
The Computation of

Sensor Activation Decisions

in Discrete-Event Systems

Technical Report 2013-603

David Sears∗ and Karen Rudie

March 9, 2013

Abstract

This paper considers partially-observed discrete-event systems where sen-
sors are associated with events observable to an agent monitoring the
system. The agent is capable of turning the sensors for events on and off
dynamically, depending on the trajectory of the system. Reading data
from the sensors may be costly so it is imperative that their use be re-
duced for reasons such as energy, bandwidth or security. When a sensor
for an event is on / active any occurrence of the event is detected by the
agent and is not detected otherwise. The agent may employ different sen-
sor activation policies, depending on the task at hand. Sensor activation
policies are defined over the transitions of a state-transition representation
of the system. From sensor activation policies a map from observed event
sequences to sensor activation decisions can be computed which the agent
can use to determine which sensors to turn on / off and when. In this
paper, we consider three subclasses of sensor activation policies of increas-
ing generality. For each subclass, we demonstrate ways to compute maps
from observed event sequences to sensor activation decisions in polyno-
mial time. However, for the last subclass considered, we demonstrate that
verifying if an arbitrary sensor activation policy belongs to this class is
PSPACE-complete.

1 Introduction

The behaviour of many critical dynamical systems require monitoring by exter-
nal agents. The behaviour of such systems is monitored so that critical failures
in the system may be diagnosed or anticipated prior to their occurrence. Control
of such systems can be conducted in order to prevent failures from occurring in
cases when failures can be anticipated in advance and actuators for the system
are available.

∗E-Mail: sears@cs.queensu.ca; Address: School of Computing, Queen’s University,

Kingston, Ontario K7L 3N6, Canada

E-Mail: karen.rudie@queensu.ca; Address: Department of Electrical & Computer Engi-

neering, Queen’s University, Kingston, Ontario K7L 3N6, Canada

1



The behaviour of these systems is reported to agents via sensors embedded
in the system. It may be the case that reading information from the sensors
or keeping them active for a prolonged duration is costly. Using sensors may
be costly in cases where each sensor only has a limited energy supply, or be-
cause limited bandwidth is available for transmission of readings from sensors
to the agent or for security purposes in situations where the agent wishes to be
undetected while taking measurements of the system. In all these cases it is im-
perative to minimize reading information from sensors or minimize the duration
over which the sensors are turned on / active if the agent can turn sensors on /
off.

The sensor activation problem can be modeled in many different ways, de-
pending on the model of the system, the particular problem at hand (e.g., con-
trol, failure diagnosis, failure prognosis, opacity), the nature of the information
reported by sensors, and the cost function to be minimized. In this paper we
consider that the system is specifically a discrete-event system (DES): a sys-
tem with a discrete state-space and event-driven dynamics. In such systems
events occurs sequentially and asynchronously. Sensor activation problems for
discrete-event systems have been considered in [1, 2, 5, 9, 11, 12, 13, 15, 16].

Specifically, we consider discrete-event systems which can be modeled by
finite state automata. For such systems the state-space is finite and the set
of events which cause the system to transition from one discrete state to an-
other is finite. As these systems can be modeled by finite state automata,
state-transition representations of such systems exist where events label the
transitions of the system model. The individual sensors used by an agent are
associated with individual events in the system. Turning an event sensor on /
off depends on the particular trajectory of the system. Specifically, given an au-
tomaton state-transition representation of the system, we consider that turning
an event sensor on / off depends on the particular transition of the system rep-
resentation: a sensor for an event labeling a particular transition of the system
is always on whenever the transition is encountered or is always off whenever the
transition is encountered. When the turning of event sensors on / off depends
on the transitions of the system representation we say that the sensor activation
decisions by the agent are dictated by a sensor activation policy (introduced in
[16]) defined over the transitions of the system. Depending on the problem at
hand (e.g., control, failure diagnosis, failure prognosis, opacity), one sensor ac-
tivation policy may be preferable over another or two sensor activation policies
may be incomparable, depending on the cost function for active sensors or the
relative cost of sensor activation policies.

In this paper, we do not consider the minimization of sensor activations. This
topic has been explored in previous papers [1, 5, 9, 11, 12, 13, 15, 16]. Instead,
we consider the computation of maps from sequences of event observations to
sensor activation decisions corresponding to given sensor activation policies. For
a given sensor activation policy defined over the transitions of the system au-
tomaton model, such a computation typically involves the determinization of
nondeterministic finite automata. It is well known that the determinization of
a nondeterministic finite automaton is, in the worst-case, exponential in the
state-space of the nondeterministic finite automaton. In this paper, we con-
sider specific classes of sensor activation policies and demonstrate procedures
for computing these maps which are polynomial in the size of the representa-
tion of the system. The procedures we provide do not involve determinization

2



of nondeterministic finite automata. We do not investigate determinization of
nondeterministic finite automata defined by the systems and sensor activation
policies considered. This is an open topic.

Specifically, we consider sensor activation policies which satisfy various no-
tions of “feasibility”. Informally, a sensor activation policy is feasible if any
two states of the system which are indistinguishable under the sensor activation
policy are followed by the same sensor activation decisions for certain subsets of
observable events. Feasibility was originally introduced in [7] in the context of
communication policies between two agents in discrete-event systems. The most
general notion of feasibility for sensor activation policies is introduced in [16].
The notions of feasibility that we consider are strictly stronger than the notion
considered in [16]. We consider notions of feasibility of increasing generality.

The organization of the paper is as follows. A preliminaries section introduc-
ing the requirements for understanding the remainder of the paper is provided
in Section 2. Afterward, in Section 3 we consider sensor activation policies
which satisfy a very strong notion of feasibility and, for such sensor activation
policies, demonstrate how the automaton representation of the system itself can
be used for determining the set of sensors to be activated following a sequence
of observable events. This notion of feasibility is relaxed in Section 4. There
we demonstrate that a very coarse estimate of the true state of the system may
be used in the computation of a map from observed event sequences to sen-
sor activation decisions and, furthermore, the computation is polynomial in the
state-space and event set cardinalities of the system. Following this, we consider
a further generalization of sensor activation policies in Section 5. For this more
general class, it may not be the case that the coarse estimate of the true state
of the system introduced in Section 4 can be used for computing maps from ob-
served event sequences to sensor activation decisions. In fact, we demonstrate
that determining if the coarse estimate can be used is PSPACE-complete. When
it can be used, we demonstrate a procedure polynomial in the state-space and
event set cardinalities of the system for computing maps from observed event
sequences to sensor activation decisions. Finally, we summarize the results of
the paper in Section 6.

2 Preliminaries

Here some basics on formal languages, automata and the original sensor ac-
tivation model of [16] are recalled. For a more detailed background, refer to
[16]. Also, familiarity with asymptotic time complexity characterizations of
algorithms and their associated notation (e.g., Big O) is required.

Given a set, S, we denote the cardinality of S by ∣S∣. An alphabet is a finite
set of distinct symbols (also called events, for our purposes). Let Σ represent
an alphabet. Let Σ+ denote the set of all finite sequences of symbols in Σ of
the form σ1σ2 . . . σk where k ≥ 1 is arbitrary and σi ∈ Σ for all i ∈ {1, . . . , k}. We
refer to a sequence of length zero (i.e., consisting of no symbols) as the empty
sequence, denoted by ε ∉ Σ. The Kleene-closure of Σ, denoted by Σ∗, is defined
as Σ∗ = {ε} ∪ Σ+. An element of Σ∗ is a string over the alphabet Σ. We also
refer to ε as the empty string.

For s ∈ Σ∗ we say t ∈ Σ∗ is a prefix of s, denoted by t ≤ s, if s = tu for some
u ∈ Σ∗. Thus ε ≤ s and s ≤ s for all s ∈ Σ∗.

3



A nondeterministic finite automaton (NFA), A, is defined as a tuple A =(Q,Σ, δ, q0) where Q is the nonempty set of states, Σ is the alphabet, q0 is the
initial state, and δ ∶ Q×(Σ∪{ε}) → 2Q is the (state-)transition function, a partial
function which determines the transitions from state to state on occurrence of
symbols in Σ ∪ {ε}. We extend δ to a function δ ∶ Q ×Σ∗ → 2Q by induction on
length of strings. Automaton A is said to be a deterministic finite automaton
(DFA) if δ is more specifically of the form δ ∶ Q × Σ → Q. We use δ(q, σ)!
for q ∈ Q and σ ∈ Σ to denote that transition δ(q, σ) is defined. Similarly, we
use δ(q, s)! for string s ∈ L(A) to denote that δ(q, s) is defined. The language
generated by A is L(A) = {s ∈ Σ∗ ∣ δ(q0, s)!}. Given A, a state-transition graph
representation can be constructed [3]. Given a state q ∈ Q, the ε-reach of q is
defined as {q′ ∈ Q ∣ q′ ∈ δ(q, ε)}.

When A is an NFA an algorithm known as the subset construction can be
used for constructing a DFA DET (A) where L(DET (A)) = L(A) [3]. The
state-space of DET (A) is a subset of the power set of the state-space of A. For
space considerations, we do not outline the operation of the subset construction
and instead refer the reader to [3].

We consider untimed DES modeled by DFA G = (X,Σ, ξ, x0). The set of
transitions of G is defined as TR(G) ∶= {(x, e) ∈ X × Σ ∣ ξ(x, e)!}. From the
perspective of an agent which observes events generated by G, the set of events
Σ can be partitioned into Σo, the set of events whose occurrences can be observed
by the agent, and Σuo, the set of events whose occurrences cannot be observed
by the agent. Associated with each observable event is a sensor that can be used
to detect occurrences of the event. When the sensor is activated (i.e., the event’s
sensor is on) any occurrence of the event is detected by the agent. Otherwise,
when the sensor is deactivated (i.e., the event’s sensor is off) any occurrence of
the event is not detected by the agent.

Next the sensor activation model of [16] which is used in this paper is recalled.
When to activate event sensors is described by a sensor activation map

ω ∶ L(G) → 2Σo . Specifically, for a string s ∈ L(G), ω(s) is the subset of observ-
able events corresponding to the sensors that are active after s. Given sensor
activation map ω, we use induction to define the corresponding information
map θω ∶ L(G) → Σ∗o as follows. For the empty string ε, θω(ε) = ε, and for all
s, se ∈ L(G) with e ∈ Σ

θω(se) = { θω(s)e if e ∈ ω(s)
θω(s) otherwise

In words, after the occurrence of s, the next event e is seen or observed by the
agent when it occurs after s if and only if the sensor for e is active for the agent
after the occurrence of s. The information map θω plays a comparable role to the
projection map P of standard partially observed discrete-event systems. That
is, θω(s) indicates which events in the string s are observed. The difference
is that an event e in s is either always observed under P or never observed,
whereas with dynamic sensor activations, whether e is observed in θω(s) will
depend on where in s it lies.

