
1

Technical Report No. 2013-613

Estimating Resource Costs of Executing Data-Intensive
Workloads in Public Clouds1

Rizwan Mian, Patrick Martin, Farhana Zulkernine
School of Computing
Queen’s University

Kingston, Ontario, Canada, K7L3N6
{mian, martin, farhana}@cs.queensu.ca

Jose Luis Vazquez-Poletti
Departamento de Arquitectura de Computadores y Automatica

Universidad Complutense de Madrid
28040. Madrid, Spain
jlvazquez@fdi.ucm

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission.

1 A shorter version of this report has been published as Mian, R., Martin, P., Zulkernine, F., and Vazquez-Poletti, J.L.
2012. “Estimating Costs of Data-intensive Workload Execution in Public Clouds.” 10th International Workshop on
Middleware for Grids, Clouds and e-Science (MGC) in conjunction with ACM/IFIP/USENIX 13th International
Middleware Conference 2012, ACM, article. 3, Montreal, QC, Canada.

2

Estimating Resource Costs of Executing Data-Intensive
Workloads in Public Clouds

Rizwan Mian, Patrick Martin, Farhana
Zulkernine

School of Computing
Queen’s University

Kingston, Ontario, Canada, K7L3N6
{mian, martin, farhana}@cs.queensu.ca

Jose Luis Vazquez-Poletti
Departamento de Arquitectura de Computadores y

Automatica
Universidad Complutense de Madrid

28040. Madrid, Spain
jlvazquez@fdi.ucm

ABSTRACT

The promise of “infinite” resources given by the cloud
computing paradigm has led to recent interest in exploiting
clouds for large-scale data-intensive computing. In this paper,
we present a analytical model to estimate the resource costs for
executing data-intensive workloads in a public cloud. The cost
model quantifies the cost-effectiveness of a resource
configuration for a given workload with consumer performance
requirements expressed as Service Level Agreements (SLAs),
and is a key component of a larger framework for resource
provisioning in clouds. We instantiate the cost model for the
Amazon cloud, and experimentally evaluate the impact of key
factors on the accuracy of the model.

Keywords
Cloud computing, cost model, resource provisioning.

1. INTRODUCTION
Public clouds, because of their pay-as-you-go flexibility and
lack of up-front costs, are attractive to companies interested in
lowering their operational IT costs. In making the decision to
move to a public cloud, however, a company must be able to
determine an appropriate configuration of cloud resources for
an application and so predict the cost-effectiveness of moving
the application. The cost-effectiveness is determined by the cost
of the required resources and the application performance
achieved with those resources.
We previously proposed a framework for resource provisioning
of data-intensive applications in a cloud [1]. Given the cost
structure from a cloud provider and the set of application
workloads and the negotiated SLAs, our method determines a
resource allocation with minimal cost for those workloads.
The cost model, which plays a key role in the decision-making
process, produces a single dollar value that captures the cost-
effectiveness of a particular configuration in terms of both the
resources allocated and the applications’ performance. The
latter is represented as the penalty value imposed if SLAs
associated with the workloads are not achieved. A configuration
where more resources than needed are allocated pays a higher
than necessary cost in terms of resources. A configuration
where insufficient resources are allocated, on the other hand,
pays a higher cost in terms of SLA penalties.
In this paper we discuss the different components of our cost
model and explain how each can be determined for public cloud
with a pay-as-you-go pricing strategy. We apply the cost model
to the Amazon cloud [2] and present a set of experiments that
investigate the impact of key factors affecting the cost model.
The remainder of the paper is structured as follows. Section 2
outlines related work. Section 3 discusses different resource

types and pricing schemes in Infrastructure-as-a-Service (IaaS)
clouds. Section 4 describes our cost model. Section 5 presents a
set of experiments using the cost model with sample data-
intensive workloads on Amazon EC2 and Section 6 concludes
the paper.

2. RELATED WORK
The problem of resource provisioning in public clouds has
recently received a great deal of attention. Vazquez-Poletti et al.
[3] determine a suitable number of homogenous virtual
machines (VMs) to execute a given workload in the Amazon
cloud based on values of a novel cost-performance metric
(C/P). Their method does not consider other resource costs such
as storage or communication, and is applied to a workload
consisting of a single work-unit, which is equivalent to a single
query or a transaction. The C/P-based approach does not
account for any SLAs, or its penalties in case of violations.
Tsakalozos et al. [4] use principles from microeconomics to
dynamically converge to a suitable number of VMs for a
workload given a user’s budget. Their approach is used at
runtime and cannot be used to provide an a priori prediction of
resource allocations. Bicer et al. [5] also propose a runtime
resource allocation framework to support time or cost
constrained application execution in a hybrid cloud. Their cost
model’s parameters are acquired by monitoring an executing
application.
Sharma et al. [6] develop a pricing model to provide “high”
satisfaction to the users and the providers in terms of QoS
guarantees and profitability requirements, respectively. The
thrust of their work is towards valuation of cloud resources, and
they employ financial option theory and treat the cloud
resources as underlying assets.
Li et al. [7] propose a cost-effective data reliability mechanism
to reduce the storage cost in a public cloud. Their mechanism
checks the availability of replicas and reduces storage
consumption up to one-third by making certain assumptions on
the reliability. Assunção et al. [8] investigate the benefits that
organizations can reap from a hybrid cloud. In particular, they
offload work to a public cloud to reduce deadline violations and
associated cost. Du [9] looks at maximizing revenue from cloud
vendor’s perspective by modeling hybrid and public cloud
markets using Markovian traffics. Interestingly, her work
suggests that the hybrid cloud is the most profitable model for
cloud vendors.
Amazon’s monthly calculator [10] estimates charges for
Amazon EC2 resources, if they are used for an entire month.
While the time-bound on a workload may be unknown in
advance, we argue that the time-unit of a month for resource
cost is excessively coarse-grained. The calculator does not have
any knowledge of a workload and cannot account for
application performance with a given set of resource
allocations.

