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Abstract

3D object recognition is a challenging problem with important applications such as robotic

perception. The most promising approach to solving 3D object recognition is through solving

the correspondence problem. The goal of the correspondence problem in the context of 3D

object recognition is to find correspondences between the objects to be recognized and the

scene. If correspondences exist between an object and the scene it can be hypothesized that

this object exists in the scene. Once these hypotheses are verified objects are recognized.

The most common approach to solving the correspondence problem for 3D object recognition

has been through techniques that try to find correspondences between local regions of the

models and the scene. In this report, we focus on different local techniques and highlight their

weaknesses and strengths as well as provide directions for future research.
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1 Introduction

The holy grail of computer vision research is to be able to build a system that can perform all the
vision tasks that a human being can perform at the same level of ease and efficiency. One of those
vision tasks that humans can perform with ease but machines find great difficulty in performing is
accurate and efficient object recognition. Object recognition is considered to be one of the high level
vision problems and has enjoyed active research for the past 4 decades [4]. Generally, the object
recognition research community has been split into two camps: Those who deal with 2D images
and those who deal with 3D pointclouds or meshes. 2D images are created by projecting the scene
onto a plane by capturing the light intensity detected at each pixel. Alternatively, 3D pointclouds
capture the 3D coordinates of points in the scene. The main difference between the two types of
data is that 3D data includes depth information whereas 2D does not. Historically, the community
that studies 2D object recognition has been larger. However, this is changing due to the fact that
new technology has enabled acquisition of 3D data using cheaper sensors such as RGB-D cameras.
RGB-D cameras such as the Microsoft Kinect capture a regular colour image (RGB) along with the
depth(D) associated with each pixel in the image.

3D object recognition techniques can be roughly categorized into global and local techniques.
The focus of this depth report is study and compare the local techniques because they are more
general and have received more attention in recent literature. The report is organized as follows:
Section 2 defines the 3D object recognition problem, briefly discusses global techniques and then
introduces the correspondence problem and its relationship to 3D object recognition. Furthermore,
it discusses some historical techniques for solving the correspondence problem for 3D object recog-
nition. Section 3 which is the main section of the report surveys some well known and recent local
techniques for solving the correspondence problem in 3D object recognition and provides a com-
parison of these techniques. Finally, Section 4 looks at future research directions for improving the
state of the art in the area.

2 Background

2.1 Defining 3D Object Recognition

Given a database of 3D models (objects), object recognition is the problem of finding all instances of
the database models in an arbitrary scene as well as determining the pose of the detected objects.
The pose of the object is the rigid transformation that aligns the object in the database to the
object’s instance in the scene. In the rest of the report, rigid transformation and pose will be used
interchangeably. In 2D, the rigid transformation has three components and they are two translations
in each of the x, and y directions and a rotation in the xy-plane. In 3D, the pose has six components
which are the translations in each of the of x,y, and z directions as well as a rotation about each of
these axes, namely, the pitch, yaw and roll. Therefore solving the problem of 3D Object recognition
is the problem of finding a known object in the scene along with its 6D pose.

3D data can be captured using a variety of sensors including stereo cameras, time of flight laser
scanners such as LiDARs, as well as infrared sensors such as the Microsoft Kinect or Panasonic
DI-Imager. All sensors can only capture a single view of the object with a single scan. This view is
referred to as a 2.5D scan of the object. Therefore to capture the entire 3D shape of the object the
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Figure 1: A typical 2.5D scene showing both clutter and occlusion captured using a vivid LIDAR
scanner. Picture courtesy of [1]

sensor captures multiple instances of the object at different viewpoints. In 3D object recognition
the goal is to recognize a full 3D object stored in the model database in a 2.5D scene where only
part of the object is visible. In practice, there are other issues that add to the challenge of solving
the problem of 3D object recognition and they include:

• Occlusion: A part of the 3D object is always hidden due to self-occlusion or occlusion by
other objects in the scene. Formally, occlusion is defined as:

occlusion = 1− model surface patch area in the scene

total model surface area
(1)

• Clutter : A scene may include many closely spaced objects, making it difficult to determine
the source object of a data point. Formally, clutter is defined as:

clutter = 1− model surface patch area in the scene

total scene surface area
(2)

• Noise: Sensors are not perfect and therefore a 3D representation of the same view of an object
is never exactly the same and can possibly include missing parts depending on the quality of
the sensor.

• Sampling Resolution: The 3D data of objects in the database might be captured using a
different sensor with a different sampling rate than the one used to capture the 3D scene
data.

Figure 1 shows a typical 2.5D scene with clutter and occlusion.
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2.2 Global Shape Descriptors

There are several techniques in the literature that describe an entire object using a single global
description. Although these methods tend to be very efficient, they are very sensitive to occlusion
and clutter because objects in the scene are not isolated and therefore cannot be described globally.
These methods tend to be used in scenes that contain no clutter and only self-occlusion or for
solving the problem of Object Class Recognition whose goal is to identify objects of the same class
as an object in the database. Object Class Recognition generally deals with scenes that contain
only a single object that is not occluded or cluttered with other objects and therefore global shape
descriptors tend to do well here. Osada et al . [5] proposes shape distribution which is simple global
shape descriptor that randomly samples pairs of points on the object and calculates the distance
between each pair. The distances are placed into a histogram based on the distance interval that
they fall into. The histogram of point pair distances represents the shape distribution of the object
and is used to compare to a scene object’s shape distribution using the L1 norm. Their method was
only successful in identifying simple objects two thirds of the time. Wahl et al . [6] presents a similar
shape distribution method but instead of calculating only the distance between a pair of points,
the authors use a pair of oriented points and calculate three other properties of the pair in addition
to the distance property by exploiting the normal information. An oriented point is a point whose
normal is known. Their shape distribution is therefore a 4D histogram. Their technique achieved
80% recognition for single object scenes with up to 45% occlusion. The technique was also shown to
be robust to different sampling resolutions but sensitive to noise. Hetzel et al . [7] proposes another
global histogram technique that builds a multi-dimensional histogram of the object based on depth,
surface normals, and curvature properties of the object. These properties are calculated at local
regions on the object and values are binned into a single multi-dimensional histogram. The method
achieved a recognition rate of 91% on 30 database objects with up to 40% occlusion.

The Potential Well Space Embedding proposed by Shang and Greenspan [8] is another global
technique that takes a different approach to describing an object. The error surface embedding
global descriptor takes advantage of some of the properties of the Iterative Closest Point (ICP)
algorithm proposed by Besl and McKay [9]. The goal of the ICP algorithm is to find the best
alignment between two sets of points. The algorithm attempts to achieve this by iteratively min-
imizes the collective distance between pairs of points across two point sets until no improvement
can be made. It requires an initial alignment which is close to the optimal solution in order for
it to converge to the global minimum; otherwise it will converge to a false local minimum. Their
technique takes advantage of the different local minima that the ICP algorithm can converge to.
Their error surface embedding descriptor is constructed using the following steps:

1. Generate a random generic model,M, that is at least as complex as the most complex object
and at least as large as the largest object in the database. This is achieved by building an
object composed of 120 spheres of random radii and location within a bounding box at least
as large as the largest object in the database.

2. For each model view, the error surface model is calculated by first running ICP to register it
to the generic model, M. The rotation and translation relative to the original view position
is used as the origin of the error surface.

3. The view is perturbed to a set of 30 translational positions and ICP is applied to register each
of the perturbed views toM. The rotation and translation of each registration relative to the
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origin is stored. The 30 pairs of rotation and translation values of the ICP registration form
the error surface embedding which describes the object globally.

The technique was found to be very robust to noise and data sparseness. It achieved a recognition
rate of 97% on a database of 60 objects without reporting occlusion rate. They also achieved an
impressive 87.8% on a standard Object Classification database where objects of the same class
were recognized. However, as a global method, the technique was ineffective in dealing with high
occlusion or clutter.

