
Technical Report 2014-619

Title: Synthesis of a Reconfiguration Service for
Mixed-Criticality Multi-Core Systems

Authors: Md Tawhid Bin Waez, Andrzej W ↪asowski, Juergen Dingel,
Karen Rudie

School of Computing
Queen’s University

Kingston, Ontario, K7L 3N6
28th April 2014



Synthesis of a Reconfiguration Service for
Mixed-Criticality Multi-Core Systems

Md Tawhid Bin Waez1, Andrzej W ↪asowski2, Juergen Dingel1, and Karen Rudie1

1 Queen’s University, Canada {waez@cs,dingel@cs,karen.rudie@}.queensu.ca
2 IT University of Copenhagen, Denmark wasowski@itu.dk

Abstract. Task-level reconfiguration techniques in automotive appli-
cations aim to reallocate tasks to computation cores during failures to
guarantee that the desired functionality is still delivered. We consider a
class of mixed-criticality asymmetric multi-core systems inspired by our
collaboration with General Motors, for which we automatically synthesize
task-level reconfiguration services to reduce the number of processing
cores and decrease cost without weakening fault-tolerance. We admit
the following types of faults: safety violations by tasks, permanent core
failures, and temporary core failures. We use timed games to synthesize
the controllers. The services suspend and reinstate the periodic executions
of the non-critical tasks to ensure enough processing capacity for the
critical tasks by maintaining lookup tables, which keep track of processing
capacity. We present a methodology to synthesize the services and use a
case study to show that suitable abstractions can dramatically improve
the scalability of timed games-based tools for solving industrial problems.

1 Introduction

We synthesize task-level reconfiguration services to ensure fault-tolerance of a
mixed-criticality automotive system that consists of an asymmetric multi-core
processor (AMP). The system has a fault-intolerant AMP scheduler. We augment
the existing scheduler with supplementary reconfiguration services, which we
synthesize. The services assure the periodic executions of all the critical tasks in
the presence of faults from a fault model.

We use timed games at synthesis-time and lookup tables at runtime to
provide task-level reconfiguration, a cost-effective fault-tolerance technique, for
mixed-criticality multi-core systems. System-level requirements for embedded,
real-time software in many domains such as automotive have enough flexibility to
reallocate tasks from one processing core to another. A task-level reconfiguration
technique reduces the number of redundant cores those are used only to provide
fault-tolerance by reallocating the loads of the failed cores to the non-redundant
operational cores. Reduction in the amount of expensive hardware gives task-
level reconfiguration a hope to be a dominant fault-tolerance technique in the
automotive industry, where cost-efficiency and fault-tolerance are both crucial
issues. Since this economical technique can handle tasks with different levels of



criticality, one of its prospective application sectors is next-generation automotive
systems, most of which are expected to be mixed-criticality multi-core systems.

Formal methods have been used for the development of fault-tolerant real-
time systems. However, in the automotive and avionics industries, fault-tolerance
problems are typically designed, analyzed, and solved using classical control theory.
Timed game theory [1,2,3], a dense-time automata-based game theory, is almost
unexplored in the industry. The use of timed game theory to solve industrial
problems is attractive because of automated controller synthesis, visual modeling,
and dense-time formal analysis. Nevertheless, applying timed game theory to solve
industrial problems is challenging because of its high computational complexity.

We use timed games to synthesize the embedded controllers of the reconfigu-
ration services. Our approach guarantees fault-tolerance up to a certain maximal
number of concurrent faults after inserting the services into the system. Such
reliable and accurate information is very helpful to build mixed-criticality systems
cost effectively. Intellectual property regulations do not allow us to present the
case study on the systems of our industry partner General Motors. Instead we
demonstrate the synthesis process using a small system, which is complex enough
to show the essence of the problem and our approach, yet simple enough to allow
a compact and comprehensible presentation.

Methodology In Sect. 3 we propose a service-based task-level reconfiguration
technique to guarantee fault-tolerance of mixed-criticality multi-core systems.
Timed games are used to synthesize a controller that selects safe operational cores
to reallocate the periodic executions of critical tasks from failed cores. Lookup
tables are used at runtime to suspend and reinstate the periodic executions of
non-critical tasks to ensure that operational cores have enough free processing
capacity for the executions of the newly reallocated critical tasks. We synthesize
the reconfiguration services in six steps:

Section 4 Identification of modeling abstractions and required system parame-
ters to construct a scalable model.

Sections 4.1–4.3 Construction of a timed game model where unsafe locations
are reachable if and only if a core exceeds its load capacity.

Section 5.1 Analysis of the model for the existence of a controller that ensures
no unsafe location is reachable; binary search for the maximal value of the
concurrent-failures–limit for which such a controller exists; and automated
synthesis of the controller of the maximal concurrent-failures–limit.

Section 5.2 Synthesis of the services by distributing the synthesized controller
and combining the abstracted elements of the first step.

Section 5.3 Leverage scalability of the whole process for industrial systems.
Section 5.4 Generalization of the synthesis process to apply in other multi-core

systems, such as for symmetric multi-core processing (SMP) systems

We use Uppaal Tiga [4]—a solver for timed games—to model, analyze, and
synthesize. The methodology, however, can be applied using any solvers for timed
games, such as Synthia [5]. The paper concludes in Sect. 6.

