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Abstract

In January 2005 I showed that universality in computation cannot be achieved.
Specifically, I exhibited a number of distinct counterexamples, each of which sufficing to
demonstrate that no finite and fixed computer can be universal in the sense of being able
to simulate successfully any computation that can be executed on any other computer.
The number and diversity of the counterexamples attest to the general nature of the
nonuniversality result. This not only put to rest the Church-Turing Thesis, by proving
it to be a false conjecture, but also was seen to apply, in addition to the Turing
Machine, to all computational models, past, present, and future, conventional and
unconventional.

While over eight years have now passed since nonuniversality in computation was
established, the result remains largely misunderstood. There appear to be at least two
main reasons for this state of affairs. As often happens to new ideas, the nonuniversality
result was confronted with a stubborn entrenchment in a preconceived, deeply held, and
quasi-religious belief in the existence of a universal computer. This was exacerbated
by a failure to read the literature that demonstrates why such a belief is unfounded.
Behavior of this sort, sadly not uncommon in science, explains the enduring mirage of
the universal computer.

The purpose of this paper is to rectify the most notorious misconceptions associated
with nonuniversality in computation. These misconceptions were expressed to the
author in personal communications, orally, by email, and in referee reports. Each
misconception is quoted verbatim and a detailed response to it is provided. The paper
concludes by inviting the reader to take a computational challenge.
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1 Introduction

For a long time people believed that the Sun orbits our Earth. We now know better. And
so it is with universality in computation. Consider the following statement:

“It can also be shown that any computation that can be performed on a modern-day
digital computer can be described by means of a Turing machine. Thus if one ever found a
procedure that fitted the intuitive notions, but could not be described by means of a Turing
machine, it would indeed be of an unusual nature since it could not possibly be programmed
for any existing computer.” [32], p. 80.

The first sentence in the above quote is clearly false, and well known counterexamples
abound in the literature (see, for example, [33, 59], and for further references [6, 11]). The
second sentence, on the other hand, is only half true. Indeed, it is perfectly justified to say
that a computation that cannot be performed on a Turing Machine must be of an unusual
nature. However, this does not mean that such a computation cannot be programmed on
any existing computer. Rather, the existence of such a computation would instead mean
that the Turing Machine is simply not universal and that the Church-Turing Thesis (whose
validity is assumed implicitly in the above quote) is in fact invalid.

In January 2005 I showed that the concept of a Universal Computer cannot be realized
[6]. Specifically, I exhibited instances of a computable function F that cannot be computed
on any machine i/ that is capable of only a finite and fixed number of operations per step
(or time unit). This remains true even if the machine U is endowed with an infinite memory
and the ability to communicate with the outside world while it is attempting to compute F.
It also holds if, in addition, U is given an indefinite amount of time to compute F.

Formally, my result is stated as follows:

Theorem 1. Nonuniversality in computation: Given n spatially and temporally
connected physical variables, X, Xs,...,X,,, where n is a positive integer, there exists a
function F™(X1, Xo,...,X,,) of these variables, such that no computer can evaluate F™ for
any arbitrary n, unless it is capable of an infinite number of operations per time unit. m

A constructive proof of Theorem 1 seeks to define a function F" that obeys the following
property: F™ is readily computable by a machine M, capable of exactly n operations per
time unit; however, this machine cannot compute F"*! when the number of variables is
n + 1. While a second machine M, ., capable of n + 1 operations per time unit can now
compute the function F™*! of n + 1 variables, M, is in turn defeated by a function F™*2
of n + 2 variables. In principle, the escalation continues without end.

This point deserves emphasis. While the function F" ™ (X1, X5, ..., X,,41) is easily com-
puted by M, 1, it cannot be computed by M,,. Even if given infinite amounts of time and
space, machine M, is incapable of simulating the actions of M, ;. Furthermore, machine
M, 1 is in turn thwarted by F""2(X}, Xy, ..., X,42), a function computable by a third ma-
chine M, 5. The process repeats indefinitely. Therefore no computer is universal if it is
capable of exactly T'(i) operations during time unit ¢, where i is a positive integer, and T'(7)
is finite and fixed once and for all, for it will be faced with a computation requiring V' (7)
operations during time unit ¢, where V(i) > T'(i) for at least one i. (Note that this last
statement is, in fact, a more general form of the result in Theorem 1, as it invokes neither
the physical variables nor the function F™.)

Therefore, in order to actually prove Theorem 1 constructively, it suffices to exhibit (at
least) one concrete instance of the function F™ satisfying the above property. Indeed we



describe several examples of such a function occurring in:

1. Computations with time-varying variables: The variables, over which the function is
to be computed, are themselves changing with time.

2. Computations with time-varying computational complexity: The computational com-
plexity of the function to be computed is itself changing with time.

3. Computations with rank-varying computational complexity: Given several functions to
be computed, and a schedule for computing them, the computational complexity of a
function depends on its position in the schedule.

4. Computations with interacting variables: The variables of the function to be computed
are parameters of a physical system that interact unpredictably when the system is

disturbed.

5. Computations with uncertain time constraints: There is uncertainty with regards to
the input (when and for how long are the input data available), the calculation (what
to do and when to do it), and the output (the deadlines are undefined at the outset);
furthermore, the function that resolves each of these uncertainties itself has demanding
time requirements.

6. Computations with global mathematical constraints: The function to be computed is
over a system whose variables must collectively obey a mathematical condition at all
times.

For instance, suppose that the X; are themselves functions that vary with time. It is
therefore appropriate to write the n variables as X (t), Xa(t), ..., X, (t), that is, as functions
of the time variable ¢. Further assume that, while it is known that the X; change with time,
the actual functions that effect these changes are not known (for example, X; may be a true
random variable). Let

Fn+1(X17X27 cee aXn-i-l) = Fl(Xl)a FQ(X2)7 s 7Fn+l<Xn+1)7

where each F; is a simple function of one variable that takes one time unit to compute. The
problem calls for computing F;(X;(t)), for i = 1,2,...,n, at time ¢ = ty5. Specifically, let
F;(X;(t)) simply represent the reading of X;(¢) from an external medium. The fact that X;(¢)
changes with the passage of time means that, for £ > 0, not only is each value X;(ty + k)
different from X;(¢y), but also the latter cannot be obtained from the former. No computer
capable of fewer than n read operations per time unit can solve this problem.

