A formal semantics for RTEdge™

Technical report

Ernesto Posse

School of Computing
Queen’s University
Kingston, Ontario, Canada

August 2, 2013



Abstract

This report proposes a formal semantics for RTEdge™ [1], a language for modelling real-time embedded
systems based on AADL [3] and developed by Edgewater Computer Systems Inc. We define a formal abstract
syntax of RTEdge™ and define the formal operational semantics of a model as a Labelled Transition System
(LTS) as is customary for many reactive, concurrent languages. The LTS of a model is defined inductively
as in Plotkin-style Structural Operational Semantics (SOS) [2]. This enables the use of well-known proof
techniques to establish properties of models.

It should be noted that the semantics proposed here does not cover some RTEdge™ concepts such
as “flows” and “transactions”. This is because these concepts play a role in causality (flow) analysis and
schedulability analysis but correspond to a more concrete level of execution, while the semantics presented
here is abstract in that it captures the possible executions of a model without committing to particular
scheduling policies.

This semantics doesn’t define some language features such as Data Access Points (DAPs: scoped shared
variables), services (one-to-many connectors), or timers, which rely on a services.

This report describes the semantics of RTEdge™ as implemented in the RTEdge™ platform release 1.3.
This document is intended as a reference and thus, it does not provide examples or detailed explanations,
and it does not develop a meta-theory for the language.






CONTENTS CONTENTS
Contents
[Cist of Tables| iii
[I The RTEdge™ language, an informal description| 1
[2 Syntax of RTEdge™ models| 3
2.1 DES| + o e e e e e e e e 3
B2 Valued . . . . . . 4
B3 Protocold . . . . . 5
B4 Tnterfaced . . . . . ... 5
2.0 State machines| . . . . . . . . Lo e 6
[2.6 Atomic capsules|. . . . . ... 7
P77 Composite capsules|. . . . . . . . .. 8
2.8 Proxy capsules| . . . . . . 9
2.9  External task capsules| . . . . . .. 9
2.10 Applications|. . . . . . . . L e e 10
211 Extended interfaces|. . . . . . . . . L 10
2.12 Extended composite capsules| . . . . . . . .. L L 10
[3 Semantics of RTEdge™ models| 11
[3.1 Labelled Transition Systems|. . . . . .. .. ... ... ... 11
3.2  Semantics of atomic capsules| . . . . ... Lo 12
3.3 Semantics of composite capsules| . . . ... ... oL o 14
3.4 Semantics of extended, proxy and external task capsules and applications| . . . . . .. .. .. 16
[References| 16
Index] 17
[A A textual syntax for RTEdge™™| 18

ii



LIST OF TABLES LIST OF TABLES

List of Tables

1 Correspondence between mathematical notation and ASCII notation for RTEdge™.| . . . . . 19
2 Correspondence between mathematical notation and ASCII notation for RTEdge ™| . . . . . 20

iii



LIST OF TABLES LIST OF TABLES

List of Symbols

GENERAL

Names The set of all possible names. ... ... 3
TYPES

Tp The set of basic tyPes. . ... 3
Tg The set of Struct typPes. .. ..o 3
Ta The set of array tyPes . ..ot 3
Tg The set of enum tyPes . .. ..ottt 3
Types The set of all tyPes . ..ot 3
memtypes Direct member types of a (structured) type..... ... 3
memtypes* Direct or indirect member types of a (structured) type...................ooo... 3
Y Variable signature ....... ... i 4
type(x) Type of a variable z in a SIgNAtUTe. ... ..ot e 4
VALUES

Values The set of all possible values............co i i 4
1 The null value . . .. ... 4
B The set of boolean values {true,false} ....... ..o, 4
C The set of 8-bit characters......... ..o 4
AR The set of n-bit Integers . ... ... 4
N(®) The set of n-bit unsigned integers............cooiiiiiiiii i 4
D) The set of n-bit floating point numbers ......... .. .. .. .. i 4
Vs The set of struct values. ... e 4
Va The set of array values ...... ... 4
Ve The set of enum values ............. 4
tdom(t) The type domain (set of values) of type t...... ..o, 4

PROTOCOLS (SYNTAX)

type(e) The type of Signal € . ... i e 5
Protocols The set of all possible protocols. ... 5
isignals(R) The set of input signals of protocol RP ........o.iiiiiii i, 5
osignals(R) The set of output signals of protocol R ..........cooviiiiiiiiiiiiiiiiiniiann.. 5
typmap(P) The typing function of protocol R .........ouiuiiiii i, 5

INTERFACES (SYNTAX)

prot(p) The protocol of POTt P 5

iv



LIST OF TABLES

LIST OF TABLES

kind(p) The kind (base or conjugate) of port p.........coooiiiiiiiiii i 5
base The base kind of a port...... ..o 5
conj The conjugate kind of a port ... i 5
Interfaces The set of all possible interfaces ......... ... i 5
ports(F) The set of ports of interface F'..... ... ..o i 5
protocols(F') The set of protocols of interface F'......... .. ... . i i 5
protmap(F) The map from ports to protocols of interface F'........ ... ..., 5
kindmap(F') The map from ports to port kinds of interface F'............... ... ... ........ 5
itrigs(F) The input trigger alphabet of interface F'........ ... i, 5
ostmts(F, X)) The output statement alphabet of interface F'............ ... ... ...t 6
p.e Input (external event) trigger: signal e on port p............coooiiiiiiiii. 5
p.e(x) Output statement: signal e with data from variable z on port p................. 6
DATA STORES, ACTIVITIES, TRIGGERS AND OUTPUT STATEMENTS
o) Data store. . ... 6
o(x) Value of variable x in data store o ....... ..o 6
Storesy; Data stores over a variable signature X .......... ... i 6
0 The empty SEOTE. . ..ot 6
initstore(X) The initial store (all variables assigned the null value).................. ... ... 6
olz =] Store update assigning value v to variable x in store o ............... .. .. 6
Activitiesy The set of all possible activities over variables in signature X.................... 6
ext(n) External event trigger, where 7 is a trigger p.e with port p and signale......... 6
int(v) Internal event trigger, or activity completion, where v € Values ................ 6
Triggersy The set of possible triggers of an interface F........ ... ..., 6
out(n) Output statement where 7 is of the form p.e(z) where p is a port, e is a signal and
Tisa variable ... ... 6
1 Null output statement (N0 OUEPUL) .. .o .vvueu it 6
OutStmtsr The set of all possible output statements for an interface F..................... 6
STATE MACHINES (SYNTAX)
def(s) The set of deferred ports in state s ...t 6
act(s) The activity associated to transient state s...............ooiiiiiiiiiiiiii 7
S %) s or s 20 o Transition from state s to state s’ with trigger 8 and output statement v ....... 7
StateMachines The set of all possible state machines............ ... ... . .. 7
locations(M) The set of locations (states) of state machine M .................. ... . ...... 7