3



2 Related Work

Timed automata (TA) [6,7]—finite automata with dense-time clocks, clock con-
straints, and clock resets—are a prominent class of formal models to analyze
safety and reachability properties of real-time systems. Clocks, clock constraints,
and clock resets are used to express timing behaviors in TA. Timed automata
have been used many types of analysis purposes including for fault diagnosis
[8,9,10], analyzing multi-core systems [11,12], and analyzing mixed-criticality
systems [13]. However, classical TA cannot be used for controller synthesis [7].

A real-time control problem can be viewed as a two-player timed game [1,2,3]
between the controller and the environment, where the controller aims to find a
strategy to guarantee that the system will satisfy a given property, no matter
what the environment does [14]. An example of such reformulation is to find a
strategy for the controller (or the reconfiguration service) to prevent the system
from becoming unstable in the presence of the faults of the fault model. To our
best knowledge, no prior work considered timed games to synthesize controllers
for automotive mixed-criticality fault-tolerant multi-core systems.

A timed I/O automaton [15,16] is a timed automaton which has an input
alphabet and a set of uncontrollable transitions along with a regular (output)
alphabet and a set of regular (controllable) transitions. The controller plays
controllable transitions and the environment plays uncontrollable transitions;
thus timed I/O automata (TIOA) are a natural model for real-time games. Uppaal
Tiga [4] is a well-known timed games-based tool that uses TIOA for modeling.

3 Task-Level Reconfiguration Technique

We introduce a service-based task-level reconfiguration technique to assure fault-
tolerance of mixed-criticality multi-core systems.

3.1 Systems

We consider a class of multi-core systems with multiple sets of symmetric pro-
cessing cores, such that any two cores from two different sets are asymmetric.
Symmetric cores are able to execute a task with the same performance. Asym-
metric cores might not execute the same set of tasks, and different asymmetric
cores may exhibit different performance for the same task. The systems under
consideration are mixed-criticality systems, because they execute both critical
tasks and non-critical tasks. Every task can be killed (and resumed) in any of its
states by a reconfiguration technique. Tasks may invoke subtasks in a recursive
fashion. The system has a fault-intolerant criticality-unaware AMP scheduler
with a static allocation of tasks.

Fault Model The system is fault-free in its initial system-state. In the other
system-states, the system might suffer three types of faults: safety violations
by tasks, permanent core failures, and temporary core failures. Critical tasks,

4



developed using formal methods, are assumed not to breach any safety constraints.
On the contrary, a non-critical task may violate safety constraints. Every core
of the system may fail. However, all cores of a system concurrently cannot be
in their failed states. The maximal number of cores that can fail concurrently
is restricted by a limit, concurrent-failures–limit (CFL). Whereas no limit is
imposed on the total number of fault occurrences in a run.

Problem Statement Synthesize a task-level reconfiguration framework to assure
uninterrupted executions of all the critical tasks and to guard against the safety
violations of all the non-critical tasks in the presence of faults. An additional,
nonetheless important, requirement is determining the maximal concurrent fail-
ures for all combinations that the synthesized framework can manage.

3.2 Task-Level Reconfiguration Service

We propose a service-based reconfiguration technique to solve the problem, where
the system has a task-level reconfiguration service for per core. The services
manage critical tasks differently than non-critical tasks. Consider, for instance,
a simple mixed-criticality AMP system system1, one of the systems that are
described in Sec. 3.1. System system1 executes six periodic tasks S, W, D, N1, N2,
and N3. Only three tasks S, W, and D are the critical tasks, where in an execution
S records exactly one update of a speedometer and W (respectively, D) records at
most one update of a wiper (resp., door). The system has three cores core1, core2,
and core3, which are asymmetric but each core is able to execute all six tasks.

Fig. 1. Sample trace of system1 with reconfiguration

Figure 1 presents a
trace of a desirable behav-
ior of system1 in the pres-
ence of different faults af-
ter inserting the reconfig-
uration services; the fig-
ure omits suspended non-
critical tasks to avoid clut-
ter. At any given time,
the periodic execution of a
task can be assigned to at
most one operational core.
A task is assigned to its
primary core in the initial
system-state, where a core
is responsible to execute
only its primary tasks. For
instance, core1 is the pri-
mary core of task S, and S

is a primary task of core1
in Fig. 1. We call a non-
primary core as a backup core of a critical task when that core can execute

5



that task; similarly, a task is a backup task of its backup core. Whenever a core
fails, the services assign the critical tasks that were previously assigned to that
failed core to the operational cores. The services may kill and suspend temporarily
one or more non-critical tasks on the operational cores during a reallocation
process to ensure enough processing capacity for the reallocated critical tasks. In
Fig. 1, core core2 fails in system-state s2; in the next system-state, the periodic
execution of critical task W is assigned to a backup core core3 and the periodic
execution of non-critical task N3 is suspended temporarily on core3 to have enough
processing capacity for W. A critical task is allowed to execute further on a backup
core only if the primary core is in a failed state. The services kill a critical task on
a backup core (if that task is initialized or released) and cancels the assignment
of that task on that backup core, whenever the primary core recovers from a
temporary failure. As an example, core core2 recovers from a temporary failure
in system-state s6, and after that only core2 is assigned to perform critical task W.
The services reinstate a suspended non-critical task as soon as enough processing
capacity for that task is regained due to the recovery of a core from a temporary
failure; for example, the periodic execution of non-critical task N3 is reinstated
in system-state s7. The services permanently suspends a non-critical task if it
performs some harmful activities, such as illegal memory access. For instance,
non-critical task N1 performs some harmful activities in system-state s4 and the
task is permanently suspended in system-state s5.