We note in passing that the above example is deliberately simple in order to convey the
idea. Reading a datum, that is, acquiring it from an external medium, is the most elementary
form of information processing. Any computer must be able to perform such operation. This
simplest of counterexamples suffices to establish nonuniversality in computation. Of course, if
one wishes, the computation can be made more complex, at will. While our main conclusion
remains unchanged, for some, a more complex argument may sound more convincing. Thus,
for example, we may add arithmetic by requiring that F;(X;(¢)) call for reading X;(¢) and
incrementing it by one, for i = 1,2,... n, at time ¢ = ¢y. Reading X;(t), incrementing it by
one, and returning the result takes one time unit.



Figure 1: Incompleteness in mathematics and nonuniversality in computation.

In any case, a computer M, capable of n operations per time unit (for example, one with
n processors operating in parallel) can compute all the F;(X;(t)) at ¢t = to successfully. A
computer capable of fewer than n operations per time unit fails to compute all the F;(X;(¢))
at t = ty. Indeed, suppose that a computer is capable of n — 1 operations per time unit.
It would compute n — 1 of the F;(X;(t)) at t = to correctly. Without loss of generality,
assume that it computes F;(X;(t)) at t = to for i = 1,2,...,n— 1. Now one time unit would
have passed, and when it attempts to compute F,(X,(to)), it would be forced to incorrectly
compute F,(X,(to+1)).

Is computer M, universal? Certainly not. For when the number of variables is n + 1,
M, fails to perform the above computation. As stated above, a succession of machines
M,11,Mn + 2, ..., each succeeds at one level only to be foiled at the next. The implication to
the theory of computation is akin to that of Godel’s incompleteness theorem to mathematics.
In the same way as no finite set of axioms A; can be complete, no computer C; is universal
that can perform a finite and fixed number of operations per time unit. This is illustrated
in Fig. 1: For every set of axioms A; there exists a statement G, not provable in A;, but
provable in A;,; similarly, for every machine C; there is a problem P, ;; not solvable on Cj,
but solvable on Cj 4.

This result applies not only to idealized models of computation, such as the Turing
Machine, the Random Access Machine, and the like, but also to all known general-purpose
computers, including existing conventional computers (both sequential and parallel), as well
as contemplated unconventional ones such as biological and quantum computers. It is true
for computers that interact with the outside world in order to read input and return output
(unlike the Turing Machine, but like every realistic general-purpose computer). It is also valid
for computers that are given unlimited amounts of time and space in order to perform their
computations (like the Turing Machine, but unlike realistic computers). Even accelerating
machines that increase their speed at every step (such as doubling it, or squaring it, or any
such fixed acceleration) at a rate that is set in advance, cannot be universal!

The only constraint that we have placed on the computer (or model of computation) that
claims to be universal is that the number of operations of which it is capable per time unit
be finite and fixed once and for all. In this regard, it is important to note that:

1. The requirement that the number of operations per time unit, or step, be finite is
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necessary for any “reasonable” model of computation; see, for example, [53], p. 141.

2. The requirement that this number be fized once and for all is necessary for any model
that purports to be “universal”; see, for example, [22], p. 210.

Without these two requirements, the theory of computation in general, and the theory
of algorithms, in particular, would be totally irrelevant.

The consequences to theoretical and practical computing are significant. Thus the con-
jectured “Church-Turing Thesis” is false. It is no longer true that, given enough time and
space, any single general-purpose computer, defined a priori, can perform all computations
that are possible on all other computers. Not the Turing Machine, not your laptop, not the
most powerful of supercomputers. In view of the computational problems mentioned above
(and detailed in [6] — [18], [26], and [42] — [47]), the only possible universal computer would
be one capable of an infinite number of operations per time unit.

In fact, this work has led to the discovery of computations that can be performed on
a quantum computer but not on any classical machine (even one with infinite resources),
thus showing for the first time that the class of problems solvable by classical means is a
true subset of the class of problems solvable by quantum means [44]. Consequently, the
only possible universal computer would have to be quantum (as well as being capable of an
infinite number of operations per time unit).

The results described in the previous paragraphs were obtained and published between
2005 and 2012. They appeared in technical reports, were presented at conferences, and
published as journal papers and book chapters, as documented in the bibliography section.
Yet, over eight years after they were first announced, they remain generally misunderstood,
and consequently controversial. This is not surprising: Old habits die hard. It is difficult
to abandon ideas that one has believed all of one’s life. This applies to inherited scientific
ideas, that people persist in defending, even if these ideas are demonstrably wrong. Disrup-
tive innovations usually disturb and destabilize. To announce that the long-held belief in
universality in computation is, in fact, in error was met with great skepticism, to say the
least. Most of the animosity towards the author came from scientists who had not bothered
to read his work. The title of a paper was sufficient to ignite their anger.

It started with hostile email. Then came the uninspired referee reports. And finally
Wikipedia removed the entry on Nonuniversality in Computation, created by a student of
of the author, after one reader objected. It was clear that these people had not read any of
my work on the subject. This is when I decided to write this paper, based on a web page [4]
I had created to reply to unfounded criticisms.

The remainder of this paper is organized as follows. Section 2 provides definitions for
many of the terms used in the discussion to follow (some of the more common of these
terms were already introduced in this section without definition, in order not to interrupt
the flow of the opening paragraphs). Section 3 summarizes the work in my previous papers,
culminating in the fundamental result that the ‘Universal Computer’ is a myth. Section 4
is a dialog with an imaginary debater who embodies all of my critics and voices all their
misconceptions. Section 5 offers a computational challenge to the readers.



2 Preliminaries

A time unit is the length of time required by a processor to perform a step of its computation,
consisting of three elementary operations: a read operation in which it receives a constant
number of fixed-size data as input, a calculate operation in which it performs a fixed number
of constant-time arithmetic and logical calculations (such as adding two numbers, comparing
two numbers, and so on), and a write operation in which it returns a constant number of
fixed-size data as output.

A sequential computer, consists of a single processor. A parallel computer has n processors,
numbered 1 to n, where n > 2. Both computers use the same type of processor and that
processor is the fastest possible [2].

The concept of computational universality is one of the dogmas in Computer Science,
stated as follows: Given enough time and space, any general-purpose computer can, through
simulation, perform any computation that is possible on any other general-purpose computer.
Statements such as this are commonplace in the computer science literature, and are served
as standard fare in undergraduate and graduate courses alike. Sometimes the statement
is restricted to the Turing Machine (TM), and is referred to as the Church-Turing Thesis
(CTT), which stipulates that there exists a Universal Computer, namely, the TM; thus, the
following quote is typical: “A Turing machine can do everything that a real computer can
do.” [53], p. 125. Other times, the statement is made more generally about a Universal
Computer, that is, a computer capable of executing any computation that can be performed
by any other computer; thus, we are told: “It is possible to build a universal computer:
a machine that can be programmed to perform any computation that any other physical
object can perform.” [22], p. 134.