It is important to note that not all arbitrary sensor activation maps ω will
be “feasible” based on the information available to the agent. To guarantee
feasibility, it is required that any two strings of events that are confusable /
indistinguishable to the agent must be followed by the same activation decision

4



for every event. Namely, ω must be “compatible” with the information map θω

that is built from it. Formally, ω is said to be feasible if

(∀e ∈ Σ)(∀se, s′e ∈ L(G)) θω(s) = θω(s′) (1)

⇒ [e ∈ ω(s) ⇔ e ∈ ω(s′)].
The above definitions of ω and θω are language-based. In this paper we do not
consider arbitary language-based sensor activation maps. Instead, we consider
sensor activation maps that are defined over the transitions of a given automaton
G. For such maps, any two strings leading to the same state of G are followed by
the same sensor activation decision for every event. In [16] such sensor activation
maps are called implementable. In [16] implementable sensor activation maps
were considered in order to restrict the solution space of the problem they
considered. By refining the state-transition structure of G, finer solutions to
the problem they considered can be computed.

For implementable sensor activation maps, we can associate the activation
of sensors with the transitions in G: the event associated with each transition in
TR(G) is either sensed (activated) by the agent, or not. Given an implementable
sensor activation map ω, the set of transitions sensed by the agent through sensor
activations using ω can be defined. This set is denoted by Ω ⊆ TR(G). Here(x, e) ∈ Ω means that ∀s ∈ L(G) ξ(x0, s) = x ⇒ e ∈ ω(s). We call Ω a (sensor
activation) policy.

In particular, ω can be obtained from Ω as follows:

ω(s) = {e ∈ Σo ∣ (ξ(x0, s), e) ∈ Ω}. (2)

It is not difficult to see that, when ω is obtained from Ω by (2), the following
holds: ∀s ∈ L(G),∀e ∈ Σo, e ∈ ω(s) ⇒ se ∈ L(G) (3)

Information map θΩ is used to denote the information map θω when such ω is
derived from Ω by (2).

Policy Ω is feasible if the corresponding ω is feasible. It is not difficult to
see that Ω is feasible if

(∀e ∈ Σ)(∀se, s′e ∈ L(G)) θΩ(s) = θΩ(s′) (4)

⇒ [(ξ(x0, s), e) ∈ Ω⇔ (ξ(x0, s
′), e) ∈ Ω].

For a given sensor activation policy Ω, we define the unobserved reach of state
x ∈X under Ω as the set of states that can be reached from x via “unobserved”
transitions (i.e., transitions that do not exist in Ω).

Given G and Ω, we can construct the observer automatonDETΩ which maps
sequences of observed events to sensor activation decisions by replacing those
transitions in G not in Ω by ε and applying the subset construction resulting in
a DFA DETΩ(G). Given an observed event sequence s, DETΩ(G) can then be
used to compute the sensor activation decisions following s by taking the union
of all events labelling transitions in DETΩ(G) from the state in DETΩ(G)
reached by s.

Next we introduce the equivalence class of a state in G under a policy Ω.
Given DFA G and policy Ω, we say that states x,x′ ∈X are indistinguishable if
there exists s, s′ ∈ L(G) such that ξ(x0, s) = x, ξ(x0, s

′) = x′ and θΩ(s) = θΩ(s′).
5



Given G and Ω, we can compute the set of pairs of indistinguishable states of
X, denoted by TΩ, using the CLUSTER-TABLE algorithm of [14]. We can
interpret TΩ ⊆ X × X as a binary relation. It is not difficult to see that TΩ

is reflexive and symmetric but not necessarily transitive. Such a relation is
known as a tolerance relation [4]. Given a set X ′ ⊆ X and state x ∈ X, when
we say that X ′TΩx (respectively, xTΩX

′) we mean that ∀x′ ∈ X ′, x′TΩx (resp.,∀x′ ∈X ′, xTΩx
′).

The transitive-closure of TΩ, denoted by T ∗
Ω
, is an equivalence relation on

X. We consider the equivalence class of a state x ∈ X, denoted by [x], to be
defined using this equivalence relation: [x] = {z ∈ X ∣ xT ∗

Ω
z}. We will find the

following characterization of z ∈ [x] using TΩ rather than T ∗
Ω
useful in the proof

details of results in the sequel. For state z ∈X,z ∈ [x] if and only if

∃n ≥ 0,∃x0, x1, x2, . . . , xn ∈X,x0 = x, (5)

x1TΩx
0 ∧ x2TΩx

1 ∧ . . . ∧ zTΩx
n.

If z ∈ [x] then x ∈ [z] by (5). It follows that [x] = [z].
Though the topic of computing policies for purposes of state disambiguation

is considered in [16], it is not indicated how the computed policies can be used
to construct a map from observed event sequences to sensor activation decisions.
Explicitly, for policy Ω which satisfies (4), this is done by constructing observer
automaton DETΩ from G and Ω then taking the union of all events labelling
transitions in DETΩ(G) from the state in DETΩ(G) reached by the observed
event sequence. However, determinizing NFA is well known to be, in the worst-
case, exponential in ∣X ∣.

In this paper we consider policies Ω where there exist procedures for com-
puting a map from observed event sequences to sensor activation decisions that
are polynomial in the size of G. In order to achieve this we consider policies that
satisfy notions of feasibility that are stronger than (4), the feasibility condition
considered in [16].

3 Computing sensor activation decisions for a

small class of policies

In this section we consider policies that satisfy a stronger notion of feasibility
than (4). The notion that we consider is the following.

(∀e ∈ Σo)(∀s, s′ ∈ L(G)) θΩ(s) = θΩ(s′) (6)

⇒ [(ξ(x0, s), e) ∈ Ω⇔ (ξ(x0, s
′), e) ∈ Ω]

That (6) is satisfied by a policy implies that if two states are indistinguishable
under the policy then an event sensor is activated following one state if and only
if it is activated following the other state. For policies satisfying (4) this is only
required of the intersection of events that follow both states, not their union as
(6) requires.

We use the following example to illustrate the differences between policies
satisfying (6) and those satisfying (4). Consider the plant in Fig. 1. We con-

sider Ω to consist of those transitions whose event label is boxed . Specifically,
Ω = {(x1, e1), (x2, e2), (x4, e1)}. One can verify that this policy satisfies (4).

6



However, Ω does not satisfy (6). One can verify that θΩ(e1) = θΩ(e2e1) = e1,
resulting in states x2 and x5 being indistinguishable. An observer which ob-
serves string e1 using policy Ω knows that if the plant is in state x2 then the
sensor for e2 needs to be activated. However, if the plant is in state x5 then
the sensor for e2 does not necessarily have to be activated. This is permitted
for satisfying (4). However, it is not permitted if the policy is to satisfy (6). In
order to satisfy (6) transition (x2, e2) could be removed from Ω.

x1

x2 x3

x4 x5

e1

e2

e2

e1

Figure 1: Plant and policy which satisfies (4) but does not satisfy (6).

It is not difficult to see that if policy Ω satisfies (6) then map ω derived from
Ω by (2) satisfies the following notion of feasibility for language-based sensor
activation maps which is stronger than (1).

(∀e ∈ Σo)(∀s, s′ ∈ L(G)) θω(s) = θω(s′) (7)

⇒ [e ∈ ω(s) ⇔ e ∈ ω(s′)].
For policies satisfying (6), in this section we effectively demonstrate that if

s ∈ L(G) then θΩ(s) ∈ L(G)1 and, furthermore, an event sensor is activated
following the state reached by s if and only if it is activated following the state
reached by θΩ(s). This allows one to compute sensor activation decisions follow-
ing a sequence of observed events (which are themselves determined by previous
sensor activations) easily: simply transition from the initial state of G to the
state reached by the observed event sequence then activate a sensor for an event
from the reached state if and only if it is in Ω. In this way, G is used directly
for mapping observations to sensor activation decisions rather than having to
apply the subset construction. The remainder of this section is dedicated to
proving the aforementioned result. In the following, the formal details focus
on using a state’s equivalence class for determining sensor activation decisions.
However, we ultimately prove that for all s ∈ L(G), [ξ(x0, s)] = [ξ(x0, θ

Ω(s))].
This allows for sensor activation decisions to be based on the state in G reached
by θΩ(s).

First we prove some results regarding state equivalence classes for policies
satisfying (6). We have the following immediate result on sensor activation
decisions following states in the same equivalence class for policies satisfying
(6).

Lemma 1. Given G = (X,Σ, ξ, x0) and policy Ω ⊆ TR(G) which satisfies (6),∀x, z ∈X, ∀e ∈ Σo, if [x] = [z] then (x, e) ∈ Ω⇔ (z, e) ∈ Ω.
1In constrast, in standard partially observed discrete-event systems, if a string s is in L(G),

this does not imply that P (S) is in L(G)

7



Proof. Follows directly by definition of state equivalence class in (5) and that
Ω satisfies (6).

From this result we have the following Lemma which demonstrates that it
suffices for an agent to keep track of a state’s equivalence class for determining
sensor activation decisions.

Lemma 2. Given G = (X,Σ, ξ, x0) and policy Ω ⊆ TR(G) which satisfies (6),∀x, z ∈X, ∀e ∈ Σo, if [x] = [z] and (x, e) ∈ Ω then [ξ(x, e)] = [ξ(z, e)].
Proof. The following holds by [x] = [z] and definition of [x]:

∃n ≥ 0,∃x0, x1, x2, . . . , xn ∈X,x0 = x, (8)

x1TΩx
0 ∧ x2TΩx

1 ∧ . . . ∧ zTΩx
n.

∀i ∈ {1, . . . , n}, (xi, e) is defined and (xi, e) ∈ Ω by Lemma 1, e ∈ Σo, [x] = [xi]
and (x, e) ∈ Ω. Similarly, (z, e) ∈ Ω. The fact that xiTΩx

i−1 and definition of
TΩ implies that there exists s, s′ ∈ L(G) where ξ(x0, s) = xi−1, ξ(x0, s

′) = xi

and θΩ(s) = θΩ(s′). Since (xi−1, e), (xi, e) ∈ Ω, θΩ(se) = θΩ(s)e and θΩ(s′e) =
θΩ(s′)e. Then θΩ(se) = θΩ(s′e) by previous and θΩ(s) = θΩ(s′). This fact
and ξ(x0, s) = xi−1, ξ(x0, s

′) = xi implies that ξ(xi, e)TΩξ(xi−1, e). Similarly,
ξ(z, e)TΩξ(xn, e). By these results and (8) the following holds:

ξ(x1, e)TΩξ(x0, e) ∧ ξ(x2, e)TΩξ(x1, e) ∧ . . . ∧ ξ(z, e)TΩξ(xn, e).
Then ξ(z, e) ∈ [ξ(x, e)] by this fact, x = x0 and (5). It follows that [ξ(x, e)] =[ξ(z, e)].

