
CISC 220 Course Notes:

Linux and C

David Alex Lamb

July, 2014
External Technical Report
ISSN-0836-0227-2014-621

School of Computing
Queen's University

Kingston, Ontario, Canada K7L 3N6

Version 1.1
Document prepared July 7, 2014

Copyright c©2013-2014 David Alex Lamb

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/4.0/.

The most recent version of this document can be found at
http://cs.queensu.ca/home/dalamb/teach/LinuxAndC/

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://cs.queensu.ca/home/dalamb/teach/LinuxAndC/

Contents

1 Introduction 1

I Linux Basics 2

2 Overview 2
2.1 History . 3
2.2 Shells . 4
2.3 Interacting with bash . 5

3 The File System 6
3.1 Hard Links . 9
3.2 File-related bash Commands 9
3.3 File Permissions . 13
3.4 Directory Read and Execute Permissions† 17
3.5 Owners and Groups . 18
3.6 Symbolic Links . 19
3.7 (Lack of) File Formats . 20

4 The bash Shell And Basic Commands 22
4.1 Wildcards and Filename Expansion 24
4.2 I/O Redirection . 26
4.3 Other Command Line Expansions 30
4.4 Recursive Calls on bash . 34
4.5 Finding the Command† . 35
4.6 Running Multiple Programs 36
4.7 Order of Command-Line Expansions† 38

5 Shell Scripts 39
5.1 Reading From the Command Line 41
5.2 if and Conditionals . 42
5.3 Aside: Single Square Brackets† 44
5.4 Looping . 46
5.5 Advanced Shell Variables . 48

6 find: Finding Files 49
6.1 Predicates About File Properties 51
6.2 The -exec Predicate† . 52

Version 1.1 i

II Textual Pattern Matching 53

7 grep: Finding Strings in Files 54
7.1 Command Line Options . 55
7.2 Caveat: Selecting a \Matcher" 56

8 Regular Expressions 57
8.1 Minimal Regular Expressions 58
8.2 Simple Extensions . 59
8.3 Additional Regular Expressions† 60

9 sed: Simple Editing of Text Streams 62
9.1 sed Scripts . 64
9.2 Advanced sed† . 65

10 awk: Programmable Editing of Text Streams 67
10.1 Language Constructs . 69
10.2 I/O in awk . 71
10.3 Built-In Functions . 72
10.4 Command-Line Arguments . 73
10.5 User-De�ned Functions . 74
10.6 Some Longer Examples . 76

III C Programming for Linux 79

11 Processes 80
11.1 What is A Process? . 80
11.2 The Process Manager . 81
11.3 Creating a New Process . 82
11.4 Executing a Di�erent Program 84
11.5 Parent/Child Interaction . 85

12 Signals 89
12.1 Common Signals . 89
12.2 Signal Handlers . 90

13 Pipes 96
13.1 Basic Pipes . 96
13.2 Multiple Readers and Writers† 98

Version 1.1 ii

13.3 Named Pipes (FIFOs) . 99

14 The make Command 104
14.1 Build Processes . 104
14.2 Basics of make and makefiles 106
14.3 Intermediate make . 109
14.4 Fundamentals of Build Management† 110
14.5 Other Build Systems . 113

List of Figures

1 Linux Operating System . 3
2 Example bash Session . 6
3 Inode Structure for c220/pride.txt 8
4 Multiple Hard Links to a File 10
5 Results of stat Command . 13
6 Long-Form directory Listing 15
7 Directory Without Read Permission 18
8 File Contents, od, and wc . 21
9 File Containing Control Characters 22
10 Example of Using cat . 23
11 Redirecting Standard Input 29
12 Single Versus Double Square Brackets 45
13 awk Program With Several Value Types 70
14 Use of match to Remove Context 73
15 Sample awk Program with User-De�ned Function 76
16 awk Script to Reorder Names 78
17 Simple Example of fork and wait 87
18 Simple Example of fork and execvp 88
19 Simple Example of SIGCHLD Handler 95
20 Pipe Example (a): Case Inversion of Program Arguments . . . 101
21 Pipe Example (b): Case Inversion of Program Arguments . . . 102
22 FIFO Behaviour Via Shell Commands 103
23 Abstraction of a Build Step 105
24 A Simple makefile . 107
25 Processing when input.h Changes 109
26 makefile with Program Generators 112

Version 1.1 iii

List of Tables

1 Commands Within less . 24
2 Command-Line Editing . 33
3 File Property Tests . 44
4 Process Timescale . 81
5 Modules for a Simple Elevator Simulation 106
6 Flags for make . 110

Version 1.1 iv

1 Introduction

There are many Linux books on the market, but many are not suitable for
a single-term university-level textbook. Typically they provide far too much
detail, or far too little, and don't tie the material to basic concepts taught
in other undergraduate computing courses. These notes are meant to address
these issues. The initial motivation for writing them was to support the course
CISC 220(1System-Level Programming), o�ered by the School of Computing
at Queen's University in Kingston, Ontario. I hope that eventually they will
be useful in a wider context.

These notes assume you are already familiar with using some other operat-
ing system, such as MacOS or Windows. In particular you should know what
it means to log in and invoke programs, and what �le systems and directories
(or folders) are.

As a consequence of this intended audience, these notes do not explain
every detail of every command; they cover a subset that lets you get a lot
done and that get you to the point where you can read and understand more
detailed sources. There are typically many di�erent ways to accomplish a
given task; the notes usually show only one of the ways. The writing style
is deliberately terse. Once you master the basic features described here, you
should consult the relevant man pages, or search on the World-Wide-Web,
for any command you want to understand further. When the notes refer to
searching \the manual" for a command or other topic, they mean reading
the man page for the topic and Wikipedia entries, and using Internet search
engines.

Textual conventions in these notes are:

• Sections marked with the dagger symbol (†) are advanced material that
might be skipped in an introductory course.

• The �rst occurrence of a technical term is in italics; the explanation
usually follows within a few sentences or paragraphs, but may be in a
later section indicated by a cross-reference.

• Program names, what you type, and what text the computer prints in
response are in a �xed-width typewriter font.

• Program listings use variable-width fonts; the listing-formatter package

1http://research.cs.queensu.ca/home/cisc220/

Version 1.1 1

http://research.cs.queensu.ca/home/cisc220/
http://wikipedia.org
http://research.cs.queensu.ca/home/cisc220/

uses italics and boldface to indicate comments and keywords, respec-
tively.

• The main text normally describes the basic or normal case for its topic;
it may oversimplify to make the explanation easier to understand. There
are footnotes to describe minor complexities; you can ignore them on a
�rst reading.

This version of the notes can be printed; URLs are included as footnotes.
Command syntax, options, and behaviour on other UNIXTMsystems may

di�er from that on the version of Linux we used while writing these notes.
This version of the notes corresponds to Ubuntu 12.09 Linux in CASlab at
Queen's University in July 2013.

The choice of topics for these notes was governed by the class slides for
CISC220 from Fall 2012 by Margaret Lamb, who provided much useful guid-
ance on what material to include and how to present it.

Part I

Linux Basics

2 Overview

Linux is a free operating system that runs on many di�erent hardware plat-
forms, from personal computers to mainframes and supercomputers. There
is a little ambiguity in the term \operating system." Classically it meant
software that manages what happens on a computer: a set of programs for
managing memory, the �le system, external devices such as terminals and net-
work communication, loading and running application programs, and security
for reducing the possibility of applications interfering with each others' use of
the basic functions of the computer. On Linux, this portion of the operating
system is referred to as the kernel. These days \operating system" can include
some additional software, such as basic user interface facilities and some utility
programs.

Figure 1 shows the layers making up the Linux system. A user interacts
with some form of user interface, an application that runs on top of the ker-
nel. One particular kind of user interface is the shell, a textual command-line

Version 1.1 2

Figure 1: Linux Operating System

Classic \layered operating system" diagram specialized for
Linux.

interface that is the primary (currently only) way these notes describe how to
use Linux.

2.1 History

This is a very brief summary of the history of Linux; for more context, you
should consult Wikipedia and other online sources.

Linux is a variant of UNIX. In the 1960s, the research subsidiary of the Bell
Telephone System, Bell Laboratories (now ATT Bell Laboratories) and others
developed a very complex operating system called MULTICS (Multiplexed
Information and Computer System). It embodied many good ideas, but had
poor performance and was never commercially successful. In the early 1970s,
Bell employees created a much simpler and more e�cient system called UNICS
(Uniplexed Information and Computer System); the spelling was later changed
to UNIX. It was originally written in assembly language for the PDP-7, but in
1973 was translated to C2 (sometimes called a \portable assembly language");
this made porting it to other hardware much easier.

In 1988 the Institute of Electrical and Electronic Engineers (IEEE, pro-
nounced \I triple E") released a standard for UNIX-like operating system
interfaces, IEEE 1003, that was eventually called POSIX. Many operating
sytems were or became POSIX-compliant, at least in part; thus some descrip-
tions of UNIX features refer to POSIX.

On October 5, 1991, Linus Torvalds, then a Finnish university student,
released the �rst version of the Linux kernel. Since it provided a key subset
of the facilities of UNIX, it was immediately able to run many of the appli-
cations developed by the Free Software Foundation, which were collectively
called GNU (a recursive acronym standing for \GNU is Not UNIX"). Thus the

2We cover some aspects of C programming in Section III.

Version 1.1 3

http://en.wikipedia.org/wiki/History_of_Linux

FSF and others prefer to call the whole system (kernel plus key applications)
GNU/Linux. It is now \mostly" POSIX-compliant.

UNIX and many of its derivatives are proprietery commercial systems In
contrast, GNU/Linux is free, which has made it very popular with general
non-commercial users and hobbyists. Because it is free, and source code for
it is freely available, several di�erent organizations have released their own
\distributions," with variations in exactly what software is available \out of
the box" and where various �les are placed. The distribution we use in the
CASlab, and on which these notes are based, is Ubuntu 12.09.

2.2 Shells

In a typical graphical user interface (GUI), you invoke programs by touching or
clicking on some icon, which represents program to run or a �le of a particular
type (in which case your action runs some speci�c application associated with
that type of �le). With a command line interface (CLI), you type names of
commands and supply arguments. A GUI system is usually much easier to
learn and use than a command-line user interface { but only for the most
common functions you want to perform. A CLI is usually harder to learn,
but makes it possible to do more advanced functions. A GUI is sometimes
referred to as WYSIWYG (What You See Is What You Get); however it can
also be disparaged as a WYSIAYG (What You See Is All You've Got). A CLI
can make it possible to specify advanced functionality, at the cost of a steeper
\learning curve."

The fact that the shell is an ordinary application means that there can be
many di�erent shells. These notes describe a shell called bash (which stands
for Bourne-again shell). There are several others in common use, including

• sh, the original Bourne shell, developed by Stephen Bourne of Bell Labs
and �rst realeased in 1977.

• csh, the \C shell," which replaced the programming language used in
shell scripts (Section 5) with one resembling C.

• ksh, the \Korn shell," developed by David Korn at Bell Labs in the early
1980's, combined features of sh (with which it was backward-compatible)
and csh.

bash was developed by the Free Software Founddation; it combines features
of sh and ksh but is not quite backward-compatible with them.

Version 1.1 4

Linux systems do provide GUIs, and a shell can be accessed from within
each GUI. As with shells, there are several di�erent GUIs.

2.3 Interacting with bash

When you log into a Linux system like the Queen's University CASlab, you
are faced with a command prompt such as

dal@linux2:~:$

Your prompt may look di�erent, because you can customize it (Section 4.3).
This particular prompt has the general form

your user name@ short computer name: current working directory:$
The character ~ is an abbreviation for \your home directory," your current
working directory directly after logging in. At this point you are expected to
type commands after the prompt, such as

dal@linux2:~:$ pwd

/cas/staff/dal
This and later examples show you

• the prompt (as above),

• the command you type (pwd), and

• the textual output (/cis/staff/dal, the full name of the current direc-
tory).

The pwd command (print working directory) prints the full path name of the
current working directory { the one in which, by default, any �les you examine
are found and where those you create will be placed.

Figure 2 shows a short bash session.

• cd (change directory) changes the current working directory from the
home directory, ~, to one of its subdirectories, ~/220.

• ls (list) shows the names of the �les (pride.txt) and directories (poems)
stored within the current directory.

• ls poems lists the �les in subdirectory poems.

• cat poems/jabberwocky shows the contents of �le poems/jabberwocky,
the �rst few lines of Lewis Carroll's famous poem.

To understand these examples more fully, you need to understand the Linux
�le system.

Version 1.1 5

dal@linux6:~$ cd c220

dal@linux6:~/c220$ ls

poems/ pride.txt

dal@linux6:~/c220$ ls poems

bed gentle jabberwocky michaelis road tolls

birches gustibus letter nov_guest stop wall

frog hope mary ring summer will

dal@linux6:~/c220$ cat poems/jabberwocky

Jabberwocky

Lewis Carroll

’Twas brillig, and the slithy toves

Did gyre and gimble in the wabe:

All mimsy were the borogoves,

And the mome raths outgrabe.

dal@linux6:~/c220$

Figure 2: Example bash Session

3 The File System

The Linux �le system has four major components.

• A device is a physical piece of hardware, such as a hard drive, optical
reader, or
ash drive. Each device has its own �le structures, which
typically include a top-level directory, a collection of inodes describing
individual �les, tables showing where to �nd free space for new �les, and
the actual contents of the �les.

• An inode is the description of a single �le, including what device it is
on, where to �nd the contents of the �le, dates (and times) when the �le
was last accessed or modi�ed, and permissions (Section 3.5) governing
who can perform what operations on the �le. It does not contain the
name of the �le. Each inode has an integer called its \inode number,"
which you can think of as an index into a big array of inodes. Inode
numbers are unique within a device: no two inodes on a device have the
same number, but two inodes on di�erent devices might have the same
number.

• File contents are stored separately from inodes; inodes contains pointers

Version 1.1 6

(such as disk addresses) to �le contents. The contents of the �le are data
in the �le; the descriptive information in the inode is metadata { data
about the �le.

• A directory is one speci�c kind of �le whose contents are essentially just
a table of pairs of names and inode numbers.

There is a top-level directory named / (\slash;" also called the root directory)
from which all other directories and �les can be reached. The top-level directo-
ries of di�erent devices are one or two levels down in the hierarchy. For exam-
ple, on CASlab the three directories /proc, /cas/staff, and /cas/student

are on di�erent devices.3

Suppose the current working directory is /cis/staff/dal as in the bash

session of Figure 2, and a program wishes to read �le c220/pride.txt (rela-
tive to the current working directory). Figure 3 shows the corresponding �le
structures. The top three boxes are inodes, labeled with their path names and
inode numbers. Each has a pointer to its �le contents. The leftmost two boxes
are directories, so their contents are name/number pairs. The leftmost box is
the inode for the current working directory; it has inode number 401776. It has
a name and inode number pair for c220 plus other information (represented
by ...). When a program wants to open c220 it calls a kernel function and
supplies the path name c220/pride.txt. The kernel interprets the name as a
set of directions for traversing the directory structure. It �nds the entry c220

in the current directory and gets the corresponding inode number 395612. It
opens that inode and reads the information corresponding to the second box.
This contains some information about the c220 directory (not shown) and four
entries The entry with name . (pronounced \dot") contains the inode number
of c220 itself. The entry with name .. (pronounced \dotdot") contains the
inode number of its parent directory /cis/staff/dal/. All directories contain
entries for these two names, with the appropriate inode numbers.

Within inode 395612 (/cis/staff/dal/c220/) the kernel �nds the entry
pride.txt and �nds the inode number 591028. Since this is the end of the
path, and a regular �le, it stops. Inode 591028 has various information about
the �le, plus a pointer to the �le contents. The bottom box is the �le con-
tents (which are not an inode): the bytes representing Jane Austin'sPride and
Prejudice, surrounded by some Project Gutenberg boilerplate text.

3The mount command links separate devices and �le structures into the directory struc-
ture; it is beyond the scope of these notes.

Version 1.1 7

Figure 3: Inode Structure for c220/pride.txt

Inode structure. Solid lines with arrows show connections
between inodes and �le contents; this is an abstraction of
what might be multiple pointers to multiple chunks of content.
Dashed lines with diamonds show indirect connections via inode
numbers.

It is important to emphasize that the inode for a �le is stored separately
from its contents. The contents are the actual data in the �le; the inode
is metadata { data about the �le. Metadata can change without changing
contents. For example, each time anyone reads a �le, the access time of the
�le changes to the date and time the �le was opened, but the contents do
not change. When someone writes to a �le, the modification time changes as
well as the access time. When someone changes the access control permissions
(Section 3.3 on page 13), the inode and its change time updates but the �le
contents and modi�cation time do not.

The directory /dev is special: the \�les" within it represent physical and
logical devices. The details of /dev are beyond the scope of these notes, but
a few are worth noting:

• /dev/null is a \device" with no contents. Reading from it immediately
yields end-of-�le, and writing to it is ignored. If you were testing a
program you might tell it read from /dev/null just to verify that its

Version 1.1 8

end-of-�le processing worked, and might tell it to write to /dev/null if
you wanted to ignore some of its outputs.

• /dev/stdin, /dev/stdout, and /dev/stderr represent the standard in-
put, output, and error streams of the current process (Section 4.2 on
page 26).

• /dev/tty is the current \terminal" { the terminal or window of the shell
that launched the process in question. This is di�erent from stdin,
stdout, and stderr, since those can be redirected to regular �les.

3.1 Hard Links

The use of inodes means that an ordinary (non-directory) �le does not nec-
essarily have a unique name. Two di�erent entries can have the same inode
number { either entries in two di�erent directories, or two entries in the same
directory with di�erent names. These are often referred to as \hard links" to
contrast them with symbolic links (Section 3.6 on page 19). You can't create a
hard link to a directory;4 consequently, each directory has a unique name and
a unique \parent directory" that contains it.

Figure 4 shows two directories (inode1 and inode2) and an ordinary �le
(inode3). Names are text; arrows represent inode numbers. Each directory
has an entry . (dot) with its own inode number, and .. (dotdot) with its
parent's inode number. With inode1 as the current working directory:

• Pathnames nameN and name1/name1a refer to the same �le, inode3.

• Pathnames . and name1/.. both refer to the current working directory.

The boxes saying other entries stand for an arbitrary number of other name/in-
ode pairs, possibly none.

3.2 File-related bash Commands

Given a basic understanding of the �le system, we can describe some gen-
eral features of bash commands, using �le system manipulation commands as
examples. The general form of a shell command is

name [flags] [other arguments]

The various portions of this command line are:

4Except via the mkdir command (page 11).

Version 1.1 9

Figure 4: Multiple Hard Links to a File

Multiple hard links to inode3. Dashed arrows represent indi-
rect connections via inode numbers; solid mean direct inode-to-
contents connections via disk addresses.

• The name identi�es the command. The name can be a �le system path
name for an executable �le, but it can also be a simple name without
slashes. Some such simple names are \built into" the shell (that is,
interpreted directly by the shell program, without invoking any separate
programs), while for others the shell �nds the executable �le by looking
for a �le with that name in a collection of directories called the search
path (Section 4.5) (or just \the path").

• Items surrounded by square brackets [] are optional.

• flags is a set of \command line options" that modify the behaviour of a
command. Without them, the command has a certain default behaviour.
Each
ag starts with a dash or hyphen (-) and almost always consists
of a single letter. You can run several
ags together after a single dash;
thus ls -l -t means the same thing as ls -lt.

Version 1.1 10

• other arguments are whatever else the command needs to perform its
functionality. They often consist of pathnames for �les on which the
command operates.

The common bash commands dealing with �les are:

• Section 2.3 on page 5 introduced the pwd command to print the current
working directory, and the cd command to change it.

• ls (as shown in Figure 2 on page 6) shows the contents of the cur-
rent working directory. Normally it shows the names in several columns,
sorted by name. ls -t shows them in order of modification time (page 8),
most recent �rst. ls -l shows a \long" form with many pieces of infor-
mation about the �les, such as size, modi�cation times, what user owns
it, and its permissions (Section 3.3); ls -i adds inode numbers.

• rm removes a link to a �le. This does not necessarily delete the �le; the
�le is deleted when the last hard link to it is removed. It does not place
the �le in any sort of \recycle bin," so you must use it very carefully.
Since commonly there is only a single link to an ordinary �le, many Linux
system administrators arrange that rm prompt for con�rmation that you
intend to delete a �le { but this is not the default. To delete a directory,
you should use rmdir instead of rm. The -i (\interactve")
ag causes
rm to ask you to con�rm for each �le whether you wish to delete it. The
-f command suppresses error messages about deleting �les taht don't
exist.

• mkdir pathname creates a new directory with the given path name (which
can include slashes; every name but the last one in the path must already
exist). This is distinct from creating a �le because a directory contains
the two special entries named . (a link to itself) and .. (a link to its
parent directory). This means new directories have three speci�c hard
links (Section 3.1 on page 9): one from the parent directory to the new
one, and the special links . and .. for the new directory and its parent.

• rmdir pathname by default removes a directory if it is empty; if you
want to remove a whole directory tree, you should delete all �les in it,
and all its subdirectories, by hand.5

5There are ways to remove a directory and all its contents recursively, but it is a very
bad idea to do so unless you're absolutely sure it's what you mean to do.

Version 1.1 11

• touch pathname creates an empty �le if it doesn't already exist, or up-
dates the modi�cation time of the �le (Section 3 on page 8) if it does
exist. Updating the modi�cation time can be useful with the -newer

ag of find (page 52), or to force recompilations when using the make

command (Section 14.3 on page 110).

• cp copies an ordinary �le to a new location. The two typical usages are

– Copy a single �le:
cp pathname1 pathname2

copies the contents of the �le named pathname1 to one named path-
name2.

– Copy a collection of ordinary �les to a directory:
cp pathname1 · · · pathname2 directory

The directory must already exist.

In both cases cp by default overwrites the destination �le if it already
exists and creates it if it doesn't. cp -i asks for con�rmation before
overwriting.6

• ln makes a new link for a �le. Consider Figure 4 on page 10, and suppose
inode1 were the current directory and were empty (had no �les). The
diagram could have been established by the sequence of commands

mkdir name1

touch nameN

ln nameN name1/name1a

touch name1/nameMa

• mv moves a �le. If the destination is in the same �le system, it is a
combination of ln to the new name and rm of the old name. If the
destination is on a separate �le system, it is equivalent to cp followed by
rm.

• stat prints the contents of an inode in a readable form. Figure 5 shows
the results of a stat command.

6There is a bash shell mechanism called aliasing (Section 4.5 on page 35) that lets you
arrange for cp to mean cp -i; some system administrators make a default setting in your
initial bash login script (Section 5 on page 40).