2.3 The Correspondence Problem

As outlined above using Global Shape Descriptors to solve 3D Object Recognition is not well suited
for real world situations where high occlusion and clutter can exist. Another approach to solving
object recognition comes through solving another well known problem in computer vision, namely,
the correspondence problem. Given two different point sets that share a common subset of points,
the correspondence problem is to find matches between points in the first point set and points in the
second point set. An example of a correspondence problem is image-stitching where two overlapping
views of the same scene are stitched together to create a wide-angle view of the scene. Another is
3D model construction where overlapping views of a 3D object are obtained and registered in the
correct order in order to build a full 360◦ view of the entire model. Simultaneous Localization and
Mapping (SLAM) is a technique used by robots driving in unknown environments to build a map
of the environment as well as keep track of their location relative to their starting position. SLAM
uses the correspondence between overlapping frames (images) of the environment to compute the
transformations that describe the robot’s motion, as well as to register the frames to build the map.
Finally 3D Object Recognition can also be posed as a correspondence problem where the goal is to
find the points in the scene that correspond to the points of different models in the model database.

In order to determine the 6D pose of a model in the scene, it is sufficient to find 3 model to
scene correspondences. The two sets of triplets are used to compute two reference frames, and the
rigid transformation between the two frames is computed and used to transform the model to the
scene. A RANdom SAmple Consensus (RANSAC) algorithm [10] is generally used for finding the
best corresponding triplets that describe the transformation. Algorithm 1 describes the RANSAC
technique:

The complexity of RANSAC for determining the 6D pose of an object in the scene is O
(
|S|3

)
where |S| is the number of scene points. It is clear that this algorithm is inefficient and there-
fore recent object recognition techniques do not attempt to establish correspondences using raw
data points but use more complex primitives that reduce the correspondence search space prior to
applying RANSAC. Therefore, RANSAC is used in the Object Recognition Pipeline as away to
probabilistically find the best correspondence within a set of potential correspondences. A more
efficient RANSAC algorithm, termed the 4 Point Congruent Point Sets (4PCS) algorithm, proposed
by Aiger et al . [11] has a complexity of only O

(
|S|2

)
. The algorithm uses 4 co-planar points as the

basis to construct the local reference frame instead of a 3 point basis as with vanilla RANSAC. The
4 co-planar points, {a, b, c, d} are chosen such that two intersecting line segments, ab and cd, are
formed. Under rigid transformation, the following two ratios are preserved:

r1 =
||a− e||
||a− b||

r2 =
||c− e||
||c− d||

(3)
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Algorithm 1 Random Sample and Consensus Algorithm for 3D Pose Determination

K ← max number of iterations
v ← minimum number of model to scene correspondences threshold
PM ← 3 ordered points randomly selected from M
Tbest ← empty
ebest ←∞
k ← 0
while k < K do

PS ← 3 ordered points randomly selected from S.
Compute the transformation, Tk, between PS and PM
vk ← number of model to scene correspondences after Tk is applied to M
if vk > v then

ek ← transformation error of Tk
if ek < ebest then

Tbest ← Tk
end if

end if
end while

This property is used to eliminate many false matches when searching for a matching 4 point basis
in the scene and thus resulting in a more efficient algorithm. A technique that serves the same
purpose as RANSAC is the General Hough Transform (GHT) proposed by Ballard [12]. Although
(GHT) is not probabilistic and therefore is guaranteed to find the correct solution its complexity is
worse than RANSAC as well as requiring an exponential storage space in the number of parameters
estimated. The parameters are used to describe the pose of the object. For 3D Object Recognition,
seven parameters need to be estimated [13]. Due to this reason, RANSAC is used more often in
practice. Some of the historical approaches in solving the correspondence problem in the realm of
3D Object Recognition will be highlighted prior to delving into more recent techniques in solving
the problem.

2.4 Historical Approaches

One of the earliest techniques for 3D object recognition is the Interpretation Tree proposed by
Grimson and Lozano-Perez [14], [15]. In their work, the models used are composed of a set of
surface patches called faces. Each node in the tree stores a correspondence between a model face
and a scene point. At the root of the tree no correspondences are stored. At each new level
of the tree a new model face is chosen and its correspondences with all scene points are stored.
Once the tree is built, the longest paths in the tree represents the most likely hypothesis for the
model’s 6D pose. This results in a tree with |M ||S| leaves for a model M and the scene S. This
prohibitive exponential size of the tree is pruned through the use of rigidity constraints that reduce
the number of nodes that are added at each level. An example of such a rigidity constraint, is
the distance constraint, which states that if two model faces correspond to two scene points the
distance between the model faces must be very similar to the distance between the scene points.
Other constraints based on normal orientation are also utilized for further pruning. To handle
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occlusion, a null node is added at each level in the tree. The null node represents the possibility
that a model face does not correspond to any scene point due to part of the object being invisible
due to occlusion. Although pruning might help reduce the size of the tree, the technique is still
an exhaustive search which is exponential in complexity. These early works dealt with very small
datasets and scenes composed of tens of points and thus the technique was viable for these simple
datasets. The Interpretation Tree, however, can be applied to match more complex primitives such
as Local Shape Descriptors ; this will be elaborated upon in the next section.

Geometric Hashing is a general technique applicable to both 2D and 3D object recognition. For
the 2D case, in the offline phase, a representation of a model, Mi, is built by picking two points,
(m1,m2), as a basis for Mi. A reference frame is constructed using the basis by setting the midpoint
of the (m1,m2) as the frame origin and the vector −−−→m1m2 as the x-axis. The x-axis is rotated 90
degrees clockwise to get the y-axis. In the next step, the coordinates of all other model points
relative to this reference frame are computed and used as a key into a 2D hash table where the
(model, basis) pair, (Mi, (m1,m2)), is entered. This operation is repeated for all possible ordered
basis pairs of Mi. The same is done for other models in the database. In the end of this phase,
the hash table contains entries for all models and for all possible bases for each model. In the
online recognition phase, two points are randomly picked from the scene and used as the basis to
express all other scene points. The coordinate of a point in the basis reference frame is used to
access the appropriate hash table cell, and a vote is cast for all entries in the cell. The operation
is repeated for all possible scene ordered basis pairs. For (model, basis) pairs that get a significant
number of votes relative to other (model, basis) pairs, the transformation of the model to the scene
that results in the best least-squares match between all corresponding points is computed. This
transformation is used to transform the model to the scene to verify that an acceptable portion
of the model correspond to the scene. The verification procedure in object recognition is further
discussed in the upcoming sections. Geometric Hashing can be extended to 3D object recognition
with 6D pose determination by using a basis composed of 3 non-collinear points. The complexity
of the online phase of geometric hashing is O

(
|H||S|k+1

)
, where |H| is the bin occupancy of the

hash table, |S| is the number of scene points, and k is number of points that form the basis. For
3D, this would be O

(
|H||S|4

)
. During the offline phase, re-hashing of the hash table can improve

access times up to O
(
1
)
. Another interesting aspect of geometric hashing is that hash table bins

that contain a large number of entries can simply be ignored in the online phase because their
information is not discriminating enough. An extension of this idea leads to weighted voting where
the bin’s information (weight) is inversely proportional to the size of the bin.

Greenspan [16] proposes the Sample Tree, a hypothesis-test-verify approach. Given a set of
models in the database, each with its own set of discrete model poses that approximate the infinite
pose space of a 3D object, a binary tree classifier, the Sample Tree, is built for each model in the
offline phase such that poses are eliminated as the depth of the tree increases. To build the sample
tree offline, an initial hypothesis is formulated that a point s0 ∈ S corresponds to a point in M ,
and all poses that satisfy this hypothesis are stored at the root. At this stage, the hypothesis does
not establish a correspondence between s0 and a particular point in M . Since a scene point can
correspond to any point on the model, all poses are stored at root. Next another point, s1, in the
scene is hypothesized to correspond to a point on the model. All poses that intersect with both
s0 and s1 are added to the right child of the current node, the “true” child. All poses that do not
intersect with both s0 and s1 are added to the other child, the “false” child. Although s0 has not
been fixed on the model, the relative position of s1 to s0 forms a vector that might not intersect
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with some poses and this is how poses are filtered out. The tree is continually built in this binary
fashion by adding more hypotheses until a small enough number of poses remain in each of the
leaves. In the online phase, all scene points are processed through the sample tree of each model
returning various potential poses. The poses are verified and only verified poses are accepted.

