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Abstract

This report investigates compositional reasoning techniques for RTEdge™ [Ghelll [Pos13a], a language for
modelling real-time embedded systems based on AADL [SAE12] and developed by Edgewater Computer Sys-
tems Inc. The RTEdge™ platform supports formal verification of software models as described in [GhelT],
but it performs a monolithic analysis, by model-checking the entire model at once. To avoid or alleviate
the state explosion problem, we propose the use of assume/quarantee contract-based reasoning, a family of
compositional analysis semi-automatic techniques which leverage the structure of the model under consider-
ation. In particular, we adapt the generic theoretical framework for assume/guarantee contracts proposed
in [BDH*12a] to the RTEdge™ setting where contracts would be specified using the Property Specification
Language (PSL) [IEE05] an IEEE standard.

In this report we describe: 1) how PSL could be adapted to specify contracts for RTEdge™ models,
2) how to establish the consistency and conformance of specifications and contracts between different language
elements such as protocols, interfaces and capsules, 3) how the framework from [BDH™12a] can be used with
PSL to perform compositional analysis, including quotienting, i.e., finding a specification that can “complete”
a model and 4) a description of the tool support required to implement this framework with a quick survey
of available tools that could be used.
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1 INTRODUCTION

1 Introduction

The RTEdge™ platform, developed by Edgewater Computer Systems Inc., is a model-driven software de-
velopment environment for real-time embedded systems (RTE), which supports the specification, design,
analysis, code generation, and testing of software for RTE systems. RTEdge™’s analysis capabilities include
causality (flow) analysis, schedulability analysis, virtual-time simulation and formal verification. At the core
of the development platform is the RTEdge™ modelling language [Ghelll, [PosI3a], a language based on the
Architecture Analysis & Design Language (AADL) [SAE12] an industry standard used in a variety of sectors,
including military, government and commercial enterprise. RTEdge™s target application domains include
areas such as automotive, avionics, and telecommunications systems.

The design and implementation of RTE systems is notoriously difficult. Formal analysis is necessary to
ensure that the software satisfies its requirements and to try to eliminate errors early on in the design stage
of the development process. To this end, the RTEdge™ platform supports formal verification by means
of model-checking [CGP99) [BKO0S|]. This capability, described in [Ghell], consists on translating the entire
model into PROMELA, the input language for the well-known SPIN model-checker [Hol04]. While SPIN is
widely regarded as an efficient model-checker, this monolithic approach does not scale well. The addition
of new components to a model leads to an exponential increase in the number of states in the system, a
problem commonly known as the “state explosion problem”. The model-checking literature provides numerous
techniques to cope with this problem (see e.g., [CGP99]). One of the main approaches is compositional
reasoning which relies on leveraging the structure of the model under consideration. Compositional reasoning
is essentially a “divide-and-conquer” approach as it reduces the problem of analyzing a model to the problem
of analyzing its parts.

Compositional analysis has several advantages in addition to coping with the state explosion problem.
One of main advantages is that it reduces the necessity of repeating the analysis whenever a change is made
to the design model. If we have a compositional analysis capability, then replacing a component with another
implementation that satisfies the same properties of interest, will preserve the properties and correctness of
the composite model, making unnecessary to re-analyze the whole model. Furthermore, compositional rea-
soning provides the basis for incremental analysis. If we replace a component with another implementation
that satisfies other properties, or we add a new component, we may need to analyze the modified or new
components, but we will not be required to repeat the analysis for unaffected components. These charac-
teristics make compositionality a highly desirable feature in any analysis framework, and have an obvious
impact on the scalability of formal analysis.

There has been successful research on compositional reasoning for programming languages and hardware
systems (e.g., [BCCI7, [CLMR&9, [CGP99, (G194 [LGI8, [PV02, [Chad4]) but there has been little attention paid
to modelling languages in general and for RTE systems in particular.

Compositional techniques have been studied for a wide variety of formalisms and denotational and op-
erational models such as Kahn data-flow process networks [LS89], I/O-automata [LT87, [Jon90|, timed I/O-
automata [KL04, BOOQ1], probabilistic I/O-automata [WSS94], hybrid I/O automata [LSVO03|, interface au-
tomata [dAHOI], I/O labelled transition systems [CCJK12], various process calculi such as CCS [DG99, RR01]
and CSP [WW09], etc. However it is not clear if, and how, these frameworks could be directly applicable to
RTEdge™, since each of these targets particular operational models and/or specification formalisms, making
assumptions which may not be satisfied by RTEdge™. In order to use any such framework, we are forced
to map RTEdge™ concepts, specifications and models into the concepts, specifications and models required
by the particular framework. This task is not trivial, usually requiring a translation from RTEdge™ to the
formalism in question, assuming that all relevant concepts can be mapped, which is far from clear.

Compositional techniques have also been used to reason about different kinds of properties and to perform
different kinds of analysis such as performance analysis [Sta00], schedulability analysis [ELSS07, [Shi06] [SS9§]
and security [LA10]. However, the focus of this project is on the satisfaction of functional requirements, and
in particular about the ordering of sequences of events and interactions between the components of a model.

A particular kind of compositional analysis techniques, known as contract-based or assume/quarantee
(A/G) reasoning [Pnu84l (CGP99, [GLI94] [KV97], provide a useful approach to tackle the state explosion
problem while supporting and even encouraging component-based design [Gie00]. In this paradigm, each
component is annotated with a contract consisting of a set of assumptions about how the environment of the
component is expected to behave, and a set of guarantees specifying the behaviour of the component if the
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assumptions hold. The heart of the analysis is to establish that a composite component satisfies its contract
if its sub-components satisfy their respective contracts. There is, however, an inherent difficulty in trying to
apply this technique: if a composite component K contains two parts K7 and K», and we wish to establish
that K satisfies a property ¢, given that K, satisfies some property ¢; and K> satisfies some property o, we
need a “compositional proof rule” which allows us to infer that K satisfies a property ¢ from the knowledge
that each K satisfies ;. But this leads us to a circular argument, since K; and K> may interact, to establish
that K satisfies ¢1, we may need to assume that K satisfies @9, and to establish that K, satisfies o, we
may need to assume that K satisfies ¢q!

Much of the research on the assume-guarantee paradigm has been about how to resolve this circularity
and to establish under what conditions we can apply a compositional proof rule to infer the satisfaction of
a property by a composite component given the satisfaction of properties by the sub-components. Different
theoretical frameworks have been proposed to support just such reasoning rule and resolve the circularity,
but most of them prove the correctness of such compositional rule for specific formalisms or operational
models, thus relying on specific assumptions about the kinds of components modelled. This entails, for
example, specific requirements or restrictions on the kind of specifications under consideration (e.g., timed
I/0 automata, interface automata, sets of traces, etc.), the kind of component composition allowed (e.g.,
synchronous product of automata, trace intersection), the meaning of a component satisfying a contract (e.g.,
satisfaction as refinement), or the notion of refinement between components (e.g., trace inclusion, simulation
preorders, game semantics).

However, recent work described in [BDH*12a] provides a theoretical framework for assume/guarantee
reasoning which supports a sound compositional proof rule and is independent of the specific formalisms used
to describe components, assumptions and guarantees, as long as the specification theories used satisfy certain
core requirements. In this report we show how we can use this theoretical framework to do assume/guarantee
reasoning for RTEdge™ models where contracts are specified using the Property Specification Language
(PSL) [IEEI12al TEE0S, [Acc04], a temporal logic which combines Sequential Extended Regular Expressions
(SEREs), Linear Temporal Logic (LTL) and (optionally) Computation Tree Logic (CTL). PSL is an IEEE
standard with an increasing user-base among designers of embedded systems, hardware and software.

The framework from [BDH™ 12al has several advantages: 1) it is applicable to a wide range of specification
formalisms and models, and in particular it is applicable to RTEdge™ and PSL; 2) it yields an intuitive
solution to compositional analysis; and 3) as we will show, when instantiated to logical theories such as PSL,
it suggests a straight-forward approach to automatizing the compositional verification problem.

Report organization The rest of this report is organized as follows: in Subsection we provide a
working example as a motivation; in Subsection [[.2] we describe the problems that we are trying to solve in
more detail and the scenarios in which these arise; in Section [2] we describe the work-flow implied by this
framework; in Section [3| we describe the theoretical framework from [BDH™12al; in Section [4| we discuss the
kind of specifications and contracts that we will allow associated to different elements of the RTEdge™ lan-
guage; in Section |5, how to establish the conformance or compliance between specifications and contracts;
in Section [6] we describe the compositional analysis itself: in Subsection [6.2] we address the issue of verifying
atomic capsules; in Subsection [6.3] we apply the theoretical framework to the basic problem of compositional
reasoning; in Section [7] we show how to apply compositional analysis to do incremental analysis; in Section
we deal with what we call the “missing part problem” ; in Section [9] we discuss how to perform the checks
required by the framework as presented in the previous sections, including the necessary tool support; and
in Section [I0] we conclude with a summary of the proposed framework and some recommendations for its
implementation.

1.1 A working example

In this section we describe an RTEdge™ model that we will use as a working example throughout this report.
A brief description of the RTEdge™ language, its syntax and informal semantics can be found in Appendix
A brief description of the core elements of PSL that we will use can be found in Appendix [B]

The model presented here is a toy model, but one that describes a composite structure with complex
patterns of interaction, not unlike those found on real systems. Furthermore, the use of a small model to
discuss the analysis framework is useful, as a complicated model might obscure the ideas being presented.
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Figure 1: Academics application. Top-level view.

‘ Protocol name ‘ Input signals ‘ Output signals
CallForPapers paper call, accept, reject, revise
Funds amount —

Publication — paper

ResearchGrant grant__application, publication funds, reject
Researchlnnovation | request_ paper paper

Transaction insert__coin, coffee_ button, tea_ button | more, change, coffee, tea

Table 1: Protocols of the Academia application. The types associated to signals are omitted.

The model describes academics applying for funding to a funding agency, writing papers, submitting
papers to a conference, and interacting with a vending machine. Hence the model includes several components
representing academics, funding agencies, conferences, vending machines, paper repositories and industries
reading papers. Since the current version of RTEdge™ does not support replicated capsules, we are limited
to one entity of each kind.

Top-level application

Figure [1If on page [3| shows the top-level view of the application. It consists of two timers (ConferenceTimer,
MonthTimer), an external task capsule (Government), a proxy capsule (MinistryProxy), two atomic capsules
(FundingAgencyl, Industryl) and a composite capsule (Academial). The Academial composite capsule is
shown in Figure [f] on page[6l The protocols used by this application are summarized in Table [T] on page [3

Timers, external task capsules and proxies

The RTEdge™ platform supports a variety of time units, with the coarsest being the second. In this
application we will use the convention that a second represents one month. The ConferenceTimer issues
a timeout signal every twelve months (i.e., seconds) while the MonthlyTimer issues a timeout signal every
month (i.e., every second).

The Government external task capsule has a unique independent system input called funds which represents
funds being allocated by the government to do research. This external task capsule has only one OS port
connected to the proxy MinistryProxy, representing the ministry responsible for allocating research funds to
research funding agencies. Its behaviour is shown in Figure [2] on page[dl Essentially it acts as a transducer,
receiving funds from the Government and passing them to the FundingAgencyl, using the protocol Funds (see
Table [1| on page [3)).




1.1 A working example 1 INTRODUCTION

T1
start/RT_InitSig.}.

1z T3

Figure 2: MinistryProxy.

©)
Tl

T6 start/RT_InitSig.}

JETS— .. gov_funds/amount
i MewFunds |

____________________________

5

WaitForApp... grants/publicatio...

77

Figure 3: The Funding Agency capsule.

The Funding Agency capsule

The FundingAgencyl capsule has a start port, as do all other normal atomic capsules. This port is used to
trigger the initial transition in the capsule’s state machine. Additionally it has a gov_ funds port where it
receives amount signals from the MinistryProxy, and a grants port where it interacts with the academic, by
accepting grant_ application and publication signals, and sending funds or reject signals. The protocol of the
grants port is ResearchGrant (see Table [1| on page |3).

Figure [3| on page [4] shows the behaviour of the FundingAgencyl. In the first stable state WaitForApp
it listens to grant_ application and publication signals on the grants port, and to gov_funds signals on the
gov__funds port.

When a gov_ funds signal arrives, it goes to the transient state NewFunds where it adds the funds to an
internal data attribute storing the available funds, and returns to the WaitForApp state.

When a grant__application signal arrives, it goes to the EvaluateApp state where it executes an internal
activity and decides whether to grant the funds or reject the application. Depending on the result of this
action, it will either send the funds signal (with an amount) or the reject. In both cases it returns to the
WaitForApp state.

The publication signals are ignored.



1.1 A working example 1 INTRODUCTION

©)
Tl

start/RT_InitSig.}

@ A
T3

innovation.../pag

[i]

Figure 4: The Industry capsule.

The Industry capsule

In this model the role of the industry capsule is simply to obtain published papers, i.e., papers which have
been accepted by the conference and sent to the repository of papers. The Industryl capsule has a unique
port innovations with protocol Researchlnnovation (see Table [1f on page [3)).

The Industryl capsule’s behaviour is shown in Figure 4] on page [5l Essentially it is a simple loop where
the capsule requests a paper from the repository, waits for the repository to send a paper, and repeats this
forever.

The Academia capsule

The Academial composite capsule is shown in Figure [5lon page[f] It consists of four sub-capsules: Academicl,
Conferencel, VendingMachinel, and Repositoryl. It has a port grants which relays messages to and from the
Academicl capsule, and a port innovations which relays messages to and from the paper repository.

The Repository capsule The Repositoryl capsule acts as a store for papers accepted for publication by
the Conferencel capsule, and accepts requests for papers from the Industryl capsule. It has two ports: publish
with protocol Publication, and read with protocol Researchlnnovation (see Table [1| on page [3]).

The Repositoryl capsule’s behaviour is shown in Figure [6] on page [ The capsule maintains an array of
papers as a data attribute. In the NoNewPapers state, there are either no papers in the array, or the Industryl
capsule has read all available papers. In this state it can accept a new paper on the publish port and then
settle in the NewPaper state where it can accept more papers as well as paper requests on the read. On
the NoNewPapers the read port is deferred so that if a request for a paper arrives when no new papers are
available, the request will be queued up until it can be consumed in the NewPaper state.

The Conference capsule The Conferencel capsule has two ports: cfp with protocol CallForPapers and
papers with protocol Pubication (see Table [If on page [3)). The former is used to interact with the Academicl
capsule, and the later is used to send papers to the Repositoryl capsule.

The Conferencel capsule’s behaviour is shown in Figure [7] on page [7]] The resting state of the capsule
is the Idle state, where it lets months pass (by accepting signals from the MonthTimer and once a timeout
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Figure 7: The Conference capsule.

signal is received from the ConferenceTimer, it moves to the IssueCFP from where it sends a call signal on
the cfp port to the Academicl capsule., and settles in the WaitForPapers state where it waits for papers on
the cfp port. In this state, it also listens to timeout signals from the MonthTimer in order to check if the
paper submission deadline has passed (in the CheckDeadline state). If the deadline has passed, it goes back
to the Idle state. Otherwise, it remains in the WaitForPapers state. When a paper arrives on the cfp port,
it is evaluated in the Evaluate state, which has an internal activity to perform the evaluation. The outcome
might be: 1) to reject the paper, in which case it sends the reject signal to the academic via the cfp port;
2) to accept the paper, in which case it sends the accept signal to the academic via the cfp port and then it
sends the paper to the Repositoryl capsule via the papers port; or 3) to revise the paper, in which case it it
sends the revise signal to the academic via the cfp port and then it waits for the revised version of the paper
in the WaitForRevision state, again checking that it is within the deadline. In this later case, if the deadline
passed, it goes back to the Idle state. If it receives the revision, it evaluates it and it can either reject it or
accept it, with the same results as before.

The Vending Machine capsule The VendingMachinel capsule has only one port: transaction with pro-
tocol Transaction (see Table [1| on page . It is used to interact with the Academicl capsule.

The VendingMachinel capsule’s behaviour is shown in Figure[§ on page[8] Its behaviour is straightforward.
In the WaitForMoney it waits for the insert_ coin signal on its port, and when it is received, it evaluates whether
more money is required or not in the IsEnough transient state. If more money is required, it sends back the
signal more to the academic. If enough coins were inserted, it will send a change signal to the academic
with the appropriate amount, and then it will go to the WaitForSelection state where it waits for the signals
coffee_ button or tea_ button. Depending on which button is pushed, it will go to the corresponding state and
send the signal coffee or tea to the academic, and then it will go back to the resting state.
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The Academic capsule The Academicl capsule is the model’s most complex. Its interface has three ports:
grant with protocol ResearchGrant, cfp with protocol CallForPapers and drink with protocol Transaction (see
Table [1] on page [3]). The grant port is used to interact with the FundingAgencyl capsule, the cfp port is used
to interact with the Conferencel capsule, and the drink port is used to interact with the VendingMachinel
capsule.

The Academicl capsule’s behaviour is shown in Figure[9]on page The general idea is that the academic
first tries to obtain funds, and when enough funds are available, it waits for a call for papers. Once it has
been received, the academic uses some funds to obtain “fuel” (coffee or tea) from the vending machine, which
determine the speed at which it will write papers. Then it submits the paper and may be asked to write a
revision, for which it will try to procure more fuel.

In the FundsAvailable state, the academic checks whether he has funds (an internal attribute funds of the
capsule). If it has enough funds, it goes directly to the WaitForCFP state to wait for the conference’s call for
papers. Otherwise, it applies for funds by sending a grant_application signal to the FundingAgencyl capsule
through the grant port, and then in state WaitForGrant awaits a response on the same port. If it receives
a reject signal, it goes to the Wait where it will wait one month (by listening to the timeout signal of the
MonthTimer) and then it will try to reapply for a grant. If the grant was accepted, i.e., if it received the
signal funds on the grant port, it will come with an amount of money which will be added to the internal
funds attribute, and then it will move on to the WaitForCFP state.

In the WaitForCFP state is will listen to the cfp port for call signals from the Conferencel capsule (while ig-
noring timeout signals from the MonthTimer). When a call signal arrives, it comes with a deadline and a page-
limit, which are recorded as internal attributes for later use. Then the interaction with the VendingMachinel
capsule begins. The academic sends an insert_ coin signal through the drink port and continues to do so while
the signal more is received on the same port, and until the signal change arrives. The amount of change
is added to the internal funds attribute. Then, the academic chooses a drink at random in the transient
ChooseDrink state, and depending on the result of flipping a coin, it sends either the signal coffee_button or
the signal tea_ button, and waits, respectively, for the signal coffee or the signal tea to arrive. Depending on
which of these arrives, an internal speed attribute, measured in number of pages written per month.

Once a drink has arrived, the academic gets to work on the Write state, where it will listen to the timeout
signal from the MonthTimer, and check each month if the deadline has passed or not (in the CheckTime
state). If the deadline passes before the paper is ready, it is abandoned, and the academic returns to the
FundsAvailable state, where it will repeat the cycle. If the deadline has not passed but the academic has not
reached the page limit, it will go back to the Write state and continue to work. If the deadline has not passed
and the paper has reached the page limit, it submits the paper to the conference by sending a paper signal
to the cfp port, and then waits for a response on the WaitForDecision state. If the decision signal arriving
on the cfp port is revise, then it will go to the PayForDrink state and repeat the process of obtaining a drink
and writing. If the decision signal was reject, it will go to the Sulk state, and then back to the FundsAvailable
state to start all over. If the decision signal was accept, it will go to the DrinkChampagne state and send a
publication signal back to the funding agency, to show that the money was used for research, and then it will
go back to the FundsAvailable state to start all over.

Some requirements

We have presented a particular implementation of the capsules in this model, but the reader may be wondering
what kind of requirements should such an application satisfy? The designer proceeds by adding components,
which themselves may be refined further by introducing sub-components, and sub-sub-components, etc. This
yields a hierarchical structure in which it is natural to associate each component with some requirements.

Some typical requirements for various elements in this model could be the following:

(a) Whenever the academic applies for a grant to the funding agency, it will eventually get funds.
(b) Whenever the academic inserts enough coins in the vending machine, it will get coffee or tea.
(¢) Tt is never the case that the academic submits a paper without having coffee or tea.

(d) It is never the case that the academic receives both coffee and tea.
)

(e) It is never the case that if the academic pushes the coffee button of the vending, it gets tea in return.
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Figure 9: The Academic capsule.
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(f) Whenever the academic receives a call for papers and has funds then it will obtain coffee or tea and
submit a paper to the conference.

(g) Whenever the vending machine receives enough money it will issue coffee or tea.

(h) Whenever the conference issues a call for papers and receives a paper, then it will notify its author
with an acceptance, rejection or revision notice and it accepted, the paper will be published in the
repository.

(i) Whenever academia asks for a grant, if the funding agency has enough funds, it will grant funds to
academia.

(j) Tt is always the case that the academic will eventually get a grant.
(k) Tt is always the case that the academic will eventually get a paper accepted at the conference.

(1) Whenever the funding agency issues funds to academia, eventually industry will receive papers if it
requests them.

There are some important points to note. First, some of these requirements are safety requirements, i.e., a
undesirable event or behaviour does not ocurr (e.g., paying for coffee and getting tea). Others are liveness
requirements, i.e., some desirable event or behaviour happens (e.g., applying for a grant always results
in receiving funds). Yet other requirements are fairness requirements, i.e., some desirable behaviour is
guaranteed to happen infinitely often (e.g., getting grants or papers accepted). Note also that the last
requirement may depend on academia satisfying some of the previous requirements.

These are the kind of requirements that an RTEdge™ user might care abou and are the ones which
our framework is intended to address. But now we will look at the relevant general questions.

1.2 The questions addressed in this project

Now we consider the scenarios and problems that we are trying to address. As explained in the Introduction,
we are interested in compositional analysis using contract-based reasoning.
The general problem we are trying to address is a verification problem:

Question 1. How do we know that a model satisfies its requirements?
There is an implicit question here:
Question 2. What kinds of requirements are we interested in?

There are many kinds of requirements relevant to the context of concurrent, real-time embedded systems,
such as performance requirements, schedulability and timing requirements, deployment requirements, cost,
fault-tolerance or reliability requirements, etc. But we are interested in basic functional requirements.

