
Application of Graph Grammars

to Model Transformations

Technical Report 2013-604

Francisco de la Parra

School of Computing
Queen’s University
Kingston, Canada

parra@cs.queensu.ca

July 9, 2013

Copyright c©2013 Francisco de la Parra

Contents

Contents i

List of Figures ii

1 Introduction 1
1.1 Overview . 1
1.2 Modeling and Graph Rewriting Background 2

1.2.1 Application Domains and Modeling 2
1.2.2 Models and their Transformations . 3
1.2.3 Graph Grammars . 4
1.2.4 Using Graph Rewriting in Model Transformations 4
1.2.5 Graph Rewriting Tools . 5

2 Graph Grammar Approaches 7
2.1 General Concepts . 7

2.1.1 Graphs and Hypergraphs . 7
2.1.2 Graph Rewriting Productions . 8
2.1.3 Graph Grammars . 9

2.2 Context-Free Graph Grammars . 10
2.2.1 Early Approaches . 11
2.2.2 Algorithmic Approaches . 11

2.2.2.1 NLC Grammars . 11
2.2.2.2 NCE Grammars . 12
2.2.2.3 edNCE Grammars . 13
2.2.2.4 Grammars with Arbitrary Embedding 13

2.2.3 Hypergraph Grammars . 14
2.2.3.1 Hypergraphs . 14
2.2.3.2 Hyperedge-Replacement Grammars 14
2.2.3.3 Hypergraph Rewriting Extensions 15

2.3 Algebraic Approach to Graph Grammars . 16
2.3.1 Graph Transformation . 16
2.3.2 Extended Analysis . 17

2.3.2.1 Independence and Embedding of Derivations 18
2.3.2.2 Structural Manipulation of Productions 18

2.4 Triple Graph Grammars . 19
2.5 Other Approaches . 21

3 Graph Transformation Systems 22
3.1 Transformation Units . 23
3.2 Transformation Modules . 24

i

3.3 Model Transformation Units . 25

4 Graph-Based Model Transformation 26
4.1 Model Transformations . 26

4.1.1 Core Concepts . 26
4.1.2 Bidirectional Transformations . 28

4.2 Model Transformations Using Graphs . 29
4.2.1 Graph-Based Metamodeling . 29
4.2.2 Triple Graph Grammars and Transformations 30

5 Analysis of Open Problems 31
5.1 Open Problems . 31
5.2 Conclusions . 32
5.3 Future Research . 32

Bibliography 33

ii

List of Figures

2.1 Graphs and Hypergraphs . 8
2.2 Single and Double Pushout Production Application 17
2.3 TGG Production Application . 20
4.4 Modeling and Model Transformation Architecture 27

iii

1 Introduction

1.1 Overview

Model Driven Engineering (MDE) has become in recent years a sound and efficient alter-
native for the design and development of complex software of the kind found in industrial
and networked applications [10, 50, 52]. It encourages the use of diagram and language-
based models to create system representations and designs, at different abstraction levels
[8, 45, 57, 58, 70]. One typical example of this paradigm consists of creating platform-
independent models (PIMs) representing system level requirements, which are later trans-
formed into platform-specific models (PSMs), at a lower abstraction level, to support system
implementation and testing activities [52]. By following MDE’s practices, analysts and devel-
opers can produce powerful and reusable designs, as well as readily verifiable program code,
in an environment that promotes enhanced visibility of the software artifacts and extensive
task automation via tool support [50, 74].

In the MDE approach, model-to-model transformations are first-class entities and their
classification, formalization and implementation have been the subject of intensive research
[9, 10, 15, 52, 67, 87]. The studies have primarily focused on: 1) analyzing their intrinsic
properties: nature, scope, directionality, scheduling, technical environment, etc. [16, 17, 67,
69, 88]; 2) defining formal syntactic and semantic aspects of their realization [31, 42, 49,
70, 89]; and 3) developing approaches for their implementation (i.e., rule-based, procedural,
hybrid, graph-transformation-based, etc.) [1, 3, 11, 12, 31, 32, 39, 48, 68, 91].

Given the two-dimensional, diagram-like nature of these models, assembled from sets of
objects that likely have multiple types of relations among them, the use of graphs, composed
of nodes and edges, is a natural choice for representing their structural and behavioural
aspects [7, 44]. A model’s structure or current state can be abstracted into the definition
of a given graph. Its structural and behavioural changes along a time coordinate can be
represented by rule-based evolution of graphs, in other words, by a graph rewriting system
[1, 7, 11, 32, 36, 39, 44, 48, 66, 68].

This work surveys the characteristics and properties of graph rewriting systems, also
known as:

• graph grammars [12, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 33, 47, 54, 62, 71, 72, 77, 78,
79, 80, 82, 83, 84, 85, 86, 94] if the emphasis is on studying the types of graphs they
generate (i.e., graph languages), and

• graph transformation systems [4, 7, 21, 30, 36, 44, 51, 66, 68, 90, 91] if the primary
interest is in describing the graph rewriting mechanisms they use,

and their application to formalize, specify and implement transformations on models of the
type described above.

The primary focus is to describe core theoretical aspects of these systems, such as the
structure and properties of the grammar productions, aspects of graph transformations,

1

types of graphs generated, and others, from the viewpoint of their suitability and potential
for conceptualizing and supporting the required formal structures and processes, as well as
the desired tools to transform diagram-based models.

In pursuing this analysis goal, the general exposition gradually aggregates graph rewriting
concepts, beginning with the mostly graph generation approach of graph grammars in Section
2, and continuing in Section 3 with the more versatile graph transformation approach which
applies the software engineering oriented concepts of graph transformation units and systems.
Section 4 outlines a set of model transformations recently researched and considered potential
candidates to take advantage of the graph transformation framework. Section 5 presents a
brief summary of open problems related to graph grammars and graph transformations, and
also provides an initial insight to using them in building integrated model transformation
tools.

The remainder of Section 1 establishes a general conceptual context used in this work for
the analysis of applying graph transformations to model transformations.

1.2 Modeling and Graph Rewriting Background

Overall, graph grammars and graph transformations have been used in software engineering
as formalisms for representing design and computational aspects of systems at a very high
level of abstraction, which normally requires as a prerequisite the use of sound methodologies
to analyze the problem domain and a reasonably structured approach to systems development
(e.g., MDE). The following subsections provide a summary introduction to the modeling
process, its elements, and the relations that can be established with graph rewriting systems.

1.2.1 Application Domains and Modeling

Sound application of the MDE’s techniques has highlighted the need for knowledge and
design reusability, which in turn requires organizing similar problems, solutions and software
applications in the context of a well defined application domain with a substantially focused
goal set. Correspondingly, domain analysis [81], as a process that promotes abstraction
by identifying, creating, classifying and organizing useful modeling entities (i.e., standards,
taxonomies, structural and procedural models, domain languages, etc.) in a given application
domain, has become more a mainstream activity rather than an optional task. It is in this
structured environment where one can envision using graphs and graph transformation as
potentially effective and useful tools to describe, formalize and structure some of the activities
and objects resulting from the analysis, mainly those that lend themselves to diagram-
like representations, rather than applying them in analyzing a one of a kind problem and
developing a single-use solution.

Modeling, as an activity that strives for extracting useful abstractions from ”originals”
such as real systems, subjects, or even other models (i.e., meta-models), is language-oriented
in the context of MDE [45, 52, 57, 58]. One builds descriptive or prescriptive models using
general modeling languages such as the UML [8] or domain-specific languages with formal
syntax and semantics [42, 64]. The main concern is whether, given the requirements of an

2

application, these languages allow the building of models that contain accurate and capa-
ble representations of the entities and relationships identified in the domain analysis stage,
which can be incorporated into tools for analysis and verification. In other words, impor-
tant questions arise about completeness and expressiveness of the syntax and soundness of
the semantics associated with the elements of the modeling language(s) used to build those
models and the ability to build tool support for them. In light of this situation, graph gram-
mars and graph transformations haven been referred to as a promising alternative in order
to provide more precise syntactic and semantic definitions, for example in diagrammatic lan-
guages, with potential for supporting tool construction (e.g., diagram editors, configuration
management and integration tools) [52, 64].

1.2.2 Models and their Transformations

Research to characterize MDE in the context of the OMG’s MDA architectural standard has
suggested that encouraging a mindset of “everything is a model” [10] could well be the key
to further developing this approach. In addition to realizing that models in the context of
MDE approach are language-based and that their presence is ubiquitous, it is also necessary
to briefly discuss some basic modeling concepts that appear very relevant to an interest in
applying graph grammars to model transformations.

According to Kühne [57] “a model is an abstraction of a real or language-based system
allowing predictions or inferences to be made”. In the present work, it will be assumed that
the abstraction component of this definition, arguably the most controversial [45, 58, 70], rep-
resents “a convenient and pragmatic mapping between an existing original (system, subject,
or another model) and a language-based (visual or textual) representation (model) which
facilitates further computerized processing associated with the original due to complexity
reduction, standardized entity representation, and the use of well-known information struc-
tures”. Additionally, it will be considered that the prediction and inference capabilites of
a model are properties that accept appropriate and accurate characterization when defined
in the context of specific application domains. In other words, general domain-independent
analysis of these properties does not really contribute to the effectiveness of prescriptive and
descriptive models of interest resulting from applying the abstraction process as described
above.

In attempting to determine the usefulness and applicability of different models, MDE
researchers have suggested various classification schemes. Among them, the views of “token
versus type models” [57] and “platform-independent (PIM) versus platform-specific (PSM)
models” [52] have gained prominence due to extensive theoretical, standardization, and sys-
tem implementation work done around them. In this context, graphs and graph transforma-
tions appear to offer a great deal of descriptive and precision power when formalizing and
describing, for example, many structural aspects of type models [64] , or formal aspects of
the transformations required to convert PIMs into PSMs and vice versa [49].

In the overall modeling context described so far, model transformations have become
primary and absolutely necessary entities that make possible a powerful and flexible approach
based on creating domain specific language-based models, at different levels of abstraction
and representing different views of the same system, which can be translated into each other
for more convenient analysis or application implementation. To this end, graph grammars

3

and graph transformations have been proposed as concise and expressive formalisms not
only to describe syntactic and semantic aspects of PIMs to PSMs transformations but also
to include transformations between different domain-specific modeling languages (DSML)
[49].

1.2.3 Graph Grammars

Graph grammars were first introduced in the late 1960’s as an extension to graphs, composed
of nodes and directed edges, of the grammar concepts used to generate formal string-based
languages [79]. Since then, intensive research has developed their theoretical foundation into
a number of different grammar analysis and construction techniques: algebraic techniques,
set theoretic approach, node-label controlled (NLC) approach, etc. [23, 25, 26, 28, 47, 71, 72,
77, 78, 80, 82, 83, 84, 86] and extended their application to fields in science and engineering:
pattern recognition, natural computing, visual languages, software engineering, etc. [29]
From a software engineering perspective, which is the analysis viewpoint exercised in this
work, the initial focus on graph grammars has shifted from understanding the properties
of the graph languages they generate to an interest in describing and exploiting the graph
transformation mechanisms they use [7, 44] and their integration into graph rewriting systems
[36, 51, 85], and how they can be applied to formalize computational structures, models and
processes, and used for software specification and very high level rule-based programming
[1, 3, 4, 33, 34, 39, 48, 49, 54, 55, 61, 62, 66, 68, 85, 91, 94].

Over the years, the basic conceptual idea of a graph, consisting of labeled nodes and
directed edges, has been extended to include attributed graphs, typed graphs, hypergraphs,
and others. By the same token, the basic idea of a graph grammar (GG) as a structure
having:

• An initial graph G0.

• A finite set P = {p1, p2, ..., pn} of productions (i.e., rules).

• Each production pi has a Left Side Graph (LSG) and a Right Side Graph (RSG).

• A production is applied (expressed as LSG =⇒ RSG), in an exhaustive, either de-
terministic or non-deterministic fashion, to graph Gi(i = 0, 1, 2, ...) (i.e., to G0 or one
of its descendants), and involves searching for an isomorphic subgraph occurrence of
LSG in graph Gi. All these occurrences of LSG in Gi are completely replaced by RSG
using a sub-graph “connecting” or “gluing” approach to produce graph Gn+1.

where the successive applications of productions generate a graph language L(GG) = {G0, G1,
G2, ...}, has evolved to include rule application conditions [27], programmed rule application
approaches [33, 34, 35, 85],and a number of graph rewriting techniques [4, 7, 44]. Section 2
provides a more detailed overview of the different types of graph grammars.

