

Technical Report No. 2013-612

Determining Cost-Effective Configurations for Data-

intensive Workloads in the Cloud

Ph.D. Thesis Proposal1

by

Rizwan Mian

School of Computing

Queen’s University, Kingston,

Ontario, Canada K7L 3N6

EXAMINING COMMITTEE
,1

 Dr. Patrick Martin

 Dr. Selim Akl

 Dr. Ahmed Hassan

Revised submission: 31
th

 October, 2012

1
 Acknowledgements: This proposal has been written under the supervision of Dr. Patrick Martin. Wendy Powley

has reviewed two drafts of this proposal. Mastoureh Hassannezhad has also provided some feedback. Dr. Farhana

Zulkernine provided her thesis proposal as an example. I thank them all.

Mian 31.10.12

 Page 2

Contents
1 Outline of the Research Proposal ... 2

2 Problem Statement ... 2

3 Framework ... 4

4 Intended Research .. 6

5 Evaluation ... 12

6 Expected Contributions ... 15

ABSTRACT

The promise of “infinite” resources given by the cloud computing paradigm has led to recent

interest in exploiting clouds for large-scale data-intensive computing. Given this supposedly

infinite resource set, we need a management function that regulates application workloads on

these resources. This doctoral research focuses on two aspects of workload management, namely

provisioning and mapping. We envision an autonomic and generic framework for resource

provisioning and workload execution. We develop search algorithms, and associated

performance and cost models to minimize the cost of executing data-intensive workloads in a

cloud. The work is evaluated using diverse workloads in a public cloud. In this proposal, we state

our research plan to complete the doctoral study.

1 Outline of the Research Proposal

An outline of our research was presented at CCGrid, 2012 [1]. In this proposal, we provide a

revised research plan with additional details on the evaluation. We have examined the state-of-

the-art of workload management for data-intensive computing in the clouds [2, 3]. In Section 2,

we formulate the constructs for determining appropriate resources and generating an efficient

workload mapping. Section 3 presents our vision for a framework for autonomic workload

execution in a cloud, parts of which have already been published [4]. Section 4 describes our

outstanding research to complete the doctoral study. Section 5 outlines our intended evaluation.

The concluding section highlights the major contributions of the proposed research and its

significance to the users who wish to execute their workloads in the clouds.

2 Problem Statement

Given an application A, we say that the workload for A is a set of requests that are issued by the

set of clients for A. Each request is an instance of a request type Ri from a set R = {R1, R2, …,

Rn} for A. The data used by A consists of a set of data objects or partitions D = {D1, D2, …, Dm}.

Mian 31.10.12

 Page 3

A request type in R accesses the same subset of data objects Pi
 D and has a service level

objective SLOi. We call Pi a data partition and assume that the Pi’s can overlap. The SLA for a

set of workloads, W, is composed of the set of all SLOi’s for the request types in the workloads

in W. We need compute, storage and network resources to execute the workloads in W. A

configuration C for a set of workloads, W, contains the following:

 A set of Virtual Machines (VMs) V = {v1, v2, …, vr}, where each VM vk is a specific type (for

example small, large, xlarge). Each VM type has a specific set of system attributes (e.g. OS,

memory, cores), and a specific cost rate.

 A set of data partitions used by W. The partitions are stored on a set of network-disks. The

partitions typically vary in sizes and have different access patterns, resulting in different

storage and network costs.

 A mapping of data partitions, Pi, to VMs in V such that every data partition is assigned to at

least one VM. Assignment to more than one VM involves replication of the partition.

Overlapping partitions on the same VM share the same copy of the common data objects.

 A mapping of the workloads, W, to VMs in V such that every workload is assigned to one

VM.

The problem is then to determine a configuration C for W such that an objective function is

optimized. Selecting a suitable configuration involves: (a) determining appropriate resources,

and (b) generating an efficient mapping of data partitions and workloads onto those resources.

Suppose, the objective is to minimize the configuration cost for the execution of all the

workloads – the objective function is formally stated in Section 4. In this case, determining

appropriate resources balances resource costs against the penalty costs generated by SLO

violations. Meanwhile, generating an efficient mapping of data partitions and workloads to VMs

balances the execution time of the requests on the provisioned resources against the thresholds

defined in the SLOs in order to minimize penalties. We transform appropriate resource

requirement and efficient mapping into a single search problem, and use standard search methods

and heuristics to solve it.

