacity remain
open.

13 Conclusions, Future Work & Open Problems

In this paper an overview of the current research on sensor activation and communication
in discrete-event systems was presented. Topics covered included the early works on com-
munication between agents in control of DES, decidability of control problems involving
communication, distributed estimation involving communication, communication in prob-
lems of diagnosis and prognosis, works where knowledge of agents is explicitly treated and
used to determine when agents should communicate, works where distributed communi-
cating controllers are derived from monolithic controllers, works in communication and
sensor activation where observations are transition-based as well as dynamic observation
in problems of opacity.

There are a few general criticisms that we have on research conducted on sensor activa-
tion and communication in DES. We have observed that many of the algorithmic solutions
to problems tend to be näıve and exhaustive. For many problems we believe that there
exist better algorithmic solutions (in time and space). Complexity analysis of the algorith-
mic solutions in most works is more often than not conducted in a lazy manner with no
asymptotically tight lower or upper bounds provided. Also, most complexity analyses pro-
vided are directly related to the algorithms proposed by authors and little to no discussion
is made on the complexity of the problems themselves.

Future directions in the research field are summarized next followed by open problems
of specific works.

An assumption which is made by every work surveyed is that, following a change in
its observation, an agent is capable of updating its decision (e.g., sensor activation, com-
munication) before the next event to be generated by the plant. This is restrictive. For
practical purposes, it may be useful to investigate problems of dynamic observation where
this assumption is relaxed.

For most problems regarding dynamic observation, the dynamic observation protocols
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are restricted to the state-transition structure of the system model. By considering a state
set refinement of the system one can broaden the set of dynamic observation protocols.
One could consider problems where the language of the system is given and the goal is to
determine a suitable state-transition model and state set refinement that produces dynamic
observation protocols which satisfy specific properties. Work to this end has already been
conducted in [101] for problems of sensor activation in centralized diagnosis of DES. How-
ever, solutions to other similar centralized and decentralized observation problems remain
open.

An agent’s implementation of most solutions to dynamic observation problems usually
requires determinizing NFA with ϵ-transitions. This is known to be exponential in the state
set cardinality of the NFA in the worst-case. However, in practice, rarely is it the case that
these exponential corner-cases are encountered (from [9]): “Practical experience has shown
that real systems possess sufficient structure so that the worst-case bounds rarely occur”.
So, a useful research direction is to classify which dynamic observation problems yield NFA
with ϵ-transitions in their solution procedure where determinization is not in the worst-case
exponential in the state set cardinality of the NFA.

Casting control and communication problems in the knowledge domain is promising.
The information provided to an agent at the outset of the execution of the plant as well
as the knowledge properties it stores and maintains during execution of the plant can be
used for solving different classes of observational problems. In the works considered agents
are provided at the outset the plant model and information about other agents such as
their sets of observable and controllable events. From this information and an agent’s
observations inferences about the plant, the agent itself and other agents can be computed
from which application-specific (e.g., control) decisions can be made. By providing agents
with more information at the outset and storing more information accumulated during
execution of the plant such as previous queries by / interactions with other agents, more
precise inferences can be computed which can be used to refine agent communications and
expand the set of observational problems the agents can collectively solve.

Some of the works on communication surveyed consider only two communicating agents
(e.g., [65, 70, 45, 66, 67]). It remains to generalize these works to the case of more than
two agents.

Most of the works on communication surveyed consider restrictions on which agents may
communicate with other agents (the communication topology). In most of these works the
communication topology is a complete graph or is acyclic and strongly connected. To
our knowledge no work has been done where communication topologies are generally just
strongly connected besides [47].

In most of the works surveyed on communication it is assumed that communication
of messages between agents is reliable, error-free and instantaneous. Little work has been
done on communication problems where observation is dynamic and these assumptions are
relaxed. Work has been done when all observations are communicated between agents and
communication incurs delay (e.g., [94, 26, 18, 78, 59, 58, 112, 31, 87]). Similar problems
related to dynamic sensor activation where there exists channels between an event generated
by the plant and its observation by an agent have yet to be explored. Work on such channels
when event sensors are always / never active has been explored in [44, 39]. Of note, [39] and

62



subsequent works introduce an approach for computation of a state estimate of modular
G where observation channels are unreliable, error-prone, result in delay and where event
observations are also only partially ordered, not totally ordered as in the works considered
in this survey.