3

Our cost model accounts for all the resources needed (compute,
storage and network) to execute a data-intensive workload
consisting of multiple queries and transactions accessing
multiple data partitions. Further, our cost model accommodates
user-defined SLA and associated penalties. Moreover, the
execution cost is provided at the granularity of an hour.

3. DIFFERENT RESOURCE TYPES AND
PRICING SCHEMES IN IAAS CLOUDS
There are primarily three types of resources needed to execute a
workload in an IaaS cloud, namely compute, storage, and
network resources. For each resource type, there are different
pricing schemes and sub types of resources. The resource sub
types used in our cost model are identified in section 3.1.
Meanwhile, we consider pay-as-you-go scheme in our cost
model. This is because we find pay-as-you-go scheme is more
in-line with the cloud philosophy proposed by Armbrust et al.
[11] that includes: (a) no upfront commitment, and (b) pay-for-
use pricing scheme. All major cloud vendors Amazon cloud [2],
RackSpace [12], and GoGrid [13] offer infrastructural resources
on a pay-as-you-go basis. We discuss diversity in resource sub
types and different pricing schemes below, using Amazon cloud
as an example.

3.1 Resource Types and Sub Types
The resource costs vary by the resource sub type and the usage
duration. A VM is a typical compute unit in an IaaS cloud.
VMs differ in their computational and memory resources,
network bandwidth available to them and latency of disk I/O.
Amazon offers a diverse portfolio of VM types [14] aimed at
different classes of applications, as shown in the Table 1.
The storage also comes in different sizes and flavors as shown
in Figure 1. Every VM has a local storage [15], which is usually
in the hundreds of gigabytes and has no access costs. Data on
the local storage is volatile, and the data is lost once the user
gives back the VM to the vendor. All other storage types are
usually accessed over the network. For example, Amazon S3
[16] stores data over multiple network devices. It is a key-value
storage that can store a value sized from 1 byte to 5 terabytes.
Similarly, DynamoDB [17] is a key-value storage with very low
latency. However, it places a limit (64KB) on the size of the key
and the value. In contrast, the Elastic Block Storage (EBS)
volumes [18] are raw storage which are formatted and mounted,
and appear as network disks on Amazon VMs. Their sizes can
vary from 1 GB to 1 TB.

Table 1: VM Classes, their distinguishing features, example applications and cost bands.

VM Class Distinguishing Features Example Applications Cost Band

Opportunistic

Small amount of CPU resources
augmented with spare CPU
capacity of the host server when
available.

Lower throughput applications and web-sites
that require additional compute cycles
periodically, but are not appropriate for
applications that require sustained CPU
performance.

Very low cost

General purpose Balance between compute,
memory, and network resources.

Small and mid-size databases, data processing
tasks that require additional memory, and
caching servers.

Lower end

Compute
optimized

Higher ratio of CPUs to
memory than other VM classes.

CPU-bound scale out applications. Examples
include high traffic front end fleets, web
servers, batch processing.

Middle order

Memory
optimized

Lowest cost per GB of memory
among EC2 VM types. Database applications and distributed caches. Middle order

Storage
optimized

Directly attached storage
optimized for applications with
specific disk I/O and storage
capacity requirements.

NoSQL databases like Cassandra [19] and
MongoDB [20] which benefit from very high
random I/O performance and the low request
latency of directly attached Solid State Drives
(SSDs).

Additional
premium on
base VM cost

Cluster
computing
optimized

High core density and supports
cluster networking.

Computational chemistry, rendering, financial
modeling, and engineering design. High end

Storage
Types

volatile

persistent

key-value

raw

Figure 1: Examples of different storage types in the Amazon cloud.
[15]; [16], [17]; [18]

e.g. S3 [16], DynamoDB [17]

e.g. local VM storage [15]

e.g. EBS [18]

4

Amazon also provides different network performance for
different VM types and storage resources. However,
bandwidth available to a VM is not expressed as a number or
a range. Instead, Amazon categorizes the network
performance of a VM type into four bands, namely very low,
low, moderate and high. The notable exception is 10 Gb/s for
some VM types such as storage optimized VMs. Fortunately,
it is possible to acquire guaranteed bandwidth (500 and 1000
Mbps) on some VM types to access EBS at an additional
premium.
The maximum reported bandwidth between EC2 VMs and S3
was around 21MB/s in 2008 as reported by Palankar et al.
[21]. They also noted that as the number of threads on a VM
increases, the per-thread bandwidth decreases but the
aggregate bandwidth increases. With two machines running
with six threads each, the average bandwidth was 17 MB/s for
file sizes of 100 MB. Bergen et al. [22] note in 2011 that the
average bandwidth reaches up to 12 MB/s for file sizes
between 100MB and 5GB.