LIST OF TABLES LIST OF TABLES

initial(M) The initial location (state) of state machine M ........... .. ... ... ... ... 7
stables(M) The set of stable locations (states) of state machine M .......................... 7
transients(M) The set of transient locations (states) of state machine M ....................... 7
interface(M) The interface of state machine M ........... .. ... ... ... . i 7
vars(M) The variable signature of state machine M .................. ... .. ... ... ... 7
activities(M) The set of activities of state machine M ............ ... .. ... .. i 7
activitiesmap(M) The map of transient states to activities of state machine M .................... 7
transitions(M) The set of transitions of state machine M ........... ... ... ... ... . 7

ATOMIC CAPSULES (SYNTAX)

Atomic The set of all atomic capsules......... ... i i 7
ports(K) The set of ports of atomic capsule K ......... .. .. i 7
interface(K) The interface of atomic capsule K ... ..ot 7
attributes(K) The set of attributes of atomic capsule K ...... ..o, 8
activities(K) The set of activities of atomic capsule K ...... ... ..o i, 8
statemachine(K) The statemachine of atomic capsule K ..., 8

COMPOSITE CAPSULES (SYNTAX)

self Reserved role name of a capsule used when refered inside itself.................. 8
role(r) The part or capsule of TOle 7. . ... i 8
connpts(K) The set of connection points of capsule K ....... ..ot 8
r.p Connection point: port p of role (part) r....... ..., 8
Composite The set of all composite capsules. ...... ... i 8
Capsules The set of all capsules . ... ... 8
ports(K) The set of ports of capsule K ...t 9
interface(K) The interface of capsule K ...t 9
parts(K) The set of parts (subcapsules) of capsule K ..., 9
roles(K) The set of roles of capsule K ...t 9
connectors(K) The set of connectors of capsule K .........oouiiiiiiiiiii i 9
links(K) The set of links of capsule K ... ... . 9

PROXY CAPSULES (SYNTAX)

Proxies The set of all ProXies .. ... ...t 9
ports(K) The set of Ports of Proxy K ...ttt 9
rtports(K) The set of (normal) RT ports of proxy K .........oviiiiiiiiniiiiiiiniianen.. 9
osports(K) The set of OS ports of Proxy K .. ...ttt 9

vi



LIST OF TABLES

LIST OF TABLES

interface(K)
attributes(K)
activities(K)

statemachine(K)

LABELLED TRANSITION SYSTEMS

X o
s—s
Qg Qn—1
Sn
behr(s)
evtracer(p)
sttracer(p)

evtracesp(s)

sttracesr(s)

ATOMIC AND COMPOSITE CAPSULES (SEMANTICS)

Queues 5
front(q)
enqueue(q, x)
dequeue(q)
emptyqueue
inpalpha(F")
outalpha(F)
pe(v)

pe(v)
AtomCapAct
CompCapAct
recv(n)

cons(n/6)

exec(n/6)

msg(u; — uzle(v))

AtomCapConfigs
AtomCapConfigs
CompCapConfigs

The interface of Proxy K . ... 9
The set of attributes of proxy K ... 9
The set of activities of proxy K ........oouiiiii i 9
The statemachine of proxy K ....... ..o 9

Transition from state s to state s’ with label a (shorthand for (s, a,s’) €—) ... 11

Execution fragment s to state s, with event trace ayg - Qp_1 .ovvvvveevnn. .. 11
The set of all execution fragments (transition sequences) starting in s.......... 11
Event (or action) trace of execution fragment p.............. ... il 11
State trace of execution fragment p...... ... ... 11
The set of all event traces starting from state s............... ..o ... 11
The set of all state traces starting from state s..................coiiiiiiii... 11

The set of all queues over elements in X ..... ... ... i, 12
The front element of qUEUE G ... ..ot 12
The queue resulting from appending = to queue q.............. ... ... 12
The pair (z,¢’) resulting from removing x from queue q........................ 12
The empty QUETE. . . ..ot 12
The input alphabet of interface F' ... ... .. i 12
Output alphabet of interface F ... ... . i i 12
Input message on port p with signal e carrying value v............. ... .. .. 12
Output message on port p with signal e carrying value v....................... 12
The set of all possible actions of atomic capsule K ............................. 12
The set of all possible actions of composite capsule K .......................... 14
Message reception action where 17 = p.e(v) is an input message. ................ 12

Message consumption action where 7 = p.e(v) is an input message and 6 is either
an output message p’.e’ (V') Or L. ... 12

Activity execution action where 1 = p.e(v) is an input message and 6 is either an
output message p'.e/ (V') OF L ..o 12

Message transmission action from connection point u; to connection point us with

signal e carrying value v.........oo e 14
The set of all configurations of atomic capsule K .............c..cooiiiiiii., 13
The set of all possible atomic capsule configurations ........................... 13
The set of all configurations of composite capsule K ........................... 15

vii



LIST OF TABLES

LIST OF TABLES

CompCapConfigs
Configs
Configs

(l7 O-’ Q7 x)

{r1 = s1,..,Tn — Sp}

The set of all possible composite capsule configurations........................ 15
The set of all possible capsule configurations of capsule K ..................... 15
The set of all possible capsule configurations.................c...cooiiiii.. 15

Atomic capsule configuration with location [, data store o, port queues ¢ and last

viii



1 THE RTEDGE™ LANGUAGE, AN INFORMAL DESCRIPTION

1 The RTEdge™ language, an informal description

RTEdge™ is a language that can be used to describe concurrent, reactive, real-time systems. In RTEdge™,
a system is a collection of interconnected components or processes called capsules. Each capsule is an active
object with attributes and reactive behaviour. A capsule executes concurrently with the other components in
the system. Capsules interact with other components by sending messages or signals over connections (also
called connectors). Each capsule has a well-defined interface which consists of a set of ports through which
signals are sent and received. Connectors link ports between different capsules. The reactive behaviour of
capsules is defined by a certain kind of state machines. Communication is asynchronous: the sending of
a message is non-blocking, so the sender doesn’t wait for the message to be delivered. Capsules can be
composed and grouped together to define a hierarchical structure.
The core elements of the RTEdge™ language are:

e Protocols

e Interfaces

e Atomic Capsules with State Machines
e Composite Capsules

e Proxy Capsules

e External Task Capsules

e Timers

e Applications

Informally a protocol defines a set of input and output signals which may be transmitted between capsules.

An interface defines a collection of named ports, each of which has a protocol and can be either a base
port or a conjugate port. In a base port, input and output signals of the corresponding protocol, are treated
by the owining capsule as inputs and outputs respectively, whereas in a conjugate port the roles are flipped:
input signals of the protocol are treated by the capsule as outputs and output signals in the protocol are
treated as inputs.