In the works [47] and [16] the nature of the information to be communicated between
agents is not specified a priori. In all other works either event occurrences, state estimates
or string estimates are communicated. It would be interesting to investigate, for future
work, other problems where the information to be communicated is not specified a priori.

All investigated problems of minimal communication / sensor activation where log-
ical notions of minimality are considered could be extended to problems of minimum
communication / sensor activation when quantitative cost is associated with communi-
cations / active sensors. Works where logical notions of minimality are considered include
[70, 45, 104, 103, 106, 102, 101, 79]. Works surveyed where minimum cost observation maps
are computed includes [74, 92, 12].

Research on opacity has considered centralized or decentralized problems where no
communication occurs among agents. It would be interesting to investigate problems where
system administrators guarding a secret or external attackers which aim to discover the
secret do communicate with one another.

Open problems of specific works are summarized next.
From [2] computing agent minimal communication and control policies where commu-

nication is made as late as possible following any string or in general remains open.
In [38] the author mentions that “at this point, it remains to understand more clearly

the sources of the lack of monotonicity and to identify other structural assumptions for
the development of efficient algorithms for the synthesis of communication protocols. Then
one can seek to exploit monotonicity properties for the development of efficient algorithms
for the synthesis of communication policies.” We agree that it would be worthwhile to
investigate the sources of lack of monotonicity for this reason. In [104] the authors identify
a structural restriction of the plant model (absence of cycles besides self-loops on system
states) and communication topology (agents only communicate with a central agent / sta-
tion) which allows for an efficient algorithm for computing communication policies. Finding
other structural restrictions which allow for efficient algorithms is an important research
direction as described in [38].

In [100] a reduction from (transition-based) coobservability to (transition-based) codi-
agnosability is provided. It remains open to determine whether or not codiagnosability can
be reduced to coobservability.

While computation of the most permissive observer in [10] is in EXPTIME, EXPTIME-
hardness is left open. Determining the exact complexity of computation of the most per-
missive observer used in [12] and [14] is also open.

Most works on sensor activation consider that agents activate sensors to satisfy obser-
vational conditions such as observability, diagnosability or CP-coobservability. In [106] the
authors mention that it would be possible to apply the approach that they take for mini-
mal sensor activation for purposes of satisfying CP-coobservability to computing minimal
sensor activation policies for satisfying alternative versions of coobservability investigated
in [113, 115, 35]. This is assuming that verification procedures exist for transition or state-
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based versions of these coobservability conditions. So defining state / transition-based
characterizations of DA-coobservability, CP&DA-coobservability and other coobservability
variants is an important research direction.

From [79] it is mentioned that the problem of efficiently verifying detectability and
periodic detectability remains open. To date, verification is based on computation of the
observer automaton which is in the worst case exponential in the state set of G.

In [100] the problem of verifying coobservability is reduced to verifying codiagnosability
in the context of transition-based dynamic observations. In [51] the problem of verifying
transition-based coobservability is reduced to verifying decentralized weak opacity in the
same observational context. So it is possible that codiagnosability and decentralized weak
opacity are comparable. Investigating the relationship between the two would be useful. It
is already known that, in the case of static observation, verifying diagnosability is reducible
to verifying weak opacity [43].

In [43] verification of strong / weak opacity is considered when the secret language is
regular. It would be useful to investigate algorithms for verification of strong / weak opacity
of languages which are not regular as in works following [43] (e.g., [3, 4, 51]) the secret and
non-secret languages considered are not assumed to belong to any specific language class
but no opacity verification algorithms for these languages are provided.

In [51] strong / weak co-opacity is defined but no algorithms for their verification are
provided.
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