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1 Introduction

As Model Driven Development (MDD) is finding more widespread use for develop-
ing software, model transformations are becoming an increasingly active research
field since they can automate the entire MDD process. Model transformations
map input model(s) conforming to a source metamodel into output model(s)
conforming to a target metamodel. Since model transformations are intended to be
repeatedly used for a class of models, model transformation verification is a crucial
task in MDD. Several studies discussed different model transformation verification
approaches and surveys of the proposed approaches have been conducted [17, 4].

This study investigates verifying model transformations implemented in the
DSLTrans model transformation language [7]. DSLTrans is a Turing-incomplete
graphical model transformation language that guarantees termination and conflu-
ence by construction. We propose a symbolic model transformation property prover
for DSLTrans which is based on building the set of path conditions (i.e., possible
symbolic executions) of a DSLTrans transformation and checking each of these
path conditions for some property. The basic idea underlying our property prover
has been previously presented in [13] and further refined in [14]. We describe the
additions made to our symbolic model transformation property prover to facilitate
proving both atomic properties (i.e., constraints on relations between input and
output models) and propositional logic formulae that manipulate such atomic
properties. We discuss the different steps carried out by our symbolic model
transformation property prover on a simple model transformation as a running
example. Further, we demonstrate the application of our property prover on a
more complicated industrial model transformation that we previously reported on
in [16].

The rest of this paper is organized as follows: Section 2 summarizes the basic
concepts of DSLTrans and the simplest properties that can be expressed in it;
Section 3 discusses in detail how the property prover generates the set of path
conditions for a DSLTrans transformation and the verification technique it uses to
verify properties of varying complexities; Section 4 demonstrates the application of
our property prover to an industrial case study and the obtained results ; Section 5
summarizes the underlying technologies used to build our property prover; Section 6
reviews similar studies in the literature; and Section 7 concludes our study and
presents future work.

2 Background

Barroca et al. [7] previously proposed the DSLTrans model transformation language.
In another study, Lúcio et al. [13] demonstrated the formulation and verification
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of simple, atomic properties in DSLTrans. In this section, we summarize the
basic concepts of DSLTrans [7] and the atomic properties that can be expressed
in the language, as proposed in [13]. Later in Section 3, we demonstrate how the
verification technique discussed in [13] was improved to facilitate expressing and
verifying the simple properties described in [13] and more complicated properties.

2.1 The DSLTrans Model Transformation Language

The DSLTrans model transformation language is a graph-based model transfor-
mation language that can be used to specify exogenous transformations that are
confluent and terminating by construction. DSLTrans is non-Turing complete since
it does not have constructs that imply unbounded recursion or non-determinism. In
what follows, we demonstrate DSLTrans and its constructs using a simple DSLTrans
transformation as a running example.

Figure 1: Two metamodels for describing different views for the chain of command
in police stations.

Fig. 1 presents two metamodels of languages used to describe different views of
a police station organization . The ‘Organization Language’ metamodel represents
a language for describing the chain of command in a police station in which Male
and Female officers can supervise each other. The ‘Gender Language’ metamodel
represents a language for describing a different view of a police station’s chain of
command, where the officers working at the police station are classified by gender
and only officers of the same gender can supervise each other.

Fig. 2 demonstrates a transformation between models of both languages
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implemented in DSLTrans1. The purpose of this transformation is to flatten a chain
of command given in the ‘Organization Language’ metamodel into two independent
sets of male and female officers in the ‘Gender Language’ metamodel. Within each
of these sets of male and female officers, the command relations are kept, i.e., a
female officer will be directly related to all her female subordinates and likewise
for the male officers. In the rest of this paper, we will refer to the transformation
shown in Fig. 2 as the Police Station transformation.

MatchModel
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ApplyModel

Station Male

male

Station2Male

MatchModel

Station Female

ApplyModel

Station Female

female

Station2Female

MatchModel

Female Female

ApplyModel

Female Female
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Female2Female

MatchModel

Male Male

ApplyModel

Male Male

supervisesMale

Male2Male

Layer Relations

Gender Language

Layer Entities

Gender Language

MatchModel
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ApplyModel
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Males

MatchModel

Station

ApplyModel

Station

Stations

MatchModel

Female

ApplyModel

Female

Females

Organisation Language

inputSquad.xmi

Figure 2: A model transformation expressed in DSLTrans

Fig. 3 demonstrates an example of an input model for the Police Station
transformation (on the left) and its corresponding output model (on the right).
Notice that the elements s, mk and fk on the left of Fig. 3 are instances of the source
metamodel classes Station, Male and Female (i.e., the ‘Organization Language’

1DSLTrans has been implemented as an Eclipse plug-in [1] and the example shown in Fig. 2 is
expressed using the implemented plug-in.
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Figure 3: An example input (left) and output model (right) for the Police Station
transformation

metamodel in Fig. 1). The primed elements on the right of Fig. 3 are their
corresponding instances from the target metamodel (i.e., the ‘Gender Language’
metamodel in Fig. 1).

We can identify several components in the Police Station transformation shown
in Fig. 2. A DSLTrans transformation is composed of a set of input model
sources called file-ports (e.g., inputSquad.xmi in Fig. 2) and a set of layers (e.g.
‘Entities’ and ‘Relations’ layers in Fig. 2). File-ports and layers are typed according
to metamodels. DSLTrans sequentially executes the layers of a transformation
specification. A layer is composed of transformation rules that execute in a non-
deterministic order but produce a deterministic result. Each transformation rule
is a pair (MatchModel, ApplyModel) where MatchModel is a pattern of source
metamodel elements and ApplyModel is a pattern of target metamodel elements.
For example, the MatchModel of the transformation rule ‘Stations’ in the ‘Entities’
layer (Fig. 2) holds one ‘Station’ class from the ‘Organization Language’ metamodel
(i.e., the source metamodel) and the ApplyModel holds one ‘Station’ class from the
‘Gender Language’ metamodel (i.e., the target metamodel). This means that all
input model elements of type ‘Station’ (of the ‘Organization Language’ metamodel)
will be transformed into output model elements of type ‘Station’ (of the ‘Gender
Language’ metamodel).