An atomic capsule defines a process or active object with data attributes and a behaviour and has a specific
interface. The behaviour is defined by a state machine. RTEdge™ state machines are flat (no hierarchical
states) and divide the states into two groups: stable states and transient states. Stable states are states where
the capsule is at rest waiting for external input signals on its ports. Hence transitions emmanating from stable
states are annotated with input or external event triggers. Transient states are intermediate states which may
have actions or activities associated to them. These activities are written in an underlying action language,
which in the case of the RTEdge™ platform is C+4. Actions are parametrized with the data attributes of
the capsule object and with the last message received. Transitions emmanating from a transient state can
be labelled with a value or action completion code, which is used as an activity completion trigger, allowing
internal choice. Transitions can be annotated with output statements, which send output signals through the
capsule ports to other capsules. These state machines have a run-to-completion semantics: when the capsule
is on a stable state, the arrival of an input on a port results in a chain of transitions being followed according
to the transition triggers, possibly going through transient states and ending in a stable state. If an input
signal arrives and the capsule is not on a stable state, the signal will be queued in its port until the capsule
can handle it. Thus, each port has its own FIFO queue. A port might be marked as deferred in a stable
state. If an input arrives on that port when the system is in the stable state that defers it, the message will
not be processed, and it will simply remain in its queue until it can be consumed in another stable state. If
input arrives at a port which is not deferred and the current stable state doesn’t have a transition with a
trigger for that port and signal, there are two possible behaviours: the signal can be ignored, or an error can
be issued. If more than one transition is enabled in a stable state, the tie is broken by the relative priorities
of the signals. These priorities are assigned statically by RTEdge™ during schedulability analysis, to ensure
that required deadlines are met.



1 THE RTEDGE™ LANGUAGE, AN INFORMAL DESCRIPTION

A composite capsule defines a group of interconnected capsules (atomic or composite) and has an interface.
It serves a the basic structuring construct in the language providing a hiding and encapsulation construct
so that the only way to access the composite capsule’s sub-components is through its interface. Informally,
the capsules within a composite capsule execute concurrently, although the platform implementation may
schedule the transitions within the same thread. Since ports are queues, the basic communication mechanism
is asynchronous message passing.

A proxy capsule is a special kind of atomic capsule which has “OS ports”, this is, ports that allow the
capsule to interact with software outside of the application.

An external task capsule is also a special kind of capsule and it doesn’t represent a component within the
application, but rather it is used to represent external components with which the application may interact.
External capsules can only be connected to proxy capsules.

A timer is a special kind of primitive component that issues a given signal periodically. This signal is
received by every capsule which has subscribed to the timer’s service.

An application is the top level component of the language. It can be seen as a special composite capsule
which groups together all components and elements.



2 SYNTAX OF RTEDGE™ MODELS

2 Syntax of RTEdge™ models

Notation 1. Let Names denote the set of all possible names. Let N denote the set of natural numbers and
Z denote the set of integers.

2.1 Types
Definition 1. (Basic types) Let Ty denote the set of basic types, defined as:

Tg = {bool, char,int8, int16,int32, int64,uint8, uint16,uint32, uint64, float32, float64, void}
Definition 2. (Struct types) A struct type is a triple (I, M, type) where:
e | € Names is the name of the struct type,
e M C Names is a (finite) set of names of struct members,

e type : M — Types is an assignment of types to members, where the set Types of types is defined
below in Definition [l

We denote Ts the set of all possible struct types.
Definition 3. (Array types) An array type is a triple (I, t,n) where
e | € Names is the name of the array type,
e ¢ € Types is the type of the array items, where the set Types of types is defined below in Definition [f]
e n € N is the size of the array type, with n > 0.
We denote T 4 the set of all possible array types.
Definition 4. (Enum types) An enum type is a pair (I, J) where
e | € Names is the name of the enum type,
e J C Names is a finite set of enumerators.
We denote Tg the set of all possible enum types.
Definition 5. (Types) Let Types denote the set of all types, defined as:

Types def TgUTsUT4, UTE

Remark 1. The definitions in this section are mutually recursive. In particular Definition [2] and Definition [3]
are given in terms of Definition [5] and vice-versa. To ensure that the set of all types is well-defined and no
circularities arise we need some further definitions.

Definition 6. (Member types) Let t = (I, M, type) be a struct type. We define the set of member types
of t as .
memtypes(t) ) {type(m)|m € M}

Let t = (I,t',n) be an array type. We define the set of member types of ¢ as
memtypes(t) “ {t'}
Let t be a basic type or an enum type. Then
memtypes(t) “

The set of all direct or indirect member types of a type t is defined as

memtypes™ (t) & memtypes(t) U U memtypes*(t')
t’ €memtypes(t)



2.2 Values 2 SYNTAX OF RTEDGE™ MODELS

Definition 7. (Legal types) A type ¢ is said to be legal or well-defined if ¢ ¢ memtypes™(t).
In the rest of this document we assume all types to be well-defined.

Definition 8. (Variable signature) A variable signature ¥ is a pair (V, type) where V' C Names is a finite
set of variables and type : V' — Types is a typing function, assigning a type to each variable.

2.2 Values
Definition 9. (Data values) Let Values denote the set of all possible data values, defined as:
Values & {1}uBUCUZ® UZ(O UZGD UZOH UNG® UNTO NG UNED UDED UDOD) UV5 UV, UVE
where
e | is called the null value,
eB%Y {true, false},

C is the set of 8-bit characters. We write character literals as ‘a’,’b’,’c’, ... etc.,

e Z(™ is the set of n-bit signed integers,
e N(™ is the set of n-bit unsigned integers,

e D™ is the set of n-bit floating-point decimals,

e Vg it Names — Values is the set of all possible struct values, (partial functions) assigning values to
struct members,

d . . . . o
o Vyu o Unen|[Jn — Values] is the set of all possible array values, i.e., functions from a finite index set

Jn =90,1,2,...,n — 1} to the set of values,
o Vg def Names
We also define the family of value sets as:
v def {{L},B,C, Z®) 716 732) 7(64) N©&) N16) NG2) N6 D(32),D(64),VS,VA,VE}

Definition 10. (Type domains) The function tdom : Types — V associates each type to a set of values,
called its type domain, and defined by:

tdom(void) 4 {1}
tdom(bool) “op
tdom(char) “ c
tdom(intn) ©ogm
tdom(uintn) © N
tdom(floatn) ' pw)
tdom(Ts) ¥ g
tdom(T 4) “ Va
tdom(Tg) = Vg

We extend this function to define the domain of values of structured types as follows:
Let tdom : Tg — Vg be defined for each struct type t = (I, M, type) € Ts by

tdom () = {v: Names — Values|dom(v) = M, ¥Ym € M.v(m) € tdom(type(m))}



2.3 Protocols 2 SYNTAX OF RTEDGE™ MODELS

in other words, the type domain of the struct type ¢ is the set of all struct values, or assignments v of values
to struct members such that the value v(m) of each member m € M is in the type domain of m’s type.
Let tdom : T4 — V4 be defined for each array type ¢t = (I,t/,n) € T4 by

tdom(t) = {v:J, — Values|Vi € J,.v(i) € tdom(t')}

where J, = {0,1,2,...,n— 1} is the index set of t. In other words, the type domain of ¢ is the set of all array
values, or assignments v of values to array slots such that for all indices i € J,,, the value v(¢) is in the type
domain of ¢’s member type t'.
2.3 Protocols
Definition 11. (Protocols) A protocol is a tuple (I, O, type) where:

e | C Names is a set of input signals

e O C Names is a set of output signals

e INO=0

e type: I UO — Types is a typing function, assigning a type to each signal
We call Protocols the set of all possible protocols. Given a protocol R = (I, O, type) we define

e isignals(R) Y

e osignals(R) “o

o typmap(R) < type
Remark 2. A protocol can be seen as a variable signature (I & O, type) (cf. Definition [§).