We use this result to prove the main result of this section. The following
theorem states that to determine an agent’s sensor activation decision following
string s ∈ L(G) it suffices to compute the sensor activation decision of the state
reached by θΩ(s) from x0 in G. An observer automaton constructed from G

and Ω where sensor activation decisions are defined from the states reached need
not be constructed.

Theorem 1. Given G = (X,Σ, ξ, x0) and policy Ω ⊆ TR(G) which satisfies (6),∀s ∈ L(G), [ξ(x0, s)] = [ξ(x0, θ
Ω(s))].

Proof. This proof follows by induction on the length of θΩ(s).
When ∣θΩ(s)∣ = 0, θΩ(s) = ε. The fact that θΩ(ε) = ε and previous imply

θΩ(θΩ(s)) = ε. Then θΩ(s) = θΩ(θΩ(s)). It follows that ξ(x0, s)TΩξ(x0, θ
Ω(s))

by previous and definition of TΩ. So [ξ(x0, s)] = [ξ(x0, θ
Ω(s))] by this fact and

(5).
Now for the inductive step. Consider when ∣θΩ(s)∣ = n + 1. Let s = s1es2

where s1, s2 ∈ Σ∗, e ∈ Σo and s1e is the shortest prefix of s where θΩ(s1e) =
θΩ(s1)e = θΩ(s). Since ∣θΩ(s1)∣ = n and by the inductive hypothesis it follows
that [ξ(x0, s1)] = [ξ(x0, θ

Ω(s1))]. Since θΩ(s1e) = θΩ(s1)e it must be that(ξ(x0, s1), e) ∈ Ω. Then [ξ(x0, θ
Ω(s1)e)] = [ξ(x0, s1e)] by this fact, e ∈ Σo,[ξ(x0, s1)] = [ξ(x0, θ

Ω(s1))] and Lemma 2. Since θΩ(s1e) = θΩ(s1)e it fol-
lows that [ξ(x0, θ

Ω(s1e))] = [ξ(x0, s1e)]. The fact that θΩ(s) = θΩ(s1es2) =
θΩ(s1)e and θΩ(s1e) = θΩ(s1)e imply θΩ(s1es2) = θΩ(s1e). It follows that
ξ(x0, s1es2)TΩξ(x0, s1e) by previous and definition of TΩ. So [ξ(x0, s1es2)] =

8



[ξ(x0, s1e)]. Also, since θΩ(s1es2) = θΩ(s1e) it follows that [ξ(x0, θ
Ω(s1es2))] =[ξ(x0, θ

Ω(s1e))]. Thus [ξ(x0, s1es2)] = [ξ(x0, θ
Ω(s1es2))] by the previous two

facts and [ξ(x0, θ
Ω(s1e))] = [ξ(x0, s1e)].

To reaffirm, after computing Ω which satisfies (6) and which is used for
accomplishing some task (e.g., state disambiguation in G) it suffices to use G

directly for computing sensor activation decisions given the agent’s observation.
From x0, when an agent receives observation of an event e1 ∈ Σo whose sensor
is active at x0 it merely transitions to ξ(x0, e1), which must be defined due
to (3). Its sensor activation decision is then defined based on the transitions
whose sensors are to be activated from state ξ(x0, e1). Similarly, from ξ(x0, e1)
when the agent observes event e2 ∈ Σo the next sensor activation decisions are
to be based on the transitions from state ξ(x0, e1e2). The updating of the
agent’s sensor activation decision continues in this manner following events that
it observes according to its previous sensor activation decisions.

For instance, consider the plant and policy of Fig. 2. We consider Ω

to consist of those transitions whose event label is boxed . Specifically, Ω ={(x1, e1), (x2, e2), (x4, e1), (x5, e2)}. One can verify that this policy satisfies (6).
Consider string e2e1. This string appears as θΩ(e2e1) = e1 to an observer using
policy Ω. The event sensors to be activated following e2e1 are {e2}. That is,
ω(e2e1) = {e2}. Note also that θΩ(e2e1) = e1 is a string in L(G). Furthermore,
ω(θΩ(e2e1)) = {e2}, the same set of sensor activations as ω(e2e1). By Theo-

rem 1 and the fact that Ω satisfies (6), for any string s ∈ L(G), θΩ(s) ∈ L(G)
and ω(θΩ(s)) = ω(s).

x1

x2 x3

x4 x5 x6

e1

e2

e2

e1 e2

Figure 2: Plant and policy which satisfies (6) used to demonstrate how sensor
activation decisions are computed.

We note that this approach does not allow one to compute a state estimate
of G. To do this, computation of the observer automaton from G and Ω is
required. However, maintaining a state estimate is not required so long as
agent decisions following indistinguishable pairs of strings / states are the same.
For instance, consider problems of centralized control when the controllable,
observable specification automaton K is a subautomaton of G. When this is the
case the enable / disable event control actions can be defined over the transitions
of G. Observability [6] can be characterized as a state disambiguation condition
defined over the states of G [14]: no two states where the control action from
both states is different should be indistinguishable. For Ω satisfying (6) under
which the state disambiguation condition is satisfied, it suffices to compute
sensor activation and control decisions from ξ(x0, θ

Ω(s)) instead of from the
state estimate following s computed using an observer automaton constructed
from G and Ω.

9



In the next section we consider a generalization of (6). For policies that sat-
isfy this more general condition, it is not necessarily the case that θΩ(s) ∈ L(G)
when s ∈ L(G), as was the case for policies satisfying (6) considered in this
section. For such policies we prove that it suffices to base sensor activation
decisions on the state equivalence class [ξ(x0, s)], once again avoiding the need
to apply the subset construction. In Section 5 we continue to investigate condi-
tions under which sensor activation decisions can be based on state equivalence
classes.

4 Computing sensor activation decisions for a

more general class of policies

In Section 3 we considered policies which satisfy a strong notion of feasibility:
if two states of G are indistinguishable under a policy then (i) they must be
followed by exactly the same sensor activation decisions and (ii) if the sensor
for an event is activated then the event must label outgoing transitions from
both states. In this section we consider policies which satisfy a weaker notion
of feasibility: (i) must be satisfied and, furthermore, if the sensor for an event
is activated then the event must label transitions following some unobserved
sequences of transitions from both states. Formally, for the sensor activation
maps considered in Section 3, if e ∈ ω(s) then se ∈ L(G). In this section we
consider a generalization where instead if e ∈ ω(s) then ∃u ∈ Σ∗ such that
sue ∈ L(G) and θω(s) = θω(su).

However, it must be noted that the notion of feasibility that we consider in
this section is still stronger than (4).

As before, when ω is implementable it can be implemented by a policy
Ω. However, in this section we consider that ω is defined from Ω differently
than usual (i.e., differently than by (2)). For any string s ∈ L(G), the set
of event sensors activated following s (denoted by ω2

Ω
(s)) correspond to those

events which are observed following unobserved extensions of s. Formally, this
is defined as follows:

ω2

Ω(s) = {e ∈ Σo ∣ ∃n ≥ 0,∃σ1, . . . , σn ∈ Σ such that (ξ(x0, s), σ1) ∉ Ω (9)

∧ . . . ∧ (ξ(x0, sσ1 . . . σn−1), σn) ∉ Ω ∧ (ξ(x0, sσ1 . . . σn), e) ∈ Ω}.
To distinguish this sensor activation map from ω derived by (2), we use ω1

Ω
to

denote the sensor activation map defined in (2) from Ω.
The sensor activation maps defined by (9) that we consider in this section

satisfy (7). We consider what this means in terms of policies that implement
these maps. By definition of (7) we know that ω2

Ω
is feasible if

(∀e ∈ Σo)(∀s, s′ ∈ L(G)) θω2

Ω(s) = θω
2

Ω(s′)
⇒ [e ∈ ω2

Ω(s) ⇔ e ∈ ω2

Ω(s′)].

10



This holds if and only if the following holds by definition of ω2

Ω

(∀e ∈ Σo)(∀s, s′ ∈ L(G)) θω2

Ω(s) = θω
2

Ω(s′) ⇒
[(∃σ1, . . . , σn ∈ Σ such that (ξ(x0, s), σ1) ∉ Ω ∧ . . .∧
(ξ(x0, sσ1 . . . σn−1), σn) ∉ Ω ∧ (ξ(x0, sσ1 . . . σn), e) ∈ Ω)
⇔
(∃σ′1, . . . , σ′m ∈ Σ such that (ξ(x0, s

′), σ′1) ∉ Ω ∧ . . .∧
(ξ(x0, s

′σ′1 . . . σ
′
m−1), σ′m) ∉ Ω ∧ (ξ(x0, s

′σ′1 . . . σ
′
m), e) ∈ Ω)].

For brevity we can express the above equivalently by the following by definition

of θω
1

Ω and by selecting u = σ1 . . . σn and u′ = σ′1 . . . σ
′
m appropriately for each

e ∈ Σo and pair of strings s, s′ ∈ L(G) where θω
2

Ω(s) = θω
2

Ω(s′):
(∀e ∈ Σo)(∀s, s′ ∈ L(G)) θω2

Ω(s) = θω
2

Ω(s′) ⇒ (10)

[(∃u ∈ Σ∗ such that sue ∈ L(G) ∧ θω
1

Ω(su) = θω
1

Ω(s) ∧ (ξ(x0, su), e) ∈ Ω)
⇔
(∃u′ ∈ Σ∗ such that s′u′e ∈ L(G) ∧ θω

1

Ω(s′u′) = θω
1

Ω(s′) ∧ (ξ(x0, s
′u′), e) ∈ Ω)].

As the information maps θω
1

Ω , θω
2

Ω are derived from ω1

Ω
, ω2

Ω
which are, in turn,

derived from Ω, we consider (10) to be a feasibility condition satisfiable by Ω.
In the remainder of this section, when we say that Ω satisfies (4) (resp., (6))

we intend that the θΩ used in the definition of (4) (resp., (6)) be equal to θω
1

Ω .
It can be proven that if Ω satisfies (6) then it satisfies (10). More specifically,

it is not difficult to see that if a given policy Ω satisfies (6) then ω1

Ω
= ω2

Ω
.

However, if Ω does not satisfy (6) then it is not necessarily the case that ω1

Ω
= ω2

Ω
.

Under such circumstances Ω may still satisfy (10). Thus the set of policies
satisfying (10) contains the set of policies satisfying (6) (i.e., (6) is stronger
than (10)).