As its name indicates, the CTT is a conjecture, whose proof has remained elusive due to
the difficulty in defining what it means to compute. A few points are worth making in this
regard:

1. The Universal Turing Machine (UTM) defined by Alan Turing, is ‘universal’ in the
sense of being able to simulate any computation performed by any other special-purpose
TM. In other words, the UTM can be programmed to execute any TM computation.
This is a provable property, and is not in question here or elsewhere.

2. However, the UTM is not known to be ‘universal’ in the more general sense of being
able to simulate by its own means any computation performed by means of any other
computational device (not necessarily a TM). It is this universality of the UTM, in the
more general sense, that is expressed by the CTT.

3. My work has shown the CTT, and more generally computational universality, to be
false. Specifically, I proved the stronger result that no ‘Universal Computer’ is possible,
thus eliminating, not only the UTM, but also all other models of computation as
contenders for the title.

3 Inherently Parallel Computations

The term inherently parallel computation refers to a computation that can be performed suc-
cessfully only on a parallel computer with an appropriate number of processors. Examples



are computations that involve: time-varying variables, time-varying complexity, rank-varying
complexity, interacting variables, uncertain time constraints, and variables obeying mathe-
matical constraints. These computations also provide counterexamples to the existence of a
universal computer [6]-[15], [26], [42]-[47].

3.1 Time-Varying Variables

This computation was described in Section 1. It is reproduced briefly here for completeness
in the context of inherently parallel computations. For a positive integer n larger than 1, we
are given n functions, each of one variable, namely, fi, fs, ..., f,, operating on the n physical
variables z1, xa, ..., x,, respectively. Specifically, it is required to compute F;(x;), for i = 1,
2, ..., n. For example, f;(x;) may be equal to z?. What is unconventional about this com-
putation, is the fact that the x; are themselves (unknown) functions z(t), z2(t), ..., z,(t),
of the time variable ¢. It takes one time unit to evaluate f;(z;(¢)). The problem calls for
computing f;(x;(t)), 1 < i < n, at time ¢t = ty,. Because the function x;(t) is unknown, it
cannot be inverted, and for k£ > 0, x;(to) cannot be recovered from z;(ty + k).

A sequential computer fails to compute all the f; as desired. Indeed, suppose that x; ()
is initially operated upon. By the time fi(z1(tg)) is computed, one time unit would have
passed. At this point, the values of the n — 1 remaining variables would have changed. The
same problem occurs if the sequential computer attempts to first read all the x;, one by one,
and store them before calculating the f;.

By contrast, a parallel computer consisting of n independent processors may perform all
the computations at once: For 1 < ¢ < n, and all processors working at the same time,
processor ¢ computes f;(z;(tp)), leading to a successful computation.

3.2 Time-Varying Computational Complexity

Here, the computational complexity of the problems at hand depends on time (rather than
being, as usual, a function of the problem size). Thus, for example, tracking a moving
object (such as a spaceship racing towards Mars) becomes harder as it travels away from the
observer.

Suppose that a certain computation requires that n independent functions, each of one
variable, namely, fi(z1), fa(z2), ..., fu(zn), be computed. Computing f;(z;) at time ¢
requires C'(t) = 2' operations, for ¢ > 0 and 1 < i < n. Further, there is a deadline for
reporting the results of the computations: All n values fi(x1), fa(xz), ..., fu(z,) must be
returned by the end of the third time unit, that is, when ¢ = 3.

It should be easy to verify that no sequential computer, capable of exactly one constant-
time operation per step (that is, per time unit), can perform this computation for n > 3.
Indeed, f(z;) takes C'(0) = 2° = 1 time unit, fo(z) takes another C'(1) = 2! = 2 time units,
by which time three time units would have elapsed. At this point none of f3(x3),..., fu(x,)
would have been computed. By contrast, an n-processor parallel computer solves the problem
handily. With all processors operating simultaneously, processor ¢ computes f;(z;) at time
t =0, for 1 <4 < n. This consumes one time unit, and the deadline is met.



3.3 Rank-Varying Computational Complexity

Suppose that a computation consists of n stages. There may be a certain precedence among
these stages, or the n stages may be totally independent, in which case the order of execution
is of no consequence to the correctness of the computation. Let the rank of a stage be the
order of execution of that stage. Thus, stage ¢ is the ith stage to be executed. Here we focus
on computations with the property that the number of operations required to execute stage
iis C'(i), that is, a function of 7 only.

When does rank-varying computational complexity arise? Clearly, if the computational
requirements grow with the rank, this type of complexity manifests itself in those circum-
stances where it is a disadvantage, whether avoidable or unavoidable, to being ¢th, for ¢ > 2.
For example, the precision and/or ease of measurement of variables involved in the compu-
tation in a stage s may decrease with each stage executed before s.

The same analysis as in the previous section applies by substituting the rank for the time.

3.4 Interacting Variables

A physical system has n variables, x1, xs, ..., z,, each of which is to be measured or set to
a given value at regular intervals. One property of this system is that measuring or setting
one of its variables modifies the values of any number of the system variables unpredictably.

A sequential computer measures one of the values (z;, for example) and by so doing it
disturbs the equilibrium, thus losing all hope of recording the state of the system within the
given time interval. Similarly, the sequential approach cannot update the variables of the
system properly: Once x; has received its new value, setting x, disturbs x; unpredictably.

A parallel computer with n processors, by contrast, will measure all the variables x1, s,
..., T, simultaneously (one value per processor), and therefore obtain an accurate reading of
the state of the system within the given time frame. Consequently, new values x1, zs, ..., x,
can be computed in parallel and applied to the system simultaneously (one value per pro-
Ccessor).

3.5 Uncertain Time Constraints

In this paradigm, we are given a computation each of whose components, namely, the input
phase, the calculation phase, and the output phase, needs to be computed by a certain
deadline. However, unlike the standard situation in conventional computation, the deadlines
here are not known at the outset. In fact, and this is what makes this paradigm truly
unconventional, we do not know at the moment the computation is set to start, what needs
to be done, and when it should be done. Certain physical parameters, from the external
environment surrounding the computation, become spontaneously available. The values
of these parameters, once received from the outside world, are then used to evaluate two
functions, call them f; and f5, that tell us precisely what to do and when to do it, respectively.