1.2.4 Using Graph Rewriting in Model Transformations

Research that developed during the mid-to-late 1990’s to integrate graph grammars into
graph rewriting systems [85, 90], in order to enhance programmability and enable control

4

flow in graph transformation-based software applications, along with a growing interest in
using diagram-based modeling languages (e.g., UML) to specify and build software sys-
tems [8, 36], established the foundation for new research and development efforts geared
to demonstrate the use of graphs and graph grammars / graph transformations as suitable
formalisms to describe and specify syntactical and semantic aspects of software models and
model transformations [39, 62, 66]. Their application opened the possibility to generate, for
example, model visualization and transformation tools in a fairly automated fashion from
generic graph-based specifications [75, 91]. In general, ideas for designing those specifications
have been extracted from other areas where graph rewriting techniques have been used, such
as in specification of program transformations, semantic definition of well known modeling
formalisms (e.g., state charts, Petri nets), and tool integration [1, 61].

Applying graphs to models and model transformations elaborates on the central idea of
abstracting the generic entities of a specific abstract or concrete domain into a metamodel,
which in turn is defined using a highly descriptive modeling language (e.g., UML class
diagrams), and considering that the models created within that domain, which conform to
the metamodel, can be represented by graphs [1, 64]. Model transformations can occur
between models of the same domain or different domains and involve graph rewritings that
can be specified as instantiations of the language generated by a graph grammar or the
operations in a graph transformation system [48, 60].

Section 3 presents an overview of the characteristics that have evolved in graph grammars
and graph rewriting, in general, to constitute graph transformation systems of interest to the
MDE research community. Section 4 explains how core types of model transformations can
be supported by graph grammars and graph transformations, highlighting the special case of
triple graph grammars as a useful formalism to specify incremental model transformations
and model synchronizations.

1.2.5 Graph Rewriting Tools

As theory evolved into a number of different approaches to build graph grammars and the in-
terest in applying them to software engineering problems became more prominent, a number
of prototyping tools to investigate their properties and use them as software specifications
started to appear. GraphEd [46] represents an early tool effort with a rather basic objective
of providing an interactive environment for graph drawing/parsing and the representation
of productions in context-free graph grammars (e.g., 1-NCE, NLC, and BNLC grammars
[82]). The Algebraic Graph Grammar (AGG) system [65, 90], which supports the Single
Pushout (SPO) graph rewriting approach to build graph grammars, since its initial versions
implemented a more powerful graphical editor to allow experimentation with grammar pro-
ductions, subgraph morphisms and graph rewriting results. It also included a derivation
component to allow direct execution of user-selected grammar productions and subgraphs.
GraphEd and AGG allow the working with graphs and prototype graph grammars in isola-
tion, and do not provide integrated environments for the application of graph rewriting to
software systems.

In the early 1990’s, the PROGRES tool introduced one of the first integrated envi-
ronments for interactively prototyping graph grammars and graph transformations based on
systemic specifications and very high level programming [73, 85]. The environment consisted

5

of: 1) a visual/operational specification language for graphs and graph rewriting rules, 2)
a set of tools for editing, analyzing and executing specifications in this language, and 3) a
methodology associated with the use of the language and tools, denominated graph grammar
engineering approach, intended to support the entire development cycle, from requirements
to code implementation, for graph grammar-based software applications, and characterized
by techniques to deal with complex data structures (i.e., graph-like structures, individual
objects, and the relationships between them), complex graph pattern matching and trans-
formation, and appropriate user interfaces. PROGRES, although a generic environment for
application specification and development using graph grammars, can be considered in many
ways a precursor for a number of more specialized prototyping tools dealing with models and
model transformations such as the following:

• AToM3 is a multi-paradigm modeling and metamodeling framework that allows the
building of models for complex systems using different modeling formalisms (i.e., meta-
models). It relies on graph grammars and graph transformations to implement auto-
mated transformations between formalisms, and to perform visualization and code
generation tasks [60, 62].

• The Graph Rewriting and Transformation (GReAT) system is a graph-based language
and tool suite for the specification of graph transformations between DSMLs. The
GReAT language allows the specification of patterns to match on input graphs, trans-
formation rules and rule sequencing control. The metamodels for the DSMLs are
specified using UML class diagrams [1, 5, 48].

• FUJABA is a suite of tools for round-trip software engineering that allows code gener-
ation and software artifact recovery between UML diagrams and Java code using graph
transformation techniques. Graph-like story diagrams are the main artifacts used in
this framework for modeling application behaviour [37, 75].

• MOFLON is built on top of FUJABA as a metamodeling framework (compliant with
the OMG standards for the MDA paradigm) for specifying system integration tools and
model transformations which makes use of story driven modeling (SDM) (i.e., story
diagrams) and graph transformations for synchronization of tools and models [2, 93].

• VIATRA2 is a generic model transformation framework based on metamodeling and
graph transformations. It provides a declarative language for manipulating graph mod-
els, including their transformations, and abstract state machines to produce metamod-
eling, model transformation and template-based code generation specifications [6, 13].

• MATE is a tool for performing automated analysis and repair of MATLAB Simulink
models using metamodeling techniques and graph transformations. It uses FUJABA’s
SDM to define visual graph transformations that make models compliant with standard
guidelines [63].

6

2 Graph Grammar Approaches

2.1 General Concepts

In order to briefly formulate a clear description of graph grammars as operational structures
providing the mechanisms to generate, transform and parse graphs and graph-like structures,
it is helpful to identify their key components from the outset. The following is an abbreviated
description of these elements.

2.1.1 Graphs and Hypergraphs

A simple labeled directed graph G over a pair of label alphabets (ΣV ,ΣE) (where ΣV =
{vl1, ..., vlp}: node label alphabet, and ΣE = {el1, ..., elq}: edge label alphabet) consists
of a sextuple (V,E, sV , tV , lV , lE) where V = {v1, ..., vn} (set of nodes; or vertices), E =
{e1, ..., em} (set of directed edges), sV : E → V assigns an edge’s source node, tV : E → V
assigns an edge’s target node, lV : V → ΣV assigns node labels, lE : E → ΣE assigns edge
labels (fig. 2.1-(a)).

From the previous definition of a simple labeled graph, one can derive various spe-
cific classes of graphs, which the different graph grammar approaches [82], context-free and
context-sensitive, can generate:

• In an undirected graph if there exists a directed edge between nodes vi and vj (i 6= j),
then there also exists a directed edge between vj and vi.

• A multigraph can contain multiple directed edges between a given pair of nodes vi and
vj (i 6= j).

• In an unlabeled graph the label alphabets ΣV , ΣE are empty sets.

• In a typed graph, the sets of node and edge labels ΣV and ΣE respectively, are parti-
tioned into classes called types. Edges identified with a certain label type can only be
incident to source and target nodes identified with specific label types.

• An attributed graph contains attributes on nodes which can have any of the numeric
and text data types, or some other complex types (e.g., an expression, list, or graph).

• Star graphs consist of nodes labeled as nonterminal and terminal (i.e., ΣV = ΣV N ∪
ΣV T with ΣV N ∩ ΣV T = φ, ΣV N : nonterminal labels, ΣV T : terminal labels) with the
following restrictions on edges: 1) the target node of an edge between a nonterminal
and a terminal node must be a terminal node, 2) edges between nonterminal nodes are
not allowed (fig. 2.1-(b)).

Hypergraphs represent an extension of the structural concept of a graph to contain hy-
peredges, instead of edges, connecting to multiple source and target nodes through links de-
nominated ”tentacles” (fig. 2.1-(c)). Context-free hyperedge replacement (HR) grammars are

7

commonly applied to generate and parse these structures [41]. The algebraic transformation
based hypergraph replacement (HGR) grammars represent a more complex generalization of
HR-grammars. When limiting hyperedges to having one source and one target node, these
grammars generate simple graphs of the type defined above.

Triples of graphs extend the idea of a single graph as the unit of analysis to a triple (LG,
CG, RG) consisting of three graphs: LG (left graph), RG (right graph), and CG (connection
graph), of the same class, where graph CG represents associations between the elements of
graphs LG and RG. Triple graph grammars are the structures associated with generating
and parsing these graph triples [84, 86].

Hierarchical graphs constitute a most general structure with higher-order nodes that are
abstractions of graphs and higher-order edges that represent relations between graphs which
are represented as graphs again. With these structures, it is possible to abstract an entire
sub-graph to a node or to a single edge between two abstracted nodes [19].

Figure 2.1: Graphs and Hypergraphs

2.1.2 Graph Rewriting Productions

The sequential and iterative application of graph rewriting productions (i.e., rules) to an
existing graph(s) of a certain class is the mechanism used to generate a complete set of graphs
of that same class (i.e., graph language). The following is a general definition of a production
[4] that is applicable to most graph transformation (i.e., graph grammar) approaches found
in the literature.

A graph rewriting production is a sextuple p = (LG,K,RG, ac, gl, em) that allows the
transformation of a host graph G into a direct derivation graph H, whose components are
defined as follows:

• LG is the production’s left graph. Applying a production to a host graph G involves
searching for one or more isomorphic occurrences of LG in G which will eventually be
replaced by instantiations of graph RG.

• K is the production’s interface graph which is a sub-graph (i.e., no dangling edges:
all its edges have a target and a source node) of LG and RG contains an isomorphic

8

occurrence of it. This graph is only used in the double pushout approach to graph
grammars to replace LG by RG via a graph gluing operation.

• RG is the production’s right graph which will be attached to an intermediate graph
(G − LG) ∪K, in the more common case, using graph gluing or embedding, or both
operations, to produce a direct derivation graph H as the overall result of applying the
production.

• ac are the application conditions under which a production will be applied or not. They
could represent the existence or non-existence of certain nodes, edges, or subgraphs in
the host graph G, as well as embedding restrictions of LG in G or of RG in H.

• gl is the gluing operation which consists of three steps:

– Build a context graph D which contains the graph G, minus the nodes and edges
of the isomorphic occurrence of LG in G that are not preserved in RG.

– Glue graphs D and LG through K to generate the host graph G. This operation
is the disjoint union of graphs D and LG (i.e., corresponding nodes and edges of
the occurrences of K in D and LG are amalgamated into one).

– Glue graphs D and RG through K to generate the direct derivation graph H.
This operation is the disjoint union of graphs D and RG.

• em is the embedding (or connecting) operation, which creates edges between designated
nodes in the context graph D and nodes in the graph RG, to produce the final direct
derivation graph H. Its definition can, for example, specify that dangling edges (i.e.,
edges with a source or target node, but not both) resulting from removing an isomorphic
occurrence of LG in G, be recreated, or that new edges be created between nodes in
D, determined by path expressions [72] or connection relations [47], and specific nodes
in RG. Embedding is mostly used in single-node replacement productions (i.e., LG is
a single node).

The application of a context-free production pi from a set P = {p1, ..., pn} to a host graph
G has a strictly local scope to the isomorphic occurrence of the production’s LG graph -
which is a single element: a node, a handle (i.e., single edge with source and target nodes), or
hyperedge - in the host graph G. Context-sensitive productions can involve nodes and edges
not local to this occurrence, and are characterized by the existence of at least one element
n in LG with the property that LG− {n} is a subgraph of G (i.e., arbitrary graphs).

2.1.3 Graph Grammars

A graph grammar is a quadruple GG = (T, S, P,A) where:

• T is the type or class of graph, as defined in Section 2.1.1 (i.e., unlabeled, labeled,
hypergraph, etc.), that can be generated, modified and recognized by applying a set P
of productions.

9

• S is the start graph to which a set P of productions will be initially applied. Typical
start graphs for context-free grammars 1 are: a single node, a handle, a hyperedge.
Context-sensitive grammars can have arbitrary start graphs.

• P is a set of productions P = {p1, ..., pn} with each production pi defined as in Section
2.1.2.

• A is a set of additional specifications extending the scope and nature of applying the
set of productions P to graphs of type T (i.e., attributes, programmed rules, global
application conditions, structural conditions, etc.).

The language L(GG) generated by graph grammar GG is the set of terminal graphs
(i.e., graphs without non-terminal nodes) that can be generated from the start graph S by
repeated application of the graph rewriting productions. All graph languages generated by
graph grammars acting upon the same graph type T constitute a class of languages.