We believe that this problem is NP-hard in the general case because a restricted problem is NP-

hard in the general case. We view the mapping of data partitions and workloads to VMs given

the objective of minimizing cost as similar to a three-dimensional matching problem with the

Mian 31.10.12

 Page 4

objective of maximizing matches. The later is an optimization problem and NP-hard [5]. We

leave the detailed discussion for the mapping complexity to our dissertation.

3 Framework

We envision an autonomic and generic framework for resource provisioning and workload

execution. The high-level architecture of a workload management framework is shown in Fig. 1.

We provide a high-level description of the framework components and their interactions below.

We identify four major parties in the framework: (a) a client, (b) a manager, (c) the storage and

execution resources, and (d) an image and a data repository. A client has some application

workloads to execute. The manager supervises the workload execution. The processing resources

are booted with settings retrieved from the repository. The storage resources get a copy of the

data from the repository. Both processing and storage resources are combined to provide an

execution platform. The workloads are executed on a number of execution platforms.

Client

Manager

(Legislator

Executive,

Scheduler)

VM partition

VM partition

partition

requests

requests

VM

provisioning
provisioning

provisioning

feedback

provisioning

Repository

Images,

data

Figure 1. Architecture of a workload management framework in a cloud.

A client submits a set of workloads to the manager. The manager consists of three components

(a) a legislator, (b) an executive, and (c) a scheduler. The legislator is the focus of our research.

It determines a suitable configuration of storage and processing resources as well as an efficient

mapping to execute the workloads to meet an objective. This configuration is then passed to the

Mian 31.10.12

 Page 5

implementing process or the executive. The executive instantiates the mapping by provisioning

appropriate execution platforms. It allocates the processing resources (VMs) and attaches data

partitions to the VMs as required by the configuration. In addition, the executive creates replicas

of the partitions if needed. Once the executive finishes, the scheduler uses the mapping to submit

the requests of the workloads to the appropriate execution platforms as required by the

configuration, and the workload execution begins. With workload bound unknown a priori, we

use a simple First-Come-First-Serve (FCFS) scheduling policy to dispatch the requests to

appropriate execution platform.

As the workloads executes, some feedback is sent back to the manager periodically. The

feedback may include health status pings or execution times. The manager may suggest a new

configuration based on the feedback. Revisions to the current configuration may be necessary

due to a number of reasons such as excessive SLA violations, or a change in the number or type

of workloads. If the deployed configuration is revised, the executive and the scheduler

respectively adjust the resources and dispatch the workloads’ requests according to the new

configuration. The suitable opportunity for implementing revisions is at every time-unit (say an

hour) because: (a) the manager deals with the average behaviour of the system rather than a

particular instant, and (b) the cloud resources are typically metered by the hour.

Determining a suitable configuration: We represent the set of all possible configurations for an

application A as a directed graph Configs = (N(A), E(A)). The set of nodes, N(A), and the set of

edges, E(A) are defined respectively as:

N(A) = {C | C is a valid configuration for A} and

E(A) = {(Ci, Cj) | configuration Cj is obtained from Ci using a permitted modification},

An edge (Ci, Cj) in the search space indicates that configuration Cj can be obtained from

configuration Ci by applying one of the modifications. Examples of modifications include adding

a VM, or upgrading a VM to a more powerful type.

The legislator employs a search algorithm to explore the search space. The high-level

architecture of the legislator is shown in Fig 2. Given a set of workloads and an objective, a

search algorithm looks for a suitable configuration. At each iteration, the search algorithm

Mian 31.10.12

 Page 6

chooses a suitable modification on the current configuration. The modified configuration is

evaluated using a cost model. The cost model, in turn, employs a performance model to predict

the expected behaviour of workloads on a modified configuration. The cost model passes a cost

value back to the search algorithm. Then, the algorithm decides whether to keep exploring the

search space or to flag the evaluated configuration as a suitable one.

search

algorithm

search

algorithm

config

modification

config

modification

modification
cost

modified

configuration

cost model
cost model

Workload(s),

objective

suitable

configuration

performance

model

 Figure 2. Architecture of the legislator.

The elegance of this architecture is that various search algorithms can be used with various cost

models and vice versa. Similarly, different cost models can be used with different performance

models. In general, the size of a workload is unknown. Therefore, we argue it is appropriate to

calculate the cost of workload execution per unit time, say an hour. Consequently, we

parameterize our cost function with a time-unit.

4 Intended Research

We propose to complete the following work to satisfy the requirements for the doctoral thesis.

