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ABSTRACT 

The promise of “infinite” resources given by the cloud 
computing paradigm has led to recent interest in exploiting 
clouds for large-scale data-intensive computing. In this paper, 
we present a analytical model to estimate the resource costs for 
executing data-intensive workloads in a public cloud. The cost 
model quantifies the cost-effectiveness of a resource 
configuration for a given workload with consumer performance 
requirements expressed as Service Level Agreements (SLAs), 
and is a key component of a larger framework for resource 
provisioning in clouds. We instantiate the cost model for the 
Amazon cloud, and experimentally evaluate the impact of key 
factors on the accuracy of the model. 

Keywords 
Cloud computing, cost model, resource provisioning.  

1. INTRODUCTION 
Public clouds, because of their pay-as-you-go flexibility and 
lack of up-front costs, are attractive to companies interested in 
lowering their operational IT costs.  In making the decision to 
move to a public cloud, however, a company must be able to 
determine an appropriate configuration of cloud resources for 
an application and so predict the cost-effectiveness of moving 
the application. The cost-effectiveness is determined by the cost 
of the required resources and the application performance 
achieved with those resources.  
We previously proposed a framework for resource provisioning 
of data-intensive applications in a cloud [1]. Given the cost 
structure from a cloud provider and the set of application 
workloads and the negotiated SLAs, our method determines a 
resource allocation with minimal cost for those workloads.  
The cost model, which plays a key role in the decision-making 
process, produces a single dollar value that captures the cost-
effectiveness of a particular configuration in terms of both the 
resources allocated and the applications’ performance. The 
latter is represented as the penalty value imposed if SLAs 
associated with the workloads are not achieved. A configuration 
where more resources than needed are allocated pays a higher 
than necessary cost in terms of resources. A configuration 
where insufficient resources are allocated, on the other hand, 
pays a higher cost in terms of SLA penalties.  
In this paper we discuss the different components of our cost 
model and explain how each can be determined for public cloud 
with a pay-as-you-go pricing strategy. We apply the cost model 
to the Amazon cloud [2] and present a set of experiments that 
investigate the impact of key factors affecting the cost model.  
The remainder of the paper is structured as follows. Section 2 
outlines related work. Section 3 discusses different resource 

types and pricing schemes in Infrastructure-as-a-Service (IaaS) 
clouds. Section 4 describes our cost model. Section 5 presents a 
set of experiments using the cost model with sample data-
intensive workloads on Amazon EC2 and Section 6 concludes 
the paper. 

2. RELATED WORK 
The problem of resource provisioning in public clouds has 
recently received a great deal of attention. Vazquez-Poletti et al. 
[3] determine a suitable number of homogenous virtual 
machines (VMs) to execute a given workload in the Amazon 
cloud based on values of a novel cost-performance metric 
(C/P). Their method does not consider other resource costs such 
as storage or communication, and is applied to a workload 
consisting of a single work-unit, which is equivalent to a single 
query or a transaction. The C/P-based approach does not 
account for any SLAs, or its penalties in case of violations. 
Tsakalozos et al. [4] use principles from microeconomics to 
dynamically converge to a suitable number of VMs for a 
workload given a user’s budget. Their approach is used at 
runtime and cannot be used to provide an a priori prediction of 
resource allocations. Bicer et al. [5] also propose a runtime 
resource allocation framework to support time or cost 
constrained application execution in a hybrid cloud. Their cost 
model’s parameters are acquired by monitoring an executing 
application. 
Sharma et al. [6] develop a pricing model to provide “high” 
satisfaction to the users and the providers in terms of QoS 
guarantees and profitability requirements, respectively. The 
thrust of their work is towards valuation of cloud resources, and 
they employ financial option theory and treat the cloud 
resources as underlying assets. 
Li et al. [7] propose a cost-effective data reliability mechanism 
to reduce the storage cost in a public cloud. Their mechanism 
checks the availability of replicas and reduces storage 
consumption up to one-third by making certain assumptions on 
the reliability. Assunção et al. [8] investigate the benefits that 
organizations can reap from a hybrid cloud. In particular, they 
offload work to a public cloud to reduce deadline violations and 
associated cost. Du [9] looks at maximizing revenue from cloud 
vendor’s perspective by modeling hybrid and public cloud 
markets using Markovian traffics. Interestingly, her work 
suggests that the hybrid cloud is the most profitable model for 
cloud vendors. 
Amazon’s monthly calculator [10] estimates charges for 
Amazon EC2 resources, if they are used for an entire month. 
While the time-bound on a workload may be unknown in 
advance, we argue that the time-unit of a month for resource 
cost is excessively coarse-grained. The calculator does not have 
any knowledge of a workload and cannot account for 
application performance with a given set of resource 
allocations. 
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Our cost model accounts for all the resources needed (compute, 
storage and network) to execute a data-intensive workload 
consisting of multiple queries and transactions accessing 
multiple data partitions. Further, our cost model accommodates 
user-defined SLA and associated penalties. Moreover, the 
execution cost is provided at the granularity of an hour. 