Here we talk about functional requirements understood as the behaviour expected of a system, and in
particular its reactive behaviour, and the relation between inputs and outputs in the system. In RTEdge™,
the behaviour of a system, like in most concurrent, reactive and RTE systems, consists of a sequence of
events, actions and interactions between components. The external or observable behaviour of a system, is
often understood as a sequence of events, (input or output) messages or interactions that the component may
have with its environment. Components can contain sub-components, and therefore, the environment of a
component will include all other components with which the component under consideration may interact.
These may be components within the system, or elements outside of the system. When we are talking about
the observable behaviour of a component, we are abstracting away its internal behaviour, which may include
interactions between its internal sub-components. Since we are interested, in this project, in functional
requirements understood as the observable input/output behaviour of components, we abstract from other
considerations such as the timing of eventsﬂ

INot to mention academics.
20ne can argue that in the context of real-time systems, the timing of events is fundamental to the correct functioning of

the systems and therefore, functional requirements should include timing constraints. However, in the context of RTEdgeT™,
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Answer 1. (To Question We are interested in functional requirements, understood as the set of observable
behaviours of the component or model under scrutiny.

Having narrowed the focus of the problem to verifying functional requirements of RTEdge™ models,
understood as observable behaviours, we could narrow the problem even more and consider only certain types
of functional requirements, such as safety properties, liveness properties or fairness properties. However, at
this point we do not need to commit ourselves to one any such subset of properties. Instead, we postpone this
issue until it becomes necessary. At one level, the framework which we are adapting from [BDH™12a| may be
able deal with different kinds or (safety or liveness) properties under certain conditions, but clarifying those
conditions is left as future work.

Question [If does not arise in a vacuum. The verification issue arises because the user (the model designer)
is creating a model and wishes to verify that it satisfies its requirements. This raises a question of pragmatics:

Question 3. What steps should the user (i.e., the model designer) and the tool go through to perform the
verification task?

The answer to this question involves a series of activities to be done by the user or the tool, and these
activities require us to address the following questions.

Question 4. How to specify requirements of RTEdge™ models?
For this purpose, Edgewater has chosen the IEEE standard Property Specification Language (PSL).
Answer 2. (To Question [4]) Requirements are to be specified using PSL.

A brief description of the core elements of PSL that we will use can be found in Appendix

Having chosen PSL as the specification language, the next question is how to use PSL to describe prop-
erties, specifications and contracts for RTEdge™ models. In particular we are interested in answering the
following questions:

Question 5. Can we use PSL as is, or will we need to adapt it to RTEdge™ and to the assume/quarantee
paradigm?

Question 6. Which constructs or elements of the RTEdge™ language ought to be given a PSL specification?

To answer these questions we have to consider the roles that the language constructs play in a model. We
can summarize these roles, as currently used in RTEdge™ as follows:

e Protocols play a role analogous to the static type of ports, by restricting the kinds of signals allowedﬂ

e Interfaces play a role analogous to the static type of capsules, by restricting the interaction points of a
capsule to a specific set of ports, and therefore, a specific set of signals as well. Interfaces can be seen
as the “border” of capsules.

e Atomic capsules play the role of active agents defining concrete behaviour, as specified by a state
machine.

e Composite capsules play the role of grouping capsules, structuring and hiding internal components and
connections. By grouping capsules together and giving them a name and an interface, the composite
can be used and re-used in other composite capsules, as if it was an atomic capsule.

We are interested in extending these roles as follows:

Edgewater has chosen to deal with the timing aspects as an issue orthogonal to functional requirements as described here, and
timing is addressed by a separate schedulability analysis performed by the tool. As a consequence, the result of verification may
be an over-approximation, reporting certain behaviours as valid or acceptable even when may not satisfy timing constraints and
have been rejected by schedulability analysis.

3A note about terminology: in traditional signal theory, a signal is a function over a time domain, thus representing the
evolution of some variable over time. In RTEdgeT™ | however, a signal is rather a single datum, a token that can be communicated
between capsules.

12
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e Protocols should capture dynamic behaviour: a protocol should describe not only the set of signals
allowed, but also the “conversations” or sequences of interactions and message exchanges allowed. For
example, it should be possible to state that all legal conversations between the academic and the vending
machine in Subsection [[.1] should have this form:

“Insert a coin, and possibly ask for more and receive more coins; then return some change,
ask for the coffee button to be pushed, followed by issuing coffee, or ask for the tea button
to be pushed, followed by issuing tea.”

In other words, the signal insert_ coin is to be followed by zero or more repetitions of the more
and insert_ coin signals, followed by the change signal, followed by either coffee_ button and
then coffee or by tea_button and then tea.

e Interfaces should also describe permissible conversations of any capsule implementing the interface,
but unlike protocols, these may refer to more than one port. In particular, it should be possible to
describe what kinds of conversations are to be guaranteed by any capsule implementing the interface.
For example, it should be possible to describe that the any capsule implementing the academic interface
should have a behaviour guaranteeing:

“Whenever the academic accepts a call for papers, followed by the academic inserting coins
on the vending machine, and pushing the coffee button and accepting coffee, or pushing the
tea button and accepting tea, and eventually send out a paper to the conference.”

In other words, whenever signal call on port cfp is accepted, followed by the sending of
insert__coin to port drink, as well as sending coffee_ button and accepting coffee on port drink
(resp. for tea_ button,tea), then eventually signal paper will be sent to port cfp.

Furthermore, it should be possible to describe assumptions on the environment of any capsule imple-
menting the interface. For example, it should be possible to describe the following assumption for the
academic:

“Whenever a grant application is sent out to the funding agency, the academic will eventually
receive funds from the agency.”

In other words, whenever signal grant_ application is sent to the grant port, eventually funds
will be received at port grant.

e Atomic capsules should also describe legal conversations that they may have with their environment,
and such conversations must comply with the capsule’s interface. This is, the capsule may be annotated
with a contract that should be a refinement of the contract associated to its interface.

e Composite capsules, just like atomic capsules, should also describe legal conversations that they may
have with their environment, and such conversations must comply with the capsule’s interface. This is,
the capsule may be annotated with a contract that should be a refinement of the contract associated to
its interface. Moreover, since a composite capsule may inherit from another composite capsule which
has its own contract, the capsule’s contract must also refine its parent capsule’s contract. In any case,
the contract for a composite capsule should only talk about its observable behaviour, and since it
contains sub-components which may have connections hidden from the environment, the contract for
the composite capsule can only talk about events on its interface and it cannot talk about internal
events between sub-capsules. This is in accordance to the encapsulation principle.

Remark 1. There is a very subtle but fundamental point to be made about the specifications described
above. Note that when discussing guarantees we talk about accepting (input) signals and when discussing
assumptions we talk about receiving (input) signals. This is because a capsule can never guarantee that it
will receive an input, as it does not excert control over the environment; the capsule can only guarantee that
it will be in a state where it will be able to accept and consume the input. On the other hand, the reception
of an input can be considered part of an assumption. In such case, we are assuming that the capsule’s
environment is sending it the corresponding signal. Similarly, the reference to outputs in a guarantee is
subtly different than in an assumption. When we state that we are sending an output in a guarantee, it
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can be interpreted as saying that the capsule indeed guarantees that it will send the output (not just that
it can send the output), and this is so because in RTEdge™ sending is non-blocking, and is controlled by
the capsule (it can always send any output, regardless of whether the environment is ready to accept it).
However, when we mention an output in an assumption, we are making the assumption that the capsule’s
environment is willing to accept the message. It is essential for the designer to understand these differences
when using the assume/guarantee paradigm as presented in this report.

At this point we can give a partial answer to Question [5] and Question [} PSL, like any other propositional
logic, is defined over a given set AP of atomic propositions. Typically, atomic propositions in PSL represent
signals events or conditions over a state. In our case, when considering protocol specifications, atomic
propositions can be taken to be the signals of the protocol, representing the presence of the signal on a given
cycle or state. When considering contracts for interfaces and capsules we need to mention not only the signals
in question but also the port in which they will ocurr (either as input or output) as well as their direction
(input or output). Optionally we may also specify particular values carried by the signal.

Answer 3. (To Question [5|and Question @ We will allow the user to annotate protocols with specifications
of conversations allowed written as PSL specifications over the signals in the protocol. We will also allow the
user to annotate interfaces, atomic and composite capsules with contracts, consisting of an assumption and
a guarantee, written as PSL specifications over atomic propositions of the form

{direction) : {porty.{signal)

A more detailed answer to Questions [4] [5] and [] is given in Section [
Assuming that we have a way of specifying such requirements and contracts, the following question arise,
regarding the relation between an interface and the protocols of its ports:

Question 7. How do we know that the contract associated to an interface is compatible or consistent with
the specifications associated to the protocols of its ports? In other words, how do we establish that an interface
complies or conforms to its protocols?

Similarly, we are faced with an analogous question regarding the relation between a capsule (atomic or
composite) and its interface:

Question 8. How do we know that a capsule’s contract complies or conforms to the contract of its interface?

And a similar question arises regarding interfaces or capsules which are related to each other via inheri-
tance:

Question 9. How do we know that the contract of an interface (resp. capsule) complies or conforms to the
contract of its parent interface (resp. capsule)?

Answering these questions requires us to define what we mean by compliance or conformance.

Once these questions have been answered, we come into the actual issue at hand, and consider Question [I]
for some given RTEdge™ model. Assuming that we have answers for Questions and @ we will have a
mechanism to verify the consistency between the specifications and contracts between the protocols, interfaces
and capsules in the model. Once such verification has been performed, we can turn our attention to verifying
the behaviour of capsules themselves. To this end we make Question [I] more concrete with the following
questions:

Question 10. How do we establish that an atomic capsule satisfies its contract?
And,
Question 11. How do we establish that a composite capsule satisfies its contract?

The basic scenario is as follows: we have a composite capsule K annotated with a contract C, and it
has sub-components K1, ..., K, respectively annotated with contracts C1, ..., C,. So how do we know if K
satisfies C7 To answer this we first try to establish whether each sub-component K; satisfies its contract
C;. This can be done by recursively applying the answers to Question [I0] and Question [II] So if we have
applied the analysis recursively and we have established that each part satisfies its contract, we can rephrase
the question as follows:

14
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Question 12. (Basic compositional inference problem) How do we establish that a composite capsule K
satisfies its contract C' if we already know that each of its sub-components K1, ..., K,, satisfy their respective
contracts C1, ..., Cp, ¢

One of the main advantages of answering this question is that if we have established tha K satisfies
its contract C' given that all its sub-components K; satisfy theirs, then we can replace any sub-component
K; with any other component K ; which also satisfies contract C; and this will not affect the fact that the
composition K satisfies C, i.e., it is not necessary to re-run the analysis on the entire system; we only need
to verify K ; with respect to C;. Furthermore, even if K ; does not satisfy C, it may satisfy a contract C]’-.
In this case, we may have to run the analysis required to answer Question [12| again, but we do not need to
re-analyze the other sub-components K; for ¢ # j. The advantages of compositional analysis become clear.
Incremental analysis becomes a reality as we are not required to re-analyze an entire system with every
design change. We need to look only at the affected components.

Question 13. (Incremental analysis) If a composite component K has been modified by adding, removing
or changing a component, or by modifying a contract of a sub-component, or its own contract, how can we
establish whether K still satisfies its contract without having to re-analyze unaffected components?

Now, suppose that we have an answer to the basic compositional inference problem, and have used it
to analyze a composite capsule K. Suppose that we have established that each of the sub-components K;
satisfies its contract C;. But consider the case where the analysis resulted in showing that K does not satisfy
its contract, even though its sub-components satisfied theirs. What can we do? We are confronted with a
new scenario. One possible reason for a negative answer here might be that K was “missing” something. It
may be that adding an additional component with certain behaviour will be enough to satisfy the contract.
How do we find out what do we need to add to K so that it can now satisfy its contract? The designer
may realize that K is missing a part X, so she adds a “placeholder” capsule X to be implemented, and the
appropriate connections to the other sub-capsules in K. The problem is to find out an appropriate capsule
implementation X to make K satisfy its contract. We refer to this problem as the “missing part” scenario,
or the “quotient problem”ﬂ

Question 14. (Quotient problem) Given a composite capsule K with contract C' and sub-capsules K, ..., K,
with contracts C4, ...,Cy, and a sub-capsule placeholder X :

1. What contract Cx should X have so that if we put, in place of X, a component implementation K x
that satisfies C'x and each K; satisfies C; then we can conclude that K satisfies C'?

2. What should be an implementation of X that satisfies such contract Cx ?

Note that here we are looking for the weakest, i.e., the most general contract C'x that X should satisfy, in
the sense that any other contract that can “complete” the specification would imply or would be a refinement
of C'x. Finding the weakest such contract would give the designer more freedom to choose an implementation.

The answers’|

The answer of Questions [3] through [I4] will constitute the answer to Question [I] These answers, or partial
answers are provided in the following sections as follows:

e An answer to Question [3]is suggested in Section
e A more detailed answer to Questions [4] [5] and [] is given in Section [

e A detailed answer to Questions [7} [§] and [9] is given in Section

A (partial) answer to Question [10| will be provided in Subsection
e An answer to Question [12] (and therefore to Question [11)) is given in Subsection

4This is called the quotient problem by analogy with elementary algebra: given an equation of the form a -z = b, its solution
z = b/a is the quotient between b and a.
542
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e An answer to Question [I3]is given in Section [7]

e An answer to Question [T4]is given in Section [§
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2 User/tool work-flow

As stated in the introduction, the core of our proposed solution rests on the theoretical framework from
[BDH*12al], which provides us answers to Question the basic compositional inference problem, and
suggests the basis to answer the quotient problem posed in Question and a partial answer to Question
Questions E, and |§| are orthogonal. This is, the RTEdge™ platform can verify the compliance between
protocols, interfaces and capsules independently of the compositional analysis itself. Hence, the answers to
these questions we will give us a means to perform compliance verification and compositional analysis. Once
we have such mechanisms implemented in the platform, we can define a possible workflow for the user and
the tool.

Answer 4. (To Question [3)) The general work-flow suggested for a designer and the tool would be as follows:

1. The user defines protocols, interfaces and capsules, annotating them with specifications (for protocols)
and contracts (for interfaces and capsules). (Manual step)

2. Inter-element compliance verification: (Automatic step)

(a) Whenever an interface is annotated with a contract, the tool would verify its compliance to the
specifications of each of the ports’s protocols, as well as the interface’s parent’s contract, if it has
a parent.

(b) Whenever a capsule is annotated with a contract, the tool would verify its conformance with the
contract of the capsule’s interface and the capsule’s parent’s contract, it if has a parent.

3. Compositional analysis: (Automatic step)

(a) Sub-capsules are analyzed recursively. The base case of atomic capsules is done by a model-checker.

(b) Compositional inference algorithm is applied.
4. If compositional analysis in step 3 fails, the designer has different options:

(a) Moditying, adding or removing sub-components or contracts. (Manual step) Then,
i. Inter-element compliance verification (as in step 2) is applied for all new elements added.
(Automatic step).
ii. Incremental analysis: (Automatic step).
A. Analyze affected subcapsule recursively.
B. Apply compositional inference algorithm.

(b) Adding capsule placeholders and connections to the proper composite capsules. (Manual step)
Then,

i. Inter-element compliance verification (as in step 2) is applied for all new elements added.

(Automatic step).

ii. Quotient analysis: (Semi-automatic step)

A. The quotient algorithm will produce the contract required by the new parts. (Automatic
step)

B. The user designs an implementation of the new parts (Manual step) or optionally, a tool
may be used to automatically generate the skeleton of an implementation of the contract
(Semi-automatic).

C. For all manually designed new parts compositional analysis of step 3 may be required
again.

The inter-element conformance verification of step 2 could be done on-the-fly, once the user has annotated
the relevant elements, or it could be done by the user explicitly asking the tool to perform the required
checks, but it might be preferable to automatically perform them before the compositional analysis of step 3
is performed. In other words, step 2 should be a prerequisite to step 3.
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3 Theoretical framework for contract-based reasoning

In this section we transcribe a condensed version of the relevant elements from the contract-based theory
from [BDH'12al, IBDH'12b| and we extend it to support certain concepts that we’ll need later. In this
section, definitions, propositions and theorems from [BDHT12a, [BDH™12b] are explicitly marked, and their
proofs are available in [BDH™12b]. Definitions, propositions and theorems not explicitly marked are our own,
and their proofs are found in Subsection [C.I] Subsequent sections show that we can apply this theoretical
framework to our context. In Subsection [C:2} [C:3] and [C.4] we prove the lemmas, propositions and theorems
which are specific to our framework.

The core concept is that of a specification theory, which is essentially a family of specifications equipped
with some operators, in particular with an operator to compose specifications, and a refinement relation that
defines when a specification is more concrete or precise than another. In this generic framework, specifications
can be different things such as automata, formulae in a temporal logic, regular expressions, sets of traces, or
anything that satisfies the proper requirements. In Section[d] we will show that PSL constitutes a specification
theory, but in this section we deal with specifications in general.

Definition 1 (Specification theories [BDH™12al). A (complete) specification theoryis a tuple (S,®, /, A,
<) where

e S is a family of specifications

e ®:S8 xS — §isa composition operatorﬁ

/S8 xS — § is a partial quotient operator
e A:S xS — §isa partial conjunction operator
e <C § x S is a refinement preorder (i.e., reflexive and transitive) preserved by composition:
(A1) Whenever P < Pand Q' < Q then PP ®Q' < PRQ
and where
o /:S xS — S must satisfy:

(A2) Q/P is defined if and only if IX e S. PR X < Q
(A3) If Q/P is defined, then P® (Q/P) < Q
(A4) If Q/P is defined, then VX e S.P®X <@ — X <Q/P

e A:S xS — S must satisfy:

(A5) P AQ is defined if and only if 3X. X < P& X < Q
(A6) If P AQ is defined, then PAQ < Pand PAQ <Q
(A7) If P AQ is defined, then VX e S. X < P&X <Q - X<PAQ

Since specifications are meant to represent the behaviours of a system, the composition operator ®
provides a mechanism to make systems by combining (the specifications of) components: if P and @ are
specifications, P ® @ is a specification that combines P and . In particular contexts this will have certain
particular semantics. For example, if the specifications are sets of traces, composition can be their union. If
the specifications are automata, their composition may be their synchronous product.

The refinement relation between two specifications P and @, denoted P < @ normally represents the
statement that P specifies fewer behaviours than () or that P specifies at most the behaviours of (). Hence, if
P < Q, P is considered to be a more restricted specification than Q. A key property that this relation must
satisfy is that is has to be preserved by composition (Axiom ) This is critical, as it allows us to replace
any specification P by any specification P’ that refines P, while preserving the meaning of the context, (the

6In [BDHT12al, it is noted that composition can be partial, but we will consider only a total composition operator.
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composite specification) in which P appears: suppose we have a complex specification P ® @ and we have a
refinement P’ < P. Then, by Axiom (AT]), we have that P’®Q < P®Q, in other words, replacing P by P’
results in a composite P’ ® (Q which has less behaviours than P ® Q.

The quotient operator allows us to “complete a specification” so as to satisfy some requirements: suppose
that we have some specifications P and ) but P alone does not refine (). We want to be able to combine
P with some other specification X so that their composition satisfies (). This is, we need an X such that
P®X < Q. The quotient Q/P gives us the most general (the largest) specification that we can use in place
of X to satisfy P® X < Q.

The conjunction operator gives us another way of combining specifications. P A @ is the most general
specification that satisfies both P and Q.

Definition 2 (Specification equivalence [BDH™12a]). Given a complete specification theory (S,®, /, A,
<), we say that two specifications P,Q € S are equivalent, written P = Q if P < Q and Q < P.

By Definition [2| = is symmetric, and since < is a preorder relation, it is reflexive and transitive, so is =
which means that = is an equivalence relation.

Proposition 1. For any given complete specification theory (S,®,/, A, <), for any X, P,P',Q,Q',R€ S:
(i) if P A Q is defined and X < P A Q then X < P and X <Q
(ii) if P A Q and P' A Q' are defined and P’ < P and Q' < Q then PP A Q' < P A Q
(@ii) if P A Q and Q A P are defined then P A Q =Q A P
(iv) if PAQ, QAR, PAr(QAR)and (P AQ)AR are defined then PA (QAR)=(PAQ)AR
(v) PNP=P
(vi) if Q/P is defined and X < Q/P then PR X < Q
(wii) if X <Y and PRY < Q then PR X < Q

In the remainder of this document whenever we make a statement using the conjuntion or the quotient
partial operators, we will be making the implicit assumption that in the context of that statement, the
corresponding conjunction or quotient specifications are defined. In other words, if we make a statement that
uses P A Q or P/Q, the statement has the implicit condition “if P A @ (resp. P/Q) is defined ...

Definition 3 (Contracts; Definition 1 of [BDH"12a|). Given a complete specification theory (S, ®, /, A,
<), a contract is a pair C' = (4,G) € S x S where A is called the assumption and G is called the guarantee.
We write

assumption(C) = A

and
guarantee(C) = G

Definition 4 (Relativized refinement; Definition 2 of [BDH™"12a]). Given a complete specification
theory (S,®, /, A, <) and specifications P, Q, R € S we say that P refines Q relative to (or under the context)
R, written P <g Q if and only if for all R € S, if R < Rthen PR < Q®R'.

Definition 5 (Contract implementations and environments [BDH12a]). Let C = (A4,G) be a
contract. Then the set of valid implementation specifications of C' is defined as

impl[C] & (I eS|T<4G}

The set of acceptable environment specifications of C' is defined as
env[C] Y (EeS|E <A}
Definition 6 (Contract refinement; Definition 4 of [BDH"12a|). Let C = (4,G) and C' = (4, &)
be two contracts. We say that C” refines C, written C’ < C'if impl[C'] < impl[C] and env[C] < env[C].
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Proposition 2. < is a preorder (i.e., a reflexive and transitive relation).

Proposition 3. Let C and C’ be any contracts. For any specification I, if I € impl[C] and C < C’ then
I € impl[C"].

Theorem 1 (Theorem 2 of [BDHT12al). Let C = (A,G) and C' = (A',G’) be two contracts. Then
C'"<Cifand only if A< A’ and G' <4 G.

Definition 7 (Contract equivalence). Let C = (A,G) and C' = (A’,G’) be two contracts. We say that
C and C’ are semantically equivalent, written C ~ C" if C < C'" and ¢’/ < C. We say that C' and C’ are
strongly semantically equivalent, written C' = C”" if A = A’ and G = G’ (see Definition .