Applying a set of productions P = {p1, ..., pn} to one or more graphs involves scheduling
the application of the individual productions in a non-deterministic or deterministic man-
ner. Deterministic approaches can utilize ad-hoc programmed rules, prioritization schemes,
application conditions and hybrid schemes to schedule productions. It is well known that
these extensions found in deterministic approaches do not increase the generative power of
a graph grammar (i.e., do not extend or create new classes of graphs not generated in a base
grammar) [71, 72]; they rather reduce it, to make the parsing and recognition of the graphs
in the generated language a more manageable task. In general, they facilitate using graph
grammars in applications such as subject modeling, entity description, process specification
and pattern recognition, by increasing their descriptive power [21, 22].

2.2 Context-Free Graph Grammars

Informally, a graph grammar is said to be context-free if its graph rewriting mechanism is:

• local to the isomorphic occurrence of each production’s LG graph in the host graph G.

• confluent - two productions affecting different locations of a host graph G can be
applied in any order giving the same derived graph.

• associative - as in ordinary algebraic associativity, productions can be applied in dif-
ferent associative groups resulting in the same derived graph.

Context-free grammars are important in the sense that graph derivations can be modelled
by derivation trees which, as a whole, produce the same set of graphs for any different
ordering used to apply the productions [14]. In general, they are specially useful in describing
and generating graphs with recursive properties.

1A grammar is context-free if all its productions are context-free. Otherwise, it is context-sensitive.

10

2.2.1 Early Approaches

Graph grammars were first studied in [79] under the name of web grammars, with the
analysis concentrating on comparing the generative properties of context-free and context-
sensitive grammars, using simplified models of ordered acyclic directed graphs as natural
representations of strings, aiming to imitate Chomsky’s most applicable grammar types. This
work emphasized the application of context-free grammars to generate node-labeled graphs
representing simple and very regular directed networks. It also introduced the concept of
embedding a production’s replacement graph without giving any details of this operation.

In another interesting development, Pratt [80] introduced the concept of pair gram-
mars, where correspondence mappings are established between the productions and the
non-terminals in the productions of two graph grammars defined over the same label al-
phabet(s). The language generated by this type of grammar is a set of ordered pairs of
graphs. Similarly, the analysis in this case focused on considering both grammars of the pair
as being context-free, capable of generating directed graphs representing strings. From this
viewpoint, the pair grammar could be used as a high level specification for string-to-graph
and graph-to-string conversions (i.e., program code to graph representation and vice versa).

Both examples represent the early efforts to emulate the common properties of string
grammars in graph approaches, which is the preamble to grammars with more advanced
graph rewriting mechanisms, the topic of the subsequent sections.

2.2.2 Algorithmic Approaches

These approaches to graph grammars, also known as: set theoretic, connecting, and node
replacement, implement a graph rewriting mechanism which replaces a node vl, labeled with
the symbol l from an alphabet Σ, in a host graph G, by reconnecting to the context graph
D = G − vl − Ed (Ed: set of dangling edges in G after removing vl) an isomorphic copy
of a grammar production’s RG graph through edges determined by path expressions [72],
connection relations [47, 82], or some other algorithm.

The following three sections introduce the grammar types: NLC, NCE and edNCE,
which have completely local graph rewriting mechanisms, where a production’s RG graph is
reconnected only to the neighbour nodes of the node being replaced. This restriction makes
these grammars easier to further constrain to produce grammar classes with the desirable
property of being confluent, hence context-free.

2.2.2.1 NLC Grammars

A node-label-controlled (NLC) graph grammar is a quadruple (NU,P,C, S) where:

• NU = (V,E,Σ, Lv) is a node-labeled undirected graph definition as follows:

– V = {v1, ..., vn} is a finite set of nodes.

– E = {e1, ..., em} is a set of undirected edges (i.e., ei = (vj, vk) = (vk, vj); j 6=
k; j = 1, ...,m; k = 1, ..., n).

– Σ = ΣN ∪ ΣT is a finite alphabet of symbols , with ΣN : non-terminals, ΣT :
terminals.

11

– lv : V → Σ is the labelling function which assigns a terminal or non-terminal
symbol to each node in V .

• P = {p1, ..., pn} is a finite set of productions, with each pi = (Li, RGi, Ci), Li: non-
terminal symbol in ΣN (left side of production), RGi: graph of type NU (right side of
production), Ci: connection relation of pi.

• C = {(ρ, σ) | ρ, σ ∈ Σ} =
⋃

1≤i≤nCi (C ⊆ Σ × Σ) is the connection relation. A pair
(ρ, σ) in this relation indicates that an edge should be created between each node
labeled σ in graph RG and each node labeled ρ in the context graph D.

• S is the start graph. This graph is usually, but not necessarily, a single node labeled
with a non-terminal symbol (i.e., S).

Consistent with these definitions, the graph replacement and embedding mechanisms in
NLC grammars are strictly local to the vicinity of a single labeled node. These grammars
generate undirected node-labeled graphs, usually with some type of recursive structure and
properties (i.e., examples in [47, 82]), and generally are not confluent. However, applying
certain restrictions to their base definition can produce truly context-free grammars. A
boundary restriction is one way to obtain grammars with this property, producing the so-
called B-NLC grammars. This structural restriction dictates that there can not be an edge
between two non-terminal nodes in either the start graph or in a production’s RG graph.

2.2.2.2 NCE Grammars

A neighbourhood controlled embedding (NCE) grammar represents a refinement of a NLC
grammar to provide enhanced control over the local graph embedding mechanism. Formally,
a NCE graph grammar is a quadruple (NU,P,C, S) where:

• NU as in a NLC grammar.

• P = {p1, ..., pn} is a finite set of productions whose left and right hand sides are
defined as in the case of NLC grammars, however, the right-hand-sides of the pairs in
the connection relation Ci of each production now refer to specific nodes in graph RG.

• C = {(ρ, v) | ρ ∈ Σ, v ∈ V } =
⋃

1≤i≤nCi (C ⊆ Σ × V) is the connection relation. A
pair (ρ, v) in this relation indicates that an edge should be created between a specific
node labeled v in one of the productions and any node labeled ρ in the context graph.

• S is the start graph as defined in a NLC grammar.

These grammars still generate undirected node-labeled graphs with unlabeled edges.

12

2.2.2.3 edNCE Grammars

A further increase in the generation power of NLC grammars requires that, in addition to
enhancing their graph embedding mechanism, new structural rules be aggregated to their
baseline definitions which would allow them to produce and recognize more general classes of
graphs. Edge-labeled directed-graph neighbourhood controlled embedding (edNCE) grammars
represent one of such improved approaches. Formally, an edNCE grammar is a quadruple
(ND,P,C, S) where:

• ND similar to NU is the definition of a graph with a finite set of nodes V = {v1, ..., vn},
with the exception that E = {e1, ..., em} is now a set of directed labelled edges. That
is, if ejk = (vj, vk) and ekj = (vk, vj) then ejk 6= ekj; j 6= k; j = 1, ...,m; k = 1, ..., n.
Also, both mappings: lV : V → ΣV (assignment of node labels), and lE : E → ΣE

(assignment of edge labels) are defined.

• P = {p1, ..., pn} is a finite set of productions whose left-hand-sides are defined as in the
case of NLC grammars, whose right-hand-sides are now graphs of type ND, and the
right-hand-sides of the pairs in the connection relation Ci refer now to specific nodes
in graph RG.

• C = {(ρ, v, d) | ρ ∈ Σ, v ∈ V, d ∈ {in, out}} =
⋃

1≤i≤nCi (C ⊆ Σ×V) is the connection
relation. A triple (ρ, v, d) in this relation indicates that an incoming (d = in) or
outgoing (d = out) directed edge should be created between a specific node labeled v
in one of the productions and any node labeled ρ in the context graph.

• S is the start graph as defined in a NLC grammar.

Dynamic edge relabelling is one additional graph embedding enhancement that can also
be implemented in edNCE grammars to provide more discerning connection control when
replacing a node whose neighbourhood has some nodes with identical labels. In this case, the
connection relation C is composed of quadruples of the form (ρ, v, d, p/q). The additional
component p/q indicates that a directed edge between v and ρ should be labeled q if the edge
connecting ρ to the node being replaced by the grammar production was labeled p before
the graph replacement.

It is well known that some other possible extensions to the graph embedding mechanism,
for example, allowing flipping directions on edges, or allowing multiple edges in the tuples
of the connection relation, do not increase the generation power of an edNCE grammar [82].

2.2.2.4 Grammars with Arbitrary Embedding

In general, the embedding mechanism of a production’s RG graph can be extended to an
arbitrary degree of complexity, beyond local schemes, allowing reconnecting it to not only
neighbour nodes of the node being replaced but also to any node in the context graph D.
This would allow a further increase in the generation power of a grammar using the node re-
connecting approach. However, the trade-off is increased complexity of the generated graphs
which could make parsing them a very difficult or even intractable task. Furthermore, apply-
ing these grammars to modeling aspects of a specific application could become cumbersome
and devoid of clarity.

13

One example is the expression approach [72], which implements an arbitrary reconnection
scheme, based on set theory and algebraic expressions, applied to node- and edge-labeled
graphs with directed edges. In this scheme, the nodes in a production pi’s RG graph are
identified by numbers and the nodes in the context graph D that will be used for reconnecting
RG are identified by algebraic set expressions λij. Each production pi has an associated set
Ti (embedding transformation) of (λij, number) (incoming edges to RG) and (number, λij)
(outgoing edges from RG) pairs that defines the edges to be created when reconnecting graph
RG to the context graph D (embedding transformation). This approach extends the locality
of the graph embedding found in NLC and NCE grammars to a global embedding that can
include reconnection to any node in the context graph D.

2.2.3 Hypergraph Grammars

2.2.3.1 Hypergraphs

The central element of a hypergraph is the hyperedge, which is an abstraction of a single entity
h (i.e., a block in a flowchart, an event in a Petri net, an operator in a functional expression
graph, etc.) with N links (“tentacles”) that are connected to a set S(h) = {vs1, ..., vsm} of
source nodes and a set T (h) = {vt1, ..., vtn} of target nodes, with N = m+n (the pair (m,n)
is known as the type of the (m,n)-hyperedge) and S(h) ∩ T (h) = φ. S(h) and T (h) are
ordered sequences of nodes.

Similar to the definition of a labeled directed graph (Section 2.1.1), one can define a
directed labeled hypergraph H over a pair of label alphabets (ΣV ,ΣE) (ΣV

2: node label
alphabet, ΣE: hyperedge label alphabet) as a sextuple (V,E, sV , tV , lV , lE) where V : set
of nodes, E: set of hyperedges, sV : E → Ps(V) 3 assigns a hyperedge’s source nodes,
tV : E → Ps(V) assigns a hyperedge’s target nodes, lV : V → ΣV assigns node labels,
lE : E → ΣE assigns hyperedge labels.

An extension to this definition is the concept of a directed labeled multi-pointed hyper-
graph HM , which is a hypergraph with additional external nodes organized in two sets of
labeled sequential nodes: begin = {b1, ..., bm} and end = {e1, ..., en}, which are the source
and target nodes to the hypergraph, respectively. Formally, HM consists of the octuple
(V,H, sV , tV , lV , lE, begin, end). Let m = |begin| and n = |end| be the cardinalities of sets
begin and end, respectively, then the pair (m,n) is the type of HM which qualifies it as an
(m,n)-hypergraph. This type of structure provides all the elements required to implement
hyperedge replacement grammar productions using a node gluing approach to replace a sin-
gle hyperedge labeled with a non-terminal symbol by a specified multi-pointed hypergraph
RH. The gluing operation occurs between the hyperedge’s S(h) and T (h) nodes and sets
begin and end of RH, respectively.

2.2.3.2 Hyperedge-Replacement Grammars

A hyperedge replacement (HR) grammar is a quadruple (HM , P, C, S) where:

• HM is a directed labeled multi-pointed hypergraph specification as described in 2.2.3.1.

2ΣV = ΣT ∪ ΣN ; ΣT ∩ ΣN = φ, ΣT : terminal labels, ΣN : non-terminal labels
3Ps(V): power set of V, where each subset is a labeled sequence of nodes

14

• P = {p1, ..., pn} is a finite set of productions, with each pi = (Li, RHi, Ci), Li ∈ ΣN

(left side of production) is the label of a single hyperedge h with S(h) source nodes
and T (h) target nodes, RHi: hypergraph of type HM (right side of production) with
|begin| = |S(h)| and |end| = |T (h)| , Ci: re-connection mapping of pi. Similar to the
procedure applied for graphs, a production pi is applied to a host hypergraph GH, and
in this case a labeled hyperedge is replaced by hypergraph RHi with an embedding
defined by node-gluing mapping Ci.