2.4 Interfaces
Definition 12. (Interfaces) An interface F is a tuple (P, L, prot, kind) where
e P C Names is a set of port names,
e [ C Protocols is a set of protocols,
e prot: P — L is an assignment of protocols to ports,
e kind : P — {base,conj} is an assignment of kinds to ports

We call Interfaces the set of all possible interfaces. We define

e ports(F) “p

e protocols(F) =)

e protmap(F) = prot
. def . .

e kindmap(F') = kind

Definition 13. (Input trigger alphabet of an interface) The input trigger alphabet of an interface
F = (P, L, prot, kind), denoted itrigs(F'), is defined as

itrigs(F) déf{(p, e)|p € P, e € isignals(prot(p)), kind(p) = base}
U{(p,e) |p € P, e € osignals(prot(p)), kind(p) = conj}

We write p.e for the element (p,e) € itrigs(F').



2.5 State machines 2 SYNTAX OF RTEDGE™ MODELS

Definition 14. (Output statement alphabet of an interface) The output statement alphabet of an
interface F' = (P, L, prot, kind) for a given variable signature ¥ = (V] type), denoted ostmts(F, Y), is defined
as

ostmts(F, X)) déf{(p,e, x) | p € P, e € osignals(prot(p)), kind(p) = base, x € V, type(z) = typmap(prot(p))(e)}
U{(p,e, ) [p € P, e € isignals(prot(p)), kind(p) = conj, x € V; type(x) = typmap(prot(p))(e)}

We write p.e(x) for the element (p, e, z) € ostmts(F, X).

2.5 State machines

Definition 15. (Data stores) A data store over a variable signature ¥ = (V, type) is a function o : V. —
Values assigning a value to each variable such that for each variable x € V, o(x) € tdom(type(x)) W {L}.

We call Storesy, the set of all possible data stores over X. If ¢ is a store, x is a variable and v is a value,
we write o[z := v] for the store that results from updating the value of variable x to v. Formally,

olw = vl(y) < { ify=2g

o(y) otherwise

We extend this notation to multiple updates:

def
= 0

olx1 :=v1,T2 1= Vo, ..., Ty 1= U] [€1 = v1][xe (= va] -+ - [Ty := vy

We write §) for the empty store, and initstore(X) & {z — L|z € V} for the initial store over X, which
assigns the null value to each variable.

Definition 16. (Activities) An activity over a variable signature X is a function f : Storesy x (Values &
{L}) — Storesy x Values, i.e., activities are functions that receive as argument a data store (see Defini-
tion and an input value (or 1) and return an updated store and a return value. We call Activitiesy the
set of all actions over X.

Definition 17. (Triggers) Given an interface F, the set of possible triggers over F, is defined as Triggers =
{ext(p.e) | p.e € itrigs(F)} U {int(v) |v € Values}. A trigger of the form ext(p.e) is called an external event
trigger, and a trigger of the form int(v) is called an activity completion trigger.

Definition 18. (Output statements) Given an interface F', the set of possible output statements over F,

is defined as OutStmtsp o {out(p.e(z)) | p.e(z) € ostmts(F,X)} U{L}. A term of the form out(p.e(z)) is
called an output statement. The term L denotes the null output, i.e., the absence of output.

Definition 19. (State machines) A state machine M is a tuple (5,4, Q, F, def, X, A, act,T') where
e S is a finite set of states, also called locations,
e ; € S is a distinguished initial state,

e (Q C S is a subset of stable states; the elements of the set S\@ of states not in @ are called transient
states,

e [ is an interface,

def : Q — 2r°r(F) ig a map, assigning a set of ports to each stable state; def(s) is called the set
of deferred ports of s, and must be such that for each s € @, there is a port p € ports(F') such that
p ¢ def(s), (i.e., no state can defer all ports),

3 = (V, type) is variable signature (see Definition [§)),

e A C Activitiesy, is a set of of activities,



2.6 Atomic capsules 2 SYNTAX OF RTEDGE™ MODELS

e act: S\Q — A is a map assigning an activity to each transient state,

o T'C § x Triggersy x OutStmtsp x S is a transition relation, satisfying the following conditions:

— for all (s,8,v,s") € T, written s By s ors M s’

S

x (3 is of the form ext(p.e) if and ounly if s € @ (i.e., transitions from stable states must have
input event triggers) and p ¢ def(s) (i.e., port p must not be deferred in state s)

* [ is of the form int(v) if and only if s € S\Q (i.e., transitions from transient states must have
values as condition)

B1/71 B2/72 Bn/vn
81 82 ...

— for all s € S\@ there is a finite sequence of transitions s Sp such
that s, € Q; i.e., any sequence of transitions from a transient state must lead to a stable state,

—forall s e S, if s % s’ and s % s then 8’ = 3", v = 4" and s’ = s”, that is, there is

one and only one transition from s for each input event § of the form ext(z) if s is stable, and for
each value § of the form int(v) if s is transient (i.e., the machine is deterministic on input events
and values).

For a state machine M = (S,4,Q, F, def, X, A, act,T) we define the following functions:
e locations(M) g
o initial(M) % i
e stables(M) & Q

e transients(M) o S\Q

e interface(M) Y

e vars(M) =8>

d
e activities(M) A
d
e activitiesmap(M) “ act
e transitions(M) =

We call StateMachines the set of all possible state machines.

2.6 Atomic capsules

Definition 20. (Atomic capsules) An atomic capsule K is a tuple (F, X, A, M) where

e = (P, L,prot, kind) € Interfaces is an interface (see Definition ,

e ¥ = (V, type) is variable signature where the variables are called attributes,

e A C Activitiesy, is a of of actions or activities,

o M =(S,i,Q, F, def,X, A, act, T) € StateMachines is a state machine (see Deﬁnition
We call Atomic the set of all possible atomic capsules. We define:

e ports(K) 4 ports(F) = P

e interface(K) “p



2.7 Composite capsules 2 SYNTAX OF RTEDGE™ MODELS

2.7

attributes(K) “y
activities(K) “ A

statemachine(K) =Y

Composite capsules

Definition 21. (Composite capsules) A composite capsule K is a tuple (F, H, R, role, C, link) where

F = (P, L, prot, kind) € Interfaces is an interface (see Definition ,

H C Capsules is a finite set of (atomic or composite) capsules called parts, subject to the condition
that K ¢ H and K is not a sub-part (transitively) of any of its parts,