Both of Geometric Hashing and the Sample Tree can be applied after an interest point extraction
phase. An interest point is a point on the surface of a pointcloud or mesh that exhibits geometric
variety exists in its local neighbourhood. Another term used for interest points is salient points
and these two terms will be used interchangeably throughout the report. An example of an interest
point is a local maxima, minima or an inflection point of the 3D surface. A performance evaluation
of 3D interest point extraction techniques is presented in [17]. Clearly interest point extraction
would speed up both of the aforementioned algorithms due to a reduced point set.

3 Solving the Correspondence Problem Using Local Tech-

niques

Object recognition using Local Shape Descriptors(LSDs) has shown the most promise in handling
occlusion and clutter in the scene [18], and therefore has received much attention. We outline the
basic framework that is used in techniques that rely on LSDs for 3D object recognition. In the offline
phase, a model database is constructed by computing LSDs for each object to be recognized. The
LSD encodes certain geometric properties of local parts of the object. At the end of the offline phase,
each object in the model database is represented by a set of LSDs. In the online phase, LSDs are
calculated for points chosen from the scene and are matched against LSDs stored in the database.
The matches generate a set of k hypotheses for both the candidate object and the candidate pose,
H = {h1, h2, . . . , hk}. Each hi = (Mi, Ti) where Mi is the candidate object model and Ti is the
candidate rigid transformation that represents the pose. These hypotheses are verified during a
hypothesis verification stage and invalid hypotheses are rejected. For every accepted hypothesis,
the object model Mi is transformed to the scene using Ti and then a refinement step is applied
which further improves the alignment of Mi with the object in the scene. This refinement step is
accomplished using the Iterative Closest Point (ICP) algorithm proposed by Besl and McKay [9]
or a variant of it. Since T gives a very good initial alignment of the object to its instance in the
scene ICP tends to converge to the global minimum which represents the best alignment between
the two point sets. Figure 2 summarizes the pipeline used for object recognition using LSDs. As
with the historical techniques the LSD representation can be calculated for specific interest points
only, or by uniformly sampling the point sets, or by using all points. Usually, such choices depend
on the resolution of the data being processed.

3.1 Types of Local Shape Descriptors

In this section we describe the LSD formulations found in the literature as well as how LSDs are
matched. Prior to discussing the literature, we defined some preliminary notation. An oriented
point, p, is a point with an associated normal, np. Let the local neighbourhood of p, Nr(p), be
defined as the set of points which fall within a sphere of radius r, centred at p. We will sometimes
use the terms support, support region, support distance to refer to p, Nr(p), and r, respectively. The
condition that all points must be within a distance r from p to be in Nr(p) is referred to as support
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Figure 2: 3D Recognition Pipleline

distance constraint. For a point q with normal nq, the support angle is the angle between np and
nq. The sets of points in Nr(p) must also satisfy the support angle constraint which places an upper
bound on the angle between np and nq. The reason for the above constraints will be discussed later
on. A note about notation, we will use the notation mi to refer to a support point in a model, and
si to refer to a support in the scene; otherwise, we will simply use p to refer to a generic support
point that could belong to both the model and the scene.

3.1.1 Local Neighbourhood Descriptors

The most well known local shape descriptor is arguably the Spin Image descriptor proposed by
Johnson and Hebert [2] The authors compute the Spin Image LSD for every oriented point on the
surface of an object and the scene. The Spin Image LSD is a 2D histogram which measures two
distances of every point in the neighbourhood of p, Nr(p) relative to p. Given a point q ∈ Nr(p),
the first distance calculated, α, is the perpendicular distance of q to the line going through np. The
second distance, β, is that of q to the tangent plane of p. See Figure 3. These distances are placed
into a 2D histogram quantized by the parameters α and β. LSD comparison between two Spin
Images is performed by calculating the linear correlation between them. The authors also discuss
the issue of choosing the best support distance and support angle for the Spin Image descriptor.
The larger the values of the support distance and support angle the more descriptive the Spin Image
but the less robust it is to occlusion and clutter. The is due to the fact that when calculating the
LSD in the scene using a large support distance and angle there is a good chance that the support
region will be corrupted because of missing points due to occlusion or include points belonging to
another object due to clutter; this in turn corrupts the LSD computation. The authors determine
these two values experimentally.

To generate correspondences between the scene and the model database, scene points that
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Figure 3: Distances calculated for the Spin Image Descriptor. Picture courtesy of Johnson and
Hebert [2]

adequately cover the scene surface are sampled. The number of selected scene points can range
from one tenth to one half of the scene points depending on the complexity and amount of clutter
in the scene. Furthermore, since the Spin Image LSD does not encode a local reference frame, a single
correspondence is not enough to find the pose of the model in the scene. Three correspondences
are required in order to compute a local reference frame of the model in the database and in the
scene. The pose of the model in the scene is simply the rigid transformation that aligns the two
local reference frames. Every scene point’s LSD is compared to all LSDs in the model database
and a histogram of the similarity score between the scene LSD and model LSDs is created. The
upper outliers of this histogram are chosen as valid correspondences. The upper outliers of the
similarity histogram are detected by considering all correspondences whose similarity measure is
greater than the upper fourth plus three times the fourth spread. The authors mention that the
matching approach of only considering upper correspondence outliers is reliable for two reasons:
The first is that if no outliers exist then this scene point is not descriptive enough to distinguish a
specific object. The second is that the existence of multiple outliers implies multiple model/scene
point correspondences which should all be checked in the verification stage.

The set of correspondences are further filtered by exploiting geometric consistency between the
correspondences. Let Ci = {mi, si} be the ith correspondence where mi and si are the corresponding
model and scene points respectively. If two correspondences, C1 and C2 are part of the same
model in the scene and in the model database then it is expected that the correspondences will be
geometrically consistent. In other words, the difference in position and normal orientation of the
points in the scene, (s1, s2), is very similar to the difference in position and normal orientation of
the model points, (m1,m2). Correspondences that are not geometrically consistent with at least
a quarter of the entire set of correspondences are filtered out. Finally, correspondences grouping
is performed where correspondences that are geometrically consistent and far apart are grouped
together. Choosing correspondences that are far apart is important since correspondences that are
close together generate transformations that are susceptible to noise in point position [19]. Given
the list of correspondences, L, with n correspondences, a correspondence, Ci, is used to initialize a
group Gi = {Ci}. Next, a correspondence Cj ∈ L, is added to Gi if it is geometrically consistent
and far apart with respect to all correspondences in Gi. This is done for j = 1 . . . n where j 6= i.
Correspondences are allowed to belong to more than one group to handle model symmetry. Once
correspondences are grouped, the best rigid transformation, T , that aligns the corresponding point
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sets is calculated [20]. The transformation minimizes the following error function:

ET =
∑

||si − T (mi)||2 (4)

Correspondence grouping serves two purposes: First it avoids the combinatorial explosion resulting
from randomly selecting three correspondences to generate a transformation which is generally what
is done using a vanilla RANSAC approach to find the best correspondences. Second, it generates
more reliable transformations because they are based on a larger number of correspondences. The
transformations produced are verified by applying them to the associated models and checking the
proportion of model points that are explained by the scene points after the transformation. In
other words, the proportion of inliers, i.e., model points that have a corresponding scene point
whose distance to the model point is less than a specified threshold. This threshold tends to be set
to two times the resolution of the mesh or pointcloud. If the proportion is higher than a specified
threshold the hypothesis is accepted. The authors find that their technique performs well up to
70% occlusion and find that occlusion affected performance more than clutter.

The authors extend their work in [21] by presenting a compressed form of the Spin Image
representation in order to speed up the matching process. The library of all model Spin Images is
compressed using Principle Component Analysis [22] to find the most representative Spin Images.
Next, all other Spin Images are projected into the eigenspace spanned by the most representative
Spin Images. During matching, a scene Spin Image is also projected into the eigenspace and matched
to its closest neighbour in the eigenspace in terms of l2 distance. PCA Spin Images was shown
to be much more efficient than regular Spin Images with an acceptable reduction of recognition
performance.