Proposition 4. Contract equivalence and strong contract equivalence are equivalence relations.

Definition 8 (Normal form; Definition 3 of [BDH™12a]). A contract C' = (A4,G) is said to be in
normal form, if for all implementations I, I < G if and only if I < G, this is, if the implementation refines
the guarantee independently of the assumptionsm We say that a contract C = (A,G) has normal form
C' = (A,G) or that C" = (A’, @) is the normal form of C' = (4,G) if C' = (A’,G’) is in normal form and
and C ~ C".

Proposition 5. For any contracts C,C",
(i) if C =" then C ~ C’
(i) if C and C' are in normal form then C ~ C’ if and only if C = C’

One of the goals of [BDH'12a, BDH'12b| is to provide a way to do compositional analysis: given a
composite component K with subcomponents K; and K5, we can try to establish if K satisfies a contract
C by analyzing the sub-components separately to establish whether they satisfy their contracts C; and Cs,
and then composing these contracts into a new contract Cy [x] Co. If this contract Cy x] Cs refines C', then
the original composite component K will satisfy C.

In order to define contract composition, we need the notion of contract dominance. Intuitively, a con-
tract C' dominates contracts C7 and Cy if (a) the composition of valid implementations of Cy and Cs is
a valid implementation of C; and (b) the composition of any acceptable environment of C' with any valid
implementation of C is an acceptable environment of Cs (and viceversa with Cy and Cy swapped).

Definition 9 (Contract domination; Definition 5 of [BDH™12a|). Given contracts C, Cy and Cs, we
say that C' dominates C7 and Cj if:

(a) for all I; € impl[C4] and all I5 € impl[Cs], I} ® I3 € impl[C]
(b) for all E € env[C]:
e for any I1 € impl[C1], E® I; € env][Cs], and
e for any I € impl[Cs], E® I € env][C1]
We say that contracts C; and Cy are dominatible if there is a contract C' that dominates them.

Definition 10 (Contract composition; Definition 6 of [BDH"12a]). A contract C is called the com-
position of contracts C7 and Cs if

(a) C dominates C; and Cs, and
(b) for any contract C’ that dominates Cy and Cs, C' < C".

In other words, the contract composition of two contracts is the least (most refined) contract that domi-
nates them.

"The use of the term “normal form” as used in [BDH™ 12a] may not agree with the way it is frequently used in other contexts
such as logic and algebraic specifications. In those contexts the term “normal form” usually implies existence, uniqueness, and
being an expression in some kind of formal language. None of these are necessarily the case in our context, but we will use the
terminology of [BDHT12a| for the sake of consistency.
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3 THEORETICAL FRAMEWORK FOR CONTRACT-BASED REASONING

Definition 11 (Constructive contract composition; Definition 7 of [BDH"12a]). Given two dom-
inatible contracts C; = (A1,G1) and Cy = (As, G2) which have normal forms C; = (A;,G;) and Oy =
(A2, Gs), we define

CiRCy Y (4,G)

where ~ def
A= (A1/Ga) A (A2/Gh)

and -y
eR—Nely-YeX

The following theorem guarantees that the constructive composition is indeed a composition according
to Definition

Theorem 2 (Theorem 4 of [BDH™12al). If contracts Cy and Cy are dominatible then C1 X Cy is (up to
semantic equivalence) the composition of C1 and Cs.

Theorem 3 (Theorem 6 of [BDHT12a]). Let C1,Cy, D1, Dy be contracts with normal forms C1, Ca, Dy
and Do, and such that C1 and Cy are dominatible. If D1 < Cy and Dy < Cy then D1 X Dy < C1 X (.

Corollary 1. Let C,C5, D1, Dy be contracts with normal forms Ci, Ca, D1 and Do, and such that Cy and

Cy are dominatible. If D1 ~ Cy and Dy ~ C then D1 X] Dy ~ C1 X Ch.

We extend the notion of specification theory from [BDH™12a] by considering theories where the compo-
sition operator is commutative and associative.

Definition 12 (Commutative monoid specification theory). We say that the specification theory
(8, ®,/, A, <), is a commutative monoid specification theory, if ® is commutative and associative with respect
to =, i.e., for all specifications P,Q,R € S,

(A8) PRQ=QQ®P
(A9) PR(Q®R)=(PRQ)®R

We extend the notion of specification theory from [BDH™12a] by considering theories where the compo-
sition shares some properties with conjunction.

Definition 13 (Standard specification theory). A specification theory (S,®,/, A, <) is called standard
if it satisfies the following addional axioms for composition:

(A10) VXeS. X <P&X<Q > X<P®Q
(A1l) VXeS.P<Q - P®X<Q

Axiom is analogous to Axiom . Intuitively it expresses that if a component X has less
behaviours than P and @), then it must have less behaviours than their composition P ® Q. Axiom is
analogous to the weakening axiom in sequent calculus. Intuitively it expresses the idea that if a component
P has less behaviours than a component @, then composing P with some other component X will not add
new behaviours.

Standard specification theories satisfy the following properties which will be useful later on.

Proposition 6. Let (S,®,/, A, <) be a standard complete specification theory. Then, for all X, P,Q € S:
(i) if X <PAQ then X <P®Q
(ii) if X < P and X < Q/P then X < Q
(iii) PR Q < P
(iv) if P < Q then P/R< Q/R
(v) if P < Q then R/Q < R/P
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(vi) (P/Q)®R < (P®R)/Q
(vii) P A Q < Q/P

Standard specification theories where the composition operator is commutative and associative yield
some useful properties. These properties amount to simplifying the theory by identifying composition with
conjunction resulting in a logical theory.

Definition 14 (Simplified specification theory). A simplified specification theory is a standard complete
specification theory which is also a commutative monoid specification theory.

Proposition 7. Let (S,®,/, A, <) be a simplified specification theory. Then, for all X,P,Q,R€ S:
(i) PAQ=P®Q
(i) PRQ <P and PO Q < Q

(iti) (R/Q)/P = R/(P A Q)
(i) (P AQ)/R=(P/R) A (Q/R)
(v) (Q/P)/P =Q/P
(vi) (P/Q)® (Q/R) < P/R

(vii) (P/Q)® (P/(Q A R)) < P/(Q A R)

(viii) (P/Q)® (P'/Q') < (P®P")/(Q® Q)

One of the advantages of these theories is that we obtain a simplified characterization of relativized
refinement, as expressed in the following.

Lemma 1. Let (S,®,/, A, <) be a simplified specification theory. Then, for all P,Q,R€ S. Then P < Q
if and only if PO R < Q.

Another advantage of simplified specification theories is that every contract is guaranteed to have a
semantically equivalent normal form.

Definition 15 (Normalized contract). Let (S,®,/, A,<) be a simplified specification theory and let
C = (A, G) be any contract in S. We call C o (A, G) the normalized contract of C, where G e G/A.

Proposition 8. Let (S,®,/, A, <) be a simplified specification theory and let C' = (A, G). Then
(i) C~C
(i) C is in normal form.

(iii) C=C
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4 PSL SPECIFICATIONS AND CONTRACTS

4 PSL Specifications and contracts

The basic problem of determining whether PSL is adequate in this context is now addressed. We begin by
defining some notation that we will use throughout the report. The central claim (Theorem [4) is that PSL
forms a complete specification theory in the sense of Section [3] The proof is given in Subsection

PSL is already a very rich specification language (see Appendix. Nevertheless, we are interested in using
PSL to describe properties of RTEdge™ models, which means that we have to ensure that PSL expressions
enjoy the appropriate vocabulary to talk about RTEdge™ model elements. This entails endowing PSL with
the means to refer to some of these elements. In general we are interested in describing properties about the
functional behaviour of the model in terms of the interactions between components, that is, in terms of the
signals exchanged between capsules over ports. Since signals are sent and received through ports, and they
may carry data, the most basic statement that can be said is that a signal is an input or output on a specific
port, carrying certain data. Other basic statements can describe constraints on a capsule’s internal data
attributes. These basic statements constitute the set of atomic propositions in our specification language,
and all properties are built in terms of these atomic propositions using PSL’s operators. In fact, we do not
need to modify the syntax of PSL itself, as it is parametric on the set of atomic propositions to be used (see
Appendix . Hence it is enough for us to define the appropriate set of atomic propositions.

We now define formally such set of atomic propositions, but to do that we need certain sets to be defined.

Notation 1. We will assume the following sets:
e Values: the set of all possible data values that can be carried by signals.
e Signals: the set of all possible signal names.
e Protocols: the set of all possible protocol names.
e Ports: the set of all possible port names.
e Connectors: the set of all possible connector names.
e Interfaces: the set of all possible interface names.
e AtomCapsules: the set of all possible atomic capsule names.

e CompCapsules: the set of all possible composite capsule names.

e Capsules: the set of all possible capsule namess, i.e., Capsules = AtomCapsulesuCompCapsules.
e Attributes: the set of all possible attribute names.

e Placeholders: the set of all capsule placeholder names, i.e., capsule-like entities with an interface but
without an implementationﬂ

e Components: the set of all component names, i.e., Components def Capsules U Placeholders.
e BoolExprg: the set of boolean expressions over the set S.

For any given set S we will write S| for the set S w {1} where L represents a null or empty value, or the
absence of a value.

Remark 2. The names of all elements, signals, protocols, ports, interfaces, capsules, attributes and connectors
are assumed to be unique. In a real model this is not the case, but we can always replace all names with
their fully qualified names: e.g., in the example from Subsection [I.1] we have two connectors named connl,
one in the top-level application (Figure [1] on page [3), and one in capsule Academicl (Figure [5| on page @
These can be given unique names by replacing them with App.connl and App.Academicl.connl respectively.

8Place-holders are not a construct in RTEdge™ per se. Rather they are “holes” in a model, which can be replaced by a

capsule with the appropriate interface. Hence you can think of a capsule with place-holders as a template. Place-holders can
also be thought of as meta-variables in the abstract syntax of capsules.
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We now define the kinds of propositions that we may use in our specifications. We do this by defining
the sets of atomic propositions for protocol specifications and the set of atomic propositions for component
contracts.

Definition 16 (Atomic propositions for specifications). We define the following sets:
o ProtAP ¥ Signals x Values
o AssumAP ¥ ({in,out} x Ports x Signals x Values| ) v BOOIEXPT o ¢ ibutes
e GuaraAP ¥ ({in, out} x Ports x Signals x Values| ) ¥ BOOIEXDT ptributes

e CompAP 4/ AssumAP U GuaraAP
Notation 2. The null value L will be used to denote optional items in the element, so we can leave it out.
e Any element (s,v) € ProtAP can be written as s(v) if v # L, or as sif v = L.

e Any element (d,p, s,v) € CompAP will be written as

d:p.s(v)

if v # L, or as

if v = L. Hence:

— (in,p, 5,v) € AssumAP will be written as

in:p.s(v)
ifv+# 1, oras
in:p.s
ifv=_1.
— (out,p, s,v) € AssumAP will be written as
out : p.s(v)
ifv+# 1, oras
out: p.s
ifo=1.
— (in, p, s,v) € GuaraAP will be written as
in:p.s(v)
ifv#1,oras
in:p.s
ifo=_1.
— (out,p, s,v) € GuaraAP will be written as
out : p.s(v)
ifv+# 1, oras
out: p.s
ifv=_1.

Definition 17 (PSL for RTEdge™). We define the following sets:
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ProtPSL is the set of PSL expressions over the set Prot AP of atomic propositions.

AssumPSL is the set of PSL expressions over the set AssumA€P of atomic propositions.

GuaraPSL is the set of PSL expressions over the set GuaraAP of atomic propositions.

e CompPSL is the set of PSL expressions over the set Comp AP of atomic propositions, i.e., CompPSL =
AssumPSL U GuaraPSL.

The key or our approach is that PSL forms a specification theory in the sense of Section

Theorem 4. PSL is a simplified specification theory (CompPSL, &P, /P AP <P) (cf.  Definition
where:

oS CompPSL is the set of PSL (Foundation Language) expressions

o Composition @ is PSL conjunction: o1 @ @o = P1 A P2

e Quotient /P is PSL implication: oy /P oo = P2 — ©1

e Conjunction AP¥ is PSL conjunction: o, AP oy & w1 A o (where the right-hand side represents the
PSL conjunction operator)

e Refinement is logical entailment: o1 <P¥ o iff = @1 — o

Definition 18 (PSL Contracts). We define:

e A component contract is a pair (A, G) where A, G € CompPSL. We call Contracts 4/ AssumPSL x

GuaraPSL the set of all component contracts.
e We say that a contract C = (A, Q) is compatible with a component (interface, capsule or placeholder)

K if:

— the port names ocurring in A or G is a subset of the ports of K (including inherited ports)
— for each atomic proposition (d, p,s,v) € CompAP:

* the signal s must be defined in the protocol of port p, and

* the type of v must be compatible with the type of s (e.g., the same type or a sub-type).

e An annotated component is a pair (K, C) where K is a component (interface, capsule or placeholder)
and C = (4, G) is a contract compatible with K.

e A component-contract assignment is a function
contract : Components — Contracts

that assigns a contract to each component in the model, so that (K, contract(K)) is an annotated
component. If
contract(K) = (4, G)

we write
assumption(K) = A

and
guarantee(K) = G

Definition 19 (Protocol specifications). We define:
e A protocol specification is an expression S € ProtPSL.
o We say that a protocol specification S is compatible with a protocol P if the signal names ocurring in .S

is a subset of the signals defined in P.
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] Spec \ Direction \ Point of view \ Talks about \ Meaning
Guarantee in: p.s(v) capsule capsule capsule accepts/consumes input
out: p.s(v) | capsule capsule capsule sends output
Assumption | in : p.s(v) capsule environment | environment sends output, capsule receives input
out : p.s(v) capsule environment | capsule sends output, environment accepts input
in:p.s(v) environment environment | capsule sends output, environment accepts input
out : p.s(v) | environment | environment | environment sends output, capsule receives input

Table 2: Meaning of in/out atomic propositions in assumptions and guarantees.

e An annotated protocol is a pair (P,S) where P is a protocol and S € ProtPSL is a specification
compatible with P.

e A protocol-specification assignment is a function
protspec : Protocols — ProtPSL

that assigns a specification to each protocol in the model, so that each pair (P,protspec(P)) is an
annotated protocol.

Answer 5. (To Question [5)) Yes, PSL can be used as is, with the proviso that:
e PSL specifications for protocols use protocol signals as their atomic propositions.

e PSL assumptions and guarantees for interfaces and capsules use atomic propositions of the form:

{direction) : {porty.{signal)[({data))]

or boolean expressions over the capsule’s attributes.

This will be enough for many purposes. However, it might be desirable to extend the syntax of PSL further
to allow propositions of the form:

{direction)y : {porty.{signal)[({(variable(s)))]

This would enable the designer to express generic formulas to refer to the values carried by the signal in
question, allowing the use of such variables elsewhere in the PSL expression. For example, the user could be
allowed to express the following guarantee:

in : grant.funds(amount) — Fout : drink.insert__coin(amount/4)

Here we wish to express that whenever the academic receives any amount of funds through a grant, then
eventually it will send a quarter of that amount to the vending machine. In this PSL-like expression, the
second occurrence of the amount variable is bound to its introduction in the input proposition. Hence
variables introduced by an input proposition would act as binders. This would also require of some syntax
to distinguish such varaiables from access to a capsule’s internal attributes. The addition of such binding
variables, however, would entail an extension to the syntax and semantics of PSL. This may be considered
in future work, and in the rest of this report we will assume only atomic propositions without variables.

Remark 3. When writing the {direction) part of an atomic proposition, the difference between in and in and
between out and out respectively, depends on whether we are using them in an assumption or in a guarantee

(cf. Remark :

e in and out can only be used in guarantee propositions.
e in and out can only be used in assumption propositions.

e The ocurrence of in in a guarantee entails that the component will accept and consume the signal.
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e The occurrence of in in an assumption entails that the component will receive the signal, i.e., that the
component’s environment will send the signal to the component.

e The ocurrence of out in a guarantee entails that the component will send the output to the environment.

e The ocurrence of out in an assumption entails that the environment is willing to accept the signal from
the component.

The meaning of the input/output operators is summarized in Table [2[on page

Answer 6. (To Question @ Protocols, interfaces and capsules are all to be annotated with a specification
as follows:

e Protocols: a protocol will be annotated with a PSL specification where atomic propositions are signals
of the protocol. For example, the behaviour described above as:

“[...] the signal insert_coin is to be followed by zero or more repetitions of the more and
insert_ coin signals, followed by the change signal, followed by either coffee button and then
coffee or by tea_ button and then tea.”

could be written as the following protocol specification:

protspec(Transaction) e { insert_coin;
{more;insert_coin} [*];
change;
{{coffee_button ; coffee} | {tea_ button;tea}} }[*]

— Interfaces and capsules: they will be annotated with contracts of the form C' = (A4, G) where A
and G will be respectively, an assumption and a guarantee given as a PSL expressions over atomic
propositions of the form described in Answer [5| For example, consider the following assumption
for either the Academic interface or the Academicl capsule:

“[...] whenever signal grant_application is sent to the grant port, eventually funds will be
received at port grant.”

This could be written as:
assumption(Academic) = G(out : grant.grant_application — F(in : grant.funds))

In such expressions, as described in Remark |3 the ocurrence of input atomic propositions such
as in : grant.funds should be interpreted as the signal funds will be received on port grant, or in
other words, an assumption that the capsule’s environment will send that signal to the port. On
the other hand, the ocurrence of output atomic expressions such as out : grant.grant_ application
should be interpreted as being true in a (global) state where the capsule’s environment is willing
to accept and consume the signal.

Similarly, a guarantee such as:

“[...] whenever signal call on port cfp is accepted, followed by the sending of insert_ coin
to port drink, as well as sending coffee_button and accepting coffee on port drink (resp.
for tea_ button, tea), then eventually signal paper will be sent to port cfp.”

could be written as:

guarantee(Academic) d:efG( { in:cfp.call;

out : drink.insert_ coin;;
out : drink.coffee_ button ;
in : drink.coffee }+— F(out : cfp.paper) )

In this case, however, input and output atomic propositions are to be interpreted differently from
the way they are interpreted in the assumptions. Here, an input atomic proposition such as
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in : drink.coffee is true in a state where the academic will be willing to accept and consume such
a signal, i.e., it should be in a state with an outgoing transition that has the trigger for that
port and signal. On the other hand, an output atomic proposition such as out : drink.insert__coin,
should be interpreted as stating that the signal is sent.

— External tasks, proxy capsules and applications: these could be considered a special case. We see
two alternatives:

x Treat the application as a composite capsule that includes normal capsules and proxies. The
interface of the application consists of all the OS ports in all of its proxies, and the external
capsules are truly external. A contract for the application would then talk about conversations
over OS ports only.

+ Treat the entire application as a single composite capsule, including normal capsules, as well
as proxies and external tasks, where the last two are treated as normal. In this case, the
application does no have any ports, as the external capsules would be inside.

The second alternative does not seem very useful, as it would be unclear how to specify application-
level requirements. Hence we favour the first alternative.
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5 Conformance

A critical part of the user-workflow (Section [2) is to ensure the consistency or conformance between contracts
of capsules, interfaces and protocol specifications. This is the essence of Questions[7] [fland[9] In this Section
we outline their answers.

5.1 Conformance between an interface and its protocols

A protocol specification defines the set of possible conversations or sequences of interactions allowed between
two components. This sems to correpond to the language of an expression in the sense of automata theory with
inputs and outputs as the alphabet in the language. In our case, however, we are using PSL specifications,
and the meaning of these is similar to the traditional notion of language except for a subtle but significant
difference: the alphabet of languages defined by PSL expressions consist of sets of atomic propositions.

Protocol specifications are given as PSL expressions, and the semantics of PSL is given in terms of
sequences satisfied by an expression. This is, the formal semantics of PSL (see [IEE12a]) defines a satisfability
relation = between sequences and PSL formulas: the notation

vE @

means that the PSL formula ¢ holds in the sequence v = vgvy... or that v satisfies ¢, where the items v; of
a sequence v = vyv;... are sets of atomic propositions: Vi > 0.v; € 24P, Informally, each set v; contains all
atomic propositions which are true at that point in time, where time is understood as consisting of discrete
steps, so p € v; if p is true in the i-th step.

Then, the language of a PSL expression is defined as

Lost(p) & {v|vE ¢}

To see how this is different from the notion of the language of a regular expression, consider the PSL
SERE “{a;b}” and the regular expression “ab”. We have that the language of “ab” is Lyegexp(ab) = {ab},
which consist of the single string ab. On the other hand, Lpsr({a;b}) = {vov1...| a € v9,b € v1}. Hence this
language contains an infinite number of strings, each of which has the form ({a} U Ag)({b} U A;).... So the
regular expression represents a very strict requirement that the first item in the sequence must be a (and
nothing else) and the second item in the sequence must be b and nothing else. Compare this to the PSL
expression which makes a weaker statement: the first item in a sequence must contain a, or equivalently,
a must hold in the first item (but other atomic propositions may hold as well), and the second item must
contain b (b must be true in the second step).

Question [7| can be phrased as follows: given an interface F' annotated with a contract C' = (A, G), and a
protocol R annotated with a specification S, how do we establish that C' conforms to S7

We are looking to define the criteria necessary for such conformance. Intuitively, we would expect that
the conversations (behaviours) specified by A (resp. G) ought to be allowed by S, so the set of all possible
sequences specified by A (resp. G) should be a subset of the sequences specified by S. This, hoever, is not
the case in general. The reason is that they do not “speak the same language”, this is, the set of all possible
atomic propositions in A (or G) is not the same as the set of all possible atomic propositions in S. To see
this, consider the following guarantee for the Academic interface:

. def .
guarantee(Academic) = G( {in:cfp.call;
out : drink.insert__coin;
out : drink.coffee__button }
— F(in : drink.coffee A Xout : cfp.paper) )

and the following protocol specification for the Transation protocol:

protspec(Transaction) o { insert_coin;
{more ;insert_coin} [*];
change;
{{coffee_ button ; coffee} | {tea_ button;tea}} }[*]
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Several problems arise. Lpsr(Academic) will include all sequences v = vov1v2...VxVk+1... Where in :
cfp.call € vy, out : drink.insert_coin € vy, out : drink.coffee_button € vy, in : drink.coffee € v, and out :
cfp.paper € vy for some k > 2. On the othe hand, Lpsy, (Transaction) will include all sequences u = ugus...
where insert_coin € wug, etc. The first problem becomes apparent. The set of atomic propositions of a
guarantee are of the form in : p.s(v) or out : p.s(v) (and similarly for assumptions). On the other hand, the
set of atomic propositions of a protocol specification are of the form s where s is a signal name. Hence the
formulas cannot be compared or combined directly.