R C Names is a finite set of role names, such that self ¢ R,

role : RW {self} — H W {K} is a map associating each role with a capsule, where role(self) o K, and
for all r € R, role(r) # K,

C C Names is a finite set of connector names,

link : C — connpts(K) x connpts(K) is map assigning each connector name to a link (by,by) €
connpts(K) x connpts(K) where connpts(K) denotes the set of all connection points of K and is

defined as

connpts(K) o {(self,p)|p e P}U U {(r,p) | p € ports(role(r))}

reR

We write r.p for a connection point (r,p). For any connector ¢ € C, link(c) must satisfy the following
conditions:

— for any connection point r.p, (r.p,r.p) ¢ link(c) (i.e., link(c) must be irreflexive, a port cannot be
connected to itself),

— for any connection point 71.p1, there is at most one connection point r4.ps such that (ry.p1,r2.p2) €
link(c) (i.e., links(c) must be a partial or total function)

— for any connection point 79.py, there is at most one connection point r1.p; such that (ry.p1,r2.p2) €
link(c) (i.e., link(c) must be a one-to-one mapping)
— whenever link(c) = (r1.p1,72.p2) such that r; # self and ro # self, prot;(p1) = proty(p2) and
either
* kindq(p1) = base and kinds(p2) = conj or
* kindq(p1) = conj and kinds(p2) = base
where prot, = protmap(interface(role(r;))) and kind; = kindmap (interface(role(r;))) for i € {1,2}
(i.e., a connection between internal parts can only be between a base port and a conjugated port)
— whenever link(c) = (r1.p1,72.p2) such that r; = self and ro # self or r; # self and ro = self,
proty(p1) = proty(ps) and either
* kindy(p1) = base and kinds(p2) = base or
* kindy(p1) = conj and kinds(ps) = conj
where prot;, = protmap(interface(role(r;))) and kind; = kindmap(interface(role(r;))) for i € {1,2}

(i.e., a connection between a port of the composite capsule and a port of a sub-capsule must be
of the same kind)

We call Composite the set of all possible composite capsules and Capsules o Atomic U Composite the
set of all capsules. We define



2.8 Proxy capsules 2 SYNTAX OF RTEDGE™ MODELS

e ports(K) “ ports(F) = P

interface(K) “p
def

€,

e parts(K) = H
R

e roles(K) =4

e connectors(K) “o

e links(K) def (Ueec link(c)) U (Upect(r2.p2,m1.01) | (r1.p1, 72.p2) € link(c)})

2.8 Proxy capsules

Definition 22. (Proxy capsules) A proxy capsule is an atomic capsule K = (F, 3, A, M) where the set of
ports ports(F') = P W Py is partitioned in two subsets: a set P of normal- or RT- ports and a set Pos of OS-
ports.

We call Proxies the set of all possible atomic capsules. We define:

e ports(K) & ports(F)

e rtports(K) “p

e osports(K) “ Py

e interface(K) “p

def

e attributes(K) = ¥

e activities(K) 4

d
e statemachine(K) “ v

2.9 External task capsules

External task capsules are used in RTEdge™ to describe the behaviour of processes external to the appli-
cation. In the RTEdge™ platform they can be associated to a state machine for the purpose of relating
outgoing system signals to incoming system signals. This is used in causality (flow) analysis and schedula-
bility analysis, but it doesn’t represent part of the behaviour of the model. For this reason, to define the
semantics of the model, we do not include the semantics of external tasks, which by definition, lie outside of

the model. So for the purpose of defining the semantics of a model we only need to consider the interface of
an external task.

Definition 23. (External task capsules) An external task capsule is a triple E = (F, S, isimap) where:

o F = (P, L, prot, kind) € Interfaces is an interface (see Definition , such that P, is a set of OS
ports, and

e S is a set of independent system inputs,

e isimap : S — Pos X Jpe (isignals(R) U osignals(R)) is a bijective function such that for all s € S, if
istimap(s) = (p, x) then

— if kind(p) = base then z € isignals(prot(p)), and
— if kind(p) = conj then x € osignals(prot(p))

We call ExtTasks the set of all external task capsules.



2.10 Applications 2 SYNTAX OF RTEDGE™ MODELS

2.10 Applications

An application groups together a set of capsules, proxies and external tasks. It can be seen as a composite
capsule containing all normal atomic and composite capsules as well as proxy capsules, and whose interface
consists of all the OS ports of the proxy capsules. Syntactically, an application also includes the external
task capsules,

Definition 24. (Applications) An application is a composite capsule K = (F, H, R, role, C')) where

e H=KWPWE is a set of capsules partitioned into normal capsules (KX C Capsules), proxy capsules
(P C Proxies) and external task capsules (£ C ExtTasks),

e The interface F is defined such that the following hold, where R’ 1 {r € R|role(r) € P}:

ports(F') = |J,.c p osports(role(r)) (where we assume the sets port names are mutually disjoint for
all capsules)

protocols(F') = (J,.¢ z: protocols(interface(role(r)))

protmap(F) = (J, . protmap(interface(role(r))) (where we take the union of functions considered
as sets)

kindmap(F) = |, ¢z kindmap(interface(role(r))) (where we take the union of functions considered
as sets)

2.11 Extended interfaces

Definition 25. (Extended interfaces) An extended interface is a tuple F' = (P, L, prot, kind, F") where
F... = (P, L, prot, kind) is an interface (see Deﬁnition and F” is also an interface called its parent interface,
such that P Nports(F') =0 (i.e., the set of ports must be disjoint).

An extended interface F' = (P, L, prot, kind, F') with parent F' = (P', L', prot’, kind') is the same as the
interface (P U P, LU L, prot U prot’, kind U kind')ﬂ This is, whenever we talk about an extended interface,
we really mean the equivalent simple interface.

2.12 Extended composite capsules

Definition 26. (Extended composite capsule) An extended composite capsule K is a tuple (F, H, R, role, C, K')
where K’ = (F', H', R, role’, C") is a composite capsule and where Kouy = (Fezt, Hegt, Rest, 70l€cst, Cext) is
also a composite capsule (see Definition with:

o F., = (ports(F) Uports(F'), protocols(F') U protocols(F”), protmap(F) U protmap(F”), kindmap(F') U
kindmap(F")) is an interface, where ports(F') N ports(F') =

Hep=HUH

Reyt = RUR where RNR =10

o 70le.y = role U role’
e Coy =CUC

Whenever we talk about an extended composite capsule K we mean the equivalent “base” composite capsule
Kea;t-

1Note that the unions of prot and kind are well defined because their domains are disjoint.

10



3 SEMANTICS OF RTEDGE™ MODELS

3 Semantics of RTEdge™ models

The semantics of capsules is given in terms of labelled transition systems.

3.1 Labelled Transition Systems

Definition 27. (Labelled Transition Systems) A labelled transition system or LTS for short is a triple
(S, L,—) where

o Sisaset of (concrete) states,
e L is a set of (action) labels,
e »C S x L xS is a transition relation,

A rooted LTS is an LTS (S, s, L, —) with a distinguished initial state so € S. We write s — s’ for
(s,a,8") €.