3. DIFFERENT RESOURCE TYPES AND 
PRICING SCHEMES IN IAAS CLOUDS 
There are primarily three types of resources needed to execute a 
workload in an IaaS cloud, namely compute, storage, and 
network resources. For each resource type, there are different 
pricing schemes and sub types of resources. The resource sub 
types used in our cost model are identified in section 3.1. 
Meanwhile, we consider pay-as-you-go scheme in our cost 
model. This is because we find pay-as-you-go scheme is more 
in-line with the cloud philosophy proposed by Armbrust et al. 
[11] that includes: (a) no upfront commitment, and (b) pay-for-
use pricing scheme. All major cloud vendors Amazon cloud [2], 
RackSpace [12], and GoGrid [13] offer infrastructural resources 
on a pay-as-you-go basis. We discuss diversity in resource sub 
types and different pricing schemes below, using Amazon cloud 
as an example. 

3.1 Resource Types and Sub Types 
The resource costs vary by the resource sub type and the usage 
duration. A VM is a typical compute unit in an IaaS cloud. 
VMs differ in their computational and memory resources, 
network bandwidth available to them and latency of disk I/O. 
Amazon offers a diverse portfolio of VM types [14] aimed at 
different classes of applications, as shown in the Table 1.  
The storage also comes in different sizes and flavors as shown 
in Figure 1. Every VM has a local storage [15], which is usually 
in the hundreds of gigabytes and has no access costs. Data on 
the local storage is volatile, and the data is lost once the user 
gives back the VM to the vendor. All other storage types are 
usually accessed over the network. For example, Amazon S3 
[16] stores data over multiple network devices. It is a key-value 
storage that can store a value sized from 1 byte to 5 terabytes. 
Similarly, DynamoDB [17] is a key-value storage with very low 
latency. However, it places a limit (64KB) on the size of the key 
and the value. In contrast, the Elastic Block Storage (EBS) 
volumes [18] are raw storage which are formatted and mounted, 
and appear as network disks on Amazon VMs. Their sizes can 
vary from 1 GB to 1 TB. 

 
Table 1: VM Classes, their distinguishing features, example applications and cost bands. 

VM Class Distinguishing Features Example Applications Cost Band 

Opportunistic 

Small amount of CPU resources 
augmented with spare CPU 
capacity of the host server when 
available. 

Lower throughput applications and web-sites 
that require additional compute cycles 
periodically, but are not appropriate for 
applications that require sustained CPU 
performance. 

Very low cost 

General purpose Balance between compute, 
memory, and network resources. 

Small and mid-size databases, data processing 
tasks that require additional memory, and 
caching servers. 

Lower end 

Compute 
optimized 

Higher ratio of CPUs to 
memory than other VM classes. 

CPU-bound scale out applications. Examples 
include high traffic front end fleets, web 
servers, batch processing. 

Middle order 

Memory 
optimized 

Lowest cost per GB of memory 
among EC2 VM types. Database applications and distributed caches. Middle order 

Storage 
optimized 

Directly attached storage 
optimized for applications with 
specific disk I/O and storage 
capacity requirements. 

NoSQL databases like Cassandra [19] and 
MongoDB [20] which benefit from very high 
random I/O performance and the low request 
latency of directly attached Solid State Drives 
(SSDs). 

Additional 
premium on 
base VM cost 

Cluster 
computing 
optimized 

High core density and supports 
cluster networking. 