Version 1.1 12

Figure 5: Results of stat Command
dal@linux3:~/notes/poems$ stat mary

File: ‘mary’

Size: 105 Blocks: 16 IO Block: 1048576 regular file

Device: 17h/23d Inode: 48660951 Links: 1

Access: (0600/-rw-------) Uid: (2133180/ dal) Gid: (200/ student)

Access: 2013-08-08 11:45:41.000000000 -0400

Modify: 2013-07-05 14:27:12.000000000 -0400

Change: 2013-07-05 14:27:12.000000000 -0400

Birth: -

dal@linux3:~/notes/poems$ ls -l mary

-rw------- 1 dal student 105 Jul 5 14:27 mary

dal@linux3:~/notes/poems$

The �rst Access is file permissions; Uid and Gid are user (owner) and
group IDs (Section 3.5 on page 18). The second Access, plus Modify and
Change, are the corresponding dates and times (Section 3 on page 8).

3.3 File Permissions

Any system shared by multiple users needs a way to control access to �les.
Linux does this by introducing the idea of an owner for each �le { the login
name of whoever created it { and group { a collection of users created by the
system administrator.7 Each �le (including each directory) has three sets of
permissions describing who can manipulate the �le and in what way. For an
ordinary �le,

• r (\read") means the user can read the �le: list its contents.

• w (\write") means the user can write to the �le: change its contents.

• x (\execute") means the user can execute the �le, that is, run it as a
program.

Normally �le owners have rw- permissions on their ordinary �les and rwx

permission on their programs (where the - indicates a lack of the x permission).
For a directory, the permissions are slightly di�erent.

• r means the user can list the contents of the directory; this is a conse-
quence of being able to read it like an ordinary �le. If you don't have read
permission, you can't discover the names of any �les in the directory.

• w means the user can create and delete �les in the directory; this is a
consequence of being able to change the directory.

7For more on owners and groups see Section 3.5 on page 18.

Version 1.1 13

• xmeans the user can look up a �le in the directory { that is, get the inode
for a �le, if the user knows its exact name. You can have x permission
on a directory without having r permission. This means the owner of
the �le can arrange for other people to read (and even write) �les a
directory without being able to �nd the names of every �le. The Linux
kernel reads the directory itself to �nd a speci�c �le name, but won't let
users read the directory themselves. See Section 3.4 on page 17 for an
example.

Normally owners have rwx permissions on their directories, and give read and
execute permissions (r-x) for everyone else on directories they want to be
publicly readable.

The representation of a permission (which you can view with the command
ls -l; see Figure 6) is a sequence of seven characters of the form kabcdefghi
The �rst letter (indicated by k) is not actually a permission; it is the kind
of �le (d for a directory, - for an ordinary �le, and l for a symbolic link.8

The next three sets of three letters describe permissions. The �rst group of
three (abc) show permissions for the owner, the second (def) for the group,
and the third (ghi) for everyone else. In each three-letter group, each position
corresponds to one of the three permissions (read, write, or execute). If the
letter is a -, it means the corresponding group of people lack that permission.
If it isn't -, it is a speci�c other letter.

1. In the �rst position (a, d, and g) an r means the corresponding people
have read permission.

2. In the second position (b, e, and h) a w means the corresponding people
have write permission.

3. In the third position (c, f, and i) an x means the corresponding people
have execute permission.

To see information about a directory in detail, you can use the command
ls -liaF.9 Figure 6 shows the results of ls -liaF in the directory with inode
inode1 in Figure 4 on page 10. There are several things to note about this
example.

8See Section 3.6 on page 19.
9-l (\long") shows most of this information. -i adds inode numbers. -F \
ags" entries

with a character indicating its type; in particular, this is where the trailing / comes from at
the end of directory names. There is a convention that ls by default doesn't show \hidden"
�les (those whose names start with a dot); the -a option shows these �les.

Version 1.1 14

Figure 6: Long-Form directory Listing

dal@linux6:~/notes/experiment$ ls -liaF . name1

.:

total 28

48660968 drwx------ 3 dal student 4096 Jul 9 09:18 ./

48660888 drwx------ 4 dal student 4096 Jul 9 09:14 ../

48660971 drwx------ 2 dal student 4096 Jul 9 09:17 name1/

48660972 -rw------- 2 dal student 0 Jul 9 09:16 nameN

name1:

total 24

48660971 drwx------ 2 dal student 4096 Jul 9 09:17 ./

48660968 drwx------ 3 dal student 4096 Jul 9 09:18 ../

48660972 -rw------- 2 dal student 0 Jul 9 09:16 name1a

48660974 -rw------- 1 dal student 0 Jul 9 09:17 nameMa

dal@linux6:~/notes/experiment$

Results of ls -liaF. Columns are inode number, permissions,
number of hard links, owner (dal), group (student), size,
modi�cation date/time, name.

• Since the shell prompt shows the current directory (between the : and
the $), . is also ~/notes/experiment.

• name1 and all four entries starting with . are marked as directories (�rst
character of the permission is d). All the ordinary �les have a - in this
position.

• None of the �les and directories are accessible to anyone but the owner
(- in the last two groups of three permission
ags).

• The owner can read (list), write (create �les in) and execute (look up
�les in) all the directories.

• The owner can read and write all the ordinary �les, but cannot execute
them as programs.

Version 1.1 15

• The inode numbers for nameN and name1/name1a are the same; the latter
had been created with a ln (create hard link) command.

• ./name1 and name1/. have the same inode number. Each has 2 hard
links.

• . and name1/.. have the same inode number. There are three links,
because the parent of . (~/notes) also links to .

• Even \small" directories like this are fairly large { 4 kilobytes in this
case.

• All the ordinary �les are of size 0, since they were created with touch

rather than with something that would give them real content.

To change permissions on a �le you can use the chmod command.10 The
simplest form is

chmod octal file(s)

The octal number is a set of three digits each composed by adding 4 for r

permission, 2 for w, and 1 for x. Thus rw- permission is 6, and r-x is 5. If
there are less than three octal digits, the leading ones are taken to be 0. The
�rst digit is permissions for the owner, the second for the group, and the third
for everyone else.

chmod 750 file1 file2

There is a complex mnemonic syntax that uses letters instead of numbers; the
two most common are

chmod go= file1 file2

to remove all permissions for group (g)and other (o),
chmod a+rx file1 file2

to add execute permission for everyone (useful after you create a shell script,
Section 5).

By default you should set group and other permissions to none (go=). This
isn't the default unless your system administrators have made it so. The
command

umask octal

sets the file mode creation mask to the given octal number. When a program
creates a �le specifying certain permissions, the kernel turns o� any bits with
a 1 in the umask. Thus umask 077 leaves owner permissions alone but ensures

10For historical reasons this isn't something less unexpected like chperm; the name stands
for change mode.

Version 1.1 16

group and other permissions are turned o�. There is also a symbolic form of
umask as with chmod. To �nd the current umask you can type:

dal@linux6:~$ umask

0077

dal@linux6:~$ umask -S

u=rwx,g=,o=

3.4 Directory Read and Execute Permissions†
Section 3.3 explained what read and execute permissions meant for directories,
but typically beginners have trouble understanding why there should be a
di�erence. To recap,

• r permission lets you read the directory as a �le, and thus list all its
contents { the names and inode numbers of every �le and subdirectory
within it.

• x permission lets you look up the inode number associated with a speci�c
name, even if you can't see all the names in the directory.

This di�erence lets you make a very �ne distinction in how people can access
your �les. Suppose you have a shared directory into which you put �les you
want other people to read. You might want anyone to be able to read rant.txt
but only members of your group to read iHateC220.txt. Furthermore you
might not want the professor to even know iHateC220.txt exists. You could
achieve this via

cd shared

chmod a+r rant.txt

chmod o=,g=r iHateC220.txt

chmod g=rx,o=x .

Figure 7 shows the e�ects of these commands. More calls to chmod would be
needed to give x permission to ~ and ~/notes { but beware that opening up
directories like this would would let people read and even write �les for which
you forgot to turn o� \group" and \other" permissions.

You can tell everyone \see ~me/shared/rant.txt" and they could use a
program like less to read it. Only your group (student) can ls ~me/shared"

Version 1.1 17

Figure 7: Directory Without Read Permission

dal@linux6:~/notes$ cd shared

dal@linux6:~/notes/shared$ ls -liaF .

total 32

48660973 drwx------ 2 dal student 4096 Jul 11 10:44 ./

48660888 drwx------ 5 dal student 4096 Jul 11 10:43 ../

48660977 -rw------- 1 dal student 96 Jul 11 10:44 iHateC220.txt

48660976 -rw------- 1 dal student 68 Jul 11 10:44 rant.txt

dal@linux6:~/notes/shared$ chmod a+r rant.txt

dal@linux6:~/notes/shared$ chmod g=r iHateC220.txt

dal@linux6:~/notes/shared$ chmod g=rx,o=x .

dal@linux6:~/notes/shared$ ls -liaF .

total 32

48660973 drwxr-x--x 2 dal student 4096 Jul 11 10:44 ./

48660888 drwx------ 5 dal student 4096 Jul 11 10:43 ../

48660977 -rw-r----- 1 dal student 96 Jul 11 10:44 iHateC220.txt

48660976 -rw-r--r-- 1 dal student 68 Jul 11 10:44 rant.txt

dal@linux6:~/notes/shared$

Creating a directory with x but not r permissions to make
one �le readable to everyone and another only to the group
and invisible outside the group.

and see both �le names, and only they can read iHateC220.txt. Everyone
else would get an error message.11

No one can cd to ~me or ~me/notes, since they lack r permission.

3.5 Owners and Groups

The owner of a �le is initially the user name (login identi�er) of whoever cre-
ated it. There is a chown command to change owners; it only works if invoked
by the current owner or by a system administrator. \A system administrator"
means the special \superuser", the login id root; it has full permission to
change any �les in the system.

11Of course there is nothing preventing a system administrator from putting professors in
the student group as well as a faculty or staff group.

Version 1.1 18

A group is a list of user names created by a system administrator. A user
can be in several groups; the groups command lists them. One of these groups
is primary (the one you're in when you log in). The initial group of a �le is
the primary group of its creator; the chgrp command can change it. If any
of the groups you are in are the same as that of the �le, you have the group
permissions for that �le (the second group of three permissions shown by ls

-l) { unless, of course, you are the owner, in which case owner permissions
apply instead.

If you are in a team project, typically your team would have its own group;
you'd be in a general student group as well your team's special group. You
might create shared directories and �les whose group is the one for your team.

3.6 Symbolic Links

Hard links have three problems:

• You can't make hard links across �le systems; a directory on one disk
drive can't make a hard link to something on a di�erent drive, because
inodes are device-speci�c.

• You can't make hard links to directories except via mkdir commands.

• Some editors (such as emacs) write a new �le and unlink the old �le
instead of modifying the old �le in-place (as vi does). Their operation
is basically

– Copy the contents of the old �le into internal memory.

– Create a new temporary �le with a di�erent name, usually in the
same directory as the old �le.

– When the user \saves" the �le, write the contents of internal mem-
ory to the temporary �le, unlink the old �le,12 and rename the
temporary �le to the old name.

A hard link elsewhere references the old �le, not the new one.

To solve all these problems, Linux has symbolic links. A symbolic link is
a special �le type whose contents are a pathname. When someone opens the

12If the editor \keeps backups" it renames the old �le instead of unlinking it. Linux users
on CASlab will see Emacs backup �les with a ~ at the end of their name.

Version 1.1 19

symbolic link, Linux interprets the pathname to �nd the �le it names, and
opens that �le instead.

You create a symbolic link with the -s option to the ln command. For
example, when the current directory is

/cis/staff/dal/notes/experiment

(the same as in Figure 4) the command
ln -s /cis/student/somebody /asgt1.c student.c

creates a �le in the current directory whose name is student.c, marked as a
symbolic link, and whose content is the string

/cis/student/somebody /asgt1.c

(possibly including a bit more information, depending on the details of the
Linux implementation).

When using a symbolic link, two sets of permissions are involved: those of
the symbolic link itself, and those of the �le it names. When you do an ls -l

on a symbolic link, you see permissions lrwxrwxrwx, but this doesn't mean
you can actually do anything with the �le it names. Linux follows the path
contained in the symbolic link and uses the permissions of the actual �le. The
permisions on the symbolic link itself are never used.

3.7 (Lack of) File Formats

Linux does not impose any particular constraints on the contents of �les; any
\format" is just a convention shared among some user-level programs. The
standard UNIX/Linux convention for text �les is to interpret a \newline"
character (\n, \line feed") as the end of the line. Unfortunately, �les imported
from MicroSoft Windows follow a di�erent convention, wherein lines end with
\r\n (\carriage return" followed by \linefeed"). The Windows convention is
historical: on typewriters and hardcopy computer terminals there were two
separate characters to end a line. \Carriage return" (\r) returned the mecha-
nism holding the paper so that new keystrokes would place ink on the left-hand
edge. \Line feed" (\n) would rotate the cylinder holding the paper so that
new keystrokes would occur on the next line. The two mechanisms were sepa-
rate; a bare carriage return would allow overstriking of keystrokes, whereas a
bare line feed would start a new line in the middle of the paper (wherever the
carriage happened to be at that moment).

The commands fromdos and todos convert their arguments between Win-
dows and Linux formats \in-place:" they modify the �le rather than making
a copy.

Version 1.1 20

Figure 8 shows the contents of the �le mary containing the poem \Mary
had a little lamb." ls shows that it is 105 bytes long. wc (\word count") shows

Figure 8: File Contents, od, and wc

dal@linux3:~/notes/poems$ ls -l mary

-rw------- 1 dal student 105 Jul 5 14:27 mary

dal@linux3:~/notes/poems$ wc mary

4 20 105 mary

dal@linux3:~/c220/poems$ cat mary

Mary had a little lamb,

Little lamb, little lamb.

Mary had a little lamb

Whose fleece was white as snow.

dal@linux3:~/notes/poems$ od -c mary

0000000 M a r y h a d a l i t t l

0000020 e l a m b , \n L i t t l e l

0000040 a m b , l i t t l e l a m b

0000060 . \n M a r y h a d a l i t

0000100 t l e l a m b \n W h o s e f

0000120 l e e c e w a s w h i t e

0000140 a s s n o w . \n

0000151

dal@linux3:~/notes/poems$ od -x mary

0000000 614d 7972 6820 6461 6120 6c20 7469 6c74

0000020 2065 616c 626d 0a2c 694c 7474 656c 6c20

0000040 6d61 2c62 6c20 7469 6c74 2065 616c 626d

0000060 0a2e 614d 7972 6820 6461 6120 6c20 7469

0000100 6c74 2065 616c 626d 570a 6f68 6573 6620

0000120 656c 6365 2065 6177 2073 6877 7469 2065

0000140 7361 7320 6f6e 2e77 000a

0000151

dal@linux3:~/notes/poems$ cd ..

dal@linux3:~/notes$ cp poems/mary mary.txt

dal@linux3:~/notes$ todos mary.txt

dal@linux3:~/notes$ od -c mary.txt

0000000 M a r y h a d a l i t t l

0000020 e l a m b , \r \n L i t t l e

0000040 l a m b , l i t t l e l a m

0000060 b . \r \n M a r y h a d a l

0000100 i t t l e l a m b \r \n W h o s

0000120 e f l e e c e w a s w h i

0000140 t e a s s n o w . \r \n

0000155

dal@linux3:~/notes$

how many lines (4), words (20), and characters/bytes (105) are in the �le. cat
shows the contents of the �le with each character interpreted in whatever way
\the terminal" interprets it { so that newlines start text on a new line. od

-c (\octal dump") shows the contents as individual characters with escape
sequences for non-printing characters (just \n in this case); the numbers on
the left edge are character counts in octal (16 characters per line). The last few

Version 1.1 21

lines show the results of converting a Linux-format poem to DOS (Windows)
format.

Figure 9 shows a �le with non-printing \control characters" { in this case,
control-A and control-H. As before, cat shows the characters in whatever
form \the terminal" interprets them. The control-A does not print (note
the two consecutive spaces after the word \control-A") whereas the control-H
(backspace) moves back one character (note the single space after the word
\control-H"). od shows the control-A as octal 001, and the control-H as the

Figure 9: File Containing Control Characters

dal@linux3:~/notes$ cat controlChar.txt

This line has a control-A and

a control-H character, each

surrounded by spaces.

dal@linux3:~/notes$ wc controlChar.txt

3 13 84 controlChar.txt

dal@linux3:~/notes$ od -c controlChar.txt

0000000 T h i s l i n e h a s a

0000020 c o n t r o l - A 001 a n d \n

0000040 a c o n t r o l - H \b c h

0000060 a r a c t e r , e a c h \n s u

0000100 r r o u n d e d b y s p a c

0000120 e s . \n

0000124

dal@linux3:~/notes$

escape sequence \b.

4 The bash Shell And Basic Commands

Section 3.2 on page 9 introduced the basics of the bash shell, including com-
mands that a�ect the �le system. This section describes bashmore thoroughly.

A bash command line is of the form
name [flags] [other arguments]

It is very common for most of the arguments to be �le system path names
identifying which �les the command will operate on.

Two simple commands for illustrating some bash features are cat (short
for \concatenate") and echo. The directory ~/notes/poems contains the �les:

dal@linux6:~/notes/poems$ ls

backup/ frog hope mary ring summer will

bed gentle jabberwocky michaelis road tolls

birches gustibus letter nov_guest stop wall

Version 1.1 22

dal@linux6:~/notes/poems$

Figure 10 shows a typical usage of cat. In the current (poems) directory

Figure 10: Example of Using cat

dal@linux6:~/notes/poems$ cat jabberwocky bed

Jabberwocky

Lewis Carroll

’Twas brillig, and the slithy toves

Did gyre and gimble in the wabe:

All mimsy were the borogoves,

And the mome raths outgrabe.

Bed in Summer

Robert Louis Stevenson

In winter I get up at night

And dress by yellow candle-light.

In summer quite the other way,

I have to go to bed by day.

I have to go to bed and see

The birds still hopping on the tree,

Or hear the grown-up people’s feet

Still going past me in the street.

And does it not seem hard to you,

When all the sky is clear and blue,

And I should like so much to play,

To have to go to bed by day?

dal@linux6:~/notes/poems$

it �nds the two �les jabberwocky and bed and writes their contents to the
terminal13 in the order you listed them on the command line. In contrast,
the echo command simply writes its arguments { their literal text { to the
terminal:

dal@linux6:~/notes/poems$ echo put jabberwocky to bed

put jabberwocky to bed

dal@linux6:~/notes/poems$

13This is an oversimpli�cation; see Section 4.2 on page 27.

Version 1.1 23

echo may seem trivial but is useful for illustrating several more complex fea-
tures of how bash interprets a command line. For example, echo takes some

ags as arguments, which it doesn't write to the terminal:

dal@linux6:~/notes/poems$ echo -n here is a prompt

here is a promptdal@linux6:~/notes/poems$

The -n switch causes it to omit the newline at the end, which causes the next
bash prompt to start on the same line as the echoed text. This can be used in
shell scripts (Section 5 on page 39) to write their own prompts, but the read
command's -p option is a better way to do this (Section 5.1 on page 41).

If you cat some very long �le, your terminal will scroll down so that you
only see the last screenful of text. The commands head and tail show the
�rst and last few lines of a long �le, respectively. If you want to see pause at
the end of each screenful, you can use less instead of cat. Table 1 shows you
the main commands you can use within less to move around in the �le.

Table 1: Commands Within less
Command Functionality
f or space forward one screenfull
b backward one screenfull
e or ENTER forward one line
y backward one line
h display help screen, which describes more commands
q exit

If you want to �nd out more about a given command, you can use the man
(\manual") command. man cat for example shows documentation about the
cat command. man man shows the man commands own documentation. Since
these notes only show the basics of each command, you should use man to �nd
out more. The argument doesn't need to be a shell command; the \manual"
includes, for example, information about various functions in the standard C
program library. Internally, man uses a program similar to less to display
screensful, so you can use the commands of Table 1 to move around in the
manual.

4.1 Wildcards and Filename Expansion

The shell interprets certain characters on a command line as special; * (asterisk
or star) is one of them. If you try:

Version 1.1 24

dal@linux6:~/notes/poems$ echo this g* has a star

this gentle gustibus has a star

dal@linux6:~/notes/poems$

instead of a copy of the arguments you typed, you get

1. The word this.

2. A list of all the �les in the current directory starting with g

3. The words has a star.

The shell turned the g* into item 2. Had we omitted the g we would have seen
a list of all the �les in the current directory.

This is an example of command line expansion, wherein the shell turns
some sequences of characters you type into other text before passing it to
the command. This particular example is called a filename wildcard or just
wildcard. A slightly more complex example is

dal@linux6:~/notes/poems$ ls -l *op*

-rw------- 1 dal student 378 Jul 5 14:27 hope

-rw------- 1 dal student 671 Jul 5 14:27 stop

dal@linux6:~/notes/poems$

The shell took *op* to mean \any �le in the current directory whose name con-
tains the charactes op, possibly preceded or followed by other characters." The
* was a pattern matched by any sequence of characters. The other wildcard
character is ?, which matches any single character:

dal@linux6:~/notes/poems$ echo w?ll

wall will

dal@linux6:~/notes/poems$

The sequence [list of characters] matches any one character in the list.
Thus the previous example could have been written

dal@linux6:~/notes/poems$ echo w[ai]ll

wall will

dal@linux6:~/notes/poems$

Version 1.1 25

It would not have matched a �le named well, whereas ? would have.
A very special form of expansion is the tab character (or control-i, written

^i). If you type this after a partially-typed �le name, the shell will immme-
diately substitute the rest of the �le name (plus a trailing space). Thus in
the poems directory, ja^i completes to jabberwocky. If there were two �les
that started with the same characters, it would complete up to just before the
�rst di�erent character; thus if there were a jabbering �le, ja^i completes
to jabber without a trailing space. A second tab at this point would show all
the �le names with the current pre�x, then echo the current command line:

dal@linux6:~/notes/poems$ ls -l jabber^i^i

jabbering jabberwocky

dal@linux6:~/notes/poems$ ls -l jabber

At this point typing w^i would complete the name to jabberwocky. An online
experiment or demo should clarify this example.

Section 4.3 on page 30 describes several other expansions bash performs.