Definition 28. (Execution fragment/behaviour) An execution fragment or behaviour p of an LTS
T = (S, L, —) is a sequence of transitions t1ty - - - t,, where for each i € {1,2,...,n—1}, t; = (s;, @, 8i41) €=
We also write the execution fragment as

QAn—1

[e5] a9
81— 89 —= o —— 8y

or as
QronQn 1
S1 ? Sn

We call behr(s) the set of all execution fragments/behaviours from state s in LTS T.
Given two states s and s’ and a sequence of events & = ajas---an,_1 we write s — s if there is a
a1 Qa2 Qn—1 . .
sequence of states s182 - - s, such that p = s; — s — .-+ —— s, is an execution fragment where s; = s
and s, = s'.
Similarly, given a pair of states s and s’ we write s — s if there is a sequence of states s1ss - -- s, and a

~ [e%1 o Qn—1 .
sequence of events and a sequence of events & = ayag---ay,—1 such that p =53 — s9 — -+ —— s, is
an execution fragment where s; = s and s,, = s'.

Definition 29. (Event and state traces) Given an LTS T' = (S, £, —) and an execution

QAn—1

p=151 sy 22 ... s,
we call the event trace evtracer(p) of p the sequence of labels:
evtracer(p) = ayaa -+ - ap_1
and the state trace sttracer(p) of p the sequence of states:
sttracer(p) = 182+ $n

We call evtracesr(s) the set of all event traces of execution fragments beginning in state s, and sttracess)
the set of all state traces of execution fragments beginning in s. This is

evtracesy(s) = {ajag - ap_1|arag - a,_1 € evtracesy(p), p = s RN s'}

and
sttracesy(s) = {8182+ 8n | 81828, € sttracesr(p), s; = s}

11



3.2 Semantics of atomic capsules 3 SEMANTICS OF RTEDGE™ MODELS

3.2 Semantics of atomic capsules

Definition 30. (Queues) Let X be a set. We write Queuesy for the set of queues over elements of X.
Let ¢ € Queuesy. Then

e front(q) is the front element x of ¢,
e enqueue(q, x) is the queue that results from adding x at the back,

e dequeue(q) is the pair (z,q’) where z was the front element of ¢ and ¢’ is the queue that results from
removing z from gq.

e emptyqueue denotes the empty queue.

Definition 31. (Input alphabet of an interface) The input alphabet of an interface F = (P, L, prot, kind),
denoted inpalpha(F'), is defined as

inpalpha(F) déf{(p,e, v) | p € P, e € isignals(prot(p)), kind(p) = base, v € tdom(typmap(prot(p))(e))}

U{(p,e,v) |p € P, e € osignals(prot(p)), kind(p) = conj, v € tdom(typmap(prot(p))(e))}
We write p.e(v) for the element (p,e,v) € inpalpha(F).

Remark 3. The difference between the input alphabet of an interface and the input trigger alphabet of an
interface (cf. Definition is that the latter is part of the syntax of RTEdge™ state machines (used in the
labels of transitions), whereas the former represents the set of actual run-time input events which carry a
value of the type associated with the signal received.

Definition 32. (Output alphabet of an interface) The output alphabet of an interface F = (P, L, prot, kind),
denoted outalpha(F), is defined as

outalpha(F) déf{(p, e,v) | p € P, e € osignals(prot(p)), kind(p) = base, v € tdom(typmap(prot(p))(e))}
U{(p,e,v) | p € P, e € isignals(prot(p)), kind(p) = conj, v € tdom(typmap(prot(p))(e))}

We write p.e(v) for the element (p, e, v) € outalpha(F).

Remark 4. The difference between the output alphabet of an interface and the output statement alphabet of
an interface (cf. Definition is that the later is part of the syntax of RTEdge™ state machines (used in
the labels of transitions), whereas the former represents the set of actual run-time output events which carry
a value of the type associated with the signal sent.

Definition 33. (Atomic capsule actions) Let K = (F,V, A, M) be an atomic capsule. An atomic capsule
action of K is one of the following:

e recv(n) (message reception) where 7 € inpalpha(F) (see Definition [31)); n represents an input event
received by the capsule to be added on a port’s queue;

e cons(n/6) (message consumption) where 7) € inpalpha(F) and 6 € outalpha(F)W{_L} (see Definition [32));
7 is an event at the front of some port’s queue which is to be consumed, and 6 represents the output
on some port, or L if there is no output;

e exec(n/0) (activity execution) where 7 € inpalpha(F') and 6 € outalpha(F) W {L}; n represents the last
input event consumed, which can be used by a transient state action, and 6 represents the output on
some port, or L if there is no output;

The set of possible actions of K is denoted AtomCapAct .

Definition 34. (Atomic capsule configurations) Let K = (F, %, A, M) be an atomic capsule. A config-
uration or concrete state of K is a tuple (I, o, q, ) where:

e | € locations(M) is a location of the state machine M,

12



3.2 Semantics of atomic capsules 3 SEMANTICS OF RTEDGE™ MODELS

e o € Storesy is a data store over the variable signature

® g : ports(F) — Queues;, . i,n,(p) IS @ map associating a queue of input events to each port so that
q(p) is the queue of port p,

e x € inpalpha(F) W { L} is the last message processed or | when there was no message before.

We call AtomCapConfigs,. = locations(M) x Storess, x [ports(F) — Queues;, .1 na(r)] X (inpalpha(F) &
{L}) the set of all atomic capsule configurations of K and AtomCapConfigs the set of all atomic capsule
configurations (of all possible atomic capsules).

Definition 35. (Non-deterministic small-step LTS of an atomic capsule) Let K = (F, X, A, M) be
an atomic capsule. Then T;[K] denotes the rooted LTS (S, sq, £, —s) where

e S 4 AtomCapConfigs

® 50 =4 (initial(M ), initstore(X), qo, L) where go(p) & emptyqueue for each p € ports(F')

o L o AtomCapAct

e —,C AtomCapConfigs; x AtomCapAct ; x AtomCapConfigs is defined as the smallest relation
satisfying the following:

— (MESSAGE RECEPTION)

(o, q,x) 2D, (@ ot g oty i

=1

o=0

¢ (p) = enqueue(q(p), p-e(v))

for all p’ € ports(F) such that p’ # p, ¢ (p') = q(p’)
=z

* ¥ ¥ X X

— (MESSAGE CONSUMPTION
( )
(l a,q LC) cons(p.e(v)/6) (l,

% | € stables(M)

w ext(p.e)/out(p’.e’(2))

U/’ q/’ x/) if

I' € transitions(M) and 0 = p'.¢/(0(2))
or | XLy transitions(M) and § = L
o'=0o
(2',4'(p)) = dequeue(q(p))
for all p” € ports(F) such that p” # p, ¢'(p”) = q(p”)
' =p.e(v)
— (ACTIVITY EXECUTION)
(l,0,q,2) MS o' q ') if

* | € transients(M)

*x ¢ = p.e(v)

L | ) on (),

* ¥ X *

€ transitions(M) and 6 = p'.€/(¢'(2))

or | ML e transitions(M) and 6 = L

x f(o,v) = (o/,v") where f = activitiesmap(M)(l)
*q =q
x o' =z

13



3.3 Semantics of composite capsules 3 SEMANTICS OF RTEDGE™ MODELS

Definition 36. (Acceptable executions) The set of acceptable executions of an atomic capsule K from
a state s, is the largest set accexer(s) C behrp(s), where T = T;[K] (see Definition such that for every

execution p = s MS $1 Ms .-+ € accexer(s), there is an ¢ such that §; is of the form cons(n/#). This

is, along every execution there is at least one message consumption.