The difficulty posed by this paradigm is that the evaluation of the two functions f;
and fs is itself quite demanding computationally. Specifically, for a positive integer n, the
two functions operate on n variables (the physical parameters). Only a parallel computer
equipped with n processors can succeed in evaluating the two functions on time to meet the
deadlines.



3.6 Computations Obeying Mathematical Constraints

There exists a family of computational problems where, given a mathematical object sat-
isfying a certain property, we are asked to transform this object into another which also
satisfies the same property. Furthermore, the property is to be maintained throughout the
transformation, and be satisfied by every intermediate object, if any. More generally, the
computations we consider here are such that every step of the computation must obey a cer-
tain predefined constraint. (Analogies from popular culture include picking up sticks from a
heap one by one without moving the other sticks, drawing a geometric figure without lifting
the pencil, and so on.)

3.6.1 Rewriting Systems

An example of such transformations is provided by rewriting systems. From an initial string
ab, in some formal language consisting of the two symbols a and b, it is required to generate
the string (ab)™, for n > 1. Thus, for n = 3, the target string is ababab. The rewrite rules to
be used are: a — ab and b — ab. Throughout the computation, no intermediate string should
have two adjacent identical characters. Such rewrite systems (also known as L-systems) are
used to draw fractals and model plant growth [48]. Here we note that applying any one of
the two rules at a time causes the computation to fail (for example, if ab is changed to abb,
by the first rewrite rule, or to aab by the second).

A sequential computer can change only one symbol at once, thereby causing the adjacency
condition to be violated. By contrast, for a given n, a parallel computer with n processors
can easily perform a transformation on all the inputs collectively. The required property is
maintained leading to a successful computation. Thus, the string (ab)” is obtained in logn
steps, with the two rewrite rules being applied simultaneously to all symbols in the current
intermediate string, in the following manner: ab, abab, abababab, and so on. It is interesting
to observe that a successful generation of (ab)™ also provides an example of a rank-varying
computational complexity (as described in Section 3.3). Indeed, each legal string (that is,
each string generated by the rules and obeying the adjacency property) is twice as long as
its predecessor (and hence requires twice as many operations to be generated).

3.6.2 Sorting Variant

A second example of computations obeying a mathematical constraint is provided by a
variant to the problem of sorting. For a positive even integer n, where n > 8, let n distinct
integers be stored in an array A with n locations A[1], A[2], ..., A[n], one integer per location.
Thus A[j], for all 1 < j < n, represents the integer currently stored in the jth location of A.
It is required to sort the n integers in place into increasing order, such that:

1. After step ¢ of the sorting algorithm, for all ¢ > 1, no three consecutive integers satisfy:
Alj] > Alj+1] > A[j + 2]
forall1 <j<n-—2
2. When the sort terminates we have:

All] < A[2] < --- < Anl.



This is the standard sorting problem in computer science, but with a twist. In it, the
journey is more important than the destination. While it is true that we are interested in the
outcome of the computation (namely, the sorted array, this being the destination), in this
particular variant we are more concerned with how the result is obtained (namely, there is a
condition that must be satisfied throughout all steps of the algorithm, this being the journey).
It is worth emphasizing here that the condition to be satisfied is germane to the problem
itself; specifically, there are no restrictions whatsoever on the model of computation or the
algorithm to be used. Our task is to find an algorithm for a chosen model of computation
that solves the problem exactly as posed. One should also observe that computer science
is replete with problems with an inherent condition on how the solution is to be obtained.
Examples of such problems include: inverting a nonsingular matrix without ever dividing by
zero, finding a shortest path in a graph without examining an edge more than once, sorting
a sequence of numbers without reversing the order of equal inputs, and so on.

An oblivious (that is, input-independent) algorithm for an n/2-processor parallel com-
puter solves the aforementioned variant of the sorting problem handily in n steps, by means
of predefined pairwise swaps applied to the input array A, during each of which A[j] and
Alk] exchange positions (using an additional memory location for temporary storage) [2]. A
sequential computer, and a parallel computer with fewer than (n/2) — 1 processors, both
fail to solve the problem consistently, that is, they fail to sort all possible n! permutations
of the input while satisfying, at every step, the condition that no three consecutive integers
are such that A[j] > A[j + 1] > A[j + 2] for all j. In the particularly nasty case where the
input is of the form

All] > A2l > -+ > Aln,

any sequential algorithm and any algorithm for a parallel computer with fewer than (n/2)—1
processors fail after the first swap.

It is interesting to note here that a Turing Machine with n/2 heads succeeds in solving
the problem, yet its simulation by a standard (single-head) Turing Machine fails to satisfy
the requirements of the problem. Indeed, suppose that the standard Turing Machine is
presented with the input sequence A[1] > A[2] > --- > A[n]:

1. It will either use the given representation of the input, and proceed to perform an
operation (a swap, for example), in which case it would fail after one step of the
algorithm,

2. Or it will transform the given representation into a different encoding (perhaps one
intended to capture the behavior of the Turing Machine with n/2 heads) in preparation
for the sort, in which case it would again fail since the transformation itself will consist
of more than one algorithmic step.

This is a surprising result as it goes against the common belief that any computation by a
variant of the Turing Machine can be effectively simulated by the standard model [37].

3.7 The Universal Computer Is A Myth

The Principle of Simulation is the cornerstone of computer science. It is at the heart of most
theoretical results and practical implements of the field such as programming languages, op-
erating systems, and so on. The principle states that any computation that can be performed
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on any one general-purpose computer can be equally carried out through simulation on any
other general-purpose computer [22, 29, 41]. At times, the imitated computation, running
on the second computer, may be faster or slower depending on the computers involved. In
order to avoid having to refer to different computers when conducting theoretical analyses,
it is a generally accepted approach to define a model of computation that can simulate all
computations by other computers. This model would be known as a Universal Computer .
Thus, Universal Computation, which clearly rests on the Principle of Simulation, is also one
of the foundational concepts in the field [21].

Our purpose here is to prove the following general statement: There does not exist a finite
computational device that can be called a Universal Computer. Our reasoning proceeds as
follows. Suppose there exists a Universal Computer capable of n elementary operations per
step, where n is a finite and fixed integer. This computer will fail to perform a computation
requiring n’ operations per step, for any n’ > n, and consequently lose its claim of universality.
Naturally, for each n’ > n, another computer capable of n’ operations per step will succeed
in performing the aforementioned computation. However, this new computer will in turn be
defeated by a problem requiring n” > n’ operations per step.