3.2 Pricing Schemes
The same resource sub type may also be offered using
numerous pricing schemes. The pricing schemes usually differ
in the resource acquisition method. For example, the popular
schemes for acquiring VMs are: (a) pay-as-you-go, (b)
auction-based, and (c) reserved.
Using pay-as-you-go scheme, a VM is available within a few
minutes when requested, and the user pays by the hour. This
frees the user from planning and long-term commitment. Pay-
as-you-go scheme is also known as an on-demand scheme.
The storage usage is usually billed by the month, though
charges for partial usage may apply. In addition, there are
network costs associated with accessing the storage, which is
typically measured by the number of accesses. Further,
transferring data in and/or out of a public cloud usually incurs
costs. This cost is estimated by the amount of data transferred.
The storage cost may also vary by the size of storage acquired.
Amazon decreases the cost rate for S3 as the storage size
increases. This decrease follows a step function instead of a
linear function.
The auction-based or spot schemes enable a user to bid for the
unused VMs. The spot price fluctuates periodically depending
on the supply and demand for the VMs. A user gets a VM
only when the bid exceeds the current spot price. The user
may willfully return the unneeded VMs or the vendor may
grab the allocated VMs forcefully when the spot price exceeds
the user’s bid. This scheme is usually cheaper than the on-
demand scheme, but the vendor may place a minimum or a
baseline price for the bids. More importantly, the user may
have to wait, or worse suffer a loss of a VM when the spot
price increases. This adds complexity to the market model.
Understanding how cloud vendors set the spot prices is useful
for users, who can decide how much to bid. Ben-Yahuda et al.
[23] find that Amazon seems to generate spot prices using a
hidden reserve price function, which only complicates the
market model.
A user may be willing to commit for a long period of time
such as a month or a year. In this case, the reserve scheme is
suitable and it costs less than the on-demand scheme. The
money is paid upfront in a lump sump, and is usually non-
refundable. Therefore, some planning is required to avoid
wasting of money and/or unused VMs. A cloud provider may
offer additional discounts on other resource types when
subscribing a service for a long-term. For example, Amazon
offers some percent discounts on the storage when reserving

VMs. The reserved scheme is also known as the pre-paid
scheme.

4. COST MODEL
Given a set of applications A = {A1, A2, …, Am}, we say that
a workload Wi for Ai, is a set of requests that are issued by
the set of clients of Ai. Each request is an instance of a
request type Rij from a set Ri = {Ri1, Ri2, …, Rin} for Ai. The
databases used by A consist of a set of data objects D = {D1,
D2, …, Dm}. A request type Rij for Ai accesses some data
objects in Pi ⊆ D, and has a service level objective SLOij.
We call Pi a data partition and assume that Wi accesses data
from Pi. The SLA for Wi is composed of the set of all
SLOi’s for the request types in Ai. We need compute, storage
and network resources to execute Wi. A configuration C for a
set of workloads, W = {W1, … ,Wn}, contains the following:

• A set of VMs V = {v1, v2, …, vr}, where each VM vk is a
specific type (for example small, large, xlarge). Each
VM type has a specific set of system attributes (e.g. OS,
memory, cores), and a specific cost rate.

• A mapping of the workloads, W, to VMs in V such that
every workload is assigned to one VM.

• A mapping of data partitions used by W to VMs in V
such that every data partition is assigned to at least one
VM. The partitions are stored in the cloud storage. The
partitions typically vary in sizes and have different access
patterns, resulting in different storage and network costs.
Overlapping partitions on the same VM share the same
copy of the common data objects. Assignment to more
than one VM involves replication of the partition, and
we assume that the replicas are read-only.

An application that is executed with a given configuration in a
public cloud results in a cost to the application owner. This
cost, as previously noted, is made up of resource costs and
penalty costs if SLAs are not met. The resource costs in a pay-
as-you-go public cloud are primarily associated with compute,
storage and network resources. Since a workload bound is
not known in advance, we choose to represent the cost of a
configuration per unit time, specifically in $ / hour. The cost
for configuration C in a pay-as-you-go IaaS cloud can
therefore be stated as:
Cost$(C) = Compute$(C) + Storage$(C)

+ Network$(C) + Penalty$(C)
A VM is a typical compute unit in an IaaS cloud. The VM
types differ in their computational and memory resources
[14]. Their price is generally metered by the hour and partial
usage is rounded up to the next hour. The compute cost
Compute$(C) can be expressed as:









= ∑

∈Vv
vVMCostCCompute)$()$(

where V is the set of VMs in the configuration C, and
VMCost$(v) is the hourly cost of a VM v.
There are different types of storage with different properties
and prices. We consider our data partitions are stored in a
cloud storage, which is metered by the month. We prorate the
monthly cost down to an hour. The hourly cost for the storage
used in a configuration C is estimated by:








 ×
=

hoursmonth
EqCStorage

_
$)$(

where $q is the unit cost of storage (in dollar per gigabyte per
month), E is the aggregated size of data partitions rounded

5

up to the next gigabyte, and month_hours is the number of
hours in a month (e.g. 24h ×30days). Any fractional cost is
rounded up to the next cent.
There are two main sources of network costs in the data-
intensive applications, namely transferring data in and/or out
of the cloud and accessing storage. The transfer costs are
difficult to capture in a general model since they are
dependent on a number of specific characteristics of the
application owner. We therefore assume that the data is
already in the cloud, which is accounted for by the storage
costs, and therefore, we only consider the network costs
associated with accessing data storage. The network costs are
therefore estimated by:









×= ∑

∈Vv
v scCNetwork $)$(

where cv is the estimated number of accesses to the network
storage in a time-unit (hour) and $s is the unit network cost
for accessing storage. Like storage costs, the network cost is
rounded up to the next cent.
We propose a function that assigns a penalty each time-unit in
which a breach occurs. This is reasonable since we use
average performance metrics (such as average throughput)
over a time-unit to detect a breach. For a particular
configuration C and a request type r, the penalty incurred in a
given time-unit (hour) is given by:

∑
∈

×=
Rr

rpenaltyCrpcondCPenalty)(),()$(

where penalty(r) is the penalty value (in $) for requests of
type r missing their SLO in a time-unit. The binary function
pcond indicates whether or not an SLO defined over r and C
has been violated. We provide examples of pcond when we
instantiate the cost model for the Amazon EC2 public cloud in
Section 5.

5. EVALUATION
We now examine the effectiveness of our proposed cost
model for pay-as-you-go IaaS public clouds. We define an
instance of our model for Amazon EC2 [2], which is currently
a major IaaS cloud vendor [24], and consider possible
configurations for a multitenant database application with
different tenants, each with their own workload. We compare
the cost estimates produced by our model with the actual costs
incurred on EC2 for a variety of configurations of the
multitenant database application. We find that our model
produces accurate cost estimates in all cases.
We observe that there are three main variables that influence
the cost for a configuration:

1. The VM types used in the configuration,
2. The mix of workloads or tenants involved in the

configuration, and
3. The SLOs enforced in the configuration.

The network cost varies with the workload and the VM type,
while the storage cost varies with the tenant type. We
therefore present the results of three experiments where each
factor is varied while holding the other two constant. We
compare the estimated resource costs directly against the
invoice rendered by Amazon. We calculate the penalties based
on the measured metrics (throughput and response time). We
determine the error in the cost estimate for each case.

5.1 Tenants and their Workloads
The tenants for the multitenant database application used in
our experiments are described in Table 2. The tenants are
based on well-known transactional (TPC-C and TPC-E), and
analytical (TPC-H) benchmarks [25]. The tenants’ workloads
are made up of requests from the benchmarks and are chosen
to exhibit different behaviours, namely read-only, write-heavy
and mixed read/write.

Table 2. Example Application Tenants
Tenant Workload Data-

bases

Request types

a read-only TPC-H Q1, Q6

b write-heavy TPC-E trade-order,
trade-update

c read-write
(mixed)

TPC-H,
TPC-C

Q12, Q21 (TPC-H),
new-order, payment

(TPC-C)

5.2 Cost Model for Amazon EC2
We examined the pricing structure offered by Amazon EC2
and assigned values to the cost variables in our cost model as
follows.
Compute costs: We consider three VM types offered by EC2
in order to include cases of under, over and optimal resource
provisioning for the example applications. We use the small,
large, and xlarge VM types as shown in Table 3. The VM
types vary in their price, processing power and their capacity
to hold data in memory. For example, all three tenants fit in
the memory of xlarge but none of them fit in the memory of
small, and only two tenants fit in the memory of large. Studies
have shown that EC2 does not always provide consistent
performance so we chose to run our experiments in the region
with least variance, namely US-East-1d [26].

Table 3. VM Types for Amazon EC2
VM Type Cores (#) Memory (gb) Cost/hr($)1

Small 1 1.7 0.08

Large 2 7.5 0.32

Xlarge 4 15 0.64

Amazon EC2 provides the ability to place VM instances in
multiple locations [2]. These locations are composed of
regions and availability zones within them. Availability zones
are distinct locations (presumably different data centers) that
are engineered to be insulated from failures in other zones,
and to provide inexpensive, low latency network connectivity
to other zones in the same region.
Storage costs: We choose Elastic Block Storage (EBS) [18]
to store tenant databases, primarily because EBS appears as a
network mounted hard disk. We also find EBS convenient for
the evaluation purposes. We created templates of tenant
databases for TPC-C, TPC-H and TPC-E, called snapshots,
prior to workload execution. These snapshots are booted to
provide ready to use volumes (provisioned storage) for
workload execution. We wrap up the tenant databases with

1 Amazon has revised these costs since we started

experimentation.

6

some binaries and settings, and store that as an image.1 The
major portion of binaries consists of a configured MySQL
database management system (DBMS) hosting all the
database tenants. This greatly simplifies the engineering
process, and the workloads can start execution as soon as the
compute and storage resources are available. The DBMS
binaries and settings add a small amount to the storage cost
compared to tenant databases, and are included in the storage
costs.

The EBS storage cost consists of two parts, namely snapshot
storage and provisioned storage. The snapshot storage cost
occurs due to the images being stored in a permanent archive,
S3 [16]. Meanwhile, the charge for provisioned storage is
made when the VMs are booted with images stored in S3
[27]. The charges for provisioned storage accumulate on an
on-going basis till the VMs are terminated.