Definition 37. (Priority assignment) A priority assignment is a tuple (S, P, <, pri) where
e S is some set
e P is a set of priorities

e <C P x P is a partial order over priorities (i.e., a reflexive, anti-symmetric and transitive relation
over P) such that every non-empty subset P’ C P has a (unique) maximum element which we denote
max(P’) (i.e., max(P’) € P' and Vp € P’.p < max(P’))

e pri: S — P is an assignment of priorities to elements of S

Notation 2. We overload the notation for maximum elements and write max(S”") for max({pri(z)|z € S'})
for any S’ C S.

Definition 38. (Prioritized small-step LTS of an atomic capsule) Let K = (F,X, A, M) be an atomic
capsule, Ti[K] = (S, so, £, —) the LTS defined for K in Definition [35|and O = (inpalpha(F'), P, <, pri) be
some priority assignment of input events. Then 7;,[K]o denotes the rooted LTS (S, so, £, —sp) Where:

e (MESSAGE RECEPTION)
recv(p.e(v)) ) recv(p.e(v))

l7UaQ7x) sSp (l/70'/’q/,13/) if (l70'7q’1: s (l/’al,q/71‘/)

(
e (MESSAGE CONSUMPTION)
( !/

l,0,q,) M>Sp (llaa ,q’,x’) if

) cons(p.e(v)/0) . (l/,O'/,q/,J,‘/), and

cons(p’.e’(v")/0)

- (la 0,q,T
— for all transitions (I, 0, q,x) s (", 0", q", 2", pri(p’.€' (v')) < pri(p.e(v))

e (ACTIVITY EXECUTION)

(o, q,x) 2L, o ) i (Lo, g ) S 1 ot g )

3.3 Semantics of composite capsules

Definition 39. (Composite capsule actions) LetK = (F, H, R, role, C,links) be a composite capsule. A
composite capsule action of K is one of the following:

e recv(n) (message reception) where n € inpalpha(F) (see Definition
e cons(n/6) (message consumption) where n € inpalpha(F) and § € outalpha(F)w{L} (see Definition [32))
e exec(n/0) (activity execution) where n € inpalpha(F') and 6 € outalpha(F)w {L}

e msg(u; — uzle(v)) (message passing) where e is a signal name, v is a value, and u; € Names” for
i € {1, 2} such that each u; is of the form ry.rg. - - .r,.py with py being a port name and each r; being
a role name with 7,41 € roles(K;) (i.e., u; is a qualified path to a connection point, according to the
nesting hierarchy of K)

The set of possible actions of K is denoted CompCapAct .

14



3.3 Semantics of composite capsules 3 SEMANTICS OF RTEDGE™ MODELS

Definition 40. (Composite capsule configurations) Let K = (F, H, R, role, C,links) be a composite
capsule. A configuration or concrete state of K is an R-indexed set of configurations, this is, a function
s : R — Configs of the form

s={r1— 81,0y Tn > Sn}

such that for all r; € R, s; = s(r;) € Configs,,(,,) is the configuration of the part (capsule) in role r;

where Configs; denotes the set of all possible configurations of K and Configs = AtomCapConfigs U

CompCapConfigs is the set of all possible capsule configurations, with CompCapConfigs being the set
of all composite capsule configurations. E| We call CompCapConfigs; the set of all composite capsule
configurations of K. Hence,

Configs, =

def | AtomCapConfigs,, if K € Atomic
CompCapConfigs;, if K € Composite

Definition 41. (Non-deterministic small-step LTS of a composite capsule) Let K = (F, H, R, role, C, links)
be a composite capsule. Then 7;[K] denotes the LTS (S, sq, £, —) where

e S o CompCapConfigs

o L & CompCapAct

¢ —.C CompCapConfigs; x CompCapAct; x CompCapConfigs is defined as the smallest rela-
tion satisfying the following;:

— (INTER-CAPSULE COMMUNICATION 1)

) s msg(r1.p1—r2.p2le(v))
)

for any 71,79 € roles(K s s if

* (r1.p1,72.p2) € links(K),

* s(rqp) —)exec(n/pl'e(v)) s §'(r1) and

N 8(7“2) recv(pz.e(v)) . S/(TQ)
— (INTER-CAPSULE COMMUNICATION 2)

msg(r1.p1—r2.p2le(v)) .
¢ s if

for any rq1,ry € roles(K), s

* (r1.p1,7r2.p2) € links(K),

) cons(n/pr.e(u)

* s(ry s §'(r1) and

) recv(ps.€)

* s(rg s 8'(ra)

— (INCOMING MESSAGE)

for any r1 € roles(K), s MS s if
* (self.p,r1.p1) € links(K') and

* s(ry) M)S s'(r1)

— (OUTGOING MESSAGE 1)
for any r; € roles(K), s Mg s if

% (r1.p1,self.p) € links(K) and

% s(r) exec(n/p1.e(v)) s 5'(r)

— (OUTGOING MESSAGE 2)

), 8 consa/pe(), o1 s

for any 1 € roles(K S

2 A composite capsule configuration has a tree structure, where the leaves are atomic capsule configurations and in each node
s={r1 > s1,..,7n > sn}, s(r;) = s; € Configs,,(,,) is a configuration of the capsule in role r;. This definition is recursive,
but it is well-founded, since composite capsules are finite and therefore have a finite height (nesting depth). Thus, the tree itself
is finite.

15



3.4 Semantics of extended, proxy and external task capsules and applications REFERENCES

% (r1.p1,self.p) € links(K) and
) cons(n/p1.e(v)) S,(Tl)

* s(ry

— (INTERNAL MESSACE)

msg(r;.u1—r;.uszle(v))
S

for any r; € roles(K), s s if

N S(’I‘i) msg(u1—uzle(v))

s 8'(ri)

3.4 Semantics of extended, proxy and external task capsules and applications

An extended composite capsule K is identified with its equivalent “base” composite capsule K.,; as defined
in Subsection 2:12] therefore its semantics is the same according to Subsection [3.3]

The semantics of a proxy capsule K is given according to Subsection [3:2] with K viewed as an atomic
capsule.

External task capsules do not have a semantics within RTEdge™, and are simply provided as a means
to connect the application to the external environment.