• C = {(δb, δe) | δb : π(begin) → S(h), δe : π(end) → T (h); δb, δe surjective functions}
(π(begin), π(end): permutations of begin and end, respectively. C =

⋃
1≤i≤nCi) is the

node-gluing mapping.

• S is the start hypergraph. This graph is usually, but not necessarily, a single handle
labeled with a non-terminal symbol. A handle consists of a single (m,n)-hyperedge
with its tentacles connected to external nodes: the source tentacles are connected to a
begin set of nodes (|begin| = m), and the target tentacles are connected to an end set
of nodes (|end| = n) .

HR-grammars have convenient context-free properties, mostly due to the fact that their
hypergraph replacement mechanism is completely local to a single hyperedge, whose struc-
ture and connection to the rest of the host hypergraph cannot be further decomposed. They
are quite flexible structures with a wide spectrum of generation power, considering that they
can generate graphs and hypergraphs of varying complexity just by changing the type (i.e.,
number of tentacles) on hyperedges. The hyperedge concept is a fundamental structure in
many different types of diagram-based models [41], hence it is applicable to consider HR-
grammars as having a wide range of descriptive power. From a formal language viewpoint,
HR-grammars are a powerful tool to generate string graphs, hence string languages with
specific properties.

2.2.3.3 Hypergraph Rewriting Extensions

Although, in principle, HR-grammars could generate all recursively enumerable hypergraphs,
the granularity of the derivations to obtain a given hypergraph from another one could be
high or rather inconvenient. One solution to this situation is to consider replacing arbitrary
sub-hypergraphs of a given host hypergraph, instead of just single hyperedges. Hypergraph
replacement (HGR) grammars implement this rewriting mechanism using a hypergraph coun-
terpart of the graph gluing technique employed in the algebraic approach to graph grammars
(Section 2.3). HGR-grammars are context-sensitive in general, which can revert to the spe-
cial case of context-free HR-grammars when the hypergraph replaced is a single hyperedge. A
HGR-grammar hypergraph production p = (LH,K,RH) consists of a left (LH) and a right
(LH) hypergraphs, and a gluing hypergraph (K) such that K ⊆ LG, K ⊆ RG. Applying a
production p involves the following steps:

• If h: LH → GH is a hypergraph morphism, then find an occurrence h(LH) in GH.

• Check that the gluing conditions for hypergraph K are met:

15

– If for v ∈ VLH , h(v) contacts a hyperedge e ∈ EGH − Eh(LH), then v ∈ K.

– If two different elements x, y (nodes or edges) in LH map to the same element in
GH under morphism h (i.e., h(x) = h(y)), then x, y ∈ K.

• Remove the occurrence h(LH), as well as h(K), from GH to obtain a context hyper-
graph DH = GH − (h(LH)− h(K)).

• Embed hypergraph RH in DH to produce the direct derivation 4 hypergraph HH =
DH + (RH −K).

Although the generative power of HGR-grammars and the classes of languages they
generate have been extensively studied in the past [41, 82], the attention has gradually
shifted to the rewriting mechanisms of specific types of hypergraphs. Rewriting of jungles,
which are forests of coalesced trees with shared structures that can be represented by acyclic
hypergraphs, is an important application of this concept [29]. The nodes and edges of a jungle
represent the terms and operations of functional or algebraic expressions. Jungle rewriting
rules manipulate and evaluate the transformation of jungles, or more precisely, they establish
the term rewrite rules for those expressions. This approach allows a more efficient evaluation
of expressions by avoiding the multiple representation, hence the re-calculation, of repeated
terms.

2.3 Algebraic Approach to Graph Grammars

2.3.1 Graph Transformation

The algebraic approach to graph grammars focuses the analysis on the rewriting mechanism
of direct derivations of graphs (i.e., on graph transformations), rather than on the study of
general constructs to obtain graph languages [25, 30, 82]. Its basic operation to induce graph
transformations is graph gluing, where common nodes and edges in a production’s LG (left)
and RG (right) graphs play a key role in maintaining graph consistency when replacing LG
by RG in a host graph G. A general outline of the approach would be, for example, given
a node- and edge-labeled simple (i.e., no single-node loops, no multiple edges between two
nodes) graph G, the application of a graph rewriting production p (Section 2.1.2) yields a
graph H under the following conditions:

• The definition of production p is based on partial graph morphisms (mainly monomor-
phisms) between its LG (left graph) and its RG (right graph) in the case of the single
pushout approach (SPO) (fig. 2.2-(b)), or is based on total graph morphisms between
LG, RG and an auxiliary interface graph K, containing the nodes and edges required
for gluing RG to a context graph D (fig. 2.2-(a)), in the case of the double pushout
approach (DPO).

4A direct derivation is denoted GH
p

=⇒ HH. A sequence of derivations is denoted by H0
p1

=⇒ H1...
pn

=⇒
Hn, or just H0

∗
=⇒ Hn.

16

• The application of production p is based on total graph morphisms between LG, RG
and G and H (i.e., match m and co-match m*, respectively; fig. 2.2). The overall
effect, represented by pushout constructions (1) and (2), or (3) in the DPO and SPO
approaches, respectively, is to remove the nodes and edges of G that can be mapped
to LG but not to RG, and to add to G the new nodes and edges of RG to produce H.
Ignoring morphisms and just applying structural considerations, one can broadly say
that H is the result of the operation (G− (LG−RG)) ∪ (RG− LG).

Similar to all approaches, a graph grammar GG consists of a start graph G0 and a finite
set of productions P = {p1, ...pn}, each production as defined above. The language L(GG)

generated by the grammar is the set {Gn | G0
∗⇒ Gn;n = 1, 2, ...}.

Figure 2.2: Single and Double Pushout Production Application

The grammars obtained using this approach, generally context-sensitive, can be highly
tuned to specific graph modeling situations with arbitrary start graphs and application-
specific graph derivation steps. Application conditions and imperative programing struc-
tures on the scheduling and application of productions provide additional control over graph
derivations and the structure of the graphs produced. The abstractions of category theory:
categories having graphs as objects and derivations as arrows, functors to establish mappings
between categories, and specially the pushout construction, are the essential tools used in the
literature concerning this approach for reasoning and presenting results [23, 24, 25, 30, 82]
in a very compact theoretical fashion. This categorical framework, to a certain extent, hin-
ders the applicability of the algebraic approach to concrete problems in areas outside graph
grammar theory, mainly because it overrides most of the self-expression that the grammar
formalism might have and replaces it by very abstract concepts that are hard to map to real
systems.

2.3.2 Extended Analysis

The focus on direct graph derivations, typical of the algebraic approach, facilitates detailed
analyses of comparative properties, structural transformations, and semantics associated

17

with specific subsets of productions in a grammar and on specific graphs of its generated
language, which can be used to find optimized ways to transform graphs of a given class.
The following is a brief overview of the properties that could be used to adapt grammar
productions to specific modeling situations.

2.3.2.1 Independence and Embedding of Derivations

Given a graph G and productions p1, p2, then direct derivations G
p1⇒ H1 and G

p2⇒ H2

are parallel independent iff there exist direct derivations H1
p1⇒ X and H2

p2⇒ X. Also,
derivation G

p1⇒ H1
p2⇒ X is sequentially independent iff there exists an equivalent derivation

G
p2⇒ H2

p1⇒ X. Finding derivations with these properties is known as the Church-Rosser
problem.

If both derivations are generated in parallel and, for example, G
p1⇒ H1 preserves an item

(i.e., node or edge) that is deleted by G
p2⇒ H2, then one can delay applying the second direct

derivation and say that G
p2⇒ H2 is weakly parallel independent of G

p1⇒ H1.
In a sequential derivation, for example G

p1⇒ H1
p2⇒ X, if the match of H1

p2⇒ X depends
on an item generated by G

p1⇒ H1 or deletes an item accessed by it, then H1
p2⇒ X is weakly

sequentially independent of G
p2⇒ H1.

Given two derivations α ≡ G0
p1⇒ ...

pn⇒ Gn and β ≡ H0
p1⇒ ...

pn⇒ Hn, one says that α
is embedded into β, denoted by α

e→ β, if there exists family e = {Gi
ei→ Hi | i = 1, ..., n}

of n injective morphisms. If embedding e exists, then it is determined by the first injective
morphism: G0

e1→ H0.
Studying the independence and embedding of derivations in known sets of graphs could

be a very effective tool when attempting to infer grammars with desirable properties such
as confluence and termination.

2.3.2.2 Structural Manipulation of Productions

If a derivation frequently occurs in some modeling situation and the interest concentrates on
the initial and final graphs, it seems natural to search for an optimization of the productions
that would bypass the derivation of the intermediate graphs. This problem translates to
finding a derived production p∗ : G0 Gn. This production exists if, given a derivation
α ≡ G0

p1⇒ ...
pn⇒ Gn and an injective morphism G0

e0→ H0, e0 induces an embedding e : α→ β

(where β ≡ H0
p1⇒ ...

pn⇒ Hn) and H0
p∗⇒ Hn. Derived production p∗ for derivation sequence

α is given by p∗ = p∗1; ...; p
∗
n (i.e., sequential application of co-productions p∗i (fig. 2.2-(b))).

If two productions p1 and p2 must work cooperatively on graphs to model, for example,
a concept of synchronized execution of tasks or updates to systems states, then they must
synchronize their application to common items accessed by both on those graphs. One
solution to this problem is to amalgamate the shared effects of both productions into a
common subproduction ps, embedded in p1 and p2. The productions synchronized along ps

are indicated as p1
h1← ps

h2→ (h1, h2: injective morphisms). If p1 and p2 are also glued along
ps (i.e., along their LG and RG graphs) one calls ps ≡ p1⊕ p2 the amalgamated production.
Consistently, an amalgamated direct derivation of a graph H (from a graph G) is denoted

as G
p1⊕p2⇒ H. This type of derivation is useful in transforming distributed graphs whose

18

composition is DG ≡ G1
h1← G0

h2→ G2, where G1 and G2 are local graphs and G0 is a
common interface graph (G1 ⊇ G0 ⊆ G2).

2.4 Triple Graph Grammars

The formalism of triple graph grammars (TGG) was devised [84] to generate and trans-
form pairs of related graphs (usually called source and target graphs) under a well-formed
synchronization mechanism (i.e., a connection graph) which would preserve the relations
in the pair after applying a transformation. The initial motivation of the formalism was
to provide a high-level graph-based modeling and specification tool for problems involving
related diagrams (i.e., syntax trees, control flow diagrams) and information structures (i.e.,
requirements, design and traceability documents) requiring simultaneous update for consis-
tency purposes. More recently, key concepts found in TGGs have been used in the OMG’s
QVT model transformation language standard [76] to define the ”mappings” of a transfor-
mation. Also, applications of TGGs to the specification of bidirectional and incremental
model transformations are becoming more common [17, 18, 86, 88, 89].

The categorical framework [30] is the standard mathematical tool used to describe TGGs:
their elements and operations. TGG’s elementary unit of transformation is the graph triple,

denoted as GT ≡ (LG
gl← CG

gr→ RG), where LG: left graph, CG: connection graph, RG:
right graph (usually node- and edge-labeled directed graphs, however, other types of graphs
can be used), and gl, gr are graph morphisms (fig. 2.3). The transformation operator is the

triple production, denoted as p ≡ (lp
lr← cp

rr→ rp), and consisting of three monotonic single
productions 5: lp ≡ (LL,LR), cp ≡ (CL,CR) and rp ≡ (RL,RR) (with graph morphisms
lp : LL → LR, cp : CL → CR and rp : RL → RR, respectively, and the induced graph
morphisms lr|CL : CL → LL, rr|CL : CL → RL6, lr : CR → LR and rr : CR → RR),
which are applied simultaneously (fig. 2.3).