Performance Model: A performance model is required to forecast the behaviour of a workload

execution at a multi-partition data service. Initially, we considered an analytical performance

Mian 31.10.12

 Page 7

model, however, we experienced highly inaccurate forecasts in the response times [4]. This is

because the analytical models do not capture the complex effects of the concurrently executing

requests on the servers [6, 7], which are amplified by the variance in the cloud [4]. Furthermore,

the analytical modeling techniques are notoriously hard to evolve with the system. Increasingly

the research community is using experiment-driven performance modeling for database

management and multitier systems [6-12]. A subset of experiment-driven performance models

account for the impact of the interactions among the concurrently executing request types on

performance [6, 7, 10-12]. Therefore, we consider an experiment-driven approach in building a

performance model.

Our approach consists of three stages: (a) sampling the space of possible request types and their

instances in a workload, (b) collecting data by executing possible request mixes or samples, and

(c) preprocessing data and building performance models. The possible combinations of request

mixes are exponential, so having an effective sampling approach is crucial. Similar to Tozer et

al. [6], we sample the N-dimensional space using a Latin Hypercube Sampling (LHS) protocol

[13], where each request type is a dimension. The LHS protocol is a variant of stratified

sampling. This protocol significantly reduces the number of experiments needed while providing

a good coverage of the possible request mixes. The lower bound on the number of request

instances of any request type in a workload is zero. Meanwhile, we limit the aggregate number of

instances of all the possible request types in a workload by the optimal Multiprogramming Level

(MPL) value of a VM type. Consequently, we discard any samples whose aggregate request

instances exceed the optimal MPL value of a VM type. We consider both theoretical approaches

(p-value type analysis), and empirical approaches (gains in accuracy) to determine the

appropriate number of samples. Schad et al. [14] notice large variance in the clouds. Therefore,

we narrow the scope of a performance model to a particular VM type to increase the accuracy of

the performance model.

Once the samples are obtained, we execute them in a public cloud for each VM type. Both the

client and the data-service exist in a public cloud. The buffer pool of the data service is

partitioned in proportion to the number of partitions. Each sample is executed for some time (say

around 10 minutes). The request mix remains constant throughout the execution of the sample.

The client collects run time statistics (such as throughput and response times) for each request

Mian 31.10.12

 Page 8

type in the samples. After all the samples execute, we analyze their execution results to see any

unusual behaviour, like outliers in the response time and remove them if appropriate. Then, we

feed the samples and their results to learning algorithms such as linear regression (LR) or support

vector machine (SVM). Finally, we validate the performance model against new data (discussed

in Section 5).

Cost Models: Executing a configuration in a public cloud results in a dollar-cost expense. Such

an expense is a function over resource costs. We extend this expense with penalties for violations

of SLOs defined over the workload. There are primarily three types of resources needed to

execute a workload in a cloud that offers its infrastructure-as-a-service (IaaS): (a) compute, (b)

storage, and (c) network. The cost function for the pay-as-you-go pricing scheme is stated as:

$(configuration) = $(compute) + $(storage) + $(network) + $(penalties),

where $ represents dollar-cost of resource usage, penalties or the configuration. This is also the

objective function, which needs to be minimized. We find that our current cost model [4] is

adequate for data analytics workloads operating over a single partition. However, in this model,

we assume a constant cost for network, provide partial storage cost, and we account for penalties

only over response times. We need to extend this model to account for any workload type

(analytical, transactional or mixed) and model costs for all the resources used.

The method used in building the performance model is a typical experiment-driven approach,

though the sampling and the underlying regression technique may vary depending on the scope

and/or the accuracy required. We believe that the same approach can be used for building and

validating our cost model. Unfortunately, it is difficult to collect measurements for large training

and test sample sets in a pubic cloud. This is because executing large number of samples sets in a

public cloud would render hefty bills. This is aggravated by the long execution time (1 hour) for

each workload. Also, setting up each sample execution is manual, unlike for the performance

model where we leverage existing tools to automate the sample execution. Fortunately, the VM

and the storage costs can be estimated fairly accurately using the published unit resource costs.

However, we still need to determine the communication or the network cost experimentally.

Therefore, we employ a hybrid of an analytical and an experiment-driven model. The costs of

VMs, storage and penalties are determined analytically, while the cost of network usage is

Mian 31.10.12

 Page 9

estimated based on experimentation. We further discuss each component of the cost function

below:

 Cost of Virtual Machines: We consider the VM as a compute unit in our cost model.