4.2 I/O Redirection

So far we have shown all program output going to the screen (\the terminal").
You can redirect output to a �le instead, using the sequence >filename:

dal@linux6:~/notes/poems$ cat jabberwocky bed >catenated

At this point we can use the head and tail commands to look at the �rst
and last few lines of the �le; they take an argument saying how many lines to
show.

dal@linux6:~/notes/poems$ head -4 catenated

Jabberwocky

Lewis Carroll

’Twas brillig, and the slithy toves

dal@linux6:~/notes/poems$ tail -3 catenated

When all the sky is clear and blue,

And I should like so much to play,

To have to go to bed by day?

dal@linux6:~/notes/poems$

Version 1.1 26

What is going on here is that programs generally don't write to \the terminal;"
they write to their standard output, which defaults to the terminal. The >

character causes the shell to set the command's standard output to the given
�le.

Suppose we tried to cat several �lenames, one of which did not exist:

dal@linux6:~/notes/poems$ cat jabberwocky ug bed >catenated

cat: ug: No such file or directory

The standard output still goes to �le catenated as before, but an error mes-
sage has appeared on the terminal. A program typically writes all its normal
output to its \standard output," but it typically sends its error messages to
its standard error instead. Like standard output, standard error defaults to
the terminal. When you redirect standard output, the only thing left to go to
the terminal is the error messages.

You can redirect standard error separately from standard output by writing
the number 2 before the > character.

dal@linux6:~/notes/poems$ cat jabberwocky ug bed >catenated 2>fred

dal@linux6:~/notes/poems$ cat fred

cat: ug: No such file or directory

dal@linux6:~/notes/poems$

Standard output went to catenated; standard error went to fred.
The signi�cance of the number 2 is that, when a program opens a �le, Linux

sets up a data structure called a file descriptor. Three special �le descriptors
are set up by the shell before the program executes. 2 is the number of a �le
descriptor for standard error. 1 is standard output.14 Thus the above example
could equally well have been:

dal@linux6:~/notes/poems$ cat jabberwocky ug bed 2>fred 1>catenated

dal@linux6:~/notes/poems$ cat fred

cat: ug’: No such file or directory

dal@linux6:~/notes/poems$

The two redirections can go in either order.
Sometimes you want to direct both outputs to the same place. The shell

provides a special syntax for this:

140 is \standard input," which we discuss later.

Version 1.1 27

someCommand 1>someFile 2>&1

This redirects standard output (1>) to someFile, then standard error (the 2>
part) to the same �le as standard input (the &1 part). Alternatively you could
type:

someCommand 2>someFile 1>&2

which redirects standard error to someFile, then standard output to the same
�le as standard error. The two achieve identical e�ects via slightly di�erent
paths.

If the output �le for a redirect (> or >&) already exists, bash can be told
not to overwrite it via a shell option called noclobber. To see the values of all
options, use the command set -o. To set the option, use set -o noclobber.
To turn o� the option, use set +o noclobber. When noclobber is set, you
can force the overwrite of a �le by using >| instead of >.

Commands also have a standard input, which also defaults to the terminal.
For example, the sort command (without arguments) reads from standard
input, sorts it, and sends the result to standard output.

dal@linux6:~/notes/poems$ sort

this is the first typed line

but this line will come before it

and this line will come first.

^d

and this line will come first.

but this line will come before it

this is the first typed line

dal@linux6:~/notes/poems$

The �rst line invokes the sort command. The next four I typed; the ^d,
control-d, told Linux I wanted to end the input. The last four are the sorted
output, and the next command prompt. You can redirect standard input, too,
using the < character, as shown in Figure 11.

There also is a special form of redirecting standard input, called a here
document, which is sometimes used in shell scripts (page 41).

It is often useful to use the standard output of one program as the standard
input of another. The command

cat * | less

Version 1.1 28

Figure 11: Redirecting Standard Input

dal@linux6:~/notes/poems$ cat frog

I’m Nobody! Who Are You?

Emily Dickinson

I’m nobody! Who are you?

Are you nobody, too?

Then there ’s a pair of us -- don’t tell!

They ’d banish us, you know.

How dreary to be somebody!

How public, like a frog

To tell your name the livelong day

To an admiring bog!

dal@linux6:~/notes/poems$ sort <frog

Are you nobody, too?

Emily Dickinson

How dreary to be somebody!

How public, like a frog

I’m Nobody! Who Are You?

I’m nobody! Who are you?

Then there ’s a pair of us -- don’t tell!

They ’d banish us, you know.

To an admiring bog!

To tell your name the livelong day

dal@linux6:~/notes/poems$

Contents of �le frog in order, then sorted. Note the < on the sort

command to redirect its standard input. The two empty (blank) lines in
the output of sort are from the stanza separator lines in frog.

causes cat to sent the contents of all the �les in the current directory to its
standard output, and less to take its standard input from cat's output. This
is called piping; the shell introduces a special sort of \�le" called a pipe between
the two programs. It is similar in e�ect to

cat * >temp

less <temp

rm temp

but potentially more e�cient; pipes are often implemented in memory, saving
�le space, and the two programs can proceed in parallel, interleaving cat

writing a little of its output with less reading a little of its input. less can
do part of its work without waiting for cat to �nish.

Version 1.1 29

You can build a long series of pipes; each program's output becomes the
next's input. In a way it is like function composition in a functional program-
ming language like Haskell, taught in CISC 260: Programming Paradigms.15

4.3 Other Command Line Expansions

bash interprets several characters or character sequences in special ways, sub-
stituting the results at the place where the characters occurred. We have
already seen pathname wildcards * and ?. This section describes several oth-
ers.

As we will see in Section 5 on page 39, the shell interprets a full-blown
programming language. One feature of any programming language is variables.
The shell keeps track of several prede�ned variables; for example, the sequence
$SHELL or ${SHELL} substitutes the value of the variable SHELL (the pathname
of the current shell) at that point in the command line. For example:

dal@linux6:~/notes/poems$ echo ${SHELL} $SHELL x${SHELL}y
/bin/bash /bin/bash x/bin/bashy

dal@linux6:~/notes/poems$

Other important shell variables are

• $HOME, the name of your \home" directory (the current directory imme-
diately after you logged in). The character ~ means the same as $HOME;
~name means the home diretory of user name.

• $PATH, the current search path (Section 4.5 on page 36)

• $PWD, the current working directory.

• $USER, your user name

To see the values of all the (many!) shell variables, use the set command.16

The shell variable PS1 is the prompt string bash uses to tell you it is ready
for a new command. It can contain literal characters plus some special ones:

• \d: current date

• \h: name of the host machine

15http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-260.html
16set will also show you the currently-de�ned shell functions, which are beyond the scope

of these notes.

Version 1.1 30

http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-260.html
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-260.html

• \j: number of jobs you have running (Section 4.6 on page 36).

• \s: shell name

• \u: user's name

• \w: current working directory

• \!: history number of the command you're about to enter.

You can also set your own variables:

dal@linux6:~$ today=Tuesday

dal@linux6:~$ echo This day is $today.

This day is Tuesday.

dal@linux6:~$

If you use $ on a varible that hasn't been assigned to, its value is the empty
string.

bash expands the sequence x{a,b,c}y (without a preceding $) into the
three strings

xay aby xcy

There can be multiple such brace expansions in a line:

dal@linux3:~/notes$ echo x{a,b}y{c,d}z
xaycz xaydz xbycz xbydz

dal@linux3:~/notes$

One convenient use for brace expansion is copying a �le to a backup with a
similar name:

cp longComplexFileName{,1}.txt
This has the same meaning as

cp longComplexFileName.txt longComplexFileName1.txt

Sometimes you want to issue a command that is the same, or nearly the
same, as one you recently typed. bash keeps track of what commands it has
executed recently (its history) and provides several means for reducing typing
based on it. The sequence !! means \substitute the last command at this
place in the command line" and !number means \substitute the command with
the given number at this point in the command line." At one point where I
was generating examples for these notes, the last few lines of the history were:

Version 1.1 31

344 cat jabberwocky bed

345 echo jabberwocky bed

346 echo put jabberwocky to bed

347 cat put jabberwocky to bed

348 man echo

349 echo -n here is a prompt

350 ls

351 echo this * has a star

352 ls -l *op*

353 echo w?ll

354 ls

355 history

The command line !352 would re-execute ls -l *op*, whereas echo pre !!

post would execute echo pre history post.
To turn o� these command line expansions, you can surround a portion

of your command line in quotes. Double quotes (") turn o� wildcards. Sin-
gle quotes (’, apostrophe) turn o� shell variable expansion ($) and history
expansion (!) also.

A more powerful form of command repetition is to edit the previous (or
current) command line; this can save a lot of retyping if you make a mistake.
The up-arrow key or the character ^p (control-p) fetches the previous command
and lets you edit it; more ^p commands go back further in the history. You
can use the arrow keys to move around in the line, or the characters ^f and ^b

to move forward or backward one character. Normal characters are inserted
at the current spot. When you hit the enter key, the shell executes the edited
command. Table 2 shows the various line-editing commands. You can use
these same commands in the middle of the current command line, too. For
full details, search the bashmanual for information about \readline," the name
of the library that handles such editing.

The �nal form of command line expansion is command substitution. The
string $(command) (with parentheses instead of braces) causes bash to execute
the command between the parentheses and substitute its standard output.17

Suppose you had a command findSome that would output a list of �le names
containing a particular string, and you wanted to copy them to a backup
directory:

cp $(findSome) backup

17There is an older way to do this with back-quotes (‘), but it is harder to read.

Version 1.1 32

Table 2: Command-Line Editing

^b, left arrow backward (left) one character
ESC-b move backward one word
^d, DEL delete current character
ESC-d delete current word
^f, right arrow forward (right) one character
ESC-f move forward one word
^h, backspace delete previous character
ESC-^h delete previous word
^n, down arrow replace line with next (more recent) line of history
^p, up arrow replace line with previous (less recent) line of history
^rtext search backward in this line for text.
^stext search forward in this line for text.

Most editing commands are those of the emacs text editor.
^letter means to hold down the control key while typing the
letter. DEL means the delete key. ESC-character means to
type the escape key followed by the character, or hold down
the alt key while typing the character. Deleting and moving
by a \word" involves characters from the current point either
forwards or backwards to a word boundary.

Page 55 has an example of using grep to do this.
There are two commands whose main use is within $(...):

• dirname pathname prints the directory part of the pathname { every-
thing up to the last slash (/). If there is no slash, it prints \." (dot,
meaning the current directory).

• basename pathname prints just the part of the pathname after the last
slash.

• basename can take a second argument, a �le extension. If the extension
matches, it prints the regular basename but without the extension. If it
doesn't, it prints as though the second argument were omitted.

Thus:

Version 1.1 33

dal@linux6:~/notes$ dirname /cas/staff/dal/c220/pride.txt

/cas/staff/dal/c220

dal@linux6:~/notes$ basename /cas/staff/dal/c220/pride.txt

pride.txt

dal@linux6:~/notes$ basename /cas/staff/dal/c220/pride.txt .txt

pride

dal@linux6:~/notes$ basename /cas/staff/dal/c220/pride.txt .cpp

pride.txt

dal@linux6:~/notes$

4.4 Recursive Calls on bash

One of the many commands you can call from bash (or any other shell) is
bash itself. There are many reasons for doing so; the most common is what
happens \behind the scenes" when you invoke a shell script (Section 5 on
page 39). However, you may wish to do so explicitly if you are playing around
with shell state (such as by changing the contents of important shell variables)
and want to be able to easily revert to the original values. The value of $SHLVL
tells you how many levels deep in shell calls you are.

When you call a shell recursively, you can quit and get back to the shell that
invoked it via the exit command. Exiting from the top-level shell (created by
logging in) does a logout.

A recursive shell inherits several things from the shell that calls it, including
the current working directory and the umask (Section 3.3 on page 16). It also
inherits some of the shell variables: those in \the environment." You add a
variable to the environment with the export builtin command:

export MYNAME

adds MYNAME to the environment:

dal@linux3:~$ echo $SHLVL

1

dal@linux3:~$ MYNAME="David Alex Lamb"

dal@linux3:~$ echo $MYNAME

David Alex Lamb

dal@linux3:~$ bash

dal@linux3:~$ echo $SHLVL

2

dal@linux3:~$ echo $MYNAME

Version 1.1 34

dal@linux3:~$ exit

exit

dal@linux3:~$ export MYNAME

dal@linux3:~$ bash

dal@linux3:~$ echo $MYNAME

David Alex Lamb

dal@linux3:~$

You can �nd the values of all environment variables with the printenv com-
mand.

Recursive shells don't inherit aliases (Section 4.5 on page 35) or shell op-
tions(Section 4.2 on page 28), so you need to put them in your initialization
script, .bashrc (Section 5 on page 40).

4.5 Finding the Command†
If your command is a full path name (with slashes), there is no ambiguity
about where bash looks to �nd it: it simply follows the path, and, if the �le
it �nds has execute permission (x), it executes it. If instead the command is
just a name without slashes, bash uses several mechanisms to �gure out what
to do.

First, if you are in an interactive shell (one reading commands from the
terminal, not a script), bash looks to see if you have de�ned an alias with that
name via the alias command. Without arguments, this command lists the
current aliases (in the same format you'd use to de�ne them):18

dal@linux6:~$ alias

alias ll=’ls -l’

alias ls=’ls -F’

alias rm=’rm -i’

dal@linux6:~$

With these aliases, if you are in the poems directory used in previous examples
and type rm w*, bash substitutes the alias to get rm -i w*, then does wildcard
expansion to get

rm -i wall will

and �nally executes the revised command line { which, for each of the two
�les, asks you to con�rm that you wish to delete it.

18To remove an alias, use the unalias name command.

Version 1.1 35

After aliasing, if the command is still a single word, bash consults the search
path. This is a shell variable named PATH whose value is a string of directory
names separated by colons (:). bash examines each of these directories in
turn, looking for an executable �le of the same name as the command. It
substitutes the resulting path name for the command word. Thus given the
path ~/bin:/usr/local/bin:/user/bin and command xx, where there are is
a non-executable �le /usr/local/bin/xx, an executable /user/bin/xx, but
no �le named ~/bin/xx, bash will turn xx arguments into

/usr/bin/xx arguments.
The exact process is

• Break up the value of PATHat the colons into its three components, ~/bin,
/usr/local/bin, and /user/bin

• Look for ~/bin/xx; none exists.

• Look for /usr/local/bin/xx; it exists, but isn't executable.

• Look for /user/bin/xx; it exists and is executable, so use substitute it
for xx on the command line.

The command \which xx" tells you the full pathname that results from this
expansion.

4.6 Running Multiple Programs

When you issue a command to bash that isn't built in, it creates a separate
process in which to run it. A process has its own section of the computer's
memory, and Linux keeps its state separate from all other processes. This
means, among other things, that anything that goes wrong during a com-
mand's execution can't a�ect other processes, such as your shell.

There can be more than one program running at once. Each can be in
one of three states: foreground, background, or suspended. Only one is in
the \foreground," while the others are either in the \background" or are sus-
pended. The main distinction is that only the foreground program can read
from the terminal; Linux blocks background processes temporarily when they
try to do so. Multiple processes can write to the terminal; their output gets
interleaved in what is likely to be a confusing manner.

When you are running a program, typing control-z will suspend it { tem-
porarily stopping it from running, and return to the shell. For example, you

Version 1.1 36

might be running an editor and need to look up something in a very large
manual page. You could suspend the editor, run the man command, �nd the
right spot in the middle of the manual, then suspend man and resume the
editor.19 If you needed to consult the manual again, you could suspend the
editor and continue the man command, which would redisplay the manual at
the point you last viewed it.

Each of the programs you start from the shell is called a job. The jobs

command gives you a list of the current jobs. Each job has a number; you can
type %number to continue a suspended job or bring a background job into the
foreground. Alternatively, if the job has a unique pre�x you can type %prefix.
For example, if you are running both man and emacs, and suspend both, you
would see

dal@linux6:~/notes/poems$ jobs

[1]- Stopped man bash (wd: ~)

[2]+ Stopped emacs

dal@linux6:~/notes/poems$

%1 or %man would continue the man command; %2 or %em would continue the
emacs command. The + means that % by itself would run emacs.

When you suspend a job, you can send it into the background to continue
running with the bg command, which takes % arguments as described above.
You can also start a command in the background by terminating the command
line with an & (ampersand); this can be used to start a server process that
waits for incoming internet connections, for example, but servers are beyond
the scope of these notes.

To get rid of a job, use the kill command. kill %1 would kill the man

process.20

Processes other than the shell can themselves start other processes; Sec-
tion 11 on page 80 shows how to do this from C programs. For example, the
man command runs a program called pager to print a screenful of text at a
time. Also, you can run bash (or a di�erent shell) recursively from within
bash. This creates many processes, only some of which are actual jobs. For
example, suppose we run man and emacs as above, then run a second bash com-

19In a modern GUI, each program would have its own separate window, both likely visible
at the same time. The Linux mechanisms were designed for an older time, when users
typically had only a small screen without graphics. Even so, it can save on system resources,
and reduce the amount of screen space that you need to keep visible at one time.

20The kill command can also send signals to processes; see Section 12 on page 89.

Version 1.1 37

mand and suspend it (with the suspend command; control-z doesn't suspend
a shell). The ps command will show all processes.

dal@linux6:~/notes/poems$ bash

dal@linux6:~/notes/poems$ suspend

[3]+ Stopped bash

dal@linux6:~/notes/poems$ jobs

[1] Stopped man bash (wd: ~)

[2]- Stopped emacs

[3]+ Stopped bash

dal@linux6:~/notes/poems$ ps

PID TTY TIME CMD

11172 pts/2 00:00:01 bash

11742 pts/2 00:00:00 man

11752 pts/2 00:00:00 pager

11974 pts/2 00:00:00 emacs

11992 pts/2 00:00:00 bash

12002 pts/2 00:00:00 ps

dal@linux6:~/notes/poems$

The �rst bash in the output from ps is the current one; the second is the
suspended one, job 3. man and pager are the processes making up job 1; the
wd beside man bash in the jobs listing shows its working directory. ps is the
command itself; it has terminated by the time we get back to the shell prompt,
but was active when it was discovering what processes to display.

4.7 Order of Command-Line Expansions†
Earlier notes covered many di�erent things the shell does before executing a
command line; this section summarizes the order in which it does so.

• First, the shell splits the command lines into tokens { words and opera-
tors. Quotes (" and ’) group items together into a single token.

• Brace expansion: The shell turns a token like xx{aa,bb,cc}yy into
xxaayy xxbbyy xxccyy.

• Tilde expansion. This is where ~x/something/ becomes x’s home direc-
tory/something.

Version 1.1 38

• Parameter/variable expansion { the various ${...} expressions described
in previous sections.

• Command substitution { the $(...) construct, which involves running
a sub-command before executing the main one.

• Arithmetic expansion { $((expression)) is evaluated and substituted.

• Process substitution, which is beyond the scope of these notes.

• Word splitting: If the results of parameter expansion, command substi-
tution, and arithmetic expansion did not occur within double quotes, it
is split into words.

• File name expansion { the wildcards *, ?, and [...] described previ-
ously.

• Redirection. The shell sets up redirections and eliminates the corre-
sponding tokens (such as > and associated �lenames) from the command
line.

• Execution. The shell runs the command (or commands, if there were
pipes).

Understanding this order is occasionally important.

5 Shell Scripts

Suppose you have a complicated command you need to use repeatedly. For
example, Section 6.2 on page 52 shows an example of combining the find and
grep commands to locate import statements in a collection of subdirectories:

find ~/java/src -name "*.java" -exec grep -nH import "{}" \;
It is not necessary to understand this example: it is su�cient to notice that
you wouldn't want to type it more than once. If you wanted avoid memorizing
and retyping this command, you could put it in a �le called a shell script.
In general, given some complex command, you could create a �le such as
findImport in which you would put the two lines

#!/bin/bash

the complicated command
The �rst of these lines is a comment explained below; the second is the actual
command. You'd then make findImport executable by telling bash:

Version 1.1 39

chmod u+x findImport

Thereafter, when you type ./findImport,21 your current shell would invoke
bash and tell it to take commands from findImport in the current directory,
which would then execute the complicated command on the second line (and
go on to execute any other lines in findImport, if there were any). After that,
the shell running the script �nishes and returns to the shell from which you
invoked the script.22

Lines starting with a hash mark (#) are comments. The �rst line of
findImport, #!/bin/bash, was optional. It tells the shell to run bash and
pass it the contents of the �le to execute. The term \scripting" is a general
term for writing \executable text �les" { text �les meant to be interpreted by
some conventional executable program, of which bash is one example. The
initial two characters #! are part of a general mechanism used by many dif-
ferent shells to tell them what interpreter to run for whatever language the
text �le contains. Other possible interpreters include perl and other shells
like ksh.

Scripts can take parameters, which become shell variables while the script
is executing. $0 refers to the command name itself, $1 to the �rst parameter,
$2 to the second, and so on. Thus if findImport were

#!/bin/bash

find $1 -name "*.java" -exec grep -nH import "{}" \;
then typing

findImport ~/java/src

would have the same e�ect as the original example.
Normally a script executes in a separate shell process from the one in which

you invoked it (see Section 4.6 on page 36). Any changes to shell state that
happen within a script have no e�ect on the original shell. Thus if you assign
to a variable or make an alias within a script, their e�ects \go away" when the
script �nishes. If you want to execute a script within the current shell, you
type

source scriptFileName [arguments]

bash uses the same source mechanism to initialize itself. Whenever you
login, bash looks for several �les to source, including one under your con-
trol: ~/.bash_profile. Whenever you invoke bash directly as a subshell,
it sources ~/.bashrc. You should examine both these �les to see what the

21See page 36 about the PATH variable for why the ./ is necessary.
22If you want to ensure this script would execute from whatever other directories you

might cd to, make sure findImport is in some directory on your search path (Section 4.5
on page 36).

Version 1.1 40

system administrator set up as your default initialization; you can edit them
to change your preferences for how bash should behave.

There are several commands which, while they are legal to type to an
interactive shell, are more common and convenient in scripts. The following
sections discuss several of them.

5.1 Reading From the Command Line

Sometimes instead of (or in addition to) passing a list of arguments to a shell
you want to read some input from the terminal while the script executes. The
command read var reads a line from the standard input and places it in the
variable. With several variables, the �rst word is placed in the �rst variable,
the second in the second variable, and so on to the second-last variable; the
rest of the line is placed in the last.

With the
ag -p prompt, and if input is coming from a terminal instead
of a �le or pipe, the shell �rst prints the prompt (without a trailing newline).
The
ag -s (\silent") causes it not to echo characters; you would typically use
this to read a password. For example:

#!/bin/bash

some setup code

read -p "Which key? " which rest

read -ps "Password: " pass rest

jarsigner -keystore cryptkey -keypass ${pass} jar1.jar ${which}
jarsigner -keystore cryptkey -keypass ${pass} jar2.jar ${which}

uses the Java jarsigner program to digitally sign two jar �les; keys are kept in
an encrypted \key storage" �le called cryptkey, which requires a password to
decrypt. The �rst read asks for which key to use (several can be stored in the
same �le). The second asks for the password in \silent" mode (suppressing
echoing). The last two lines invoke the jar signer. Without the -keypass

option each call to the signer would prompt for the password; having the
script read the password saves duplication.