This reasoning is supported by each of the computational problems presented in Sections
3.1-3.6. As we have seen, these problems can easily be solved by a computer capable of
executing n operations at every step. Specifically, an n-processor parallel computer led to
a successful computation in each case. However, none of these problems is solvable by any
computer capable of at most n — 1 operations per step, for any integer n > 1. Furthermore,
the problem size n itself is a variable that changes with each problem instance. As a result,
no parallel computer, regardless of how many processors it has available, can cope with a
growing problem size, as long as the number of processors is finite and fixed. This holds
even if the computer purporting to be universal is endowed with an unlimited memory and
is allowed to compute for an indefinite amount of time.

The preceding reasoning applies to any computer that obeys the finiteness condition, that
is, a computer capable of only a finite and fixed number of operations per step. It should
be noted that computers obeying the finiteness condition include all “reasonable” models
of computation, both theoretical and practical, such as the Turing Machine, the Random
Access Machine, and other idealized models [50], as well as all of today’s general-purpose
computers, including existing conventional computers (both sequential and parallel), as well
as contemplated unconventional ones such as biological and quantum computers [8].

Therefore, the Universal Computer i/ is clearly a myth. As a consequence, the Principle
of Simulation itself (though it applies to most conventional computations) is, in general, a
fallacy. In fact, the latter principle is responsible for many other myths in computing, such
as the Speedup Theorem, the Slowdown Theorem, and Amdahl’s Law. Counterexamples for
dispelling these and other myths are presented in [3, 19].

4 Misconceptions and Replies

“Almost all the other fellows do not look from the facts to the theory but from the theory to
the facts; they cannot get out of the network of already accepted concepts; instead, comically,
they only wriggle about inside.” [24]

What follows are thirteen misconceptions relating to my nonuniversality result, and re-
sponses to them. They are presented as a dialog with an interlocutor who, I assume (perhaps
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wishfully), has read my papers listed in the bibliography on the myth of universal computa-
tion.

4.1 Misconception 1

“So, you describe a number of functions that are uncomputable. What’s new about that?
Uncomputable functions have been known since the time of Turing.”

Response: This is incorrect. The functions that I describe are eminently computable. In
my papers listed in the bibliography, every function F" of n variables can be easily evaluated
by a computer capable of at least n elementary operations per time unit (an n-processor
parallel computer [13], for example). However, a computer capable of only n — 1 or fewer
elementary operations per time unit cannot compute F™. Nonuniversality in computation
immediately follows by simple induction.

4.2 Misconception 2

“You are proposing computations that cannot be simulated efficiently. What’s new about
that? Your own book [2] and your earlier papers presented such computations that can be
performed in constant time by n processors, but require time exponential in n when executed
on n — 1 or fewer processors.”

Response: The error in the statement above is in the phrase “cannot be simulated
efficiently”. Indeed, my nonuniversality result does not follow from computations that can-
not be simulated efficiently. It follows from computations that cannot be simulated at all.
Thus, for each of the functions F" of n variables that I describe in my papers listed in the
bibliography, no computer capable of fewer than n elementary operations per time unit can
simulate the actions of a computer capable of n elementary operations per time unit. The
latter computer is capable of evaluating F™ successfully, the former is not capable of doing
so, even if given an infinite amount of time and memory space. It is this impossibility of
simulation that leads to nonuniversality.

4.3 Misconception 3

“What do you think about this way of attacking your time-varying variables problem:

First of all, we should separate the tasks into sensing and computation tasks. That
means, | assume that there are sensors equipped with memory which read the values of the
variables at time ¢ and write them into appropriate memory locations. So, for every ¢ we
have memory locations x1(t), xa(t), ..., z,(t). Furthermore, assume that the values of n
and t are stored in some other variables. Then, a universal machine would read the value of
n (and t), read the values from memory, and perform the requested computations on these
values, which is a rather simple task.

So, the main argument of this is that we allow for this separation. The sensors are
peripheral components, which do not perform any computations, but ‘just’ provide the input
for the computation, that is, they sense their values simultaneously at time ¢ and store them
in their respective memory locations, and the computations can access these values later on.

I guess that you will argue that this requires n values to be stored in the memory of
the machine at the same time, which would contradict a specification of a machine which
is independent of n. But if we can reduce the problem you posed to this separation of
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concerns, we would have the consistence with the traditional theory of computation except
for the addition of these sensors, which are not considered to be a part of the universal
computing device but of the input specification.”

Response: Surely, you cannot “separate” part of the universal computer (in this case
the input unit) from the rest of the computer just to fit the problem. The universal computer
is one unit, and a computational step is: [read, calculate, write].

The definition of ‘to compute’ as ‘the process of transforming information” applies to all
three phases of computation, namely,

1. The input phase, where data such as keystrokes, mouse clicks, or temperatures are
reduced, for example, to binary strings;

2. The calculation phase, where data are manipulated through arithmetic and logic op-
erations, as well as operations on strings, and so on; and

3. The output phase, where data are produced as numbers on a screen, or rendered as
images and sounds, for instance.

Each of the three phases represents information transformation; each is an integral part
of every computation, and no computation worthy of that name can exclude any of them.
In particular, input and output are fundamental in the design and analysis of algorithms.
Input-sensitive and output-sensitive computations often play an especially important role in
deriving lower and upper bounds on algorithmic complexity.

One of the most dramatic illustrations of the interweaving of input and output with
calculation is the well-known linear-time planarity testing algorithm [31]. In order to deter-
mine whether a graph with V' vertices is planar, Step 1 of that algorithm avoids a potentially
quadratic-time computation, by reading in the edges of the graph one at a time from the
outside world; if there is one more edge than 3V — 6, the graph is declared nonplanar.

But let’s assume you have set up n sensors and succeeded in solving the problem. What
happens when you discover, the next morning, that there are now, not n, but n 4+ 1 inputs?
Do you think it is a fair solution for you to go to the sensor shop, buy one more sensor and
rush back to attach it to the extra input source and to the computer? And even if you did,
what if by the time you return, the time ¢y at which the result is needed would have passed?

4.4 Misconception 4

“Your argument is great. It is simple and effective. However, it doesn’t show that there
is something theoretically flawed with the concept of a universal computer; it shows that a
universal computer could never be physically realized. So the Church-Turing thesis is alright
if we take it that the space/time needed is infinite. Having said that, I imagine that the
distinction between the theoretical and the implementation claim is often overlooked, which
makes the proof integral in making that distinction very sharp indeed.”

Response: Thank you for reading. But, sorry, I beg to differ. Even if given infinite
space and infinite time (which we allow the Turing Machine anyway), no computer that you
define once and for all (and are not allowed to change ever again) can solve the problems
that I define.