Fortunately, VMs are typically metered by the hour in the pay-as-you-go scheme. Any partial

usage is rounded up to the next hour. The cost of virtual machines in a configuration

becomes equivalent to:

Where V is the set of VMs in the configuration C, and $v is the hourly of cost of a VM v.

 Cost of storage: There are different types of storage with different properties and prices. For

example, Amazon S3 [15] stores data over multiple network devices. It is a key-value storage

that can store a value sized from 1 byte to 5 terabytes. Similarly, DynamoDB [16] is a key-

value storage with very low latency but places a limit (of 64kb) on the size of the key and the

value.

We consider that our data partitions are stored on a network-disk type device, which is

metered by the month. We prorate the monthly cost down to an hour. The hourly costs for the

storage used in the configuration is estimated as:

where $q is the unit cost of storage (in dollar per gigabyte per month), is the aggregated

size of data partitions rounded up to the next gigabyte, and month_hours is the number of

hours in a month (30days × 24hours). Any fractional cost is rounded up to the next cent.

 Cost of network usage: We see two main classes of network costs: (a) cost of transferring

data in and/or out of clouds, and (b) network costs for accessing storage. Transferring data

from user premises to the cloud is typically a one-time job, and incurs a one-off cost. The

data in the cloud may persist indefinitely. While our cost model accounts for the hourly

Mian 31.10.12

 Page 10

storage cost, we assume that the data already exists in the cloud. We estimate the network

costs for accessing storage as:

where cv is the estimated number of accesses to the network storage in a time-unit. Cv is

determined experimentally. Meanwhile, $s is the unit network cost for accessing storage.

Like storage costs, the network cost is rounded up to the next cent.

 Cost in penalties: We propose a function that assigns a penalty each time-unit in which a

breach occurs. This is reasonable since we use average performance metrics (such as average

throughput) over a time-unit to detect a breach. For a particular configuration C and a request

type q, the penalty incurred in a given time-unit (hour) is given by

where penalty(q) is the penalty value (in $) for request type q. The binary function pcond

tells us if an SLO defined over q and C has been violated. For example, pcond defined over

throughput for transaction q and a configuration C can be written as

where avgThroughput(q,C) is the predicted average throughput for transaction q in C, and

threshold(q) is the required throughput specified in the SLO for the transaction q.

Space Search: The problem of finding the global optimum or the least costly configuration is

NP-hard in the general case, as we stated in Section 2. The space of possible configurations is

very large and heuristics must be used to prune the search space. We have developed algorithms

that search for the minimal dollar-cost configuration. These algorithms consist of: (a) greedy, (b)

adaptiveGreedy, and (c) variants of tabu search. The greedy algorithm serves as a baseline for

comparing the performance of the algorithms. Tabu search and its variants are used to explore

paths that the greed-based algorithms are unlikely to explore. We discuss them further below.

Mian 31.10.12

 Page 11

 Greedy heuristic: The greedy search algorithm starts by building a configuration from the

least expensive VM type. It then greedily selects the lowest cost modification amongst the

available modifications. As a possible consequence, the cost of a configuration decreases due

to reduced penalties, for example. The algorithm terminates when no modification results in

a lower cost configuration. This algorithm stops at the first minimum cost configuration it

finds.

 Adaptive greedy heuristic: The adaptive greedy algorithm extends the greedy algorithm with

an ability to continue to look ahead for another minimum once the first one is found. For

example, if the adaptive greedy algorithm finds the first minimum in n iterations then it

explores the search space a further 2n iterations in the hope of finding a better (less costly)

minimum. If one is found then it resets the iteration counter and continues to look for a better

minimum until one is not found in the additional 2n iterations.

 Tabu greedy: The tabu greedy algorithm is an extension to the adaptive greedy heuristic. In

tabu greedy each chosen modification is intentionally flagged unavailable (tabu’ed) for some

iterations despite being a perfectly eligible modification. It does not use additional tabu

constructs (e.g. recency, quality, frequency) in deciding which modification to select.

 Tabu search: We present a tabu search algorithm which uses additional tabu constructs to

select the modifications more intelligently. The algorithm uses intensification and

diversification strategies. The intensification strategies promote the selection of

modifications historically found to be good. For example, recent modifications that lowered

the cost, or the modification that has lowered cost most of the time. The diversification stage,

on the other hand, encourages the search process to examine unvisited regions and to

generate configurations that differ significantly from those considered earlier. For example,

this strategy promotes previously unchosen modifications, or replaces the busiest VM with a

more powerful VM type.