A specialized form input redirection called a here document, introduced
with double angle brackets <<, lets you enter the contents of a �le on a com-
mand line. You follow the brackets with a word; when that word appears alone
at the start of an input line, the shell recognizes it as the end of the input.
This mechanism can be used to create short sequences of inputs in for testing,
without having to create and later delete an input �le. For example

dal@linux3:~/notes$ sort <<END | uniq

Version 1.1 41

> first line of input

> second line of input

> another line

> END

another line

first line of input

second line of input

dal@linux3:~/notes$

It is more useful in scripts than when typing commands to the shell; it is
reasonably common, for example, to write scripts to test and re-text sequences
of commands; here documents keep the test commands and their (presumably
short) inputs in a single place.

5.2 if and Conditionals

The formal syntax of the if statement is
if test-commands ; then

commands ;

[elif test-commands ; then

commands ;]*

[else

commands ;]

fi
Unlike Java and C, conditionals in shell scripts don't use braces to surround
groups of statements; the keywords then, elif (\else if"), else, and fi delimit
the set of commands to be executed. The [elif ...]*, as with regular
expressions (Section 8 on page 57), means any number of repetitions of the
elif clause. Like Java but unlike Python, the indentation doesn't a�ect the
meaning of the program but is very useful for readability.

bash interprets a line-oriented language, which means that almost all com-
mands end at a newline. The semicolon (;) before then was only needed
because then was on the same line as if (and elif).

There are several di�erent kinds of test commands.
The basic boolean element in the shell is the exit status of the previous bash

command. Every command returns a numerical exit status when it �nishes.
Contrary to the meaning in C, a zero exit status means success, and anything
else means failure. Thus you can write

if cmp -s file1 file2; then

Version 1.1 42

echo files are identical

else

echo files are different

fi

The cmp -s command compares two �les and prints nothing. It exits with
status 0 if they are the same, and nonzero if they di�er. Note the semicolon
before then.

The shell variable $? means the exit status of the most recent command.
The default exit status of a script is that of the last command it executes. You
can specify an explicit exit status with exit number, which means \exit the
script now, returning number as the exit status."

To distinguish command execution from boolean expressions that the shell
interprets, you put the expression inside double square brackets:23

[[expression]]

You must have spaces around the square brackets so the shell will distinguish
them from parts of the expression. You can combine boolean expressions with
parentheses, && (and), || (or), and ! (not). Two common kinds of expressions
are string comparisons and �le property tests.

To compare strings you can use use ==, <, and < (but not <= or >=). Thus
to test whether the current directory is the home directory:

if [[$HOME == $PWD]]

then

echo I am home

else

echo I am somewhere else

fi

Since then is on a separate line, there is no need for a semicolon at the end of
the �rst line.

There are also several boolean tests of the form
-letter filename

that test for properties of �les; see Table 3
You can evaluate arithmetic expressions inside ((...)) (double parenthe-

ses). The exit status is zero (successful) if the expression yields a non-zero
number. Thus ((5+7)) evaluates to 12, and

23In old scripts you may see a holdover form with single square brackets; Section 5.3 on
page 44 shows why it is obsolete.

Version 1.1 43

Table 3: File Property Tests

-e file File exists
-f file File exists and is a regular �le
-d file File exists and is a directory
-h file File exists and is a symbolic link
-r file File exists and is readable
-w file File exists and is writable
-x file File exists and is executable
file1 -nt file2 File1 exists and is newer than

�le2, or �le2 doesn't exist

if ((5+7)); then echo nonzero; else echo zero; fi

executes the echo nonzero command after then. You can make numerical
comparisons inside double-parentheses; these allow <= and >= as well as <, >,
and !=.

You can also write assignments (=) inside double parentheses (which, of
course, means you need to be very careful about distinguishing = from ==).
The di�erence between var=expression inside double-parentheses and outside
them is that, inside, the expression is taken as numerical, and outside is taken
as a string. Thus:

dal@linux6:~$ X=5+2

dal@linux6:~$ ((Y=5+2))

dal@linux6:~$ echo $X ’!=’ $Y

5+2 != 7

dal@linux6:~$

5.3 Aside: Single Square Brackets†
There is an older form of boolean expression that uses single brackets instead of
double. It behaved slightly di�erently: I/O redirection happened inside them,
whereas with double square brackets the redirection operators < and > are
interpreted as comparison operators. Figure 12 shows two scripts that di�er
only in bracketing. The double square bracket case produces the expected
\no" response. The single square bracket case produces the unexpected \yes"
response and has the side e�ect of creating a �le called Downsview. You may

Version 1.1 44

Figure 12: Single Versus Double Square Brackets

Double and Single Bracket Scripts
#!/bin/bash

doubleBracket.sh

X=Calgary

if [[$X > Downsview]]

then

echo yes

else

echo no

fi

#!/bin/bash

X=Calgary

if [[$X > Downsview]]

then

echo yes

else

echo no

fi

#!/bin/bash

singleBracket.sh

X=Calgary

if [$X > Downsview]

then

echo yes

else

echo no

fi

Result of executing the two scripts

dal@linux3: /notes$ ls D*

ls: cannot access D*: No such file or directory

dal@linux3: /notes$./doubleBracket.sh

no

dal@linux3: /notes$ ls D*

ls: cannot access D*: No such file or directory

dal@linux3: /notes$./singleBracket.sh

yes

dal@linux3: /notes$ ls D*

Downsview

dal@linux3: /notes$

Version 1.1 45

�nd some equality and inequality comparisons inside single square brackets in
older bash scripts.

5.4 Looping

The two looping constructs are while and for. The syntax of while is:
while test-commands ; do commands ; done

As with the if command, you can omit the semicolons if you put do and done

on separate lines.
The syntax of for is
for name [in words ...]; do commands ; done

The words can be any sequence of items separated by spaces; the commands
get executed once for each word in the sequence; in the body of the loop,
$name refers to the current word. For example:

• for X in *; do echo $X; done

echoes the names of all the �les in the current directory.

• The token $* expands to the list of parameters, separated by spaces, so

for PARAM in $*; echo $PARAM; done

echoes all the parameters of the current script, one per line.

• for VAL in 3 5 9; ...

performs commands for the values 3, 5, and 9.

• for FILE in a* *.txt; ...

performs commands for all the �le names starting with a or ending in
.txt; as usual for combining multiple wildcards in a command line, �le
names of the form a*.txt will occur twice.

If you omit the words the default is $*, the list of all the command arguments
(as used in the second example).

If you want to iterate over a sequence of numbers, you can combine the
seq command, which prints such a sequence, with the $(...) construct for
command substitution (Section 4.3 on page 32).

Version 1.1 46

for X in $(seq 1 10)

do

echo $X

done

prints the numbers from 1 to 10, while

for X in $(seq 1 2 10)

do

echo $X

done

prints the odd numbers from 1 to 9 inclusive.
Sometimes one wants to deal with multiple arguments at a time, then ad-

vance to the next group of arguments. A primary example is with
ags of the
form -flag word . The shift n command was meant for this situation. It
\shifts" parameters left by n. For example, if there were originally six param-
eters, then after shift 2, $1 takes on the old value of $3, $2 the old value
of $4, parameters $5 and $6 are \unset," and $# (the number of parameters)
becomes 4. Given the script

#!/bin/bash

while (($#>0)); do

if (($#>=2)); then

echo "Next pair: " $1 $2

shift 2

else

echo "Singleton: " $1

exit

fi

done

in �le pairs, the results of a call on ./pairs with �ve arguments would be:

dal@linux6:~/notes$./pairs p1 p2 p3 p4 p5

Next pair: p1 p2

Next pair: p3 p4

Singleton: p5

dal@linux6:~/notes$

Version 1.1 47

5.5 Advanced Shell Variables

We have seen that $X and ${X} expand to the value of shell variable X, $n to
the nth parameter to the script, $* to the list of parameters, and $# to the
number of parameters.

There are several other variants using $:

• ${var:-alt} expands to the contents of var if it has a value, but to alt
if var is unset or an empty string.

dal@linux6:~/notes$ X=hello

dal@linux6:~/notes$ echo ${X:-bye}
hello

dal@linux6:~/notes$ unset X

dal@linux6:~/notes$ echo ${X:-bye}
bye

dal@linux6:~/notes$

• ${var:offset:length} expands to a substring of the given length start-
ing at the given o�set (zero origin). Omitting the length or giving a
length that would go beyond the end of the string goes to the end of the
string instead.

dal@linux6:~/notes$ X=SomeString

dal@linux6:~/notes$ echo ${X:1:4}
omeS

dal@linux6:~/notes$ echo ${X:5}
tring

dal@linux6:~/notes$ echo ${X:5:15}
tring

dal@linux6:~/notes$

• ${#var} is the length of the contents of var.

dal@linux6:~/notes$ echo $X ${#X}
SomeString 10

dal@linux6:~/notes$

• ${var/pattern/string} is the value of var with the first match of
pattern replaced by string.

Version 1.1 48

dal@linux6:~/notes$ echo ${X/S/Z}
ZomeString

dal@linux6:~/notes$

The pattern can contain wild cards as with �le names.

dal@linux6:~/notes$ echo ${X/o*S/Z}
SZtring

dal@linux6:~/notes$

• ${var//pattern/string} is the value of var with all matches of pattern
replaced by string.

dal@linux6:~/notes$ echo ${X//S/ZZ}
ZZomeZZtring

dal@linux6:~/notes$

6 find: Finding Files

Suppose you are looking for a Java program with particular string (such as
Tree) in the middle of its name. If you knew what directory it was in, you
could type

ls *Tree*.java

to �nd its exact name. However, if you had several packages, the �le could
be in one of several di�erent directories (since the Java language makes use
of the Linux directory tree structure to represent its package hierarchy). If
you weren't sure which directory to look in, you'd have to issue several ls
commands, or a single command with several arguments, one per level in the
hierarchy. For example,

ls *Tree*.java */*Tree*.java */*/*Tree*.java

IF there were another level in the directory tree, this command would miss it.
The find command lets you specify this search more concisely:
find . -name "*Tree*.java"

You can think of the general form of the command as
find directories [tests] [actions]

Each test and action starts with a multi-character keyword preceded with
a hyphen (-). The tests govern which �les find deals with; -name is one
example. The directories is a list of directories in which to search; if omitted,

Version 1.1 49

it defaults to the current directory (.). find stops looking for directory names
after the �rst occurrence of - after the �rst directory name. find starts in
each of these directories in turn, applies the tests, performs the actions on any
�les that pass the tests, then repeats for each subdirectory (recursively, to the
bottom of the directory tree). By default (with no actions) it prints the names
of any �les that pass its tests.

Technically, the general form of the command is:
find directories [predicates]

Actions are just predicates with side e�ects; such \predicates" usually evaluate
to true.

The most common predicates are

• -name pattern is true for �le names matching the pattern. If the pat-
tern contains the * and ? wildcards, it must be quoted to protect the
wildcards from expansion by the shell.

• -iname pattern ignores case in matching the pattern. Two major uses of
this are �nding �le names for which you aren't sure of the capitalization
(such as Java class names), and �nding .html and other �les accessible
from the World-Wide Web (which Internet conventions allow to have
any possible capitalization).

• -type letter �nds speci�c types of �les. -type f �nds regular �les;
-type d �nds directories; -type l �nds symbolic links.24

You can combine predicates; all must be true. Thus
find ~/java/src -type d -name "test*"

�nds all subdirectories of ~/java/src whose names start with test.
The most common actions are

• -print echoes the �le name to standard output; this is so common that
it is the default.

• -delete deletes the �le without con�rmation. One reasonably safe use
for this is

find someDir -name "*~" -delete

which deletes all Emacs backup �les in someDir and its subdirectories.

24There is no letter for hard links, since those are indistinguishable from regular �les.

Version 1.1 50

6.1 Predicates About File Properties

The following are moderately common searches based on speci�c properties
of �les, such as size and access and modi�cation times (Section 3 on page 8).
Speci�c numbers are just examples and can be replaced by any other integers.

• Find all �les modi�ed less than a day ago.
find . -mtime -1

A +1 instead of -1 would mean \more than one day ago" and no plus or
minus would mean \one day ago."25

• Find all �les modi�ed in the last hour and a half:
find . -mmin -90

-mtime uses days; -mmin uses minutes. -mmin interprets its argument
in the same way as -mtime: + for \more than," - for \less than," and
nothing for \exactly" (after rounding).

• Find all \large" �les, taken arbitrarily as meaning those bigger than two
megabytes:

find . -size +2M

The sign and its absence have the same meanings as with -mtime and
-mmin.26 The �nal letter can be c for bytes, k for kilobytes, M for
megabytes, and G for gigabytes. Eventually someone might add T for
terabytes, but as of this writing that hasn't happened.

Other �le property predicates include

• -atime and -amin, similar to -mtime and -mmin but for access time (the
last time the �le was opened for reading).

• -perm octal for all �les with the given exact permission. When preceded
by a - it means to check only the bits in the �le permission that corre-
spond to 1 bits in the octal number. You can use this to, for example,
�nd �les executable by the owner:

find . -perm -100

25The four predicates -mtime, -mmin, -atime, and -amin round times down. Thus -mtime
1 actually means from 1.0 to 1.999999. . . days ago.

26Contrasting with -mtime and other time-related predicates, -size rounds its argument
up to the nearest multiple of its resolution.

Version 1.1 51

There is a more complex version that uses the same symbolic syntax as
chmod, where you can turn on and o� speci�c bits using mnemonics to
represent read, write, and execute permissions for the owner, group, and
other segments.

• -newer file, all �les modi�ed later than the given �le. This might be
used for some form of incremental �le backup.

• -follow is always true; it causes find to follow symbolic links to direc-
tories, detecting cycles to prevent in�nite loops.

6.2 The -exec Predicate†
If one of find's built-in predicates doesn't do what you want, you can use the
-exec predicate to execute an arbitrary command. The two forms are

-exec command arguments "{}" arguments ";"

-exec command arguments "{}" +
The �rst form is more common. It executes the command with the given
arguments, replacing {} with the current �le name. The ";" (an escaped
semicolon) ends the command to be executed. Thus

find ~/java/src -name "*.java" -exec grep -nH import "{}" \;
�nds all .java �les in a particular Java source directory and its subdirectories,
running grep -nH import file on each �le it �nds.27 The -exec predicate
returns true if the command succeeds (return code 0) and false otherwise.

The second form, ending with +, is for e�ciency. It causes find to pass as
many matched �lenames as possible to the command, rather than executing
the command once for each �lename. You can't pass any arguments between
{} and ; because of the way find simply appends �le names to the command
line.

Since -exec is a predicate, it is possible to use several in the same find

command. The later ones will only execute if the earlier ones succeed. This is
the best way to simulate the && operator of Java, C, and C++. However, if you
want to do something complex with the command, it may be simpler to write
a shell script (Section 5 on page 39) taking one or more �lename arguments.

27See the grep command in Section 7 on page 54.

Version 1.1 52

Part II

Textual Pattern Matching
Several Linux tools include facilities for matching patterns in strings. These
notes cover three of them, in increasing order of functionality:

• grep (Section 7 on page 54), which �nds lines in text �les.

• sed (stream editor, Section 9 on page 62), which �nds substrings within
lines and replaces them with other strings.

• awk (Section 10 on page 67), a C-like programming language with special
facilities for matching patterns in arbitrary strings.

All use regular expressions (Section 8 on page 57) for pattern matching.
We �rst introduce grep, the simplest of the three to explain, then cover

the syntax of regular expressions, and �nally describe sed and awk.
This part of the notes assumes you have mastered basic Linux operation

from earlier notes (or elsewhere), and that you are comfortable experimenting
with program features to explore the details of how something works. In
particular, you should be familiar with.

• The hierarchical �le system.

• Basic use of the bash shell, including standard input, standard output
and pipes (| operator).

• The way of describing shell command invocation:
command [flags] filename(s)

where the square brackets indicate optional elements and the
ags begin
with hyphens (-).

• Wildcards (* and ?) in �le names on shell command lines.

• The use of a escapes (\ pre�x) or quotes (" and ’) to \turn o�" the
special meaning of a character like *.

Version 1.1 53

7 grep: Finding Strings in Files

The find command (Section 6 on page 49) searches for �les based on its
properties: name, type, size, modi�cation date, and so on. Sometimes one
wants to search based on content; that is the main purpose of grep.

To search �les for lines matching a pattern, invoke
grep [flags] pattern filenames

For example,
grep -nH "import java.util" *.java

�nds all lines that import items from package java.util in all Java �les in
the current directory.28 If no such lines exist, this will produce no output (the
typical convention with Linux tools). In a Java package directory, it would
produce output such as

DynamicStringLocalizer.java:3:import java.util.ArrayList;

DynamicStringLocalizer.java:4:import java.util.Iterator;

DynamicStringLocalizer.java:5:import java.util.List;

ItemLocalizer.java:3:import java.util.Iterator;

LocaleEvent.java:3:import java.util.Locale;

Localizer.java:3:import java.util.ArrayList;

Localizer.java:4:import java.util.Iterator;

Localizer.java:5:import java.util.List;

Localizer.java:6:import java.util.Locale;

Localizer.java:7:import java.util.ResourceBundle;

RecordLocalizer.java:3:import java.util.ArrayList;

RecordLocalizer.java:4:import java.util.Iterator;

StringLocalizer.java:3:import java.util.ArrayList;

StringLocalizer.java:4:import java.util.HashMap;

StringLocalizer.java:5:import java.util.Iterator;

StringLocalizer.java:6:import java.util.List;

StringLocalizer.java:7:import java.util.Map;

Each line of the output corresponds to a single line of some input �le, preceded
by the name of the �le and the line number (1-origin) within the �le. This
convention is reasonably widespread in Linux, and is often used by compilers.
Many programming environments such as Eclipse and editors like Emacs have
some way to run a program like grep, collect their output, scan the output
for each �le-name-and-line-number pair, and use them to position a program

28For a more
exible version of this pattern, see Section 8.2 on page 60.

Version 1.1 54

editor at the corresponding line in the �le.

7.1 Command Line Options

There are several variants of the basic output:

• The -o
ag shows just the parts of the line that match the pattern,
instead of the whole line.

• The -v
ag prints lines that don’t match instead of those that do.

• the -w
ag matches only \words" { sequences of letters, numbers, and
underscores (_) surrounded by line boundaries or other characters.

• If you supplied a single �le name on the command line, grep by default
omits the �lename (and �rst :) from the output lines.

• With the -h
ag, it never shows �le names.

• With the-H
ag it always shows �le names. Before this
ag was added,
Linux users often supplied /dev/null as an extra �le name argument,
so you may see this usage in old shell scripts or documentation.

• With the -l (letter l)
ag, it shows only the �le names and not the lines
(or their line numbers, even with the -n
ag).

• With the -n
ag, it includes line numbers as in the example. By default
it omits line numbers.

• Using a number as a
ag (such as -2) shows that number of lines of
context before and after the line that matches.

Omitting �le names and line numbers can occasionally be useful. For
example, to �nd the names of all packages imported into the current directory's
Java programs, you might say

grep -h "import" *.java | sort | uniq

To copy all poems containing the word \had" to directory backup:
cp $(grep -liw had poems/*) backup

The match is case-sensitive, which is appropriate for a case-sensitive lan-
guage like C or Java. In natural language text, you might want to ignore
case.

grep -i had *

Version 1.1 55

�nds all lines with the text had somewhere in the line, with any mix of cases
(and anywhere within a word!). Thus it would �nd had, Had, HAd, but also
shade and Hades. In a directory with several poems, it might �nd:

birches:You’d think the inner dome of heaven had fallen.

gentle:Because their words had forked no lightning they

mary:Mary had a little lamb,

mary:Mary had a little lamb

road:Had worn them really about the same,

road:In leaves no step had trodden black.

stop:And I had put away

summer:Nor shall Death brag thou wander’st in his shade,

wall:Not of woods only and the shade of trees.

Note the two lines each from �les mary and road, and the match for shade in
summer and wall. To limit it to entire words matching had, add the -w
ag.

As with many Linux programs, if you don't pass any �le names grep

matches the standard input (which counts as a single input �le, and thus
prints no �le names or line numbers if you omit the relevant
ags).

history | grep -w cd

�nds all \change directory" commands in the recent bash command history;
this can be useful if you have switched to many di�erent directories with long
path names and want to avoid retyping the correct one (by using history
substitution, Section 4.3 on page 31).

If you want to �nd several patterns at once, you can put them in a �le,
separated by newline characters, and use the -f
ag, followed by the �le name.
Thus to �nd all occurrences of several literary characters in several text �les,
put the names

Ron

Hermione

Harry

Hagrid

in �le harryPotter and invoke
grep -nH -f harryPotter *.txt

7.2 Caveat: Selecting a “Matcher”

grep has several di�erent methods for matching patterns. Many punctuation
characters such as .*+()[]|{}^$ have special meaning to grep: they allow

Version 1.1 56

for more complex patterns called regular expressions, described in the next
section. Historically, there have been several variants of regular expressions; to
force the use of the version described here, use the -E
ag.29 Since by default
grep matches regular expressions, if you want to just match these \special
characters" as strings you can force it to treat them as ordinary characters by
passing the -F
ag.

For example, the . (period) character in a regular expression matches any
character, so

grep -wE sear.h *.c

searches all C source �les for the sear library's header �le sear.h, but also
�nds ordinary word search.

grep -wF sear.h *.c

�nds all occurrences of the exact string sear.h

The separate fgrep command is equivalent to grep -F.
The default pattern matcher (also selected by the -G
ag) omits several of

the features described in Section 8 or requires escape sequences (\) to force
some punctuation to be interpreted as pattern operators. Use the -E
ag!

8 Regular Expressions

Many Linux programs allow string pattern matching more complex than that
of shell wildcards, and use regular expressions for constructing pattens. In
particular, these notes describe grep (Section 7 on page 54), sed (Section 9
on page 62), and awk (Section 10 on page 67). Other Linux programs also use
regular expressions; for example, lex generates lexical analyzers for compilers
from regular expressions describing lexemes like identi�ers and numbers. C
has a regular expression library via

#include <regexp.h>

Java has one via
import java.util.regex

All examples of regular expressions in this section assume you use the -E

ag for grep and equivalent
ags for other programs such as sed.
Regular expressions in Linux are extensions of the language of the same

name from automata theory: type 0 Chomsky grammars, which are equivalent

29Before grep had the -E
ag, people used the separate egrep command; it is the same
as invoking grep -E.