4 Modeling

We construct a timed game model of the system in a way that an unsafe location
becomes reachable when a core exceeds its processing capacity. The model
explicitly or implicitly captures the behaviors of the scheduler, the reconfiguration
services, the cores, and the tasks.

To obtain a scalable model: (i) we model only a single (central) reconfiguration
service for the whole system, instead of one service per core; (ii) we assume that
every non-idle state of a task requires the worst-case core load of the task on
the current core; and (iii) we abstract away the non-critical tasks. None of these
abstractions prevents the synthesis of one individual reconfiguration service per
core as shown in Sect. 5. Our model depends on four system parameters: (i) the
release period of each task (constants pS, pW, pD); (ii) the worst-case load of each
task on each core, in percent of the processing capacity of that core (constants
lS1, lW1, lD1, lS2, lW2, lD2, lS3, lW3, lD3); (iii) the worst-case execution time
(WCET) of each task on all cores (constants wS, wW, wD); and (iv) the best-case
execution time (BCET) of each task on all cores (constants bS, bW, bD).

Now we illustrate the design process by constructing a concrete model of
mixed-criticality AMP system system1. The main design principle behind this
model is to describe each component of the system in detail as a timed game
automaton then obtain an intuitive model by composing all the components using
parallel composition [16]. The concrete model has 13 timed I/O automata, which
follow five different templates. Each automaton represents exactly one rectangle

6



Fig. 2. Architecture of system1 after adapting abstractions of Sect. 4

of Fig. 2. The automata synchronize using both actions and global variables.
The model does not have any local variables and constants. A task automaton
models initialization, killing, resumption, termination, and state information of a
task; for example, task automaton core1.S in the bottom of Fig. 3 represents the
activities of task S on core1. A core may fail only if the fault model allows it to
fail. A core automaton models initializations and terminations of tasks on a core
along with failures of the core and safety violations; for instance, core automaton
core1 in the middle of Fig. 3 represents the activities of core core1. The service

automaton in the top of Fig. 3 models reallocations of the critical tasks when a
core fails or recovers. In the model a failed core may recover at any time. The
other ten automata of the concrete model are presented in the appendix.

The automata modeling cores follow the same template. For instance, au-
tomaton core1 uses action kS1 to model the killing of task S on core1 (edge 16
in Fig. 3), kW1 to model the killing of task W on core1 (edge 17), kD1 to model
the killing of task D on core1 (edge 18), and global variable L1 to record the
current worst-case load on core1 (edges 9–14,16–18); similarly, automaton core2
uses action kS2 to model the killing of S on core2 and global variable L2 to record
the current worst-case load on core2. The automata modeling the same task—but
on different cores—follow the same template.

4.1 Task Automata

A task automaton represents two types of activities of a task on a core:

Task Life-Cycle Activities (edges 1–5) Every task can be initialized, killed, and
resumed by performing controllable actions. Task terminations are modeled using
uncontrollable actions because neither the scheduler nor the reconfiguration
services can control the exact termination period of a task. The models are
built in Uppaal Tiga [4], which displays controllable transitions as solid arrows
(edges 1–4), and uncontrollable transitions as dashed arrows (edges 5–8). The
duration between an initialization and the immediate termination of a task
encompasses one complete execution of that task. A task can be killed and
then resumed arbitrarily many times in a single execution. Initialization, killing,
resumption, and termination of task S on core1 is modeled by performing actions
iS1 (edge 1), kS1 (edges 3–4), rS1 (edge 2), and tS1 (edge 5), respectively. Every
task automaton has at least two locations: Idle and Active. The task is either
killed or yet to be initialized in location Idle. Every non-idle location has an
invariant to force the task to terminate within the WCET; for instance, an
automaton modeling task S has invariant x≤wS to force termination, where global

7



clock x records the amount of time passed since the last initialization of S and
global constant wS stores the WCET of S. Similarly, global constant bS stores the
BCET of task S. Hence, clock guard x≥bS prevents task S to terminate before
the BCET (edge 5).

Task Specific Activities (edges 6–8) Task S records exactly one update of a digital
speedometer (modeled as global variable vS) in an execution: vS represents the
speed in multiples of five varying from zero to hundred. Boolean variable uS is 1
if and only if the speedometer is updated in the current execution of S.

Figures 13-16, in the appendix, present task automata core1.W and core1.D
in the concrete model. The automata model task life-cycle activities and task
specific activities of tasks W and D.