The issue is not with infinite space and infinite time. The issue is: How many operations
can you do in one slice of time? You have to define this for every theoretical (and of
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course practical) computer. Otherwise, analysis of algorithms becomes meaningless, and the
running time of a program a void concept. For example, the Turing Machine can do one,
two, or three operations per slice of time, depending on your definition, but it is always a
finite number. It can read a symbol, then change state, or write a symbol, or move left or
right or stay put. Then a new iteration starts. It cannot do an arbitrary number of these
fundamental operations per slice of time (you may call the latter a step, an iteration, a time
unit, whatever). In passing, I should say that it is this finiteness of the number of operations
per time unit that caused the great success of computer science, making the Computer the
greatest invention of the 20th century: A machine designed once and for all that can simulate
any operation by another machine. In theory, you should be able to buy a computer and
use it for the rest of your life, for it will never be faced with a computable function that it
cannot compute. Or so we thought ...

Suppose you have defined your machine once and for all (it can be a Turing Machine or
a Supercomputer, or the chip in your digital camera or that in your toaster). I will now give
you a computable function that it fails to compute. One example of such a computation is
the problem of operating on variables that change with time (as described in Section 3.1).
Even if given all the time in the world from here to eternity, even if given all the space in the
known Universe and beyond, you could not solve the problem, not even in theory with pen
and paper. Why? Because you defined your machine and fixed it once and for all (as one
should if one claims to have a Universal Computer that can simulate anything that another
computer can compute). And herein lies the Achilles heel of the Universal Computer: I, as
a designer of the problem, ask you for a definition of your purported Universal Computer;
I then concoct a computation that thwarts it. This computation, of course, can be easily
carried out by another “Universal Computer”, but then I'll give you another problem, and
SO on.

There is nothing here about implementation. I put no limits on what your machine can
do, except for one: It must do a finite number of operations per time unit. This number can
be as big as you want, it can even be defined by a function of time, but it must be fixed the
moment you define your model, and it cannot be infinite. Once you define it, you cannot
change it. We can play the game with paper and pencil. I will always win.

I believe that the result is perfectly theoretical as well as being perfectly practical.

4.5 Misconception 5

“While T could not make much sense of your “proof” (right off the bat, I do not think
‘spacially and temporally connected variables’ is well defined, although I also think it suffers
from many other flaws) I decided to take your challenge seriously, within the bounds and the
scope of your restrictions, language and assumptions, in an attempt to define a reasonable
sounding computational device that would solve the time-varying variables computation. I
will assume that the variables appear each on a luminous display of some sort.

[ am going to assume relativity (please let me know if spacially and temporally connected
variables is supposed to mean something else?). There is space k between displays so that,
when they update their values, the light from their screens arrive at my computational device
at nearly, but not precisely the same time (determined by & and where my device is in the
‘room’). I will move my computational device close to the displays so that I can exploit the
hypotenuse the signals from each display must travel first to reach the sensor of my device.
Then, it is simply a matter of setting the processing speed to a finite value around ‘a constant
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x k meters / the speed of light.” In this way, my computational device is able to compute
the function F™ as desired.

My device has one sensor. It only needs one sensor, since the signals from the displays
come in sequentially. Remember that the displays are separated by a distance and the signal
from each display, after they update, must travel this distance (at the speed of light). So
my device uses its one sensor to read in a display and then it reuses that sensor some time
later after the signal from the next display has reached it (some time later).”

Response: Right off the bat, as is clear from my papers, the spatial and temporal
relationship among the variables is such that:

1. The variables occupy the same region in physical space; specifically, the distance sepa-
rating any two variables is no larger than a small constant (whose magnitude depends
on the general paradigm under consideration);

2. The variables are constrained by a unique parameter representing true physical time.

Now turning to your solution, I would say it is original; unfortunately, I am afraid you
are missing the point of the exercise.

The problems I pose are to be treated independently of specific physical properties. For
example, the time-varying variables could be anything one would want them to be (atmo-
spheric pressures for instance, or humidity readings, etc.), and they should not necessarily
be on display (they would need to be acquired, that is, measured, first). Light rays, the basis
of your argument, should play no role in the solution (for they may not help in general).

However, let’s consider your one-sensor solution, assuming the variables are indeed dis-
played. The difficulty with such setups is that they inevitably break down at some point as
the problem scales up. Specifically,

1. The dimensions of the sensor are fixed.

2. As the number of variables n, and hence displays, grows, the angle of the light rays
from the furthest display approaches 0. There will not be enough real estate on the
sensor for that light to impinge upon.

3. Thus, the problem poser can make n sufficiently large so as to render the sensor useless.

And one more thing: How does your sensor handle multiple simultaneous (or perhaps
overlapping) inputs from displays all equidistant from it?

4.6 Misconception 6

“Your definition of computation is unconventional.”

Response: Absolutely, if one considers unconventional the passage of time, or the in-
teractions among the constituents of the universe subject to the laws of nature, or for that
matter any form of information processing. In any case, my definition of computation may
be unconventional, but it is not unrealistic.

Besides, it is important to realize that defining “to compute” as “what the Turing Machine
does”, which is quite commonly done (see, for example, [25]), leads to a logical reasoning
that is viciously circuitous. If computation is what the Turing Machine does, then clearly
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the Turing Machine can compute anything that is computable. Furthermore, the “Church-
Turing Thesis” would move immediately from the realm of “conjecture” to that of “theorem”.
The fact that it has not done so to this day, is witness to the uncertainty surrounding the
widespread definition of “computation”. As stated above, my counterexamples, by contrast,
disprove the “Church-Turing Thesis”.

4.7 Misconception 7

“But the Turing Machine was not meant for this kind of computation.”
Response: Precisely. Furthermore, the nonuniversality result covers all computers, not
just the Turing Machine.

4.8 Misconception 8

“Abstract models of computation do not concern themselves with input and output.”

Response: This opinion is held by those who believe that computation is the process
that goes from input to output, while concerning itself with neither input nor output (see,
for example, [25] cited above). By analogy, one might say that eating is all about digestion,
and a Moonlight Sonata interpretation is nothing but the hitting of piano keys. Perhaps.