Snapshot storage has a cost of $0.125/GB/month and
provisioned storage has a cost of $0.10/GB/month [18]. Both
snapshot and provisioned storage are billed by the month, but
are metered by the hour [28], so we can estimate their
associated cost by the hour. Their cost is rounded up to the
next integer cent. The hourly cost of the snapshot storage is
estimated to the next cent by:








 ×
=

hoursmonth
EqCorageSnapshotSt

_
$)$(

where $q is the unit cost of snapshot storage ($0.125), E is
the aggregated size of partitions rounded up to the next
gigabyte, and month_hours is the number of hours in a month
(24h ×30days). The provisioned cost is estimated using the
same method, except the $q becomes the unit cost of
provisioned storage ($0.10 per GB-month). We validate our
method of estimating storage costs against the daily
increments in the storage cost reported by Amazon Activity
[29].2
Network costs: Amazon places numerous network charges
such as data transfer in and out of clouds, and data transfer
across zones. In our case, the data is already in the cloud and
the clients and DBMS exist in the same zone so the only
charges are for accesses to EBS storage.

We experimentally determine the number of accesses required
for each workload on each VM type. We then estimate the
number of storage accesses per hour for a mix of workloads
on a VM type as the average of the number of accesses by
each individual workload in the mix. When considering all
workload combinations, we find that the error in the network
cost provided by simple average varies from -$0.04 to $0.12
(range of $0.16). We can possibly improve the accuracy of
estimating the network cost by prorating the network access at
the request level but this comes at the cost of increased
complexity. We find that the simple average provides
reasonable accuracy in most cases.

1 Our image (ami-7bc16e12) is publicly available at:

http://thecloudmarket.com/owner/966178113014. Once the
image is instantiated, the clients can connect (ssh in) to the
instance and access the MySQL DBMS as root user with
wlmgmt password.

2 We record Account Activity on a daily basis. Our daily
records for April 12 to July 12 are available here:
http://research.cs.queensu.ca/home/mian/index_files/Page48
5.htm

We need some method of aggregating experimental results,
and realize that “average” is meaningful for a normal-like
distribution. With the scarcity of training samples, we are
unable to verify the distribution of results and resort to using
average as the aggregation method. Average, after all,
provides a “smoothing” effect over available measurements.
Nonetheless, the reported results must be interpreted with
caution.

Penalty cost: We calculate the penalties based on the
measured throughput and response times. The binary function
pcond is defined differently for response time and throughput.
For response time on a request r, it is defined as

𝑝𝑐𝑜𝑛𝑑 (𝑟,𝐶) = �1 𝑖𝑓 𝑎𝑣𝑔𝑅𝑒𝑠𝑝𝑇𝑖𝑚𝑒(𝑟,𝐶) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑟),
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

where avgRespTime(r,C) is the average response time for
request r in C, and threshold(r) is the required response time
specified in the SLO for the request r.

For throughput on a request r, pcond is defined as

𝑝𝑐𝑜𝑛𝑑 (𝑟,𝐶) = �1 𝑖𝑓 𝑎𝑣𝑔𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑟,𝐶) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑟),
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

where avgThroughput(r,C) is the average throughput for
transaction q in C, and threshold(r) is the required throughput
specified in the SLO for the request r.

5.3 Experiments
All the requests in a workload execute concurrently until the
specified time. A request type in a workload may have
multiple instances that execute concurrently. Our workloads
are bound by time. Until the completion time, a request
instance is continuously re-submitted if finished early. This
ensures that the request mix remains present at a DBMS
throughout the time bound.
The workloads execute at the optimal Multi-Programming
Level (MPL)3 of a VM type. All workloads are presently
weighted equally. Therefore, the optimal MPL is divided
equally when multiple workloads are executing together. Any
remainder MPL value is used by Q1 or Q12 query instances.
This is an ad hoc choice to keep the DBMS under optimal
load.
For example, suppose read-only and write-heavy workloads
execute on the large VM type where the optimal MPL level is
75. There are four request types in the read-only and write-
heavy workloads (Q1, Q6, trade-order and trade-update), each
getting an equal MPL share (of 18) of the optimal MPL value
(75). The remainder of 3 adds into the MPL share of Q1. The
MPL share of a request type represents the concurrent
instances of that request type in the request mix executed at a
DBMS.
We parameterize our cost model by the hour, therefore, the
same request mix executes for the entire duration. The warm
up period is included in the measurements. This is important
because the DBMS is populated with the workloads’ data.
This data is read off the network disk, which results in the
network cost. This data is of considerable size. Once the data

3 Conceptually, the throughput increases as the number of

concurrent clients increase, up to a point where the multi-
programming level (MPL) plateaus, and then it starts
decreasing. We consider the optimal MPL value to be the
beginning of the plateau. We determine the optimal MPL
value for a VM type experimentally. The optimal MPL
levels of small, large and xlarge are 14, 75 and 115,
respectively.

http://thecloudmarket.com/owner/966178113014
http://research.cs.queensu.ca/home/mian/index_files/Page485.htm
http://research.cs.queensu.ca/home/mian/index_files/Page485.htm

7

is in the DBMS caches, much of the data needs can be served
locally from various caches. Therefore, the warm up period is
part of the measurement process in this case.
We perform sensitivity analysis, in which all but one variable
is varied, and the remaining are kept constant. That is, we
vary the user-controllable variables one-at-a-time. This allows
us to evaluate the cost model with each variable individually.
We also see the impact of each variable on the workload
execution cost independently. The experiments are:

1. Varying VM Type (presented in section 5.3.1)
2. Varying Workload Mix (presented in section 5.3.2)
3. Varying SLA Penalties (presented in section 5.3.3)

5.3.1 VM Type
We first examine the effectiveness of the cost model as we
vary the VM type used. We execute a combination of all the
tenants (a, b and c from Table 2) with no SLOs defined, and
hence no penalty costs, on each VM type. We compare the
estimated and the measured costs for each case in Figure 2.
We observe no errors in the VM and the storage costs. The
average error in the network cost is about $0.01, which is
about 6% (over-estimation)1 of the total measured cost on
average. The VM costs increase for more powerful VM types,
but the network cost decreases. We attribute the reduced
network costs to a larger buffer pool, which reduces the
number of network accesses.