4.2 Core Automata

A core automaton in the concrete model models two types of activities:

Operation-Time Activities (edges 9–14) A core automaton periodically initializes
a task at its release period if the corresponding core is assigned to execute that
task. Task terminates voluntarily after completing its assigned functions. A task
between its initialization and termination occupies a portion of the resources.
When a task terminates (resp., is initialized) on a core, the corresponding core
automaton decreases (resp., increases) a variable modeling the current worst-case
load. In location Main, task S is initialized by performing action iS1 (edges 9)
if S is assigned to core1 (aS==1), and S is not initialized yet (iS==0), and
clock x hits the value of the release period of S (x==pS). Automaton core1
(edge 14) receives action tS1 from task automaton core1.S (edge 5) whenever S

terminates its execution on this core. Function terminate(S,1) decreases (resp.,
initialize(S,1) increases) variable L1, modeling the worst-case load on core1,
by constant lS1, the worst-case load of task S on core core1, and resets Boolean
variable iS to 0 (resp., 1), that means task S terminates (resp., is initialized).

Failure-Time Activities (edges 15–22) Core automaton core1 models failures of
the core by traversing an uncontrollable edge. In order to reflect our assumption
on the concurrent failure limit, this edge is only admitted if the number of
currently failed cores (F) is less than CFL (CFL). Location Urgent is reached
from Main whenever core1 fails. Urgent is one of the urgent locations, denoted as
∪ in Uppaal Tiga syntax, that means the automaton cannot spend time in this
location (edges 15–21). When the core fails, the automaton instantaneously kills
all tasks currently released by it—to simulate that no task can continue to run
on a failed core (edges 16–18). Then the automaton instantaneously performs
specific actions to broadcast a message containing the list of currently assigned
tasks to that failed core: performs action mS if S is the only assigned task; action
mSW if S and W are the only assigned tasks; and action mSD if S and D are the only
assigned tasks (edges 19–21). To note that only task W or task D or both cannot
be assigned to core core1 without task S because a task (S) must be assigned

8



Fig. 3. Automata core1.S (in the bottom), core1 (in the middle), service (in the top)
of the concrete model (comments are on the left)

9



to its operational primary core (core1). At runtime, the reconfiguration services
use a distributed monitoring system to identify these lists because no failed core
can broadcast a message. An unsafe location BAD becomes reachable when the
current worst-case load on core1 exceeds the load limit of core1 because of the
failure of some other core(s) (edge 22). This prevents the synthesis algorithm
from producing a control strategy that would require exceeding the load limits.

4.3 Service Automaton

A service automaton spends most of its time in observing states waiting for a
fault to occur (or for a core recovery from a temporary failure). The automaton
reallocates a task in two steps: (i) assigns the periodic execution of the task to a
suitable operational core, and (ii) resumes the task on the assigned core if the
task was initialized before the reallocation. Other than Observing all locations
are committed, denoted as C in Uppaal Tiga syntax. They model states when
reconfiguration decisions are taken, which are expected to be instantaneous and
get precedence even over the urgent transitions of the other automata. Activities
of the automaton can be divided into three groups described in the following.

Handling a Primary Core Failure (edges 23–37) Recall the invariant that an
operating core is always assigned to execute its primary tasks, so in system1 when
a core (say core1) is assigned to execute only one task then it must be a primary
task (S). In the model a failure message is broadcast using an action (e.g., mS, mSW,
and mWD) linked to the currently assigned tasks of the failed core, instead of the
name of the core. Therefore, whenever a core failing with only assignment of the
periodic execution of task S (or action mS is performed) then core1, the primary
core of S, must be that failed core. At that point, task S is reallocated to either
core2 or core3. For example, location A1 is reached from location Observing when
core1 fails (edges 23–27); in A1 the focal choice is reallocating S, the primary
task of core1, to core core2 (bottom two outgoing edges) or to core core3 (top
two outgoing edges). Details of reallocation depending on whether the task was
initialized (and needs to be reassigned then resumed) or was yet to be initialized
(and just needs to be reassigned). For instance, to reallocate task S to core2,
location Observing is reentered from A1 by: (i) assigning the periodic execution
of S to core2 (aS:=2) if core2 is operational (aW==2) and S was yet to be initialized
(iS==0), or (ii) assigning the periodic execution of S to core2 and resuming S on
the core (by performing rS2) if core2 is operational and S was initialized (iS==1).

Handling a Backup Core Failure (edges 38–52) In our example when a core is
assigned to execute two critical tasks then one of them must be a backup task of
that core; hence, after such a failure at least two cores concurrently are in their
failed states. The fault model does not allow all cores to fail concurrently. For
instance, core1 must be operational when core2 and core3 are in their failed states;
and the executions of tasks W and D have to be assigned to core1. Location B1 is
reached from Observing when a core fails that is responsible to execute both W

and D or when action mWD is received (edges 48–52). Location C1 is reached from

10



Fig. 4. Architecture of system1 at runtime

B1 by assigning the periodic execution of W to the only operational core core1 and
resuming W, if necessary (iW==1). Then Observing is reached by assigning the
periodic execution of D to core1 and resuming D, if necessary (iD==1).

Handling a Primary Core Recovery (edges 53–67) The periodic execution of
a task must be assigned to its primary core when it is operational. Therefore,
a task must be reallocated from a backup core to the primary core whenever
it recovers from a temporary failure. The periodic execution of task S can be
assigned to a backup core (aS!=1) only if its primary core core1 is in a failed
state. Location G1 is reached from location Observing when core1 recovers from
a failure (edges 53–57). In G1 the controller has two main choices depending
on the initialization condition of the task: S is yet to be initialized and needs
to be only reassigned to its primary core (the bottom outgoing edge); and S is
initialized on a backup core and needs to be killed (the top two outgoing edges)
then to be resumed on the primary core (the outgoing edge from location H1).