In order to solve the problem we need to make specifications and contracts “speak the same language”,
or rather, share the same alphabet, this is, we need to rewrite them in such a way that they have the same
set of atomic propositions so that we can establish if one formula implies the other. To this end we define a
few functions that will perform this rewriting.

First, we need to define a function pproj which takes as input a protocol specification S € ProtPSL,
a component K € Components and a port p € Ports and returns the “projection” of the specification
onto that component’s port, this is, it translated the protocol from the point of view of a connector to the
point of view of the capsule and the port. Essentially this entails replacing every signal s(v) in the protocol
specification with in : p.s(v) if p is a base port in K and s is an input signal of the protocol, or if p is a
conjugate port and s is an output signal of the protocol; or replace it with out : p.s(v) if if p is a base port
in K and s is an output signal of the protocol, or if p is a conjugate port and s is an input signal of the
protocol.

Definition 20 (Protocol specification port projection). We define the function pproj : ProtPSL —
Protocols — Interfaces — Ports — CompPSL be as shown in Figure on page We write
pproj[S] rr.q for pproj(S)(R)(F)(q), i.e., the result of applying the function pproj to the protocol specifi-
cation S € ProtPSL, of the protocol R € Protocols, onto port g € Ports of interface F' € Interfaces.

Going back to the example, we see that applying this projection on the specification of the Transaction
protocol yields

pproj[[prOtSpeC(TransaCtion)]]Transaction|Academic.drink =
{ in:drink.insert_coin;
{out : drink.more; in : drink.insert__coin} [*];
out : drink.change;
{{in : drink.coffee_ button ; out : drink.coffee} | {in : drink.tea__button ;out : drink.tea}} } [*]

Now we define a function flip which takes an assumption expression A € AssumPSL and flips the
direction of signals in the assumption. Informally this translates assumptions written from the point of view
of a component into guarantees of the component’s environment.

Definition 21 (Assumption direction flipping). Let the function flip : AssumPSL — GuaraPSL as
showin in Figure [11{ on page We write flip[A] for flip(A) where A € AssumPSL is a PSL assumption.

With these renamings we can define the criteria for conformance between an interface’s contract and a
protocol’s behaviour. This can be reduced to checking the validity of certain PSL formulas. A PSL formula
 is said to be walid, written = ¢ if v = ¢ for all sequences v.

Definition 22 (Interface/protocol strict conformance). Given an interface F' annotated with a contract
C = (A,G), and a protocol R annotated with a specification S we say that F' conforms strictly to R if for
all ports p € ports(F):

1. LpsL(G) < LpsL(pproj[S]g|r.p), and
2. Lpsw(flip[A]) = LpsL(pproj[STr|r.,)

The previous definition gives us an intuitive criterion for what do we mean by a contract conforming
to the specification of a protocol. However, we need an actionable characterization which can be checked
algorithmically. It turns out that language inclusion for PSL corresponds to logical entailment between the
corresponding PSL formulas. This gives us a logical characterization for the definition of interface/protocol
conformance which can be determined using PSL wvalidity checking. The following Theorem states such
characterization.
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pproj[s(v)] r|F.p “ i :p.s(v) if kindmap(F)(p) = base
and s € isignals(R)
or kindmap(F')(p) = conj
and s € osignals(R)
pproj[s(v)] riF.p “ out : p.s(v) if kindmap(F')(p) = base
and s € osignals(R)
or kindmap(F')(p) = conj
and s € isignals(R)
pproj[f(@lriey = fa) if f(a) € BOOIEXDT pytriutes
pproj['0] r|F.p = 'pproj[b] riF.p if b € BoolExpr
pproj[br A b2] riF.p = pproj[b1] rjr.p A PPrOj[b2] r|F.p if b1, b, € BoolExpr
pproi[{(r}lriry = {pproilrlgiry) if r ¢ SERE
pproj[r i malriry = {pproilrilairy) : {pprojlralriry)  if 11,72 € SERE
pproj[r1 : 2] riF.p = {pproj[r1]rir.p} : {PProilra] riF.p} if 71,72 € SERE
pproj[r1 | 2] i F.p = {pproj[rilrirp} | {PProjlra] rir.p} if 71,72 € SERE
pproj[r1 && ro] rip.p = {pproj[r1] riF.p} && {pproj[re] rjr.p} if 1,72 € SERE
pproj[r [*01lriry = {pprojlrair,} [*0] if r € SERE
pproilr [llmiry = {pproilrlaep} [¥] if r € SERE
pproj[b!] riF.p def pproj[b] rip.p! if b € BoolExpr
pproj[(Dlriry = (pprojl¢lair,y) if ¢ € FL
pProj[—~¢lr|r.p = —pproj[¢l rirp if o€ FL
pproj[p1 A 2] R Fp = (pprojle1lrirp) A (PProjlw2] rirp)  if 1,42 € FL
pprojlX! lairy = Xi(pprojlel arp) if e FL
pproilfe1 Ugallrry, = [(pprojloilrirp) Ulpproileil miep)]  if o1, € FL
pproj[p abort g r, = (pprojlel ) abort(pproj[bl zr,)  if ¢ € FL, b € BoolExpr
pproilr = lrirp < (pprojlrlair,) —(pproilelrir,)  if ¢ € FL,7r € SERE
pproj[lriry = {pprojlr]air,)! if ¢ SERE

Figure 10: Protocol specification port projection.
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flip[in : p.s(v)]
flip[out : p.s(v)]
flip[ (a)]
flip[!b]

ﬂlp[[bl AN bg]]
flip[{r}]
flip[ry ;2]
flip[ry : 2]
flip[ry | r2]
flip[ry && 73]
flip[r [*0]]
flip[r [*]]
flip[o!]
fip[()]
flip[—¢]
flip[p1 A 2]
flip[X! ]
flip[[s1 U 2]]
flip[ abort b]
flip[r—¢]
flip[r!]

def
def
aef
aef
def
def
def
def
def
def
def

def

out : p.s(v)

in: p.s(v)

f(@)

Iflip[6]

flip[b1] A flip[b2]
{fiplr])

{flip[r]} ; (fiplra])}
{fipr1} : {Fiplr])
{flip[r:]} [{flip[r2]}
{flip[r1]} && {flip[r2]}
{flip[r]} [*0]

{flip[r[} [*]

flip[o]!

(flip[¢])

—flip[s]

(fiplpr1) ~ (Fiplea])
XI(flip[e])

[(Fiple1]) Ufipo1])]
(flip[]) abort(flip[b])
(flip[r]) —(flip[e])
{flip[r]}!

if f(a) € BOOIEXPY p¢tributes
if b € BoolExpr

if b1, bo € BoolExpr

if r e SERE

if r{,70 € SERE

if r{,70 € SERE

if ri,70 € SERE

if r1,70 € SERE

if re SERE

if re SERE

if b € BoolExpr

if pe FL

if pe FL

if 1,2 € FL

if pe FL

if 1,2 € FL

if ¢ € FL,b € BoolExpr
if p e FL,r €e SERE

if re SERE

Figure 11: Assumption direction flipping.
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Algorithm 1 Interface/protocol conformance.

Require: F = (P, L, prot, kind) is an interface with a collection of ports P and protocols L, annotated with
a contract C = (4, G)
Ensure: returns true if C' conforms to all port’s specifications
1: function CHECK-INTERFACE-PROTOCOL-CONFORMANCE(F')
2: C « contract(F)

3: A «— assumption(C)

4: G < guarantee(C)

5: P — ports(F)

6: prot < protmap(F")

7 for all pe P do

8: R « prot(p) > Let R be the protocol of port p
9: S «— protspec(R) > Let S be R’s protocol PSL specification
10: Y « pproj[S] g r.p > Let Y be the pojection of the protocol spec into the port
11: fi—(G-Y)

12: r1 < CHECK-VALID-PSL(f1)

13: if 1 is false then

14: return false

15: else

16: f2 < (flip[A] = Y)

17: r9 < CHECK-VALID-PSL( f3)

18: return ro

19: end if
20: end for

21: end function

Theorem 5. Given an interface F annotated with a contract C = (A, G), and a protocol R annotated with
a specification S, F conforms strictly to R if and only if for all ports p € ports(F):

1. EG — ppl’Oj[[S]]R|F.p7 and

2. & flip[A] — pproj[S]girp

Answer 7. (To Question [7) We establish the conformance of an interface’s contract to a protocol’s speci-
ficaction according to the criteria given in Theorem [5} This is, we can run Algorithm [I] Like many of the
algorithms presented in this report, whenever we check = ¢ for some PSL formula ¢, we are assuming an
external tool that checks for validity of PSL formulas. Such tool is invoked by the CHECK-VALID-PSL function.

If we go back to the guarantee for the Academic interface and the Transaction protocol at the beginning of
this section, we will see that Academic does not conform to Transaction. But this is because the Transaction
protocol projection pproj[protspec(Transaction )] transaction|Academic.drink €xpects a “in : drink.insert_coin” in the
first cycle of any conversation, whereas the Academic only guarantees that there will be a “in : cfp.call” in the
first cycle, and only a “in : drink.insert_ coin” in the second. But this may be by design! The specification of
protspec(Transaction) requires a coin in the first cycle, so it is correct to reject the contract. However, if the
designer intended that a coin could be inserted at any point irrespective of the precise moment, she could
have written the following alternative protocol specification:

&
[y

€

protspec(Transaction) = { [*

];insert_ coin;

*]; more ; [*] ; insert__coin} [*];

]; change;

[¥]; coffee_button; [*] ; coffee} | {[*] ; tea__button; [¥];tea}} }[*]

[
{[
[*
{{

¥ -

Now, the Academic does conform to Transaction.

33



5.2 Conformance between a capsule and its interface 5 CONFORMANCE

Algorithm 2 Capsule/interface conformance.

Require: K is a capsule with contract C' = (A, G) and interface F' with contract C”
Ensure: returns true if C' conforms to all port’s specifications
1: function CHECK-CAPSULE-INTERFACE-CONFORMANCE(K)
2: F < interface(K)
3 C «— contract(K)
4: C' « contract(F")
5: r < CHECK-CONTRACT-REFINEMENT(C, C") = Call Algorithm
6 return r
7: end function

Algorithm 3 Checking contract refinement.
Require: C = (4,G) and ' = (4',G’) are contracts
Ensure: C < (¢’
1: function CHECK-CONTRACT-REFINEMENT(C, C")
2: A «— assumption(C)

3: G < guarantee(C)

4: A’ « assumption(C”)

5: G’ « guarantee(C”)

6 fie (A > A)

T e (G (A - @)

8: r1 < CHECK-VALID-PSL( f1)
9: if rq is false then

10: return false

11: else

12: 79 < CHECK-VALID-PSL( f3)
13: return ro

14: end if

15: return r

16: end function

5.2 Conformance between a capsule and its interface

The compatibility between the contract of a capsule and that of an interface can be defined in terms of
contract refinement. Intuitively, the capsule’s contract must refine the interface contract. This is established
whenever the guarantees of the capsule imply the guarantees of the interface, and when the assumptions of
the interface imply the assumptions of the capsule.

Answer 8. (To Question [8) Given a capsule K with contract C' and interface F, itself with contract C”,
We say that K conforms to F if C' < C’. This is done by Algorithm [2| which invokes Algorithm [3| whose
correctness is established by Corollary [3in Section [6]

5.3 Conformance and inheritance

Conformance between a capsule or interface and its parent, is defined in terms of contract refinement, as in
Subsection (5.2

Answer 9. (To Question @ Given a capsule K with contract C and parent capsule K, itself with contract
C’, We say that K conforms to K’ if C' < C’. This is done by an algorithm analogous to Algorithm [2 using
Algorithm
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6 COMPOSITIONAL INFERENCE

6 Compositional inference

Theorem [ in Section [4] established that PSL forms a complete specification theory as defined in Section [3]
Hence we can interpret the generic definitions, propositions, lemmas and theorems from the theoretical
framework in this context.

Notation 3. We will write K = K || K3 for a composite component K with two sub-components K; and Ks.
We call such components binary. We generalize this notation for a finite number of components and write
K=K| | K,or K=1",K, for a composite component K with n sub-components K;, and call this n-
ary composition. We assume that the || operator is commutative and associative so that K; || K3 = K || K
and K7 || (K2 || K3) = (K3 || K2) || K3 = K3 || K2 || K3. Note that this is an informal notation. For the
formal definition of composition, see Definition

Proposition 9 (Relativized refinement in PSL). Let P,Q, R € CompPSL. P grp’fI Q iff for all R such
thatE R > R, =EPAR - QAR.

Lemma 2. Let P,Q, R € CompPSL. Then P <}’ Q iff = P A R — Q.

Proposition 10 (Contract implementations and environments in PSL). Let C = (4,G) be a PSL
contract. By
impl[C] = {I € CompPSL| =1 A A > G}

and
env[C] = {E € CompPSL| £ E — A}

Proposition 11. Let C = (A,G) and C' = (A’,G’) be PSL contracts. C' < C if for all implementations
I € CompPSL, = InA' — G’ implies eI ANA — G (see Lemmal[3) and for all environments E € CompPSL,
EE — A implies= E— A.

Proposition 12. Let C = (A,G) and C' = (A',G’") be PSL contracts. We have that C = C" iff = A & A’
and =G o G And C ~C" iff (1) forallI, EIANA—>Giff e INA > G, and (2) foral E,E E — A
iffe BE— A.

Proposition 13. Let C = (A, G) be a PSL contract. C is in normal form if e In A— G iff = I - G.

Definition 23 (PSL normal form). Given a PSL contract C' = (A, G), we define C = (A, G) where
def
G=A-G.

Proposition 14. Given a PSL contract C = (A, G):

(i) C~C

(ii) C is in normal form.

This gives as a characterization of valid implementations.

Corollary 2. For all I € CompPSL, I € impl[C] if and only if = I — (A — G)
Corollary 3. Let C = (A,G) and C' = (A',G’) be to PSL contracts. Then C' < C if and only if = A — A’
and = G' — (A - G).
6.1 Relating formulas and models

Note that in Proposition[I0 an “implementation” is actually a PSL formula. In practice, an implementation
would be a design model which satisfies the formula, or even the code generated from the design model. We
will use the term implementation model for an actual model which satisfies an implementation specification.

In general it may be possible to transform an implementation model into an implementation specification
by using an algorithm similar to the classical algorithm to obtain a regular expression from an NFA or DFA
(see, e.g., [Sip97]). Similarly, one can derive a Biichi automaton from a PSL expression (see [CRT08|, [DLP04]),
and presumably, such automaton can be transformed into an RTEdge™ atomic capsule. In general such
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model is not uniquely defined, but the set of all valid realizations can be seen as an equivalence class, i.e., all
realizations of a formula are equivalent in that they satisfy the same formula. Therefore, the transformation
just needs to pick a representative element in such equivalence class.

The transformation of an atomic capsule to a formula can be generalized to composite capsules, if we have
a way to “flatten” the composite capsule into an equivalent atomic capsule. Assuming that such flattening
is available, we can talk about the transformation of a component (atomic or composite) into a formula.

In this report we will not present the details of these transformations, but we will assume these are
possible. Henceforth we will use the following definitions for the transformations:

Definition 24 (Implementation specification and model). Given an CompPSL formula ¢, we de-
note implmod[p] for a (chosen representative) implementation model that satisfies . Similarly, given an
RTEdge™ component K, we denote implspec[K] for the implementation specification (PSL formula) ¢
that is satisfied by K. These functions implmod and implspec must satisfy the following conditions: for any
components K1, ..., Kj:

implspec[ Ky || - - - || K] = implspec[ K] @ ... @ implspec[ K, ]
and for any CompPSL formula ¢ and RTEdge™ component K:
implspec[ K] <pq ¢ if and only if K < implmod[¢]
for a given pair of suitable refinement preorders <, and <. for CompPSL and RTEdge™ respectively.

The first requirement on implspec states that it must be an homomorphism for the composition operator,
this is, parallel composition of component models must correspond to the composition (conjunction) of their
PSL formulas.

The second requirement states that the functions implmod and implspec should form a Galois connection,
this is, that they should be related in such a way that they capture the dual notions of abstraction and
realization. To see this, it is useful to look at the following equivalent characterization of this relation:
implmod and implspec must satisfy the following four conditions:

(a) if p1 <psl 2 then implmod[p1]] <ite implmod[p2] (implmod is monotone: if ¢4 is a refinement of ¢, then
the implementation model of p; must be a refinement of ¢9’s implementation model)

(b) if Ki <ute K then implspec[ K] <pq implspec[K5] (implspec is monotone: if component K is a refine-
ment of K5, then the specification of K7 must be a refinement of the K»’s specification)

(c) implspec[implmod[¢]]] <psi ¢ (implspec o implmod is idempotent: the specification of the representative
implementation of ¢ must refine )

(d) K <yte implmod[implspec[K]] (implmod o implspec is idempotent: a component K must be a refinement
of the representative implementation of K’s specification)

Intuitively, these requirements capture the relationship between an abstraction (an implementation specifi-
cation) and a realization (an implementation model). In our case, the preorder <,q can be taken to be the
refinement relation for the PSL specification theory (Theorem7 i.e., <psi = <P, and the preorder <. can
be taken to be trace inclusion, simulation preorder or any other similar relation.

In the rest of this report we assume that suitable functions (implmod and implspec) and preorder relations
(<psl and <te) have been provided.

Definition 25 (Capsule correctness). Given a component K and a PSL contract C = (4, G), we say that
K satisfies C, written K E C if implspec[K] € impl[C]. This is, K & C if implspec[K] <KSI G, or in other
words, if = implspec[K] A A — G, by Proposition

Theorem 6. Given a component K and two contracts C and C', if K = C and C < C' then K = C".
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Algorithm 4 Atomic capsule verification.

Require: K is an atomic capsule annotated with a contract C = (4, G)
Ensure: K =C
1: function ATOMIC-COMPONENT-VERIF(K (')

2: M <« implspec[K] > Transform K into a PSL formula M
3 R—(MnrA—-G)

4 7 < CHECK-VALID-PSL(R) = Determine that M € impl[C]
5: return r

6: end function

6.2 Verifying atomic capsules

Definition [25| gives as a way to verify the correctness of an atomic capsule with respect to a contract.

Answer 10. (To Question [10) Given an atomic capsule K and a PSL contract C' = (4, G), we can establish
the correctness of K with respect to C, by transforming K into a PSL formula implspec[ K and then verifying
if the PSL formula implspec[K] A A — G is valid. This is, we can use Algorithm

6.3 Verifying composite capsules: basic compositional inference

The core of the compositional inference step rests on composing contracts, so we apply the concepts from
Section B to PSL:

Proposition 15. PSL contract C = (A,G) dominates Cy = (A1,G1) and Cy = (A2, G2) if
(a) for any I; and Iy such that =11 A Ay —> G1 and = I A Ay — Go then = (I A L) A A— G
(b) for any E such that = E — A:
o for any I such that =11 A Ay — Gy then = (E A I1) — As, and
o for any Iy such that = Iy A Ay — Gy then = (E A LIy) > Ay

Proposition 16. Given two dominatible PSL contracts Cy = (A1, G1) and Co = (Ag, Go) which have normal
forms Q = (Ala@) and @ = (AQa@%
Ci1XICy = (4,G)

where

0

(G2 = A1) A (G1L — A2)
= ((A2 = G2) = A1) A ((A1 = G1) = Ay

and

G = GinGy
= (A1—>G1)/\(A2—>G2)

Corollary 4. Given PSL contracts C = (A,G), C1 = (A1,G1) and Cy = (A3,G3). Then C1X1Cy < C iff
EA—>AandEG - G.

These constructions and the previous results gives us a general approach to the core compositional infer-
ence problem, which we can now outline.

Suppose that we have a composite capsule K = K; || K2 annotated with a contract C, where the sub-
capsules K7 and K5 are annotated with contracts C; and Cs respectively. An outline of the algorithm to
establish if K = C' is as follows:

1. Analyze K;:
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(a) If K, is atomic, use Answer [L0| to establish K; = C
(b) If K; is composite, apply this algorithm recursively

2. Analyze Ks:

(a) If K5 is atomic, use Answer [10| to establish Ky = Cy
(b) If K5 is composite, apply this algorithm recursively

3. Construct the contract C7 [x]Cy as given by Proposition
4. Show that Cy ¥ Cs < C using Corollary [4

This will establish that K = C. This is because by Theorem [2] we know that C X] Cs dominates both C
and Cy which means that the composition of any implementations of C; and C5 is a valid implementation of
C1 X Cy, so K = C1 X Cy and since Cy X Cy < C, by Theorem [6] we get K = C.

Adapting the formulas

There is, however, a technical problem with this, similar to the one we encountered in Section 5} Cy and Cs
to not share the same alphabet because they talk about different components, and therefore different ports.
Furthermore, the direction of signals in atomic propositions would not match for signals on ports linked by
a connector. Consider for example that if Ky and K5 are connected, one of the subformulas that we need to
prove is G1 — As. But G, talks about the ports of K while A; talks about the ports of K5. Hence we need
to adapt the formulas in C'y and Cs so that they share the same alphabets.

Consider the example in Subsection [1.1] and in particular the Academial capsule, depicted in Figure
on page [0} In such composite diagrams unfilled ports are base ports, and filled ports are conjugate. So for
example, port cfp in the Academicl capsule is base, but port cfp in the Conferencel capsule is a conjugate
port. Let us suppose that we have the following guarantees for sub-components of Academial:

guarantee(Academicl) o G(in : grants.funds — Fout : cfp.paper)
guarantee(Conferencel) def G(in : cfp.paper — Fout : papers.paper)

guarantee(Repositoryl) def G(in : publish.paper — Fout : read.paper)

Furthermore, assume that we want to establish the guarantee for the Academial composite capsule is:

guarantee(Academial) = G(in : grants.funds — Fout : innovation.paper)

Let us also suppose that all assumptions are true, so that

contract(Academicl true, G1)

contract(Conferencel true, G)
true, G3)

true, G)

g)
-
~ o~ ~

)

)

contract(Repositoryl) =
contract(Academial)

def def

where G; = guarantee(Academicl), G2 = guarantee(Conferencel), G = guarantee(Repositoryl), and G o
guarantee(Academial). Then we have that

C1 X0y xC5 = (true,G1 A Ga A Gg)

where C; % contract(Academicl), Cs o contract(Conferencel) and Cj o contract(Repositoryl). Then to

check that CXICsXIC5 refines C def contract(Academial), we will need to establish that = (G1 AG2AG3) — G.
But then the problem becomes apparent: for example, the signal out : cfp.paper in G; is supposed to be the
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same signal as in : cfp.paper in Gg, the signal out : read.paper in G3 is supposed to be the same signal as
out : innovation.paper in G, etc.