The above search algorithms vary in their sophistication and their ability to find suitable

configurations. However, the algorithms do not tell us whether a suggested configuration is the

least costly configuration or whether there exist better configurations that were not yet

discovered. Ironically, the algorithms cannot tell us that they have found a global minimum even

Mian 31.10.12

 Page 12

when they do. In contrast, mathematical methods like linear programming (LP) are able to

determine the provably optimal configuration given an objective. In this case, the problem shifts

from search to formulation. Ruiz-Alvarez et al. use LP for optimal placement of data in the

hybrid clouds [17]. We intend to explore LP for finding the cheapest configuration. The time

complexity for solving LP is still exponential in the worst-case [18].

5 Evaluation

We claim to provide a novel and generic legislator framework for determining appropriate

resources and generating an efficient mapping needed for executing data-intensive workloads in

the clouds. The evaluation of the framework will be done incrementally, since there is a

dependency between individual components. For example, the search methods depend on the

cost model, which in turn depends on the performance model. Each objective function may

require a different cost model. For example, the makespan objective requires a time-bound cost

model instead of dollar-cost model, though both may use the same performance model.

Similarly, different performance models can be used to increase accuracy or reduce building

effort. This involves a considerable amount of work since each of the modules represents a large

area of research. For our Ph.D. dissertation, we evaluate our work with a single objective

function: minimal dollar-cost for executing transactional/analytical/mixed workloads that access

multiple partitions. Other objective functions and associated cost and performance models are

beyond the scope of this thesis.

Tenant Databases and their Workloads: We instantiate and evaluate our models and methods

for the Amazon cloud. Amazon is the dominant vendor in the IaaS cloud market. We have used

different analytical workloads in our recent work [4]. We explore any type workloads, which

change in the request types (transactional vs. analytical) or their number, or in their SLOs. While

Cooper et al. [19] define realistic workloads for unstructured data, we define workloads over

structured data residing in different partitions or tenant databases.

We use databases from well-known benchmarks as tenant databases in evaluating our work. We

consider databases of two transactional benchmarks (TPC-C [20] and TPC-E [21]), and a

database of an analytical benchmark (TPC-H [22]). Our workloads consist of a mix of queries

and transactions from the stated benchmarks. All the requests in a workload execute concurrently

until the specified time. Further, a request type in a workload may also have multiple instances

Mian 31.10.12

 Page 13

that execute concurrently. A request instance is continuously re-submitted if finished prior to the

end of the specified time. This ensures that the request mix is present at the data service

throughout the time bound.

Performance model: We choose three VM types with the intention of demonstrating under,

over, and optimal resource setup. We choose: small, large, and xlarge. They vary in their price,

processing power and their capacity to hold data in memory. For example, all the three tenants fit

in the memory of xlarge but neither fit in the memory of small, and only two tenants fit in the

memory of large.

We use the LHS protocol to generate two sets of samples (around 300), one for training and one

for validation. We execute both sets in the Amazon cloud using separate VMs and clients. We

measure throughput and response time metrics. We train our performance model using one

sample set and its results. Using the trained performance models, we predict the metrics for the

second sample set. After that, we compare the predicted metrics against the measured metrics for

the second sample set.

We use the popular metrics used in the existing literature for comparison: correlation coefficient,

average and median prediction errors. Correlation quantifies the similarity between the actual

and modeled trends. Meanwhile, prediction errors quantify the gap between the predicted and the

measured values. Correlation coefficient and prediction accuracy are complementary, and we use

both. Based on existing literature [6, 7, 12], we consider high correlation coefficient (around 0.80

or above) and low prediction errors (around 20% or below) to flag the success of our

performance model.

The cloud environments have as much as 35% variance compared to a local server [14]. The

variance poses a great challenge in building a performance model. Existing performance models

[6-8] are built for a physical server or a VM hosted on a local server. Further, Sheikh et al. [7]

developed performance models that can provide predictions for unknown VM or request types,

and have the ability to adapt online. In contrast, our performance models [23] are built for the

highly variant cloud environments. We reduce variance in building a performance model at the

cost of limiting the scope of the model to the known VM and request types. Further, our

performance models are entirely built offline. We believe we are the first to present performance

Mian 31.10.12

 Page 14

models for a public cloud, so there is no comparison points in clouds. We also provide a

comparison of different underlying prediction techniques based on accuracy, and justify our

choice. Our comparison includes multi-attribute linear regression, gaussian processes, multi-

layer perceptron and support vector regression.