Though a policy Ω may satisfy (10), this does not necessarily imply that if a
sensor for an event e is active at a state x ∈X then all occurrences of e following
unobserved transition sequences from x shall be observed. For instance, consider
the plant and policy of Fig. 3. We consider Ω to consist of those transitions

whose event label is boxed . Specifically, Ω = {(x2, e2), (x4, e2)}. One can verify
that this policy satisfies (10). The set of sensors activated following ε ∈ L(G) is
ω2

Ω
(ε) = {e2}. So if e2 follows ε then it should be observed and the transition it

labels should be in Ω. However, (x1, e2) is not in Ω where ξ(x1, ε) = x1.
So an additional requirement on policy Ω is required to ensure that when a

sensor for observable event e is active at state x (i.e., (x, e) ∈ Ω) any subsequent
occurrence of the event is observed following an unobserved sequence of events
occurring after e has been activated at x. This requirement is exactly (4), the
feasibility condition on policies introduced in [16].

So in the remainder of this section we require that policy Ω satisfies both
(4) and (10). The following result allows us to simplify the definition of (10)
when Ω satisfies (4).

Lemma 3. Given G = (X,Σ, ξ, x0) and policy Ω ⊆ TR(G) which satisfies (4),∀e ∈ Σ,∀se ∈ L(G), e ∈ ω1

Ω
(s) ⇔ e ∈ ω2

Ω
(s).

11



x1

x2 x3

x4 x5

e1

e2

e2

e2

Figure 3: Plant and policy which satisfies (10) where sensor for e2 is activated
at x1 but (x1, e2) is not observed.

Proof. Consider any e ∈ Σ, se ∈ L(G).
(i) Suppose e ∈ ω1

Ω
(s). Since e ∈ ω1

Ω
(s) and by definition of ω1

Ω
((2)) it follows

that (ξ(x0, s), e) ∈ Ω. Then e ∈ ω2

Ω
(s) by definition of ω2

Ω
.

(ii) Suppose e ∉ ω1

Ω
(s). Then (ξ(x0, s), e) ∉ Ω. Assume e ∈ ω2

Ω
(s). Then∃σ1 . . . σn ∈ Σ, (ξ(x0, s), σ1) ∉ Ω ∧ . . . ∧ (ξ(x0, sσ1 . . . σn−1), σn) ∉ Ω ∧

(ξ(x0, sσ1 . . . σn), e) ∈ Ω. It follows that θω
1

Ω(s) = θω
1

Ω(sσ1 . . . σn) by def-

inition of θω
1

Ω . Since se ∈ L(G) it follows that (ξ(x0, s), e) ∈ TR(G).
That (ξ(x0, s), e) ∈ TR(G), (ξ(x0, s), e) ∉ Ω, (ξ(x0, sσ1 . . . σn), e) ∈ Ω and

θω
1

Ω(s) = θω
1

Ω(sσ1 . . . σn) holds implies that Ω does not satisfy (4). A
contradiction is reached. Thus, it must be that e ∉ ω2

Ω
(s).

A corollary of the previous result is the following which can be used to
simplify (10).

Corollary 1. If Ω ⊆ TR(G) satisfies (4) then ∀s ∈ L(G), θω1

Ω(s) = θω
2

Ω(s).
Proof. Follows by Lemma 3 and by definition of θω

1

Ω , θω
2

Ω .

By the previous result, when Ω satisfies (4), we can reason about the ap-

pearance of a string using θω
1

Ω rather than θω
2

Ω when the sensor activation map
under consideration, ω2

Ω
, is derived from Ω by (9). In light of this, (10) can be

simplified to the following where θω
2

Ω has been replaced by θω
1

Ω .

(∀e ∈ Σo)(∀s, s′ ∈ L(G)) θω1

Ω(s) = θω
1

Ω(s′) ⇒ (11)

[(∃u ∈ Σ∗ such that sue ∈ L(G) ∧ θω
1

Ω(su) = θω
1

Ω(s) ∧ (ξ(x0, su), e) ∈ Ω)
⇔
(∃u′ ∈ Σ∗ such that s′u′e ∈ L(G) ∧ θω

1

Ω(s′u′) = θω
1

Ω(s′) ∧ (ξ(x0, s
′u′), e) ∈ Ω)].

An example is provided demonstrating a policy which satisfies (4) and (11)
(equivalently, (10)) but not (6), the feasibility condition considered in Section
3. Consider the plant in Fig. 4. We consider Ω to consist of those transitions

whose event label is boxed . Condition (6) is not satisfied by Ω as θω
1

Ω(e1) =
θω

1

Ω(e2e1), (ξ(x0, e1), e2) ∈ Ω and (ξ(x0, e2e1), e2) ∉ Ω (in fact this transition is
not defined). One can easily verify that (4) and (11) are satisfied. For any two

12



x1

x2 x3

x4 x5 x6 x7

e1

e2

e2

e1 e1
e2

Figure 4: Plant and policy defined which satisfies (4) and (11) but not (6).

states which can be indistinguishable with each other, if an observable event e
labels transitions from both states then the same sensor activation decision is
made for e from both states. Also, if an event e is observed after some sequence
of unobserved transitions from a given state x then it is observed after sequences
of unobserved transitions from any state x′ which can be indistinguishable with
x.

In the remainder of this section we prove that, for policies satisfying (4) and
(11), sensor activation decisions can be made based on the sensor activation
decisions of an arbitrary state in the state equivalence class of the true state of
G. Furthermore, for any observed event sequence, each state the plant could
be in (i.e., each state of G in the state estimate of G reached by the observed
event sequence in the observer automaton constructed from G and Ω) belong
to the same state equivalence class. This allows one to construct an automaton
denoted by [G] (with some slight abuse of notation) whose states are the state
equivalence classes of X and which maps an observed event sequence to a state
equivalence class which contains states of G which are followed by the same
sensor activation decisions as those following the true state of G. Furthermore,
we provide an algorithm for the construction of this automaton which is in
polynomial in ∣∣X and ∣Σ∣ where the automaton’s state-space cardinality is at
most ∣X ∣. The subset construction need not be applied for computing a map
from observed event sequences to sensor activation decisions. However, the
complexity of determinizing G when transitions in Ω are replaced by ε and Ω
satisfies (4) and (11) is open.

Before we proceed, some notation is introduced for convenience of presen-
tation. For given Ω and x ∈ X, we denote the set of sequences of events which

label transitions not in Ω from state x by S�Ωx . It is formally defined below:

S�Ωx = {s ∈ Σ∗ ∣ ∃n ≥ 0, s = σ1 . . . σn ∧ (x,σ1) ∉ Ω ∧ . . .

∧ (ξ(x,σ1 . . . σn−1), σn) ∉ Ω}
The remainder of the section proceeds in the same manner as from Lemma

1 to the end of Section 3. We first provide a result analogous to Lemma 1:

Lemma 4. Given G = (X,Σ, ξ, x0), policy Ω ⊆ TR(G) which satisfies (4) and

(11), ∀x, z ∈ X,∀e ∈ Σo, if [x] = [z] then ∃s ∈ S�Ωx , (ξ(x, s), e) ∈ Ω ⇔ ∃s′ ∈
S�Ωz , (ξ(z, s′), e) ∈ Ω

13



Proof. Since z ∈ [x] and by definition of [x] in (5) we have the following:

∃n ≥ 0,∃x0, x1, x2, . . . , xn ∈X,x0 = x,

x1TΩx
0 ∧ x2TΩx

1 ∧ . . . ∧ zTΩx
n.

Since xi+1TΩx
i it follows that ∃t, t′ ∈ L(G) such that ξ(x0, t) = xi+1, ξ(x0, t

′) =
xi and θω

1

Ω(t) = θω
1

Ω(t′). Then, since Ω satisfies (11), it follows that

(∀e ∈ Σo)
[(∃u ∈ Σ∗ such that tue ∈ L(G) ∧ θω

1

Ω(tu) = θω
1

Ω(t) ∧ (ξ(xi+1, u), e) ∈ Ω)
⇔
(∃u′ ∈ Σ∗ such that t′u′e ∈ L(G) ∧ θω

1

Ω(t′u′) = θω
1

Ω(t′) ∧ (ξ(xi, u′), e) ∈ Ω)].
Let u = u1 . . . um. Since θω

1

Ω(tu) = θω
1

Ω(t) it follows that uj+1 ∉ ω1

Ω
(uj). By

definition of ω1

Ω
, it follows that (ξ(xi+1, u1 . . . uj), uj+1) ∉ Ω. Then ∃v ∈ S�Ω

xi+1 ,

(ξ(xi+1, v), e) ∈ Ω by above. Symmetrically, ∃v′ ∈ S�Ω
xi , (ξ(xi, v′), e) ∈ Ω. Thus

by these results and above the following holds

∃v ∈ S�Ωxi+1 , (ξ(xi+1, v), e) ∈ Ω⇔∃v′ ∈ S�Ωxi , (ξ(xi, v′), e) ∈ Ω.
From iterative application of the above fact the Lemma statement holds.

From this result we have the following:

Lemma 5. Given G, policy Ω defined over the transitions of G which satisfies

(4) and (11), ∀x, z ∈X, ∀e ∈ Σo, ∀s ∈ S�Ωx , ∀s′ ∈ S�Ωz , if [x] = [z], (ξ(x, s), e) ∈ Ω
and (ξ(z, s′), e) ∈ TR(G) then [ξ(ξ(x, s), e)] = [ξ(ξ(z, s′), e)].
Proof. The following holds by [x] = [z] and definition of [x]:

∃n ≥ 0,∃x0, x1, x2, . . . , xn ∈X,x0 = x, (12)

x1TΩx
0 ∧ x2TΩx

1 ∧ . . . ∧ zTΩx
n.