Hence, we need to identify the atomic propositions of signals which are meant to be the same. This is
done by the following definitions. The main idea behind the adaptation of the contract formulas is to replace
the occurrence of port names in atomic propositions with the corresponding connector names, and to adapt
the signal directions depending on whether the port in question is base or conjugate. These way, formulas
will share the same alphabet.

We define a function ghat which takes a guarantee G € GuaraPSL and two capsules K and K;: K; is
the capsule that the guarantee talks about and K is its containing capsule. This function returns the PSL
formula G with each port name p ocurring in any atomic proposition of G renamed with the name of the
connector ¢ to which it is hooked up in capsule K, and the direction d of atomic proposition d : p.s is switched
from in to out and from out to in if port p is conjugate.

Definition 26 (Guarantee renaming). Let the function ghat : GuaraPSL — CompCapsules —
CompCapsules — CompPSL be defined as shown in Figure [12| on page where we write ghat[¢] x k,
for ghat(p)(K)(K;) where ¢ € GuaraPSL is a PSL guarantee specification, K € CompCapsules is the
container capsule and K; € parts(K) is the sub-capsule of K that ¢ talks about.

Using Definition the guarantees in our example are transformed as follows:

ghat[G1] Academial, Academicl = G(in : conn3.funds — F out : conn2.paper)

ghat[G2] Academial,Conferencel def G(out : conn2.paper — Fin : conn4.paper)

ghat[G'3] Academial,Repositoryl def G(in : connd.paper — Fin : conn5.paper)
ghat[G] Academial, Academial def G(in : conn3.funds — Fin : conn5.paper)

So for example, in G, out : cfp.paper is replaced by out : conn2.paper in ghat[G1] Academia1,Academic1- Meanwhile,
in Gy, in : cfp.paper is replaced by out : conn2.paper in ghat[G2] academial,Conference1 since cfp of Conferencel is
conjugate and linked to connector conn2. With this change, the two atomic propositions now refer to the
same signal, as expected.

Similarly, we have to adapt the assumption formulas, but these require a slightly different treatment to
take int account the notation as explained in Remark

We define a function ahat which takes an assumption A € GuaraPSL and capsules K,K; with K; €
parts(K), and returns the PSL formula A with each port name p ocurring in any atomic proposition of A
renamed with the name of the connector ¢ to which it is hooked up in capsule K, and each in replaced by
out and each out replaced by in.

Definition 27 (Assumption renaming). Let the function ahat : AssumPSL — CompCapsules —
CompCapsules — CompPSL be defined as shown in Figure [13| on page where we write ahat[¢] x k,
for ahat(¢)(K)(K;) where ¢ € AssumPSL is a PSL assumption specification, K € CompCapsules is the
container capsule and K; € parts(K) is the sub-capsule of K that ¢ talks about.

Binary compositional inference

We can now define the proper algorithms. The top-level algorithm is Algorithm [5] which decides whether
to apply Algorithm [ or Algorithm [6] depending on whether it is an atomic capsule or a binary composite
capsule. Algorithm []in turn invokes Algorithm [7] as the compositional inference step.

The correctness of these algorithms is established by the following.

Theorem 7 (Correctness of Algorithm . COMPONENT-VERIF (K, C) = true if and only if K = C.

Generalizing to n-ary components

To be able to generalize the previous algorithms to composite components with more than two sub-components
we need the following;:
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ghatiin : p.s(v)] x k,

ghat[in : p.s(v)] k k,

ghat[out : p.s(v)] k,k;

ghatfout : p.s(v)] kK,

ghat[[f(a)] k.,
ghat[!b] k k,
ghat[by A ba]k K,
ghat[{r}]x x,
ghatr1 ;2] k. k;
ghat[ry : m2] k. k,
ghat[r1 | 2]k, x;
ghat[ri && ro] k K,
ghat[r [*0]] x x,
ghat[r [*]] x x,
ghat[b!] k k,
ghat[(o)] k.,
ghat[~¢] k.,
ghat[p1 A 2]k K,
ghat[X! ¢] x x,
ghat[[¢1 U ¢o]]k k.
ghat[p abort 0] k k,
ghat[r — ¢] x k,
ghat[r!] x k;

in:c.s(v)

out : c.s(v)

out : c.s(v)

in:c.s(v)

f(a)

lghat[[b] ik,

ghat[b1] x x, ~ ghat[be] k k;
{ghat[r]x ., }

{ghat[ri] ki, }; {ghat[r2] k k. }
{ghat[r1]k k. } : {ghat[r2] k., }
{ghat[r1] k. k. } [ {ghat[r2] kK, }
{ghat[r] kK, } && {ghat[r2] kK, }
{ghat[r]k x,} [*0]

{ghat[r]x k. } [*]

ghat[b] x !

(ghat[¢] k. x,)

—ghat[¢] x,k,

(ghat[p1] ke k.) A (ghat[wo] k k)
Xl(ghat[¢] i, k)

[(ghat[p1]x k) Ulghat[p1] x x, )]
(ghat[] ki, ) abort(ghat[b] k k)
(ghat[r]x,x;) —(ghat[¢] x ;)
{ghat[r] x x, }!

if linksmap(K)(c) = (r.p, x)
or linksmap(K)(c) = (z,7.p)
and kindmap(interface(K;))(p) = base

if linksmap(K)(c) = (r.p, x)
or linksmap(K)(c) = (z,7.p)
and kindmap(interface(K;))(p) = conj

if linksmap(K)(c) = (r.p, x)
or linksmap(K)(c) = (z,r.p)
and kindmap(interface(K;))(p) = base

if linksmap(K)(c) = (r.p, x)
or linksmap(K)(c) = (z,7.p)
and kindmap(interface(Kj;))(p) = conj

if f(a) € BOOIEXPr g¢tributes
if b € BoolExpr

if b1, by € BoolExpr

if re SERE

if r1,7 € SERE

if r1,7o € SERE

if r1,75 € SERE

if r1,75 € SERE

if r e SERE

if re SERE

if b € BoolExpr

if pe FL

if pe FL

if 1,2 € FL

if pe FL

if 1,2 € FL

if ¢ € FL,b € BoolExpr
if pe FL,r € SERE

if re SERE

Figure 12: Guarantee renaming.
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ahat[in : p.s(v)] k k,

ahat[in : p.s(v)] k K,

ahatfout :

p.S(’U)]]}QKi

ahatfout :

p-s(v)]k K,

ahat[f(a)] k. x,
ahat[!'0] k k;
ahat[by A ba] k k;
ahat[{r}] k. x;
ahat[ry ;o] k k,
ahat[ry : o] k k,
ahat[[rl | Tg]]}g}(i
ahatr, && r2] ik,
ahat[r [*0]] x,k;
ahatr [*]] k.x
ahat[b!] k k;
ahat[(¢)] k.
ahat[—¢] k. K,
ahat[y1 A @o]k K,
ahat[X! 9]k x,
ahat[[p1 U 2]k i,
ahat[¢ abort b] k
ahat[r — @]k k,

ahat[[r!]]K,Ki

def

out : c.s(v)

in: c.s(v)

in: c.s(v)

out : c.s(v)

fla)

lahat[b] k k;

ahat[b1] k. k, A ahat[bz] k, k,
{ahat[r]x k;}

{ahat[r1] ki, } ; {ahat[ra] ik K, }
{ahat[r] kK, } : {ahat[ra] k. x, }
{ahat[r] kK, } | {ahat[re] k. x, }
{ahat[r] kK, } && {ahat[r2] kK, }
{ahat[r] x k. } [*0]

{ahat[r]k x, } [*]

ahat[[b] k k!

(ahat[¢] k. k)

—ahat[y] x x,

(ahat[p1] k) A~ (ahat[wa] K k;)
X!(ahat[[gp]]K,Ki)

[(ahat[¢1] k,k,) U(ahat[p1] k k., )]
(ahat[¢] kK, ) abort(ahat[b] k k)
(ahat[r] i i) —(ahat[¢] i k)
{ahat[r] k k, }!

if linksmap(K)(c) = (r.p, x)
or linksmap(K)(c) = (x,r.p)
and kindmap(interface(K;))(p) = base

if linksmap(K)(c) = (r.p, x)
or linksmap(K)(c) = (z,r.p)
and kindmap(interface(K;))(p) = conj

if linksmap(K)(c) = (r.p, x)
or linksmap(K)(c) = (x,r.p)
and kindmap(interface(K;))(p) = base

if linksmap(K)(c) = (r.p, )
or linksmap(K)(c) = (z,r.p)
and kindmap(interface(K;))(p) = conj

if f(a) € BOOIEXPI p¢tributes
if b € BoolExpr

if b1, by € BoolExpr

if r e SERE

if r1,70 € SERE

if r1,7o € SERE

if r1,7o € SERE

if r1,70 € SERE

if r e SERE

if r e SERE

if b € BoolExpr

if pe FL

if pe FL

if 1,2 € FL

if pe FL

if 1,2 € FL

if o € FL,b € BoolExpr
if p e FL,r €e SERE

if r e SERE

Figure 13: Assumption renaming.
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Algorithm 5 Basic capsule verification.

Require: K is either an atomic capsule annotated with a contract C' = (A, G) or a composite capsule
K = K; || Ky annotated with a PSL contract C' = (A, G), and sub-components K; and K, annotated
with PSL contracts C; = (A41,G1) and Cy = (A4, G2)

Ensure: K =C

1: function COMPONENT-VERIF(K,C)

2: if K is an atomic capsule then

3 return ATOMIC-COMPONENT-VERIF(K,C') = Call Algorithm
4 else

5 {K1, K2} < parts(K)

6: {C4,C3} < {contract(K), contract(K>) }

7 return BINARY-COMPONENT-ANALYSIS(K,C { K1, K3},{C1, Ca}) = Call Algorithm [6]
8 end if
9: end function

Algorithm 6 Binary compositional analysis.

Require: A composite capsule K = K; || K, annotated with a PSL contract C = (A,G), and sub-
components K; and K5 annotated with PSL contracts C7 = (A1, G1) and Cy = (Ag, Ga)

Ensure: K =C

1: function BINARY-COMPONENT-ANALYSIS(K,C, {K1, K2},{C1,C5})

2: v1 < COMPONENT-VERIF(K1,C1) > Call Algorithm
Vg < COMPONENT-VERIF (K>,C5) > Call Algorithm
u < BIN-CONTRACT-INFERENCE(K,C { K7, K3},{C1, Ca}) = Call Algorithm
if v1 and vy and u then

return true
else
return false

9: end if

10: end function

Algorithm 7 Binary compositional inference.
Require: C = (A, G), C; = (A1,G1) and Cy = (A3, G2) must be PSL contracts, K is a composite component
annotated with C'

Ensure: C1 xCy < C
1: function BINARY-CONTRACT-INFERENCE (K ,C {K1, K2},{C1,Cs})
2: A « assumption(C)

G < guarantee(C)

G — (A - Q)

Ay — assumption(C1)

G4 < guarantee(Cy)

GY' — (A1 — Gh)

Ag « assumption(Cy)

G2 < guarantee(Cy)

10: Ggf “«— (Al — Gg)

11: C{ «— (ahat[[Al]]KKl,ghat[[GTf]]KKl)

12: Cé <~ (ahat[[Ag]]Ksz, ghat[[Ggf]]KKQ)

13: C’ « BINARY-CONTRACT-COMPOSITION(C, C%) > Call Algorithm
14: C" (ahatﬂA]]K,;Qghat[[G“f]]KK)

15: r < CHECK-CONTRACT-REFINEMENT(C’, C") = Call Algorithm
16: return r

17: end function
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Algorithm 8 Binary contract composition.

Require: C; = (A;,G1) and Cy = (A, G3) must be PSL contracts
Ensure: returns C; X Cy
1: function BINARY-CONTRACT-COMPOSITION(C',C5)

2:

10:

Ay « assumption(CY)

G < guarantee(Cy)

Ay «— assumption(Cy)

Gy < guarantee(Cy)

Gy — (A — Gh)

G (A2 — Ga)

A (GF — A3) A (GF — A1)
G — (G} A GY)

return (4, G)

11: end function

Proposition 17 (Contract composition is commutative and associative and preserves strong
contract equivalence). For any contracts C1,Co,C3 in a simplified specification theory:

(i) C1 X Cy = Co X Cy

(i) (C1 X C2) KO3 ~ C1 X (C2 X1 C3)
(iii) if C1 = Cq and C1 and Cs are in normal form, then C1X1C = Cy [x1C

This proposition allows us to define the composition of an arbitrary number of contracts:

Definition 28 (n-ary contract composition). Given contracts C1, ..., C,, we define

X]C: =

i=1

Proposition 18. If n > 1 then [X];_, C; = C1 K (X]/_, C;)

X|Ci=CiR---KC,

i=1

This n-ary composition can be characterized as follows:

=  def C1 ifn=1
(X' CHRC, ifn>1

Hence the parenthesis are superfluous in an n-ary compostion, which means that we can write

Proposition 19. Let I = {1,...,n} and {C;}icr a family of contracts. Then [X|,.; C; = (A,G) where

and

A= A/ /\ G))

iel jel\{i}
G=/\Gi
i€l

rithm [I0] and Algorithm

Since we can define n-ary composition, we can generalize the binary algorithms with Algorithm [9] Algo-

Finally, we can provide an answer to Question [12| and Question

Answer 11. (To Question We can establish that a composite capsule K satisfies its contract C' if we

already know that each of its sub-components K,

..., K, satisfy their respective contracts Ci, ..., C,, by

constructing the contract composition [X|!_; C; and checking that it is a refinement of C. This is what
Algorithm [TT] does.

Answer 12. (To Question We establish that a composite capsule satisfies its contract by recursively
verifying the sub-capsules and then performing compositional inference as described in Algorithm
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Algorithm 9 General capsule verification.

Require: K is either an atomic capsule annotated with a contract C' = (A, G) or a composite capsule
K =T1I"_, K; annotated with a PSL contract C = (A, G), and sub-components K; annotated with PSL
contracts C; = (4;,G;) forie {1,...,n}

Ensure: K =C

1: function GENERAL-COMPONENT-VERIF(K,C')

2: if K is an atomic capsule then

3 return ATOMIC-COMPONENT-VERIF(K,C') > Call Algorithm
4 else

5: {K1,...,K,} < parts(K)

6: {C1,...,Cn} < {contract(K;) | K; € {K1, ..., K,,} }

7: return N-ARY-COMPONENT-ANALYSIS(K,C { K1, ..., K, },{C1,...,Cn}) = Call Algorithm
8 end if
9: end function

Algorithm 10 n-ary compositional analysis.

Require: A composite capsule K = IT"_, K; annotated with a PSL contract C = (A, G), and sub-components
K; annotated with PSL contracts C; = (4;,G;) for i € {1,...,n}
Ensure: K = C
1: function N-ARY-COMPONENT-ANALYSIS(K,C,{K7, ..., K,},{C1,...,Cpn})

2: forie{1,...,n} do

3: v; < GENERAL-COMPONENT-VERIF(K;,C}) > Call Algorithm @]
4: if v; is false then

5: return false

6: end if

7 end for

8: U < N-ARY-CONTRACT-INFERENCE(K,C {K, ..., K,,},{C1,..,Cp}) = Call Algorithm
9: if w is true then

10: return true

11: else

12: return false

13: end if

14: end function

Algorithm 11 n-ary compositional inference.

Require: C = (A4,G), C; = (4;,G;) for i € {1,...,n} must be PSL contracts, K is a composite component
annotated with C
Ensure: [X]!_,C; <C
1: function N-ARY-CONTRACT-INFERENCE(K,C {K1,..., K,,},{C1,...,Cr})

2: A «— assumption(C)

3: G < guarantee(C)

4: G — (A — G)

5: for ie{1,...,n} do

6: A; «— assumption(C;)

7: G; < guarantee(C;)

8: G?f «— (Az — Gl)

9: Czl «— (ahat[[Ai]]KKi, ghat[[G;‘f]]K,Ki)

10: end for

11: C’ < N-ARY-CONTRACT-COMPOSITION({CY, ...,C}}) = Call Algorithm
12: C" « (ahatﬂA]]K,K,ghat[[G"f]]KyK)

13: 7 < CHECK-CONTRACT-REFINEMENT(C’, C") > Call Algorithm

14: end function
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Algorithm 12 n-ary contract composition.
Require: C; = (A4;,G1), ..., C,, = (An, Gp,) must be PSL contracts
Ensure: returns X[, C;

1: function N-ARY-CONTRACT-COMPOSITION({C1, ...,Cp})

2: R {1,...,71}

3: A /\iEI((/\jeI\{i} Gj) = Ai)
4 G~ /\ie[ G
5
6

: return (4, G)
: end function

i n

Figure 14: Maximum tree structure of a composite capsule with height h and n sub-capsules in each composite
capsule.

Complexity

All algorithms introduced depend ultimately on the CHECK-VALID-PSL function, so their complexity depends
directly on the complexity of checking for validity of PSL formulas. Since LTL is a (strict) subset of PSL,
verifying PSL is at least as difficult as verifying LTL. In [SC85] it was established that the decision problem
for LTL (including past operators) is in PSPACE, so it can be solved using a polynomial amount of space
(in terms of the size of the formula), but PSPACE contains the class NP, which means that there is no
known worst-case polynomial time solution. Hence the complexity of the PSL validity problem is, as far as
is currently known, O(2!#!), i.e., exponential in the size |¢| of the formula (.

The heart of the compositional inference mechanism consists on checking the refinement [X];, C; < C,
and therefore the complexity depends on the size of A= assumption([X];"_, C;) and G = guarantee([X]!_, C;).

But by Proposition |A| < kn(n—1) and |G| = k'n for some constants k and &, and where n is the number
of sub-capsules of the composite capsule being analyzed. Hence, the complexity for the inference algorithm
is O(2Fn(n=1)),

Suppose we have a composite capsule with the tree structure depicted in Figure on page i.e.,
with n immediate sub-components, each of which also has at most n sub-components and so on, with a
maximum height (depth) of h. If we perform the full analysis on such capsule, then, since the complexity

for each internal node is O(2F*("~1)) and there are m = Z?;& n? = n"~1/n_1 internal nodes, then the total

complexity will be O(m2F*("=1) 4 sph) = O((n"~1/n—1)2F""=1) 4 snh) = O((1=1/n-1)2F"("=1) 4 sl) where
I = n" is the maximum number of all atomic capsules (the leaves of the tree) and s is the maximum number
of states for each atomic capsule. If we restrict ourselves to one level of nesting (h = 1) then the complexity
is O(2Fn(n=1) 4 gn).

In practice however, the number of internal nodes is almost always smaller than the maximum m, and
more importantly, the complexity is exponential on the number of components n and not on the number of
states. This compares favourably to a monolithic analysis which would flatten the structure of the tree (by
a synchronous product or equivalent construction) resulting in s’ total states (with [ = n”), and therefore
a complexity of O(QSZ). If we restrict ourselves to one level of nesting (b = 1) then the complexity with
flattening is O(an). Furthermore, this is the complexity of the full analysis on the whole model, but as
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Algorithm 13 Incremental analysis: component changes, but not contract.

Require: K is a composite capsule K = II? ; K; annotated with a PSL contract C'
components K; and Ky annotated with PSL contracts Cy = (41, G1), ..., Cp = (A,
VERIF(K,C') returned true. K/ is a capsule intended to replace K;

Ensure: K =C

1: function INC-COMPONENT-CHANGE-VERIF(K,C,i,K])

2: {K1,..., K} < parts(K)

3: C; < contract(K;)

4: r < GENERAL-COMPONENT-VERIF(K/,C}) = Call Algorithm [9]
5

6

= (4,G), and sub-
,Gpn); COMPONENT-

return r
: end function

described in Section [7] compositional inference enables incremental analysis, where one needs to run the
verification only on components which have changed and then run the compositional inference algorithm.

7 Incremental analysis

Once we have the compositional analysis framework in place, we are able to perform incremental analysis,
this is, analyzing a system during the development process by reusing previous analysis results and combine
them with the results of analysing only the parts of the model which have changed.

Answer 13. (To Question Assume that we have a design model K with subcomponents Ki, ..., K,.
Furthermore, assume that they are annotated with contracts C, Cy, ..., C, respectively and that we have
already performed compositional analysis with Algorithm [} Now, suppose that the model changes. There
are several possible changes that can be made on K:

(a) A sub-component K; may be changed (but its contract C; remains unchanged)
(b) A sub-component K, ; may be added (with a contract Cp41)

(¢) A sub-component K; may be removed

(d) The contract C; of a sub-component C; may be changed

(e) The contract C' of the composite K may be changed

)

(f) A combination of the above

We consider the first five as the basic modification mechanisms. Each of these operations can be handled
as follows:

(a) If sub-component K; changed and its contract C; remains unchanged, then we only need to verify
K; & C;, and if it holds, then K = C, i.e., the composite will still satisfy its contract. If it fails,
K ¥ C and some changes must be made by the user, either by modifying K; or C; and possibly other
components, and then re-running the analysis. See Algorithm [I3]

(b) Since we already performed analysis on the first n components, we only need to verify K, 1 E Cp11,
compose Cj, 1 with the other conctracts and perform the compositional inference step. See Algo-
rithm T4

(¢) When a component is removed, we can simply invoke Algorithm [11| with only the remaining contracts.
This will construct the contract composition of the remaining contracts, so the contract from the
removed component will not be assumed in the analysis.

(d) If the contract C; of a sub-component K; changes to a new contract C!, then we need to both check
that K; = C/ and perform the compositional inference. See Algorithm
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7 INCREMENTAL ANALYSIS

Algorithm 14 Incremental analysis: adding a new component.