Ruiz-Correa et al . [23] proposed the spherical Spin Images representation in which Spin Images
that were highly similar were first mapped into the same equivalence class. The equivalence classes
are then mapped into unit vectors on the unit sphere. The spherical representation maps the
linear correlation between two Spin Images to the cosine of the angle of the two unit vectors that
represent the Spin Images. They also propose a method to compress their spherical Spin Images
representation by using a random projection technique [24] instead of PCA. The PCA compression
is affected by the Mesh resolution while the random projection compression is independent of the
mesh resolution [25]. In addition the complexity of random projection is O(d2n) while PCA has a
complexity of O(n3) where n is the number of Spin Images and d is the number of dimensions of
the basis of the compressed space which tends to be much less than n. The authors showed that
the random projection representation is more accurate and efficient than the PCA representation.

The Spin Image descriptor essentially projects all points that fall onto a cylinder of specific
height and thickness onto a single point in a 2D histogram. Therefore there is dimensionality
reduction in the descriptor that naturally leads to a loss of information in the description of the
local neighbourhood. The 3D Shape Contexts LSD proposed by Frome et al . [26] builds a local
shape descriptor by partitioning the spherical support region around a 3D point into bins. For
each point that falls within a bin, a weighted contribution of the point to the score of the bin is
computed. Essentially, the authors compute a 3D histogram as opposed to a Spin Image which is
2D histogram and show that their LSD is more descriptive. The spherical support is partitioned
by dividing the elevation and azimuth dimensions into equally spaced boundaries and the radial
dimension into logarithmically spaced boundaries. The logarithmically spaced boundaries of the
radial direction create smaller bins near the support and larger bins as one moves further away from
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the support. The reason for the logarithmic division in the radial direction is to make the descriptor
more robust to shape distortions that occur further away from the support. The spherical support
is placed at a 3D point so that the north pole of the sphere aligns with the normal of the point.
This alignment leaves a degree of freedom in the azimuth dimension, which must be dealt with in
order to ensure that the LSDs computed for scene points match LSD computed on the model. This
is taken care of by computing D different LSDs for each model point where D is the number of
division in the azimuth direction.

In the offline and online phase, points are chosen randomly to compute the model and scene LSD
representations. In the matching phase, a representative descriptor cost is calculated for matching
a model, Mi, to the scene, S. Given that Mi is represented using a LSD set calculated at points
{m1, . . . ,mL} and the scene is represented by an LSD set calculated at points {s1, . . . , sK}: The
representative descriptor cost, cost(Mi, S), is calculated using the following expression:

cost(Mi, S) =
K∑
k=1

L

min
l=1

dist(ml, sk) (5)

where dist(ml, sk) is the similarity between the LSD of ml and that of sk. The representative
descriptor cost measures the similarity between the scene and the model, Mi. Models that have
significant similarity to the scene are recognized. Using their dataset, their descriptor achieved a
recognition rate of 49% while Spin Images achieved only 34%. The reason for these low recognition
rates is that the dataset was composed of different cars models which were highly similar in shape.

Another issue with the Spin Images descriptor is that it does not encode a local reference frame.
This implies that one correct correspondence between the scene and a model is not enough to
determine the pose of the model in the scene. At least three correspondences are required to build
a local reference frame for both the scene and the model. Given two local reference frames, the
transformation between them can be computed to find the pose of the model in the scene. In 3D
Shape Contexts, a single correspondence is enough to determine a candidate pose of the object.
However, their LSD uses an ambiguous local reference frame which required the calculation of D
different version of the descriptor. On their dataset, the number of model LSDs was increased from
83,640 to 1,003,680 in order to handle the degree of freedom in their reference frame, where D was
set to 12. Mian et al . [3] propose a descriptor that reduces the ambiguity of the reference frame
to only 2 versions. Their proposed LSD is for meshed 3D objects, called a Tensor, is constructed
using the following steps:

1. Decimate the mesh to allow for faster processing.

2. Randomly select two vertices that satisfy distance and angle constraints determined experi-
mentally.

3. Define a 3D coordinate frame on the two vertices (v1, v2) chosen as follows:

(a) Origin of frame is the midpoint of the segment (v1, v2).

(b) z-axis = average of the normals of v1 and v2.

(c) x-axis = cross product of the two normals is the x-axis.

(d) y-axis = cross product of x-axis and z-axis.
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Figure 4: Constructing a Tensor by placing a grid at the origin of a local reference frame and
computing the area of intersection between the bins of the grid and the mesh. Picture courtesy of
Mian et al . [3].

4. Construct a local 3D grid whose origin is the bases frame of the previous step

5. In each bin of the grid, calculate the surface area of intersection of the bin with the mesh
using the polygon clipping algorithm [27]. This 3D grid is called the Tensor.

Figure 4 shows the steps of constructing the Tensor. The Tensor is a 3D histogram which also stores
a local reference frame which is invariant to rigid transformations. However, there is an ambiguity
in the Tensor description of the same pair of points. Using the ordered pair (v1, v2) to compute the
local reference frame results in a different local reference frame than using the ordered pair (v2, v1).
This ambiguity is handled of by storing both versions of the Tensor.

In order to make the matching process more efficient a 4D hash table is used to store the Tensors
of the model database. Given a computed Tensor, each non-empty bin contributes an entry (a, b) to
the appropriate hash table cell where a and b are the indices of the object and Tensor, respectively.
The four dimensional index of the appropriate hash table cell is composed of the i, j, k coordinates
of the bin and the angular difference, θd, between the pair of normals of the pair (v1, v2) used to
construct the Tensor. The authors report a recognition rate of 96.5% for their algorithm versus
87.8% for Spin Images for objects with occlusion of up to 84%. The database used in this work is
regarded as the most popular object recognition benchmark for 3D object recognition [28] and it
will be referred to as the Standard 3D Object Recognition Benchmark from this point onwards. The
database contains 50 scenes of 5 free-form models with various levels of occlusion and clutter. The
maximum occlusion rate for this dataset is 91.4%.

Scale space analysis is a technique well-established in the realm of 2D interest point detection.
In 2D, it is used to detect interest points that are invariant to scale. In other words, an image
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of the same object taken from a close distance and a far distance should have the same interest
points. In 2D, the distance of the camera to the object effects the size (scale) of the object in the
image and therefore affects interest point detection. Given a 2D object image, scale space analysis
simulates different scales by down sampling and smoothing the image at several levels. The idea is
that downsampling and smoothing is analogous to a camera moving away from the object where the
number of pixels (level of detail) that represents the object decreases. Interest points that can be
consistently detected across different levels of detail are chosen as the scale-invariant interest points.
However, scale is not an issue in 3D, because 3D sensors give the same metric measurements of the
point position in space no matter the distance to the sensor. Distance to sensor in 3D could mean
a sparser or noisier point cloud but still at the same scale. Although scale is not a problem in 3D
interest point detection, Novatnack and Nishino [29] propose a technique to find scale-dependent
interest points. This is the opposite goal of scale-space analysis for the 2D case. In their follow up
work [30] which is further developed by Bariya et al . [31] the authors build scale-invariant LSDs
for each of the scale-dependent interest points and use the scale as a filter in the matching stage
of a 3D object recognition pipeline. Essentially, an LSD computed from the scene only queries
database LSDs that are based on interest points detected at the same scale. This idea improved
both efficiency and recognition accuracy. Furthermore, scale-space analysis also gives information
about the inherent or natural support distance of the interest point and therefore unlike previous
works the support distance is automatically determined. In order to perform scale-space analysis
for a 3D mesh, the authors first parameterize the 3D mesh using a 2D plane and then map each of
the 2D points of that plane to the normal of the corresponding 3D point to create a normal map.
The normal map is then used to perform scale-space analysis as in the 2D case to detect scale-
dependent interest points. To build the descriptors, the authors first compute a rotation-invariant
reference frame based on the geodesic polar coordinates of the points in the support region and
re-express each of the points in the support region in terms of this reference frame. Once the points
are re-expressed, the normal of each point is stored at its new location resulting in a normal field;
this descriptor will be referred to as the Normal Field. In order to compare their LSDs the authors
use the cross-correlation between the normal fields as a similarity measure.