5 Synthesis

A reconfiguration service runs on a core, which can fail. Hence, fault tolerance
cannot be achieved using only one central reconfiguration service. We propose for
each core to execute its own reconfiguration service that has three components: a
distributed controller to reallocate critical tasks, a monitoring system to observe
the system’s conditions, and a switch to cancel and reinstate the periodic execution
of non-critical tasks. All the distributed controllers of a system differ from each
other—but complement each other in a way that they all together work similarly
with a central controller, which is synthesized by analyzing the timed game model
of Sect. 4. Figure 4 presents our proposed architecture of system1.

5.1 Controller Synthesis

We perform a controller synthesis for the monolithic model of Sect. 4 against
a safety objective “A[] not (core1.BAD or core2.BAD or core3.Bad)”, mean-
ing that there is a strategy to always avoid locations core1.BAD, core2.BAD, and
core3.BAD. If the property holds, the strategy—which is our central controller—is
automatically synthesized by a timed game solver.

The functions of the central controller are completely and exclusively dis-
tributed into separate controllers for each core. A distributed controller is re-
sponsible for killing, reassignment, and resumption of critical tasks only on its

11



core. A timed game represents all the possible transitions of the controller. As a
result, a timed game may have non-deterministic choices for the controller. For
example, in Fig. 1 the controller has non-deterministic choices at system-state
s4 when only core2 fails and the other two cores are operational (edges 28–32).
A strategy removes non-determinism for the controller. By directing the con-
troller to take the correct paths, a strategy plays a crucial role when in the
model some paths guarantee satisfaction of a property (say reallocating task W

to core3 at system-state s5 in Fig. 1) and some paths do not (say reallocating
W to core1). For example, when core2 fails (edges 28–32) a strategy (or the cen-
tral controller) may say, “if the system-state fulfills condition X then

reallocate task W to core3, otherwise to core1”; then the distributed con-
troller of this portion (edges 28–32) for core3 is “if the system-state ful-

fills condition X then reallocate task W to core3”; and the distributed
controller of this portion (edges 28–32) for core1 is “if the system-state does

not fulfill condition X then reallocate task W to core1”. Thus, deriv-
ing the distributed controllers from the central controller is a mechanical process
and cannot fail.

In order to obtain the most fault-tolerant controller possible, we synthesize it
for the maximal concurrent-failures–limit (MCFL), the maximal value of CFL
for which such a controller still exists. We use binary search to find MCFL. If
MCFL is zero, then no safe controller exists. The higher MCFL implies the
better fault-tolerance by the reconfiguration services. The value of MCFL is
strictly bounded by the total number of processing cores. Consider, for instance,
configuration C1 in Table 1 where the release period, the WCET, the BCET of
every task is 10, 5, and 4 time units, respectively; the worst-case load of tasks S,
W, and D on core1 (resp., core2, core3) are 60% (resp., 10%, 10%), 45% (resp., 80%,
5%), and 5% (resp., 5%, 85%), respectively. Configuration C1 does not have a
controller for CFL 2. However, there is a controller for CFL 1. Hence, MCFL for
system1 for configuration C1 is 1.

5.2 Service Synthesis

We synthesize the distributed reconfiguration service of a core by combining its
distributed controller with an embedded monitor and an embedded switch.

The monitor of a reconfiguration service periodically broadcasts health mes-
sages of the corresponding core. A health message has three parts: (a) name
of its core, (b) currently assigned critical tasks to its core, and (c) currently
initialized critical tasks on its core. A monitor periodically also receives health
messages—from the other reconfiguration services—and manipulates received
messages. It marks a core as a failed core if two consecutive health messages of
that core are not received. The monitor identifies a core recovery when it receives
a message from a previously failed core. In the same way, the monitor detects
when the scheduler releases a task and when a task terminates on a core.

A reconfiguration service has a static lookup table and a dynamic lookup
table. The static lookup table lists the worst-case core load of every critical task
(of the system) on this core and of every non-critical task assigned to this core.

12



The dynamic lookup table keeps updated list of the assigned tasks, temporarily
suspended non-critical tasks, and permanently suspended non-critical tasks. The
controllers reallocate critical tasks from a failed or to a recovered core without
considering the existence of non-critical tasks. The switch of a reconfiguration
service (of the targeted core) suspends a set of non-critical tasks on its core using
the lookup tables when the residual capacity on the core is insufficient to run
the newly reallocated task safely. The distributed controllers first take necessary
steps related to primary tasks of the recovered core whenever a core recovers.
After that the switches reinstate the periodic executions of a set of suspended
non-critical tasks on each source core where free processing capacity is revived
due to the recovery. The switch permanently suspends a non-critical task when
it breaches safety constraints.

5.3 Scalability

The scalability of our service synthesis process mostly depends on the controller
synthesis as the remaining steps are mechanical and cannot fail. The concrete
model has very large state space. For example, configuration C1 in Table 1
generates a strategy of size 290,663 KB in 94.20 seconds for this model when CFL
is 1. Moreover, for many configurations (C3–C6 in Table 1) the solver runs out of
memory during analysis. Detailed and monolithic models like the concrete model
are easy to construct, understand, and present. However, large state spaces make
them a poor choice for analysis.