Require: K is a composite capsule K = II""_; K; annotated with a PSL contract C = (4, G), and sub-
components Kj, ..., K,, annotated with PSL contracts C; = (A1,G1), ..., C,, = (4,,Gy); COMPONENT-
VERIF(K,C) returned true. K, is a new capsule annotated with contract Cy,41

Ensure: K = C

1: function INC-COMPONENT-ADD-VERIF (K ,C, K, +1,Cpt1)

2: r «GENERAL-COMPONENT-VERIF(K,, 11,Cp11) > Call Algorithm @]
3 if r is false then

4 return false

5 else

6: ¢ «<N-ARY-CONTRACT-INFERENCE(K ,C {K1, ..., K, },{C1, .., Cr, Cri1}) > Call Algorithm
7 return c

8 end if

9: end function

Algorithm 15 Incremental analysis: changing a sub-contract.

Require: K is a composite capsule K = II? ; K; annotated with a PSL contract C = (A4, G), and sub-
components K7, ..., K,, annotated with PSL contracts C; = (41,G1), ..., Cr, = (A, Gy); COMPONENT-
VERIF(K,C') returned true. C! is a new contract replacing C;

Ensure: K =C

1: function INC-CONTRACT-CHANGE-VERIF(K,C,i,C!)

2: {Ki,...,K,} < parts(K)

3 r <~ COMPONENT-VERIF(K;,C!) = Call Algorithm [9]
4 if r is false then

5 return false

6: else

7 {Cy,....,C,...,Cp} « {contract(K;) | K; € {K1, ..., Kp} }

8 L —{Cy,..,C .., C.}

9

¢ «<N-ARY-CONTRACT-INFERENCE(K ,C,{K7, ..., K, },L) = Call Algorithm
10: return c
11: end if

12: end function
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7 INCREMENTAL ANALYSIS

(e) If only the top-level contract changes, we only need to perform contract inference invoking Algorithm
with the new contract.

The algorithms presented here are pessimistic in the sense that if a sub-component K; changes, the full
analysis is performed on K; by invoking Algorithm [9] This however, may be wasteful, in case that K; is a
composite capsule and the change to K; was minor. In fact, the change to K; could be one of the modifications
listed above, and thus, the verification of K itself could be done by incremental analysis. could be optimized
further. We leave this optimization as future work.
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8 Quotienting

Recall that the quotienting or “missing part” problem is the following (Question :
Given a composite capsule K with contract C' and sub-capsules K, ..., K,, with contracts C1, ..., C,, and
a sub-capsule placeholder X:

1. What contract C'x should X have so that if we put, in place of X, a component implementation K x
that satisfies Cx and each K satisfies C; then we can conclude that K satisfies C'?

2. What should be an implementation of X that satisfies such contract Cx?

If we restrict ourselves to binary components, we kave a component K = K; || X with a contract C where
K7 is a component with contract C'; and X is a component placeholder for which we have no contract. The
first question is to find a contract C'x such that C; [x]Cx < C. If we find such a contract, and we find an
implementation Kx of X that satisfies Cx, i.e., Kx = Cx, then K' = K[X — Kx| = K, || Kx will satisfy
C: K' & C by Theorem [6]

Since we are looking for a C'x such that C; X]Cx < C, and in fact we are looking for the weakest such
Cx, we call it the quotient of contracts C' and C; and denote it Cx = C/C}.

Definition 29 (Contract quotient). Given a pair of contracts Cy = (Ag, Go) and Cy = (A1, G1), define

Co/Cy ™ (4,6)

where

AY G ® A

and
G (Go/Gh) A (A1) Ag)

Theorem 8. Given a pair of contracts Cy = (Ao, Go) and Cy = (A1, G1), if Cy and Cy are in normal form,
then C4 (Oo/cl) < (.
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9 Implementing verification

In order to implement the algorithms described in this report we need two things:

1. An algorithm that implements the implspec function to transform atomic capsules into PSL formulas,
and

2. An algorithm that for a given PSL formula ¢, checks = ¢, i.e., the validity of the formula, this is, an
algorithm that implements the CHECK-VALID-PSL function used in our algorithms.

The first algorithm will be custom-made for RTEdge™ atomic capsules, but it can be based on general
algorithms that transform NFAs or DFAs into regular expressions which can be found in any automata
theory textbook (e.g., [Sip97]). The regular expressions can be transformed into PSL SEREs.

The second algorithm can be implemented by either a custom-built PSL verifier or an off-the-shelf tool.

9.1 PSL validity checking

A formula ¢ is wvalid, written = ¢ when it is satisfied by all models. It is satisfiable when there is at least
one model that satisfies it. It is inwvalid or unsatisfiable if it is satisfied by no models. This implies that ¢ is
satisfiable if and only if —¢ is unsatisfiable. Similarly, ¢ is unsatisfiable if and only if —¢ is valid. And ¢ is
valid if and only if —¢ is unsatisfiable.

There are different approaches to checking PSL formulas. The main approaches are:

1. Translate the PSL formula ¢®*) into an LTL formula ¢ and then:

(a) either use an LTL model-checker to test for the validity of ('),
(b) or use the Tableau method on ().

2. Translate the negated PSL formula —¢®*) directly into a Biichi automaton and emptyness checking.

The first approach has two phases: translation into LTL, and LTL validity checking. Alternative (a) is
explained in Subsection Alternative (b), first proposed in [Wol85] consists of building a tableau from
the negation of the formula, this is, a graph whose nodes are sets of sub-formulas, according to certain
construction rules and then iteratively eliminating nodes that generate contradictions or violate temporal
properties. If the entire tableau is eliminated, the original formula is valid.

In the second approach, the PSL formula —¢®) is translated into a Biichi automaton and then a it is
checked whether there are any legal behaviours that go through some accepting states of the automaton. If
this is the case, then the language of —¢®*) is not empty, and therefore ¢ is not valid. On the other
hand, if no legal behaviour goes through an accepting state, then the language of —¢®) is empty, which
makes (P valid.

The first approach has the advantage that there are several off-the-shelf tools that perform LTL model-
checking and which have been optimized. The disadvantage is that PSL is strictly more expressive than LTL:
as shown in [Wol83], LTL cannot express certain w-regular properties such as “p occurs at every even point
in time, and may or may not occur at odd points in time.” These properties, however, are expressible in PSL.
Hence, it is not possible to translate all PSL formulas into LTL formulas. The only solution, if this approach
is used, is to restrict the specifications to a subset of PSL, and translate commonly used PSL expression
patterns. This is the approach followed by [CRT08] and is used by the NuSMV tool described below.

The second approach has the advantage that Biichi automata do capture all w-regular properties and thus,
all of PSL can be handled. The disadvantage is that there are very few tools that support such translation
and emptyness check. The Spot tool described below follows this approach.

9.2 PSL verifiers and translators

Table 3| on page 51| shows a summary of tools available which support verification and/or translation of PSL
formulas. We now describe them.
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9.2 PSL verifiers and translators
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9.3 Using a PSL model-checker to check for validity 9 IMPLEMENTING VERIFICATION

e NuSMV (http://nusmv.fbk.eu/) is a successor to the SMV model-checker which introduced BDD-based
model-checking. It includes partial support of PSL, but not the full support, because, as explained in
Subsection [9.1] its approach to PSL model checking is to translate PSL specifications into LTL, but
because LTL is less expressive than PSL, some PSL formulas are not handled, in particular some SERE
expressions are ignored. Aside from w-regular properties, NuSMV does not support either the OBE
extension of PSL, nor clocked expressions. However, many common PSL patterns are handled, as
described in [CRT0§|. A significant advantage of NuSMV is that it supports symbolic model checking
with either BDDs or SAT solvers. The user simply passes a parameter to the model-checker saying
whether to use BDDs or one of the two SAT solvers included. The output produced by NuSMV is not
ina machine readable format, but counterexamples can be generated in XML format. NuSMV’s licence
is the LGPL.

e Spot (http://spot.lip6.1fr/wiki/SpotWiki) is model checking library written in C4++ with support for
PSL. Since it translates PSL formulas directly into Biichi automata, it is able to handle all SEREs.
Nevertheless, like NuSMV, it does not support the OBE extension nor clocked expressions. It is in
active development, and full compliance with PSL standard semantics is unclear. It’s licence is the

GPL.

e PSL2BA (https://code.google.com/p/psl2ba/) is an experimental translator from PSL to Biichi au-
tomata. It does not have significant documentation, so full support for PSL remains unclear. It’s
output representation used as input to NuSMV. It’s licence is the New BSD License.

e IBM RuleBase SixthSense Edition
(https://www.research.ibm.com/haifa/projects/verification/Formal Methods-Home/|
http://researcher.watson.ibm.com /researcher/view_ project.php?id=2987) is a commercial, proprietary
tool that supports PSL. No public documentation is available at the time of this writing, so our
knowledge of its capabilities is limited.

9.3 Using a PSL model-checker to check for validity

The general approach to model-checking takes some model M and a temporal formula ¢ and tries to establish
whether M satisfies ¢ (M E ¢). To do this, the model-checker must establish that the language of M (the
set of possible behaviours of M, written £(M)) is a subset of the language of the formula £(y¢). To establish
L(M) < L(p), it is enough to check L(M) n L(p) = J, this is, that there are no behaviours of M which
are not behaviours of ¢. In a typical temporal logic we have that L(p) = L(—¢), so we need to check that
L(M)n L(—p) = . Usually the model-checker transforms the formula —¢ into a (Biichi) automaton A,
then computes some product between automata M ® A-,. If this automaton has legal behaviours, then
L(M) n L(—p) # &, and therefore L(M) & L(p); otherwise L(M) n L(—p) = & and L(M) < L(p).

When we are trying to check for the validity of a formula or its satisfability, we only have the formula,
but the model-checker expects a model M as input as well. Nevertheless, a model-checker can be used
for satisfability checking (and therefore validity checking as well). This can be accomplished, as described
in [RV10] by providing a “universal model” W, which contains all possible behaviours. Typically such a
model would consist of a single accepting states with all transitions labelled with each atomic proposition
appearing in the formula to be checked.

For example, suppose we want to check whether the LTL formula ¢ e (a v b) — Fbis valid. In this

formula, the set of atomic propositions is {a,b}. Hence the universal model (Biichi automaton) Wy would

consist of a single accepting state sy and transitions sg 2 so and s o, Ssg9. The model checker would translate
—po = G(a v b) A —Fb into a Biichi automaton A, and compute the synchronous product Wo ® A, .
But it turns out that the sequence aaa... € L(—pg) so LI(Wy) N L(—po) # & and so —pq is satisfiable,
which makes g invalid. Using NuSMV, the universal model can be expressed simply by declaring a boolean
variable for each atomic proposition as shown in Figure [I5| on page As expected, feeding this model to
NuSMYV reports that the formula is false.

Going back to our original example, recall that in Subsection we had transformed the PSL guarantees
for the Academic, Conference and Repository subcapsules of the Academia composite capsule as follows:
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MODULE main
VAR
a : boolean;
b : boolean;
LTLSPEC (G (alb) -> F b)

Figure 15: NuSMYV model to check the LTL validity of ¢g.

MODULE main
VAR
in_conn3_funds : boolean;
out_conn2_paper : boolean;
in_conn4_paper : boolean;
in_connb_paper : boolean;
PSLSPEC ( ( G (in_conn3_funds -> F out_conn2_paper)
& G (out_conn2_paper -> F in_conn4_paper)
& G (in_connd_paper -> F in_connb_paper) )
-> G (in_conn_3_funds -> F in_conn_5_paper) )

Figure 16: NuSMV model for checking the validity of the Academial guarantee.

ghat[G1] Academial, Academicl def G(in : conn3.funds — Fout : conn2.paper)

ghat[G2] Academial, Conferencel def G(out : conn2.paper — Fin : conn4.paper)

ghat[G3] academial,Repositoryl = G(in : connd.paper — Fin : conn5.paper)
ghat[G] Academial, Academial def G(in : conn3.funds — Fin : conn5.paper)

To perform the compositional inference, we need to establish that the formula G} A G4 A G5 — G where
d d d
Gll ;f ghat[[GlﬂAcademial,Academicl7 G/2 éf ghat[[G2]]Academial,Conferencel7 G{S ;f ghat[[GS]]Academial,Repositoryl and
el ghat[G] Academial, Academia1- We can check the validity of this formula by feeding NuSMV with the model

shown in Figure [16] on page
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10 Summary and future work

We have explored a theoretical framework to support compositional analysis based on assume/guarantee
contract-based reasoning developed mainly in [BDH™12a, [BDH™12b|. We have shown how a small adaptation
of PSL conforms to the notion of specification theory required by the theoretical framework and how its results
can be applied to PSL specifications. This in turn has led us to propose some compositional verification
algorithms based on this framework and which can be integrated into the RTEdge™ platform using third-
party, off-the-shelf PSL verifiers.

The theoretical framework from [BDH™12a, [BDH™12b| gave us the foundation for this work, as it covered
the essential aspects. Nevertheless, that framework assumes one underlying specification language. In our
case, we have had to deal with two languages, the modelling language RTEdge™, and the specification
language, PSL. Therefore we had to take this into consideration and put in place the necessary machinery
to support a modelling language separate from a specification language. Furthermore, we have had to adapt
the specification language to properly express properties of the behaviour of RTEdge™ models.

In addition to these changes, we have extended the theory by defining commutative monoid and standard
specification theories, which give the contract theory a logical structure and allow us to generalize the results
from [BDH™12a, BDH™12b] in order to support n-ary contract composition and quotiening of contracts.

While the theory provides us with a framework to support compositional and incremental analysis, there
are several issues that we have not addressed and which are left for future work. The main open problems
include:

e Regarding extensions to the specification language:

— How to better capture asynchronous interaction in PSL specifications.

— How to support properties about the contents of port’s message queues.
e Regarding the implementation of the framework:

— How to translate (atomic) RTEdge™ capsules into PSL specifications so that we can use the pro-
posed algorithms. This translation must be such that it satisfies the requirements of Definition [24]
as the correctness of the algorithms rely on these.

— Optimize the algorithms, particularly those that perform incremental analysis. A syntactic analysis
on the model structure can simplify the structure of the contract composition, reducing the time
of validity checking done.

— Identify potential limitations, if any, of these algorithms with respect to different kinds of proper-
ties, i.e., safety, liveness and fairness.
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A RTEdge™ description and abstract syntax

In this appendix we present a subset of the abstract syntax of RTEdge™ which is relevant to this work.
For a more thorough description of the syntax and the formal semantics of RTEdge™ we refer the reader
to [Pos13bl [Pos13al.

A.1 Informal description

RTEdge™ is a language that can be used to describe concurrent, reactive, real-time systems. In RTEdge™,
a system is a collection of interconnected components or processes called capsules. Each capsule is an active
object with attributes and reactive behaviour. A capsule executes concurrently with the other components in
the system. Capsules interact with other components by sending messages or signals over connections (also
called connectors). Each capsule has a well-defined interface which consists of a set of ports through which
signals are sent and received. Connectors link ports between different capsules. The reactive behaviour of
capsules is defined by a certain kind of state machines. Communication is asynchronous: the sending of
a message is non-blocking, so the sender doesn’t wait for the message to be delivered. Capsules can be
composed and grouped together to define a hierarchical structure.
The core elements of the RTEdge™ language are:

e Protocols
e Interfaces

e Atomic Capsules with State Machines

Composite Capsules

Proxy Capsules

External Task Capsules
e Timers
e Applications

Informally a protocol defines a set of input and output signals which may be transmitted between capsules.

An interface defines a collection of named ports, each of which has a protocol and can be either a base
port or a conjugate port. In a base port, input and output signals of the corresponding protocol, are treated
by the owning capsule as inputs and outputs respectively, whereas in a conjugate port the roles are flipped:
input signals of the protocol are treated by the capsule as outputs and output signals in the protocol are
treated as inputs.

An atomic capsule defines a process or active object with data attributes and a behaviour and has a specific
interface. The behaviour is defined by a state machine. RTEdge™ state machines are flat (no hierarchical
states) and divide the states into two groups: stable states and transient states. Stable states are states where
the capsule is at rest waiting for external input signals on its ports. Hence transitions emanating from stable
states are annotated with input or external event triggers. Transient states are intermediate states which may
have actions or activities associated to them. These activities are written in an underlying action language,
which in the case of the RTEdge™ platform is C++. Actions are parametrized with the data attributes
of the capsule object and with the last message received. Transitions emanating from a transient state can
be labelled with a value or action completion code, which is used as an activity completion trigger, allowing
internal choice. Transitions can be annotated with output statements, which send output signals through the
capsule ports to other capsules. These state machines have a run-to-completion semantics: when the capsule
is on a stable state, the arrival of an input on a port results in a chain of transitions being followed according
to the transition triggers, possibly going through transient states and ending in a stable state. If an input
signal arrives and the capsule is not on a stable state, the signal will be queued in its port until the capsule
can handle it. Thus, each port has its own FIFO queue. A port might be marked as deferred in a stable
state. If an input arrives on that port when the system is in the stable state that defers it, the message will
not be processed, and it will simply remain in its queue until it can be consumed in another stable state. If
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input arrives at a port which is not deferred and the current stable state doesn’t have a transition with a
trigger for that port and signal, there are two possible behaviours: the signal can be ignored, or an error can
be issued. If more than one transition is enabled in a stable state, the tie is broken by the relative priorities
of the signals. These priorities are assigned statically by RTEdge™ during schedulability analysis, to ensure
that required deadlines are met.

A composite capsule defines a group of interconnected capsules (atomic or composite) and has an interface.
It serves a the basic structuring construct in the language providing a hiding and encapsulation construct
so that the only way to access the composite capsule’s sub-components is through its interface. Informally,
the capsules within a composite capsule execute concurrently, although the platform implementation may
schedule the transitions within the same thread. Since ports are queues, the basic communication mechanism
is asynchronous message passing.

A proxy capsule is a special kind of atomic capsule which has “OS ports”, this is, ports that allow the
capsule to interact with software outside of the application.

An external task capsule is also a special kind of capsule and it doesn’t represent a component within the
application, but rather it is used to represent external components with which the application may interact.
External capsules can only be connected to proxy capsules.

A timer is a special kind of primitive component that issues a given signal periodically. This signal is
received by every capsule which has subscribed to the timer’s service.

An application is the top level component of the language. It can be seen as a special composite capsule
which groups together all components and elements.

A.2 Formal description

In this appendix we omit the detailed definitions of types, state machines, proxies, external tasks and appli-
cations, as they are not necessary to describe the framework. We refer the reader to [PosI3a] for a complete
definition of these constructs.

We assume a set Names of all possible names, a set Types of all possible data-types, a set Values of
all possible data values over the given data-types.

Definition 30 (Protocols). A protocol is a tuple (I, O, type) where:
e [ € Names is a set of input signals
e O < Names is a set of output signals
e InO=y
e type: I U O — Types is a typing function, assigning a type to each signal
We call Protocols the set of all possible protocols. Given a protocol R = (I, O, type) we define
e isignals(R) =

e osignals(R) “o

o typmap(R) & type
Definition 31 (Interfaces). An interface F is a tuple (P, L, prot, kind) where
e P < Names is a set of port names,
e [ < Protocols is a set of protocols,
e prot: P — L is an assignment of protocols to ports,
e kind : P — {base, conj} is an assignment of kinds to ports

We call Interfaces the set of all possible interfaces. We define
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e ports(F) “p

e protocols(F) “r

e protmap(F) def prot
e kindmap(F') “ ind
Definition 32 (Atomic capsules). An atomic capsule K is a tuple (F, X, A, M) where

e F = (P, L,prot, kind) € Interfaces is an interface (see Definition [31]),

e ¥ = (V, type : V — Types) is variable signature where the variables are called attributes, (see [Pos13al,
Section 2.1, Definition 8)

e A C Activitiesy is a of of actions or activities, (see [Pos13al, Section 2.5, Definition 16)

e M = (5,i,Q, F,def, X, A, act,T) € StateMachines is a state machine (see [Posl3al, Section 2.5,
Definition 19)

We call Atomic the set of all possible atomic capsules. We define:
def
e ports(K) = ports(F) =P
e interface(K) =
e attributes(K) =55
e activities(K) 4
. def
e statemachine(K) = M
Definition 33 (Composite capsules). A composite capsule K is a tuple (F, H, R, role, C, link) where

e F = (P, L,prot, kind) € Interfaces is an interface (see Definition ,

e H < Capsules is a finite set of (atomic or composite) capsules called parts, subject to the condition
that K ¢ H and K is not a sub-part (transitively) of any of its parts,

e R < Names is a finite set of role names, such that self ¢ R,

e role: Rw {self} > H w {K} is a map associating each role with a capsule, where role(self) o K, and
for all r € R, role(r) # K,

e C < Names is a finite set of connector names,

e link : C — connpts(K) x connpts(K) is map assigning each connector name to a link (b1,be) €
connpts(K) x connpts(K) where connpts(K) denotes the set of all connection points of K and is defined
as

connpts(K) def {(self,p)|pe P} u U {(r,p) | p € ports(role(r))}
TER

We write r.p for a connection point (r,p). For any connector ¢ € C, link(c) must satisfy the following
conditions:

— for any connection point r.p, (r.p,r.p) ¢ link(c) (i.e., link(c) must be irreflexive, a port cannot be
connected to itself),

— for any connection point r1.p1, there is at most one connection point r9.ps such that (r1.p1,72.p2) €
link(c) (i.e., links(c) must be a partial or total function)
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— for any connection point r9.ps, there is at most one connection point r1.py such that (r1.p1,72.p2) €

link(c) (i.e., link(c) must be a one-to-one mapping)
whenever link(c) = (r1.p1,r2.p2) such that r1 # self and ro # self, prot;(p1) = proty(p2) and
either

* kindq(p1) = base and kinds(p2) = conj or

* kindq(p1) = conj and kinds(p2) = base
where prot, = protmap(interface(role(r;))) and kind; = kindmap(interface(role(r;))) for i € {1,2}
(i.e., a connection between internal parts can only be between a base port and a conjugated port)
whenever link(c) = (r1.p1,72.p2) such that r; = self and ro # self or 71 # self and ro = self,
proty(p1) = proty(ps) and either

* kindy(p1) = base and kinds(ps) = base or

* kind(p1) = conj and kinds(p2) = conj
where prot, = protmap(interface(role(r;))) and kind; = kindmap(interface(role(r;))) for i € {1,2}

(i.e., a connection between a port of the composite capsule and a port of a sub-capsule must be
of the same kind)

We call Composite the set of all possible composite capsules and Capsules 4 Atomic U Composite the
set of all capsules. We define

e ports(K) = ports(F') = P

interface(K) =

def

parts(K) = H

roles(K) =

connectors(K) “o

links(K) def (Ueec tink(c)) U (Ueec{(ra-p2,m1.01) | (r1.p1,72.p2) € link(c)})

linksmap(K) < tink
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B PSL core syntax and semantics

PSL consists of four language layers:
e The boolean layer, to describe state or event conditions at a given point in the execution of a system.
e The temporal layer, to describe properties and behaviour of the system over time.

e The verification layer, to describe verification units and provide directives and intended for a verification
tool.

e The modelling layer, to describe the model under consideration.