In the online recognition phase, the authors use an Interpretation Tree [14], to match the model
LSDs to their scene LSDs. As discussed previously, the Interpretation Tree is an exponential data
structure, however, the authors use the LSDs which are based on interest points as the primitives
to match, instead of the raw points which greatly reduces the search space. In addition, the authors
employ constraints to bound the size of the Interpretation Tree to achieve efficient matching. As
previously detailed, at each new level of the tree the nodes store the correspondences between a
model LSD and all scene LSD that match the model LSD. The first constraint used in establishing
these correspondences is the scale associated with the LSD where LSDs are only matched with
LSDs of the same scale. Furthermore, the tree is built in a hierarchical fashion where going deeper
in the three corresponds to finer scales in the scale-space. This is inspired by the intuition that
interest points detected at coarser scales, represent geometric variations that are more prominent in
size, and therefore are associated with LSDs that hold relatively greater discriminative information.
Another constraint employed, is that each level of the tree stores only the top 5 matches to the
scene. In addition, a geometric constraint is also applied where a correspondence is added to the
tree only if it is consistent with the rigid transformation of its potential parent node.

Once the interpretation tree is built, the top 20 hypotheses in the last level of the tree are
verified using the area of overlap between the scene and the model. The best hypothesis out of the
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20 is refined using ICP and the scene points matching the transformed model are removed from
the scene. A new interpretation tree is built for the next model and the process continues until 2
or less scale dependent interest points remain in the scene. The authors achieve a recognition rate
of 97.5% on the Standard 3D Object Recognition Benchmark which slightly outperformed Tensors
[3].

Zhong [32] proposes the Intrinsic Shape Signature (ISS) LSD. The authors perform PCA analysis
a model’s points and use the ratio between principle components to detect salient point. Points that
exhibit a significant difference between their principle components are considered salient because
they exhibit changes in their support region as opposed to having a relatively flat support region.
The principle components for each of the salient points forms a local reference frame for the local
neighbourhood around the point. They compute their ISS descriptor for each of the detected
salient points, by dividing up a spherical support region around the point into bins, and counting
the number of points that fall into each bin, producing a signature descriptor. The local reference
frame is used to determine the coordinate of the bin in the histogram. The authors note that
the local reference frame computed using PCA analysis has sign ambiguities that can result in 4
different local reference frames if the normal direction is not known, and 2 if the normal direction
is known. Therefore, the authors compute 4 different version of their descriptor for each point
to ensure all possibilities are captured. They achieve 98% average recognition for the problem of
finding a single car object in a scene. This is done for 72 different car models of similar shape for
two different scenes. The authors do not report the occlusion ratio.

Tombari et al . [33] propose a technique that discusses the repeatability of the invariant local
reference frame that is used in the computation of many LSDs. As previously noted, the computa-
tion of the local reference frame can result in up to 4 different versions requiring 4 different versions
of the descriptor. Clearly, this ambiguity slows down the matching stage significantly. Another
problem with local reference frame computation is that they are sensitive to occlusion, clutter, and
noise in the scene due to the corruption of the support region. Since the computation of the LSD
depends on the local reference frame, the LSDs of the corresponding points might not match. In
order to compute a local reference frame, the principle components of the local neighbourhood are
computed. To compute the principle components, eigenvalue decomposition is performed on the
covariance matrix, COV (p), of the k points in Nr(p) defined as:

COV (p) =
1

k

k∑
i=1

(pi − p̂)(pi − p̂)T , p̂ =
1

k

k∑
i=1

pi (6)

The authors propose a weighted version of the covariance matrix where points closer to the support
contribute more than points further away from the support. This essentially means that if part of
the neighbourhood is corrupoted with occlusion, clutter or noise, then this corruption will have less
of an effect on the eigenvalue calculation due to the fact that it will likely be in the outer portion
of the support region. The new covariance matrix for support region of radius, r, is defined as:

COV (p) =
1∑

i:di≤r(r − di)
∑
i:di≤r

(r − di)(pi − p)(pi − p)T (7)

where di = ||pi − p||2 and p replaces p̂ for the sake of efficiency. In order to disambiguate the sign
of the principle components each of the principle components are simply reoriented in the direction
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of the majority of the vectors it is representing [34].
In formulating their descriptor, the authors take inspiration from well established and successful

2D descriptors such as SIFT [35] and SURF [36]. They stress that part of the reason for the success
of these descriptors for 2D object recognition is the use of sub-local histograms that describe a
specific region within the support region. Additionally, these descriptors use first order differential
entities (gradients in 2D and normals in 3D), which are highly descriptive. Therefore, the authors
construct their descriptor by first dividing the spherical support region around the support, p,
into a spherical grid based on polar coordinates. Next, for each grid cell a local histogram which
bins the angular differences between np, and points within the grid cell is built. These sub-local
histograms are concatenated into a single histogram to create their descriptor. Their descriptor
is dubbed Signature of Histograms of Orientations (SHOT). The authors also discuss a spatially
varying binning strategy where normals whose angular difference to np is small are placed in wider
bins while those with a bigger difference are placed into increasingly finer bins. The intuition for
this binning strategy is that points whose orientation differ significantly from the orientation of
the support are the most descriptive, and therefore should be more highlighted in the descriptor.
The authors compare their technique to Spin Images, Normal Field. They show that their method
outperforms the others in terms of precision and recall but they do not report actual recognition
rates. The authors extend their work in [37] by adding colour information to the descriptor. They
simply augment the sub-local histograms by binning the difference between the colour vector for
each point in a cell and the colour vector of the support. They found that this improved their
results.

Taati and Greenspan [38] present a new approach to the construction of local shape descriptors
by enumerating most geometric properties that are encoded in an LSD as proposed in previous
literature. They coin the term Variable Dimensional Local Shape Descriptor (VD-LSD) to describe
their descriptor. They categorize the properties encoded between a reference point and a point in its
neighbourhood into three types: position scalars, direction scalars, and dispersion scalars. Instead
of trying to formulate a single universal LSD that performs well on all objects, the authors’ premise
is that certain properties might be better in describing certain surface geometries than others. The
goal then becomes to find the best subset of properties to encode in the LSD for a specific object.
The authors enumerate 25 different properties and evaluate the use of heuristic algorithms such as
Simulated Annealing and Genetic Algorithms [39] to find the best subset out of the 25. The authors
also show that some of these properties are linearly dependent and therefore exclude some of them
in their selection process. Once the best subset of properties is chosen the LSD is constructed
using a multi-dimensional histogram which uses a dimension for each of the chosen properties. In
order to recognize an object in the scene, the optimal set of properties for that object was used to
compute the scene LSDs and then matching using RANSAC was performed. The authors show that
their VD-LSD descriptors achieve a recognition rate of 83.8% versus 53.8% for Spin Images on an
augmented Standard 3D Object Recognition Benchmark dataset in which they supplemented the
standard benchmark with 6 more models and 636 new scenes. As expected the increased number
of RANSAC iterations lead to a higher recognition rate for all methods

3.1.2 Point Pair Descriptors

In [40], [41], the Point Pair Feature (PPF), which is a local shape descriptor which describes
geometric properties associated with two oriented points instead of a local neighbourhood around
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a point is proposed. Both works highlight some of the weaknesses of local shape descriptors which
describe a local neighbourhood and they include:

• Sensitivity to occlusion, local clutter, noise and low sampling resolution.

• Inability to discriminate self-similar objects parts such as planar patches.

Essentially, these weaknesses cause the LSDs of local neighbourhoods to be less repeatable and less
discriminating, where repeatability is a measure of how likely it is to find the LSD in both the model
and the scene. Given two oriented points, (p, q), with normals, (np,nq), and a vector connecting
the two points, d, the Point Pair Feature is defined as:

F(p, q) = (||d||2,∠(np,d),∠(nq,d),∠(np,nq)) (8)

In [41] a global model description is created for each model in the database by sampling point
pairs at a specific distance from each other and whose normals differ by a specific angle on the
model. The distances and the angles are sampled in steps of ddist and dangle. For each model point
pair,(mi,mj), F(mi,mj) is calculated and the pair (mi,mj) is placed into a 4D hash table whose
key is the value of F(mi,mj). This 4D hash table represents the global description of the model.