Applying a triple production p to a graph triple GT produces a directly derived triple

HT ≡ (LH
hl← CH

hr→ RH) (fig. 2.3), derivation denoted as GT
p
 HT , where the

application of each of its component productions lp, cp and rp are modeled by the single
pushout categorical construct described in fig. 2.2-(b). That is, productions lp, cp and rp,
match LL, CL and RL in graphs LG, CG and RG through total morphisms lg, cg and rg,
respectively. Then, they transform the latter triple into graphs LH, CH and RH, which are
related to the applied production and original graphs by the morphism pairs (lh, lp*), (ch,
cp*), and (rh, rp*), respectively (fig. 2.3).

The basic definition of TGGs with monotonic productions, although partially restrictive,
makes it more feasible to specify translator tools (i.e., graph-based model translators) based
on inter-graph relationships by simplifying the manipulations (i.e., graph parsing and recon-
struction) required to obtain a triple’s unknown target graph that should be the matching
counterpart of a known arbitrary source graph, as shown below [84].

5Production p ≡ (L,R) is monotonic if L ⊆ R.
6lr|CL and rr|CL indicate that lr and rr are total morphisms over graph CL

19

Figure 2.3: TGG Production Application

A triple production p ≡ ((LL,LR)
lr← (CL,CR)

rr→ (RL,RR)) can be split into a pair of
equivalent productions: a left-local production pL and a left-to-right production pLR, with:

• pL ≡ ((LL,LR)
ε← (φ, φ)

ε→ (φ, φ)) 7

• pLR ≡ ((LR,LR)
lr← (CL,CR)

rr→ (RL,RR))

When p is applied to a triple GT , of which, only graph LG is known, denoted by

GT
p(lh)
 HT (HT : derived triple), if its component productions are monotonic, the fol-

lowing equivalence holds:

GT
p(lh)
 HT ⇐⇒ ∃ XT | GT pL(lh) XT ∧ XT pLR(lh)

 HT

This result extends to the application of a sequence of triple productions p1, ..., pn in the
form of the following equation:

p1(lh1) ◦ ... ◦ pn(lhn) = (p1L(lh1) ◦ ... ◦ pnL(hn)) ◦ (p1LR(lh1) ◦ ... ◦ pnLR(lhn))

which translates to say that the application of a sequence of triple productions is equivalent
to the application of a sequence of left-local productions followed by the application of a
sequence of left-to-right productions. The previous analysis is also valid for right-local and
right-to-left productions.

In summary, if a triple’s LG and RG graphs represent left (L) and right (R) information
structures, respectively, then this monotonic property of TGG productions makes it tractable
to specify LR- and RL-translators and L versus R correspondence analysis tools.

7φ: empty graph; ε: inclusion of empty graph in any graph.

20

2.5 Other Approaches

Overall, the grammar approaches presented to this point appear to be the most likely to
be applied in modeling languages, and they have also served as structural foundations for
building other types of grammars. However, the literature of this area includes many other
alternatives ranging from studies to handle very specific graph models, for example: star
grammars [20, 21, 22] and fuzzy graph grammars [78], to attempts to provide meta-generation
of grammars [28].

Star grammars are a representative example of research efforts to extend desirable context-
free properties found in node and hyperedge replacement grammars with additional struc-
tural properties that would increase their descriptive power. They were devised with the
specific goal of being able to generate graphs that not only capture context-free properties of
object-oriented programs and transformation languages, but are also useful to express other
elements such as scope rules, references to variables and method overriding. A production in
this grammar replaces a non-terminal node and its outgoing edges (i.e., a star) with a new
graph glued to the target nodes of the replaced structure (i.e., the star’s border nodes). It is
possible to designate each of the border nodes as a multiple node, in which case, these nodes
of the host graph can be cloned, along with its incident edges, any number of times, before
applying a graph transformation rule. Overall, a production in this grammar is a schema
composed of a graph replacement rule and a configuration of multiple nodes with a cloning
scheme (i.e., eager or lazy cloning) [20].

Fuzzy grammars are an attempt to define transformations of fuzzy graphs, which are
constructed from fuzzy points (i.e., nodes) with assigned membership functions and ordinary
edges between fuzzy points, using mostly elements of category theory [78]. They are claimed
to be a theoretical generalization of ordinary graph grammars given comparable fuzzy and
non-fuzzy graph structures.

Adhesive high level replacement systems are an effort to define, using elements of category
theory, transformations of complex structures in a rather generic manner. This highly ab-
stract area has shown a steady progression over the years [30], with theoretical applications,
for example, to the generation of multilevel graph representations [77].

21

3 Graph Transformation Systems

As described in Section 2.1, a significant body of concepts are common to all the graph
grammar approaches found in the literature. Graph types, common components in gram-
mar productions and the general structure of graph grammar themselves are some of the
most representative examples of very useful abstractions in the application of grammars.
When extending these ideas to applications involving large numbers of rules (i.e., produc-
tions) and complex systems, resorting to proven software engineering principles (i.e., clas-
sification, encapsulation, reuse and module-based semantics) to further structure the graph
transformation process is essential if the requirement is to produce manageable and scalable
graph-based systems.

Graph transformation systems [29, 59] is a formalism that represents research efforts in
this direction with its focus on defining encapsulation abstractions such as transformation
units and modules, using precise graph-based semantics, which can be reused and aggregated
to build larger systems. Its basic structuring generalization, a graph transformation approach
A = (G,R,⇒, E , C), where:

• G is a class of graphs of a specified type (i.e., labelled graphs, hypergraphs, etc.).

• R is a class of rules with the same structure (i.e., single pushout, double pushout, etc.).

• ⇒ is a rule application operator that for each rule r ∈ R produces a relation
r⇒≡ {(g1, g2) ∈ G × G | g1

r⇒ g2}.

• E is a class of graph class expressions, where each one of them can be defined by: a
finite enumeration of graphs, or a set theoretic definition (i.e., directed node- and edge-
labelled graph, reduced graphs for a rule set R, etc.), or a graph theoretic property, or
the exhaustive output of a given transformation unit, or some graph meta-definition
scheme (i.e., schemata), or as the result of boolean operations on graph classes.

• C is a class of elementary control conditions over a set ID of identifiers, which are
implemented as rule execution schedules, priority schemes, expressions (i.e., boolean
operations) and languages (i.e., regular expressions). For a given environment E,
defined by the mapping E : ID → 2G×G 8, each c ∈ C specifies a relation SEME(c)
consisting of pairs (G,G′) ∈ G × G, where G: initial graph, G′: derived graph.

allows one to refer to the multiple grammar types in an approach-independent manner that
facilitates the analysis of similarities and differences in properties, structures and rules.

Given a graph transformation approach, a transformation system in this environment
consists of a set of transformation units with the capability to import each other forming
acyclic or cyclic import paths. Each transformation unit produces an output terminal graph
from an initial graph by interleaving rule applications with calls to other transformation
units, where the latter are executed in an atomic manner (i.e., the whole transformation
unit is executed or not).

8Given a set A, 2A denotes its power set

22

3.1 Transformation Units

A transformation unit (TU) consists of a (possibly empty) set of graph transformation rules
conforming to a graph transformation approach A and a (possibly empty) set of atomic-
execution calls to imported transformation units, where elements of both sets execute inter-
leaving each other (”interleaving semantics”) to transform an initial graph of a given class
into a specific terminal graph of the same or another class. The calls to other import trans-
formation units can be cyclic or acyclic, depending on whether a “called unit” calls one of
its “calling units” in a given calling path or not.9 The input and output graph classes can be
defined by class expressions as described in A. The set of all transformations over a graph
transformation approach A is denoted as τA.

A TU can also include a control condition (cc), composed of boolean expressions on el-
ementary control conditions of a class C (as specified in A), whose purpose is to regulate,
restrict, and possibly eliminate the inherent non-determinism appearing in graph transfor-
mations due to the fact that: 1) multiple rules can simultaneously be applicable to an
existing graph, 2) there can exist multiple places in a graph where a given rule could be
applied. A cc can have properties of minimality (i.e., the graphs transformed by a TU are
only the ones allowed by the cc), invertibility (i.e., for a given cc C, C−1 exists) and con-
tinuity (i.e., given a TU with a cc C over a sequence of environments {E1, ..., En}, then
SEME1∪...∪En(C) = SEME1(C) ∪ ... ∪ SEMEn(C)). The following are the most common
types of control conditions:

• Control conditions of language type which only allow interleaving sequences of rules
and imported TUs that can be represented by strings belonging to a specific control
language L (i.e., formal language generated by a grammar, automaton or regular ex-
pression). The alphabet used to build those strings consists of the identifiers li assigned
to rules and imported TUs (i.e., for each w ∈ L, w = l1, ..., ln, n = 1, 2, ...) and the left-
to-right parsing of each string represents an interleaving execution sequence of rules
and imported TUs.

• Priorities assigned to the rules of a TU can represent control conditions that allow
only specific pairs (G,G′) ∈ SEME(C).

• Reduced graphs with respect to a control condition (denoted C!) is a type of control
condition where the only pairs (G,G′) ∈ G × G allowed, have the property that there
is no graph G′′ such that (G′, G′′) ∈ SEME(C!).

• Rules applied as-long-as-possible (denoted R!) for a given rule set R constitutes a
special type of reduced graphs control condition.

• A TU can be a control condition as it defines a binary relation on graphs.

As a generative structure, a TU over a graph transformation approach A is a 5-tuple
TU = (IG, L,R,CC, TG), where:

• IG and TG are the initial and terminal graph class expressions, respectively.

9This analysis assumes acyclic calling paths.

23

• L is a finite set of identifiers to refer to imported transformation units.

• R is a finite set of labelled rules (R ⊆ R), whose identifiers are not in L.

• CC is a control condition.

with a graph-based interleaving operational semantics, denoted as INTERSEM(TU) or just
SEM(TU), and implemented by: 1) a function SEM : L→ 2G×G capable of assigning a set
of graphs to each identifier associated with a TU, either a graph transformation rule or an
imported transformation unit, 2) a set of graphs resulting from applying the rules from R.
The overall semantics SEM(TU) of a TU is also a binary relation on graphs having pairs
(G,G′) where G and G′ are compliant with the initial and terminal graph class expressions,
respectively, and the control condition CC.

TUs can also be parameterized with graph class expressions defined as parameters of
specified types (i.e., all graphs, hypergraphs, etc.) which can be instantiated with expressions
of the same type or any of its subtypes. This parameterization allows to specify TUs very
compactly, specially in situations in where they will be imported multiple times with different
graph class expressions of the same type.

3.2 Transformation Modules

Efficient specification of very large systems using languages based on graph transformation
would require structuring the transformation units in a rather hierarchical and encapsulated
way, so as to be able to identify, for example, the ones that are central to a given graph-
related semantic aspect of an application from the ones that represent the interfacing to other
systems, and therefore, to provide information hiding. The definition of a transformation
module [29], as a set of transformation units, some hidden to the rest of the specification and
some visible through an export interface, with the capability of importing external transfor-
mation units as instantiations of parameters and a binary graph-based semantics comparable
to the one defined for TUs, attempts to capture these concepts. The following describes one
formalization of this concept based on a proposal for providing structuring facilities in a
rule- and graph-based specification and programming language which is independent of any
specific graph transformation approach [29, 43].

A transformation module over a graph transformation approach A 10 is a triple MOD =
(IMPORT,BODY,EXPORT) where:

• IMPORT is a set of imported names referring to external TUs.

• BODY and is a finite set of local named TUs, each of which can use TUs from sets
BODY and IMPORT only, and named rules over some set L of names.

• EXPORT is a set of exported names referring to TUs in BODY and/or IMPORT .

with the following restrictions:

10The set of all transformation modules over a graph transformation approach A is denoted τA

24

• Imported names cannot be reused for a local rule or TU (i.e., L ∩ IMPORT = φ).

• Local TUs use only names that are imported or represent local TUs to refer to imported
TUs.

The semantics of a module over a graph transformation approach A, denoted as
SEMEmod

(MOD), defines an environment Emod that associates binary relations on graphs
to each imported name, each local rule, each locally defined TU, and each exported name in
the EXPORT set. The export semantics of a module is obtained as the restriction of Emod
to names in EXPORT only.

There have been other studies to provide modularization to graph-transformation-based
systems (e.g., PROGRES) which have used, for example, encapsulation concepts from object-
oriented systems or the package concept of UML [29]. However, they have focused on using
specific graph transformation approaches as opposed to approach independent formalisms,
perhaps envisioning optimizations in the specification of particular types of systems (i.e.,
embedded, distributed systems).