The semantics of a application is given by the semantics in Subsection [3:3] where the application is
viewed as a composite capsule with the proviso that the behaviour of external task capsules is not defined.
Alternatively one can take the behaviour of external task capsules to include all possible behaviours involving
independent system inputs. This can be defined as an LTS with a single state and for each possible signal,
a transition from the state to itself. The language of such an LTS would include all possible sequences of
external signals. Defined as such, the semantics of an application would contain all possible behaviours for
all possible sequences of external signals. Yet another alternative is to view the application as a composite
capsule without the external tasks in it.

References

[1] S. Gheorghe. Integration of Formal Model Checking with the RTEdge™ AADL Microkernel. Tech.
Report 2011-01-2531, SAE International/Edgewater Computer Systems Inc., 18 October 2011.

[2] G. Plotkin. A structural approach to operational semantics. Lecture Notes DAIMI FN-19, Dept. of
Computer Science, Aarhus University, 1981.

[3] SAE International. Architecture Analysis & Design Language (AADL). SAE Standard AS5506b, 10
September 2012.

16



Index

acceptable executions,
action completion code, [I]
activities, [7]

activity, [6]

activity completion trigger, [1} [6]
application,

array type, [3]

array values, [4]

asynchronous communication, [I]
atomic capsule, [I] [7]

atomic capsule action,
atomic capsule configuration,
attributes, [7]

base port,

basic types,
behaviour,

capsules, [I]

composite capsule,

composite capsule action,

composite capsule configuration,
concrete state of a composite capsule, [I5]
concrete state of an atomic capsule, [12]
conjugate port, [I]

connection points,

connector,

connectors, [

data store, [0]
data values, [
deferred port,
deferred ports, [6]

empty store, [f]

enum type, [3

event trace, [I]

execution fragment,
extended composite capsule, [10]
extended interface, [10]

external event trigger, |§|
external event triggers,
external task capsule, 2] [9]

independent system inputs, [J]

initial state, [6]

initial store, [0]

input alphabet of an interface, [[2]

input signals, [f]

input trigger alphabet of an interface, [5]
interface,

labelled transition system, [I1]
legal type, []

link,

locations, [6]

LTS, ]

member types,

names, [3]
null output, [6]
null value, []

output alphabet of an interface,

output signals,

output statement, [6]

output statement alphabet of an interface, [0]
output statements, [I]

parent interface, [10]

parts,

port, [

ports, [I]

possible actions of an atomic capsule,
possible actions of an composite capsule, [14]
priority assignment, [I4]

protocol, [T} [

proxy capsule, 2] [0]

roles,
rooted LTS, [[]
run-to-completion semantics,

signals, [I]

stable states, [0]
state machine, [T} [6]
state trace, [[T]
states, [0]

struct type, [3]
struct values, [

the set of possible output statements, [0]
the set of possible triggers, [0]

timer, 2]

transient states, [6]

transition relation, [7]

type domain, []

types, [J]

typing, @]

variable signature, [4]

well-defined type, [4]

17



A A TEXTUAL SYNTAX FOR RTEDGE™

A A textual syntax for RTEdge™

Table [Tl on page [19] and Table [2] on page [20] show a sample of the textual (ASCII) notation corresponding to
the mathematical notation for RTEdge™ elements.

18



A A TEXTUAL SYNTAX FOR RTEDGE™

Textual ASCII notation

\ Mathematical notation

protocol Protl {

Prot; = (I, 01, type) where:

in signal a : bool;

out signal b : char; o Iy ={a}
’ . 0= {1}

o type; = {a > bool, b+ char}

interface F1 { Fy = (P1, Ly, proty, kindy ) where

base port pl : Proti;

conj port p2 : Prot2; e P = {p1,p2}
' o Ly ={ry,r}

e prot; = {p1 — Proty,ps — Prots}

e kind; = {p1 — base, ps — conj}

state machine M1 {

stable states sO, s1, s3;

transient states s2(ml);

initial sO;

attributes d : int32;

transition t1 from sO to

transition t2 from sO to
with output g3.b(0);

transition t3 from s2 to
with output gq3.b(1);

transition t4 from s2 to
with output g2.a(1);

sl
s2

s3

sl

on ql.a;
on g2.c

if true

if false

My = (51,11, Q1, Fo, X1, A1, acty, T1) where
e S1={s0,51,52, 83}
® i1 = Sy
* Q= {80781,83}

o [ = (Py, Lo, proty, kindy) where

Py ={q1,q2,43}
Ly = {Prots, Prots} with

* Proty =

({a},{b},{a > void, b int8})
x Prots =

({a},{c},{a > int8,c > void})

|_>

prots {n — Prota, g
Prots, g3 — Prots)

kinds = {q1 — base, g2 — conj,q3 —

base}
e ¥y = ({d},{d — int32})
o Ay ={m}

o acty = {sa—>my}
(] T1 = {tl,t27t37t4} where

ext(q1.a)
— 51

-1 = S0
B ext(gz.c)/out(gs.b(0))
— 19 = g 52
int(true)/out(gs.b(1))
— t3 =82 53
B int(false)/out(g2.a(1))
— t4 = S9 S1

Table 1: Correspondence between mathematical notation and ASCII notation for RTEdge™.

19




A A TEXTUAL SYNTAX FOR RTEDGE™

Textual ASCII notation \ Mathematical notation

atomic K1 { K, = (F1,%1, A1, My) where:
implements F1;
attribute al : bool
attribute a2 : int32;
activities ml, m2;
behaviour Mi;

e F} is an interface such as the one
shown in Table [[] on page [I9]

o 31 = (V4, type;) where

} - ‘/1 = {a/17a/2}
— type;, = {a1 +— bool,ay +—
int32}

° A1 = {ml,mg}

e M is a state machine such as the one
shown in Table [I] on page [I9]

composite K3 { K5 = (F5, Hs, R3, roleg, C5) where:
implements F1;

part ri : Ki; e F3 is an interface such as the one shown in

part 12 : K2 Table [T] on page [I9]
part r3 : Ki; o H = {Kl,Kg}
connector 11 : rl.pl - r2.p3;
connector 12 : rl.p2 - pil; e Ry ={ri,ra,r3}
connector 13 : p2 - r3.p2;
} e roles = {ry — Kij,ra — Kyry —
Kl,self — K3}

o O3 ={ly,ls,l3}

= I1 = (r1.p1,72.p3)
— lQ = (Tl.pg, self.pl)
— 13 = (self.pg, 7‘3.p2)

Table 2: Correspondence between mathematical notation and ASCII notation for RTEdge™.

20



	List of Tables
	The RTEdge™ language, an informal description
	Syntax of RTEdge™ models
	Types
	Values
	Protocols
	Interfaces
	State machines
	Atomic capsules
	Composite capsules
	Proxy capsules
	External task capsules
	Applications
	Extended interfaces
	Extended composite capsules

	Semantics of RTEdge™ models
	Labelled Transition Systems
	Semantics of atomic capsules
	Semantics of composite capsules
	Semantics of extended, proxy and external task capsules and applications

	References
	Index
	A textual syntax for RTEdge™