Computational chemistry, rendering, financial 
modeling, and engineering design. High end 

 
 

Storage 
Types

volatile

persistent

key-value

raw
 

Figure 1: Examples of different storage types in the Amazon cloud. 
[15]; [16], [17]; [18] 

e.g. S3 [16], DynamoDB [17] 

e.g. local VM storage [15] 
 

e.g. EBS [18] 
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Amazon also provides different network performance for 
different VM types and storage resources. However, 
bandwidth available to a VM is not expressed as a number or 
a range. Instead, Amazon categorizes the network 
performance of a VM type into four bands, namely very low, 
low, moderate and high. The notable exception is 10 Gb/s for 
some VM types such as storage optimized VMs. Fortunately, 
it is possible to acquire guaranteed bandwidth (500 and 1000 
Mbps) on some VM types to access EBS at an additional 
premium.  
The maximum reported bandwidth between EC2 VMs and S3 
was around 21MB/s in 2008 as reported by Palankar et al. 
[21]. They also noted that as the number of threads on a VM 
increases, the per-thread bandwidth decreases but the 
aggregate bandwidth increases. With two machines running 
with six threads each, the average bandwidth was 17 MB/s for 
file sizes of 100 MB. Bergen et al. [22] note in 2011 that the 
average bandwidth reaches up to 12 MB/s for file sizes 
between 100MB and 5GB. 

3.2 Pricing Schemes 
The same resource sub type may also be offered using 
numerous pricing schemes. The pricing schemes usually differ 
in the resource acquisition method. For example, the popular 
schemes for acquiring VMs are: (a) pay-as-you-go, (b) 
auction-based, and (c) reserved.  
Using pay-as-you-go scheme, a VM is available within a few 
minutes when requested, and the user pays by the hour. This 
frees the user from planning and long-term commitment. Pay-
as-you-go scheme is also known as an on-demand scheme. 
The storage usage is usually billed by the month, though 
charges for partial usage may apply. In addition, there are 
network costs associated with accessing the storage, which is 
typically measured by the number of accesses. Further, 
transferring data in and/or out of a public cloud usually incurs 
costs. This cost is estimated by the amount of data transferred. 
The storage cost may also vary by the size of storage acquired. 
Amazon decreases the cost rate for S3 as the storage size 
increases. This decrease follows a step function instead of a 
linear function.  
The auction-based or spot schemes enable a user to bid for the 
unused VMs. The spot price fluctuates periodically depending 
on the supply and demand for the VMs. A user gets a VM 
only when the bid exceeds the current spot price. The user 
may willfully return the unneeded VMs or the vendor may 
grab the allocated VMs forcefully when the spot price exceeds 
the user’s bid. This scheme is usually cheaper than the on-
demand scheme, but the vendor may place a minimum or a 
baseline price for the bids. More importantly, the user may 
have to wait, or worse suffer a loss of a VM when the spot 
price increases. This adds complexity to the market model.  
Understanding how cloud vendors set the spot prices is useful 
for users, who can decide how much to bid. Ben-Yahuda et al. 
[23] find that Amazon seems to generate spot prices using a 
hidden reserve price function, which only complicates the 
market model. 
A user may be willing to commit for a long period of time 
such as a month or a year. In this case, the reserve scheme is 
suitable and it costs less than the on-demand scheme. The 
money is paid upfront in a lump sump, and is usually non-
refundable. Therefore, some planning is required to avoid 
wasting of money and/or unused VMs. A cloud provider may 
offer additional discounts on other resource types when 
subscribing a service for a long-term. For example, Amazon 
offers some percent discounts on the storage when reserving 

VMs. The reserved scheme is also known as the pre-paid 
scheme. 

4. COST MODEL  
Given a set of applications A = {A1, A2, …, Am}, we say that 
a workload Wi for Ai, is a set of requests that are issued by 
the set of clients of Ai. Each request is an instance of a 
request type Rij from a set Ri = {Ri1, Ri2, …, Rin} for Ai.  The 
databases used by A consist of a set of data objects D = {D1, 
D2, …, Dm}. A request type Rij for Ai accesses some data 
objects in Pi ⊆  D, and has a service level objective SLOij. 
We call Pi a data partition and assume that Wi accesses data 
from Pi. The SLA for Wi  is composed of the set of all 
SLOi’s for the request types in Ai. We need compute, storage 
and network resources to execute Wi. A configuration C for a 
set of workloads, W = {W1, … ,Wn}, contains the following: 

• A set of VMs V = {v1, v2, …, vr}, where each VM vk is a 
specific type (for example small, large, xlarge). Each 
VM type has a specific set of system attributes (e.g. OS, 
memory, cores), and a specific cost rate. 