Perhaps not. A model of computation is useful to the extent that it is a faithful reflec-
tion of reality, while being mathematically tractable. In computer science, input and output
are not cumbersome details to be ignored; they are fundamental parts of the computation
process, which must be viewed as consisting of three essential phases, namely, input, calcu-
lation, and output. A computer that does not interact with the outside world is useless. In
that sense, the thermostat in your house is more powerful than the Turing Machine. Please
remember that my result goes beyond the Turing Machine (which, by the way, is a very
primitive model of computation). To ask computer scientists to stick to the Turing Machine
and not to look beyond, would be as if physics stopped progressing beyond the knowledge
of the Ancient Greeks.

In fact, looking ahead, if computers of the future are to be quantum in nature, their main
challenge is expected to be, not calculation but, input and output.

4.9 Misconception 9

“Classical computability theory does not include variables that change with time.”

Response: This is a serious lacuna in classical theory. My work shows that there are
in fact many such lacunae. Their result is to severely restrict the definition of computation.
Indeed, to define computation merely as function evaluation, with fixed input and fixed
output, is unrealistic and naive. It also trivializes the Church-Turing Thesis (turning it into
a tautology), because it necessarily leads to the kind of sterile circular reasoning mentioned
in the response to Misconception 6.

Having said that, the time-varying variables counterexample is only one of many such
refutations of universality in computation. Other examples arise in the computations de-
scribed in section 3 (and detailed in [6] — [18], [26], [42] — [47]).
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4.10 Misconception 10

“The Church-Turing Thesis applies only to classical computations.”

Response This is certainly not the case. As the multitude of examples listed in [7]
amply demonstrate, the commonly accepted statement of the Church-Turing Thesis [36] is
essentially this: “There exists a Universal Computer capable of performing any computation
that is possible on any other computer.” There are no restrictions, exceptions, or caveats
whatsoever on the definition of computation. In fact, a typical textbook definition of com-
putation is as follows: “A computation is a process that obeys finitely describable rules.”
[49]. What’s more, it is suggested in every textbook on the subject that, thanks to the fun-
damental and complementary notions of simulation and universality, every general-purpose
computer is universal: A Turing Machine, a Random-Access Machine, a Personal Computer,
a Supercomputer, the processing chip in a cell phone, are all universal. (My result shows
this claim to be false.)

Going a little further, many authors consider all processes taking place in the Universe
as computations. Interested readers may consult [16, 20, 22, 23, 27, 35, 38, 39, 49, 51, 52,
55, 56, 58, 60, 61, 62, 63, 64].

I happen to agree with the above authors on the pervasive nature of computation. How-
ever, in order to reach my conclusion about nonuniversality in computation, I do not in fact
need to go that far. My counterexamples use very simple computations to refute universal-
ity: computations whose variables change with time, computations whose variables affect
one another, computations the complexity of whose steps changes with the passage of time,
computations the complexity of whose steps depends (not on the time but) on the order of
execution of each step, computations that involve variables obeying certain mathematical
conditions, and so on. These are not uncommon computations. They may be considered
unconventional only when contrasted with the standard view of computation as a rigid func-
tion evaluation, in which, given a variable x, it is required to compute f(z), in isolation of
the rest of the world.

4.11 Misconception 11

“Actually, Alan Turing knew that computations involving physical time would cause prob-
lems for his machine.”

Response: This is the back-pedaling argument par ezcellence. Perhaps Turing knew
about the computations that I describe here, but I doubt it.

Indeed, Turing did propose the Oracle machine (o-machine) [57] as an (unconventional)
extension to his a-machine (today known as the Turing Machine). However, the o-machine
has nothing to do with the problems I propose to counter universality in computation. Fur-
thermore, the o-machine is a fanciful creation that appeals to some form of divine intervention
in order to solve the problems it faces, while the computations that I use to prove nonuni-
versality are eminently executable on everyday computers, provided the latter are capable
of performing the proper number of basic operations per time unit.

The Church-Turing Thesis [36] is proof that both Turing and Church were convinced
of the universality of the Turing Machine. In any case, I am not aware of any writings by
Turing, von Neumann, or anybody else, that hint to nonuniversality in computation, prior
to my January 2005 paper on the myth of the universal computer.
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This type of argument, exemplified by Misconception 11, reminds me of the words of the
American philosopher William James:

“First, you know, a new theory is attacked as absurd; then it is admitted to be true, but
obvious and insignificant; finally it is seen to be so important that its adversaries claim that
they themselves discovered it.” [34].

4.12 Misconception 12

“The problem I see with the nonuniversality claim is that it does not appear to be falsifi-
able. It might be improved by thinking further about how to make the claim more specific,
clear, testable, well-defined and worked out into detail. The entire claim would ideally be
described in a few very worked out, specific, sentences - needing little external exposition or
justification.”

Response: Have you had a chance to read any of my papers? There is no lack of
mathematical formalism there. For example in one of my papers, M. Nagy and I used
quantum mechanics to illustrate the first five of the six aforementioned paradigms [45]. I am
certain you will enjoy that one.

But let me try this since you would like something simple and crisp. How about the best
understood problem in computer science, arguably that of sorting a sequence of numbers,
but with a twist? See Section 3.6.2 for a description.

4.13 Misconception 13

“A fine student just presented your NonUniversality in Computation work in my graduate
theory course. Going simply on her presentation, I am not impressed. You start by quoting
Hopcroft and Ullman and saying that their statement is clearly false. You took this quote out
of the context of all of theoretical computer science which clearly defines that a ‘computation’
is to start with the entire input presented and is given as much time as it wants to read this
input and do its computation. It is true that since Turing, the nature of computation has
changed to require real time interactions with the world. But you should not misrepresent
past work. Having not studied your arguments at length, the only statement that I have
gotten is that a machine is unable to keep up if you only allowed it to read in a fixed number
of bits of information per time step and you throw at it in real time an arbitrarily large
number of bits of information per time step. In itself, this statement is not very deep.”

Response: 1 am sure the student did a wonderful job, but somehow the message did
not get across. I will take your remarks one by one.

Remark A: “You took this quote out of the context of all of theoretical computer science
which clearly defines that a ‘computation’ is to start with the entire input presented and is
given as much time as it wants to read this input and do its computation.”

Response to Remark A:

1. T did not find your definition of ‘computation’ anywhere. It is certainly not in Hopcroft
and Ullman’s book [32].

2. Your definition of ‘computation’ applies narrowly to some primitive computational
models, such as the Turing Machine, Cellular Automata, and so on.
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3. Because of (2), your definition trivializes the Church-Turing Thesis, rendering it a
tautology: By defining ‘computation’ as ‘what the Turing Machine does’, it obviously
follows that ‘the Turing Machine can compute everything that is computable’. As
mentioned earlier (see the response to Misconception 6), this is a typical example of
circular reasoning.