3.3 Model Transformation Units

As indicated in Section 1.2.4, the application of graph rewriting to model transformations
revolves around the idea of mapping models onto graphs and then applying graph trans-
formation rules to obtain the graph representations of the transformed models. One could
establish a parallel of this paradigm on a TU and consider that its initial and terminal graphs
are the representations of input and output models respectively, which would make it a type
of model transformation unit (MTU) instead. However, although MDA oriented models are
generally diagrammatic or textual, hence reasonably representable by graphs, other types
of models, containing tuples, sequences and sets of models, cannot be represented in this
manner. Therefore, the definition of a MTU as a type of TU requires some further inclusive
abstraction of the latter formalism such as the one proposed in [56]:

• Models have a type that could be one of: 1) basic: class G of graphs, set ID of
identifiers, boolean, or a natural number, 2) cartesian product T1× ...×Tk, where each
Ti (i = 1, ..., k) is a model type, 3) sequence T ∗ of models with a model type, 4) set of
models with a model type.

• Actions are applied to models. An action is a tuple a = (a1, ..., ak) where each ai
(i = 1, ..., k) is one of: 1) a void action causing no change on an input model, 2) a
graph transformation rule, 3) a rename of an identifier, 4) an operation on natural
numbers, 5) a boolean operation, 6) a recursive action on a tuple.

• Similar to the specification of a TU, a MTU is a tuple (ITD,OTD,WT,A,C) where:
1) WT is a product type (working type), 2) ITD is the input type declaration which
consists of a constrained product type and a mapping to initial models, 3) OTD is the
output type declaration which consists of a constrained product type and a mapping to
terminal models, 4) A is the set of actions, and 5) C is the control condition.

25

4 Graph-Based Model Transformation

The suitable use of graphs and graph transformations for representing models and model
transformations, respectively, in an environment where accurate and thorough domain anal-
ysis is a common practice, could potentially provide the tools to define domain modeling
and transformations languages with very precise syntax and semantics. The following sec-
tions provide an overview of some common types of transformations and how they can be
supported by the graph modeling paradigm.

4.1 Model Transformations

A great deal of theoretical and applied research on model transformations has focused on
studying specific approaches, design tools and techniques that apply within rather special-
ized scopes with less emphasis on interoperability or integration considerations [1, 6, 63].
In contrast, the OMG’s MDA standard encourages unification principles for modeling lan-
guages, models and their transformations [76]. Independently from the type and intended
purpose of model transformations, a significant set of their properties and features such
as rules, scope, directionality and architecture, are common to all initiatives and warrant
further analysis. The goal is to visualize how the model transformation problem can be
decomposed into manageable parts, where techniques such as graph transformations can be
applied to produce overall solutions characterized by accurate syntactic translations, reliable
preservation of model semantics and efficient implementations.

4.1.1 Core Concepts

Reliable transformations on language-based models, as processes, have to correctly inter-
pret the syntax and semantics of the modeling language(s) (i.e., metamodels) defining the
source models, and at the same time, correctly reproduce the syntax and semantics of the
modeling language(s) defining the target models , with the additional task of accurately
reconstructing what a user-specified environment would be for the latter models. During
software development, the views of the system, represented by models, can change (i.e.,
model-to-model transformations), and models are refined to lower abstraction levels (i.e.,
PIM-to-PSM transformations) to generate system implementations, ideally altering neither
the type of representations they are in (i.e., token or type models) nor their scopes. The
following model, adapted from [69], provides a unifying and systemic understanding of these
multiple options occurring in MDE development, which would include graph languages:

• A modeling language (ML) is a formalism which precisely defines the notation and
meaning of a model (fig. 4.4).

• The ML’s notation consists of concrete syntax (i.e., user readable elements) and ab-
stract syntax (i.e., abstract notational elements).

26

• The ML’s meaning consists of the static semantics (i.e., well-formedness of structural
elements) and dynamic semantics (i.e., behavioural elements restricting the set of valid
models under the formalism).

Figure 4.4: Modeling and Model Transformation Architecture

Using the conceptual model of fig. 4.4, one can define a model transformation as a
mapping:

f : MSource(S)|MLSource
→MTarget(S)|MLTarget

where MLSource and MLTarget are the modeling languages defining the source MLSource(S)
and target MTarget(S) models of the system S, respectively.

Visualizing and interpreting some of the existing relationships and elements in fig.4.4,
one can provide a brief taxonomy of model transformations, based on the more relevant
properties, as follows:

• Directionality : a unidirectional transformation only interprets its source and repro-
duces its target models. A bidirectional transformation can also switch interpretation
to target and generation to source models.

• Degree of evolution: a horizontal transformation basically generates an equivalent view
of the system at the same abstraction level, often using the same source and target
modeling languages (i.e., endogen transformation). A vertical transformation generally
uses different modeling languages for source and target models (i.e., exogen transfor-
mation), for example in code generation, and reduces the abstraction level.

• Implementation type: a transformation can be implemented using a declarative ap-
proach based on rules and pre/post-conditions, or an operational approach which ex-
plicity specifies the sequence of actions to transform a model.

• Atomicity : a transformation can be executed as a single non-decomposable step or as
multiple steps allowing for partial rollbacks.

27

• Degree of automation: the configuration and execution of a transformation can be
completely automated by a software tool, or it can be partially automated, requiring
user intervention to complete some manual steps.

Other classifications of transformations exist [16, 69, 67, 87], but the properties considered
tend to be refinements of the five above.

4.1.2 Bidirectional Transformations

The development of complex and large software systems using the MDE approach usually
requires designing, for a given set of specifications, at different levels of abstraction and ap-
plying separation of concerns techniques [53]. This approach can produce sets of of highly
interrelated models of dissimilar sizes and nature, some being the direct output of applying a
transformation to other models in a set, some requiring partial or total synchronization with
syntactic, or semantic, or both aspects of other models [38]. Given the iterative nature of
the software development process, it might not be practical or even efficient in this environ-
ment to have a scheme of only batch-oriented unidirectional incremental transformations to
restore consistency to a set of models after each cycle of changes. Bidirectional transforma-
tions, implemented as declarative programs based, for example, on the triple graph grammar
formalism [31, 38] or a specific language such as QVT-Relations [89], can capably generate
from formal specifications the operations necessary to support the automated reconciliation,
verification and traceability of model synchronization changes. Having been incorporated to
the OMG’s QVT standard, they are currently the subject of active research [17, 88, 89].

When a transformation of this type is formally specified in a declarative (relational)
manner, without any hand-crafted functionality, the following definition accurately describes
it:

Given the sets M1 and M2 of source and target models respectively, a bidirectional
transformation between them is a pair T = (t, t−1), where t : M1 → M2 is an injective
function (forward transformation) and its inverse t−1 :M2 →M1 (backward transformation)
exists. In other words, for any model m1 ∈ M1, there exists only one m2 ∈ M2 such that
m2 = t(m1) and t−1(m2) = m1. Any pair of models m1 ∈ M1, m2 ∈ M2 related by this
functionality are in a consistency relation or contract that would make them synchronized
system abstractions accepted by all their stakeholders [38, 88].

When a bidirectional transformation also includes ad-hoc programming, usually, the no-
tion of consistency is limited to specific instance pairs (m1,m2) of models, and to specific
elements in the models of the pair. A transformation t : m1 → m2, emphasizing a relation
between model elements needs to be injective or bijective so that t−1 exists, and consequently
one is able to define a bidirectional transformation between m1 and m2.

Suitable support for these types of transformation schemes has been built into bidirec-
tional transformation languages (BTLs) such as QVT-Relations [89], which allows one to
develop programs (i.e., specifications) capable of describing a forward transformation and its
associated backward transformation simultaneously, therefore guaranteeing their compati-
bility by construction. It is possible to use BTLs to build bijective transformations, with
forward and inverse injective functions, and also generically bidirectional ones, where ar-
bitrary forward transformations may drop information and reverse transformations process

28

original and updated models.

4.2 Model Transformations Using Graphs

Models in MDE routinely express complex structural and dynamic aspects of a system by
using fairly intuitive visual languages (i.e., diagrams). If one formalizes syntactic (i.e., pre-
sentation an logical structure) and semantic (i.e., interpretation) aspects of these languages
using graphs, then one can make use of graph grammars and graph transformations (Sections
2 and 3) to specify precisely how these models should be built and how they should be trans-
formed [7, 39]. The main reason proposed in the literature for pursuing this formalization
approach is to avoid using graphs in a restrictive ad-hoc manner to address problems that
have known solutions in more general contexts.

Graph transformations, with their defined graph types and rule sets, provide a solid
foundation for reasoning about structural, semantic and operational aspects of model trans-
formations in the following roles:

• as a semantic domain that directly provides a generic specification language and se-
mantic model for very high level definitions of application domains, their abstractions
(i.e., models) and the modifications of those abstractions (i.e., transformations) to sup-
port software development activities such as specification of functional requirements
(e.g., object dynamics) and description of architectural changes [11, 39, 44].

• as a meta-language to be used in the formal specification of the syntax, semantic and
manipulation rules of the DSLs (i.e., metamodels) and model transformation languages
(MTLs) defining source/target models and model transformations, respectively [1, 48,
61].

4.2.1 Graph-Based Metamodeling

Metamodeling is a widely accepted technique used to define the rules (e.g., abstract syntax
of static diagrams) of visual/diagrammatic languages, which provides a flexible configuration
environment, especially useful when working with DSLs, and allows the checking of whether a
model produced in a specific language is valid or not [3, 64]. The construction of a metamodel
requires two basic elements: 1) a meta-language capable of describing the metamodel’s
structure and relations between modeling items (e.g., class diagrams, graphs) and 2) an
instantiation relationship indicating how model instances will be generated as a result of
using the metamodel.

In the context of graphs one can formally think of metamodels as sets of typed graphs
and of models as sets of instance graphs obtained from enacting type-instance mappings
from the former sets. Furthermore, given a model of a certain type (e.g., diagrams, object
structure, architectures), one can specify its transformations (e.g., visual/notational repre-
sentation changes, functional requirements, architectural changes) as graph transformation
rules over the typed graphs of the associated metamodel. These graph-based transformations
are sufficiently generic to: 1) specify syntactic changes when using different source and target

29

modeling languages and 2) define semantic mappings when the target language is used to
define a semantic domain for the source language.

4.2.2 Triple Graph Grammars and Transformations

Having many similarities with the model transformation languages specified in the OMG’s
QVT standard, triple graph grammars (TGG) represent an important alternative for spec-
ifying automated PIM-to-PIM and PIM-to-PSM incremental model transformations in a
declarative manner, with an implicit control structure over the execution of the transforma-
tions. The basic graph structure and transformation scheme they support - a graph triple
consisting of a source, a target and a correspondence graph, where the latter graph acts
as a mapping between the elements of the first two, along with three single-graph gram-
mars operating in parallel over the triple (Section 2.4) - makes them a very suitable tool for
specifying horizontal and vertical incremental transformations to synchronize models [38],
and also transformations to just translate models in a forward or backward direction while
maintaining an overall logical relationship between source and target patterns [92].

Similarly to the case of single graphs, one can define a triple metamodel embodied in a
typed triple consisting of typed source, target and correspondence graphs, that determines
the nature of the graphs allowed in an instance triple [91].

A number of software tools (Section 1.2.5), mainly research prototypes, have included
support for working with TGGs on tasks such as grammar prototyping and grammar-based
software specification:

• PROGRES, as a general-purpose graph rewriting system, supports the specification
of TGGs through its graph schema definition language facility, which also allows one
to define typed triples as well as attach negative application conditions (NACs) to
grammar rules [39, 85].

• AToM3, as a multi-formalism and metamodeling tool, provides built-in support for
defining and using TGGs as driving engines for model transformations [40, 60].

• The FUJABA tool suite allows the definition of typed triples and additional execution
controls on rules in its graph schemata system, in this case using UML class diagrams
and story diagrams [37, 75].

• MOFLON makes use of story driven modeling (SDM) and TGGs to specify model
transformation and synchronization operations. It also provides a TGG editor and can
generate SDM rules from TGG specifications [2, 93].

30

5 Open Problems and Conclusions

5.1 Open Problems

Research on the application of graph grammars and graph transformations to model trans-
formations is currently fairly active, showing two main polarizing trends: 1) on the one hand,
graph grammar researchers continue to increase the abstraction level of the grammar for-
malisms by basing their analyses on purely theoretical fields (i.e., category theory) and 2) on
the other hand, researchers in software engineering are interested in automating the different
aspects of model transformations using a graph transformation approach considered generi-
cally compatible, although not obviously the most suitable for the transformation problems
at hand. There is a noticeable gap between both trends that gives way to an interesting set
of open problems. The following is a small representative sample of open problems:
1) Related to graph grammars.