• A mapping of the workloads, W, to VMs in V such that 
every workload is assigned to one VM. 

• A mapping of data partitions used by W to VMs in V 
such that every data partition is assigned to at least one 
VM. The partitions are stored in the cloud storage. The 
partitions typically vary in sizes and have different access 
patterns, resulting in different storage and network costs. 
Overlapping partitions on the same VM share the same 
copy of the common data objects. Assignment to more 
than one VM involves replication of the partition, and 
we assume that the replicas are read-only. 

An application that is executed with a given configuration in a 
public cloud results in a cost to the application owner. This 
cost, as previously noted, is made up of resource costs and 
penalty costs if SLAs are not met. The resource costs in a pay-
as-you-go public cloud are primarily associated with compute, 
storage and network resources.  Since a workload bound is 
not known in advance, we choose to represent the cost of a 
configuration per unit time, specifically in $ / hour. The cost 
for configuration C in a pay-as-you-go IaaS cloud can 
therefore be stated as: 
Cost$(C) = Compute$(C) + Storage$(C)  

+ Network$(C) + Penalty$(C) 
A VM is a typical compute unit in an IaaS cloud. The VM 
types differ in their computational and memory resources 
[14]. Their price is generally metered by the hour and partial 
usage is rounded up to the next hour. The compute cost 
Compute$(C) can be expressed as:  









= ∑

∈Vv
vVMCostCCompute )$()$(  

where V is the set of VMs in the configuration C, and 
VMCost$(v) is the hourly cost of a VM v. 
There are different types of storage with different properties 
and prices. We consider our data partitions are stored in a 
cloud storage, which is metered by the month. We prorate the 
monthly cost down to an hour. The hourly cost for the storage 
used in a configuration C is estimated by: 








 ×
=

hoursmonth
EqCStorage

_
$)$(  

where $q is the unit cost of storage (in dollar per gigabyte per 
month), E is the aggregated size of data partitions rounded 
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up to the next gigabyte, and month_hours is the number of 
hours in a month (e.g. 24h ×30days). Any fractional cost is 
rounded up to the next cent. 
There are two main sources of network costs in the data-
intensive applications, namely transferring data in and/or out 
of the cloud and accessing storage. The transfer costs are 
difficult to capture in a general model since they are 
dependent on a number of specific characteristics of the 
application owner. We therefore assume that the data is 
already in the cloud, which is accounted for by the storage 
costs, and therefore, we only consider the network costs 
associated with accessing data storage. The network costs are 
therefore estimated by: 









×= ∑

∈Vv
v scCNetwork $)$(  

where cv is the estimated number of accesses to the network 
storage in a time-unit (hour) and $s is the unit network cost 
for accessing storage. Like storage costs, the network cost is 
rounded up to the next cent. 
We propose a function that assigns a penalty each time-unit in 
which a breach occurs. This is reasonable since we use 
average performance metrics (such as average throughput) 
over a time-unit to detect a breach. For a particular 
configuration C and a request type r, the penalty incurred in a 
given time-unit (hour) is given by: 

∑
∈

×=
Rr

rpenaltyCrpcondCPenalty )(),()$(  

where penalty(r) is the penalty value (in $) for requests of 
type r missing their SLO in a time-unit. The binary function 
pcond indicates whether or not an SLO defined over r and C 
has been violated. We provide examples of pcond when we 
instantiate the cost model for the Amazon EC2 public cloud in 
Section 5. 

5. EVALUATION 
We now examine the effectiveness of our proposed cost 
model for pay-as-you-go IaaS public clouds. We define an 
instance of our model for Amazon EC2 [2], which is currently 
a major IaaS cloud vendor [24], and consider possible 
configurations for a multitenant database application with 
different tenants, each with their own workload. We compare 
the cost estimates produced by our model with the actual costs 
incurred on EC2 for a variety of configurations of the 
multitenant database application. We find that our model 
produces accurate cost estimates in all cases. 
We observe that there are three main variables that influence 
the cost for a configuration: 

1. The VM types used in the configuration,  
2. The mix of workloads or tenants involved in the 

configuration, and 
3. The SLOs enforced in the configuration.  

The network cost varies with the workload and the VM type, 
while the storage cost varies with the tenant type. We 
therefore present the results of three experiments where each 
factor is varied while holding the other two constant. We 
compare the estimated resource costs directly against the 
invoice rendered by Amazon. We calculate the penalties based 
on the measured metrics (throughput and response time). We 
determine the error in the cost estimate for each case. 