4. Your definition is not sufficiently general to capture the richness and complexity of
the notion of ‘computation’. Others have proposed more encompassing definitions of
‘computation’. Here are a few quotes:

“In a sense Nature has been continually computing the ‘next state’ of the universe for
billions of years; all we have to do - and actually, all we can do - is ‘hitch a ride’ on
this huge ongoing computation.” [56]

“Computation is physical; it is necessarily embodied in a device whose behaviour is
guided by the laws of physics and cannot be completely captured by a closed mathe-
matical model. This fact of embodiment is becoming ever more apparent as we push
the bounds of those physical laws.” [54].

“Information sits at the core of physics ... every particle, every field of force, even the
space-time continuum itself derives its function, its meaning, its very existence entirely
... from answers to yes-or-no questions ... all things physical are information-theoretic
in origin ... 7 [61].

“Think of all our knowledge-generating processes, our whole culture and civilization,
and all the thought processes in the minds of every individual, and indeed the en-
tire evolving biosphere as well, as being a gigantic computation. The whole thing is
executing a self-motivated, self-generating computer program.” [22].

5. And one more thing about your point that a computation is to “start with the entire
input presented”. Since all of my counterexamples indeed require the entire input to
be “present”, I will assume that you mean “start with the entire input residing in
the memory of the computer”. (Incidentally, some of my counterexamples assume the
latter as well.) The relevant point here is this: Hopcroft himself has a well-known
algorithm that makes no such assumption about the entire input residing in memory.
As stated in response to Misconception 3 above, one of the most dramatic illustrations
of the interweaving of input and output with calculation is the well-known linear-time
planarity testing algorithm of Hopcroft and Tarjan [31]. In order to determine whether
a graph with n vertices is planar, Step 1 of that algorithm avoids a computation that
could potentially run in time at least quadratic in n, by reading in the edges of the
graph one at a time from the outside world; if there is one more edge than the absolute
maximum stipulated by Euler’s formula, namely 3n - 6 (the paper actually uses the
loose bound 3n - 3 in order to allow for n < 3), the graph is declared nonplanar [31].

Remark B: “It is true that since Turing, the nature of computation has changed to require
real time interactions with the world. But you should not misrepresent past work.”
Response to Remark B:

1. T am glad to see that you agree with me about the nature of computation. You should
know, however, that my counterexamples to universality are not all about “real time
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interaction with the world”. There is a list of such counterexamples in section 1, a
brief description of some in section 3, and a list of references to my papers in the
bibliography section. One counterexample involving mathematical constraints (it is a
variant of sorting, in which the entire input is available in memory at the outset of the
computation) is described in Section 3.6.2. Note also that my nonuniversality result
applies to putative ‘universal computers’ capable of interaction with the outside world.
These ‘universal computers’ are endowed with unlimited memories and are allowed an
indefinite amount of time to solve the problems they are given. They all still fail the
test of universality.

2. However, I do take exception to the claim that I misrepresented past work. Below
are quotes from famous computer scientists asserting, without caveat, exception, or
qualification that a universal computer is possible (often explicitly stating that such
a universal computer is the Turing Machine, and essentially taking for granted the
unproven Church-Turing Thesis):

“A Turing machine can do everything that a real computer can do.” [53], p. 125.
“Anything which can be computed can be computed by a Turing Machine.” [1], p. 123.

“It is theoretically possible, however, that Church’s Thesis could be overthrown at
some future date, if someone were to propose an alternative model of computation
that was publicly acceptable as fulfilling the requirement of ‘finite labor at each step’
and yet was provably capable of carrying out computations that cannot be carried out
by any Turing machine. No one considers this likely.” [37], p. 223.

“...if we have shown that a problem can (or cannot) be solved by any TM, we can
deduce that the same problem can (or cannot) be solved by existing mathematical
computation models nor by any conceivable computing mechanism. The lesson is: Do
not try to solve mechanically what cannot be solved by TMs!” [40], p. 152.

“...any algorithmic problem for which we can find an algorithm that can be programmed
in some programming language, any language, running on some computer, any com-
puter, even one that has not been built yet but can be built, and even one that will
require unbounded amounts of time and memory space for ever-larger inputs, is also
solvable by a Turing machine.” [29], p. 233.

“It is possible to build a universal computer: a machine that can be programmed
to perform any computation that any other physical object can perform. ... any
computation that can be performed by any physical computing device can be performed
by any universal computer, as long as the latter has sufficient time and memory.” [30],
pp. 63-64.

Hundreds of such statements can be found in the literature; for a sample see [7].

3. Finally, please note that to correct previous mistakes is not to misrepresent the past.
This is how science advances. Newton, Darwin, and Einstein were giants who built
great scientific edifices. Each edifice, magnificent yet incomplete.

Remark C: “Having not studied your arguments at length, the only statement that I
have gotten is that a machine is unable to keep up if you only allowed it to read in a fixed
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number of bits of information per time step and you throw at it in real time an arbitrarily
large number of bits of information per time step. In itself, this statement is not very deep.”
Response to Remark C:
Here we go again. Please note:

1.

5

As mentioned above, the “time-varying variables” computation is but one of many
counterexamples to universality.

. Surely you must know that a reasonable model of computation must be finite. The

Turing Machine has a finite alphabet, a finite set of states, and a finite set of elementary
operations per step. To assume otherwise would render the fields of complexity theory
and algorithm design and analysis useless.

Your characterization of my result is erroneous. I describe computable functions that
no machine that claims to be universal can compute.

Let’s try the following: You define a “universal computer” fulfilling the requirement
of ‘finite labor at each step’ (to quote [37] again), and I will give you a computable
function that it cannot compute.

Conclusion

“Facts do not go away when scientists debate rival theories to explain them.” [28]

In conclusion, I offer the reader the following challenge.

Computational Challenge: Anyone who still does not accept my result, namely, that
universality in computation is a myth, has but one option: to prove it wrong. In order
to do this, one must exhibit a universal computer capable of a finite and fixed number of
operations per time unit, on which each one of the computations in the following classes,
and described in [6] — [18], [26], [42] — [47], can be performed:

1.

2.

6.

Computations with time-varying variables

Computations with time-varying computational complexity
Computations with rank-varying computational complexity
Computations with interacting variables

Computations with uncertain time constraints

Computations with global mathematical constraints.

It is important that the purported universal computer be able to execute successfully
all aforementioned computations, since each one of them, by itself, is a counterexample
to computational universality. For a simplified (and perhaps more colorful) version of the
challenge, please see [5].
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