Version 1.1 57

to �nite state machines. In fact some implementations of regular expressions
translate them into a compact state machine form. These notes do not assume
you understand grammars or state machines; they are covered in courses such
as CISC 223: Software Speci�cations.30

8.1 Minimal Regular Expressions

We �rst introduce the Linux regular expressions that correspond directly to
those from automata theory:

• Normal characters (letters, digits, most punctuation) match themselves.

• A sequence of regular expressions re1 . . . ren (concatenation) matches the
�rst regular expression, followed by the second starting wherever the �rst
�nished, and so on to the last regular expression.

• The sequence re* (repetition) matches any number of occurrences of
regular expression re, including zero. Thus ab*c matches ac, abc, abbc,
abbbc, and so on.

• re+ matches one or more occurrences. Thus ab+c matches abc, abbc,
and so on, but not ac.

• The sequence (re) (grouping) matches the same thing as re, but treats
it as a single unit. This allows you to use the other operators on complex
regular expressions, not just single characters. The pattern (abc)+ rep-
resents one or more occurrences (concatenations) of the sequence abc.
Thus it matches abc, abcabc, abcabcabc, and so on. Without the paren-
theses it would represent ab followed by one or more occurrences of c:
abc, abcc, abccc, and so on.

• The expression re1|re2 (alternation) means either regular expression re1
or re2 (but not both). Thus a(b|c)d matches the two strings abd and
acd.

The precedence of the operators from highest to lowest is grouping, followed
by repetition, followed by concatenation, followed by alternation. Thus

ab(c|d)|def*

30http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-223.html

Version 1.1 58

http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-223.html
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-223.html

means \either ab(c|d) or def*" where the former means \ab followed by
either c or d" and the latter means \de followed by any number of fs." Thus
abc, abd, and deffff all match, but abddef and defdef do not. The pattern
does match the last three characters of abddef, plus the �rst three and last
three of defdef, but not the whole strings.

Both binary operators (| and concatenation) are associative, so ((a|b)|c)
means the same thing as (a|(b|c)); thus the inner parentheses can be omit-
ted, yielding (a|b|c).

8.2 Simple Extensions

Linux regular expressions have a few extensions that signi�cantly reduce how
much one has to type.

• The character . (period) matches any character (except newline, \n).
To match a period, use \. (as you should expect). It is equivalent to
(c1|...|cn) for (almost) every symbol ci in the ASCII character set.
Thus a..b matches any four characters starting with an a and ending
with a b.

• The sequence x? matches an optional x: zero or one occurrences.31 It is
equivalent to (x|), where the absence of anything after the | means the
empty string.

• A few \escape sequences" match speci�c characters; the most common
are \t to match a tab character, and \ followed by a character such as
* or + or ? that has a special meaning.

• The sequence
[sequence of characters]

matches a single occurrence of any of the listed characters { as usual,
aside from a few special characters like - (minus sign or hyphen). It
corresponds to an expression with the same set of characters separated
by |. Thus [abc] is equivalent to (a|b|c), and [01234567] matches
any octal digit. Within [] the period matches itself, not any character; in
fact most characters with special meanings outside [] match themselves.

31There is a syntax for specifying between n and m occurrences, described in Section 8.3
on page 60. Any realistic example would be especially horrendous to specify without such
a special syntax.

Version 1.1 59

• It is so common to want to represent a range of characters within []

that there is a special syntax: a-z matches any character in the ASCII
character set between lower-case letters a and z, inclusive. If you want to
include a hyphen in the set of matched characters, you can either quote
it with a \ as usual, or make it the �rst character after the opening [.

Normally, Linux programs interpret regular expressions as matching a pat-
tern anywhere in a line. Two special characters are \anchors": they ensure
the pattern matches only at the start or end of a line. ^ (caret) matches the
start of the line; $ (dollar sign) matches the end of the line. Technically they
\match the empty string" at those positions; they don't match the �rst or last
character of the line. Thus

grep -E ’^[\t]*$’ *.c

�nds all blank lines in all C source �les in the current directory.
\< and \> are like ^ and $: they anchor a pattern (\match the empty

string") at the beginning and end of a word, instead of the beginning and end
of a line. Thus the two commands

grep -wi fred *.txt

grep -Ei ’\<fred\>’ *.txt

both �nd all examples of the word Fred (ignoring case distinctions) and omit
longer words such as Frederick and Alfredo. This use of \ is the inverse of the
usual one: it means \turn on the special meaning of \< and \>" instead of
turning it o�.

Examples of combining these features include:

• Matching a typical identi�er in a programming language:
[A-Za-z][0-9a-zA-Z]*

This means any ASCII alphabetic character, followed by any number of
occurrences of alphabetical, numerical, and underscore characters.

• To ignore extra white space in the Java import search of page 54:
^[\t]*import[\t]+java.util

Aside: The shell wildcards * and ? correspond to regular expressions .*
and .? respectively.

8.3 Additional Regular Expressions†
The regular expressions of Sections 8.1 on page 58 and 8.2 on page 59 su�ce
for the most common usages of Linux tools. Here are some features used less
frequently.

Version 1.1 60

The expression x{n,m} matches n through m occurrences of x. Thus a
FORTRAN I identi�er, which had to be at most six characters long, would be
[A-Za-z][A-Za-z0-9]{0,5} (an alphabetic, followed by zero to �ve alphanu-
merics). Omitting ,m matches exactly n occurrences. Omitting just m (and
leaving the comma) matches n or more. Thus x+ is the same as x{1,}.

The expression [^abc] matches any character except abc. This means that
^ has two di�erent meanings:

• Inside square brackets, it means to complement the set of characters
matched; the pattern matches everything except the listed characters.

• Outside square brackets, it anchors the pattern at the start of the input
line.

Thus the command

grep -nE ’^[^#!]’ *

shows all lines starting with (�rst ^, at the start of the pattern) some character
other than # or ! (second ^, inside the square brackets).

The patterns [0-9] and [A-Za-z] are so common that they have their
own special notation: within square brackets, [:digit:] is equivalent to the
�rst and [:alpha:] to the second; [:alnum:] matches both. Thus an ASCII
identi�er is

[[:alpha:]][[:alnum:]]*

Note the doubled brackets. In a programming language that allowed a dollar
sign or an underscore in an identi�er, other than in the �rst position, one
would write

[[:alpha:]][$ [:alnum:]]*

To match just letters and underscores, use [:word:].
In fact these bracket expressions are more general: they match any letters

or digits of the \current locale." Thus in a Russian-locale Linux installation,
[:alpha:] would mean a Cyrillic letter. Additional bracket expressions in-
clude:

• [:lower:] and [:upper:] { lower and upper case letters, respectively.

• [:punct:] { punctuation such as !@#^&*(){}[];:’’’<>?+-=_.

• [:ascii:] { any ASCII character. [:print:] represents \printable"
characters in the range 0x20-0x7E, while [:cntrl:] is the complemen-
tary set of ASCII \control characters" 0x00-0x1E and 0x7F.

Version 1.1 61

• [:blank:] { space and tab. [:space:] represents any whitespace char-
acter, including line breaks.

• [:xdigit:] { any hexadecimal digit

Finally, one extension to regular expressions takes them beyond what a
theoretician would mean by that term (Chomsky type 0 grammars) and allow
some forms of context-sensitive pattern matching. \n, where n is a digit
between 1 and 9 inclusive, matches the exact text matched by the nth group
from the beginning of the pattern. Thus ([ab])c\1 matches aca and bcb but
not acb or bca. ([[:digit:]])\1 matches a pair of identical digits. Back-
references like this are especially useful to de�ne replacements in editors such
as sed (Section 9).

Group numbers are de�ned starting with the left parenthesis of the group.
Thus in nested groups such as ab(cd(ef)g)(hi):

• \1 is cdefg

• \2 is ef

• \3 is hi

9 sed: Simple Editing of Text Streams

sed (stream editor) reads a sequence of �les (or the standard input) and
produces an edited output stream. The two main forms are

sed -r -e ’command ’ file(s)

sed -r -f scriptFile file(s)
The former executes the given command for each line of each �le, writing the
result to standard output. The second interprets the script �le as a program
(according to the loop described in Section 9.1) and executes that program
for each line of each �le. The -r
ag tells sed to use the extended regular
expression syntax described in Section 8; you should always use it.

A simple example is
sed -r -e ’s/cat/dog/’ someFile

This \substitute" command (s) causes sed to output an edited copy of someFile
where the first occurrence of cat on each line is replaced by dog, even in the
middle of a word. The line

The Alcatraz catalog discusses cats.

becomes

Version 1.1 62

The Aldograz catalog discusses cats.

To make the s command apply to all occurrences of cat on a line, append the
g
ag:

sed -r -e ’s/cat/dog/g’ someFile

gives
The Aldograz dogalog discusses dogs.

To make it change the nth occurrence (if it exists), append a number:
sed -r -e ’s/cat/dog/3’ someFile

changes the the 3rd occurrence, giving:
The Alcatraz catalog discusses dogs.

A command can be preceded by one or two \addresses" governing which
lines of the �le it applies to. An address can be a speci�c line number or a
regular expression. Addresses let you select a subset of lines on which to apply
the command. For example:

• Suppose you know a �le starts with �ve lines of \boilerplate" text whose
content you know well, where the year 2012 needs to be updated to 2013:

sed -re ’1,5s/2012/2013/g’ oldFile >newFile

• In some Linux programming languages, comment lines start with #. To
change all occurrences of cat to dog on comment lines you would say:

sed -r -e ’/^#]/s/cat/dog/g’ someProg >newProg

You would likely invoke these commands in shell scripts or find commands
(Section 6) that apply them to several �les.

The most common commands are32

• p { \print" the line (that is, write it explicitly to the output). Normally
this would produce a duplicate line. It is most useful when you use the
-n
ag on the command line, which suppresses the default printing of
each input line. You can simulate the command

grep -E pattern file

with
sed -r -n ’/pattern /p’ file

32These are simpli�ed descriptions that applies to basic use of sed. There are some
subtleties with their exact meaning, covered in Section 9.2.

Version 1.1 63

• s/pattern/replacement/flags { �nd the �rst occurrence of the pattern
on each line and replace it with the given text. The two main
ags are g,
which applies the substitution to all occurrences of the pattern on each
line, and p, which prints the line after doing the replacement (normally
used with the -n command line
ag).

• d { \delete" the line (that is, don't write it to the output).

Sometimes an input line can match a regular expression in more than one
way, particularly when you use repetition (+ and *). When such a pattern could
match two di�erent strings starting at the same place, sed takes the longer
match. For example, given sed -re "s/a.+b/Z/" and input line MaxxbxxbN,
the pattern could match either axxb or axxbxxb; sed takes the longer match,
yielding an output line MZN. If you want to �nd out exactly how such matches
behave, you should experiment.

Sometimes you want to make an edit where the replacement contains pieces
of the original pattern match. To do so, in the pattern you use grouping to
identify the parts that will be copied, and in the replacement you use back
references (Section 8.3 on page 62) to copy them. Thus to swap the �rst and
second \columns" of a tab-separated table, you could write

s/^([^\t]*)\t([^\t]*)/\2\t\1/
The character & is a special back-reference meaning \the whole string matched
by the entire pattern." Thus

sed -re ’s/\<cat|dog\>/the &/’

puts the word the and a space before each occurrence of the words cat and
dog.

9.1 sed Scripts

With the -f
ag you can supply a �le of commands to be executed for each
line of the input. In such a script any lines starting with # are comments.
Regular command lines take the form

[address [,address]]command

The square brackets mean that the addresses are optional. If the second is
omitted, it is taken to be the same as the �rst. Addresses are either absolute
line numbers, $ (meaning the �le's last line), or a pattern (a regular expres-
sion). The command line means, roughly, \for all lines of the input between
the �rst occurrence of the �rst address and the next occurrence of the second
address, execute the command."

Version 1.1 64

It is not quite accurate to say that sed commands operate on input lines.
Technically, they operate on a special internal bu�er called the \pattern space."
An oversimpli�ed description of how sed works is: For every input line,

Read the line into the pattern space.
Execute all commands in order, potentially modifying the pattern space.
Print the pattern space.

Because of the pattern space, an earlier substitute command changes the
context in which later ones are executed. Thus given script �le33

s/day/night/g

s/Tuesday/Fri/g
and the input �le

Today is Tuesday.

Tomorrow is Wednesday.
the output would be

Tonight is Tuesnight.

Tomorrow is Wednesnight.
With the commands in the reverse order, the output would be

Tonight is Fri.

Tomorrow is Wednesnight.

9.2 Advanced sed†
The main \execution loop" of sed is a little more complex than in the previous
section. 34

1. Start with an empty pattern bu�er, considering it to be line number 0.

2. For each command introduce an \active/inactive"
ag that governs whether
to execute the command or not. If no address precedes the command,
the
ag is always on; otherwise it is initially o�.

3. Execute any active commands with address 0 (those meant to be exe-
cuted before reading the input).

4. Read the next (or �rst) line from the �le into the pattern space.

5. Examine the next (or �rst) command line.

33I intend to replace or augment this with something more startling if I can think of it.
34***I need to verify some of the �ner details of this loop***

Version 1.1 65

6. If it is inactive and has a �rst address, test if the line matches the address.
If so, make the command active. If not, go on to the next command
(step 5).

7. If the command has a second address, test if the line matches it.

8. If the command is active, execute it. Commands a�ect the pattern space,
not the original line.

9. If the second address matched the original line, make the command in-
active.

10. Repeat starting with step 5 if there are more commands.

11. If there are no more commands, and there was no -n switch on the
command line, execute a p command (print the modi�ed pattern space).

12. Repeat starting with step 4 if there are more input lines.

There are several commands in addition to s, p and d. Some of them only
allow zero or one addresses:

• r: Append the contents of a �le to the pattern space.
r filename

• a: Append several lines to the pattern space.
a\

line 1 \

· · · \
line n

Each line but the last terminates with a backslash (an \escaped new-
line").

• i: Insert several lines at the beginning of the pattern space.
i\

line 1 \

· · · \
line n

• q: Quit the sed script (�rst printing the pattern space unless the original
command line had the -n
ag).

Version 1.1 66

Some of these commands insert newlines into the pattern space. The substitute
command can also add newlines, and match patterns that cross lines { but only
within the pattern space; you can't match a pattern across multiple lines of
the input �le.

Other commands allow zero, one, or two addresses:

• s, p, and d, which apply to the whole pattern space.

• w filename: write the pattern space to the end of a �le, creating it it
necessary.

• {: Execute a group of commands.
{

several commands on separate lines
}

This might be used to apply several substitutions, but limit them to a
region given by one or two addresses.

There is a special
ag, !, which you can put between the addresses and
the command. It means to execute the command for all lines that are not in
the address range. Thus

sed -wre ’/^#/!s/cat/dog/g’

changes the word cat to dog except on comment lines (which start with a
hash mark).

There are many more facilities, including labels, conditional branches, com-
mands that only operate up to the �rst newline in the pattern space, and an
auxiliary bu�er called the \hold space;" consult the man pages or a reference
manual. However, if what you are doing becomes this complex, you should
consider writing an awk script instead (Section 10).

10 awk: Programmable Editing of Text Streams

awk is a programming language for text processing; it combines the pattern
matching facilities of sed with a C-like programming language. This section
describes GNU awk (gawk). The usual means of invoking it is

gawk [flags] -f scriptFile filename(s)

You can also supply a program on the command line instead of a script �le
(using the option --source ’program ’), but that is usually a bad idea un-
less the command is very simple. Unlike grep and sed, awk always uses the
extended regular expressions of Section 8 on page 57.

Version 1.1 67

awk is a line-oriented language; with few exceptions, most commands termi-
nate at the end of the line unless you use a single \ as the last character on the
line. Furthermore, it is case-sensitive (like C, Java, and the Linux �le system);
two variables with di�erent case are distinct identi�ers. Thus SomeVariable
and SOmeVariable are distinct; awk can't tell if the latter came from holding
down the shift key slightly too long.

There are three kinds of lines in awk:

• Comments, which start with # (anywhere outside of string literals and
regular expressions) and end with newline.

• Action statements, of the form
pattern { action }

where the action is normally a multi-line program, and the pattern is
often a regular expression but can also be other kinds of pattern.

• User-defined functions (Section 10.5 on page 74), of the form
function name (parameter1, . . . , parametern) {

statements

}
awk, like sed, is built around a standard loop that reads from an input

stream and executes commands for each input line. Its basic operation is:

• Read a record from the input; normally this is the same as a \line"
(ending with newline) but you can specify a di�erent record separator
(variable RS).

• Split the line into fields at each occurrence of a field separator (variable
FS): normally, a sequence of spaces and tabs is a single separator.

• For each action statement, in order: if its pattern matches, execute it.

The most common patterns are

• A regular expression delimited by slashes (Section 8 on page 57), which
matches input lines in the expected way.

• The word BEGIN or END (all capitals), which label actions to be done
before reading the �rst line or after �nishing executing commands for
the last line.

• A boolean relational expression, which matches if the expression is true
(non-zero).

Version 1.1 68

10.1 Language Constructs

awk has constructs similar to those of C: expressions, assignments, if/else,
for, while, break (ending the innermost loop), and return (from a function).
There are also several statements concerning input and output (Section 10.2
on page 71). Two statements deal directly with the default loop that reads
records from input �les and performs actions.

• The next statement reads the next input record and goes back to the
start of the sequence of commands in the script. Thus if you want to
treat lines in the input �le beginning with # as comments, you might
include the action

/^#/ { next; }

• nextfile stops processing the current input �le, begins reading from
the next, and goes back to the start of the sequence of commands in the
script. Thus given the command line

gawk -f script.awk file1 file2 file3

the �rst execution of nextfile in script.awk causes the next input line
to come from file2 instead of file1; the second execution switches to
file3, and the fourth executes the END commands and exits.

awk has all the arithmetic and logical operators you'd expect from C (in-
cluding assignment operations like +=), plus ^ for exponentiation. Writing two
expressions separated by a space (that is, with no operator between them)
means string concatenation; most other operations on strings are built-in func-
tions (Section 10.3 on page 72). The special operator

string ~pattern

is true if the pattern matches the string; !~ is true if the pattern doesn't
match. The pattern can be a constant (surrounded by / characters) or a
string expression.

Variables don't need to be declared; you just assign to them. If you read
from an uninitialized variable, its value is the null string. This is common in
scripting languages; in combination with the case sensitivity of variable names,
this can make it di�cult to detect bugs arising from misspelled identi�ers or
unitialized variables.

Variables are not typed. You can assign a string to a variable in one
part of a program and an integer in another. awk implicitly converts between
strings and integers when you use one in a context that expects the other.
Floating point numbers are treated as integers if they represent the exact value

Version 1.1 69

of an integer. Figure 13 shows a short program and its output, illustrating
assignment of several di�erent types of value to the same variable.

Figure 13: awk Program With Several Value Types

Assign d i f f e r e n t types o f va lue to a v a r i a b l e .
$Revis ion : 0.2 $
$Id : varTypes . awk , v 0.2 2013/08/06 16:48:21 dalamb Exp $
BEGIN {

var = 1+1; print var ;
var = var /3 ; print var ;
var = var ∗6 .0+1 .0 ; print var ;
var = "a s t r i n g " var ; print var ;
print 1e7 ;
print 1e12 ;

}

Output
2

0.666667

5

a string 5

10000000

1e+12

There are many built-in variables; the most commonly used include:

• $i, the ith �eld ($1 being the �rst �eld). $0 means the whole record.

• FS, the string or regular expression used as a �eld separator on input. A
single space character means any sequence of spaces and tabs.

• RS, the record separator for input �les (newline by default)

• OFS and ORS, the �eld and record separators when printing to output
�les (see print/printf in Section 10.2).

• NR, the number of input lines read so far.

• FILENAME and FNR, the name of the current input tile and the current
record number (normally the current line) within that �le.

• NF, the number of �elds in the current record.

• RSTART and RLENGTH, used with the match function (Section 10.3 on
page 72).

Version 1.1 70

Arrays are associative, similar to dictionaries in Python or Maps in Java:
you can use any string as an \array index."

phone["Smith"] = "555-1913";

dial = phone["Jones"];
The boolean operator

expression in array

is true if the array element array [expression] has been assigned a value.
The for statement has a special form to iterate over all array indices:

for (variable in array) statement
Thus, to print a table of phone numbers (sorted in whatever order awk hap-
pened to store the array indices):

for(X in phone) printf "%s\t%s\n",X,phone[X];

If you want to eliminate an index from an array, you use the delete statement:
delete phone["Jones"]

If you leave out the square brackets and the index, it deletes the whole array.

10.2 I/O in awk

Unlike C, the I/O operations in awk are statements rather than functions.
The command
getline [variable] [< file]

sets the given variable to the next line from the given �le; it returns 1 if
successful, 0 for end-of-�le, and -1 if there is an error (in which case it sets built-
in variable ERRNO). If the variable is omitted, awk uses $0 this also involves
sedding NF and the $i variables. If the �le is omitted, awk reads the next
line from the main input stream (which also sets NR and FNR, and possibly
FILENAME) but does not restart executing commands from the beginning. Thus
if you like you can use getline to override the basic awk input/action loop.

The command
print [expression1, . . . , expressionn] [> file]

writes the list of expressions to the given �le, separated by the value of OFS,
and terminated with the value of ORS. If the expression list is omitted, it is
taken to be $0. printf interprets its �rst parameter as a format string, similar
to that of the printf function in C.

The �rst print or printf that writes to a �le opens it for writing starting
at the beginning of the �le; thereafter they append to the �le. Using >>

appends to the �le on the �rst print or printf instead of rewriting it.
Because of the special /dev \device" �les within the Linux �le system (Sec-

tion 3 on page 8), you can print on /dev/stderr to produce error messages.

Version 1.1 71

Thus for example:
if (something bad happened) {

printf "%s:%s:%s\nbad input\n",

FILENAME, FNR, $0 >"/dev/stderr"

}
prints an error message to the standard error stream; it includes the �le name
and line number where the error occurred, and the contents of the line being
examined.