5.1 Tenants and their Workloads 
The tenants for the multitenant database application used in 
our experiments are described in Table 2. The tenants are 
based on well-known transactional (TPC-C and TPC-E), and 
analytical (TPC-H) benchmarks [25]. The tenants’ workloads 
are made up of requests from the benchmarks and are chosen 
to exhibit different behaviours, namely read-only, write-heavy 
and mixed read/write.  

Table 2. Example Application Tenants 
Tenant Workload  Data-

bases 

Request types 

a read-only  TPC-H Q1, Q6 

b write-heavy  TPC-E trade-order,  
trade-update 

c read-write 
(mixed) 

TPC-H, 
TPC-C 

Q12, Q21 (TPC-H), 
new-order, payment 

(TPC-C) 
 
5.2 Cost Model for Amazon EC2 
We examined the pricing structure offered by Amazon EC2 
and assigned values to the cost variables in our cost model as 
follows. 
Compute costs: We consider three VM types offered by EC2 
in order to include cases of under, over and optimal resource 
provisioning for the example applications. We use the small, 
large, and xlarge VM types as shown in Table 3. The VM 
types vary in their price, processing power and their capacity 
to hold data in memory. For example, all three tenants fit in 
the memory of xlarge but none of them fit in the memory of 
small, and only two tenants fit in the memory of large. Studies 
have shown that EC2 does not always provide consistent 
performance so we chose to run our experiments in the region 
with least variance, namely US-East-1d [26].  

Table 3. VM Types for Amazon EC2 
VM Type Cores (#) Memory (gb) Cost/hr($)1 

Small 1 1.7 0.08 

Large 2 7.5 0.32 

Xlarge 4 15 0.64 

 
Amazon EC2 provides the ability to place VM instances in 
multiple locations [2]. These locations are composed of 
regions and availability zones within them. Availability zones 
are distinct locations (presumably different data centers) that 
are engineered to be insulated from failures in other zones, 
and to provide inexpensive, low latency network connectivity 
to other zones in the same region. 
Storage costs: We choose Elastic Block Storage (EBS) [18] 
to store tenant databases, primarily because EBS appears as a 
network mounted hard disk. We also find EBS convenient for 
the evaluation purposes. We created templates of tenant 
databases for TPC-C, TPC-H and TPC-E, called snapshots, 
prior to workload execution. These snapshots are booted to 
provide ready to use volumes (provisioned storage) for 
workload execution. We wrap up the tenant databases with 

                                                                 
1 Amazon has revised these costs since we started 

experimentation. 
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some binaries and settings, and store that as an image.1 The 
major portion of binaries consists of a configured MySQL 
database management system (DBMS) hosting all the 
database tenants. This greatly simplifies the engineering 
process, and the workloads can start execution as soon as the 
compute and storage resources are available. The DBMS 
binaries and settings add a small amount to the storage cost 
compared to tenant databases, and are included in the  storage 
costs.  

The EBS storage cost consists of two parts, namely snapshot 
storage and provisioned storage. The snapshot storage cost 
occurs due to the images being stored in a permanent archive, 
S3 [16]. Meanwhile, the charge for provisioned storage is 
made when the VMs are booted with images stored in S3 
[27]. The charges for provisioned storage accumulate on an 
on-going basis till the VMs are terminated. 

Snapshot storage has a cost of $0.125/GB/month and 
provisioned storage has a cost of $0.10/GB/month [18]. Both 
snapshot and provisioned storage are billed by the month, but 
are metered by the hour [28], so we can estimate their 
associated cost by the hour. Their cost is rounded up to the 
next integer cent. The hourly cost of the snapshot storage is 
estimated to the next cent by: 








 ×
=

hoursmonth
EqCorageSnapshotSt

_
$)$(  

where $q is the unit cost of snapshot storage ($0.125), E is 
the aggregated size of partitions rounded up to the next 
gigabyte, and month_hours is the number of hours in a month 
(24h ×30days). The provisioned cost is estimated using the 
same method, except the $q becomes the unit cost of 
provisioned storage ($0.10 per GB-month). We validate our 
method of estimating storage costs against the daily 
increments in the storage cost reported by Amazon Activity 
[29].2  
Network costs: Amazon places numerous network charges 
such as data transfer in and out of clouds, and data transfer 
across zones. In our case, the data is already in the cloud and 
the clients and DBMS exist in the same zone so the only 
charges are for accesses to EBS storage.  