∀i ∈ {1, . . . , n}, ∃sxi ∈ S�Ω
xi , (ξ(xi, sxi), e) is defined and (ξ(xi, sxi), e) ∈ Ω by

Lemma 4, e ∈ Σo, [x] = [xi] and (ξ(x, s), e) ∈ Ω. Similarly, ∃sz ∈ S�Ωz ,(ξ(z, sz), e) is defined and (ξ(z, sz), e) ∈ Ω. As sz, s
′ ∈ S�Ωz , it follows that

∃w,w′ ∈ L(G), ξ(x0,w) = ξ(z, sz), ξ(x0,w
′) = ξ(z, s′) and θω

1

Ω(w) = θω
1

Ω(w′).
It follows that (ξ(z, s′), e) ∈ Ω by this fact, we ∈ L(G) (follows from ξ(x0,w) =
ξ(z, sz) and (ξ(z, sz), e) ∈ Ω), w′e ∈ L(G) (follows from ξ(x0,w

′) = ξ(z, s′) and(ξ(z, s′), e) ∈ TR(G)), (ξ(z, sz), e) ∈ Ω and Ω satisfies (4).
That xiTΩx

i−1 and definition of TΩ implies that there exists w,w′ ∈ L(G)
where ξ(x0,w) = xi−1, ξ(x0,w

′) = xi and θω
1

Ω(w) = θω
1

Ω(w′).
Since (ξ(xi−1, sxi−1), e), (ξ(xi, sxi), e) ∈ Ω, θω

1

Ω(wsxi−1e) = θω
1

Ω(wsxi−1)e and

θω
1

Ω(w′sxie) = θω
1

Ω(w′sxi)e. Furthermore, θω
1

Ω(wsxi−1) = θω
1

Ω(w) since sxi−1 ∈
S�Ω
xi−1 and θω

1

Ω(w′sxi) = θω
1

Ω(w′) since sxi ∈ S�Ω
xi . By these five facts it fol-

lows that θω
1

Ω(wsxi−1e) = θω
1

Ω(w′sxie) and definition of TΩ. It follows that
ξ(ξ(xi, sxi), e)TΩξ(ξ(xi−1, sxi−1), e) by this fact, ξ(x0,w) = xi−1 and ξ(x0,w

′) =
14



xi. Similarly, ξ(ξ(z, sz), e)TΩξ(ξ(xn, sn), e). It follows that
ξ(ξ(z, s′), e)TΩξ(ξ(z, sz), e) since sz, s

′ ∈ S�Ωz implies ∃w,w′ ∈ L(G), ξ(x0,w) =
ξ(z, sz), ξ(x0,w

′) = ξ(z, s′) and θω
1

Ω(w) = θω
1

Ω(w′), and (ξ(z, sz), e),(ξ(z, s′), e) ∈ Ω furthermore implies θω
1

Ω(we) = θω
1

Ω(w′e). By these results and
(12) the following holds:

ξ(ξ(x1, sx1), e)TΩξ(ξ(x0, s), e) ∧ ξ(ξ(x2, sx2), e)TΩξ(ξ(x1, sx1), e)
∧ . . . ∧ ξ(ξ(z, sz), e)TΩξ(ξ(xn, sxn), e) ∧ ξ(ξ(z, s′), e)TΩξ(ξ(z, sz), e).

Then ξ(ξ(z, s′), e) ∈ [ξ(ξ(x, s), e)] by this fact, x = x0 and (5). It follows that[ξ(ξ(x, s), e)] = [ξ(ξ(z, s′), e)].
Before we present the main result of this section we require the following.

Given s ∈ L(G), we denote the set of state equivalence classes (with some slight
abuse of notation) the agent believes the system could be in on observation of

θω
1

Ω(s) = σ1σ2 . . . σn when only state equivalence classes are kept track of by

[θω1

Ω(s)]. This set of state equivalence classes is defined below:

[θω1

Ω(s)] = { [x] ∣ ∃q0, q1, q2, . . . , qn ∈X,x0 ∈ [q0], [x] = [qn], (13)

∀i ∈ {0, . . . , n − 1}, ξ(qi, σi+1) ∈ [qi+1] }
We aim to prove that for any s ∈ L(G), [θω1

Ω(s)] is a singleton set in the context
of the sensor activation maps considered in this section where if the sensor for
an event is active then an occurrence of the event is encountered after some
unobserved sequence of events. For sensor activation maps where this does not

hold, [θω1

Ω(s)] is not necessarily a singleton set. This is explored further in the
next section.

Theorem 2. Given G = (X,Σ, ξ, x0), policy Ω ⊆ TR(G) which satisfies (4) and

(11), ∀s ∈ L(G),∀[x] ∈ [θω1

Ω(s)], [x] = [ξ(x0, s)].
Proof. This proof follows by induction on the length of θω

1

Ω(s).
When ∣θω1

Ω(s)∣ = 0, θω
1

Ω(s) = ε. It holds that [ε] = { [x] ∣ ∃q0 ∈ X,x0 ∈[q0], [x] = [q0]} by (13). So, ∀[x] ∈ [ε], x0 ∈ [x]. It follows that [ε] = {[x0]} and

so [θω1

Ω(s)] = {[x0]}. The fact that θω
1

Ω(ε) = ε and θω
1

Ω(s) = ε implies θω
1

Ω(ε) =
θω

1

Ω(s). Then ξ(x0, s)TΩx0 by this fact, ξ(x0, ε) = x0 and definition of TΩ. Then

ξ(x0, s) ∈ [x0] by this fact and (5). Thus, ∀[x] ∈ [θω1

Ω(s)], [x] = [ξ(x0, s)].
Now for the inductive step. Consider when ∣θω1

Ω(s)∣ = n + 1. Let s = s1es2

where s1, s2 ∈ Σ∗, e ∈ Σo, and s1e is the shortest prefix of s where θω
1

Ω(s1e) =
θω

1

Ω(s1)e = θω
1

Ω(s). Since ∣θω1

Ω(s1)∣ = n and by the inductive hypothesis it follows

that ∀[x] ∈ [θω1

Ω(s1)], [x] = [ξ(x0, s1)]. Since θω
1

Ω(s1e) = θω
1

Ω(s1)e it must be

that (ξ(x0, s1), e) ∈ Ω. It follows that ∀[x] ∈ [θω1

Ω(s1)], ∀q ∈ [x], ∀sq ∈ S�Ωq ,
if (ξ(q, sq), e) ∈ TR(G) then [ξ(ξ(q, sq), e)] = [ξ(ξ(x0, s1), e)] by this fact, Ω
satisfies (4) and (11), e ∈ Σo, [q] = [x] = [ξ(x0, s1)], and Lemma 5. Then

∀[x] ∈ [θω1

Ω(s1e)], [x] = [ξ(x0, s1e)].
It holds that ξ(x0, s1es2)TΩξ(x0, s1e) since θω

1

Ω(s1es2) = θω
1

Ω(s1e) and by

definition of TΩ. So [ξ(x0, s1es2)] = [ξ(x0, s1e)]. Then ∀[x] ∈ [θω1

Ω(s1es2)],[x] = [ξ(x0, s1es2)] by this fact, θω
1

Ω(s1es2) = θω
1

Ω(s1e) and the previously

established fact that ∀[x] ∈ [θω1

Ω(s1e)], [x] = [ξ(x0, s1e)].
15



For the policies of Section 3 it sufficed to base sensor activation decisions
on the state reached by the sequence of events observed by the agent from the
initial state of G. However, for the policies considered in this section, it is not
difficult to see that the sequence of events observed may not be a string in L(G)
(e.g., consider plant and policy of Figure 3 where instead an unobserved event
euo labels the transition from x1 to x4 instead of e2). Instead, according to
Theorem 2, it suffices for an agent to keep track of the equivalence class of the
true state of G for determining sensor activation decisions. Tracking the state
equivalence class of the true state of G can be implemented effectively. It will
be demonstrated that the set of state equivalence classes of X, denoted by [X]
(with a slight abuse of notation), and a map, ξ[G] ∶ [X]×Σo → [X] from a state
equivalence class and observed event to the state equivalence class encountered
on observation of the event can be computed polynomially in ∣X ∣ and ∣Σ∣. This
allows the following procedure for computing sensor activation decisions. The
initial sensor activation decisions are based on any state in [x0]. From [x0], if
an event e1 whose sensor is active is observed then the active state equivalence
class where sensor activation decisions are made is set to ξ[G]([x], e1). Sensors
are updated according to any state in ξ[G]([x], e1). Afterwards, if an event e2
whose sensor is active is observed then the active state equivalence class where
sensor activation decisions are made is set to ξ[G]([x0], e1e2). The active state
equivalence class from which sensor activation decisions are made is updated in
this manner as further event occurrences are observed.

In the remainder of this section we describe a procedure for computing the
transition function, ξ[G], of [G]. First we describe a procedure for computing[X]. From X and TΩ we construct an undirected graph (X,TΩ). Associated
with each vertex in X is a flag indicating whether or not the vertex has been
visited. Initially, for all x ∈ X, the flag of x is assigned the value 0. For each
x ∈ X whose flag is equal to 0 we conduct a depth-first search. When a vertex
is visited we assign its flag to the value 1. It is not difficult to see that any
vertex visited in the search belongs to [x] and, furthermore, when the search
terminates the set of vertices traversed is equal to [x]. It is not difficult to see
that this procedure is in Θ(∣X ∣ + ∣TΩ∣) due to the well-known tight asymptotic
bounds on depth-first search. In the worst-case, TΩ contains an edge between
any two vertices in X (i.e., every state in X is indistinguishable with every other

state in X). In this case ∣TΩ∣ = ∣X ∣⋅∣X+1∣2
and so the procedure is in Θ(∣X ∣2) for

this case.
After computing [X] we can construct DFA [G] = ([X],Σo, ξ[G], [x0]).

Transition function ξ[G] is defined as follows:

∀[x] ∈ [X],∀e ∈ Σo, ξ[G]([x], e) = [ξ(x, e)] if ∃x ∈ [x] where (x, e) ∈ Ω.
Constructing ξ[G] also requires a map from each state x ∈X to its corresponding
state class. Given [X] this can be computed in O(∣X ∣). Then computing ξ[G] is
in O(∣[X]∣ ⋅ ∣Σo∣) ⊆ O(∣X ∣ ⋅ ∣Σo∣) as any two states in the same state equivalence
class are followed by the same sensor activation decisions.

To reaffirm, given G and policy Ω ⊆ TR(G) which satisfies (4) and (11) and
where sensor activation decisions are determined by ω2

Ω
derived from Ω by (9),

if event sequence s is generated by G then s is observed as θω
2

Ω(s) = θω
1

Ω(s) ∈ Σ∗o
and the sensor activation decisions following s are ω2

Ω
(s) = ω1

Ω
(s) which is equal

to the set of events labeling transitions in [G] from state ξ[G]([x0], θω1

Ω(s)).
16



5 Using state equivalence classes to determine

sensor activation decisions

In this section we continue investigation of a state’s equivalence class defined
in (5) and the true state’s equivalence class estimate defined in (13) (given s

generated by G and the observation of s denoted by θω
1

Ω(s), [θω1

Ω(s)] returns a
set of state equivalence classes which contains [ξ(x0, s)], the true state’s equiv-
alence class). In Subsection 5.1 we illustrate that, in general, verifying whether
or not sensor activation decisions can be made based on state equivalence classes
rather than state or string estimates is PSPACE-complete. When sensor activa-
tion decisions can be made based on state equivalence classes, in Subsection 5.2
we demonstrate a condition that, when satisfied, allows sensor activation deci-
sions to be computed using an arbitrary state equivalence class in the estimate
of the true state’s equivalence class.