Several DSLTrans constructs can be used to build the MatchModel of a
DSLTrans transformation rule, as shown in the Police Station transformation
(Fig. 2).

• Match Elements are variables typed by classes of the source metamodel that
can assume as values instances of that class (or subclass) from the input
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model. An example of a match element is the ‘Station’ element in the
MatchModel of the ‘Stations’ rule in the ‘Entities’ layer.

• A match element can be either an AnyMatchClass or an ExistsMatchClass.
We demonstrate the difference between these two constructs in the following
example. Using an AnyMatchClass of type ‘Station’ in the MatchModel
of the ‘Stations’ rule in Fig. 2 implies that the rule will create an output
‘Station’ object (of the ‘Gender Language’ metamodel) for every ‘Station’
object (of the ‘Organization Language’ metamodel) matched in the input
model. Alternatively, using an ExistsMatchClass of type ‘Station’ in the
MatchModel of the ‘Stations’ rule in Fig. 2 implies that the rule will create
only one output ‘Station’ object (of the ‘Gender Language’ metamodel) if at
least one ‘Station’ object (of the ‘Organization Language’ metamodel) was
matched in the input model. In our property prover, the cardinality attribute
of a match element is used to differentiate between an AnyMatchClass and an
ExistsMatchClass. An AnyMatchClass is a match element with a cardinality
of ‘+’, while an ExistsMatchClass is a match element with a cardinality of ‘1’.
For the Police Station transformation shown in Fig. 2, all the match elements
are AnyMatchClasses.

• Attribute Conditions are conditions over the attributes of a match element
(i.e., an AnyMatchClass or an ExistsMatchClass).

• Direct Match Links are links between two match elements in a rule’s
MatchModel that are typed by labelled relations of the source metamodel.
These variables can assume as values relations having the same label in the
input model.

• Indirect Match Links are similar to direct match links, but there may exist
a path of containment associations between the linked match elements.
Our notion of indirect match links captures only acyclic EMF containment
associations to avoid cycles and infinite amounts of matches over the transitive
closure of associations in the input model. In Fig. 2, indirect match links
appear in all the rules of the ‘Relations’ layer as horizontal, dashed arrows
between match elements.

• Backward Links connect elements of the MatchModel and the ApplyModel
of a certain rule. Backward links are used in all the transformation rules
in the ‘Relations’ layer (Fig. 2) and are annotated as vertical, dashed lines.
Backward links are used to refer to elements created in a previous layer (i.e.,
to distinguish them from elements to be created from scratch). Thus, the
only possibility to reuse elements created from a previous layer is to refer to
them using backward links;
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• Negative Conditions are used to express undesirable conditions over match
elements, backward links, direct match links, and indirect match links.

Similar DSLTrans constructs can be used to build the ApplyModel of a
DSLTrans transformation rule, as shown in the Police Station transformation
(Fig. 2).

• Apply Elements and Apply Links : Similar to match elements, apply elements
are variables typed by classes of the target metamodel. Apply elements in
a transformation rule that are not connected to backward links will create
elements of the same type in the output model for each time the MatchModel
is found in the input model. A similar mechanism is used for apply links.
Apply elements that are connected to backward links are handled in a different
way. For example, the ‘Station2Male’ transformation rule of the ‘Relations’
layer takes instances of ‘Station’ and ‘Male’ (of the ‘Gender Language’
metamodel) that were created in a previous layer from instances of ‘Station’
and ‘Male’ (of the ‘Organization Language’ metamodel), and connects them
using a ‘male’ relation.

• Apply Attributes : DSLTrans includes a relatively small language for setting
the attribute values of apply elements from references to one or more
attributes of match elements.

More details on the syntax and semantics of DSLTrans can be found in [7].

2.2 Expressing AtomicProperties in DSLTrans

AtomicProperties are the simplest properties that can be expressed and verified
using our symbolic model transformation property prover. They specify a constraint
of the following form: “if a structural relation between some input model elements
holds, then another structural relation between some output model elements
should also hold”. Thus, an AtomicProperty is composed of a precondition and
a postcondition. A precondition specifies a constraint on the transformation’s input
model in the form of a structural relation between input model elements. Similarly,
a postcondition specifies a constraint on the transformation’s output model in the
form of a structural relation between output model elements.

Preconditions use the same constructs used in the MatchModel of DSLTrans
transformation rules, including the possibility of expressing several occurrences of
the same metamodel element and indirect links. Indirect links in properties have
the same meaning as in the MatchModel of DSLTrans transformation rules; they
involve patterns over the transitive closure of containment links in input models.
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Postconditions also use the same constructs as the ApplyModel of DSLTrans
transformation rules, with the additional possibility of expressing indirect links
for patterns involving the transitive closure of containment links in output models.
A formal definition of our property language can be found in [13].

Precondition

Station MaleFemale

Postcondition

Station MaleFemale

malefemale

agent agent

Figure 4: Police Station Transformation Property 1

Precondition

Female

Postcondition

FemaleFemale

supervisesFemale

Figure 5: Police Station Transformation Property 2

Fig. 4 and Fig. 5 demonstrate two properties that we wish to verify for all
possible executions of the Police Station transformation shown in Fig. 2. The
property in Fig. 4 is interpreted as follows: “A model which includes a police
station that has both a male and a female officers as agents will be transformed
into a model where the male officer will exist in the male set and the female officer
will exist in the female set”. Intuitively, we expect that the property shown in Fig. 4
will hold for all transformation executions. The property in Fig. 5 is interpreted as
follows: “Any model which includes female officer will be transformed into a model
where that female officer will always supervise another female officer”. We do not
expect that the property shown in Fig. 5 will hold for all transformation executions.
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The goal of our symbolic model transformation property prover is to verify
that a property such as the one shown in Fig. 4 will hold for the Police Station
transformation when run on any input model and that a property such as the one
shown in Fig. 5 will not necessarily hold for the Police Station transformation when
run on any input model.