Cost Model: We instantiate our cost model for the Amazon cloud. The method used for

validating performance model is a typical validation method for experiment-driven approach. We

have already discussed the limitations in executing large sample sets for approximating cost

function.

Instead, we narrow the load diversity of workloads (see Table 1). The workloads execute at the

optimal MPL level of a VM type. All workloads are presently weighted equally. Therefore, the

optimal MPL of a VM type is divided equally amongst the multiple workloads executing

together. Any remainder MPL is used by Q1 or Q12 instances. This is an ad hoc choice to keep

the data service under optimal load. For example, suppose read-only and write-heavy workloads

execute on the large VM type, where the optimal MPL level is 75. There are four request types in

the read-only and write-heavy workloads (Q1, Q6, trade-order and trade-update), each getting an

equal MPL share (of 18) of the optimal MPL value (75). The remainder of 3 adds into the MPL

share of Q1. The MPL share of a request type represents the concurrent instances of that request

type in the request mix executed at a data service at any time.

Table 1: Various workloads defined over multiple request types.

Workload type Tenants Request types

A – Read only (OLAP) TPC-H Q1, Q6

B – Write heavy (OLTP) TPC-E trade-order, trade-update

C – Read-write (mixed) TPC-H, TPC-C Q12, Q21, new-order, payment

Further, we validate our cost model using sensitivity analysis over different values of the user-

controllable variables that determine a configuration cost [24]. A user has direct control over

three variables that impact the cost of a configuration in the Amazon cloud. These variables are:

(a) workloads, (b) VM types and (c) SLOs’ specifications. The network cost varies with the

workload and the VM type, while the storage cost varies with the tenant type.

Mian 31.10.12

 Page 15

The cost itself has two components (a) the resource costs, and (b) the penalty costs. We can

compare the estimated resource cost directly against the invoice rendered by Amazon. However,

a cloud provider like Amazon is typically agnostic to the workloads or the associated SLOs. In

this case, we calculate the actual penalties based on the measured (throughput and response

time) metrics, and compare these against the penalty costs calculated on predicted metrics. Then,

we calculate the error in cost estimate for each use-case. Low estimation errors (20% or less) in

most use-cases mark the success of our cost model. Finally, we discuss our cost model in relation

to others in the literature [25-27].

Search Algorithms: Once the cost model has been validated, the search algorithms can use it for

finding the most cost effective configuration. We measure the performance of the search

algorithms on two quantities: (a) the dollar-cost of the suggested configuration, and (b) the

execution time of the algorithm. We compare the performance of the algorithms against the cost

of a baseline configuration, against each other, and against globally optimum configurations in

some limited cases. The baseline configuration is provided by a greedy or a random search. The

globally optimum configurations are worked out using linear programming in a few cases. In

such cases, we will see how close our search algorithms come to the optimal case.

We validate the results of linear programming formulations against the optimum configurations

worked out by hand. For example, the configuration with one small VM instance is optimal in

two cases: (a) when there are no SLOs, and (b) when all the SLOs cannot be satisfied by any

combination of any VM types. In these cases, the dollar-cost has to match verbatim though the

number and types of VMs may vary, for example.

6 Expected Contributions

We formulate the problem of determining appropriate resources and generating an efficient

workload mapping, and the constructs to represent it. In traditional workload execution literature,

the resource pool is assumed static. In contrast, we extend the execution constructs to include

provisioning resources prior to and during execution. An appropriate number of processing and

storage resources depend on a suitable configuration. We combine the task of determining

appropriate resources and workload mapping into a single search problem, and use standard

search methods and heuristics.

Mian 31.10.12

 Page 16

We provide a systematic study of workload management of data-intensive workloads in the

clouds. We develop a taxonomy of workload management techniques used in the clouds, and

classify existing workload management mechanisms based on the taxonomy. Further, we provide

a survey of workload management systems in the clouds and a discussion of possible directions

for future research in this area.

We propose a novel and generic legislator framework for determining appropriate resources and

efficient workload mapping in a cloud. The management function in the framework exploits the

cloud’s elasticity. Our framework allows pluggable cost and performance models.

We instantiate the framework for a public cloud by developing various search algorithms to find

a suitable configuration given an objective function. Further, we develop an objective function

and associated cost model. We also develop a performance model to support the cost model.