During the online recognition phase a reference scene point, sr is sampled and paired with
another scene point si. Then, F(sr, si) is calculated and the 4D hash table of the model is used to
find corresponding model pairs. For each model pair, (mr,mi), where mr is selected to be the model
reference point, sr is registered to mr. The registration of sr to mr includes the registration of their
normals as well. This registration constrains 5 degrees of freedom of the 6D pose but leaves one free.
In order to complete the registration of the pairs, the angle, α which aligns si to mi is calculated. A
vote is cast for the coordinate (mr, α) in a 2D accumulator array. A different si is chosen from the
scene and the operation is repeated until all scene points have been paired with the reference scene
point sr. The maximum peaks of the accumulator array are taken as candidate local coordinates
(mr, α) that would align the model to the scene. Since a reference point sr might not lie on the
model the process is repeated for different references points from the scene. The poses generated
by the voting scheme of Point Pair Feature matching are clustered together such that poses within
a cluster do not differ in rotation and translation by more than predefined thresholds. The score of
the cluster which is the sum of the scores of the poses within the cluster is calculated. The score
of the pose is the number of votes that the pose received. All clusters with low scores are removed.
For all other clusters, the poses are averaged to generate a more accurate pose. The authors report
a recognition rate of 97% on the Standard 3D Object Recognition Benchmark using |S|/5 reference
points during online matching for scenes containing an occlusion rate of up to 84%. This is slightly
better than the results reported by the Tensors technique. The method also performed object
recognition 5 seconds faster per object as compared to the Tensors technique. The authors also
report results for detection of an object in single object scenes; scenes with zero clutter and only
self occlusion. Noisy single object scenes are generated by corrupting the 3D point positions with
various levels of Gaussian noise. The standard deviation of the Gaussian noise distribution is set
to a percentage of the object diameter. The technique achieved around 81% detection rate at a
standard deviation set to 4% of the model diameter for the Gaussian noise distribution.

Papazof et al . [40] proposes a similar technique that investigates using the Point Pair Feature.
The offline recognition phase is very similar to that of [41] where models are represented using a
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4D hash table based on the Point Pair Feature. However, in this case all model pairs are hashed
into the same hash table and hash table entries that contain too many entries are deleted. This
serves to keep only discriminating Point Pair Features while removing non-discriminating ones. In
the online recognition phase, a RANSAC framework is proposed where every hypothesis resulting
from point pair correspondence is evaluated using an acceptance function. All hypotheses that
satisfy the acceptance function are further refined by removing conflicting hypotheses. The details
of hypothesis verification are explained in the next section. They also report results that outperform
the Tensors and Spin Image technique and in fact achieve a recognition rate of 100% for objects
with less than 84% occlusion in 48 out of the 50 test scenes and around 97% for the remaining two
scenes. As in [41], they also show the robustness of their technique to various levels of noise. At
a noise level set to 4% of the model diameter the authors report a recognition rate around 65% in
multi-object scenes.

The work on the Point Feature Histogram(PFH) and extensions of it proposed by Radu et al . [42],
[43], [44] is used for the end goal of object class recognition in scenes with low clutter and occlusion.
The PFH LSD combines the idea of describing a local neighbourhood as in Spin Images, and the
idea of describing point pairs as in the Point Pair Feature. Their LSD is formulated by calculating
the Point Pair Feature for all pairs of points within a local neighbourhood and binning the values
of the point pair feature into a 4 dimensional histogram. The descriptor has a computation cost
of O

(
k2
)

where k is the number of points in the local neighbourhood. The authors simplify their
descriptor [43], and propose the Fast Point Feature Histogram(FPFH) LSD by first calculating the
Simplified Point Feature Histogram(SPFH) for every point in the 3D cloud. The SPFH is computed
by calculating the Point Pair Feature between the point and all it’s k neighbours instead of doing so
for every pair of points in the neighbourhood. In the next stage, the SPFH of every point is weighted
by the SPFH of neighbouring points to create the FPFH point descriptor. The computation of
FPFH takes only O

(
k
)

as opposed to O
(
k2
)
. Both of PFH and FPFH can be used as LSDs for 3D

object recognition but the authors use them to segment objects into geometric primitives such as
planes, sphere, edges, and corners. The segmentation of objects into geometric primitives is used to
create a global shape descriptor called the Global Point Feature Histogram(GPFH) [44]. The GPFH
descriptor is then used to classify objects into functional classes using a Support Vector Machine
(SVM) classifier. The scenes dealt with contain low clutter and occlusion for the application of
robotic manipulation of kitchenware. FPFH is first used to segment each object into geometric
primitives. Next, a single GPFH descriptor is calculated for the entire object. This is done by
first voxelizing the object using an octree and casting a ray, rij, between every pair of voxels. For
every voxel that rij passes through, the dominant geometric primitive is determined. The dominant
geometric primitive is the one which has the largest representation within the voxel. Next, For
every consecutive pair of voxels the transition from the dominant primitive of the first voxel to
the next is recorded. These transitions are then binned into a histogram of all possible transitions
creating the GPFH. An SVM classifier uses the GPFH to classify the objects into different classes.
The aurhors acheived 98.7% accuracy for primitive shape segmentation and 96.9% accuracy for
functional object class recognition. Although this is a global shape descriptor, the idea of using a
local shape descriptor to build a global one is interesting because it describes the object at different
levels of locality.
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3.1.3 Local Patch Descriptors

Lam and Greenspan[18] also point out the same issues that affect the repeatability of LSDs based on
local neighbourhoods. Instead of calculating LSDs for local support regions, the authors support the
hypothesis that interest points are repeatable under conditions such as different sampling resolution,
and sensor noise. Therefore they propose an object recognition technique that is based on interest
points without calculating any LSDs. Their technique still has local characteristics and that is the
reason it is reviewed in this section. The technique can be described using the following steps:

i Interest Point Extraction: The difference of normals operator [45] is used to extract points of
interest. The operator calculates the normal of a point based on two differently sized neigh-
bourhoods; a small and a large. Points that lie on areas of high curvature will have a significant
difference in their calculated normals and such points are considered interest points.

ii Boundary Curve Reconstruction: The interest points are joined into closed curves called interest
curves.

iii Region Segmentation: Based on the boundary curves, the points are segmented into labeled
regions called interest segments which are used for matching.

In order to perform the actual matching the 4 Congruent Point Sets (4PCS) [11] algorithm is
used to locate a matching interest segment in the scene. 4PCS is a registration technique that does
not require the prior calculation of any interest points or local shape descriptors and therefore it
can be used to register raw point segments. In order to compare how well the interest segments in
the database were segmented in the scene, the authors develop a measure to quantify the quality
of the segmentation. Experiments showed that the interest segments are repeatable and therefore
effective for object recognition. It is also important to note that a single matching segment is enough
to register the object to the scene. In [1], the authors improve the quality of their segments by
including a supervised merging stage to merge over-segmented neighbouring regions which increases
the repeatability of the segments as well as increasing the match between corresponding segments. In
their most recent work [46], the authors propose an object recognition system with an unsupervised
merging stage and achieve a 93% recognition rate on a high resolution LiDAR dataset and 81% on a
noisy and low resolution Kinect dataset. Occlusion rates are not reported for their datasets. Online
efficiency of the method is an issue due to the fact that 4PCS is a quadratic complexity algorithm
for registering two point sets.

3.2 Hypothesis Verification

Once LSDs are computed for the scene they are compared against the LSDs in the model database
and correspondences are established between 3D points whose LDSs are similar according to a
similarity measure. In the case that the LSD includes the local reference frame such as the SHOT
descriptor [33], only one correspondence is necessary to find the transformation from model to
scene. In the case that the LSD does not include the local reference frame, three correspondences
are required to find a transformation. These correspondences generate a set of hypothesis, H, where
an element in H, hi = {Mi, Ti}, represents the possibility of the existence of Mi with pose Ti in the
scene. Each hypothesis, hi = {Mi, Ti}, is verified by applying the transformation Ti to the model
Mi and computing the proportion of model points explained by the transformation. In other words,
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the proportion of model points that have a corresponding scene point after the transformation is
applied. If it is above a specified threshold then the hypothesis is accepted and refined using ICP.