3 The Symbolic Model Transformation Property

Prover

The basics of our symbolic model transformation property prover have been laid
out in [13] and further refined in [14]. Fig. 6 demonstrates the final architecture of
our property prover after adding several aspects to what was presented in [13, 14].
In general, our symbolic model transformation property prover takes four inputs:
the DSLTrans model transformation of interest, the transformation’s source and
target metamodels, and the property to verify. Verification is then carried out as
shown in the main component of our property prover in Fig. 6:

• The property prover generates the set of path conditions representing the
possible executions of the input transformation.

• The property prover verifies the input property on the generated set of
path conditions and renders the property to be either true or false for
the transformation when run on any input model. Thus, according to the
classification we presented in [4], the verification technique used by our
property prover is transformation-dependent and input-independent.

Figure 6: The complete architecture of our symbolic model transformation property
prover.

To perform the two steps in the property prover’s main component, a preprocess-
ing phase is executed first by a back-end component. In this preprocessing phase,
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six higher order transformations (HOTs) are executed to generate the artifacts
required by the property prover’s main component to verify properties of the input
DSLTrans transformation.

In this section, we explain the steps carried out by the property prover’s main
component, i.e., we explain generating the set of path conditions and verifying
properties using the generated set of path conditions. In the relevant parts of
this section, we point out and define the artifacts generated by the property
prover’s back-end component. The inner workings of the back-end component are
summarized in Appendix A and discussed in detail in [14].

3.1 Generating the Set of Path Conditions for a DSLTrans
Model Transformation

The main component of our symbolic model transformation property prover
generates a set of path conditions on which the input property will be verified.
These path conditions represent all the possible executions of the transformation
under verification, i.e., the set of possible input patterns that will trigger the
transformation and their corresponding set of output patterns.

The set of path conditions is generated using the preprocessed transformation
rules (produced by the prover’s back-end component as shown in Fig. 6) after adding
to each rule traceability links between each element in the rule’s MatchModel and
each element in the rule’s ApplyModel. Traceability links are used to keep track of
which output model elements came from which input model elements2.

Using the preprocessed transformation rules (after adding traceability links to
them), our property prover builds the set of path conditions over iterations. More
precisely, for a DSLTrans transformation with n layers, we generate the set of path
conditions in (n+1) iterations. In Fig. 7, we roughly demonstrate how our property
prover generates the set of path conditions for the Police Station transformation
(Fig. 2) in iterations. We identify every rule in each layer of Fig. 2 by a number
with an index. For example, the index 11 corresponds to the first rule (ordered
from left to right in Fig. 2) in the first transformation layer (i.e., the ‘Entities’
layer). The set of path conditions starts with the empty path condition in iteration
0, where no transformation rule has been applied. To generate path conditions in
iteration 1, the empty path condition from iteration 0 connects to all possible rule
combinations of the first transformation layer (i.e., the power set of the rules of
the first transformation layer). Similarly, to generate path conditions in iteration
2, each path condition from iteration 1 then is merged with all applicable rule
combinations of the second transformation layer (i.e., the power set of the rules

2Traceability links can also be used in AtomicProperties to link elements from the property’s
precondition to elements from the property’s postcondition.
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of the second transformation layer). By applicable rule combination we mean that
if a specific rule combination from the second transformation layer has backward
links, then this rule combination is connected to a path condition from iteration
1 if the path condition from iteration 1 generates the required elements (as per
the traceability links). This check is performed using the backward link matchers
generated by the property prover’s back-end component, as shown in Fig. 6.

Therefore, the path conditions generated in iteration i include not only the
power set of rules from the i th transformation layer, but also rules from the path
conditions generated until iteration i-1. Thus, each path condition accumulates
all the preprocessed transformation rules leading to it, i.e., each path condition
represents all input model patterns leading to it and their corresponding output
model patterns (with possible traceability links between these two patterns). We
refer to the accumulated MatchModels of all the rules in a path condition as
the match pattern of the path condition. Similarly, we refer to the accumulated
ApplyModels of all the rules in a path condition as the apply pattern of the path
condition.

11 21 31 11 21 21 31

11 21 

31

31 12

31 12 

22

31 12 

32

31 12 

42

31
...

Iteration 0

Iteration 1

Iteration 2

11 31

Figure 7: A demonstration of how our property prover generates the set of path
conditions for a DSLTrans transformation in iterations.

Only the set of path conditions generated in the last iteration are returned as
the resultant set of path conditions since they capture all the possible complete
transformation executions. The detailed algorithm used to generate the set of path
conditions can be found in [14].

3.2 Verification Using the Symbolic Model Transformation
Property Prover

Lúcio et al. [13] proposed a technique for the verification of AtomicProperties of
DSLTrans transformations. We discuss how we redesigned the verification technique
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proposed in [13] (Section 3.2.1) to facilitate verifying both AtomicProperties
(Section3.2.2) and more complicated propositional formulae of AtomicProperties
(Section 3.2.3).

3.2.1 Design of the Verification Technique

Figure 8 demonstrates the design of the verification technique used in our property
prover. The abstract class Property represents the backbone of our verification
technique and has an abstract function verify. Class Property encompasses
two verification frameworks that can be used separately or together: class
PathConditionProperty and class BooleanProperty.

Figure 8: The design of the verification technique used in our symbolic model
transformation property prover.

Class PathConditionProperty : Class PathConditionProperty is the frame-
work used to verify a property (whether an AtomicProperty or a complex
propositional logic formula of AtomicProperties) for each path condition in
the generated set of path conditions (Section 3.1) and returns true if the
property holds for all path conditions. Class PathConditionProperty has five
subclasses: AtomicProperty, ImplicationPathConditionProperty, NotPathCondi-
tionProperty, OrPathConditionProperty, and AndPathConditionProperty.

Class AtomicProperty is used to verify that a simple, atomic property (explained
in Section 2.2) holds for each path condition in the generated set of path conditions.
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Class ImplicationPathConditionProperty is used to verify that an implication
between two PathConditionProperties (i.e., any of its subclasses) holds for each path
condition in the generated set of path conditions. Class NotPathConditionProperty
is used to verify that a negation of a PathConditionProperty holds for each path
condition in the generated set of path conditions. Class OrPathConditionProp-
erty is used to verify that a disjunction between two PathConditionProperties
holds for each path condition in the generated set of path conditions. Class
AndPathConditionProperty is used to verify that a conjunction between two
PathConditionProperties holds for each path condition in the generated set of path
conditions.