We integrate dollar-cost with workload execution using our problem formulation and appropriate

objective function. We hope our work to be useful from a number of angles: (a) estimate the

expense of executing a workload in a cloud, (b) offer scale to workload execution by harnessing

cloud’s elasticity, (c) reduce time to result by exploiting rapid provisioning of cloud’s resources,

and (d) shorten the gap between data growth and the processing ability.

Plan

Milestones Status Estimate

(term)

formulate the problem of determining

appropriate resources and generating an

efficient workload mapping

Completed [1, 4]

Legislator framework Completed [1, 4]

Systematic study of workload management in

clouds

Completed [2, 3]

Cost models Completed [4, 24]

Analytical performance model Completed [4]

Experiment-driven performance model Completed, submitted for

publication [23]

Fall 12

Search algorithms Completed development,

pending validation

Winter 12

LP formulation Currently developing Winter 12

Thesis Planning Fall 13

Mian 31.10.12

 Page 17

Dissertation Outline

1 Introduction and motivation

1.1 Ever growing data and limitations in processing

1.2 Introduction to cloud computing and its offerings

1.3 Relevance of workload management

1.4 Research statement

1.5 Scope of the Research

1.6 Thesis organization

2 Background

2.1 Workload management in traditional dbms and grid computing

2.2 Data-intensive computing architectures

2.3 Data management applications in the cloud

2.3.1. Opportunities and limitations

2.4 Workload management taxonomy in clouds

2.4.1. Scheduling taxonomy

2.4.2. Provisioning taxonomy

2.5 Survey of workload management techniques and systems

3 Overview

3.1 Provisioning problem and objective functions

3.2 Generic search, generate and evaluate loop

3.3 Search methods, cost and performance models

3.4 Autonomic framework

4 Performance models

4.1 Analytical models (Queuing Network Models)

4.1.1. Modelling and evaluation

4.2 Experiment-driven models (Support Vector Machine)

4.2.1. Modelling and evaluation

4.3 Comparison with existing work

5 Cost models

5.1 Generic dollar-cost model

5.2 Instantiating cost model for Amazon cloud

5.3 Workload definitions

5.4 Various use-cases demonstrating optimal, under and/or optimal configurations

5.5 Validating cost model against use-cases

5.6 Comparison with other cost models

6 Search methods and linear formulation

6.1 Complexity of the search problem

6.2 Greedy heuristics

6.3 Tabu search

6.4 Evaluating algorithms

6.4.1. Comparing algorithms against a baseline and against each other

6.4.2. Comparing algorithms against the global optimum in limited cases

6.5 Linear formulations for optimal configuration and validation

6.6 Comparison with other search methods

7 Thesis contribution and future work

8 Conclusions

Mian 31.10.12

 Page 18

References

[1] R. Mian and P. Martin, “Executing data-intensive workloads in a Cloud,” Proc. 12th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2012,

pp. 758-763.

[2] R. Mian, P. Martin, A. Brown and M. Zhang, “Managing Data-Intensive Workloads in a

Cloud,” Grid and Cloud Database Management, G. Aloisio and S. Fiore, eds., Springer, 2011.

[3] R. Mian, Managing Data-Intensive Workloads in a Cloud (Ph.D. Depth Paper),

Technical Report#: 2011-581, P. Martin, School of Computing, Queen's University, 2011.

http://research.cs.queensu.ca/TechReports/Reports/2011-580.pdf

[4] R. Mian, P. Martin and J.L. Vazquez-Poletti, “Provisioning data analytic workloads in a

cloud,” Future Generation Computer Systems (FGCS), 2012, pp. in press

http://dx.doi.org/10.1016/j.future.2012.1001.1008

[5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W. H. Freeman Co., 1979, p. 338.

[6] S. Tozer, T. Brecht and A. Aboulnaga, “Q-Cop: Avoiding bad query mixes to minimize

client timeouts under heavy loads,” Proc. IEEE 26th International Conference on Data

Engineering (ICDE), 2010, pp. 397-408.

[7] M.B. Sheikh, et al., “A bayesian approach to online performance modeling for database

appliances using gaussian models,” Proc. 8th ACM international conference on Autonomic

computing (ICAC), ACM, 2011, pp. 121-130.

[8] A. Ganapathi, et al., “Predicting Multiple Metrics for Queries: Better Decisions Enabled

by Machine Learning,” Proc. IEEE 25th International Conference on Data Engineering, 2009.

(ICDE '09). , IEEE, 2009, pp. 592-603.

[9] C. Gupta, A. Mehta and U. Dayal, “PQR: Predicting Query Execution Times for

Autonomous Workload Management,” Proc. International Conference on Autonomic

Computing, 2008. (ICAC '08). , IEEE, 2008, pp. 13-22.