Most techniques apply the simple verification process outlined above. However, there are a few
techniques that explicitly address the Hypothesis Verification (HV) stage [3], [40], [31], and [28],
although none to nearly the same extend as the work of Aldoma et al . [28]. As indicated in [28] the
HV stage of the object recognition pipeline has been relatively unexplored so far. In this section,
different HV techniques proposed in the literature are reviewed.

In the Tensors technique [3] the verification procedure first verifies that the simplified scene
mesh, M′

S, and a simplified model mesh, M′
M , are a good match and then proceeds to verify that

the non-simplified versions of the meshes MS and MM , are a good match. The first step in the
verification procedure is to transform M′

M to the scene and calculate the following quantities:

α =
corresponding vertices of model with M ′

S

total vertices of model
(9)

f1 = αD (10)

In (9) vertices are considered corresponding if the distance between them is less than twice the
mesh resolution. In (10), D is the similarity between the model and scene Tensor and α measures
the quality of alignment, or in other words, the proportion of model points explained by the trans-
formation. Furthermore, f1 is a confidence measure which is proportional to the similarity and how
well the objects are aligned. A hypothesis is allowed to proceed to the next verification step only if
these two quantities are above minimum thresholds. Setting a low threshold for α allows for wrong
alignments to pass through while setting a high threshold for it could exclude correct alignments
with objects that are highly occluded. Therefore two thresholds, tα1 and tα2, are used. If α < tα1
the hypothesis is rejected. If α > tα2 the hypothesis is accepted. Otherwise if tα1 ≤ α ≤ tα2, then
the hypothesis is only allowed to proceed if f1 > tf1. The authors experimentally determine these
thresholds. In the next stage, MM is transformed to MS and the transformation is refined using
ICP. Once this is accomplished, all non-visible model points are removed and the alignment using
equation 9 is recalculated as the quantity α2. If α2 is higher than 0.8 the hypothesis passes through
to the final stage where violations of the active space of the sensor by the transformed model are
checked. An example of an active space violation is a portion of the model laying in between the
sensor and detected scene points in the z-direction.

In [40], the hypotheses that are generated during the matching stage are evaluated using an
acceptance function that is composed of a support term and a penalty term. The support term is
the quality of alignment as defined in [3] and the penalty term is the number of model points that
occlude other scene points. A hypothesis passes on to the next verification stage if the support is
higher than a predefined threshold and the penalty is lower than a predefined threshold. In the
final stage, conflicting hypotheses are removed, two hypotheses are conflicting if their transformed
models align with a shared set of points. Conflicting hypotheses are placed in a graph where each
node represents a hypothesis and an edge connects two hypotheses if they are conflicting. Non-
maximum suppression is performed whereby a node is removed if it has a better neighbouring node;
in other words, if the neighbouring hypothesis has a larger support term.

Aldoma et al . [28] focuses only on the hypothesis verification stage and present an elaborate
hypothesis verification technique. Instead of treating each hypothesis individually and applying
thresholds that depend on geometric cues (constraints) the authors consider the entire set of hy-
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potheses as a global scene model. They propose a global cost function that measures the quality of
the entire set of hypotheses and find the subset of hypotheses that minimizes the global cost func-
tion. The advantage of their approach is that they take interaction between different hypothesis into
account which is ignored in other hypothesis verification techniques except [40] which uses a conflict
graph to rule out conflicting hypotheses. In addition, their approach brings a significant reduction
to the number of hard thresholds that are generally used in other hypothesis verification techniques.
Formally, given the set of all hypotheses, H = {h1, . . . , hn}, a solution is X = {x1, . . . , xn} having
the same cardinality as H with xi ∈ B = {0, 1} indicating whether the corresponding hypothesis
hi ∈ H is dismissed/included. Therefore the solution space has a cardinality of 2n. Given a global
cost function F(X) : Bn → R the goal is to find the solution that minimizes F(X). Since the solution
space is large, the authors use simulated annealing to find an approximate optimal solution. Let
Mhi be the model after being transformed to the scene using the associated transformation, Ti. In
addition, model points that are occluded by scene points after the transformation are removed from
Mhi . Given this definition, the global cost function is composed of four geometric cues that either
penalize or support a hypothesis:

i Scene fitting: A weight explaining how well a scene point, si, is explained by Mhi .

ii Model Outliers: Penalizes points in Mhi that do not explain any scene point.

iii Multiple Assignment: Penalizes scene points that are explained by more than one hypothesis.

iv Clutter: In a realistic object recognition scenario, it is not guaranteed that all objects in the
scene are part of the model database; such objects are called clutter objects. Ideally, the object
recognition method should simply ignore such objects. However, local parts of clutter objects
might match local parts of database objects generating false hypotheses. The second cue which
deals with model outliers will penalize such hypotheses only if Mhi has enough non-occluded
model outliers to significantly penalize the hypothesis. To deal with clutter in cases where
the second cue does not penalize the hypothesis a clutter cue is proposed. The cue penalizes
hypotheses that locally explain some part of a smooth surface patch but not nearby points
belonging to the same smooth surface. The idea is that points that are parts of a smooth
surface tend to belong to the same object and therefore a correct hypothesis should explain
the entire smooth surface. In order to detect smooth surfaces, a region growing algorithm is
applied that picks random seeds in the scene and grows the seeds into larger patches as long
as a continuity constraint is satisfied. The continuity constraint is assessed by density of points
in space and smoothness through surface normals. For a random scene point pi, the continuity
constraint is satisfied with regards to a neighbouring point, pj, if pj distance to pi is below a
threshold, td, and the angular difference between their normals is also below a threshold, tn.

In order to demonstrate the effectiveness of their hypothesis verification technique the authors
implement an object recognition system that uses the SHOT descriptor [33] to generate the hy-
potheses set and then apply their hypothesis verification technique. The authors compare their
results with state of the art recognition techniques of Papazof et al ., Drost et al ., and Bariya et al .
They outperform all methods on the standard object recognition benchmark and in fact achieve a
recognition rate of 100% for all scenes in the dataset which include a maximum occlusion rate of
91.4%.
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3.3 Comparison of Local Techniques

We compare the techniques proposed so far in two ways. The first comparison looks at the different
properties of the LSDs and is summarized in Table 1. The second comparison compares the recog-
nition rate of all the techniques that use the Standard Object Recognition Benchmark and this is
shown in Table 2.

LSD Describes Dimensionality Local Frame
Spin Images [2] Local Neighbourhood 2 No

3D Shape Context [26] Local Neighbourhood 3 Ambiguous
Tensors [3] Local Neighbourhood 3 Ambiguous

ISS [32] Local Neighbourhood 3 Ambiguous
Normal Field [31] Local Neighbourhood 3 Ambiguous

SHOT [33] Local Neighbourhood 3 Unique
VDLSD [38] Local Neighbourhood up to 9 No

PPF [40], [41] Point Pairs 4 Ambiguous
PFH, FPFH [42], [43] Local Neighbourhood & Point Pair 4 No

Repeatable Segments [46] 3D point segment n/a No

Table 1: A comparison of local shape descriptor construction criteria

LSD Average Recognition Rate
Spin Images [2] 87.8%

Tensors [3] 96.5%
Normal Field [31] 97.5%

PPF [41] 97%
PPF [40] 99.9%

Hypothesis Verification with SHOT [28] 100% 1

1 This recognition rate is for the maximum occlusion rate of the dataset
of 91.4%. All other results are for scenes with up to 84% occlusion only.

Table 2: A comparison of LSD performance on the Standard 3D Object Recognition Benchmark
for objects in the scene with up to 84% occlusion.

4 Future Research Directions

Although Local Shape Descriptors have shown great promise in solving the correspondence problem
there is still room for improvement on many fronts and they include:

• Dealing with Harder Datasets : Although very good results were reported for the Standard
3D Object Recognition Benchmark, this dataset only contains 5 objects with 50 scenes. For
example, Spin Image’s performance dropped from 87.8% to 53.8% on the larger dataset used
by Taati and Greenspan [38]. This is an indication that as the database gets larger the LSDs
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become less discriminating. Furthermore, the Standard 3D Object Recognition Benchmark
is also a high quality dataset whereas lower quality sensors such as the Microsoft Kinect are
generally what is used in many of today’s applications. Therefore, the LSDs need to achieve
high recognition rates at higher levels of noise.