Figure 2: Estimated and measured costs for all workloads
executing simultaneously on each VM type with no SLOs.

5.3.2 Workload Mix
We next examine the effectiveness of the model as we vary
the mix of tenants running together on the same VM. We run
different combinations of the tenants’ workloads on a small
VM with no SLOs defined, that is, no penalty costs. We
compare the estimated and the measured costs in Figures 3
and 4.
Figure 3 shows that, as expected, we are able to accurately
estimate the costs for the individual workloads because we
collect the metrics for the workloads on an individual basis.
Figure 4 shows that when workloads are run in combination
on a VM we provide accurate estimates for storage and
compute costs but the network estimates differ from the actual
costs. The average error in the network cost is about $0.03,
which is about 13% of the total measured cost on average. We
also see a large difference between the estimated and the
measured cost for the bc workload. In this case, the network
cost error is $0.12, which is about 55% of the total measured
cost. We believe this is because the simple average does not
take into account the change in workload intensity and its

1 %cost error = (predicted – measured)/measured

effects on buffering and lock contention when the workloads
are executed simultaneously.

Figure 3: Estimated and measured costs for each workload
executing on a small VM type instance with no SLOs.

Figure 4: Estimated and measured costs for each workload
combination executing on a small VM type instance with
no SLOs.

5.3.3 SLA Penalties
Next we keep the workloads and the VM type fixed, but vary
the SLOs. We choose small VM type instance to execute all
workloads simultaneously (combination abc). We describe
our rationale for SLOs’ specification and penalties.

Table 4. SLOs for different requests.
Tenant Request threshold penalty

c Payment 50tps* $0.10

b Trade-update 0.04tps $0.15

a Q1 200s $0.05

* transaction per second (tps)
Missing payments lead to monetary losses. Therefore, we
associate a high penalty ($0.10) with the threshold value of
50tps as shown in Table 4. We also place SLOs on write-
heavy and read-only workloads for trade-update and Q1
requests, respectively. The trade-update in a real stock market
has a low frequency of arrival, but large monetary stakes.
Therefore, we place an SLO on trade-update in the write-
heavy workload by associating a threshold of 0.04tps but with
a harsh penalty ($0.15). Meanwhile, Q1 is an analytical query
with an expectation of larger execution time. Therefore, we
associate a threshold of 200s with a minor penalty ($0.05) to
discourage the embarrassingly large execution time. We
compare the estimated and the measured costs in Figure 5.
The average error in estimating cost is about $0.04, which is
about 12% of the total measured cost on average. After
inspecting the evaluation results above, we note that the cost
errors are usually in estimating network costs.

8

Figure 5: Estimated (E) and measured (M) costs for all
workloads executing simultaneously on a small instance
with varying SLOs.
We see considerable penalty costs, in the case of
payment+update+Q1 SLOs, due to lack of resources to avoid
violations. This shows under-provisioning. We compare the
costs of simultaneously executing all workloads on each VM
type in Figure 6. We see that the overall cost reduces slightly
for large VM type due to reduced penalties but higher VM
costs. There are no penalties when the workloads execute on
the xlarge VM type, but the overall cost is higher than any
other resource configuration. In the case of the xlarge VM
type, we observe that the penalties have been replaced by
higher VM costs. This is an example of the trade-off between
penalties and resource costs. The resource configuration with
large VM type has the minimal dollar-cost, and therefore is
the optimal configuration for the executing all the workloads
given payment+update+Q1 SLOs. The average error in
estimating costs varies by about $0.01, which is about 2% of
the total measured cost on average.

Figure 6: Estimated and measured costs for all workloads
executing simultaneously with payment+update+Q1 SLOs
on each VM type.

5.3.4 SUMMARY
In all the experiments, we observe low storage costs,
especially compared to network and VM costs. This is
because monthly storage costs is already low, and prorating it
gives even lower hourly cost, which is then rounded up to the
next cent. This relatively lower storage cost is in-line with the
widening cost- value gap between storage and other
computational resources including network and processors.
The evaluation cases considered gauge our cost model for
each user-controllable variable. Admittedly, they are not
exhaustive. Further, our workloads are distorted versions of
the realistic workloads presented by Cooper et al. [30].
Nonetheless, we argue that they suffice for the evaluation.
Also, we do not vary the instances of the same workload. This
is unnecessary because our workloads do not have a fixed
number of request instances in a request mix, and we scale a

workload according to the optimal MPL value of a VM
instance. Finally, our workload combination contains at most
eight request types. This is reasonable since TPC-C and TPC-
E benchmarks have five and ten transactions, respectively,
although TPC-H has 22 queries. We believe a realistic DBMS
is rarely a read-only or a write-only service. It usually serves a
combination of transactional and analytical workloads [31].
Also, we do not consider large number of VM instances and
tenant replica in evaluating our cost model. This is because
the VM costs can be determined accurately using the
published unit costs. We validated our method of estimating
storage costs by inspecting Amazon’s Account Activity for a
number of months.