[10] M. Ahmad, A. Aboulnaga and S. Babu, “Query interactions in database workloads,”

Proc. Proceedings of the Second International Workshop on Testing Database Systems, ACM,

2009, pp. 1-6.

[11] M. Ahmad, A. Aboulnaga, S. Babu and K. Munagala, “Modeling and exploiting query

interactions in database systems,” Proc. Proceedings of the 17th ACM conference on Information

and knowledge management, ACM, 2008, pp. 183-192.

[12] M.B. Sheikh, et al., A Bayesian Approach to Online Performance Modeling for Database

Appliances using Gaussian Models, Technical Report#: CS-2011-13, 2011.

http://www.cs.uwaterloo.ca/research/tr/2011/CS-2011-13.pdf

[13] C.R. Hicks and K. Turner Jr, Fundamental concepts in the design of experiments, Oxford

University Press, New York, 1999.

[14] J. Schad, J. Dittrich and J.-A. Quiane-Ruiz, “Runtime measurements in the cloud:

observing, analyzing, and reducing variance,” Proc. VLDB Endow., vol. 3, no. 1-2, 2010, pp.

460-471

[15] Amazon, “Simple Storage Service (S3),” http://aws.amazon.com/s3/.

[16] Amazon, “DynamoDB,” http://aws.amazon.com/dynamodb/.

[17] A. Ruiz-Alvarez and M. Humphrey, “A Model and Decision Procedure for Data Storage

in Cloud Computing,” Proc. Cluster, Cloud and Grid Computing (CCGrid), 2012 12th

IEEE/ACM International Symposium on, 2012, pp. 572-579.

http://research.cs.queensu.ca/TechReports/Reports/2011-580.pdf
http://dx.doi.org/10.1016/j.future.2012.1001.1008
http://www.cs.uwaterloo.ca/research/tr/2011/CS-2011-13.pdf
http://aws.amazon.com/s3/
http://aws.amazon.com/dynamodb/

Mian 31.10.12

 Page 19

[18] G. Leach, Topic 11 Computational Complexity, COSC 1229/1479 Computational

Science 1, MIT, 2012. http://goanna.cs.rmit.edu.au/~gl/teaching/cs554/lectures/554-Complexity-

4.pdf

[19] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan and R. Sears, “Benchmarking

cloud serving systems with YCSB,” Proc. 1st ACM Symposium on Cloud Computing (SoCC),

Association for Computing Machinery, 2010, pp. 143-154.

[20] TPC-C, “Order Processing Benchmark,” http://www.tpc.org/tpcc/.

[21] TPC-E, “Trading Benchmark,” http://www.tpc.org/tpce/.

[22] TPC-H, “Decision Support Benchmark,” http://www.tpc.org/tpch/.

[23] R. Mian, P. Martin and J.L. Vazquez-Poletti, “Towards Building Performance Models for

Data-intensive Workloads in Public Clouds,” Proc. 4th ACM/SPEC International Conference on

Performance Engineering (ICPE), ACM, 2013, pp. submitted.

[24] R. Mian, P. Martin, F. Zulkernine and J.L. Vazquez-Poletti, “Estimating Costs of Data-

intensive Workload Execution in Public Clouds,” Proc. 10th International Workshop on

Middleware for Grids, Clouds and e-Science (MGC) in conjunction with ACM/IFIP/USENIX

13th International Middleware Conference 2012, ACM, 2012, pp. in press.

[25] T. Bicer, D. Chiu and G. Agrawal, “Time and Cost Sensitive Data-Intensive Computing

on Hybrid Clouds,” Proc. 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), 2012, pp. 636-643.

[26] B. Sharma, R.K. Thulasiram, P. Thulasiraman, S.K. Garg and R. Buyya, “Pricing Cloud

Compute Commodities: A Novel Financial Economic Model,” Proc. 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2012, pp. 451-457.

[27] Amazon, “Simple Monthly Calculator,” http://calculator.s3.amazonaws.com/calc5.html.

http://goanna.cs.rmit.edu.au/~gl/teaching/cs554/lectures/554-Complexity-4.pdf
http://goanna.cs.rmit.edu.au/~gl/teaching/cs554/lectures/554-Complexity-4.pdf
http://www.tpc.org/tpcc/
http://www.tpc.org/tpce/
http://www.tpc.org/tpch/
http://calculator.s3.amazonaws.com/calc5.html