We experimentally determine the number of accesses required 
for each workload on each VM type. We then estimate the 
number of storage accesses per hour for a mix of workloads 
on a VM type as the average of the number of accesses by 
each individual workload in the mix.  When considering all 
workload combinations, we find that the error in the network 
cost provided by simple average varies from -$0.04 to $0.12 
(range of $0.16). We can possibly improve the accuracy of 
estimating the network cost by prorating the network access at 
the request level but this comes at the cost of increased 
complexity. We find that the simple average provides 
reasonable accuracy in most cases. 
                                                                 
1 Our image (ami-7bc16e12) is publicly available at: 

http://thecloudmarket.com/owner/966178113014. Once the 
image is instantiated, the clients can connect (ssh in) to the 
instance and access the MySQL DBMS as root user with 
wlmgmt password. 

2 We record Account Activity on a daily basis. Our daily 
records for April 12 to July 12 are available here: 
http://research.cs.queensu.ca/home/mian/index_files/Page48
5.htm 

 

We need some method of aggregating experimental results, 
and realize that “average” is meaningful for a normal-like 
distribution. With the scarcity of training samples, we are 
unable to verify the distribution of results and resort to using 
average as the aggregation method. Average, after all, 
provides a “smoothing” effect over available measurements. 
Nonetheless, the reported results must be interpreted with 
caution. 

Penalty cost: We calculate the penalties based on the 
measured throughput and response times. The binary function 
pcond is defined differently for response time and throughput. 
For response time on a request r, it is defined as 

𝑝𝑐𝑜𝑛𝑑 (𝑟,𝐶) =  �1 𝑖𝑓 𝑎𝑣𝑔𝑅𝑒𝑠𝑝𝑇𝑖𝑚𝑒(𝑟,𝐶) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑟),
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

where avgRespTime(r,C) is the average response time for 
request r in C, and threshold(r) is the required response time 
specified in the SLO for the request r.  

For throughput on a request r, pcond is defined as 

𝑝𝑐𝑜𝑛𝑑 (𝑟,𝐶) =  �1 𝑖𝑓 𝑎𝑣𝑔𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑟,𝐶) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑟),
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

where avgThroughput(r,C) is the average throughput for 
transaction q in C, and threshold(r) is the required throughput 
specified in the SLO for the request r. 

5.3 Experiments 
All the requests in a workload execute concurrently until the 
specified time. A request type in a workload may have 
multiple instances that execute concurrently. Our workloads 
are bound by time. Until the completion time, a request 
instance is continuously re-submitted if finished early. This 
ensures that the request mix remains present at a DBMS 
throughout the time bound. 
The workloads execute at the optimal Multi-Programming 
Level (MPL)3 of a VM type. All workloads are presently 
weighted equally. Therefore, the optimal MPL is divided 
equally when multiple workloads are executing together. Any 
remainder MPL value is used by Q1 or Q12 query instances. 
This is an ad hoc choice to keep the DBMS under optimal 
load. 
For example, suppose read-only and write-heavy workloads 
execute on the large VM type where the optimal MPL level is 
75. There are four request types in the read-only and write-
heavy workloads (Q1, Q6, trade-order and trade-update), each 
getting an equal MPL share (of 18) of the optimal MPL value 
(75). The remainder of 3 adds into the MPL share of Q1. The 
MPL share of a request type represents the concurrent 
instances of that request type in the request mix executed at a 
DBMS. 
We parameterize our cost model by the hour, therefore, the 
same request mix executes for the entire duration. The warm 
up period is included in the measurements. This is important 
because the DBMS is populated with the workloads’ data. 
This data is read off the network disk, which results in the 
network cost. This data is of considerable size. Once the data 
                                                                 
3 Conceptually, the throughput increases as the number of 

concurrent clients increase, up to a point where the multi-
programming level (MPL) plateaus, and then it starts 
decreasing. We consider the optimal MPL value to be the 
beginning of the plateau. We determine the optimal MPL 
value for a VM type experimentally. The optimal MPL 
levels of small, large and xlarge are 14, 75 and 115, 
respectively. 