Note that when we state that sensor activation decisions are to be computed
using a state equivalence class, we mean that an event sensor is activated if it is
activated following some state in the state equivalence class and is deactivated
otherwise (i.e., the set of sensors to be activated are the union of all sensor
activations following all states in the state equivalence class).

Below we mention some differences between this section and Section 4 with
respect to the policies considered.

In Section 4 we considered that policies satisfy (4) and (11). That these two
conditions are satisfied implies that any two states in a state equivalence class
must have exactly the same sensor activation decisions as we saw in Section 4. It
is not required that condition (11) be satisfied by the policies considered in this
section. Any policy where there is no ambiguity in sensor activation decisions
when state / string estimates are maintained must satisfy condition (4). So the
policies that we consider must still satisfy (4). Even so, it is not necessarily the
case that any two states in a state equivalence class have exactly the same sensor
activations decisions and so it may be the case that sensor activation decisions
can not be based on state equivalence classes. We make further remarks on this
topic below.

In Section 4 we considered that if a sensor for an event e is active then
there exists some unobserved trace following activation of e’s sensor after which

e occurs. This resulted in the true state equivalence class estimate ([θω1

Ω(s)]
where s is the string generated by G) being a singleton set. In this section we
relax this restriction: though an event e’s sensor is active, there may not exist
any unobserved trace following its activation after which e occurs. Instead, for
instance, the occurrence of some other event whose sensor is active may occur
before e is generated by G. For these types of sensor activation maps, the true
state equivalence class estimate may not be a singleton set. When this occurs it
is not necessarily the case that an agent can base its sensor activation decisions
on state equivalence class estimates rather than the state estimate provided by
its observer automaton.

There are three scenarios that may be encountered which prevent basing
sensor activation decisions on state equivalence class estimates.

In the first scenario, sensor activation conflicts may exist within a state
equivalence class. That is, one of the state equivalence classes [x] ∈ [X] con-
tains two states x1, x2 ∈ [x] such that for some event e ∈ Σo, (x1, e) ∈ TR(G),

17



(x2, e) ∈ TR(G), (x1, e) ∈ Ω but (x2, e) ∉ Ω where Ω is the policy used. Verifi-
cation of whether or not this scenario occurs is easy. For each state equivalence
class, compute the set of events whose sensors are active following any state
in the equivalence class and the set of events which occur after a state in the
equivalence class but whose sensors are deactivated after those states. For a
given state equivalence class, if the intersection of these two sets is nonempty
then a sensor activation conflict exists for that state equivalence class. It is easy
to see that this procedure is in O(∣[X]∣ ⋅ ∣X ∣ ⋅ ∣Σ∣ + ∣[X]∣ ⋅ (∣Σ∣ ⋅ log(∣Σ∣) + ∣Σ∣)) ⊆
O(∣X ∣2 ⋅ ∣Σ∣ + ∣X ∣ ⋅ ∣Σ∣ ⋅ log(∣Σ∣)) if a total order is imposed on Σ.

When the first scenario does not occur, sensor activation conflicts do not
exist in a state equivalence class. However, it is possible that the set of sen-
sor activation decisions computed from a given state equivalence class might
result in sensors being activated that would not otherwise be activated if sensor
activation decisions were computed from a state estimate. This is the second
scenario. We explore this issue in Subsection 5.1. There we prove that deter-
mining if using a state equivalence class results in more sensors being activated
than using a state estimate is PSPACE-complete.

When neither the first nor second scenarios occur it may still be the case
that a third scenario occurs: sensor activation conflicts may exist between state
equivalence classes. That is, for policy Ω, it may be the case that, for some

string s ∈ L(G), [θω1

Ω(s)] contains two state equivalence classes [x1], [x2] where[x1] contains a state x1 such that for some event e ∈ Σo, (x1, e) ∈ Ω but there
does not exist a state x2 ∈ [x2] where (x2, e) ∈ Ω. In Subsection 5.2 we provide a
procedure for verifying whether or not the third scenario occurs. If none of the
three scenarios occurs then sensor activation decisions can be computed using
an arbitrary state equivalence class in the true state’s equivalence class estimate.

Let us reflect on the policies considered in Section 4. In the policies con-
sidered there the first, second and third scenario do not occur. There it was
proven that if the policies considered satisfy (4) and (11) then no sensor acti-
vation conflicts exist between any two states in a state equivalence class (see
proof of Lemma 5). Also, for such policies, the second scenario does not occur
by definition of (11). That these facts hold and the fact that there is only ever
at most one state equivalence class in the true state equivalence class’ estimate
(see Theorem 2) implies that the third scenario does not occur for policies
satisfying (4) and (11).

For simplicity, in this section we consider that the sensor activations follow-
ing a string s ∈ L(G) are defined by (2), not by (9). We could consider that
decisions are defined by (9) instead but when computing the sensor activation
decisions of a state equivalence class, which is the union of all sensor activations
following all states in the state equivalence class, the same set of activations will
be computed as if decisions are defined by (2). The reason for this is that any
state x′ in the unobserved reach of a state x belongs to [x] and so, in addition
to sensors active at state x being included in the set of sensor activations of [x],
sensors active at state x′ will also be included in the set of sensor activations of[x].

18



5.1 Determining when sensor activation decisions can be

based on a state equivalence class

In Section 4 we proved that we can use a state’s equivalence class to determine
sensor activation decisions when policies satisfy (4) and (11). For such policies,
the sensor activation decisions following any two states in a state equivalence
class are equal. Furthermore, if an event sensor is active at a given state then the
event occurs following some unobserved transition sequence from the state. In
this subsection we consider policies where activating an event’s sensor does not
necessarily imply that the event will occur following some unobserved transition
sequence. For such policies it may be the case that activating sensors using a
state’s equivalence class results in more sensors being active than is necessary.
This is the second scenario described in the introduction to this section. Note
that in this subsection we presume that, for the policies considered, the first
scenario does not occur.

For instance, suppose that, for a given G = (X,Σo ∪ Σuo, ξ, x0) and policy
Ω ⊆ TR(G), there exists a state x ∈ X where event e ∈ Σo does not occur
following any string of unobserved transitions from x. Also, suppose that x is
indistinguishable with some set of states Q where QTΩx (which, by definition,
are also in x’s state equivalence class) where, following any state in Q, the
sensor for e is active. That x is indistinguishable with states in Q does not
imply that, following any string leading to x, there exists an observationally-
equivalent string leading to a state in Q. That is, following some strings leading
to x, x might be distinguished from any state in Q. Then it may not be the
case that the sensor for e needs to be activated at x. That is, the state estimate
returned by the subset construction may not contain any states where the sensor
for e is active. In such a situation the sensor for e does not need to be activated.
However, the sensor for e is active if sensor activation decisions are computed
from the state equivalence class.

So, given plant G and policy Ω, we would like to be able to verify if such a
situation occurs. Formally, we consider the following problem:

Problem 1. Given a DFA G = (X,Σ, ξ, x0), policy Ω ⊆ TR(G), state x ∈ X

and a set of states Q where QTΩx, determine if there exists a string s′ ∈ L(G)
such that x = ξ(x0, s

′) and ∀s ∈ L(G), ξ(x0, s) ∈ Q⇒ θω
1

Ω(s) ≠ θω
1

Ω(s′).
By definition, the situation described previously occurs when an algorithm

for solving Problem 1 returns true for the given G, Ω, x and where Q is taken
to be the largest set in X where QTΩx and for all q ∈ Q the sensor for event e
is activated following q.

However, verifying if the situation occurs is not trivial. We find that deciding
Problem 1 is PSPACE-complete. The proof of this follows in the remainder of
this subsection.

In order to prove PSPACE-completeness we provide an algorithm in PSPACE
for deciding Problem 1 and show that a related problem, Problem 2, which
we prove to be PSPACE-complete, is polynomial-time reducible to Problem 1.
Problem 2 is defined below.

Problem 2. Given an NFA N = (X,Σ, ξ, x0), state x ∈ X and a set of states
Q ⊆X∖{x}, where for any q ∈ Q there exists a string s ∈ L(N) such that {x, q} ⊆
ξ(x0, s), determine if there exists a string s′ ∈ L(N) such that x ∈ ξ(x0, s

′) and
Q ∩ ξ(x0, s

′) = ∅.
19



Next we provide an algorithm in PSPACE for solving Problem 2 and pro-
vide a polynomial-time reduction to Problem 2 from the problem of deter-
mining whether two NFA recognize the same language which is known to be
PSPACE-complete [10].

Lemma 6. Problem 2 is PSPACE-complete.

Proof. Problem 2 is in PSPACE: We provideAlgorithm 1 which solvesProb-

lem 2 in linear space. Specifically, this algorithm solves a generalization of
Problem 2 where we do not require that for any q ∈ Q there exists a string
s ∈ L(N) such that {x, q} ∈ ξ(x0, s).

We describe informally the operation of the algorithm. First we start with
the ε-reach of the initial state, x0. Denote this by X ′. We determine if x ∈ X ′
and if Q ∩X ′ = ∅. If so then there exists a string leading to x that does not
lead to any state in Q and the algorithm terminates with “accept”. Otherwise,
we nondeterministically choose a letter e ∈ Σ ∖ {ε} labelling a transition from a
state in X ′, compute the set X ′′ of states reached by e followed ε transitions
from a state in X ′, set X ′ to X ′′, then repeat the test mentioned. This is done
until a certain bound is reached at which point the algorithm terminates with
reject. We argue in the following why this bound is used.

When determinizing an NFA N = (X,Σ, ξ, x0) using the subset construction
in the worst-case the DFA constructed, denoted by D, will have 2∣X ∣ − 1 states.
Consider the shortest string s leading to a state in D containing x and not
containing any state in Q. In the worst-case, for each nonempty subset X̂ of X
that does not contain x or contains x and a state of Q, there exists a prefix of s
that leads to X̂. Then one can establish a bound on the length of s as follows.
The number of nonempty subsets of X containing x (resp., not containing x) is
2(∣X ∣−1) (resp., 2(∣X ∣−1)−1). The number of nonempty subsets of X containing x

and no element of Q is 2∣X∖(Q∪{x})∣ = 2(∣X∖Q∣−1). Thus the number of subsets of
X containing x and an element of Q is 2(∣X ∣−1)−2(∣X∖Q∣−1). Thus a bound on the
length of s is ([2(∣X ∣−1)−1]+[2(∣X ∣−1)−2(∣X∖Q∣−1)]−1)+1 = 2∣X ∣−(2(∣X∖Q∣−1)+1).

Next we characterize the space complexity of Algorithm 1. Note that the
bounds we provide are not necessarily tight.