10.3 Built-In Functions

The following are the most commonly used string manipulation functions built
in to awk:

length �nds the length of a string.
len = length([string])

If the string is omitted, it uses $0. In recent versions of gawk, the length of an
array is the number of indices; in older versions, applying length to an array
was illegal.

substr takes a substring of a string expression:
substr(string, index [, length])

returns the substring starting at the given index. The index is 1-origin (that
is, the �rst character is at index 1, instead of 0 as in C). The result will be of
at most the given length { shorter if there are fewer characters in the string
than i+length -1. If the length is omitted, the result goes from the given
index to the length of the string.

match �nds the position of a regular expression in a string:
position = match(string, regular expression [,array])

returns the position of the �rst match of the given regular expression in the
given string, or zero if there is none. It sets RSTART to the index of the �rst
matched character (the same as the result of the match) and RLENGTH to the
length of the match. If the array argument is given, match assigns the strings
matched by internal groupings { parts of the pattern delimited by parentheses.
array[i] is equivalent to the \i back-reference in regular expressions and sed

substitutions (Section 9 on page 64). Figure 14 shows how grouping, RSTART,
and RLENGTH can be combined to \remove" parts of a matched string. The
output consists of the substring up to the part of the string matched by the
pattern, the \middle" part matched by the �rst (and only) grouping, and the
substring after the end of the part that matches the pattern; this eliminates
the bracketing substrings left and right.

Version 1.1 72

Figure 14: Use of match to Remove Context

Show use o f match , RSTART, and RLENGTH $Revis ion : 0.1 $
Removes some contex t around a pa t t e rn .
$Id : match . awk , v 0.1 2013/08/06 16:45 :12 dalamb Exp $
BEGIN {

s t r i n g = " s t a r t mark l e f t some middle t ex t r ightmark end" ;
i f (match(s t r i ng , " l e f t (. ∗) r i g h t " , par t s)) {

printf "%s%s%s \n" , substr (s t r i ng , 1 ,RSTART−1) ,
par t s [1] , substr (s t r i ng ,RSTART+RLENGTH) ;

}
}

Output

start marksome middle textmark end

split splits a string into parts using a regular expression to delimit �elds,
and places each part in successive elements of an array.

numParts = split(string, array [, regular expression])

It returns the number of �elds found, or 0 if the string was empty. The default
regular expression is FS, the �eld separator.

sub �nds the �rst occurrence of a regular expression in a string variable
and replaces it; this is equivalent to the s command from sed, without the g

ag.

sub(regular expression, replacement string

[, string variable])

If you omit the string variable, it is taken as $0 (the whole record). To change
all occurrences, use gsub, which takes the same parameters.

index returns the 1-origin index of the �rst occurrence of one string in
another, or zero if there is no match.

index(string1, string2)
�nds string2 in string1).

toupper and tolower take a single string parameter and returns a new
string with the alphabetic characters converted to upper or lower case, respec-
tively.

There are also numeric functions, bit-manipulation functions, and interna-
tionalization functions.

10.4 Command-Line Arguments

In addition to the -f scriptfile switch already mentioned, awk has many com-
mand line arguments, only a few of which I describe here.

Version 1.1 73

Sometimes you want to pass arguments to your awk program instead of to
awk itself. One way to do so is to use the -v
ag.

gawk -v var =val -f script.awk someFile

sets the given variable to a speci�c value before awk starts executing the pro-
gram in script.awk { even before the BEGIN pattern. Your BEGIN code can
detect whether such variables are null and assign a default value. Thus given:

BEGIN {
if (linePrefix="") linePrefix = "\t"

}

the command
gawk -v linePrefix="// " -f script.awk someFile

uses double-slash followed by a space as the \line pre�x," whereas
gawk -f script.awk someFile

uses a tab.
Some options are preceded with a double hyphen. For example,
--field-separator pattern

sets the �eld separator variable FS. The default �eld separator breaks on every
run of spaces and tabs. If one input �le has �elds with embedded spaces you
could set FS to a single tab. If another has both spaces and tabs within �elds,
but doesn't have slashes, you could set the �eld separator to /. This particular
option also has the single-hyphen form -F pattern .

Some options have both a GNU and a POSIX form; --option is GNU,
while -W option is POSIX.

• --traditional disables gawk extensions to the original UNIX awk.

• --posix disables a few more features to make gawk compatible with the
POSIX standard.

• --lint prints warnings for program lines with unportable constructs.

10.5 User-Defined Functions

A user-de�ned function has the form:
function name (variable1, . . . , variablen) { statements }

A call looks like
name (expression1, . . . , expressionm)

Version 1.1 74

m can be less than n. Earlier I said that a function de�nition has a sequence
of parameters, but the actual situation is slightly more subtle. By default all
variables in awk are global, so any function can refer to variables assigned to
by any of the actions in the program. When you call a function, values of
all the variables named in the function de�nition35 are saved, and restored to
their original values when the function returns. Passing too many arguments
is an error, but passing \too few" merely initializes the \missing" arguments
to null. This feature can be used to de�ne local variables. There is no semantic
distinction between local variables and parameters { the \local variables" are
just formal parameters for which no actual parameter is passed in the function
call. There is a stylistic convention to add extra spaces or tabs in the function
de�nition between the last parameter and the �rst local variable.

Within a function, return value returns to the caller with the given value
as the result; if value is omitted (or if the function \falls o� the end" of its
statement list), the return value is unde�ned.

Figure 15 shows an awk program using a function to de�ne processing to
be done at the end of a collection of records, which must also be done at the
end of the input. It detects the end of a \group" of records when the value
of the �rst �eld changes and calls endGroup to print all the values associated
with that label, separated by commas instead of newlines. At the start of the
program, the \last label" is blank, so endGroup does nothing the �rst time the
label \changes" (from the emtpy string to an actual label). At the end of the
input (END pattern), the same processing is needed. The initialization of FS at
the start of the program (BEGIN pattern) is needed to allow embedded spaces
in values (or labels, for that matter), but the other initialization is purely for
documentation purposes. endGroup has no local variables or parameters; all
the variables it references are global. Given the input

someLabel value1

someLabel value0

otherLabel firstVal

otherLabel secondVal

this will be treated as a comment

otherLabel thirdVal

(where the runs of spaces indicate single tab characters) the script produces
the output

35These might be called \formal parameters" in conventional programming language ter-
minology.

Version 1.1 75

Figure 15: Sample awk Program with User-De�ned Function

Generate comma−separated va lue l i s t $Revis ion : 0.1 $
$Id : commaValue . awk , v 0.1 2013/07/25 19:48 :24 dalamb Exp $
Input l i n e s o f the form
l a b e l <tab> va lue
in sor t ed order by l a b e l are turned in to
l a b e l <tab> value1 , . . . valueN
Lines with miss ing l a b e l s are ignored .
BEGIN {

FS = "\ t " ;
v a l L i s t = l a s tLabe l = "" ;

}
function endGroup () {

i f (l a s tLabe l=="") return ;
printf "%s \ t%s \n" , l a s tLabe l , v a l L i s t

}
$1 == "" { next ; }
$1 != l a s tLabe l {

endGroup () ;
l a s tLabe l = $1 ;
v a l L i s t = $2 ;
next ;

}
{ va lL i s t = va lL i s t " , " $2 ; }
END { endGroup () ; }

Program to detect changes in the �rst �eld of a record. endGroup
encapsulates end-of-group processing when a label changes or when
the end of the input is reached.

someLabel value1, value0

otherLabel firstVal, secondVal, thirdVal

10.6 Some Longer Examples

Figure 16 shows an awk script that converts a �le with many names on a line
to one per line, reversing the order of given names and surnames. Given the
input �le

this is a comment: it will be deleted

Ilke ten Boom

Marjorie Smith:Piet de Vos:Elsa von Braun

Piotr Ivanov:Simon van Dyke:Chen, Xiaoping

the command

gawk -f splitNames.awk splitNames.txt | sort -f >splitNameOut.txt

Version 1.1 76

generates the output �le

Chen, Xiaoping

de Vos, Piet

Ivanov, Piotr

Smith, Marjorie

ten Boom, Ilke

van Dyke, Simon

von Braun, Elsa

Version 1.1 77

Figure 16: awk Script to Reorder Names

Convert ” given−name surname” to ”surname , given−name”
paying a t t en t i on to common multi−word surnames .
$Id : sp l i tNames . awk , v 0.1 2013/07/30 16:38 :11 dalamb Exp $
Input f i l e c on s i s t s o f l i n e s o f the form
name1 : . . . : nameN
$Revis ion : 0.1 $

Setup
BEGIN {

FS = " : " ;
spe c i f y name p r e f i x e s in an easy−to−wr i t e form
namePref ixes = "de/von/van/ ten " ;
numPrefixes = sp l i t (namePrefixes , parts , "/") ;
conver t to t a b l e form to use ” in” operator
for (i =1; i<=numPrefixes ; i++) {

p r e f i x [par t s [i]] = 1 ;
}

}

de l e t e comment l i n e s
/^#/ { next ; }

Actual convers ion
{

for (i =1; i<=NF; i++) { # for each f i e l d
fu l lname = $ i ;
i f name a l ready has a comma i t i s in the co r r e c t form
i f (fu l lname ~/ ,/) printf "%s \n" , fu l lname ;
e l s e {

s p l i t each f u l l name in to par t s
l en = sp l i t (ful lname , parts , " ") ;
surname = part s [l en] ; # l a s t name
i f (len >2) {
check whether 2nd l a s t par t i s one o f the p r e f i x e s
i f (par t s [len −1] in p r e f i x) {
i f so , cons t ruc t the proper surname and
arrange to p r in t one fewer g iven names .
len−−;
surname = part s [l en] " " surname ;

}
}
pr in t fu l lnames one per l i n e
in format ”surname , l i s t o f g iven names”
printf "%s , " , surname ;
for (j =1; j<l en ; j++) printf " %s" , par t s [j] ;
printf "\n" ;

} # i f
} # for

} # ac tua l convers ion

Version 1.1 78

Part III

C Programming for Linux
This portion of the notes describes how to write system-level C programs under
Linux. It currently assumes you are familiar with basic C programming; if
you do not already know the language, you should consult the primary source:
The C Programming Language, 2nd edition, by Brian Kernighan and Dennis
Ritchie. You must be able to wite C programs using:

• Types, declarations, expressions, pointers, structs, functions;

• The main constructs if/else, for, while, break, return;

• The standard library: string functions, malloc/free, printf, and scanf;

• File I/O: �le descriptors, fopen, read, write, fclose, and the use of
errno to indicate errors from system calls;

• Multi-�le programs, header �les, and the di�erence between declarations
and de�nitions.

C was designed in the early 1970s at Bell Labs. It was a successor to a
typeless language called B, which was in turn a successor to BCPL36 (Basic
CPL). CPL (Cambridge Programming Language), designed by D.W. Barron and
Christopher Strachey the early 1960s, turned out to be di�cult to implement,
a major factor leading to BCPL. Strachey was also one of the key �gures in
developing denotational semantics, a mathematical means of describing the
meaning of computer programming languages; it is covered in formal speci�-
cations courses such as CISC 465: Foundations of Programming Languages.37

Successors to C include C++ (taught in CISC 320: Fundamentals of Soft-
ware Development),38 and Java (taught in CISC 124: Introduction to Com-
puting Science II).39

36http://en.wikipedia.org/wiki/BCPL
37http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-465.html
38http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-320.html
39http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-124.html

Version 1.1 79

http://en.wikipedia.org/wiki/B_(programming_language)
http://en.wikipedia.org/wiki/BCPL
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-465.html
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-320.html
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-320.html
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-124.html
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-124.html
http://en.wikipedia.org/wiki/BCPL
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-465.html
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-320.html
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-124.html

11 Processes

Section 4.6 on page 36 introduced the idea of a process within the context of
the shell. This section shows what happens at a lower level { what system
library calls are involved, and the details of how to write C programs that
create their own sub-processes.

You have already seen and used processes for foreground/background jobs,
multiple programs with their own windows in a GUI interface, and multiple
users on a single machine. Multiple processes give the illusion of multiple
separate machines, but in reality one processor40 switches rapidly back and
forth between the separate processes.

11.1 What is A Process?

Basically, a process is a means for simulating multiple processors on a single
processor (or simulating a large number of processors on a machine with fewer).
Each process has its own version of:

• an address space { a section of computer memory, including space for its
own executable code, stack (for procedure calls) and heap (for malloc
and free).

• program state { information such as where its next instruction in the
program will come from (the \program counter").

• system state { data Linux keeps outside the address space where the
program can't accidentally change it, such as what �les are open and
where in the �le the next read or write will take place.

A process can't change any memory or state allocated to a di�erent process, nor
can hardware errors (such as \segmentation faults") a�ect any other process.

Switching between processes { \context switching" { is very slow compared
with normal program execution. Table 4 shows typical times for a typical
machine as of this writing, translated to a human-comprehensible scale.

• Processor cycle is the rate at which a computer performs basic inter-
nal CPU operations; there can be several cycles for a typical assembly
language instruction.

40Or a small collection of tightly-coupled processors on a multi-core machine.

Version 1.1 80

Table 4: Process Timescale

Activity Actual Times Scaled

processor cycle 0.333 ns (3GHz) 1 sec
memory access 50-150 ns 2.5-7.5 min
context switch 3.5 µs 3.4 hr
disk rotational latency 8.3 ms (7200 RPM) 289 day
time slice quantum 100 ms 9.5 yr

Times for computer activities on typical mid-range personal computers,
versus times at a human scale. Human reaction times (the fastest a
human's nervous system can respond to any stimulus) are on the order
of a few hundred milliseconds, roughly a factor of a billion (109) slower
than current computers. All times are rough approximations based on
Internet searches as of July 2013.

• Memory access is the time between the CPU's request for a word of
dynamic random access memory (DRAM) and the time it arrives.

• Context switch is the time to switch from one Linux process to another.

• Disk rotational latency is the average time the CPU must wait before a
\hard drive" disk rotates to the starting point of a block of information
(one of several factors involved in time to wait for disk I/O). The highest-
performance disks are about twice as fast.

• Time slice quantum is the typical time Linux runs one process before
switching to another.

Section 4.6 on page 36 described several shell features related to processes:
that commands run in separate processes; the concepts of foreground, back-
ground, and suspended jobs; and the commands jobs, ps, and kill.

11.2 The Process Manager

The process manager is the part of the Linux kernel that deals with processes:
creating them, destroying them, and switching from one to another. It stops
a process under several circumstances:

Version 1.1 81

• The process has �nished (such as by making an exit system call). In
this case the manager has several cleanup tasks to perform.

• The process has requested a sleep { an amount of time to wait before
it runs again.

• The process is waiting on something else { such as for another process
to complete, or for input/output.

• A higher-priority process needs to interrupt. The details of this are
beyond the scope of these notes.

• Its running time since its last \stop" exceeds a time limit (the quantum
mentioned in Table 4).

If the computer has multiple processors, usually the manager allocates a pro-
cess to each processor.

When one process stops, the manager resumes another one; if there are no
other processes, it runs a special \idle" process.41 When choosing a process to
run, the kernel considers several factors:

• The process priority, inherited from the user's priority. Most users have
the same priority, but the root user has a higher one. A process can
voluntarily lower its priority.

• How long the process has been waiting since the last time it ran.

• How much processor time it has taken already.

11.3 Creating a New Process

Every process has a process ID { an integer unique to the process; these are
the numbers you can see in the output from the ps command. Every process
has a unique parent { the process that created it. The \init" process, the �rst
one created after the system boots, is the ultimate ancestor of all processes; it
is its own parent. The system call

pid t getpid()

from <unistd.h> returns a process' own ID; the call

41Technically this might be a special lightweight \process" called a \thread." An idle
process can do anything, from in�nitely looping to computing the digits of π { as long as it
never blocks.

Version 1.1 82

pid t getppid()

returns the parent's ID. pid t is from <sys/types.h>. The fork system call
creates a new process:42

pid t fork();

This creates a new process identical to the old one, with its own copy of all the
process' state; there is no shared memory between the two. The only di�erence
is that the return value is zero when fork returns in the child process, and the
child's process ID when fork returns in the parent process. If the parent gets
back a negative value, it means that the system was unable to create a child
process.

Figure 17 on page 87 shows a simple program that creates several child
processes and waits for all of them to �nish (Section 11.5 discusses waiting for
a child). Running it thrice with zero sleep time produces di�erent output each
time, because the scheduler happens to make di�erent decisions about which
child process to run �rst.

dal@linux3:~/notes/progs$./fork

Create 3 children, sleep 0

I am child 0 9068

I am child 1 9069

Finished child 0 9068 status 0

I am child 2 9070

Finished child 2 9070 status 512

Finished child 1 9069 status 256

dal@linux3:~/notes/progs$./fork

Create 3 children, sleep 0

I am child 0 9073

I am child 2 9075

Finished child 0 9073 status 0

I am child 1 9074

Finished child 2 9075 status 2

Finished child 1 9074 status 1

dal@linux3:~/notes/progs$./fork

Create 3 children, sleep 0

I am child 1 9087

I am child 2 9088

Finished child 1 9087 status 1

42The name comes from the image of a fork in the road, or the handle of a fork splitting
into several tines.

Version 1.1 83

Finished child 2 9088 status 2

I am child 0 9086

Finished child 0 9086 status 0

With a positive sleep interval, the order would be �xed, since successive child
processes wait longer before printing their messages.

11.4 Executing a Different Program

This simple form of process creation is useful in limited circumstances { pri-
marily when there are several processors and some way to break up the parent's
functionality into several independent steps, one per process. One way to do
something di�erent is to tell the system to load a di�erent program to replace
the current one; the child process would typically do this, leaving the parent
to continue with whatever it was doing previously.

There are several ways to do this, each involving a system call whose name
starts with exec. One simple version is

int execvp(const char *file, char *const argv[]);

The file parameter is the path name of the program to run.43 The argv

parameter becomes the argv passed to the main procedure of the new program.
It is an array consisting of a the same pathname string as the file parameter
(the value of $0 in a shell script), a list of strings for the \command line
arguments" of the new program, and a null (0) to show the end of the list. It
does not return if it succeeds; instead execution starts with the main procedure
of the new program.44 If it returns, errno indicates what caused the call to
fail.

The arguments are passed unchanged to the new process; no shell is in-
volved. Thus an exec call does not provide any of the facilities described
in Section 4.7 on page 38: aliases, command line expansions/substitutions,
wildcards, I/O redirection, pipes, or references to shell variables.

Figure 18 on page 88 shows a program that creates a child process, which in
turn uses execvp to run a find command (Section 6 on page 49). It outputs:

dal@linux3:~/notes/progs$./execvp

Child 9161 invoking find . -name *.c -exec ls -l ;

-rw------- 1 dal student 1024 Jul 22 07:59 ./fork.c

43Or a text �le whose �rst line starts with #!, as described in Section 5 on page 39, in
which case the program's name follows the #!.

44Technically, the part of the standard C library that invokes the main procedure.

Version 1.1 84

-rw------- 1 dal student 780 Jul 22 08:07 ./execvp.c

-rw------- 1 dal student 1247 Jul 22 08:10 ./sigpause.c

Finished child 9161 status 0

dal@linux3:~/notes/progs$

11.5 Parent/Child Interaction

Sometimes, as when the shell creates a foreground process, the parent has
nothing to do but wait until the child terminates. This is what the wait

system call from <sys/wait.h> is for:
int status;

pid t child pid = wait(&status);
This waits for any of the parent's children to stop; the status indicates which
of several possibilities caused termination.status is set to the \exit status" of
the child;45 The return value is the process ID of the child that stopped. If
you passed null (0) instead of the address of an int, it means you didn't care
to know its status.

The slightly more general variant
pid t child pid = waitpid(pid, &status, options);

lets you wait for either a single child (with a positive pid), or all children
(pid = -1), or any child in a particular process group (pid < -1, but process
groups are beyond the scope of these notes). Typical values for options are 0
to just wait for a child to stop, or the constant WNOHANG to just check whether
the child has �nished, without waiting. The return value is either the process
ID of the child, or zero if you use WNOHANG and no child has exited. If several
children have �nished, you get the process ID of only one of them. A call to
wait(&status) is equivalent to waitpid(-1,&status,0).

There are two special statuses for child processes:

• An orphan process is one whose parent has �nished but which hasn't itself
�nished. This isn't necessarily a mistake; it's typical of server programs,
which are meant to run \forever." Orphan processes become children
of the special \init" process owned by the \superuser" mentioned in
Section 3.5 on page 18.

• A zombie process is one that has stopped, whose parent hasn't stopped,
but whose parent isn't waiting for it. It can be problematic since is still

45†\Exit status" consists of several parts encoding things like the parameter to exit

and what signal, if any, terminated the process. To get the code from exit, one uses
WEXITCODE(status) as in the example programs.

Version 1.1 85

consuming limited system resources, such as memory space and a spot
in the kernel's process table.

Normally when the parent terminates the system will clean up all its termi-
nated child processes (leaving the still-running children to become orphans),
so zombie processes aren't necessarily a problem for long { except when the
parent is something like a login shell that typically runs for a very long time
and creates very many child processes. To reduce the zombie problem, the
parent gets a SIGCHLD signal (Section 12) when each child terminates.