http://thecloudmarket.com/owner/966178113014
http://research.cs.queensu.ca/home/mian/index_files/Page485.htm
http://research.cs.queensu.ca/home/mian/index_files/Page485.htm
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is in the DBMS caches, much of the data needs can be served 
locally from various caches. Therefore, the warm up period is 
part of the measurement process in this case. 
We perform sensitivity analysis, in which all but one variable 
is varied, and the remaining are kept constant. That is, we 
vary the user-controllable variables one-at-a-time. This allows 
us to evaluate the cost model with each variable individually. 
We also see the impact of each variable on the workload 
execution cost independently. The experiments are: 

1. Varying VM Type (presented in section 5.3.1) 
2. Varying Workload Mix (presented in section 5.3.2) 
3. Varying SLA Penalties (presented in section 5.3.3) 

5.3.1 VM Type 
We first examine the effectiveness of the cost model as we 
vary the VM type used. We execute a combination of all the 
tenants (a, b and c from Table 2) with no SLOs defined, and 
hence no penalty costs, on each VM type. We compare the 
estimated and the measured costs for each case in Figure 2. 
We observe no errors in the VM and the storage costs. The 
average error in the network cost is about $0.01, which is 
about 6% (over-estimation)1 of the total measured cost on 
average. The VM costs increase for more powerful VM types, 
but the network cost decreases. We attribute the reduced 
network costs to a larger buffer pool, which reduces the 
number of network accesses. 

 
Figure 2: Estimated and measured costs for all workloads 
executing simultaneously on each VM type with no SLOs. 

5.3.2 Workload Mix 
We next examine the effectiveness of the model as we vary 
the mix of tenants running together on the same VM. We run 
different combinations of the tenants’ workloads on a small 
VM with no SLOs defined, that is, no penalty costs. We 
compare the estimated and the measured costs in Figures 3 
and 4. 
Figure 3 shows that, as expected, we are able to accurately 
estimate the costs for the individual workloads because we 
collect the metrics for the workloads on an individual basis. 
Figure 4 shows that when workloads are run in combination 
on a VM we provide accurate estimates for storage and 
compute costs but the network estimates differ from the actual 
costs. The average error in the network cost is about $0.03, 
which is about 13% of the total measured cost on average. We 
also see a large difference between the estimated and the 
measured cost for the bc workload. In this case, the network 
cost error is $0.12, which is about 55% of the total measured 
cost. We believe this is because the simple average does not 
take into account the change in workload intensity and its 
                                                                 
1 %cost error = (predicted – measured)/measured  

effects on buffering and lock contention when the workloads 
are executed simultaneously. 

 
Figure 3: Estimated and measured costs for each workload 
executing on a small VM type instance with no SLOs. 

 
Figure 4: Estimated and measured costs for each workload 
combination executing on a small VM type instance with 
no SLOs. 

5.3.3 SLA Penalties 
Next we keep the workloads and the VM type fixed, but vary 
the SLOs. We choose small VM type instance to execute all 
workloads simultaneously (combination abc). We describe 
our rationale for SLOs’ specification and penalties. 

Table 4. SLOs for different requests. 
Tenant Request threshold penalty 

c Payment 50tps* $0.10 

b Trade-update 0.04tps $0.15 

a Q1 200s $0.05 

* transaction per second (tps) 
Missing payments lead to monetary losses. Therefore, we 
associate a high penalty ($0.10) with the threshold value of 
50tps as shown in Table 4. We also place SLOs on write-
heavy and read-only workloads for trade-update and Q1 
requests, respectively. The trade-update in a real stock market 
has a low frequency of arrival, but large monetary stakes. 
Therefore, we place an SLO on trade-update in the write-
heavy workload by associating a threshold of 0.04tps but with 
a harsh penalty ($0.15). Meanwhile, Q1 is an analytical query 
with an expectation of larger execution time. Therefore, we 
associate a threshold of 200s with a minor penalty ($0.05) to 
discourage the embarrassingly large execution time. We 
compare the estimated and the measured costs in Figure 5. 
The average error in estimating cost is about $0.04, which is 
about 12% of the total measured cost on average. After 
inspecting the evaluation results above, we note that the cost 
errors are usually in estimating network costs. 
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Figure 5: Estimated (E) and measured (M) costs for all 
workloads executing simultaneously on a small instance 
with varying SLOs. 
We see considerable penalty costs, in the case of 
payment+update+Q1 SLOs, due to lack of resources to avoid 
violations. This shows under-provisioning. We compare the 
costs of simultaneously executing all workloads on each VM 
type in Figure 6. We see that the overall cost reduces slightly 
for large VM type due to reduced penalties but higher VM 
costs. There are no penalties when the workloads execute on 
the xlarge VM type, but the overall cost is higher than any 
other resource configuration. In the case of the xlarge VM 
type, we observe that the penalties have been replaced by 
higher VM costs. This is an example of the trade-off between 
penalties and resource costs. The resource configuration with 
large VM type has the minimal dollar-cost, and therefore is 
the optimal configuration for the executing all the workloads 
given payment+update+Q1 SLOs. The average error in 
estimating costs varies by about $0.01, which is about 2% of 
the total measured cost on average. 