• At the present time, the DPO approach to graph transformations and triple graph
grammars appear to have a higher potential to support complex model transformations.
Therefore any studies of these approaches, involving confluence and termination of
specific types of grammars, would make graph-based unidirectional and bidirectional
model transformations a more viable declarative alternative.

• Undoubtedly, studies on more specialized types of grammars such as stochastic and
fuzzy grammars that could also support model transformations of a similar nature,
would be most interesting.

2) Related to graph transformation.

• The computational complexity of the graph transformation has long been an issue when
considering its use in large and computationally intensive systems. It is well known
that the sub-graph isomorphism problem, resulting from matching sub-graph structures
within graphs using a “brute-force” approach, is NP-complete. However, the literature
describes some algorithms for efficient graph pattern matching in specific situations.
These studies open possibilities for research into determining which graph structures,
and in which situations, should be in the language generated by a graph grammar or a
set of graph transformations, which is intended to be an efficient modeling formalism
of a given application domain.

• Research on algorithms that would improve the parallelism and distribution in the
processing of the graph transformations would certainly alleviate the addressing of
problems such as the sub-graph isomorphism.

• Finding specialized graph structures that would perform well in the specification and
implementation of graph- and metamodel-based model transformations would make
this declarative approach more suitable for building complex model transformations.

31

3) Related to integrated graph-based transformation tools.

• The research community has built mostly prototyping tools that are often cumber-
some to use, offer solutions for very narrow paradigms and offer incomplete support
for systems integration and management. Solving these deficiencies to make graph
transformations a mainstream technology, from the software engineering viewpoint,
requires further research into the requirements that industrial strength graph-based
tools should have, given the nature of the upcoming applications in science, engineeer-
ing and business.

• The trend in academic research is and will continue to be towards building graph-based
architectures and systems compatible with standards to ensure a more synergistic effect
of the results obtained from the different studies.

5.2 Conclusions

In general, this work has found that there is a large gap between a theoretical body of nu-
merous graph grammar and graph transformation approaches and its application to practical
problems in software engineering. Their use in formalizing syntactic and semantic aspects of
software artifacts still remains far removed from proven software engineering methodologies
and tools that have produced reliable, efficient, user-friendly and maintainable applications.
The graph transformation research community has recently become aware of these deficien-
cies and has responded with studies placing the graph transformation in a more systemic
context of transformation units and systems, although with a marked theoretical flavour.

In addition, if the graph transformation is to fit better as a foundation for building
applications, then many factors indicate that there exists an imperative need to evaluate
and manage its performance (i.e., address computational complexity issues) on relevant
graph instances, before continuing to explore additional formalizations that tend to clutter
the effectiveness of the existing approaches.

5.3 Future Research

The continuation of this research will mainly focus on potential applications of the graph
transformation to the ”Model and Pattern Formalization Project”, sponsored by the cana-
dian research network NECSIS to study model-driven software solutions for the automotive
sector. Within this context, pattern languages, tools, evaluation and management of graph
transformation complexity issues, domain-specific applicability and standardization issues
will be investigated.

32

Bibliography

[1] A. Agrawal, G. Karsai, and F. Shi. Graph Transformations on Domain-Specific Models.
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA,
2003.

[2] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr. MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In 2nd European
Conference on Model Driven Architecture - Foundations and Applications (ECMA-FA
2006), LNCS, vol. 4066, pages 361-375. Springer, 2006.

[3] C. Amelunxen, E. Legros, A. Schürr, and I. Stürmer. Checking and Enforcement of
Modeling Guidelines with Graph Transformations. In 3rd International Workshop on
Application of Graph Transformations with Industrial Relevance (AGTIVE’07), LNCS,
vol. 5088, pages 241-255. Springer, 2008.

[4] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske, D. Plump d,
A. Schürr, and G. Taentzer. Graph Transformation for Specification and Programming.
Science of Computer Programming, vol. 34, pages 1-54. Elsevier, 1999.

[5] D. Balasubramanian, A. Narayanan, C. van Buskirk, and G. Karsai. The Graph Rewrit-
ing and Transformation Language: GReAT. In 3rd International Workshop on Graph
Based Tools (GraBats 2006), Electronic Communications of the EASST, vol. 1.

[6] A. Balogh and D. Varró. Advanced Model Transformation Language Constructs in the
VIATRA2 Framework. In 2006 ACM Symposium on Applied Computing (SAC’06), New
York, USA, 2006.

[7] L. Baresi and R. Heckel. Tutorial Introduction to Graph Transformation: a Software En-
gineering Perspective. In 1st International Conference on Graph Transformations (ICGT
2002), LNCS, vol. 2505, pages 402-429. Springer, 2002.

[8] J. Bézivin. UML: The Birth and Rise of a Standard Modeling Notation. In 1st Inter-
national Workshop on the Unified Modeling Language (UML ’98), LNCS, vol. 1618.
Springer, 1999.

[9] J. Bézivin and O. Gerbe. Towards a Precise Definition of the OMG/MDA Framework.
In 16th IEEE international conference on Automated Software Engineering (ASE ’01),
pages 273-280, Washington DC, USA, 2001. IEEE Computer Society.

[10] J. Bézivin. In Search of a Basic Principle for Model Driven Engineering. UPGRADE
-The European Journal for the Informatics Professional, vol. 2, pages 21-24, April 2004.

[11] T. Buchmann, A. Dotor, S. Uhrig, and B. Westfechtel. Model-Driven Software Devel-
opment with Graph Transformations: A Comparative Case Study. In 3rd International
Workshop on Application of Graph Transformations with Industrial Relevance (AGTIVE
’07), LNCS, vol. 5088, pages 345-360. Springer, 2008.

33

[12] T. Buchmann, A. Dotor, S. Uhrig, and B. Westfechtel. Triple Graph Grammars or Triple
Graph Transformation Systems? A Case Study for Software Configuration Management.
In Models in Software Engineering - Workshops and Symposia at MODELS 2008, LNCS,
vol. 5421, pages 138-150. Springer, 2009.

[13] G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varró. VIATRA - Visual
Automated Transformations for Formal Verification and Validation of UML Models. In
17th IEEE international conference on Automated Software Engineering (ASE ’02), pages
267-270, Washington DC, USA, 2002.

[14] B. Courcelle. An Axiomatic Definition of Context-Free Rewriting and its Application to
NLC Graph Grammars. Theoretical Computer Science, vol. 55, issues 2-3, pages 141-181.
Elsevier, 1987.

[15] K. Czarnecki and S. Helsen. Classification of Model Transformation Approaches. In
OOPSLA’03 Workshop on Generative Techniques in the Context of MDA, Anaheim,
CA, USA, 2003.

[16] K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation Approaches.
IBM Systems Journal, vol. 45, issue 3, pages 621-645, 2006.

[17] K. Czarnecki, J. N. Foster, Z. Hu, R. Lammel, A. Schurr, and J. F. Terwilliger. Bidirec-
tional Transformations: A Cross-Discipline Pespective. In Theory and Practice of Model
Transformations: Second International Conference (ICMT2009), LNCS, vol. 32, pages
260-283. Springer, 2009.

[18] D. Dang and M. Gorgolla. On Integrating OCL and Triple Graph Grammars. In Models
in Software Engineering - Workshops and Symposia at MODELS 2008, LNCS, vol. 5421,
pages 124-137. Springer, 2009.

[19] T. Dean and J. Cordy. A Syntactic Theory of Software Architecture. IEEE Transactions
on Software Engineering, vol. 21, issue 4, pages 302 -313, 1995.

[20] F. Drewes, B. Hofmann, D. Janssens, M. Minas, and N. Van Eetvelde. Adaptive Star
Grammars. In 3rd International Conference on Graph Transformations (ICGT 2006),
LNCS, vol. 4178, pages 77-91. Springer, 2006.

[21] F. Drewes, B. Hofmann, D. Janssens, M. Minas, and N. Van Eetvelde. Shaped Generic
Graph Transformation. In 3rd International Symposium on Applications of Graph Trans-
formations with Industrial Relevance (AGTIVE 2007), LNCS, vol. 5088, pages 201-216.
Springer, 2008.

[22] F. Drewes, B. Hofmann, and M. Minas. Adaptive Star Grammars for Graph Models. In
4th International Conference on Graph Transformations (ICGT 2008), LNCS, vol. 5214,
pages 442-457. Springer, 2008.

[23] H. Ehrig, M. Pfender, and H. J. Schneider. Graph Grammars: an Algebraic Approach.
In 14th Annual Symposium on Automata and Switching Theory, pages 167-180. IEEE,
1973.

34

[24] H. Ehrig. Embedding Theorems in the Algebraic Theory of Graph Grammars. In 1977
International FCT-Conference on Fundamentals of Computation Theory, LNCS, vol. 56,
pages 245-255. Springer, 1977.

[25] H. Ehrig. Introduction to the Algebraic Theory of Graph Grammars (A Survey). In
International Workshop on Graph-Grammars and Their Application to Computer Science
and Biology, LNCS, vol. 73, pages 1-69. Springer, 1979.

[26] H. Ehrig. Aspects of Concurrency in Graph Grammars. In 2nd International Workshop
on Graph Grammars and their Application to Computer Science, LNCS, vol. 153, pages
58-81. Springer, 1983.

[27] H. Ehrig, A. Habel. Graph Grammars with Application Conditions. In G. Rozenberg,
A. Salomaa, eds., The Book of L, pages 87-100, Springer-Verlag, 1986.

[28] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. From Graph Grammars to
High Level Replacement Systems. In 4th International Worshop on Graph Grammars
and their Application to Computer Science, LNCS, vol. 532, pages 269-291. Springer,
1991.

[29] H. Ehrig, G. Engels, H. J. Kreowski, and G.Rozenberg, editors. Handbook of Graph
Grammars and Computing by Graph Transformation, vol. 2: Applications, Languages
and Tools. World Scientific Publishing, 1999.

[30] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Series. Springer, 2006.

[31] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer. Information Preserving
Bidirectional Model Transformations. In 10th International Conference on Fundamen-
tal Approaches to Software Engineering (FASE 2007), LNCS, vol. 4422, pages 72-86.
Springer, 2007.

[32] H. Ehrig, C. Ermel, F, Hermann, and U. Prange. On-the-Fly Construction, Correctness
and Completness of Model Transformations Based on Triple Graph Grammars. In 12th
International Conference on Model Driven Engineering Languages and Systems (MOD-
ELS 2009), LNCS, vol. 5795, pages 241-255. Springer, 2009.

[33] G. Engels, R. Gall, M. Nagl, and W. Schäfer. Software Specification Using Graph Gram-
mars. Computing, vol. 31, pages 317-346. Springer, 1983.

[34] E. Engels and W. Schäfer. Graph Grammar Engineering: a Method for the Development
of an Integrated Programming Support Environment. In International Joint Conference
on Theory and Practice of Software Development (TAPSOFT), LNCS, vol. 186, pages
179-193. Springer, 1985.

[35] E. Engels, C. Lewerentz and W. Schäfer. Graph Grammar Engineering: A Software
Specification Method. In 3rd International Workshop on Graph Grammars and their
Application to Computer Science, LNCS, vol. 291, pages 186-201. Springer, 1987.

35

[36] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In 6th Interna-
tional Workshop on Theory and Application of Graph Transformations, LNCS, vol. 1764,
pages 157-167. Springer, 2000.

[37] C. Fuss, C. Mosler, Ulrike Ranger, and E. Schultchen. The Jury is still out: A Compari-
son of AGG, Fujaba, and PROGRES. In 6th International Workshop on Graph Transfor-
mation and Visual Modeling Techniques (GT-VMT 2007), Electronic Communications
of the EASST, vol. 6, 2007.

[38] H. Giese and R. Wagner. From Model Transformation to Incremental Bidirectional
Model Synchronization. Journal of Software and Systems Modeling, vol. 8, number 1,
pages 21-43. Springer, 2009.

[39] L. Grunske, L. Geiger, A. Zundorf, N. van Eetvelde, P. van Gorp, and D. Varro. Using
Graph Transformation for Practical Model-Driven Software Engineering. Model-Driven
Software Development, pages 91-117. Springer, 2005.