The temporal layer consists of the Foundation Language (FL) and an Optional Branching Extension (OBE).
The Foundation Language consists of:

e Sequential Extended Regular Expressions (SERESs)

e Linear Temporal Logic (LTL) [Pnu77]

e Operators to combine or embed SEREs into LTL formulas
e Derived operators

The Optional Branching Extension consists mostly of Computation Tree Logic (CTL) [CESI].
The verification layer defines:

e Verification directives: constructs that can be used to declare specifications and define, for example,
assertions, assumptions, fairness constraints, etc.

e Verification units: groups of declarations and directives with a given name and possibly a binding to a
model artifact.

The modelling layer is intended to provide the means to describe system behaviour, but it is specific to the
flavour, which can be one of the well known hardware description languages: Verilog [IEE01], SystemVer-
ilog [IEE13], VHDL [IEEQ09], SystemC [IEEI2b] or GDL [IBMO05]. In this report we consider the modelling
language to be RTEdge™.

In this appendix we describe only the syntax of the core, unclocked Foundation Language (FL) fragment
of PSL [IEE12al TEE05] [Acc04]. For a description of the syntax and semantics (formal and informal) of the
full PSL we refer the reader to [IEE12al TEE05] [Acc04].

B.1 Syntax

Notation 4. PSL is defined over a given set AP of atomic propositions. We write BoolExpr 5 p for the set
of boolean expressions over AP, or simply BoolExpr if AP is clear from the context. We use b, b1, bo, ... as
meta-variables that range over the set BoolExpr. We define below the set SERE of SEREs and the set FL
of FL formulas. We use 7,71, 79, ... as meta-variables ranging over SERE, and ¢, 1, 2, ... as meta-variables
ranging over FL.

Definition 34 (Boolean expressions [[EE12al TEEQS, [Acc04]). The set BoolExpr s p of boolean expres-
sions over the set AP of atomic propositions is defined as the smallest set that satisfies the following;:

e true € BoolExpr

e false € BoolExpr

e If p e AP is an atomic proposition, then p € BoolExpr
o If b, b1,b; € BoolExpr then

— —b e BoolExpr
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— by A by € BoolExpr

Definition 35 (Sequential Extended Regular Expressions - SEREs [[EE12al TEE05, [Acc04]). The
set SERE is defined as the smallest set that satisfies the following:

e If b € BoolExpr then b € SERE.

o If r. 71,75 € SERE then each of the following are in the set SERE as well:

{r}
T1572
T1:T2

T1 |’I"2

T1 && T9
r[*0]
r[*]

(Braced SERE)
(Concatenation)
(Fusion)

(Or)

(Length-matching And)
(Empty sequence)
(Consecutive repetition)

Definition 36 (Foundation Language Formulas - FL [[EE12al TEE0S, [Acc04]). The set FL is defined
as the smallest set that satisfies the following:

e If b € BoolExpr then b,b! € FL

o If v, 1,2 € FL, r € SERE and b € BoolExpr then each of the following are in the set FL as well:

(%)

e

P1 N P2

Xl

[e1 U]
@ abortd
r

r!

T @

(Parenthesis)
(Negation)

(And)

(Strong Next)
(Strong Until)
(Abort)

(SERE)

(Tight SERE)
(Suffix implication)

The rest of the operators in the foundation language are defined as syntactic sugar. For easy reference
we provide a few commonly used examples:

bl\/bg
b1 — by
b1<—>b2

r[#k]
r[+]

[*]

[+]

r1 &1y
r1 within ry
P11V P2
P1 — P2
P1 <> P2
Fo

Gy

X

= —(=b1 A —bg)

© v by

(b= ba) A (b — ba)
Zaeey

o true[ ]

W true [+]

&l {ra i [ {5 [4]) &)
Y 4] &eber

Y (o1 A —p2)

Y v

Y (o1 = 92) A (92— 1)
o [true U ]

def ¢ o

A
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(Non-length-matching And)
(Within)
(Or)
(Implication)
(If and only if)
(Strong Eventually)
(Always)

(Next)
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B.2 Semantics

The meaning of a formula in PSL is defined with respect to a sequence (finite or infinite) v = vov1vs... over
the alphabet ¥ = 2AFP ( { T}, this is, each v; € 2P U {1, T}. If v; € 2AP then v; is a set of atomic
propositions which hold true at that point in the sequence. If v; = T, this represents that any boolean
expression holds at that point in the sequence. If v; = 1, it represents that nothing is true at that no boolean
expression holds at that point. The empty sequence is denoted e¢. The i-th item of a sequence v is denoted
vj_q or v 1 (since the first index is 0). We write v*J to be the subsequence ViVit1...05 for j =, and v*the
(finite or infinite) suffix of v starting from index i. We write |v| for the length of v. If £ € ¥, we write ¢~ for
the infinite sequence £4¢.... If v is a sequence, we write v for the sequence obteined by replacing each 1 with
T and each T with L. We write X* for the set of finite sequences over X, 3¢ for the set of infinite sequences

over ¥ and X% def YU Xv,

Definition 37 (Semantics of boolean expressions [[EE12al, TEE05] [Acc04]). We define [ES ¥ x BoolExpr ,p
as the smallest relation satisfying the following (writing ¢ I b for (¢,b) €l=):

e T |E b for any b € BoolExpr

L £ b for all b € BoolExpr

¢ | true where £ € 2AP

{ | false where ¢ € 2AF

(= piff p e £ where pe AP and ¢ € 24P

01 —b iff £ £ b where ¢ € 2AF

o [|=by Abyiff £1=by and £ |= by where £ € 2AP

Definition 38 (Semantics of SEREs [[EE12al TEE05| [Acc04]). We define £ < ¥* x SERE as the smallest
relation satisfying the following (writing v Er for (v,r) € E):

e vE{r}iffvEr

e vEbiff uy=1andv b

e vEr it Jue ¥* we X% v =uw, uEr; and wETry

e vEr iriff JueX* Le B we X% v =uwlw, uwlEr; and tw Ery

e viEr|rifvEr orvEmr

e vEM&&riff viEr, and vET,

e vEr[*0]iff v =-¢

e vEr[*iffvEr[*0] or Jue X*weX® . u #e€ v=uw, uErand wEr[*]

Definition 39 (Semantics of FL [IEE12a, TEE05, [Acc04]). We define =S X% x FL as the smallest
relation satisfying the following (writing v = ¢ for (v, @) €=):

e vi(p) il v

viE —p iff U F @

e vE 1 Ao iff v @1 and v E

v = bl iff [v] > 0 and 0 IF b

vEbIff v =0o0r v’ b

o vir!liff 3j < v Er
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viETiff Vi < |00 TY !

viEXliff v >1and vl E @

v = [p1 U] iff 3k < [v]. 0" = @p and Vi < ko7 = ¢

v E @abortbiff viE por dj < |1]|,Uj b and 00971 T = o

o vEr—@iff Vj < |v].if 2% =7 then vi- E ¢
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C Proofs

C.1 Theoretical framework
Proposition For any given complete specification theory (S,®,/, n,<), for any X, P,P',Q,Q',R€e S:
(i) if P AQ is defined and X < P A Q then X < P and X <Q
(ii) if P A Q and P' A Q' are defined and P’ < P and Q' < Q then PP A Q' < P A Q
(iii) if P A Q and Q A P are defined then P A Q =Q A P
(iv) if PAQ,QAR, PAr(QAR)and (P AQ)AR are defined then PA (QAR)=(PAQ)AR
() PAP=P
(vi) if Q/P is defined and X < Q/P then P X < Q
(vii) if X <Y and PRY < Q then PR®X < Q

Proof.

(i) Suppose that X < P A Q. We know by Axiom (A6]) that P A Q < P and P A Q < @ and so, by
transitivity we have X < P and X < Q.

(ii) Assume that P’ < P and Q' < Q. By Axiom ([A6)) we have that P’ A Q' < P and P’ A Q' < Q' to by
transitivity we have P’ A Q' < P and P’ A Q' < @, which imply P’ A Q' < P A Q by Axiom ([A7)).

(iii) We know that PAQ < P and P A Q < @ by Axiom (A6]), which is the same as stating that P A Q < Q
and P A Q < P, so by Axiom (A7), we get P A Q < Q A P. With a symmetric argument we establish
that Q A P < P A Q.

(iv) By Axiom we know that (1) PA(QAR) < Pand (2) PA(QAR) < QA R. Also by Axiom ,
we know that (3) @ A R < Q and (4) @ A R < R. Hence, (2) and (3) imply by transitivity we know
that (5) P A (Q A R) < @ and similarly, (2) and (4) imply (6) P A (Q A R) < R. Hence, from (1) and
(5) we conclude by Axiom that (7) P A (Q A R) < P A @ and therefore, also by Axiom (A7) we
obtain P A (Q A R) < (P A Q) A R from (7) and (6).

(v) P AP <P by Axiom (A6]). Since P < P by reflexivity, then P < P A P by Axiom ([A7)).

(vi) Assume that X < @Q/P. Then, since P < P, by Axiom (A1) we have P® X < P ® (Q/P), but by
Axiom ([A3)) we know that P ® (Q/P) < Q so by transitivity P® X < Q.

(vii) Assume that X <Y and P®Y < Q. Since P < P, by Axiom (A1) we have PR X < P®Y, so by
transitivity we have P® X < Q.

O
Proposition < is a preorder (i.e., a reflexive and transitive relation).
Proof.
Reflexivity: for any contract C, impl[C] < impl[C] and env[C] < env][C]. Hence C < C.

Transitivity: take any contracts C,C’,C” such that C' < C’" and ¢’ < C”. Hence impl[C] < impl[C'] and
env[C'] < env[C] as well as impl[C'] < impl[C"] and env[C"] < env[C’]. From this we obtain
that impl[C] < impl[C”] and env[C"] < env[C], in other words, C' < C”.

O
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Proposition Let C and C' be any contracts. For any specification I, if I € impl[C] and C < C' then
I € impl]C"].

Proof. This is immediate from the definition of contract refinement (Definition @ O

Theorem (1} ([BDH'12a]) Let C = (A,G) and C" = (A',G’) be to contracts. Then C' < C if and only if
A< A and G' <4 G.

Proof. See |BDH'12b). O
Proposition Contract equivalence and strong contract equivalence are equivalence relations.

Proof. By Definition [/} = and ~ are symmetric, and also =< and ~C<, so they are also reflexive and

==

transitive. O
Proposition 5| For any contracts C,C’,

(i) if C=C" then C ~ '

(ii) if C and C’" are in normal form then C = C’ if and only if C ~ C’

Proof. O

(i) Suppose that C = C’. Then A < A, A/ < A, G < G' and G' < G. We show that C < C’ and
with a symmetric argument we can prove that C/ < C. To show that C' < C” we need to show that
@) VI.I<4G=1<4 G and (b)VE.E< A = E<A.

(a) Take any I such that I <4 G. This is, for any H, if H < A then I® H < G® H. We need to
show that I <4 G’, this is, for any H’', H' < A’ implies @ H' < G’ ® H'. Take any H' such that
H' < A’. Since A’ < A we know that H' < A and since I <4 G, we obtain that IQ H' < GQ H'.
We also know that G < G’ and since < must preserve composition ® (see Definition [1) we have
that G ® H' < G’ ® H'. Hence by transitivity we have that I ® H' < G’ ® H', as required. We
conclude that I <4 G'.

(b) Let E be such that E < A’. We know that A’ < A. Hence we obtain that E < A as required.

(ii) We only need to show that C' ~ C’ implies C = C” whenever C and C” are in normal form. If C ~ C’
then impl[C] = impl[C’], this is, for all I, I <4 G iff I <4 G’. But this is the same as saying that
I <Giff I <G forall I, since C and C’ are in normal form Definition |8 But we know that G < G,
so this implies that G < G’, and similarly, we know that G’ < G’ and so G’ < G. Now, C ~ C’ also
implies that env[C] = env[C’]. This is, for all E, E < Aiff E < A’. But A < A and so, A < A’.
Similarly, A’ < A" and so A’ < A.

Theorem ([BDH" 124d]) If contracts Cy and Co are dominatible then Cy[X1Cs is (up to semantic equiva-
lence) the composition of Cy and Cs.

Proof. See [BDH™12b]. O

Dy, and such that Cy and Cy are dominatible. If D1 < Cy and Dy < Cy then D1 X Dy < C1 X Cs.

Theorem (3| [Theorem 6 of [BDH" 12a]] Let C1,Cs, D1, Do be contracts with normal forms Cy, Co, D1 and

Proof. See [BDH12b]. O

Corollary Let Cv,Cq, D1, Dy be contracts with normal forms C1, Co, D1 and Dg, and such that Cy and
Cy are dominatible. If D1 ~ C1 and Dy ~ Cy then D1 [X] Dy ~ C1 X Cs.

Proof. This is a direct consequence of Definition [7] and Theorem [3] O
Proposition @ Let (8,®,/, n,<) be a standard complete specification theory. Then, for all X,P,Q € S:
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(i) if X<PAQthen X <P®Q
(i5) if X <P and X < Q/P then X < Q
(iii) P®Q < P
(iv) if P < Q then P/R < Q/R
(v) if P < Q then R/Q < R/P
(vi) (P/Q)®R < (PRR)/Q
(vii) P A Q < Q/P

Proof. Take any X, P,Q € S.

(i) Assume that X < P A Q. By Proposition [I] we know that X < P and X < Q. Then, by Axiom (A10]
we get X < PR Q.

(ii) Assume that X < P and X < Q/P. Then by Axiom (A7) we know that X < P A (Q/P). So, by item
(i), we know that X < P® (Q/P). But Axiom ([A3)) states that P ® (Q/P) < @, so by transitivity of
< we get X < Q.

(iii) By reflexivity we know that P < P, so by Axiom (A11]) we get that P® @ < P.

(iv) Assume that P < Q. We know that R® (P/R) < P by Axiom (|A3]), so by transitivity, RQ(P/R) < Q,
which, by Proposition [1] implies P/R < Q/R.

(v) Assume that P < Q. Since R/Q < R/Q we have that PR (R/Q) < Q®(R/Q) by Axiom (A1]). But we
know that Q@ ® (R/Q) < R by Axiom ([A3)), so by transitivity P ® (R/Q) < R which, by Proposition
implies R/Q < R/P.

(vi) By Axiom (A3)), Q ® (P/Q) < P which by Axiom entails (Q ® (P/Q))® R < P® R. By
associativity (Axiom (A9)), Q®((P/Q)®R) < P®R, and so, by Axiom (A4)), (P/Q)®R < (PQR)/Q.

(vii) By Axiom (A6)), P A Q < @, so by Axiom (All)), (P A Q) ® P < @, hence by Axiom (|A4]),
PAQ<Q/P.

O

Proposition [7} Let (S,®,/, A, <) be a simplified specification theory. Then, for all X, P,Q,R€ S:

(i)) PAQ=PRQ

(ii)) PRQ <P and PRQ < Q

(iti) (R/Q)/P = R/(P r Q)

(iv) (P A Q)/R = (P/R) A (Q/R)

(v) (Q/P)/P =Q/P

(vi) (P/Q)®(Q/R) < P/R
(vii) (P/Q)® (P/(Q A R)) < P/(Q A R)
(viii) (P/Q)® (P'/Q) < (P®P')/(Q®Q)

Proof. Take any X, P,Q,R€e S.
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(i) We need to show that PA Q < P®Q and PRQ < P A Q:

e By reflexivity, PAQ < PAQand by (i), PAQ < P®Q.

e We know, by reflexivity we know that P < P, so by Axiom (|A11)), that (1) P®Q < P. Similarly,
by reflexivity we know that Q) < @ and by Axiom , that Q ® P < . By commutativity we
have that PQQ < Q® P and therefore (2) P® @ < Q. Hence, (1) and (2) imply by Axiom (A7)
that P®Q < P A Q.

(ii) This is a direct consequence of Item [1| of this Proposition.

(iii) We need to show that (R/Q)/P < R/(P A Q) and R/(P A Q) < (R/Q)/P:

o Let us call § & (R/Q)/P. By reflexivity we have (1) S < S. By Axiom 1b we get (2) S®
(P AQ) < S from (1). By Axiom we have that (3) (PAQ)®S < S® (P A Q), so by
transitivity we get (4) (P A Q)® S < S from (2) and (3). Now, by Axiom we know that
(5) P A Q < P, which by Axiom implies (6) (P A Q) ® S < P. Then from (4) and (6) we
obtain that (7) (P A Q)®S < R/Q by Item[2| of Proposition [f} We also know that (8) P A Q < Q
by Axiom ([A6]), which again by Axiom (A11]) implies (9) (P A Q)® S < Q. Then, from (7) and

(9) we get that (P A Q) ® S < R by Item [2| of Proposition @ Therefore, by Axiom we get

S<R/(PAQ).

o Lot us call T R/(P A Q). By reflexivity we know that (1) Q < @ and so by Axiom 1' we
know that (2) Q®(P®T) < Q. By associativity we know that (3) (Q®P)®T < Q®(P®T) and
so, by transitivity we have that (4) (Q® P)® T < @ from (3) and (2). Similarly, by reflexivity
we know that (5) P < P and therefore, by Axiom we know that (6) PR (Q®T) < P. By
commutativity (Axiom (A8))) we know that (7) Q®P < PQQ and therefore, by Axiom we
know that (8) (Q®P)®T < (P®Q)®T and by associativity, (9) (PRQ)RT < PR(Q®T). So
we get that (10) (Q ® P) ® T' < P by transitivity from (8), (9), and (6). Hence, by Axiom
we conclude that (11) (Q® P)®T < P A Q from (10) and (4). So again, by reflexivity we know
that (12) T' < T, which by Axiom entails (13) T® (Q ® P) < T. But by commutativity,
(14) (Q®P)®T < T® (Q® P), so by transitivity, (15) (Q ® P)® T < T. Then, (11) and (15)
imply that (16) (Q ® P)® T' < R by Item [2| of Proposition |6l This means, by associativity and
transitivity that (17) Q ® (P ® T) < R. Hence by Axiom (18) P® T < R/Q and also by
Axiom (19) T < (R/Q)/P.

(iv) We need to show that (P A Q)/R < (P/R) A (Q/R) and (P/R) A (Q/R) < (P A Q)/R

o Let us call § % (P AQ)/R. By Axiom 1' we know that (1) R®S < P A Q. By commutativity
(Axiom (A8))) we know that (2) S® R < R® S and therefore, by transitivity, (3) S R < P A Q.
Hence, by Proposition [I[] we have (4) S® R < P and (5) S® R < Q. So by Axiom we obtain
(6) S < P/R and (7) S < Q/R, which together imply S < (P/R) A (Q/R) by Axiom (AT).

o Let us call T % (P/R) A (Q/R). By Axiom |) we know that (1) T'< P/R and (2) T < Q/R.
We also know that (3) R < R by reflexivity, so from (3) and (1) we obtain (4) R®T < P by Item[2]
of Proposition [6] and similarly from (3) and (2) we obtain (5) R®T < Q. Hence, from (4) and
(5) we obtain (6) R®T < P A Q by Axiom (A7), which entails T < (P A Q)/R by Axiom (A4]).

(v) By Proposition [f{Item [3) we know that (Q/P)/P = Q/(P A P). By Proposition [[{Item[5), P A P = P,
hence, by Proposition [6Item , Q/(P A P) = Q/P, so by transitivity, (Q/P)/P = Q/P.

(vi) We derive this as follows:

R®((P/Q)®(Q/R)) =

|
—~—~

( and Axiom
P/Q)®(R®(Q/R)) by Axiom (A9)

P/Q)®Q by Axiom (|A3)) and Axiom
Q®(P/Q) by Axiom (A8)
P by Axiom (A3
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Hence we have that R® ((P/Q) ® (Q/R)) < P, so by Axiom we get (P/Q)® (Q/R) < P/R.

(vii) We can derive this as follows:

(P/Q)® (P/(Q AR) = (P/Q)®((P/R)/Q) by Proposition [7[Item [3) and Axiom
= (P/Q) A ((P/R)/Q) by Proposition [7|Item (L)
= (PA(P/R))/Q by Proposition [7|(Item [4)
= (P®(P/R))/Q by Proposition [7{Item [3)) and Proposition |6 Ttem [4)
= (PA(P/R)/Q by Proposition [7(Item [I)) and Proposition [6(Item [4)
< (PAP)/R)/Q by Proposition [6{Ttem [6])
= (P/R)/Q by Proposition |I{Item [5)) and Proposition @(Item
= P/(QAR) by Proposition [7(Item (3)

(viii) We obtain (P/Q)® (P'/Q) < (P® P")/(Q® Q') as follows: let ¢ (P/Q)® (P'/Q")

1 ®<P/Q by Axiom (A6

2 PRQ<P/Q by Axiom (A11)) from 1

3 PRQE<AQ by Proposition [7(Item [2)

4 d®Q<P by Proposition [6f Item 2) from 2,3
5 o< P/Q by Axiom

6 PRQ <P/Q by Axiom (A11]) from 5

7T 0RQ <Q by Proposition |7 Item [2)

8 PdRQ' KPP by Proposition [6(Item [2) from 6,7
9 (P®Q)®Q' <P by Axiom (A11)) from 4

10 2®(Q®Q)<P by Axiom (

11 (PRQ)RQ <P by Axiom (A11]) from 8

12 RER®Q) <P by Axiom (A9

13 2®(Q®Q) <P by Axiom (AS

14 ?2(Q®Q)< PP by Axiom (A10

15 (QRQ)®P< PP by Axiom A8

16 < (P®P)/(Q®Q) by Axiom (A4

O

Lemma Let (8,®,/, A, <) be a simplified specification theory. Then, for all P,Q,R€ S. Then P <p Q
if and only if PO R < Q.