6. CONCLUSIONS AND FUTURE
WORK
We formulate the constructs for modeling the cost of
workload execution in a public cloud. We present a cost
model for workload execution, and evaluate it in the Amazon
cloud. Our cost model is workload aware and provides cost at
the granularity of an hour. More importantly, we explore
methods for building and instantiating a cost model for
workload execution in IaaS-based clouds. These methods are
relevant for other IaaS GoGrid [13] or RackSpace [12]. We
believe that our cost model provides a basis for modeling
dollar-cost for executing any workload type in the Amazon
cloud. We anticipate that the users considering clouds for
executing their application would find the cost model useful.
Our cost model provides an hourly cost of workload
execution, and assumes that the data already exists in the
cloud. The experimental evaluation shows that our cost model
is a suitable tool for estimating the cost of workload execution
for the pay-as-go-scheme in the Amazon clouds.
We vary the use-cases in the user-controllable variables: (a)
workloads, (b) VM types and the (c) SLOs’ specifications.
Our evaluation workloads consist of analytical, transactional
and mixed types. We consider different workload
combinations on different VM types. We also specify SLOs
on the transactions and the queries belonging to different
tenants. The SLOs vary in their threshold and penalty values.
The absolute average error in estimating configuration costs
across all experiments is 6.28%, which is about $0.02 of the
total measured cost of the configurations on average. With the
scarcity of training samples, we are unable to verify the
distribution of results and resort to using average as the
aggregation method. Therefore, these results must be taken
with caution.
Our cost model estimates the network cost using a simple
average. We believe it is likely to become less effective when
the optimal MPL value of a VM instance is not divided
equally amongst the workloads executing on a VM instance.
Further, all the request types present in a workload have equal
presence. Changing the presence may also have impact on the
estimation method. We intend to explore the suitability of
simple average under unequal MPL share and/or unequal
presence.
The current cost model, while adequate for workload
execution in a single zone, needs to be expanded in order to
deal with any inter-zone and inter-region communication
costs. Also we do not address the cost of maintaining
consistency between replicas, leaving it as future work.

7. ACKNOWLEDGMENTS
We acknowledge research support from National Science and
Engineering Research Council of Canada (NSERC), Amazon

9

AWS, MEDIANET (Comunidad de Madrid S2009/TIC-
1468), ServiceCloud (MINECO TIN2012-31518) and 4CaaSt
(European Commission’s IST priority of the 7th Framework
Programme under contract number 258862).

8. REFERENCES
[1] R. Mian and P. Martin, “Executing data-intensive workloads in

a Cloud,” CCGrid Doctoral Symposium 2012 in conjuction
with 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), 2012, pp. 758-763,
Ottawa, ON, Canada.

[2] Amazon, “Elastic Compute Cloud (EC2),” [Online] Retrieved
on 17th Dec, 2009; Available: http://aws.amazon.com/ec2/.

[3] J.L. Vazquez-Poletti, G. Barderas, I.M. Llorente and P. Romero,
“A Model for Efficient Onboard Actualization of an
Instrumental Cyclogram for the Mars MetNet Mission on a
Public Cloud Infrastructure,” PARA2010: State of the Art in
Scientific and Parallel Computing, Lecture Notes in Computer
Science (LNCS), vol. 7133, 2010, pp. 33-42.

[4] K. Tsakalozos, et al., “Flexible use of cloud resources through
profit maximization and price discrimination,” 27th
International Conference on Data Engineering (ICDE), IEEE,
2011, pp. 75-86, Hannover, Germany.

[5] T. Bicer, D. Chiu and G. Agrawal, “Time and Cost Sensitive
Data-Intensive Computing on Hybrid Clouds,” 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), 2012, pp. 636-643, Ottawa, ON, Canada.

[6] B. Sharma, R.K. Thulasiram, P. Thulasiraman, S.K. Garg and
R. Buyya, “Pricing Cloud Compute Commodities: A Novel
Financial Economic Model,” 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid),
2012, pp. 451-457, Ottawa, ON, Canada.

[7] W. Li, Y. Yang, J. Chen and D. Yuan, “A cost-effective
mechanism for Cloud data reliability management based on
proactive replica checking,” 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid),
2012, pp. 564-571, Ottawa, ON, Canada.

[8] M. de Assunção, A. di Costanzo and R. Buyya, “A cost-benefit
analysis of using cloud computing to extend the capacity of
clusters,” Cluster Computing, vol. 13, no. 3, 2010, pp. 335-347.

[9] L. Du, “Pricing and Resource allocation in a Cloud Computing
Market,” Workshop on Cloud Computing Optimization
(CCOPT 2012) in conjunction with 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). 2012, pp. 817-822, Ottawa, ON, Canada.

[10] Amazon, “Simple Monthly Calculator,” [Online] Retrieved on
9th Jul, 2011; Available:
http://calculator.s3.amazonaws.com/calc5.html.

[11] M. Armbrust, et al., "Above the Clouds: A Berkeley View of
Cloud Computing," Technical Report#: UCB/EECS-2009-28,
University of California at Berkeley, 2009 [Online] Retrieved
on 13th Feb, 2009.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.html.