Version 1.1 86

Figure 17: Simple Example of fork and wait

/∗ Example o f f o r k and wait , $Revis ion : 0.3 $
$Id : f o r k . c , v 0.3 2013/07/29 16:34:08 dalamb Exp $ ∗/

#include <sys / types . h>
#include <un i s td . h>
#include <s t d l i b . h>
#include <s t d i o . h>
#include <sys /wait . h>

#define NUM CHILD 3
#define SLEEP INTERVAL 0

/∗ Process ing f o r the index ’ th c h i l d .
S l eeps f o r a mu l t i p l e o f the g iven in t e r v a l ,
then i d e n t i f i e s i t s e l f and e x i t s , r epor t ing
i t s number ∗/

void ch i l d (int index) {
unsigned int i n t e r v a l = index ∗SLEEP INTERVAL;
s l e e p (i n t e r v a l) ;
p r i n t f (" I am ch i l d %d %d\n" , index , ge tp id ()) ;
e x i t (index) ;

} /∗ c h i l d ∗/

stat ic p id t ch i l d r en [NUM CHILD] ;
/∗ Find the c h i l d with the g iven process ID ∗/
int f indChi ld Index (p i d t ch i l d) {

int i ;
for (i =0; i<NUM CHILD; i++)

i f (ch i l d r en [i] == ch i l d) return i ;
return −1;

} /∗ f i ndCh i l d Index ∗/

/∗ Main program . Create s e v e r a l c h i l d r en and wait
f o r a l l o f them to f i n i s h ∗/

int main () {
p r i n t f ("Create %d ch i ld r en , s l e e p %d\n" ,NUM CHILD,SLEEP INTERVAL) ;
int i ;
for (i =0; i<NUM CHILD; i++) {

p id t pid = fo rk () ;
i f (pid==0) { /∗ proces s ing in c h i l d ∗/

ch i l d (i) ; e x i t (−1);
}
/∗ proces s ing in parent ∗/
ch i l d r en [i] = pid ;

}
int s t a tu s ;
for (i =0; i<NUM CHILD; i++) {

p id t ch i l d = wait(& s ta tu s) ;
p r i n t f (" Fin i shed ch i l d %d %d s ta tu s %d\n" ,

f indChi ld Index (ch i l d) , ch i ld , WEXITSTATUS(s t a tu s)) ;
}
return 0 ;

} /∗ main ∗/

Version 1.1 87

Figure 18: Simple Example of fork and execvp

/∗ Example o f f o r k and execvp , $Revis ion : 0.3 $
$Id : execvp . c , v 0.3 2013/07/29 16:34 :08 dalamb Exp $ ∗/

#include <sys / types . h>
#include <un i s td . h>
#include <s t d l i b . h>
#include <s t d i o . h>
#include <sys /wait . h>

#define NUMARGS 9
stat ic char ∗ args [] =
{ " f i nd " , " . " , "−name" , " ∗ . c" ,

"−exec " , " l s " , "− l " , "{}" , " ; " ,
NULL } ;

/∗ Set up and c a l l an execvp . ∗/
void ch i l d () {

/∗ I d e n t i f y s e l f and show execvp args ∗/
p r i n t f ("Child %d invok ing " , ge tp id ()) ;
int i ;
for (i =0; i<NUMARGS; i++) {

p r i n t f (" %s " , args [i]) ;
}
p r i n t f ("\n") ;
/∗ f o r c e bu f f e r e d output to termina l b e f o r e invok ing exec ∗/
f f l u s h (stdout) ;
execvp (args [0] , a rgs) ;
e x i t (1) ; // execvp f a i l e d

} /∗ c h i l d ∗/

int main () {
p id t pid = fo rk () ;
i f (pid==0) ch i l d () ;
int s t a tu s ;
p i d t ch i l d = wait(& s ta tu s) ;
int r e t = WEXITSTATUS(s t a tu s) ;
p r i n t f (" Fin i shed ch i l d %d s ta tu s %d\n" ,

ch i ld , r e t) ;
return r e t ;

} /∗ main ∗/

Version 1.1 88

12 Signals

The example of the previous section didn't have any communication between
parent and child processes. One simple way but limited way for processes to
send information to each other is via signals. Signalling a process can interrupt
what it is doing, and gives it a small piece of information (the signal type, a
small integer). The various signals have names starting with SIG and are
de�ned in the <signal.h> library �le.

Some signals are reserved for the kernel, while others can be uses by or-
dinary processes. A process can catch many of the possible signals and take
some action in response, but a few (such as SIGKILL) can't be caught.

Normally a process can only send signals to processes owned by the same
user, but the superuser (and thus kernel processes like init) can send signals
to any process.

Within a C program, you can issue signals via the procedure
kill(process ID, signal number);

You can send yourself a signal via
raise(signal number);

kill(getpid(), signal number);
which are equivalent to each other.

12.1 Common Signals

The kill command of Section 4.6 on page 37 actually sends a signal to the
process you designate. If you designate a job instead of a process, the signal
goes to the top-level (often, the only) process of the job. By default it sends
SIGTERM, which normally terminates the process { but the process can use a
handler (Section 12.2 on page 90) to catch the signal and ignore it or clean up
its resources before exiting. Thus the three commands

kill 40137

kill -TERM 40137

kill -15 40137
all send SIGTERM to the process with ID 40137. The commands

kill -KILL 40137

kill -9 40137

both send the SIGKILL signal, which kills the process immediately (not giving
it a chance to catch and possibly ignore the signal).

Four other signals are reasonably common.

Version 1.1 89

• SIGCHLD means that a child process has terminated (Section 11.5 on
page 86). By default it is ignored.

• SIGINT by default terminates the process like SIGTERM; it is what the
system sends when you type control-C. A program might catch the signal
(Section 12.2) and ask the user for con�rmation before quitting.

• SIGTSTP suspends the process; it corresponds to control-Z and can be
caught.

• SIGSTOP can't be caught; it pauses the process until the next SIGCONT.

• SIGUSR1 and SIGUSR2 have no built-in meaning, and by default kill the
process. They can be used to experiment with signalling and catching
signals.

• SIGHUP initially meant \signal hangup" { that the modem associated
with a terminal had disconnected, often because the user hung up the
phone connected to the modem. If your process is in the foreground, the
sensible thing is to terminate it. However, it can catch the signal and do
something else. A common convention is for a long-running background
process (not connected to a terminal), like a server, to reinitialize itself,
perhaps by re-reading a potentially changed initialization �le.

A process can use the SIGALRM signal to interrupt itself after a time interval.
alarm(seconds);

sends the process SIGALRM in the given number of seconds. It is di�erent from
sleep because the process continues executing, not waiting for the interval to
expire. alarm(0) turns o� the alarm timer.

kill -l (lower-case L) lists all the signal names and their numbers.

12.2 Signal Handlers

A program can set up a signal handler for each signal it's allowed to catch.
You can have one handler for all your signals, or separate ones for di�erent
signals. A signal catcher has the general form

void catcher(int signum) {
handle the signal

possibly differently for each signal

} /* end catcher */

Version 1.1 90

You tell the kernel which catcher to use for what signal with the signal

function from <signal.h> (which also de�nes all the signal names). It takes
two parameters: a signal number, and the name of the catcher. Thus

void reinitialize(int signo) {
redo whatever the process did when it started

} /* reinitialize */

void cleanup(int signo) {
close files, etc.

} /* cleanup */

...

signal(SIGHUP, reinitialize)

signal(SIGTERM, cleanup)

signal(SIGINT, cleanup)
The handler can inspect the signo parameter and perform di�erent actions
depending on which signal it got, or you can have separate handlers for each
signal and ignore signo, or you can have some mixture of both approaches.

When the handler returns to its \caller," processing resumes wherever the
program was executing before the signal. The only way to tell the rest of the
program that something has happened is to set some global variable, which
the normal code can examine when convenient. Thus for example

int INTsignaled = 0;

void handleINT(int signo) { INTsignalled = 1; }
...

signal(SIGINT,handleINT);

while (...) {
something that shouldn’t be interrupted

if (INTsignaled) break;

} /* while */

normal termination

There are two default handlers: SIG IGN ignores the signal and SIG DFL

restores the default action for the signal.
On some systems, after you catch a signal, it is reset back to the default

action. On the CASlab systems this currently happens only if you use the
-ansi compiler
ag. To be safe and portable each handler should call signal
again to re-enable catching whatever signal invoked it.

To wait for a signal to arrive, the process can invoke pause(), which is the
equivalent for signals of wait for child processes. When a signal arrives, the

Version 1.1 91

catcher (if any) is invoked, and when it returns the program continues after
the call to pause.

Figure 19 on page 95 shows a simple program that creates several child
processes and waits for all of them to �nish via pause and a handler for
SIGCHLD; contrast it with Figure 17 on page 87. There are several subtleties
about this program, which you can discover by running it and sending it
various signals.

• The main program sets up handlers before using fork to create the child
processes. This means that each child has the same handlers as the main
program, albeit in separate address spaces.

• SIGTERM and SIGINT are sent to the main process and all its children, so
each responds to it independently.

• The sleep system call wakes up early if the process receives a signal, so
if you type a control-C, all the children �nish quickly instead of waiting
for their time interval to expire.

The following shows one example, sending SIGTERM to the parent process
after one child �nishes. I added the line numbers for ease of reference:

1 dal@linux3:~/notes/progs$./sigpause&

2 [2] 9173

3 dal@linux3:~/notes/progs$ 9173 creating 3 children, sleep 5

4 I am child 1 9175

5 I am child 2 9176

6 I am child 0 9174

7 jobs

8 [1]+ Stopped emacs makefile

9 [2]- Running ./sigpause &

10 Child 0 9174 done

11 Process 9173 caught 17: child done, 2 left

12 dal@linux3:~/notes/progs$ kill %2

13 Process 9173 caught 15: terminating 9173 with 2 children left.

14 Process 9175 caught 15: terminating 9175 with 3 children left.

15 Process 9176 caught 15: terminating 9176 with 3 children left.

16 [2]- Exit 10 ./sigpause

17 dal@linux3:~/notes/progs$

Version 1.1 92

• On line 1, I start the program in the background; line 2 says it becomes
job 2, process 9173.

• Three child processes start on lines 4-6

• On line 7, I type the jobs command to the prompts of line 3.

• On line 10, Child 0 �nishes, and on line 11 the parent catches signal 17,
SIGCHLD.

• On line 12 I send SIGTERM (the default) to \job 2," all three remaining
processes. Each catches it: the parent on line 13, child 1 on line 14, and
child 2 on line 15.

• Line 16 is the shell reporting that job 2 has exited with status 10, the
argument to exit.

Notice that the children show \3 children left" when terminated. That is
because the fork call makes an exact copy of the parent when it spins o�
each child process, which means they have copies of exactly the same data
(numChildren) and signal handlers as the parent. A slightly more complex
example should have the child processes setting up their own handlers when
they start, with their own SIGINT and SIGTERM handlers to produce slightly
di�erent messages that don't refer to non-existent children.

When I send a signal to a child process, only that one responds:

1 dal@linux3:~/notes/progs$./sigpause&

2 [2] 9228

3 dal@linux3:~/notes/progs$ 9228 creating 3 children, sleep 5

4 I am child 1 9230

5 I am child 2 9231

6 I am child 0 9229

7 Child 0 9229 done

8 Process 9228 caught 17: child done, 2 left

9 kill -INT 9231

10 Process 9231 caught 2: ignored 2

11 Child 2 9231 done

12 dal@linux3:~/notes/progs$ Process 9228 caught 17: child done, 1 left

13 Child 1 9230 done

14 Process 9228 caught 17: child done, 0 left

15

Version 1.1 93

16 [2]- Done ./sigpause

17 dal@linux3:~/notes/progs$

• Lines 1-8 are similar to lines 1-11 of the previous example.

• On line 9 I reply to the prompt of line 3 by sending SIGINT (code 2) to
child 2. On line 10 it catches and ignores the signal, but since the signal
interrupts the sleep, child 2 �nishes immediately anyway (line 11). Had
I written more complex code in the child function, such as looping a few
times to repeat the sleep, and printing a message just after each sleep,
you would have seen that it managed to continue after the interrupt.

• On lines 12-14 the remaining child �nishes and the parent responds to
SIGCHLD.

It would make a good exercise to modify sigpause.c to:

• Use di�erent signal handlers in parent and child. Note: the parent still
needs to set up the SIGCHLD handler before creating any children.

• Print a message when the sleep command wakes up showing the time
elapsed since the call, to show that it terminates early when interrupted.

Version 1.1 94

Figure 19: Simple Example of SIGCHLD Handler

/∗ Example o f s i g n a l hand l ing and pause , $Revis ion : 0.3 $
$Id : s i gpause . c , v 0.3 2013/07/29 16:34 :08 dalamb Exp $ ∗/

#include <sys / types . h>
#include <un i s td . h>
#include <s i g n a l . h>
#include <s t d i o . h>
#include <s t d l i b . h>

#define NUM CHILD 3
#define SLEEP INTERVAL 5

/∗ Index ’ th c h i l d process i d e n t i f i e s i t s e l f b e f o r e and a f t e r
i t s l e e p s f o r a mu l t i p l e o f the i n t e r v a l , then e x i t s . ∗/

void ch i l d (int index) {
unsigned int i n t e r v a l = (index+1)∗SLEEP INTERVAL;
p r i n t f (" I am ch i l d %d %d\n" , index , (int) ge tp id ()) ;
s l e e p (i n t e r v a l) ;
p r i n t f ("Child %d %d done\n" , index , (int) ge tp id ()) ;
e x i t (index) ;

} /∗ c h i l d ∗/

int numChildren = NUM CHILD;

/∗ Handler f o r a l l s i g n a l s . Ignore most , handle
SIGCHLD and SIGTERM ∗/

void catcher (int s i gno) {
p r i n t f (" Process %d caught %d : " , (int) ge tp id () , s i gno) ;
i f (s i gno==SIGCHLD) {

numChildren −−;
p r i n t f (" ch i l d done , %d l e f t \n" , numChildren) ;

} else i f (s i gno==SIGTERM) {
p r i n t f (" te rminat ing %d with %d ch i l d r en l e f t .\n" ,

(int) ge tp id () , numChildren) ;
e x i t (1 0) ;

} else p r i n t f (" ignored %d\n" , s i gno) ;
s i g n a l (s igno , ca tche r) ; /∗ s e t up same handler again ∗/

} /∗ ca tcher ∗/

/∗ Set up s i g n a l handler , c rea t e s e v e r a l c h i l d r en
and wait f o r appropr ia te number o f SIGCHLD s i g n a l s . ∗/

int main () {
s i g n a l (SIGCHLD, catcher) ;
s i g n a l (SIGINT , catcher) ;
s i g n a l (SIGTERM, catcher) ;
p r i n t f ("%d c r e a t i n g %d ch i ld r en , s l e e p %d\n" ,

(int) ge tp id () , NUM CHILD, SLEEP INTERVAL) ;
int i ;
for (i =0; i<NUM CHILD; i++) {

p id t pid = fo rk () ;
i f (pid==0) {

ch i l d (i) ; e x i t (−1);
}

}
while (numChildren>0) pause () ;
return 0 ;

} /∗ main ∗/

Version 1.1 95

13 Pipes

Section 4.2 on page 28 describes what pipes do in the context of the shell; this
section shows you how to write C programs that create and use pipes. You
must already understand Chapter 8 Sections 1-3 of Kernighan and Ritchie,
covering low-level I/O using �le descriptors, open, close, read, write, and the
errno error-reporting variable. You should also be familiar with Sections 11
and 12 concerning processes and signals.

There are two sorts of pipes: those meant for short-term communication
among parent and child processes (such as those created for the | operator by
a shell), and longer-term �le-like named pipes.

13.1 Basic Pipes

A pipe is a stream with both input and output \ends." Normally one process
writes to one end and another reads from the other.

int pipe(int pipe fd[2]);

from <unistd.h> creates both ends { the read end in pipe fd[0], and the
write end in pipe fd[1]. After creating the pipe, the process would use fork
(Section 11.3 on page 82) to create a child process. Since both processes are
initially identical (aside from the return value from fork), both have accecss to
the same �le descriptors. One would read from the �rst �le descriptor (using
the low-level read system call), and the other would write to the second (using
the low-level write system call). Alternatively, the parent could create two
di�erent children that would communicate with each other.

This kind of pipe is normally implemented by the kernel as a �xed-size
bu�er in memory, so it is much faster than passing through the �le system (see
activity timings in Table 4 on page 81). When the bu�er �lls, the writer blocks
waiting for free space; when it empties, the reader blocks waiting for content.
Since the process manager (Section 11.2 on page 81) switches processes when
the current one blocks, on a single processor the two processes take turns
executing (along with any other processes in the system at the time).46 Since
the process manager also switches processes when a higer-priority one needs
to run, and when a process' running time exceeds the quantum, the two can
switch while the bu�er is only partly full. Bu�ers will be at least 512 bytes on
any POSIX-compliant UNIX system; on CASlab they are currently 216 bytes
(64 Kb).

46On a multiprocessor, the two can work in parallel when not waiting for pipe I/O.

Version 1.1 96

Recall that a call to read from a normal �le \blocks" when waiting for the
disk to spin to the right position and transfer data. With a pipe, a read blocks
when there is no data in the bu�er and it is possible for some other process
to eventually write to it. What this means is that there must be some other
process with a �le descriptor for the same pipe opened for writing. If there
is no such process, the read will return 0, meaning \end of �le." When you
�rst create a pipe, both ends of the pipe are open, one for reading and one for
writing, so if the reading process goes �rst it will block.

Figures 20 and 21 on pages 101 and 102 show a simple use of a pipe.
The parent writes its command-line arguments to the pipe; the child reads
from the pipe and writes the results to standard output, inverting the case of
all letters. To show exactly how the characters are bu�ered, the parent puts
double-colons (::) between segments it writes (its arguments), and the child
puts square brackets ([]) around segments it reads. Debugging messages from
both parent and child processes go to stderr, which appears immediately on
the terminal. Normal output from the child process goes to standard output.

The child closes the output end of the pipe. When the child starts, each
process has open �le descriptors for both ends of the pipe; if the child didn't
close the write end, there would always be a �le descriptor open for writing,
and the child would hang on its last read when the parent closed its own copy
of the write descriptor.

Running the program, directing standard output to a �le, yields:

dal@linux3:~/notes/progs$./caseEcho Some argUMenTS to be Inverted >ceout

Child 9390 maxLen 10

Writing ’./caseEcho’

Writing ’Some’

Just read 10 characters

Writing ’argUMenTS’

Just read 6 characters

Writing ’to’

Writing ’be’

Writing ’Inverted’

Just read 10 characters

Just read 10 characters

Just read 9 characters

dal@linux3:~/notes/progs$ cat ceout

[./CASEeCHO][::sOME][::ARGumENt][s::TO::BE:][:iNVERTED]

dal@linux3:~/notes/progs$

There are several things to note about the output:

Version 1.1 97

• The terminal output of caseEcho all results from printing to stderr.

• The parent's \writing" lines (corresponding to individual calls on write)
are interleaved with the child's \echo" lines (corresponding to individual
calls on read).

• The read calls yield varying number of bytes, often not the 10 requested.

• consequently, the arguments are echoed in di�erent chunks from those
you'd expect from the writes.

13.2 Multiple Readers and Writers†
It is possible to have multiple readers and writers for a single pipe, but interac-
tion can be tricky because of the way pipes are bu�ered. Suppose a multiple-
process application considers a \record" to be the data a writer sends in one
operation, such as a line terminated by newline. On Linux the low-level read
operation works on streams of bytes, with no way to detect internal formatting
such as \end of record" until the process has potentially read part-way into
the next \record." Furthermore, a read isn't guaranteeed to read exactly the
number of bytes requested (as seen in the previous section); it could read fewer
depending on how much data is left in the bu�er. Thus multiple readers are
likely to get partial or overlapping information. Because of the unpredictabil-
ity of which process the manager will choose to run next, it is also possible
for one reader to starve the others: reading all the input before the others get
any data.

One saving grace of the way pipes work is that writes of less than a certain
size47 are required to be atomic. This means that the write must �nish before
anyone else can write to the same pipe. If the bu�er �lls up before such a
\small" write �nishes, the only legal sequence of events is for some reader to
partly empty the data, followed by the partial write �nishing. All other po-
tential writers are blocked during this time. However, writes of larger amounts
of data may be split up and interleaved.

Instead of having multiple writers for one pipe, you can create one pipe per
writer; it is possible for a single reader to wait for any of these pipes to have
data. However, this requires mechanisms beyond the scope of these notes;
consult the manual entries for select and pselect.

47At least 512 bytes for POSIX; 4 Kb on Linux.

Version 1.1 98

The fundamental ideas of coordinating readers and writers are taught in
courses about concurrent programming, such as CISC 324: Operating Sys-
tems.48

13.3 Named Pipes (FIFOs)

A named pipe, or FIFO (First In, First Out) is a special kind of �le, stored
in a directory, and thus has a name that multiple programs can look up. You
create a FIFO with the system call

int mkfifo(pathname, permissions)

from <sys/stat.h>. The name and permisions are just what you'd expect
for creating any �le. A return value of -1 means that an error occurred, and
errno gives the error code. EEXIST means there is already a �le of that name.
The pathname can then be opened for reading or writing as with a normal
�le.

In the shell, the equivalent of the mkfifo system call is the pair of com-
mands:

mkfifo pathname

chmod permissions pathname
Once opened, a FIFO behaves like a normal pipe as described in Sec-

tion 13.1. Figure 22 on page 103 shows an example of FIFO behaviour via
shell commands; I added line numbers by hand. The �rst 10 lines show two
input �les. The FIFO is created on line 11, and line 12 spawns a pair of back-
ground processes (connected by a basic, unnamed, pipe) that sort input from
the FIFO and run the results through uniq to eliminate duplicate lines. Since
no one has opened the FIFO for writing yet, on its �rst read it pauses waiting
for some process to do so. Line 14 creates a background process that writes the
contents of source1 to the FIFO and waits for more input from the terminal
(- argument to cat); without this wait, the sort|uniq job would terminate
as soon as its only input source (this �rst cat process) �nished writing. Line
16 spawns a second cat procecss that outputs the contents of source2 to the
FIFO and terminates. Line 19 resumes the �rst cat process; line 20 is the
shell reporting what job was resumed. Lines 21-22 are new input; in between
lines 22 and 23 I typed a control-D to terminate this input. After this, there
are no more writers for the FIFO, so it returns end-of-�le to the sort process'
last read operation . sort then performs its work, outputting results to uniq,
which prints on standard output; lines 23-30 are the results. Lines 21-33 are

48http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-324.html

Version 1.1 99

http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-324.html
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-324.html
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-324.html

output from the shell after all jobs �nish.