Class BooleanProperty : Class BooleanProperty is used to evaluate proposi-
tional logic formulae with Boolean parameters, e.g., the parameters can be the
results of verifying objects of class PathConditionProperty (explained above).
Class BooleanProperty has four subclasses representing four Boolean propositional
operators: Implication, Not, Or, and And. Each of the four subclasses is used to
evaluate the corresponding propositional operator on its Boolean parameters.

3.2.2 Verifying AtomicProperties

The property prover’s back-end component generates three preprocessed property
files (as shown in Fig. 6) for every AtomicProperty (described in Section 2.2) to be
verified:

1. Property file Isolated is a query transformation rule that matches the
unconnected elements of the property’s precondition.

2. Property file Connected is a query transformation rule that matches the
property’s precondition (i.e., the fully connected elements of the property’s
precondition).

3. Property file Complete is a query transformation rule that matches the
complete property (i.e., the precondition and the postcondition of the
property).

In what follows, we explain how the three preprocessed property files(Isolated,
Connected, Complete) are used by the verify function of class AtomicProperty
(explained in Section 3.2.1) to prove an AtomicProperty for the generated set of
path conditions.

In general, for an AtomicProperty to hold for a transformation, the property
should hold for all the generated path conditions of the transformation. In
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other words, every path condition with a match pattern that satisfies the
property’s precondition must also have an apply pattern that satisfies the property’s
postcondition. Therefore, it is sufficient to find one path condition where the
property does not hold (i.e., a path condition with a match pattern that satisfies the
property’s precondition and an apply pattern that does not satisfy the property’s
postcondition) to render the property false. This check is performed by the verify
function of class AtomicProperty.

More specifically, the verify function of class AtomicProperty iterates through
the generated set of path conditions (Section 3.1) and performs the following steps
for every path condition i .

• Step 1- Check if path condition i contains the isolated elements of the
property’s precondition as a subgraph: This check is done by running the
Isolated query transformation rule on path condition i. If the isolated
elements of the property’s precondition are not found in path condition i, then
a new path condition is examined. If the isolated elements of the property’s
precondition are found in path condition i, then we collapse path condition i
if it has rules with overlapping MatchModels and then we proceed to step 2.
We demonstrate collapsing rules with overlapping MatchModels through an
example. Assume that path condition i contains the two rules shown in Fig. 9.
The MatchModels of the two rules can match two different Station objects in
the input model or they can match the same Station object in the input model.
We represent the latter case by collapsing the path condition containing the
two rules in Fig. 9 into a new collapsed path condition containing the rule in
Fig. 103. The algorithm used to collapse rules is explained in detail in [14].
Collapsing is performed by the collapse transformation rules generated by the
property prover’s back-end component shown in Fig. 6.

• Step 2- For each collapsed path condition resulting from path condition i, do
the following:

– (a) Check if the collapsed path condition contains the property’s precon-
dition as a subgraph: This check is done by running the Connected query
transformation rule on the collapsed path condition. If the property’s
precondition is not found in the collapsed path condition, then a new
path condition is examined. If the property’s precondition is found in
the collapsed path condition , then we proceed to step 2b.

– b) Check if the collapsed path condition contains the complete property
as a subgraph: This check is done by running the Complete query

3In Fig. 9, we show the simplest case of collapsing where only two rules in a path condition
have common MatchModels and can be collapsed into a new path condition. Our property prover
handles more complicated cases where any number of rules in a path condition can have common
MatchModels and the property prover generates all possible, collapsed path conditions.
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transformation rule on the collapsed path condition. If the complete
property is not found in the collapsed path condition, then the property
does not hold for the transformation, the match pattern of the collapsed
path condition is returned as a counter example, and no more path
conditions are examined. If the complete property is found in the
collapsed path condition, then the property holds for this path condition
and a new path condition is examined.

Thus, after running the above steps, the property prover will render a property to
be either true or false for the transformation of interest, with a counter example
for the latter case.

Theoretically, collapsing must be done for each path condition after generating
the set of path conditions. As an optimization step, we choose to collapse a path
condition only after checking that the path condition has the isolated elements of
the property’s precondition because we found that collapsing is computationally
expensive. Thus, if the isolated elements of the property’s precondition do not
exist in the path condition, then there is no need to collapse the path condition
since the elements needed for the property do not exist and verifying the property
for that path condition can be skipped.

MatchModel

Station Female

ApplyModel

Station Female

male

agent

Station2Female

MatchModel

Station Male

ApplyModel

Station Male

male

agent

Station2Male

Figure 9: An example of two rules with common elements in their MatchModels
that can be collapsed.

Two properties were demonstrated in Fig. 4 and Fig. 5 and explained in
Section 2.2. Verifying the property in Fig. 4 using our property prover required
the collapsed path condition (shown in Fig. 10) and returned true. Verifying the
property in Fig. 5 using our property prover returned false when the property prover
found one path condition whose match pattern has the property’s precondition as
a subgraph but does not have the complete property as a subgraph.
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SourceProperty

Station MaleFemale

TargetProperty

Station MaleFemale

male
female

agent agent

Station2Male-Station2Female

Figure 10: The result of collapsing the two rules in Fig. 9 into one rule.

3.2.3 Verifying Propositional Logic Formulae of Simple Properties

The new design of the symbolic model transformation property prover (explained
in Section 3.2.1) facilitates the formulation and verification of properties in the
form of propositional logic formulae of varying complexities. More specifically,
calling the verify function on the subclasses of class PathConditionProperty (i.e.,
ImplicationPathConditionProperty, NotPathConditionProperty, OrPathCondition-
Property, and AndPathConditionProperty) recursively calls the verify functions
of their parameters (which are objects of type PathConditionProperty, including
AtomicProperties). Similarly, calling the verify function on any of the subclasses
of class BooleanProperty (i.e., Implication, Not, Or, and And) recursively calls the
verify functions of their parameters (which are objects of type BooleanProperty).
This enables composing complicated propositional logic formulae (whose parame-
ters themselves could be other propositional logic formulae) and verifying them for
the generated set of path conditions.