• Hypothesis Verification: As highlighted by Aldoma et al . [28] the hypothesis verification
stage of the object recognition pipeline has not received much attention in the literature and
they have shown that a good hypothesis verification technique can significantly improve the
recognition rate. Therefore there is an opportunity for new hypothesis verification techniques.

• Scene Segmentation: Segmenting complex free-form objects in a cluttered scene is a difficult
problem which itself deserves attention. However, although accurate object segmentation
might not be possible, segmentation could still be exploited to improve object recognition as
shown in [28] and [46]. Both of these techniques do not attempt to fully segment the object
out of the scene, but instead segment either the scene and or the models into smooth surface
patches. Such segmentation was used in [28] as a clue that points on the same surface patch
must be part of the same object. Such a clue is a powerful tool in dealing with clutter. Further
exploitation of segmentation combined with the power of LSDs can produce techniques that
are more powerful than techniques that only use LSDs.

• Multiple Point Features : It was shown in [40] and [41] that the Point Pair Feature is a powerful
feature that competed with LSDs based on local neighbourhoods around a point. It remains
to be seen if this idea can be extended further to multiple point features with more than two
points. Additionally, it is possible that there is a more descriptive Point Pair Feature than
the one proposed in the literature.

• Intensity and Colour : Most laser scanners not only give information about the 3D coordinate
of the point but also the laser beam intensity of the point. Analogously, RGB-D sensors such
as the Microsoft Kinect return colour information instead of laser beam intensity. Further
research needs to be done into exploiting this extra information for 3D object recognition.

• LSD Optimization: The authors of VD-LSD proposed the idea of finding the optimal LSD to
describe each object. This idea could be further extended to find the optimal LSD to describe
a particular region or segment of the object. For example a different LSD would be used to
describe the face of a model than the one to describe its body.

• Weighing LSD Uniqueness : Not all LSDs have the same discriminative power. It could be
the case that a single LSD for a particular local neighbourhood of a model is different than all
other LSDs. Therefore matching this single LSD in the scene implies that that object exists
in the scene no matter how occluded that object is. This would eliminate the need to set a
minimum threshold on the proportion of the model that must exist in the scene in order for
it to be recognized.

• Automatic Support Distance: The support distance or angle used to calculate a LSD is man-
ually chosen in all techniques except for [31]. Techniques to automatically select the support
distance to optimize recognition have not been thoroughly explored.
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• Hierarchical Object Description: Another idea that is sometimes explored in the literature is
that of a hierarchical description of the model [47]. Instead of describing an object at one
local level LSDs that are closer together could be combined to create a less local but more
descriptive descriptor. Applying this idea multiple times can create a multi-level description
of a single object. Recognition would then be attempted at the most global level and go down
to the most local.

• Using 2D techniques for 3D Object Recognition: In recent works such as [47] which is not
reviewed in this report a 2D technique is extended to deal with 3D data by simply treating
the depth value (or the z-coordinate) of the 3D data as an intensity value of a 2D pixel. In
fact, the Microsoft Kinect’s data is an RGB images with a depth value associated with each
pixel. The work of 2D and 3D Object Recognition has been happening in separation for the
most part up to this point. However, new data types might be bringing the two problems
closer together. Therefore, it might be possible to combine techniques from both areas to
achieve better results.

Clearly, the problem of 3D Object Recognition is far from solved and high recognition rates are still
difficult to obtain on complex datasets. As outlined above, there are many possible directions that
need to be explored to try and improve recognition rates.

References

[1] J. Lam and M. Greenspan, “Shape matching of repeatable interest segments in 3d point clouds,”
in IEEE Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 25–32,
2012.

[2] A. E. Johnson and M. Hebert, “Surface matching for object recognition in complex three-
dimensional scenes,” Image and Vision Computing, vol. 16, no. 9, pp. 635–651, 1998.

[3] A. Mian, M. Bennamoun, and R. Owens, “Three-dimensional model-based object recognition
and segmentation in cluttered scenes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10,
pp. 1584–1601, 2006.

[4] S. Ullman and G. J. Power, “High-level vision: Object-recognition and visual cognition,” Op-
tical Engineering, vol. 36, no. 11, pp. 3224–3224, 1997.

[5] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Matching 3d models with shape
distributions,” in IEEE Int. Conf. Shape Modeling and Applications, pp. 154–166, 2001.

[6] E. Wahl, U. Hillenbrand, and G. Hirzinger, “Surflet-pair-relation histograms: a statistical 3d-
shape representation for rapid classification,” in IEEE 4th Int. Conf. 3-D Digital Imaging and
Modeling, pp. 474–481, 2003.

[7] G. Hetzel, B. Leibe, P. Levi, and B. Schiele, “3d object recognition from range images using
local feature histograms,” in IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
vol. 2, pp. II–394, 2001.

23



[8] L. Shang and M. Greenspan, “Real-time object recognition in sparse range images using error
surface embedding,” Int. J. Comput. Vision, vol. 89, no. 2-3, pp. 211–228, 2010.

[9] P. Besl and N. McKay, “A method for registration of 3-d shapes,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 14, no. 2, pp. 239–256, 1992.

[10] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography,” Communications of the ACM,
vol. 24, no. 6, pp. 381–395, 1981.

[11] D. Aiger, N. J. Mitra, and D. Cohen-Or, “4-points congruent sets for robust surface registra-
tion,” ACM Trans. Graph., vol. 27, no. 3, pp. #85, 1–10, 2008.

[12] D. H. Ballard, “Generalizing the hough transform to detect arbitrary shapes,” Pattern recog-
nition, vol. 13, no. 2, pp. 111–122, 1981.

[13] K. Khoshelham, “Extending generalized hough transform to detect 3d objects in laser range
data,” in Proc. ISPRS Workshop on Laser Scanning, pp. 206–210, 2007.

[14] W. E. L. Grimson and T. Lozano-Perez, “Model-based recognition and localization from sparse
range or tactile data,” The Int. J. of Robotics Research, vol. 3, no. 3, pp. 3–35, 1984.

[15] W. E. L. Grimson and T. Lozano-Perez, “Localizing overlapping parts by searching the inter-
pretation tree,” IEEE Trans. Pattern Anal. Mach. Intell., no. 4, pp. 469–482, 1987.

[16] M. Greenspan, “The sample tree: A sequential hypothesis testing approach to 3d object recog-
nition,” in IEEE Conf. Computer Vision and Pattern Recognition(CVPR), pp. 772–779, 1998.

[17] F. Tombari, S. Salti, and L. Di Stefano, “Performance evaluation of 3d keypoint detectors,”
Int. J. Comput. Vision, pp. 1–23, 2012.

[18] J. Lam and M. Greenspan, “On the repeatability of 3d point cloud segmentation based on
interest points,” in IEEE 9th Conf. Computer and Robot Vision, pp. 9–16, 2012.

[19] C. S. Chua and R. Jarvis, “3d free-form surface registration and object recognition,” Int. J.
Comput. Vision, vol. 17, no. 1, pp. 77–99, 1996.

[20] B. K. Horn, “Closed-form solution of absolute orientation using unit quaternions,” JOSA A,
vol. 4, no. 4, pp. 629–642, 1987.

[21] A. Johnson and M. Hebert, “Using spin images for efficient object recognition in cluttered 3d
scenes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 5, pp. 433–449, 1999.

[22] H. Murase and S. K. Nayar, “Visual learning and recognition of 3-d objects from appearance,”
Int. J. Comput. Vision, vol. 14, no. 1, pp. 5–24, 1995.

[23] S. Ruiz-Correa, L. G. Shapiro, and M. Melia, “A new signature-based method for efficient 3-d
object recognition,” in IEEE Conf. Computer Vision and Pattern Recognition (CVPR), vol. 1,
pp. I–769, 2001.

24



[24] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings into a hilbert space,”
Contemporary Math., vol. 26, no. 189-206, p. 1, 1984.

[25] D. Fradkin and D. Madigan, “Experiments with random projections for machine learning,” in
ACM 9th Int. Conf. Knowledge Discovery and Data mining (SIGKDD), pp. 517–522, 2003.
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