Fig. 5. The abstract model (comments are on the left)

13



Period WCET BCET Load on Load on Load on C Comparison
of of of core1 of core2 of core3 of F concrete abstract

task task task task task task L model model
S W D S W D S W D S W D S W D S W D time size time size

C1 10 10 10 5 5 5 4 4 4 60 45 5 10 80 5 10 5 85
2 No controller exists
1 94.20 290663 0.08 73

C2 10 10 10 5 5 5 0 0 0 60 45 5 10 80 5 10 5 85
2 No controller exists
1 115.71 296524 0.11 107

C3 10 15 20 5 5 5 0 0 0 60 45 5 10 80 5 10 5 85
2 No controller exists
1 Out of memory 0.14 242

C4 10 15 20 5 5 5 0 0 0 60 35 5 10 80 5 10 5 85
2

Out of memory
0.25 712

1 0.14 266

C5 10 15 20 5 5 5 0 0 0 43 37 7 11 67 19 23 13 59
2

Out of memory
0.25 712

1 0.14 266

C6 10 15 20 5 5 5 0 0 0 43 37 59 11 67 39 23 13 59
2

No controller exists
1

Table 1. Comparisons of the two models with respect to their controller synthesis
time (in sec.) and the strategy size (in KB), for different configurations (release period,
WCET, and BCET have abstract time units; and loads are in % of the respective core)

The main purpose of the strategy is to resolve non-determinism among
enabled controllable transitions in a way that guarantees satisfaction of the
desired property. Hence, one can abstract away every detail from a timed game
model that does not contribute to the non-determinism (or to the property).
For instance, task specific activities and their non-deterministic updates of the
tasks, which do not have any impact on our property, can be removed from a
timed game model of system1. Using such aggressive abstractions we construct the
abstract model of system1. Presented in Fig. 5, the model has only one automaton.

The abstract model uses all the modeling abstractions and system parameters
of Sect. 4. Explicitly it models only task initializations (edges 68–70), task
terminations (edges 71–76), core failures (edges 77–79), core recovery (edges 80–
94), and safety violations (edge 95). Like task killings and resumptions, task
initializations and terminations change the load on a core; thus they play an
important role in the required property (or the safety checking). The invariant is
used to release or initialize the tasks periodically. While a task termination within
the WCET is forced by allowing an additional controllable transition (edges 74–
76). Reallocation is a function which combines task killings, reassignments, and
resumptions (edges 77–94). The model uses nine Boolean variables aS1, aW1, aD1,
aS2, aW2, aD2, aS3, aW3, and aD3 to keep track the currently assigned tasks to
cores: the value of aS1 (resp., aW1, aD1) is 1 when the periodic execution of task
S (resp., W, D) is assigned to core core1, otherwise the value is 0; similarly, aS2
(resp., aW2, aD2) is 1 if and only if the periodic execution of task S (resp., W, D) is
assigned to core core2. If both the concrete model and the abstract model use a
variable or constant then it is used for the same purpose; for example, variable
iS in both the models is used to identify when task S is initialized.

Experimental Results We analyze the two models with different configurations.
All the analyses and controller syntheses were performed by Uppaal Tiga-0.17
on a PC with an Intel Core i3 CPU at 2.4 GHz, 4 GB of RAM, and running

14



64-bit Windows 7. Table 1 shows that the abstract model improves the scalability
dramatically. Other than aggressive abstraction, it encodes the whole model into
only an automaton to avoid parallel composition, because parallel composition
typically increases the size of the state space very rapidly. The larger the difference
between WCET and BECT the longer the analysis time, and the sparser the
strategy (configuration C1 vs. configuration C2). The smaller the least common
denominator of the clock ranges (or the execution times and release periods) the
smaller state space, the shorter analysis time, and the more compact strategy (C2
vs. C3). However, variations in the least common denominator of other variables,
such as different loads, do not have any significant impact on the analysis (C4
vs. C5). Uppaal Tiga takes less time and generates a smaller strategy when the
environment has less “freedom”, as in, e.g. the case of a smaller value for CFL
(C4, C5). The MCFL of system system1 depends on its configuration: the MCFL
is 1 for the first three configurations (C1–C3); 2 for the next two configurations
(C4, C5); and 0 for the last configuration (C6).

5.4 Discussion

We briefly discuss the handling of systems with slightly different properties.
For systems with asymmetric cores, which are unable to execute some tasks
on some of the cores, we simply do not model the initialization, termination,
killing, reassignment, and resumption for the illegal combinations of tasks and
cores. For symmetric multi-core processing (SMP) one simply has to set the same
load parameters on all the cores for each task. The synthesized reconfiguration
services are oblivious to the tasks having substructure (sub-tasks), if they can be
consistently abstracted by a single set of parameters (WCET, BCET and load).

We have assumed that an initialized task reallocated from a failed core should
resume in the same state. If this is not required, i.e., a task can start from initial
state on the new core at its next release period, then the model can be simplified,
by removing the edges modeling resumption. In the future, we will show how
to synthesize reconfiguration services that also ensure the maximal utilization
of the processing capacity at fault-time. We have not investigated the synthesis
process for a scheduler with a dynamic allocation yet.