We demonstrate how the different subclasses of class Property (discussed in
Section 3.2.1) can be used to formulate different propositional logic formulae and
how do they differ in their interpretation in our property prover. Assume that
N path conditions were generated for our transformation of interest (PathCond1,
PathCond2, . . . PathCondN ) and that we have two AtomicProperties (namely,
AtomicProp1 and AtomicProp2 ). Further, assume a property expressed as the
propositional logic formula in eqn. 14:

AtomicProp1 =⇒ AtomicProp2 (1)

4More complicated propositional logic formulae can be formulated. We stick to a simple
example to keep the discussion of how different constructs are interpreted in our property prover
a comprehensible one.
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Using the subclasses of PathConditionProperty, the property shown in eqn.1 can
be formulated as follows:

ImplicationPathConditionProperty(AtomicProp1, AtomicProp2) (2)

The formulation in eqn. 2 is interpreted and verified by our property prover as
follows:

{(AtomicProp1 == true for pathCond1) =⇒ (AtomicProp2 == true for pathCond1)} &

{(AtomicProp1 == true for pathCond2) =⇒ (AtomicProp2 == true for pathCond2)} &

. . .

{(AtomicProp1 == true for pathCondN) =⇒ (AtomicProp2 == true for pathCondN)}
(3)

where each AtomicProperty is preprocessed by the property prover’s back-end
component into three property files (as shown in Fig. 6) and verified by the property
prover’s main component as described in Section 3.2.2. Thus, using the subclasses
of PathConditionProperty implies that for the property to hold, eqn. 1 must be
evaluated for each path condition separately and it must be true for all path
conditions.

The property shown in eqn. 1 will have different semantics if we verify it using
the subclasses of BooleanProperty by formulating the property as follows:

Implication(AtomicProp1, AtomicProp2) (4)

The formulation in eqn. 4 is interpreted and verified by our property prover as
follows:

{AtomicProp1 == True ∀PathConditions(1 . . . N)} =⇒
{AtomicProp2 == True ∀PathConditions(1 . . . N)}

(5)

where each AtomicProperty is preprocessed by the property prover’s back-end
component into three property files (as shown in Fig. 6) and verified by the property
prover’s main component as described in Section 3.2.2. Thus, using the subclasses
of BooleanProperty implies that for the property to hold, AtomicProp1 will be
verified for {PathCond1 . . . PathCondN}. The same is done for AtomicProp2.
Then, the implication operator will be applied to the results of verifying the two
AtomicProperties separately, and the final result must be true.

In the previous examples, we demonstrated how we can use either the subclasses
of PathConditionProperty or BooleanProperty to formulate and verify formulae that
manipulate AtomicProperties as the basic units of the formula. We also showed how
the semantics of both cases differ. Thus, it is up to the user to choose the subclasses
to use for formulating and verifying properties based on the type of properties of
interest.
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While PathConditionProperty and BooleanProperty can be used separately
for property verification, inheriting from class Property allows the user to use
them together, too. For example, the verify function of an Or object (sub-
class of BooleanProperty) can take as parameters the results of verifying any
two PathConditionProperty objects (e.g., a NotPathConditionProperty and an
AndPathConditionProperty). Calling the verify function of the Or object will
recursively call the verify function of the arguments based on their classes. For
the case study discussed in Section 4, all properties were formulated and verified
using only the subclasses of PathConditionProperty. Nevertheless, the design of
the property prover gives the user the flexibility to formulate properties by mixing
and matching subclasses of PathConditionProperty together with subclasses of
BooleanProperty.

4 Industrial Case Study

Previously in [16], we reported on an industrial case study where we implemented
a transformation that maps between subsets of the GM metamodel and the
AUTOSAR metamodel as its source and target metamodels. In that work, we
focused on subsets of the two metamodels that represent the deployment and
interaction of software components. Later in [15], we proposed some properties
of interest for our aforementioned GM-2-AUTOSAR model transformation.

To demonstrate the practicality of using our symbolic model transformation
property prover, we use it to verify the properties proposed in [15] on the GM-
2-AUTOSAR transformation [16] after reimplementing it in DSLTrans. In this
section, we first overview the GM-2-AUTOSAR model transformation problem [16]
and its reimplementation in DSLTrans (Section 4.1). Then, we summarize the
properties of interest for the GM-2-AUTOSAR model transformation presented
in [15] (Section 4.2). Finally, we discuss the formulation and verification of the
aforementioned properties of interest using our property prover and the obtained
results (Section 4.3).

4.1 GM-2-AUTOSAR Model Transformation

We overview the source GM metamodel and the target AUTOSAR metamodel
of our GM-2-AUTOSAR transformation. We also discuss reimplementing the
transformation in DSLTrans to achieve the required mapping between the two
metamodels.
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The GM Metamodel: Fig. 11 illustrates the subset of the GM metamodel
that we manipulated in our transformation in [16]5. The PhysicalNode models
a physical node on which software is deployed. A PhysicalNode may contain
multiple Partitions (i.e., processing units or memory partitions) on which software
is deployed. Multiple Modules can be deployed on a single Partition. A Module
is an atomic, deployable, and reusable software element and can contain multiple
Schedulers. A Scheduler is the basic unit for software scheduling. It contains
behavior-encapsulating entities, and is responsible for providing and/or requiring
Services to/from these behavior-encapsulating entities.

Figure 11: Subset of the GM metamodel directly used by our transformation in [16].

The AUTOSAR Metamodel: The System template [2] is one of the templates
in the AUTOSAR metamodel that is used to model the configuration of a system
or an Electronic Component Unit (ECU). An ECU is a physical unit on which
software is deployed. When used for modeling an ECU’s configuration, the System
template is referred to as the ECU Extract. Fig. 12 shows the subset of the ECU
Extract manipulated by our transformation.

Figure 12: Subset of the AUTOSAR System Template directly used by our
transformation.