First, we evaluate the storage requirements for variables used in the algo-
rithm. Each of x′,X ′,X ′′ requires O(∣X ∣) tape cells for storage. Variable i

requires ⌈log(2∣X ∣ −(2(∣X∖Q∣−1) + 1))⌉ ≤ ⌈log(2∣X ∣)⌉ = c ⋅ ∣X ∣ ∈ O(∣X ∣) tape cells for
storage where c > 0. Variable e requires O(∣Σ∣) tape cells for storage.

Second, we evaluate the storage requirements for operations involving vari-
ables used in the algorithm. Computing X ′ in line 1 requires O(∣X ∣) tape cells
since computing the ε-reach of a state in X requires O(∣X ∣) tape cells. The
assignment to i on line 2 requires O(1) tape cells. The comparisons in the first
clause of the loop invariant on line 3 requires O(∣X ∣) tape cells. The compar-
ison in the second clause of the loop invariant on line 3 requires O(∣X ∣) tape
cells. The assignment to e on line 4 requires O(∣X ∣ + ∣Σ∣) tape cells. Iterating
over X ′ on line 6 requires O(∣X ∣) tape cells. Evaluating the condition of line 7
requires O(1) tape cells. The assignment on line 8 requires O(∣X ∣) tape cells.
The assignment on line 11 requires O(∣X ∣) tape cells. The incrementing of i
on line 12 can be done in place on i if i is represented appropriately and hence
requires O(1) tape cells. The comparisons on line 14 require O(∣X ∣) tape cells.

All of the storage requirements mentioned are further upper bounded by
the size of the input to Algorithm 1. Thus, Problem 2 is in NPSPACE. By

20



Algorithm 1 A decider for Problem 2

Require: N = (X,Σ, ξ, x0)
Require: x ∈X
Require: Q ⊆X

1: X ′ ← ε-reachξ(x0)
2: i← 0
3: while (x ∉X ′ ∨Q ∩X ′ ≠ ∅) ∧ i < 2∣X ∣ − (2(∣X∖Q∣−1) + 1) do

4: Nondeterministically select e from Σ ∖ {ε} where ∃x′ ∈X ′, ξ(x′, e)!.
5: X ′′ ← ∅
6: for all x′ ∈X ′ do
7: if ξ(x′, e)! then
8: X ′′ ←X ′′ ∪ ε-reachξ(ξ(x′, e))
9: end if

10: end for

11: X ′ ←X ′′

12: i← i + 1
13: end while

14: if x ∈X ′ ∧Q ∩X ′ == ∅ then

15: accept
16: else

17: reject
18: end if

Savitch’s Theorem [8], Problem 2 is also in PSPACE.

Every problem in PSPACE is polynomial-time reducible to Problem 2:

Consider two NFA N1 = (XN1 ,ΣN1 , xN1

0
, ξN1 , FN1) and

N2 = (XN2 ,ΣN2 , xN2

0
, ξN2 , FN2).

From N1 construct NFA N ′1 = (XN1 ∪ {xN ′
1

F },ΣN1 , xN1

0
, ξN

′

1 , x
N ′

1

F ) where x
N ′

1

F

is not in XN1 . Transition function ξN
′

1 is defined the same as ξN1 but where

ξN
′

1(xf , ε) = ξN1(xf , ε) ∪ {xN ′
1

F } for each xf ∈ FN1 . Symmetrically, from N2 we

construct NFA N ′2 = (XN2 ∪ {xN ′
2

F },ΣN2 , xN2

0
, ξN

′

2 , x
N ′

2

F ). It is easy to see thatL(N ′1) = L(N1) (resp., L(N ′2) = L(N2)).
From N ′1 and N ′2 we construct NFA N = (XN1 ∪ {xN ′

1

F } ∪ XN2 ∪ {xN ′
2

F } ∪{xN
0 },ΣN1 ∪ΣN2 ∪{α}, xN

0 , ξN) which recognizes L(N ′1)∪L(N ′2)∪{α}. Without
loss of generality, suppose the state sets whose union defines the state-space of
N are pairwise disjoint. Also, suppose α ∉ ΣN1 ∪ΣN2 . Transition function ξN

is defined in the following cases and undefined otherwise:

∀e ∈ ΣN ′
1
∪ {ε},∀q ∈XN1 ∪ {xN ′

1

F }, ξN(q, e) = ξN
′

1(q, e)
∀e ∈ ΣN ′

2
∪ {ε},∀q ∈XN2 ∪ {xN ′

2

F }, ξN(q, e) = ξN
′

2(q, e)
ξN(xN

0 , ε) = ξN
′

1(xN1

0
, ε) ∪ ξN

′

2(xN2

0
, ε)

ξN(xN
0 , α) = {xN ′

1

F , x
N ′

2

F }
Let x = x

N ′
1

F and Q = {xN ′
2

F }. Determine if s′ ∈ L(N) of Problem 2 exists for
the constructed NFA N , x and Q. If so, it is easy to see that L(N1) ≠ L(N2).

21



Otherwise, let x = x
N ′

2

F and Q = {xN ′
1

F }. Determine if s′ ∈ L(N) of Problem

2 exists for the constructed NFA N , x and Q. If so, it is easy to see thatL(N1) ≠ L(N2). Otherwise, it is easy to see that L(N1) = L(N2).
Constructing NFA N from N1 and N2 requires polynomial time as we are

only adding 3 states and ∣FN1 ∣ + ∣FN2 ∣ + 3 transitions and determining where
each transition is to be added requires constant time (i.e., FN1 , FN2 and xN

0 ,
the states from which transitions are to be added, are provided directly in the
definition of N1, N2 or are introduced in the construction).

From the previous result we achieve the following.

Theorem 3. Problem 1 is PSPACE-complete.

Proof. Problem 1 is in PSPACE: Algorithm 1 can be adapted to solveProb-

lem 1 in linear space with few modifications. The modifications are described:

1. In place of ε-reachξ we use the unobserved reach using policy Ω, which is
denoted as UR

�Ω
-reach and defined as follows:

UR
�Ω
-reach(x̂) = {x̂} ∪ {x̌ ∈ UR

�Ω
-reach(x) ∣ ∃e ∈ Σ, x = ξ(x̂, e) ∧ (x̂, e) ∉ Ω}

2. In line 4, instead of nondeterministically selecting e from Σ ∖ {ε} where∃x′ ∈ X ′, ξ(x′, e)!, we nondeterministically select e from Σ where ∃x′ ∈
X ′, ξ(x′, e)! ∧ (x′, e) ∈ Ω.

3. In line 7, instead of using ξ(x′, e)! as the condition we use ξ(x′, e)!∧(x′, e) ∈
Ω

Note that the bounds we provide next are not necessarily tight. A depth-
first search algorithm can be used to compute UR

�Ω
-reach(x) for a given x ∈ X

using O(∣X ∣) tape cells. The truth of the modified conditions of lines 4 and 7
can be tested using O(∣X ∣ ⋅ ∣Σ∣) tape cells.

The storage requirements of this algorithm (including those of Algorithm

1) are further bounded above by the size of the input to Problem 1. Thus,
Problem 1 is in NPSPACE. By Savitch’s Theorem [8], Problem 1 is also in
PSPACE.

Every problem in PSPACE is polynomial-time reducible to Problem 1:
Consider NFA N = (XN ,Σ, ξN , x0), x ∈ X and Q ⊆ XN ∖ {x} where for any
q ∈ Q there exists a string s ∈ L(N) such that {x, q} ⊆ ξN(x0, s).

From N we construct NFA N ′ = (XN ∪ X ′,Σ ∪ {ε}, ξ′, x0). The NFA N ′

is to be defined such that it utilizes the state-space of N in addition to some
auxiliary states and ε-transitions to these states which are defined in such a
way that L(N ′) = L(N) and nondeterminism from a state in N ′ only occurs on
ε-transitions.

Specifically, transition function ξ′ is defined in the same way as ξN except
for the following cases. For every e ∈ Σ∖{ε}, for every state x1

N ∈XN , for every
state x2

N ∈XN , if x2

N ∈ ξN(x1

N , e) and ∣ξN(x1

N , e)∣ > 1 then a new state xx1→ex2
is

included in X ′, x2

N is not included in ξ′(x1

N , e), xx1→ex2
is included in ξ′(x1

N , ε)
and x2

N is included in ξ′(xx1→ex2
, e).

It is easy to see that L(N ′) = L(N).

22



From N ′ we construct DFA G = (XN ∪X ′,Σ ∪ Σ′, ξG, x0). The DFA G is
defined such that any transition labelled by ε in N ′ is relabelled with a unique
symbol α ∈ Σ′ where α ∉ Σ ∪ {ε}. Furthermore, no two ε-transitions from N ′

are labelled with the same symbol in Σ′. As a result, it is easy to see that G is
deterministic.

Specifically, for every x1 ∈XN ∪X ′, ξG(x1, ε) = {x1}. Also, let Σ′ be defined
such that Σ′∩Σ = ∅ and ∣Σ′∣ = ∑x′∈XN∪X′ ∣ξ′(x′, ε)∖{x′}∣. For every x1 ∈XN∪X ′,
for every x2 ∈XN ∪X ′, if x2 ∈ ξ′(x1, ε) ∖ {x1} then x2 ∈ ξG(x1, α) where α ∈ Σ′.
Furthermore, for every α ∈ Σ′, for every x1 ∈ XN ∪X ′, for every x2 ∈ XN ∪X ′,
ξG(x1, α)! ∩ ξG(x2, α)!⇒ x1 == x2.

Take Σ′ to be a set of observable events. Let TR(G) denote the transitions
of G. That is, for any event e ∈ Σ ∪Σ′, for any state x′ ∈ XN ∪X ′, if ξG(x′, e)!
then (x′, e) ∈ TR(G). Let policy Ω = TR(G) ∖ {(x′, e) ∣ x′ ∈XN ∪X ′ ∧ e ∈ Σ′}.

For every q ∈ Q, there exists an s ∈ L(N) such that {x, q} ⊆ ξ(x0, s). Consider
projection PΣ ∶ (Σ∪Σ′)∗ → Σ∗. The previous fact and definition of L(G) imply
P −1
Σ
(s) ∩ {s′ ∈ L(G) ∣ ξG(x0, s

′) = x} ≠ ∅ and P −1
Σ
(s) ∩ {s′ ∈ L(G) ∣ ξG(x0, s

′) =
q} ≠ ∅. Then, by definition of Ω and ω1

Ω
from Ω we have that there exists

s′, s′′ ∈ L(G), ξG(x0, s
′) = x, ξG(x0, s

′′) = q and θω
1

Ω(s′) = θω
1

Ω(s′′). Then, by
definition of TΩ, QTΩx.