Version 1.1 100

Figure 20: Pipe Example (a): Case Inversion of Program Arguments

/∗ Use a pipe to i n v e r t the case o f l e t t e r s in program arguments . $Revis ion : 0.2 $
$Id : caseEcho . c , v 0.2 2013/07/29 16:34 :08 dalamb Exp $ ∗/

#include <sys / types . h>
#include <un i s td . h>
#include <s t d l i b . h>
#include <s t d i o . h>
#include <errno . h>
#include <sys /wait . h>
#include <s t r i n g . h>
#include <ctype . h>

int fd [2] ; /∗ pipe f i l e d e s c r i p t o r s , 0 f o r read , 1 f o r wr i t e ∗/

/∗ Error r epor t ing ∗/
void showError (char ∗msg) {

f p r i n t f (s tde r r , "%s errno %d (0x%x) : %s \n" ,
msg , errno , errno , s t r e r r o r (er rno)) ;

f f l u s h (stdout) ; f f l u s h (s t d e r r) ;
} /∗ showError ∗/

/∗ Parent wr i t e s to the pipe ∗/
void parent (int argc , const char∗ argv []) {

int i ;
for (i =0; i<argc ; i++) { /∗ wr i t e each argument ∗/

f p r i n t f (s tde r r , "Writing '%s '\n" , argv [i]) ; f f l u s h (s t d e r r) ;
i f ((i>0 && wr i t e (fd [1] , " : : " , 2) < 0) /∗ omit : : f o r arg 0 ∗/

| |
wr i t e (fd [1] , argv [i] , s t r l e n (argv [i])) <0) /∗ wr i t e argument ∗/

{ /∗ one o f the wr i t e s f a i l e d ∗/
f p r i n t f (s tde r r , "Write e r r o r %s \n" , s t r e r r o r (er rno)) ;

} /∗ i f ∗/
f f l u s h (s t d e r r) ;

} /∗ f o r ∗/
c l o s e (fd [1]) ; /∗ done with wr i t i n g ∗/
/∗ wait f o r the echoing c h i l d to f i n i s h ∗/
int s t a tu s ; p i d t pid = wait(& s ta tu s) ;
i f (pid==−1 && errno !=ECHILD)

f p r i n t f (s tde r r , "Wait e r r o r %d (0x%x) : %s \n" ,
s tatus , s tatus , /∗ show f u l l s t a tus , not j u s t e x i t code ∗/
s t r e r r o r (er rno)) ;

} /∗ parent ∗/

Version 1.1 101

Figure 21: Pipe Example (b): Case Inversion of Program Arguments

/∗ Chi ld reads from the pipe and echoes , inver ted , to s tdou t ∗/
void ch i l d (int maxLen) {

f p r i n t f (s tde r r , "Child %d maxLen %d\n" , (int) ge tp id () , maxLen) ;
c l o s e (fd [1]) ; /∗ we ’ l l never wr i t e to i t ∗/
char ∗buf = mal loc (maxLen+2);
while (1) {

int l en = read (fd [0] , buf , maxLen) ;
i f (len<=0) {

i f (l en==0) { p r i n t f ("\n") ; f f l u s h (stdout) ; e x i t (0) ; }
else { showError ("Read") ; e x i t (er rno) ; }

}
f p r i n t f (s tde r r , " Just read %d cha ra c t e r s \n" , l en) ;
f f l u s h (s t d e r r) ;
putchar (' [') ; int i ;
for (i =0; i<l en ; i++) {

char c = buf [i] ;
i f (i s a l pha (c)) c = i s l owe r (c)? toupper (c) : to lower (c) ;
putchar (c) ;

} /∗ f o r ∗/
putchar ('] ') ; f f l u s h (stdout) ;

} /∗ whi l e ∗/
} /∗ c h i l d ∗/

/∗ Creat the pipe and c h i l d process ∗/
int main (int argc , const char∗ argv []) {

i f (p ipe (fd)<0) {
showError ("Can ' t open pipe ") ;
e x i t (1) ;

}
int maxLen = 0 ; int i ;
for (i =0; i<argc ; i++) {

int l en = s t r l e n (argv [i]) ;
i f (len>maxLen) maxLen = len ;

}
p id t ch i ldID = fo rk () ;
i f (ch i ld ID==0)

parent (argc , argv) ;
else i f (chi ldID >0)

ch i l d (maxLen) ;
else

f p r i n t f (s tde r r , "Error from fo rk : %d %s \n" ,
(int) chi ldID , s t r e r r o r (er rno)) ;

f f l u s h (stdout) ;
e x i t (0) ;

} /∗ main ∗/

Version 1.1 102

Figure 22: FIFO Behaviour Via Shell Commands

1 dal@linux3:~/notes/progs$ cat source1

2 This is a sample.

3 It will be sorted.

4 Then run through uniq.

5 So the next line will be deleted.

6 This is a sample.

7 But this line won’t.

8 dal@linux3:~/notes/progs$ cat source2

9 This is a sample.

10 It is in a separate file.

11 dal@linux3:~/notes/progs$ mkfifo FIFO

12 dal@linux3:~/notes/progs$ sort <FIFO | uniq &

13 [1] 18091

14 dal@linux3:~/notes/progs$ cat source1 - >FIFO&

15 [2] 18092

16 dal@linux3:~/notes/progs$ cat source2 >FIFO

17

18 [2]+ Stopped cat source1 - > FIFO

19 dal@linux3:~/notes/progs$ %2

20 cat source1 - > FIFO

21 This is a line typed at the terminal.

22 After control-D the sort will run.

23 dal@linux3:~/notes/progs$ After control-D the sort will run.

24 But this line won’t.

25 It is in a separate file.

26 It will be sorted.

27 So the next line will be deleted.

28 Then run through uniq.

29 This is a line typed at the terminal.

30 This is a sample.

31

32 [1]+ Done sort < FIFO | uniq

33 dal@linux3:~/notes/progs$

Version 1.1 103

14 The make Command

Many of the programs you write for introductory courses consist of a single
source �le and produce a single product, an executable program. When prob-
lems become signi�cantly more complex, such as when you have many �les to
compile, building your program or rebuilding it after you change something can
become complex as well.49 make is a tool for describing such build processes,
allowing a single command to rebuild an entire system.

14.1 Build Processes

When you start programming in C or any other language, you typically build
your executable program in a single step, perhaps by issuing a shell command:

gcc -o myProg myProg.c

If your usage of gcc becomes more complex, you may �nd yourself adding
command line options, such as -W to specify warnings to check for, or -D to
specify variable de�nitions. Since it is tedious and error-prone to have to retype
such options every time, you might put your command in a shell script:50

dal@linux3:~/notes/progs$ ls -lt fork*

-rw------- 1 dal student 1383 Jul 29 10:31 fork.c

dal@linux3:~/notes/progs$ cat recompile

recompile sample program fork.c

gcc -Wall -DVARIANT=Intel -o fork fork.c

dal@linux3:~/notes/progs$./recompile

dal@linux3:~/notes/progs$!ls

ls -lt fork*

-rwx------ 1 dal student 8733 Aug 3 09:27 fork*

-rw------- 1 dal student 1383 Jul 29 10:31 fork.c

dal@linux3:~/notes/progs$

If you want to specify options for the linker as well as the compiler, you might
split this into two lines to keep straight which options apply to what utility

recompile sample program fork.c

49Java is a partial exception, with its own built-in make-like process. It often (but not
always) requires only a single compile command to rebuild a system; see Section 14.5 on
page 113.

50It isn't necessary to know what the individual
ags to gcc do { just that there are
several of them.

Version 1.1 104

gcc -Wall -DVARIANT=Intel -c fork.c

gcc -lsomeLib -o fork fork.o

Each of these is a simple example of a build process: the steps required to turn
at set of inputs into a set of outputs.

Figure 23 shows an abstraction of what goes on in a single step of a build
process. An input or output is normally a �le; Section 14.4 on page 110

Figure 23: Abstraction of a Build Step

A step runs one \tool" taking several inputs and producing
an output. Some steps may produce more than one output.

discusses a few other things that might constitute \inputs." The output of
one step might become the input of another; for example, each .o output of a
compilation step becomes an input of the �nal linking step.

Consider the program summarized in Table 5: an oversimpli�ed simulation
of a set of elevators, perhaps a trivial subset of the old SimTower R© PC game.
One build process for this program is:

gcc -c random.c

gcc -c policy.c

gcc -c hardware.c

gcc -c elevator.c

gcc -c input.c

gcc -o elevator elevator.o hardware.o random.o policy.o input.o

There are several things to note about this example. This is only one possible
script, since the �rst four steps could be done in any order. However, the �fth
step must be last since it depends on the outputs of each of the other steps.

Each of the compilation steps has some implicit inputs: the header �les
#included in them. A simple script �le doesn't record these dependencies,
which can become important when you need to �gure out what to recompile
after a change. Suppose policy.c and policy.h change, perhaps to add a
new �eld in some struct. The only steps that need to be rerun are the com-
pilations of those �les that #include policy.h (in this case, just policy.c

Version 1.1 105

Table 5: Modules for a Simple Elevator Simulation
Module Purpose
elevator.c Main program; calls functions from other modules
hardware.c Simulation of buttons and motors and how to get

safely from one
oor to another (de�nitions)
hardware.h declarations for hardware.c
policy.c Policies for which
oor to select next given current

state of elevator and buttons (de�nitions).
input.c Input functions (de�nitions). Generates a se-

quence of timed \button pushes" either by reading
a �le or by using random numbers or by some com-
bination.

input.h Input functions (declarations)
policy.h declarations for policy.c
random.c Random number functions (de�nitions)
random.h Random number functions (declarations)

and elevator.c), plus the �nal linking. Rerunning the other steps is a waste
of resources.

The make program lets you describe build processes in a makefile, which
guides it in running the minimum number of steps after you change a source
�le. You can think of make as a tool that takes many inputs: all your source
�les, plus the makefile. It can produce many outputs: for example, all your
.o �les and the �nal executable program.

14.2 Basics of make and makefiles

Figure 24 shows a makefile for the system of Table 5. The �rst three lines
de�ne variables { similar to variables in a shell. They are used to avoid having
to type the same string multiple times, and to ensure that when some aspect
of the build process needs to change, they change consistently throughout the
build process. In this example, CC says which compiler to use, CFLAGS says
which command line options to pass to the compiler, and OFILES lists all the
object �les that make up the executable program.51

51You can also de�ne variables on the make command line, using the same syntax. This
overrides de�nitions of the same variables in the makefile. Thus make CFLAGS= would set
CFLAGS to null, meaning the compilation steps wouldn't make the -Wall checks.

Version 1.1 106

Figure 24: A Simple makefile

CFLAGS=-Wall

CC=gcc

OFILES=random.o policy.o hardware.o elevator.o input.o

elevator: ${OFILES}
${CC} -o elevator ${OFILES}

random.o: random.c random.h

${CC} -c ${CFLAGS} random.c

input.o: input.c input.h random.h

${CC} -c ${CFLAGS} input.c

hardware.o: hardware.c hardware.h

${CC} -c ${CFLAGS} hardware.c

policy.o: policy.c policy.h hardware.h

${CC} -c ${CFLAGS} policy.c

elevator.o: elevator.c elevator.h input.h policy.h

${CC} -c ${CFLAGS} elevator.c

cleanall: clean

rm -f elevator

clean:

rm -f ${OFILES}

makefile for the elevator simulation. It can be simpli�ed using the
implicit rule for compiling .o �les from .c �les.

Each subsequent pair of lines describes one step in the build process, and
has the form:

target : prerequisites

recipe

The �rst line starts in column 1; the second starts with a tab. The target is
the output of the step; the prerequisites are the inputs. Abstractly, such an
entry describes when an output needs to be brought up to date and how to do
so. When you ask make to build a speci�c target, it proceeds as follows:

1. If the target doesn't exist but there is no rule for regenerating it, print

Version 1.1 107

an error message and abort make. If the target exists and is more recent
than all its prerequisites, nothing need be done (so go on to the next
target). Otherwise the target needs to be rebuilt (so continue to step 2).

2. For each prerequisite that is the output of some other step, recursively
apply the process starting at Step 1.

3. When all prerequisite steps �nish successfully, run the recipe. A recipe is
usually a single shell command, but can be a sequence of such commands.

4. If the recipe fails, print an error message and abort make.52

5. If the recipe succeeds, return to whatever step caused this one to run.

Thus if you change policy.c, only the steps for policy.o and elevator need
to be run. If you also change policy.h, then the elevator.o step also needs
to run.

Step 3 only requires that all the prerequisites �nished successfully; it
doesn't actually require that they produce the expected \�les." This is why
the cleanall step in Figure 24 proceeds even though the clean step doesn't
produce any �le named clean.

Figure 25 shows the build graph for the system in Table 5 and illustrates
what happens if input.h changes. Boxes show what �les change (input.h),
what steps need to be rerun (two gcc compilations and one gcc link), and
what �les are regenerated (input.o, elevator.o, and elevator). Unboxed
�les don't change and unboxed steps don't get rerun.

You run make with the command
make [-f makeFileName] [flags] [outputFileName]

Table 6 summarizes the
ags you can pass to make; they are described more
fully elsewhere in this section. The \output �le name" is also called the target
of the build process; you are \taking aim" at generating that particular �le,
and tracing a path through prerequisite graph to get to it. If you omit the
-f makeFileName it looks for one called makefile in the current directory.
If you omit the outputFileName it builds the output of the �rst step in the
make �le. make �gures out an order in which to run the steps so that every
generated �le is produced before it gets used. If several steps (such as the .c
�le compilations) can be run in parallel, it is free to pick any order it chooses
(but in fact in the current version of make it uses the order in which you listed
the steps in the makefile).

52With the -k command line
ag, instead just skip all the steps that depend on this one
and go on to any other pending targets.

Version 1.1 108

Figure 25: Processing when input.h Changes

Graph of dependencies for the elevator program of Table 5.
When input.h changes, input.o, elevator.o, and elevator
must be rebuilt.

14.3 Intermediate make

There are a few things to note about the example of Figure 24 on page 107.
First, the commands are quite repetitive. Every time you generate a .o

�le from a .c �le, you run a command that di�ers only in which source �le
it names. It turns out that all the commands mentioning ${CFLAGS} can
be omitted. make has a collection of implicit rules that cover such common
patterns. Writing implicit rules is beyond the scope of these notes; the Free
Software Foundation lists the standard ones.53

Second, the step labeled clean has no dependencies and doesn't actually
generate a �le called clean; it just removes all the generated �les (the exe-
cutable �le and all the object �les). This kind of step is commonly used instead
of writing a tiny bash script that performs a standard task. A clean step in
particular is useful for removing object �les to save space once you've built the
executable program (which, in many cases, you would have moved somewhere

53http://www.gnu.org/software/make/manual/html node/Catalogue-of-Rules.html

Version 1.1 109

http://www.gnu.org/software/make/manual/html_node/Catalogue-of-Rules.html
http://www.gnu.org/software/make/manual/html_node/Catalogue-of-Rules.html

Table 6: Flags for make
Flag Page Meaning
-B 110 Rebuild all targets
-f filename Use a speci�c make�le.
-k 110 Keep going after a step fails.
-n Show what recipes would be executed, with-

out actually running them.
var=value 111 set a variable, overriding the de�nition (if

any) in the make�le.

from which other people can �nd and execute it).
You can use a step like clean as part of forcing a full rebuild of a system.

You can use the touch command on a small number of source �les to force a
recompilation of everything that depends on them, but for a full recompilation
a step like clean is better. Even better is to use the -B command line
ag,
which for each step assumes rebuilding is always necessary; it pretends all
source �les have changed.

If a step in the build process fails (that is, returns a nonzero exit status),
make aborts.54 Putting a hyphen before a command suppresses this behaviour.

Finally, modules like input.c and elevator.c probably #include library
declaration �les like <stdio.h>, the standard I/O package, but the dependency
lines didn't list them. Conventionally, �les that change extremely rarely, like
system library �les, don't get mentioned. This means that if such a library
does change, make won't notice. In this case you must manually delete the
object �les (via make clean) and then rerun make to produce the executable.

Writing out all the dependencies can be tedious, especially if you need to
discover and record indirect dependencies, such as when one header �le includes
another. Many modern compilers will generate dependency information for
inclusion in a makefile; the gcc compiler does so with the -M switch.

14.4 Fundamentals of Build Management†
This section describes some of the fundamental concepts underlying build man-
agement systems, and outlines how an ideal one would operate. I know of no
such ideal system.

54If you supply the -k switch on the command line, it keeps going but doesn't try to run
any steps that depend on the output of the failed step.

Version 1.1 110

A build process corresponds to a directed graph; the graph has to be acyclic
for the build process to terminate. Directed acyclic graphs de�ne partial or-
ders: some �les depend on (\are related to") other �les, but there is not
necessarily a relationship between every pair of �les. What a build system
does is perform a topological sort of the partial order, resulting in one of many
possible total orders of the �les: a linear sequence of nodes where each node
comes after all its prerequisites. Directed graphs and orders are discussed in
courses involving graph theory, such as CISC 203: Discrete Mathematics for
Computing Science.55

Technically, a source is any object that cannot be recreated exactly via an
automated process. It is conventional to refer to program �les like .c �les as
\source �les," and indeed most of them �t the de�nition { they are written by
human beings instead of by programs. However, there are program generators
that create other programs. A primary example is a parser generator like
bison, which takes a grammar description as its source and outputs C or
C++ (code and header �les). Figure 26 shows what a makefile looks like
with program generators. grammar.y is a source �le written in the input
language for bison. grammar.tab.c and grammar.tab.h are the de�nition
and declaration �les for the output of bison; they are generated �les, not
source �les. The steps for generating object �les rely on a default rule.

An ideal build process, given the same source, produces identical generated
�les. \Source" is not equivalent to the conventional meaning of \source �le,"
however. The de�nition covers more kinds of �les than just program code:
Data from an experiment and input �les for testing purposes both count as
source. The gcc compiler itself might change (although, fortunately, this hap-
pens quite rarely). Also, in the example of Figure 24 on page 107, the com-
pilation and linker steps would produce di�erent output if the CC and CFLAGS

variables change { or if the recipes change in any other way. The make�le itself
need not change: If, with the make�le of Figure 24 on page 107, you override
a variable on the command like, such as

make CFLAGS="-mcpu=something " elevator

to change the type of machine for which gcc should generate code, all the
compilation steps need to be rerun. Thus these variables and recipes are
source objects; unfortunately make and many other build systems don't know
this.

Typical build process managers like make have a simple notion of \change"
to a �le: a step is rerun if any of its inputs has a modi�cation date later than

55http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-203.html

Version 1.1 111

http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-203.html
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-203.html
http://www.cs.queensu.ca/students/undergraduate/courses/desc/CISC-203.html

Figure 26: makefile with Program Generators

BISONOUTPUT=grammar.tab.c grammar.tab.h

GENERATED=*.o $BISONOUTPUT

OBJECT=main.o parser.o util.o

relies on standard .o.c default rule

main.o: main.c parser.h util.h

util.o: util.h

parser.o: parser.c parser.h $BISONOUTPUT

$BISONOUTPUT: grammar.y

bison grammar.y

cleanall: clean

rm -f $GENERATED

clean:

rm -f *~

Use man bison for a little more on the parser generator. The
key idea is that parser.tab.c and its header �le are generated
�les and not source �les. Note especially the use of variables
to abstract the outputs of bison

at least one of its outputs. Unfortunately modi�cation date is an imperfect
re
ection of change. If you add a comment to a source program, there is no
need to regenerate the object �le; it will be identical to the previous one. This
is especially problematic when the output of a compilation step might be used
in a cascade of other compilation steps, as happens with Java .class �les;
adding a comment to a widely-used .java �le in principle forces redundant
recompilation of many other �les. An ideal process would notice when a newly-
generated �le is the same as the previous version, and avoid rerunning later
steps that depend on it.

There are a few programs that take a �le as input and overwrite the same
�le as output. The LATEX variant of the TEX document processor is like this; it
produces auxiliary �les with information about things like forward references
to sections of the document. If you recorded such a �le as a dependency, the
build process would never stabilize. This is another case where it would help

Version 1.1 112

to be able to verify that the new version of an output was the same as (or
semantically equivalent to) the old version.

Sometimes you want to regenerate an old version of a system. For example,
you might have released version 1, and have gone on to work on version 2. If a
customer reports a bug in version 1, you would need to rebuild it exactly as it
was at the time of release in order to track down the error, which means starting
from exactly the same source. There are version management systems such
as RCS,56 CVS,57 and Apache Subversion R©58 that can keep track of multiple
versions and retrieve old ones. When a version management system restores
an old version of a source �le, it typically sets its modi�cation date to that of
the stored version. This interacts poorly with the use of modi�cation dates to
indicate change { another case where a clean step might be needed.

14.5 Other Build Systems

When there are many steps that can proceed in parallel (such as the gcc

compilations of Figures 24 on page 107 and 25 on page 109), some versions of
make can use multiple processors to perform several steps simultaneously.

Some languages such as Java have their own partial implementation of
dependency analysis; if you compile a Java language �le, it will recompile any
other .java �les it uses whose .class �les are missing or out of date. Such
specialized implementations tend to have two sorts of limitations. The �rst
and most obvious is that they don't help with systems with source �les written
in multiple languages. For example, a system with bison (Section 14.4 on
page 111) technically has two languages: C and the bison grammar description
language.

The second limitation is that, without the full dependency information
you're expected to record in a makefile, they sometimes recompile too much
or too little.F as of 2010, javac sometimes failed to recompile some indirect de-
pendencies.59 Suppose A.java depends on B.java, which depends on C.java,
and you change C.java. If you compile A.java, but B.class is more recent
than B.java, the compiler might not notice that C.java and then B.java

need to be recompiled.

56http://www.gnu.org/software/rcs/
57http://sourceforge.net/apps/trac/sourceforge/wiki/CVS
58http://subversion.apache.org/
59By the time you read this more recent versions of the Java compiler might have addressed

these problems.

Version 1.1 113

http://www.gnu.org/software/rcs/
http://sourceforge.net/apps/trac/sourceforge/wiki/CVS
http://subversion.apache.org/
http://www.gnu.org/software/rcs/
http://sourceforge.net/apps/trac/sourceforge/wiki/CVS
http://subversion.apache.org/

make itself has several problems and limitations that begin to crop up as
your build processes become larger and more complex, particularly when you
are producing several variants of a system (such as debug versus production
versions, or versions for di�erent operating systems). There have been several
variants of make that address some of its limitations, such as imake60 and
CMake.61 Apache AntTM62 is a very di�erent portable build tool (written in
Java) that solves many of these problems.

60http://en.wikipedia.org/wiki/Imake
61http://www.cmake.org/
62http://ant.apache.org/

Version 1.1 114

http://en.wikipedia.org/wiki/Imake
http://www.cmake.org/
http://ant.apache.org/
http://en.wikipedia.org/wiki/Imake
http://www.cmake.org/
http://ant.apache.org/

	Introduction
	I Linux Basics
	Overview
	History
	Shells
	Interacting with bash

	The File System
	Hard Links
	File-related bash Commands
	File Permissions
	Directory Read and Execute Permissions†
	Owners and Groups
	Symbolic Links
	(Lack of) File Formats

	The bash Shell And Basic Commands
	Wildcards and Filename Expansion
	I/O Redirection
	Other Command Line Expansions
	Recursive Calls on bash
	Finding the Command†
	Running Multiple Programs
	Order of Command-Line Expansions†

	Shell Scripts
	Reading From the Command Line
	if and Conditionals
	Aside: Single Square Brackets†
	Looping
	Advanced Shell Variables

	find: Finding Files
	Predicates About File Properties
	The -exec Predicate†

	II Textual Pattern Matching
	grep: Finding Strings in Files
	Command Line Options
	Caveat: Selecting a ``Matcher''

	Regular Expressions
	Minimal Regular Expressions
	Simple Extensions
	Additional Regular Expressions†

	sed: Simple Editing of Text Streams
	sed Scripts
	Advanced sed†

	awk: Programmable Editing of Text Streams
	Language Constructs
	I/O in awk
	Built-In Functions
	Command-Line Arguments
	User-Defined Functions
	Some Longer Examples

	III C Programming for Linux
	Processes
	What is A Process?
	The Process Manager
	Creating a New Process
	Executing a Different Program
	Parent/Child Interaction

	Signals
	Common Signals
	Signal Handlers

	Pipes
	Basic Pipes
	Multiple Readers and Writers†
	Named Pipes (FIFOs)

	The make Command
	Build Processes
	Basics of make and makefiles
	Intermediate make
	Fundamentals of Build Management†
	Other Build Systems