The ECU extract is modeled using the System element that aggregates
SoftwareComposition and SystemMapping elements. SoftwareComposition points
to CompositionType which eliminates any nested software components in a
SoftwareComposition. SoftwareComposition models the architecture of the software
components deployed on an ECU, their ports, and the ports’ connectors. Each

5We follow the same obfuscated naming conventions that we used for the GM metamodel
in [16] for reasons of confidentiality.
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software component is modeled using a ComponentPrototype; each port is modeled
using the PortPrototype type (i.e., a PPortPrototype or a RPortPrototype for
providing or requiring data and services).

SystemMapping binds the software components to ECUs (using SwcToEcuMap-
ping elements) and data elements to signals and frames (not shown). SwcToE-
cuMapping elements assign SwcToEcuMapping components to an EcuInstance.
SwcToEcuMapping components, in turn, refer to ComponentPrototype elements.
According to AUTOSAR, only one SwcToEcuMapping should be created for each
processing unit or memory partition in an ECU.

Reimplementation of GM-2-AUTOSAR Transformation in DSLTrans:
Since our symbolic model transformation property prover can only verify

DSLTrans transformations, we reimplemented the GM-2-AUTOSAR transforma-
tion in DSLTrans. Table 1 shows the rules in each layer of the GM-2-AUTOSAR
DSLTrans transformation, the input types mapped by each rule, and the generated
output types. Rules of the first and third layers create output model elements.
Rules of the second layer generate associations between elements previously created
by the the first layer (shown in the actual transformation using backward links).
Thus, the input types and output types shown for the rules of the second layer
are actually types that have already been matched and created and for which the
rules of the second layer create associations. The implemented transformation rules
achieve the required mapping between the two metamodels that we described in
detail in [16].

Table 1: The rules in each layer of the GM-2-AUTOSAR transformation after
reimplementing it in DSLTrans, and their input and output types.

4.2 GM-2-AUTOSAR Model Transformation Properties

In [15], we stated that properties of interest could be either invariants or contracts.
Invariants are properties defined on the target metamodel elements only. While
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contracts are properties that relate source and target metamodel elements. Based
on these definitions, we further defined four categories of properties in [15] that
we are interested in verifying for the GM-2-AUTOSAR model transformation:
Multiplicity Invariants, Uniqueness Contracts, Security Invariants, and Pattern
Contracts. For each category, we formulated several properties that are summarized
in Table 2 as OCL properties. We add an abbreviation to the beginning of each
property in Table 2 (e.g., (M1), (S1)) that will be used to refer to the property
in the rest of this paper. We omit Uniqueness Contracts for this study since they
are contracts that reason about attribute values. This requires handling data types
during the generation of path conditions which we have not yet implemented.

The six multiplicity invariants ensure that the transformation’s output does not
violate the multiplicities in the AUTOSAR metamodel (Fig. 12). The only security
invariant defined, S1, mandates that within any System element, all its composite
SwcToEcuMappings must refer to ComponentPrototypes that are contained within
the CompositionType lying under the same System element (refer to Fig. 12). The
two pattern contracts require that if a certain pattern of elements is found in the
input model, then a corresponding pattern of elements must be found in the output
model. A detailed explanation of each property in Table 2 can be found in [15].

4.3 Verifying Properties of the GM-2-AUTOSAR Model
Transformation

We used our symbolic model transformation property prover to verify the 9 prop-
erties in Table 2 for the DSLTrans version of the GM-2-AUTOSAR transformation
(Section 4.1). The two pattern contracts were expressed as AtomicProperties
where the precondition encompassed the pattern of input model elements and
the postcondition encompassed the pattern of output model elements. The six
Multiplicity Invariants and the Security Invariant were expressed using a com-
bination of ImplicationPathConditionProperty, AndPathConditionProperty, and
NotPathConditionProperty that manipulate AtomicProperties as their basic units.

We demonstrate the formulation of property M1 from Table 2 using our property
prover. Property M1 ensures that each CompositionType is associated to one or
more ComponentPrototypes through the component association. Property M1 can
be restated as follows “if a CompositionType is created by the GM-2-AUTOSAR
transformation, then this CompositionType must be connected to at least one
ComponentPrototype”. Fig. 13 shows the general idea of how such a property
can be expressed using two AtomicProperties.

There are several points to note about Fig. 13. First, the two AtomicProperties
used have empty preconditions. DSLTrans gives us the flexibility to express
invariants on the transformation’s output by allowing empty preconditions, i.e.,

20



Multiplicity Invariants:

• (M1) Context CompositionType inv CompositionType component:
self.component→size() ≥ 1

• (M2) Context SoftwareComposition inv SoftwareComposition softwareComposition:
self.softwareComposition 6= null

• (M3) Context SwcToEcuMapping inv SwcToEcuMapping component:
self.component→size() ≥ 1

• (M4) Context SwcToEcuMapping inv SwcToEcuMapping ecuInstance: self.ecuInstance 6=
null

• (M5) Context System inv System softwareComposition: self.softwareComposition 6= null

• (M6) Context System inv System mapping: self.mapping 6= null

Security Invariant:

• (S1) Context System inv Self Cont: mapping.swMapping→forAll(swc2ecumap:
SwcToEcuMapping| swc2ecumap.component → forAll(mapcomp :
SwCompToEcuMapping component| mapcomp.componentPrototype→forAll(comppro:
ComponentPrototype| softwareComposition.softwareComposition.component→ exists(c:
ComponentPrototype| c=comppro))))

Pattern Contracts:

• (P1) Context Global inv Sig2P: PhysicalNode.allInstances()→ forAll(e1:PhysicalNode|
e1.partition→ forAll(vd: Partition| vd.module→ forAll(di: Module| di.scheduler→
forAll(ef:Scheduler| (ef.provided→notEmpty()) implies
(System.allInstances()→one(sy:System| (sy.shortName=e1.Name) and
(sy.softwareComposition.softwareComposition.port→ one(pp:PortPrototype|
(pp.shortName=ef.Name) and (pp.oclIsTypeOf(PPortPrototype))))))))))

• (P2) Context Global inv Sig2R: PhysicalNode.allInstances()→ forAll(e1:PhysicalNode|
e1.partition→ forAll(vd:Partition| vd.module→ forAll(di: Module| di.scheduler→
forAll(ef:Scheduler| (ef.required→notEmpty()) implies (System.allInstances()→
one(sy:System| (sy.shortName=e1.Name) and
(sy.softwareComposition.softwareComposition.port→ one(rp:PortPrototype|
(rp.shortName=ef.Name) and (rp.oclIsTypeOf(RPortPrototype))))))))))