Thus, < G,Ω, x,Q > is an instance of Problem 1.
Determine if s′ ∈ L(G) of Problem 1 exists for this instance. If s′ exists then

it is easy to see that x ∈ ξN(x0, PΣ(s′)) and Q∩ ξN(x0, PΣ(s′)) = ∅. Otherwise,
it is easy to see there does not exist a string t ∈ L(N) such that x ∈ ξN(x0, t)
and Q ∩ ξN(x0, t) = ∅.

Constructing N ′ from N can be done in polynomial time in the size of XN

and Σ. A simple algorithm for computingN ′ would proceed by iterating through
states in XN . If an event e ∈ Σ∖{ε} labels multiple transitions from the current
state x1

N ∈XN then we replace every transition to a state x2

N on e from x1

N by a
transition from x1

N to a new state xx1→ex2
labelled by ε followed by a transition

from xx1→ex2
to x2

N on e. This algorithm is in O(∣XN ∣2 ⋅ ∣Σ∣) which generates
N ′ containing O(∣XN ∣2 ⋅ ∣Σ∣) states.

Constructing G and Ω from N ′ can be done in polynomial time in the size
of XN ∪X ′ and Σ. A simple algorithm for computing G and Ω iterates over the
transitions of N ′. If a transition is encountered that is labeled with ε then it is
relabeled with a new symbol α and the resulting transition is added to Ω. An
obvious upper bound for the algorithm is O(∣XN ∪X ′∣2 ⋅ ∣Σ ∪ {ε}∣).

As ∣XN ∪X ′∣ is in O(∣XN ∣2 ⋅ ∣Σ∣), it follows that the reduction from Problem

2 to Problem 1 is in O(∣XN ∣2 ⋅∣Σ∣+(∣XN ∣2 ⋅∣Σ∣)2 ⋅∣Σ∪{ε}∣) ⊆ O(∣XN ∣2 ⋅∣Σ∣+∣XN ∣4 ⋅∣Σ∣2 ⋅ (∣Σ∣ + 1)) = O(∣XN ∣2 ⋅ ∣Σ∣ + ∣XN ∣4 ⋅ ∣Σ∣3 + ∣XN ∣4 ⋅ ∣Σ∣) = O(∣XN ∣4 ⋅ ∣Σ∣3). Thus
the reduction from Problem 2 to Problem 1 is in polynomial time. Since
Problem 2 is PSPACE-complete, every problem in PSPACE is polynomial-
time reducible to Problem 1.

5.2 Sensor activation decisions based on an arbitrary state

equivalence class

In this subsection we consider that the first and second scenarios described
in the introduction to this section do not occur. However, the third scenario
may occur. That is, sensor activation conflicts may exist between state equiva-

23



lence classes. We consider a condition which, if satisfied, avoids such conflicts
and allows sensor activation decisions to be computed using an arbitrary state
equivalence class in the true state’s equivalence class estimate. Also, when the
condition is satisfied, maintaining an estimate of the true state’s equivalence
class is not required. This allows for the method of Section 4 to be applied for
computing sensor activation decisions. That is, one only needs to remember a
single state equivalence class in the state equivalence class estimate, compute
sensor activation decisions from the state equivalence class, then transition to
an arbitrary state equivalence class in the new state equivalence class estimate
computed as a result of an observed event occurrence.

The condition considered is stated as follows: ∀s ∈ L(G), [θω1

Ω(s)] contains
only state equivalence classes which are followed by exactly the same sensor
activation decisions for any given observable event. Formally, this is expressed
as the following:

∀s ∈ L(G),∀σ ∈ Σo,∀[q1], [q2] ∈ [θω1

Ω(s)], (14)

(∃q1 ∈ [q1], (q1, σ) ∈ Ω⇔∃q2 ∈ [q2], (q2, σ) ∈ Ω)
We consider the following procedure for verifying if (14) is satisfied for given

G = (X,Σo ∪Σuo, ξ, x0) and policy Ω. Using the procedure described at the end
of Section 4 we compute the set of state equivalence classes [X] of X. After
computing [X] we can construct NFA [G] = ([X],Σo, ξ[G], [x0]). Transition
function ξ[G] is defined as follows:

∀[x] ∈ [X],∀e ∈ Σo, ξ[G]([x], e) = {[ξ(x, e)] ∣ ∃x ∈ [x] where (x, e) ∈ Ω}.
Constructing ξ[G] also requires a map from each state x ∈X to its corresponding
state class. Given [X] this can be computed in O(∣X ∣). Then computing ξ[G]
is in O(∣X ∣ ⋅ ∣Σo∣).

From [G] the pairs of indistinguishable state equivalence classes in [X],
denoted by T [G], can be computed using the CLUSTER-TABLE algorithm of
[14] in O(∣[X]∣2 ⋅ ∣Σo∣) ⊆ O(∣X ∣2 ⋅ ∣Σo∣). It is not difficult to see that a pair of
state equivalence classes ([x1], [x2]) ∈ T [G] if and only if ∃s ∈ L(G), [x1], [x2] ∈[θω1

Ω(s)]. Then (14) is false if ∃([x1], [x2]) ∈ T [G], ∃e ∈ Σo, (ξ[G]([x1], e) is
undefined ∧ ξ[G]([x2], e)!)∨(ξ[G]([x1], e)!∧ ξ[G]([x2], e) is undefined). Other-

wise, (14) is true. This can be computed by iterating through pairs in T [G] and
checking each pair. This computation is in O(∣[X]∣2 ⋅ ∣Σo∣) ⊆ O(∣X ∣2 ⋅ ∣Σo∣).

Given G and policy Ω ⊆ TR(G), when (14) is satisfied and where sensor acti-
vation decisions are determined by ω1

Ω
derived from Ω by (2), if event sequence

s is generated by G then s is observed as θω
1

Ω(s) ∈ Σ∗o the sensor activation
decisions are the set of events labeling transitions in [G] from any of the states

in ξ[G]([x0], θω1

Ω(s)).
We note that, when [θω1

Ω(s)] = 1, it must be the case that the agent’s
other decisions (e.g., control, communication) can be based on the single state

equivalence class in [θω1

Ω(s)]. However, for cases where ∃s ∈ L(G) such that

[θω1

Ω(s)] > 1, though (14) may hold it is not necessarily the case that an agent

can base its other decisions on an arbitrary state equivalence class in [θω1

Ω(s)].
Verification of whether or not other decisions can be based on any state equiv-

alence class in [θω1

Ω(s)] for all s ∈ L(G) can be done by checking whether or

24



not the decisions following two state equivalence classes [x1], [x2] are equivalent
for all ([x1], [x2]) ∈ T where T is computed from [G] as mentioned previously.
This verification is in O(∣[X]∣2 ⋅ ∣Σo∣) ⊆ O(∣X ∣2 ⋅ ∣Σo∣).

6 Conclusions

In this paper we considered sensor activation policies which satisfy various no-
tions of feasibility. In Section 3 we considered sensor activation policies which
satisfy a very strong notion of feasibility. In Section 4 we considered sensor
activation policies which are more general. Finally, we considered when the
coarse estimate of the true state of the system can be used for computing a
map from observed event sequences to sensor activation decisions in Section
5. For the classes of sensor activation policies considered in each section we
demonstrated how a map from observed event sequences to sensor activation
decisions can be computed in polynomial time. However, determining if an ar-
bitrary sensor activation policy belongs to the policies considered in Section 5 is
PSPACE-complete. For the sensor activation policies considered in this paper,
the complexity of determinizing an automaton representation G when transi-
tions not in a given sensor activation policy are replaced with the empty string
remains open. Also, investigating other classes of sensor activation policies from
which computation of a map from observed event sequences to sensor activation
decisions can be done efficiently remains as future work.

References

[1] F. Cassez and S. Tripakis. Fault diagnosis with static and dynamic ob-
servers. Fundamenta Informaticae, 88(4):497–540, 2008.

[2] E. Dallal and S. Lafortune. Efficient computation of most permissive ob-
servers in dynamic sensor activation problems. In Proceedings of the 2nd In-
ternational Workshop on Logical Aspects of Fault-Tolerance (LAFT 2011),
Toronto, ON, Canada, June 2011.

[3] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley, Reading, Massachusetts, USA,
1979.

[4] K. Hryniewiecki. Relations of tolerance. Journal of Formalized Mathemat-
ics, 2, 1990.

[5] X. Juqin, J. Yan, and S. Shaolong. Minimal k-step event observation policy
for on-line observability of discrete event systems. In Proceedings of the 29th
Chinese Control Conference, pages 1476–1482, Beijing, China, July 2010.

[6] F. Lin and W. M. Wonham. On observability of discrete-event systems.
Information Sciences, 44(3):173–198, 1988.

[7] K. Rudie, S. Lafortune, and F. Lin. Minimal communication in a dis-
tributed discrete-event system. IEEE Transactions on Automatic Control,
48(6):957–975, June 2003.

25



[8] W. J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. J. Comput. Syst. Sci., 4(2):177–192, 1970.

[9] S. Shu and F. Lin. Detectability of discrete event systems with dynamic
event observation. Systems & Control Letters, 59(1):9–17, Jan 2010.

[10] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time: Preliminary report. In A. V. Aho, A. Borodin, R. L. Constable,
R. W. Floyd, M. A. Harrison, R. M. Karp, and H. R. Strong, editors,
STOC, pages 1–9. ACM, 1973.

[11] D. Thorsley and D. Teneketzis. Active acquisition of information for di-
agnosis and supervisory control of discrete event systems. Discrete Event
Dynamic Systems, 17(4):531–583, December 2007.

[12] W. Wang, C. Gong, and A. R. Girard. Language-based minimization of
sensor activation for event diagnosis. In 49th IEEE Conference on Decision
and Control, pages 6734–6739. IEEE, Dec. 2010.

[13] W. Wang, S. Lafortune, A. R. Girard, and F. Lin. Optimal sensor activation
for diagnosing discrete event systems. Automatica, 46(7):1165–1175, 2010.

[14] W. Wang, S. Lafortune, and F. Lin. An algorithm for calculating indistin-
guishable states and clusters in finite-state automata with partially observ-
able transitions. Systems & Control Letters, 59(9-10):656–661, Sep./Oct.
2007.

[15] W. Wang, S. Lafortune, F. Lin, and A. R. Girard. An online algorithm for
minimal sensor activation in discrete event systems. In Proceedings of the
48th IEEE Conference on Decision and Control, CDC/CCC 2009, pages
2242–2247, December 2009.

[16] W. Wang, S. Lafortune, F. Lin, and A. R. Girard. Minimization of dynamic
sensor activation in discrete event systems for the purpose of control. IEEE
Transactions on Automatic Control, 55(11):2447–2461, Nov. 2010.

26