 
Figure 6: Estimated and measured costs for all workloads 
executing simultaneously with payment+update+Q1 SLOs 
on each VM type. 

5.3.4 SUMMARY 
In all the experiments, we observe low storage costs, 
especially compared to network and VM costs. This is 
because monthly storage costs is already low, and prorating it 
gives even lower hourly cost, which is then rounded up to the 
next cent. This relatively lower storage cost is in-line with the 
widening cost- value gap between storage and other 
computational resources including network and processors. 
The evaluation cases considered gauge our cost model for 
each user-controllable variable. Admittedly, they are not 
exhaustive. Further, our workloads are distorted versions of 
the realistic workloads presented by Cooper et al. [30]. 
Nonetheless, we argue that they suffice for the evaluation. 
Also, we do not vary the instances of the same workload. This 
is unnecessary because our workloads do not have a fixed 
number of request instances in a request mix, and we scale a 

workload according to the optimal MPL value of a VM 
instance. Finally, our workload combination contains at most 
eight request types. This is reasonable since TPC-C and TPC-
E benchmarks have five and ten transactions, respectively, 
although TPC-H has 22 queries. We believe a realistic DBMS 
is rarely a read-only or a write-only service. It usually serves a 
combination of transactional and analytical workloads [31]. 
Also, we do not consider large number of VM instances and 
tenant replica in evaluating our cost model. This is because 
the VM costs can be determined accurately using the 
published unit costs. We validated our method of estimating 
storage costs by inspecting Amazon’s Account Activity for a 
number of months.  

6. CONCLUSIONS AND FUTURE 
WORK 
We formulate the constructs for modeling the cost of 
workload execution in a public cloud. We present a cost 
model for workload execution, and evaluate it in the Amazon 
cloud. Our cost model is workload aware and provides cost at 
the granularity of an hour. More importantly, we explore 
methods for building and instantiating a cost model for 
workload execution in IaaS-based clouds. These methods are 
relevant for other IaaS GoGrid [13] or RackSpace [12]. We 
believe that our cost model provides a basis for modeling 
dollar-cost for executing any workload type in the Amazon 
cloud. We anticipate that the users considering clouds for 
executing their application would find the cost model useful. 
Our cost model provides an hourly cost of workload  
execution, and assumes that the data already exists in the 
cloud. The experimental evaluation shows that our cost model 
is a suitable tool for estimating the cost of workload execution 
for the pay-as-go-scheme in the Amazon clouds.  
We vary the use-cases in the user-controllable variables: (a) 
workloads, (b) VM types and the (c) SLOs’ specifications. 
Our evaluation workloads consist of analytical, transactional 
and mixed types. We consider different workload 
combinations on different VM types. We also specify SLOs 
on the transactions and the queries belonging to different 
tenants. The SLOs vary in their threshold and penalty values. 
The absolute average error in estimating configuration costs 
across all experiments is 6.28%, which is about $0.02 of the 
total measured cost of the configurations on average. With the 
scarcity of training samples, we are unable to verify the 
distribution of results and resort to using average as the 
aggregation method. Therefore, these results must be taken 
with caution. 
Our cost model estimates the network cost using a simple 
average. We believe it is likely to become less effective when 
the optimal MPL value of a VM instance is not divided 
equally amongst the workloads executing on a VM instance. 
Further, all the request types present in a workload have equal 
presence. Changing the presence may also have impact on the 
estimation method. We intend to explore the suitability of 
simple average under unequal MPL share and/or unequal 
presence. 
The current cost model, while adequate for workload 
execution in a single zone, needs to be expanded in order to 
deal with any inter-zone and inter-region communication 
costs. Also we do not address the cost of maintaining 
consistency between replicas, leaving it as future work. 
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