6 Conclusion

We have presented the synthesis process using a mixed-criticality AMP system
having a fault-intolerant criticality-unaware scheduler with fixed allocation. This
includes two different design principles to model the problem using timed games,
based on a selection of simplifications and abstractions. We compared the models
for scalability, showing that solving the problem using strategy synthesis for timed
games is feasible. We have observed that reducing action based synchronization,
the state space, and especially shared states, improves efficiency of algorithms.
Our reconfiguration services are distributed, and the synthesis process applies
to mixed-criticality systems, both in symmetric and asymmetric scenarios. We

15



demonstrated this on a case study from the automotive domain. To the best of
our knowledge, this is the first case study applying timed games to the synthesis
reconfiguration services for fault-tolerance.

Acknowledgements We would like to express our gratitude to GM engineers and
scientist, especially Joseph D’Ambrosio for introducing the problem, Thomas
E Fuhrman and Ramesh S for a series of meetings on the fault models of
automotive mixed-criticality multi-core systems, Soheil Samii for discussions
on the possibilities of different reconfiguration models, and many others who
contributed in the initial phase of this project. We also thank Alexandre David
for his help with Uppaal Tiga.

References

1. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems. In: STACS. (1995)

2. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata.
In: SSC. (1998)

3. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The
element of surprise in timed games. In: CONCUR. (2003)

4. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Didier, L.:
UPPAAL-Tiga: time for playing games! CAV (2007)

5. Ehlers, R., Mattmüller, R., Peter, H.J.: Synthia: Verification and synthesis for
timed automata. In: CAV. (2011)

6. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126 (1994)

7. Waez, M.T.B., Dingel, J., Rudie, K.: A survey of timed automata for the development
of real-time systems. CSR (2013)

8. Tripakis, S.: Fault diagnosis for timed automata. In: Formal Techniques in Real-
Time and Fault-Tolerant Systems. (2002)

9. Bouyer, P., Chevalier, F., D’Souza, D.: Fault diagnosis using timed automata. In:
FoSSaCS. (2005)

10. Waszniowski, L., Krákora, J., Hanzálek, Z.: Case study on distributed and fault
tolerant system modeling based on timed automata. J. Syst. Softw. (2009)

11. Lv, M., Yi, W., Guan, N., Yu, G.: Combining abstract interpretation with model
checking for timing analysis of multicore software. In: RTSS. (2010)

12. Dalsgaard, A.E., Laarman, A., Larsen, K.G., Olesen, M.C., van de Pol, J.: Multi-core
reachability for timed automata. FORMATS (2012)

13. Socci, D., Poplavko, P., Bensalem, S., Bozga, M.: Modeling mixed-critical systems
in real-time BIP. ReTiMiCS (2013)

14. David, A., Grunnet, J., Jessen, J., Larsen, K., Rasmussen, J.: Application of model-
checking technology to controller synthesis. In: Formal Methods for Components
and Objects. (2012)

15. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: The Theory of Timed
I/O Automata. SLCS. Morgan & Claypool Publishers (2006)

16. David, A., Larsen, K.G., Legay, A., Nyman, U., W ↪asowski, A.: Timed I/O automata:
a complete specification theory for real-time systems. HSCC (2010)

16



A Appendix

Name Type Purpose
x Clock To record time passed since S was initialized
y Clock To record time passed since W was initialized
z Clock To record time passed since D was initialized
aS Integer To record the core which is currently assigned to execute S

aW Integer To record the core which is currently assigned to execute W

aD Integer To record the core which is currently assigned to execute D

iS Boolean To record whether S is initialized (1) or yet to initialize (0)
iW Boolean To record whether W is initialized (1) or yet to initialize (0)
iD Boolean To record whether D is initialized (1) or yet to initialize (0)
uS Boolean To record whether an update in S is performed (1) or not (0)
uW Boolean To record whether an update in W is performed (1) or not (0)
uD Boolean To record whether an update in D is performed (1) or not (0)
L1 Integer To record the current worst possible loads on core1
L2 Integer To record the current worst possible loads on core2
L3 Integer To record the current worst possible loads on core3
vS Integer To record the current value in the speedometer
sD Integer To record the current door state
F Integer To record the current total number of core failures

Table 2. Variables in the concrete model

Name Type Purpose
CFL Constant To store CFL
pS Constant To store release period of S
pW Constant To store release period of W
pD Constant To store release period of D
wS Constant To store the WCET of S
wW Constant To store the WCET of W
wD Constant To store the WCET of D
bS Constant To store the BCET of S
bW Constant To store the BCET of W
bD Constant To store the BCET of D
lS1 Constant To store the worst-case load of S on core1
lS2 Constant To store the worst-case load of S on core2
lS3 Constant To store the worst-case load of S on core3
lW1 Constant To store the worst-case load of W on core1
lW2 Constant To store the worst-case load of W on core2
lW3 Constant To store the worst-case load of W on core3
lD1 Constant To store the worst-case load of D on core1
lD2 Constant To store the worst-case load of D on core2
lD3 Constant To store the worst-case load of D on core3
Limit Constant To store the load limit of every core