[40] E. Guerra and J. de Lara. Event-Driven Grammars: Towards the Integration of Meta-
modelling and Graph Transformation. In Graph Transformations, LNCS, vol. 3256, pages
54-69. Springer, 2004.

[41] A. Habel. Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, 1992.

[42] D. Harel and B. Rumpe. Modeling Languages: Syntax, Semantics and All That Stuff,
Part I: The Basic Stuff. Technical Report MCS00-16, Weizmann Institute of Science,
2000.

[43] R. Heckel, B. Hoffmann, P. Knirsch and S. Kuske. Simple Modules for GRACE. In
Theory and Applications of Graph Transformations, LNCS, vol. 1764, pages 383-395.
Springer, 2000.

[44] R. Heckel. Graph Transformation in a Nutshell. In School of SegraVis Research Train-
ing Network on Foundations of Visual Modelling Techniques (FoVMT 2004). Electronic
Notes in Theoretical Computer Science, vol. 148, issue 1, pages 187-198. Elsevier, 2006.

[45] W. Hesse. More matters on (meta-)modelling: remarks on Thomas Kuhne’s ”matters”.
Journal of Software and Systems Modeling, vol. 5, number 4, pages 387-394. Springer,
2006.

[46] M. Himsolt. GraphEd: An Interactive Tool for Building Graph Grammars. In 4th In-
ternational Worshop on Graph Grammars and their Application to Computer Science,
LNCS, vol. 532, pages 61-65. Springer, 1991.

[47] D. Janssens and G. Rozenberg. On the Structure of Node-Label-Controlled Graph Lan-
guages. Information Sciences, vol. 20, pages 191-216. Elsevier, 1980.

36

[48] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the Use of Graph Transformation in
the Formal Specification of Model Interpreters. Journal of Universal Computer Science,
vol. 9, issue 11, pages 1296-1321, 2003.

[49] G. Karsai and A. Agrawal. Graph Transformations in OMG’s Model-Driven Archi-
tecture. In 2nd International Workshop on Application of Graph Transformations with
Industrial Relevance (AGTIVE ’03), LNCS, vol. 3062, pages 243-259. Springer, 2004.

[50] G. Karsai. Automotive Software: A Challenge and Opportunity for Model-Based Soft-
ware Development. In Automotive Software - Connected Services in Mobile Networks,
LNCS, vol. 4147, pages 103-115. Springer, 2006.

[51] G. Karsai. Lessons Learned from Building a Graph Transformation System. In Graph
Transformations and Model-Driven Engineering, LNCS, vol. 5765, pages 202-223.
Springer, 2010.

[52] S. Kent. Model Driven Engineering. In 3rd International Conference on Integrated For-
mal Methods, LNCS, vol. 2335, pages 286-298. Springer, 2002.

[53] F. Klar, A. Königs and A. Schürr. Model Transformation in the Large. In 6th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT Sym-
posium of the Foundations of Software Engineering, pages 285-294. ACM, 2007.

[54] A. Königs and A. Schürr. Tool Integration with Triple Graph Grammars - A Survey.
In School of SegraVis Research Training Network on Foundations of Visual Modelling
Techniques (FoVMT 2004). Electronic Notes in Theoretical Computer Science, vol. 148,
issue 1, pages 113-150. Elsevier, 2006.

[55] A. Königs. Model Integration and Transformation - A Triple Graph Grammar-based
QVT Implementation. PhD thesis, Darmstadt University of Technology, 2009.

[56] H.-J. Kreowski, S. Kuske, and C. von Totth. Stepping from Graph Transformations
Units to Model Transformation Units. In International Colloquium on Graph and Model
Transformation (GraMot 2010), Electronic Communications of the EASST, vol. 30, 2010.

[57] T. Kühne. Matters of (Meta-) Modeling. Journal of Software and Systems Modeling,
vol. 5, number 4, pages 369-385. Springer, 2006.

[58] T. Kühne. Clarifying matters of (meta-) modeling: an author’s reply. Journal of Software
and Systems Modeling, vol. 5, number 4, pages 395-401. Springer, 2006.

[59] S. Kuske. Transformation Units - A Structuring Principle for Graph Transformation
Systems. PhD thesis, University of Bremen, 2000.

[60] J. de Lara and H. Vangheluwe. AToM3: A Tool for Multi-Formalism and Meta-
Modelling. In 5th Conference on Fundamental Approaches to Software Engineering
(FASE ’02), LNCS, vol. 2306, pages 174-188. Springer, 2002.

37

[61] J. de Lara, E. Guerra, and H. Vangheluwe. Meta-Modeling, Graph Transformation and
Model Checking for the Analysis of Hybrid Systems. In 2nd International Workshop on
Application of Graph Transformations with Industrial Relevance (AGTIVE ’03), LNCS,
vol. 3062, pages 292-298. Springer, 2004.

[62] J. de Lara, H. Vangheluwe, and M. Fonseca. Meta-Modeling and Graph Grammars for
Multi-paradigm Modelling in AToM3. Journal of Software and Systems Modeling, vol. 3,
number 3, pages 194-209. Springer, 2004.

[63] E. Legros, W. Schäfer, A. Schürr, and I. Stürmer. MATE - A Model Analysis and
Transformation Environment for MATLAB Simulink. In International Dagstuhl Work-
shop on Model-Based Engineering of Embedded Real-Time Systems, LNCS, vol. 6100,
pages 323-328. Springer, 2011.

[64] T. Levendovzky, L. Lengyel, and T. Mézáros. Supporting Domain-Specific Model Pat-
terns with Metamodeling. Journal of Software and Modeling Systems, vol. 8, number 4,
pages 501-520. Springer, 2009.

[65] M. Löwe, M. Beyer. AGG - An Implementation of Algebraic Graph Rewriting. In 5th
International Conference on Rewriting Techniques and Applications, LNCS, vol. 690,
pages 451-456. Springer, 1993.

[66] T. Mens. On the Use of Graph Transformations for Model Refactoring. In Generative
and Transformational Techniques in Software Engineering (GTTSE 2006), LNCS, vol.
4143, pages 219-257. Springer, 2006.

[67] T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. In International
Workshop on Graph and Model Transformation (GraMoT 2005). Electronic Notes in
Theoretical Computer Science, vol. 152, pages 125142. Elsevier, 2006.

[68] T. Mens, P. Van Gorp, D. Varró and G. Karsai. Applying a Model Transformation
Taxonomy to Graph Transformation Technology. In International Workshop on Graph
and Model Transformation (GraMoT 2005). Electronic Notes in Theoretical Computer
Science, vol. 152, pages 143-159. Elsevier, 2006.

[69] A. Metzger. A Systematic Look at Model Transformations. Model-Driven Software De-
velopment, pages 19-33. Springer, 2005.

[70] P.-A. Muller, F. Fondement, and B. Baudry . Modeling Modeling. In 12th International
Conference on Model Driven Engineering Languages and Systems (MODELS 2009),
LNCS, vol. 5795, pages 2-16. Springer, 2009.

[71] M. Nagl. A Tutorial and Bibliographical Survey on Graph Grammars. In International
Workshop on Graph Grammars and their Application to Computer Science and Biology,
LNCS, vol. 73, pages 70-126. Springer, 1979.

[72] M. Nagl. Set Theoretic Approaches to Graph Grammars. In 3rd International Workshop
on Graph Grammars and their Application to Computer Science, LNCS, vol. 291, pages
41-54. Springer, 1987.

38

[73] M. Nagl, A. Schürr. A Specification Environment for Graph Grammars. In 4th Interna-
tional Worshop on Graph Grammars and their Application to Computer Science, LNCS,
vol. 532, pages 599-609. Springer, 1991.

[74] S. Neema and G. Karsai. Software for Automotive Sytems: Model-Integrated Comput-
ing. In Automotive Software - Connected Services in Mobile Networks, LNCS, vol. 4147,
pages 116-136. Springer, 2006.

[75] U. Nickel, J. Niere, and A. Zundorf. The FUJABA environment. In 22nd International
Conference on Software Engineering (ICSE’00), pages 742-745, New York, NY, USA.
ACM, 2000.

[76] Object Management Group. Meta Object Facility (MOF) 2.0 Query / View
/ Transformation Specification, version 1.1, January 2011.

[77] F. Parisi-Presicce. Transformations of Graph Grammars. In 5th International Worshop
on Graph Grammars and their Application to Computer Science, LNCS, vol. 1073, pages
428-442. Springer, 1996.

[78] N. Parasyuk and S. V. Yershov. Categorical Approach to the Construction of Fuzzy
Graph Grammars. Journal of Cybernetics and Systems Analysis, vol. 42, number 4,
pages 570-581. Springer, 2006.

[79] J. L. Pfaltz and A. Rosenfeld. Web Grammars. In 1st International Joint Conference
On Artificial Intelligence, pages 609-620, Washington, D.C., USA, 1969.

[80] J. T. W. Pratt. Pair Grammars, Graph Languages and String-to-Graph Translations.
Journal of Computer and Systems Science, vol. 5, issue 6, pages 560-595. Elsevier, 1971.

[81] R. Prieto-Dı́az. Domain Analysis: an Introduction. ACM SIGSOFT Software Engineer-
ing Notes, vol. 15, issue 2, pages 47-54, 1990.

[82] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Trans-
formation, vol. 1: Foundations. World Scientific Publishing, 1997.

[83] H. J. Schneider. Graph Grammars. 1977 International FCT-Conference on Fundamen-
tals of Computation Theory, LNCS, vol. 56, pages 314-331. Springer, 1977.

[84] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In 20th
International Workshop on Graph-Theoretic Concepts in Computer Science, LNCS, vol.
903, pages 151-163. Springer, 1995.

[85] A. Schürr, A. J. Winter, and A. Zündorf. Graph Grammar Engineering with PROGRES.
In 5th European Software Engineering Conference (ESEC ’95), LNCS, vol. 989, pages
219-234. Springer, 1995.

[86] A. Schürr and F. Klar. 15 Years of Triple Graph Grammars: Research Challenges, New
Contributions, Open Problems. In 4th International Conference on Graph (ICGT 2008),
LNCS, vol. 5214, pages 411-425. Springer, 2008.

39

[87] S. Sendall and W. Kozaczynski. Model Transformation - the Heart and Soul of Model-
Driven Software Development. Software, IEEE, vol. 20, number 5, pages 42-45, 2003.

[88] P. Stevens. A Landscape of Bidirectional Model Transformations. In Generative and
Transformational Techniques in Software Engineering II (GTTSE 2007), LNCS, vol.
5235, pages 408-424. Springer, 2008.

[89] P. Stevens. Bidirectional Model Transformations in QVT: Semantic Issues and Open
Questions. Journal of Software and Systems Modeling, vol. 9, number 1, pages 7-20.
Springer 2010.

[90] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Validation
of Software. In 2nd International Symposium on Applications of Graph Transformations
with Industrial Relevance (AGTIVE 2003), LNCS, vol. 3062, pages 446-453. Springer,
2004.

[91] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U. Prange,
D. Varro, and S. Varro-Gyapay. Model Transformation by Graph Transformation: A
Comparative Study. In Model Transformation in Practice (MTiP’05) Workshop at MOD-
ELS’05, Jamaica, 2005.

[92] D. Varró, M. Asztalos,D. Bisztray, A. Boronat, D. Dang, R. Geiß, J. Greenyer, P. Van
Gorp, O.Kniemeyer, A. Narayanan, E. Rencis, and E. Weinell. Transformation of UML
Models to CSP: A Case Study for Graph Transformations Tools. In 3rd International
Symposium on Applications of Graph Transformations with Industrial Relevance (AG-
TIVE 2007), LNCS, vol. 5088, pages 540-565. Springer, 2008.

[93] I. Weisemöller, F. Klar, and A. Schürr. Development of Tool Extensions with MOFLON.
In International Dagstuhl Workshop on Model-Based Engineering of Embedded Real-Time
Systems, LNCS, vol. 6100, pages 337-343. Springer, 2011.

[94] A. Zündorf, L. Geiger, R. Gemmerich, R. Jubeh, J. Leohold, D. Müller, C. Reckord, C.
Schneider, and S. Semmelrodt. Using Graph Grammars for Modeling Wiring Harnesses -
An Experience Report. In Graph Transformations and Model-Driven Engineering, LNCS,
vol. 5765, pages 512-532. Springer, 2010.

40