[12] RackSpace, “Cloud hosting products-using the power of cloud
computing by rackspace,” [Online] Retrieved on 9th Aug,
2012; Available: http://www.rackspacecloud.com/.

[13] GoGrid, “Cloud hosting: Instant windows and linux cloud
servers,” [Online] Retrieved on 9th Aug, 2012; Available:
http://www.gogrid.com/.

[14] Amazon, “EC2 Instance Types,” [Online] Retrieved on 27th
April, 2011; Available: http://aws.amazon.com/ec2/instance-
types/.

[15] Amazon, “EC2 Instance Store,” [Online] Retrieved on 27th Jul,
2013; Available:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Instanc
eStorage.html.

[16] Amazon, “Simple Storage Service (S3),” [Online] Retrieved on
2nd Dec, 2010; Available: http://aws.amazon.com/s3/.

[17] Amazon, “DynamoDB,” [Online] Retrieved on 31st Jan, 2012;
Available: http://aws.amazon.com/dynamodb/.

[18] Amazon, “Elastic Block Store (EBS),” [Online] Retrieved on
28th Aug, 2010; Available: http://aws.amazon.com/ebs/.

[19] A. Lakshman and P. Malik, “Cassandra: a decentralized
structured storage system,” SIGOPS Oper. Syst. Rev., vol. 44,
no. 2, 2010, pp. 35-40.

[20] K. Chodorow, MongoDB: the definitive guide, O'Reilly, 2013.
[21] M.R. Palankar, A. Iamnitchi, M. Ripeanu and S. Garfinkel,

“Amazon S3 for science grids: a viable solution?,” Proceedings
of the 2008 international workshop on Data-aware distributed
computing, ACM, 2008, pp. 55-64, Boston, MA, USA.

[22] A. Bergen, Y. Coady and R. McGeer, “Client bandwidth: The
forgotten metric of online storage providers,” IEEE Pacific Rim
Conference on Communications, Computers and Signal
Processing (PacRim), IEEE, 2011, pp. 543-548, Victoria, BC,
Canada.

[23] O.A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster and D. Tsafrir,
“Deconstructing Amazon EC2 Spot Instance Pricing,” 2011
IEEE Third International Conference on Cloud Computing
Technology and Science (CloudCom), IEEE, 2011, pp. 304-
311, Athens, Greece.

[24] R. Prodan and S. Ostermann, “A survey and taxonomy of
infrastructure as a service and web hosting cloud providers,”
10th IEEE/ACM International Conference on Grid Computing,
2009, pp. 17-25, Banff, AB, Canada.

[25] TPC, “Transaction Processing and Analytical Database
Benchmarks,” [Online] Retrieved on 26th Jun, 2011;
Available: http://www.tpc.org/information/benchmarks.asp.

[26] J. Schad, J. Dittrich and J.-A. Quiane-Ruiz, “Runtime
measurements in the cloud: observing, analyzing, and reducing
variance,” Proceedings of VLDB Endowment vol. 3, no. 1-2,
2010, pp. 460-471.

[27] Amazon, “$0.10 per GB-month of provisioned storage,”
[Online] Retrieved on Aug 12, 2010; Available:
http://forums.aws.amazon.com/message.jspa?messageID=19001
3.

[28] Amazon, “Undercharged for allocated ebs volume?,” [Online]
Retrieved on 6th May, 2012; Available:
http://forums.aws.amazon.com/thread.jspa?messageID=285885
񅲽.

[29] Amazon, “Account Activity,” [Online] Retrieved on 27th Apr,
2011; Available: http://aws.amazon.com/account/.

[30] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan and R.
Sears, “Benchmarking cloud serving systems with YCSB,” 1st
ACM Symposium on Cloud Computing (SoCC), ACM, 2010,
pp. 143-154, Indianapolis, IN, USA.

[31] G. Paulley, “DBMS applications and workloads (Personal
Communications),” Director, Engineering, Sybase iAnywhere,
2011.

http://aws.amazon.com/ec2/
http://calculator.s3.amazonaws.com/calc5.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.rackspacecloud.com/
http://www.gogrid.com/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
http://aws.amazon.com/s3/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/ebs/
http://www.tpc.org/information/benchmarks.asp
http://forums.aws.amazon.com/message.jspa?messageID=190013
http://forums.aws.amazon.com/message.jspa?messageID=190013
http://forums.aws.amazon.com/thread.jspa?messageID=285885񅲽
http://forums.aws.amazon.com/thread.jspa?messageID=285885񅲽
http://aws.amazon.com/account/

	Estimating Resource Costs of Executing Data-Intensive Workloads in Public Clouds
	1. INTRODUCTION
	2. RELATED WORK
	3. DIFFERENT RESOURCE TYPES AND PRICING SCHEMES IN IAAS CLOUDS
	3.1 Resource Types and Sub Types
	3.2 Pricing Schemes

	4. COST MODEL
	5. EVALUATION
	5.1 Tenants and their Workloads
	5.2 Cost Model for Amazon EC2
	5.3 Experiments
	5.3.1 VM Type
	5.3.2 Workload Mix
	5.3.3 SLA Penalties
	5.3.4 SUMMARY

	6. CONCLUSIONS AND FUTURE WORK
	7. ACKNOWLEDGMENTS
	8. REFERENCES