Table 2: Formulated OCL Constraints

empty preconditions match on any input model elements. Second, we used two
new attributes called pivotOut and pivotIn for the CompositionType class in the
postcondition of the two AtomicProperties. Attribute pivotOut is used to give
the CompositionType element matched by AtomicProperty1 a marker (or a pivot)
such that we can refer to that specific element in AtomicProperty2 by giving both
pivotIn and pivotOut the same value (e.g., ‘elem1’ as shown in Fig. 13). Finally,
we can not use AtomicProperty2 only to express property M1 since this implies
that we mandate that every output has a CompositionType connected to at least
one ComponentPrototype. Expressing M1 using the implication shown in Fig. 13
will give us the correct interpretation since it mandates that only if the output has
a CompositionType, then that specific CompositionType (as per the pivotIn and
pivotOut attribute values) must be connected to at least one ComponentPrototype.
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Figure 13: Expressing property M1 using two AtomicProperties.

To express property M1 using our property prover, we first built the two
AtomicProperties shown in Fig. 13. Then, from the classes shown in Fig.8, we
formulated the implication shown in Fig. 13 using ImplicationPathConditionProp-
erty as follows:
ImplicationPathConditionProperty(AtomicProperty1, AtomicProperty2).verify
The rest of the properties shown in Table 2 were formulated in a similar manner and
were verified as discussed in Section 3.2. Verification of all 9 properties returned
‘true’. This implies that our DSLTrans version of the GM-2-AUTOSAR model
transformation will always generate output models that do not violate the six
multiplicity invariants, the security invariant, and the two pattern contracts shown
in Table 26.

To assess the performance of our property prover, we measured the time taken
to generate the set of path conditions and to verify each of the 9 properties shown
in Table 2. The property prover took 0.8223 seconds to generate the set of path
conditions for the GM-2-AUTOSAR transformation. Table 3 shows the time taken
by our property prover (in seconds) to verify each of the 9 properties shown in
Table 2 using the generated set of path conditions. The longest time taken to verify
a property was 0.0243 seconds (for property P1 ). Thus, using our symbolic model
transformation property prover to verify properties for an industrial transformation
was successful and execution times were very short (as shown in Table 3). More
experiments are required before we can confidently claim that verification using our
property prover scales well to transformations of varying complexities.

6We verified the properties on the non-faulty version of the model transformation, i.e., after
fixing the two bugs in the transformation found in [15]. Our next step, would be to check the
properties on the faulty version of the GM-2-AUTOSAR transformation too to ensure that our
property prover can uncover the same bugs that were uncovered by the prototype that we used
in [15].
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Table 3: The time taken by our symbolic model transformation property prover (in
seconds) to verify each of the 9 properties shown in Table 2.

5 Enabling Technology

When deciding on a model transformation framework to build our symbolic model
transformation property prover, three main aspects were taken into consideration.
First, as discussed in the previous sections, a lot of the work done by our property
prover to verify DSLTrans transformation properties relies on graph matching and
graph rewriting. Second, support for higher order transformations (HOTs) is
necessary to facilitate developing the back-end component of the property prover
(summarized in Appendix A and described in detail in [14]). Thus, a transformation
language with an explicit metamodel is required. Finally, a language with a control
flow mechanism is needed to allow scheduling model transformation rules.

After considering the above mentioned points, we have chosen to implement
our symbolic model transformation property prover using a mix of Python and the
T-Core framework [19].

T-Core is a set of primitive model transformation blocks that can be used
to replicate the behavior of existing model transformation languages (e.g. to
compare their expressiveness and to provide a framework for interoperability)
or to build new model transformation languages. The framework includes five
primitive transformation blocks that exchange models and transformation-related
information in messages called packets. These five primitive transformation blocks
are the Matcher, the Iterator, the Rewriter, the Rollbacker, and the Resolver.

The Matcher finds matches of a given precondition pattern within a model by
running an efficient combination of the Ullmann’s [21] and VF2’s [10] subgraph
isomorphism algorithm and stores those matches in a packet. The Iterator allows
selecting the next matched submodel from the set of matches stored in a packet
such that the submodel to be changed can be locked on. The Rewriter consumes a
matched subgraph from a model in a packet and changes the model according to a
given postcondition pattern. The Rollbacker allows backtracking by checkpointing
and restoring packets. The Resolver facilitates solving potential conflicts between
matches and rewritings. An additional, sixth construct called the composer is used
to encapsulate compositions of the five, aforementioned primitive transformation
blocks. The goal of the composer is to create complex transformation blocks
(e.g., querying or rewriting all the matches found for a precondition) from the
five primitive transformation blocks.

Since T-Core is a Python library, we interleaved T-Core primitives with Python
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code to develop our property prover. The backward link matchers, the collapse
transformation rules, and the preprocessed property files generated by the property
prover’s back-end component (shown in Fig. 6) generate the necessary patterns
that are used to initialize T-Core primitives. The initialized T-Core primitives
manipulate the preprocessed DSLTrans model transformation rules (generated by
the property prover’s back-end component as shown in Fig. 6) and are scheduled
using Python code (according to the steps described in previous sections) to
generate the set of path conditions and verify the property of interest.

6 Related Work

While numerous studies investigated different model transformation verification
techniques [17, 4], we only review studies that proposed verification techniques
similar to the one used by our property prover where all the possible transformation
executions are generated and verified with respect to a property. We also review
the few studies that investigated industrial model transformation validation and
verification.

Büttner et al. [8] and Cabot et al. [9] proposed translating the transformation
of interest and its manipulated metamodels into a transformation model and
used model finders (e.g., UML2Alloy ) and constraint solvers (e.g., UMLtoCSP)
to verify the transformation with respect to a specific property. Anastasakis et
al. [5] and Baresi and Spoltini [6] translated the transformation of interest and its
manipulated metamodels into an Alloy model and used the Alloy Analyser to verify
the translated transformation within a specific scope. Troya and Vallecillo [20]
translated the transformation of interest into Maude and used the analysis
capabilities of Maude to verify the possible executions of the input transformation.