Table 3. Constants in the concrete model

17



Name From To Purpose
iS1 core1 core1.S To initialize S on core1
iS2 core2 core2.S To initialize S on core2
iS3 core3 core3.S To initialize S on core3
iW1 core1 core1.W To initialize W on core1
iW2 core2 core2.W To initialize W on core2
iW3 core3 core3.W To initialize W on core3
iD1 core1 core1.D To initialize D on core1
iD2 core2 core2.D To initialize D on core2
iD3 core3 core3.D To initialize D on core3
rS1 service core1.S To resume S on core1
rS2 service core2.S To resume S on core2
rS3 service core3.S To resume S on core3
rW1 service core1.W To resume W on core1
rW2 service core2.W To resume W on core2
rW3 service core3.W To resume W on core3
rD1 service core1.D To resume D on core1
rD2 service core2.D To resume D on core2
rD3 service core3.D To resume D on core3
kS1 core1, service core1.S To kill S on core1
kS2 core2, service core2.S To kill S on core2
kS3 core3, service core3.S To kill S on core3
kW1 core1, service core1.W To kill W on core1
kW2 core2, service core2.W To kill W on core2
kW3 core3, service core3.W To kill W on core3
kD1 core1, service core1.D To kill D on core1
kD2 core2, service core2.D To kill D on core2
kD3 core3, service core3.D To kill D on core3
iS1 core1.S core1 To terminate S on core1
iS2 core2.S core2 To terminate S on core2
iS3 core3.S core3 To terminate S on core3
iW1 core1.W core1 To terminate W on core1
iW2 core2.W core2 To terminate W on core2
iW3 core3.W core3 To terminate W on core3
iD1 core1.D core1 To terminate D on core1
iD2 core2.D core2 To terminate D on core2
iD3 core3.D core3 To terminate D on core3
mSW core1, core2 service To inform that it is assigned to execute S and W

mSD core1, core3 service To inform that it is assigned to execute S and D

mWD core2, core3 service To inform that it is assigned to execute W and D

mS core1 service To inform that it is assigned to execute S

mW core2 service To inform that it is assigned to execute W

mD core3 service To inform that it is assigned to execute D

Table 4. Actions in the concrete model

18



Name Type Purpose
x Clock To record time passed since S was initialized
y Clock To record time passed since W was initialized
z Clock To record time passed since D was initialized
aS1 Boolean To record whether core1 is currently assigned (1) to execute S or not (0)
aW1 Boolean To record whether core1 is currently assigned (1) to execute W or not (0)
aD1 Boolean To record whether core1 is currently assigned (1) to execute D or not (0)
aS2 Boolean To record whether core2 is currently assigned (1) to execute S or not (0)
aW2 Boolean To record whether core2 is currently assigned (1) to execute W or not (0)
aD2 Boolean To record whether core2 is currently assigned (1) to execute D or not (0)
aS3 Boolean To record whether core3 is currently assigned (1) to execute S or not (0)
aW3 Boolean To record whether core3 is currently assigned (1) to execute W or not (0)
aD3 Boolean To record whether core3 is currently assigned (1) to execute D or not (0)
iS Boolean To record whether S is initialized (1) or yet to initialize (0)
iW Boolean To record whether W is initialized (1) or yet to initialize (0)
iD Boolean To record whether D is initialized (1) or yet to initialize (0)
L1 Integer To record the current worst possible loads on core1
L2 Integer To record the current worst possible loads on core2
L3 Integer To record the current worst possible loads on core3
F Integer To record the current total number of core failures

Table 5. Variables in the abstract model

Name Type Purpose
CFL Constant To store CFL
pS Constant To store release period of S
pW Constant To store release period of W
pD Constant To store release period of D
wS Constant To store the WCET of S
wW Constant To store the WCET of W
wD Constant To store the WCET of D
bS Constant To store the BCET of S
bW Constant To store the BCET of W
bD Constant To store the BCET of D
lS1 Constant To store the worst-case load of S on core1
lS2 Constant To store the worst-case load of S on core2
lS3 Constant To store the worst-case load of S on core3
lW1 Constant To store the worst-case load of W on core1
lW2 Constant To store the worst-case load of W on core2
lW3 Constant To store the worst-case load of W on core3
lD1 Constant To store the worst-case load of D on core1
lD2 Constant To store the worst-case load of D on core2
lD3 Constant To store the worst-case load of D on core3
Limit Constant To store the load limit of every core

Table 6. Constants in the abstract model

19



Fig. 6. Declarations in the concrete model for configuration C6 when CFL is 2

20



Fig. 7. Functions initialize, terminate, kill, and cancel in the concrete model

21



Fig. 8. Functions resume and reassign in the concrete model

Fig. 9. Automaton core2 in the concrete model

22



Fig. 10. Automaton core3 in the concrete model

Fig. 11. Automaton core2.S in the concrete model

23



Fig. 12. Automaton core3.S in the concrete model

Fig. 13. Automaton core1.W in the concrete model

Fig. 14. Automaton core2.W in the concrete model

Fig. 15. Automaton core3.W in the concrete model

Fig. 16. Automaton core1.D in the concrete model

24



Fig. 17. Automaton core2.D in the concrete model

Fig. 18. Automaton core3.D in the concrete model

Fig. 19. Declarations in the abstract model for configuration C6 when CFL is 2

25



Fig. 20. Functions initializeA and terminateA in the abstract model

Fig. 21. Function reallocate in the abstract model

26