Proof. (=) Assume that P <p Q. This is, for all R’ such that R' < R, P® R’ < Q ® R'. By reflexivity we
know that R < R and therefore P® R < Q ® R. But by Proposition [6{Item [3) we have that @ ® R < @, so
by transitivity, P ® R < Q.

(<) Assume that PQ R < Q. Suppose that R’ < R. Then, by Axiom (A1]) we have that PQ R’ < P®R,
and so, by transitivity we obtain (1) PQR’ < Q. And by Proposition|7] Item ) we know that (2) PQR' < R'.
From (1) and (2) we can infer that P® R’ < Q ® R’ by Axiom (A10) Hence we have shown that for any
R<R, PRR <QQ®R,thisis, P<r Q. O

Proposition Let (8,®,/, n,<) be a simplified specification theory and let C = (A,G). Then
(i) C~C
(i) C is in normal form.

(iii) C=C

Proof. Let C = (A, G). Then, by Deﬁnition C = (A,G) with G = G/A.
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(i) We have to prove that (a) impl[C] = impl[C] and (b) env[C] = env[C].

(a) To prove that impl[C] = impl[C] we need to show that for all I, I <4 G if and only if I <4 G. But,
by the characterization of relativized refinement given by Lemma [T this is the same as showing
that for all I, I ® A < G if and only if ] ® A < G. We establish this as follows:

(=) Assume that I® A < G. We know by Proposition m(ltem that AQG < G. Therefore,
by Axiom , G < G/A. Thus, by transitivity, I ® A < G/A, i.e., I A< G.

(<) Assume that T® A < G, this is, I® A < G/A. We know by Proposition Item that
I ® A < A. Therefore, by Proposition @(Item , I®A<LG.

(b) Since assumption(C) = assumption(C) then env[C] = {E| E < A} = env[C].

<
<

(ii) We have to prove that I <4 G if and only if I < G, but by Lemma [1} this is the same as proving that
I® A< Gifandonly if I <G.

(=) Assume that T® A < G, ie., I® A < G/A. We know, by Proposition Item , that
I® A < A. Then, by Proposition [6(Item [2)), we have that I ® A < G, but this implies, by
Axiom (A4)), that I < G/A, i.e., [ <G.

(<) Assume that I < G, i.e., I < G/A. By Proposition Item@ we have that AQ I < G, and
by commutativity (Axiom (A8])) we know that /@ A < A®1I, so by transitivity, /@ A < G.
But A® G < G by Proposition (Item , and so, by Axiom , G < G/A. Therefore,
by transitivity, I ® A < G/A, which is to say I® A < G.

(iii) Since C = (A,G/A) then C = (A, (G/A)/A), but by Propositionltem, (G/A)/A = G/A. Therefore
C=(AG/A) = (A (G/A)/A) =C.

O

C.2 Specifications and contracts
Theorem (4l PSL is a simplified specification theory (PSL, @, /P APl <PS) where:

o S PSL is the set of PSL expressions

o Composition @ is PSL conjunction: ¢1 @ @, = V1A P

Quotient /P is PSL implication: oy /P 0o def 2 — V1

Conjunction AP¥ is PSL conjunction: @1 AP o = ©1 A 2 (where the right-hand side represents the
PSL conjunction operator)

Refinement is logical entailment: o1 <P¥ o iff £ ©1 — @2

Proof. We need to show that <P* is a preorder and that axioms in Deﬁnition Deﬁnitionand Deﬁnition
That <P* is a preorder follows from the fact that — is reflexive and transitive.

Take any P, P,Q’",Q € PSL such that P’ <P P and Q' <P* Q. This is, = P’ — P and = Q' — Q.
Hence, for any sequence v, v = P’ — P and v = Q' — (@, or in other words, v &= P’ implies
v Pand v = @Q implies v = Q. Take any sequence u. Assume that v = P’ @ Q’, this is,
u = P’ A Q. Then, by the definition of =, v = P’ and v = @'. Hence, u = P and v = @ and
therefore u = P A Q, d.e., u E PR Q. So for any u, v = P’ ® Q' implies u = P ®P Q, which
means that u = P’ @ Q' — P®P Q for any u. This is, = P'®" Q' — P ®P* Q, which is to say that
P’ ®ps| Q/ <p5| P®ps| Q
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[ (A2) | We have to prove that for any P,Q € PSL, Q /P P is defined if and only if there is an X € PSL
such that P®P¥ X <P Q. In other words we need to show that P — @ is defined iff there is an X such
that = P A X — Q. This is so because for any formulas P,Q € PSL, P — @ € PSL

[(A3) | We have to show that for any P,Q € PSL, P®"(Q /P P) <P Q, i.e., that £ P A (P — Q) — Q.
This follows directly from modus ponens (a.k.a. implication elimination) which holds for PSL as it
holds for classical propositional logic.

[(A4) | We have to show that for any P,Q,X € PSL, if P® X <P Q then X <P*(Q /P P. This is, we
need to show that = P A X — @ implies £ X — (P — Q). This holds for PSL as it holds for classical
propositional logic.

[(A5) | P AP Q is always defined since for any formulas P, Q € PSL, P A Q is always defined.

[ (A6) | This follows from the fact that for any P,Q € PSL, = P A Q — P (i.e., PAP" Q<P P) and
EPAQ — Q (ie, PAP"Q<P'Q) hold for PSL as it holds for classical propositional logic by
conjunction elimination.

(A7) ] This follows from the fact that for any P,@Q,X € PSL, if = X — P (i.e., X<P'P)and £ X — Q
(i.e., X <P* Q) we have that = X — P A Q, i.e. X <P P AP Q. This holds in PSL as it holds for
classical propositional logic using conjunction introduction.

That this complete specification theory is a strongly commutative monoid (Definition follows directly
from the commutativity and associativity of logical conjunction in PSL. That it is a standard specification
theory (Definition follows from the fact that composition and conjunction are the same operator, namely,
PSL conjunction. O

C.3 Conformance

Theorem Given an interface F' annotated with a contract C = (A,G), and a protocol R annotated with
a specification S, F conforms to R if and only if for all ports p € ports(F):

1. = G — pproj[S]gir.p, and

2. & flip[A] — pproj[S]g|rp

Proof. This follows from Definition and the fact that for any PSL formulas ¢ and @9, = 1 — @9 iff
for all v, v = 1 implies v = g, this is, for all v, v € Lpgr(¢1) implies v € Lpsr,(p2), in other words,
LpsL(p1) € LesL(p2)- O

C.4 Compositional inference

Most of the proofs of this section can be derived directly from the statements in Section [3] and the charac-
terization of PSL as a simplified specification theory (Theorem , but we provide explicit versions of the
proofs.

Proposition |§|. [Relativized refinement in PSL] Let P,Q,R € FL. P <§Sl Q iff for all R' such that
ER >R EPAR -QAR.

Proof. This follows directly from Definition [d] and the definitions of composition and refinement from Theo-
rem [ O

Lemma[2} Let P,Q,Re FL. Then P<E'Q iff = P A R — Q.
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Proof. (=) Assume that P <]§fl Q, this is, for any R’ such that = R - R, = P AR — Q A R'. Let u be
any sequence such that v = P A R. We now that R <P R by reflexivity, i.e., = R — R, and so, by our
assumption that P <%Sl @, we have that = P A R — @ A R. And since this holds for all sequences, it holds
for u: w E P AR — @Q A R, which means that u = P A R implies u = @ A R. And since we assumed
u k= P A R, we obtain u = @ A R. This entails that u = @ by the definition of =. Hence we have shown that
ukE PAR—Q for any u, thisis, E P A R — Q.

(<) Assume that = P A R — Q. So for any sequence v, v = PA R — @, thisis, v = P A R implies v = Q.
Take any R’ such that R’ <P¥ R, this is, = R’ — R. Let u be any sequence such that v = R' — R. Sou = R’
implies v = R. Since = P A R — @, we know that u = P A R implies u = Q. Assume that u = P A R'.
Hence u = P and u = R/, which entails that u = R. Since we now know that both u = P and u = R hold, we
have that u = P A R holds, which entails u = (). And since we have u = Q and u = R, we have u = Q A R'.
So from u = P A R’ we have obtained u = Q A R/, this is, we have proven that u = P A R’ — Q A R/ for any
u, i.e., E P AR — Q A R for any R’ such that = R’ — R which is to say that P SIP’fl Q. O

Proposition [Contract implementations and environments in PSL] Let C = (A,G) be a PSL
contract. By
impl[C] ={IeFL| I A A— G}

and
env[C] ={Ee€FL| £ E - A}

Proof. This follows directly from Definition [5] the definition of refinement from Theorem [4] and the charac-
terization in PSL of relativized refinement from Lemma Bl O

Proposition Let C = (A,G) and C' = (A’',G") be PSL contracts. C' < C if for all implementations
ITeFL, =1 AA - G implies =l AN A — G (see Lemma@ and for all environments E € PSL, = E — A
implies = E — A’.

Proof. This follows directly from the definition of contract refinement Definition [6] and Proposition [I0} O

Proposition Let C = (A,G) and C' = (A',G’) be PSL contracts. We have that C =C" iff = A « A’
and =G o G And C~C" iff (1) forallI, EIANA—>Giff e INA -G, and (2) foral E,E E— A
iffe BE— A.

Proof. That C=C(C"iff = A A’ and = G < G’ follows from the definition of strong semantic equivalence
(Definition [7)) and the definition of refinement in PSL (Theorem [4]). That C' ~ C" iff (1) and (2), follows from
the definition of semantic equivalence (Definition , and Proposition O

Proposition Let C = (A,G) be a PSL contract. C is in normal form if=e I N A—> G iffe I - G.

Proof. This comes from the definition of normal form (Definition [8), the characterization of relativized
refinement in PSL (Lemma [2)) and the definition of refinement from Theorem O

Proposition Given a PSL contract C = (A, G):
(Z) C~C

(ii) C is in normal form.

Proof.

(i) Since C = (4,G) and C = (A, G) have the same assumptions, we only need to prove that for all I,
EIrnA—-Gifandonlyif=EIAA—-G.

(a) (=) Assume that =1 A A — G. Now, suppose that = I A A. Hence we conclude that = G which
can be weakened to E A — G, which is the same as = G. Therefore = I A A — G .
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(b) («) Assume that = I A A — G. Now, suppose that = I A A. Hence we conclude that = G which
is the same as = A — G. Since we assumed that = I A A we have that = A which, with = A - G
allows us to conclude that = G. Therefore = I A A — G.

(ii) We only need to prove that for all I, = I A A — G if and only if = I — G.

(a) (=) Assume that = I A A — G. Since C ~C , I AnA—Giff eI A A— G and therefore we
know that = I A A — G. By the rules of propositional logic this is equivalent to = I — (A — G)
which is = I — G.

(b) («=) Assume that =1 — G. This is, = I — (A — G). By the rules of propositional logic this is
equivalent to = I A A — G, and since C ~ C' , this is equivalent to = I A A —> G.

O
Corollary [2l For all T € FL, I € impl[C] if and only if = I — (A — G)

Proof. A direct proof follows from the definition of impl[C], which implies that = I A A — G, which is
logically equivalent to = I — (A — G) . Alternatively, by Proposition impl[C] = impl[C] which means
that I <4 G iff I < G, or in other words, E I A A > Giff =1 > G. O

Corollary [8| Let C = (A,G) and C' = (A, G') be to PSL contracts. Then C' < C if and only if = A — A’
and = G' — (A - G).

Proof. Since C ~ C then C" < C is equivalent to C’ < C, which by Theorem [1f is the same as saying that
A <P A" (which is £ A — A’) and G’ <g51 G. And this is equivalent to G’ <P¥ G since C is in normal form
(Proposition and this in turn is equivalent to = G’ — G, i.e., E G' — (A - G). O

Theorem [6} Given a component K and two contracts C and ', if K & C and C < C’ then K = C'.
Proof. This follows directly from Definition [25| and Proposition O
Proposition PSL contract C = (A, G) dominates Cy = (A1,G1) and Cy = (As,G2) if

(a) for any I and Iy such that =1y A Ay > Gy and = Is A As —> G then = (I1 Al) A A— G

(b) for any E such that = E — A:

(a) for any I such that =11 A Ay — G1 then = (E A L) — Ay, and
(b) for any Iy such that = Is A Ay — G then = (E A L) — Ay

Proof. This follows directly from Definition [9] Proposition [I0] and Theorem [4] O

Proposition Given two dominatible PSL contracts C; = (A1,G1) and Cy = (Az,Gs) which have
normal forms Cy = (A1,G1) and Cy = (Az,G2),

C1XCy = (4,G)
where

A= (Gao M)A (Gr— A)
= ((A2 = G2) = A1) A (A1 — G1) = Ay

and

Y
|

G1AGy
= (Al — Gl) A\ (A2 — Gg)
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Proof. This follows directly from Definition [II} Theorem [] and Definition 23] O

Corollary 4. Given PSL contracts C = (A,G), C1 = (A1,G1) and Co = (A2,G2). Then C1 KM Cs < C iff
EA—>Aande G- G.

Proof. This follows from Corollary [3| and Proposition [16]

Theorem m. [Correctness of Algorithm [5] COMPONENT-VERIF(K, C) = true if and only if K &= C.

Proof. We prove it by induction on the structure of K.

If K is atomic, then the result of COMPONENT-VERIF(K, C) is the same result of calling the function
ATOMIC-COMPONENT-VERIF(K, C') from Algorithm {4} which is = implspec[K] A A — G, which according to
Proposition [T0] and Definition is the same as K = C.

If K is composite, then the result of COMPONENT-VERIF(K,C) is the result of calling the function
BINARY-COMPONENT-VERIF(K, C') from Algorithm[6] By induction hypothesis, COMPONENT-VERIF (K1, Cy) =
true if and only if K7 E C; and COMPONENT-VERIF(K5,Cy) = true if and only if Ky = Cy, in other
words, v; and vs in lines 3 and 4 of Algorithm [6] are true iff K; &= C; for i € {1,2}. But this is to say
that |mp|spec[K1]] € impl[C1] and implspec[K>] € impl[C2] by Definition 5] In other words K; and
K are valid implementations of C1 and C, respectively. By Theorem [2| and Definition we know that
Cl X 02 dominates both Cl and C’2 which means (Deﬁmtlon @ that the composition of any implementa-
tions of C; and 02 is a valid implementation of 1 X 02, ie., if Iy € impl[[é’l]] and I, € implﬂé’gﬂ then
L@ I, € impl[C; ®C,]. But we have established that |mp|spec[[K1]] e impl[C;] and implspec[Ks] €
impl[Cy] so implspec[K] ®" implspec[K>] € impl[Cy & Cs], and by Definition [24) implspec[K; || Ka] =
implspec[ /(1] ®p5'|mp|spec[[K2]] Hence K = implspec[K || K2] € impl[Cy X Cy], which is to say that
K E 01 ] 02 Line 4 of Algorithm |§| establishes whether Cl ] Cg < C. Hence, by Theorem |§| we get
KgEeC. O

Proposition [Contract composition is commutative and associative and preserves strong
contract equivalence] For any contracts C,Cy,Co, Cs3 in a simplified specification theory:

(i) C1xICy = Cy[x1Cy
(ii) (C1XC2)KCs ~ C1 X (C2XC3)
(#ii) if C1 = Cq and C1 and Cs are in normal form, then C1X1C = Cy [x1C

Proof.

(i) By commutativity of specifications:

CiXCy = ((41/G2) A (A2/G1),G1® G2)
((A2/G1) A (A1/G2), G2 @ Gy)
CoxCy

(i) Let u define C ¥ O/ ®Cy = (A,G), ' Y oomo;, = (A6, 0L Y ores = (AL,Gy) and

CR C XIC' = (Ag,GRr). Then, we need to prove that C, ~ Cr. We prove C, < Cg, and Cr < Cp,
follows by a symmetric argument. To prove C < Cg, it is enough, by Theorem [I} to prove that
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(a) Agp < Ap and (b) G <4, Gg. First, let us spell out the contract compositions above, according
to Definition 11k

A = (A/G2) A (A2/Gh)

G = GiRG,

A" = (A2/Gs) A (A3/G2)
G = G®Gs
AL = (A/Gs) A (45/G)
G = G®Gs
Ap = (AJG) A (A')Gy)
Gr = G1®G

Note that G = G/A and G’ = G'/A’, in accordance to Definition
(a) Let us expand Ay, first by considering A/G3, using Proposition |7} and Proposition

A/Gs = ((A1/Ga) ~ (A2/Gh))/Gs
= ((A1/G)/Gs) ~ ((A2/G1)/Gs)
= (A1/(G2 A Ga)) A (A2/(G1 A Ga))

Now, since A3/G = A3/(G1 A G2) we have

Ap = (A/Gs) r (A3/G)
= (A1/(G2 A G3)) A (A2/(G1 A G3)) A A3/(G1 A Ga)

Now we expand Ag, first by considering A’/G;:

(A2/Gs) A (As/Ga))/Gy
(A2/G3)/Gh) A ((A3/G2)/Gh)
A2/(Gs A G1)) A (A3/(G2 A G1))
A/(G1 A G3)) A (A3/(Gr A Ga))

A)G, =

(
(
(
(

Now, since A1/G’ = A1/(G2 A G3) we have that

Ar = (A/G) A (A)Gy)
= Ai/(G2 A Ga) A ((A2/(G1 A Ga)) A (A3/(GL A G2)))
= A

Hence AR < AL-

(b) To prove G <4, Gr it is enough to prove that G ® Ar < Gg by Lemma We will prove this
by showing that G, < Gr/Ag. Since G = G/A we have

G = G®G3
= (G/A)®Gs
= (G1®Gy)/A)®Gs
< (GL®G)®Gy)/A
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Since G’ = G'/A’ we have

Gr/Ar = 1®G") /AR
®(G'/A")/Ar
1/AR) ® ((G'/A")/AR)
1/AR) ® (G'/(A” A AR))
1/AR) ® (G'/AR)
1®G") /AR
1®(G2®G3))/Ar

Q‘Q‘Q

=

Il
NN

(iii) Since C' ~ C by reflexivity, and since C; = C5 implies C; ~ C5 by Proposition Ithen Ci1XC ~ CyxIC
by Corollary l Hence, C; XIC = C5 [X] C' because the contracts are in normal form (Proposition '

O
Proposition Ifn>1 then [X]!_, C;i = C1 ¥ (X];_, C;)
Proof. We prove this by induction on n:

Case 1. n = 2: Then X|}, C; = (X} C)RCp = (K= C)RCy = C1 W Cy = C1 K (X, Ci) by
Definition 28

Case 2. n > 2: Then, assume that the statement holds for all m < n (induction hypothesis)

X, 6 = (X C )- = Cp by Definition 2§
= (1R (X, C))RC, by induction hypothesis and Proposition [17(iii)
= (1[X ((. Ci)XCp) by associativity of
= O1X ((. j+1) X Cy) by changing of variables j i1
= OR(X) : CHRC, 4) by defining ¢} < g
= O (.? 11 C?) by Definition [2§]
= XX} G)
O
Proposition Let I = {1,...,n} and {Ci}icr a family of contracts. Then [X],.; C; = (A, G) where
A= A/ N\ G)
iel jen\{i}
and N
G=/\Gi
i€l
Proof. a O

C.5 Quotienting
Theorem Given a pair of contracts Cy = (Ao, Go) and Cy = (A1, G1), if Co and Cy are in normal form,
then C4 (Co/Cl) < Cy.

Proof. Let us call Cx = Cyp/Cy and C" = C1XICx. By definition of contract quotient (Deﬁnition we know
that Cx = (Ax,Gx) where Ax = G1 ® Ag and Gx = (Go/G1) A (A1/Ap). Hence, by definition of contract
composition (Deﬁnition we have that €' = (A7, G') where A’ = (A /Gx) A (Ax/Gy) and G = G ®Cx.
In order to prove that C’ < C, by using Theoremit is enough to prove that (1) Ag < A’ and (2) el <4, Go.
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1. To show that Ay < A’ we need to show that (a) Ag < A;/Gx and that (b) Ay < Ax/ﬁ The result
then follows by Definition [T(A7).

(a) By Definition [T[{A3) we know that Ay ® (A1/4p) < A;, and by commutativity of ®, we have
that (A1/A0) ®A0 < Al. By (A6) we also know that (Go/Gl) A (Al/Ao) < (Al/Ao), which
by (A1) entails ((Go/G1) A (A1/40)) ® Ao < (A1/Ap) ® Ap and by transitivity of < we obtain
((Go/G1) A (A1/A0))®Ap < Ay Since Gx = (Go/G1) A (A1/Ag), we have proven that Gx ® Ag <
A; which, by (A4) implies that Ay < A1/Gx.

(b) By reflexivity we know that G1 ® Ay < G1 ® Ay and so by Definition [[{A3) we know that
Ap € (G1 ® Ag)/G1. But we defined Ax = G1 ® Ap so we have proven that Ag < Ax/G; as
required.

2. Since Cj is in normal form, by Definition (8 proving Q< 4, Go is the same as proving G < Go. We
show this as follows. By Definition [T{A3) we know that G1 ® (Go/G1) < Go, and by (A6) we also know
that (Go/G1) A (A1/A) < Go/G. This implies by (A1) that G1 ® ((Go/G1) A (A1/A)) < G1®(Go/G1)
which by transitivity entails that G1 ® ((Go/G1) A (41/A)) < Gy, but Gx = (Go/G1) A (A1/Ap) so we
have shown that G1 ® GX < Gy, and G = G1® GX, therefore G/ < Gy as required.

O

81



	List of Algorithms
	List of Figures
	List of Tables
	Introduction
	A working example
	The questions addressed in this project

	User/tool work-flow
	Theoretical framework for contract-based reasoning
	PSL Specifications and contracts
	Conformance
	Conformance between an interface and its protocols
	Conformance between a capsule and its interface
	Conformance and inheritance

	Compositional inference
	Relating formulas and models
	Verifying atomic capsules
	Verifying composite capsules: basic compositional inference

	Incremental analysis
	Quotienting
	Implementing verification
	PSL validity checking
	PSL verifiers and translators
	Using a PSL model-checker to check for validity

	Summary and future work
	Acknowledgements
	References
	Index
	RTEdge™ description and abstract syntax
	Informal description
	Formal description

	PSL core syntax and semantics
	Syntax
	Semantics

	Proofs
	Theoretical framework
	Specifications and contracts
	Conformance
	Compositional inference
	Quotienting