The applicability of validation and verification tools to industrial model
transformations has been rarely investigated in the literature albeit its importance.
In [15], we used the prototype tool proposed in [8] to check the satisfiability of a
relational representation (or a transformation model) of our GM-to-AUTOSAR
transformation with respect to the same OCL properties that we presented in
Section 4.2. The tool was found to scale well for scopes as big as 12. In another
study [18], we validated our GM-2-AUTOSAR transformation using a black-box
testing tool proposed by Fleurey et al. [11, 12]. We found that many of the generated
test cases did not trigger the transformation’s rules. Wang et al. [22] proposed using
an optimization algorithm to generate test cases for model transformation testing
and demonstrated their approach on a case study from the banking sector.

Difference between our study and the surveyed studies: Our study differs
from the surveyed studies in several aspects. First, verification is performed on
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an intuitive graph-based transformation language that does not require a rigorous
mathematical background to be used, unlike Maude. Second, we demonstrated the
practicality of using our property prover by using it to verify both a simple model
transformation and an industrial model transformation.

In another ongoing study, we have also successfully proved two main results for
our property prover, which are rarely proved in similar studies:

• Validity and completeness of the generated set of path conditions.

• Validity and completeness of our property prover’s verification technique.

Validity of the generated set of path conditions means that every path condition
represents at least one transformation execution. Completeness of the generated
set of path conditions means that every transformation execution is represented
by at least one path condition. Many of the surveyed studies translated their
transformation into another formalization and verified the properties of interest on
the transformation in the latter formalization [8, 9, 5, 6, 20]. In such approaches,
the translation done to the model transformation into another formalization needs
to be itself verified before verifying the properties of interest, i.e., the validity of
their approaches still need to be proved.

Validity of the verification technique means that verifying the property of inter-
est for a path condition is equivalent to verifying the property for a transformation
execution that corresponds to the aforementioned path condition. Completeness
of the verification technique means that the property of interest is verified for all
possible transformation executions. This is in contrast with the study we conducted
in [15] where the performed verification is restricted to a certain scope and with
model transformation testing which does not guarantee that the transformation is
fault-free (i.e., testing only guarantees that the transformation runs correctly for
the input test cases).

7 Conclusion and Future Work

In this study, we proposed a symbolic model transformation property prover that
can be used to prove both AtomicProperties and more complicated propositional
logic formulae of AtomicProperties for DSLTrans transformations. The property
prover basically generates the set of path conditions (i.e., set of possible input
patterns and their corresponding output patterns) for the transformation of
interest and iterates over the set of path conditions to verify properties of varying
complexities. If a property holds for all path conditions, then it will always
hold for the transformation. Otherwise, the property does not hold for the
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transformation and a counter example is generated. We demonstrated the property
prover on the Police Station transformation (Fig. 2) as a running example. Then,
we experimented with our property prover on an industrial case study that we
previously presented in [16] and reported on the results obtained.

Several points can be addressed as future work. First, more experiments need to
be performed to test the scalability of the property prover by using it to verify more
complicated model transformations. Second, we currently provide the property to
be verified and the required parameters to the property prover within the code of
our prototype. Thus, the prototype requires an interface that accepts the property
to be verified and the required parameters in some user-friendly graphical syntax
that can then be interpreted and used within the property prover’s code.
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A

The Back-End Component of the Symbolic

Model Transformation Property Prover

As explained in Section 3, our symbolic model transformation property prover
takes four inputs: the DSLTrans model transformation of interest, the source
and target metamodels, and the property to prove. These four inputs are first
preprocessed by a preprocessing component of the property prover (Fig. 6) so
that they can be used for the generation of the set of path conditions and for
the property verification. In other words, the preprocessing step customizes the
property proverfor the verification of a specific transformation.

Figure 14: The six higher order transformations (HOTs) executed by the
preprocessing component of our symbolic model transformation property prover.

29



The preprocessing step of our property prover is composed of six higher
order transformations (HOTs). Fig. 14 demonstrates these six HOTs and their
manipulated artifacts7.

1. Generate the abstract rule metamodel: This HOT takes as input the
source and target metamodels of the transformation of interest and returns a
metamodel which is used to generate an abstract form of the transformation’s
rules. Such a metamodel for the Police Station transformation can be
observed in Fig. 15. These abstract rules will be later used as the basic
building blocks for generating the set of path conditions.

2. Generate the property metamodel: This HOT takes as input the source
and target metamodels of the transformation of interest and builds the
metamodel in which properties are expressed.

3. Generate the symbolic state space construction rules: this HOT
builds a set of models corresponding to the abstract form of the rules of
the transformation of interest. These abstract rules will be used to generate
the set of path conditions. The rules generated by this HOT are instances
of the abstract rule metamodel. The rules used in all path conditions are
symbolic state space construction rules.

4. Generate the backward link match transformation: This HOT builds
the query transformation that checks whether a graph including backward
links exists in an abstract rule. The input metamodel of the backward link
match transformation is the abstract rule metamodel.

5. Generate the collapse transformation: This HOT takes as input the
abstract rule metamodel generated in the first HOT and generates the collapse
rules for abstract rules which are instances of the abstract rule metamodel.
The collapse transformation has as both source and target metamodel the
abstract rule metamodel.

6. Generate the property verification transformation: this HOT gener-
ates three query transformations for each property to be verified: (i) a query
transformation that checks whether the unconnected precondition elements
of the property are present in a symbolic state; (ii)a query transformation
that checks whether the whole precondition of the property is a subgraph
of the match pattern of a possibly collapsed path condition; (iii) a query
transformation that checks whether the whole property is a subgraph of a
possibly collapsed path condition.

A more detailed explanation of the six HOTs can be found in [14].

7The six HOTs are currently being developed. To continue with our experiments, we manually
performed the tasks done by the six HOTs for our industrial case study discussed in Section 4.
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classType: String
name: String

MetaModelElement_SMatchModel
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directLink_S
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Figure 15: The abstract rule metamodel for the Police Station transformation.
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