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1 Introduction

Iterative-incremental development and model analysis are central to Model Driven
Engineering (MDE). Software artifacts can undergo several iterations and refine-
ments. As these artifacts evolve, it is necessary to assess their quality by repeating
the analysis and the verification of these artifacts after every iteration or refinement.
This process, if not optimized, can be very tedious and time consuming.

Symbolic execution is a well-known analysis technique that is used to analyze
the execution paths of behavioral software artifacts (e.g., programs and state-based
models). The output from running this technique is a symbolic execution tree
(SET) which provides the basis for various types of analysis and verification. One
of the key challenges of symbolic execution is scalability, especially with big and
complex artifacts where the size of the output symbolic execution trees becomes
very large. Repeating the entire analysis as an artifact evolves is not the best
solution.

Inspired by the research work for optimizing the symbolic execution of evolving
programs [20, 27], we propose two different optimization techniques to direct
successive runs of the symbolic execution technique to cover only the impacted parts
of an evolving state machine. The first technique reuses the symbolic execution tree
(SET) generated from a previous analysis and incrementally updates the relevant
parts that have been changed in the new version. The second technique integrates
a dependency analysis technique with the symbolic execution to implement what
we call dependency-based symbolic execution. A dependence analysis allows for
the identification of parts of the state machine that are unaffected by the change;
complete exploration of these parts is not necessary, and only a single representative
path needs to be found during exploration. Consequently, the resulting SET is not
complete, but it is sufficient to determine the impact of the change on any SET-
based analysis.

The two proposed techniques were run on a total of three industrial-sized state
machine models. The initial results showed a 64% average reduction in the size of
the symbolic execution trees generated and a 62% average reduction in the time it
took to generate them for the memoized-based symbolic execution. It also showed
a 57% average reduction in the size of the symbolic execution trees generated and
a 59% average reduction in the time it took to generate them for the dependency-
based symbolic execution.

A well-known example of applications that can benefit from such optimization
techniques is regression testing which is a crucial software evolution task that aims
at ensuring that no unintended behavior has been introduced to the system after the
change. A naive approach of regression testing usually depends on re-running some
existing test suite which has been generated to validate the previous version of the
system. This process is expensive and time consuming and it is usually supported
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with some optimization mechanisms including test case selection and prioritization.
Since symbolic execution can be used as the seed for generating these test suites,
optimizing the symbolic execution of the new versions of an artifact can also be
added to these optimization mechanisms.

The structure of the paper is as follows: Section 2 provides the background
required to understand the context of our work; Section 3 introduces our approach
to build the the symbolic execution for Rhapsody Statecharts; Section 4 motivates
the ideas of reuse and reduce for optimizing the symbolic execution of evolving
Rhapsody Statecharts; Section 5 provides an overview of our proposed techniques;
Section 6 gives the details about the implementation and the evaluation of the
proposed techniques; Section 7 covers the related work; and Section 8 concludes
this report.

2 Background

2.1 Rhapsody Statecharts1

The IBM Rational Rhapsody framework [22] is one of the commercial tools that
supports model-driven development, where models are the primary artifacts for
software development and are iteratively refined until code can be automatically
generated by the tool. The tool is heavily used in practice (e.g., in the automotive
industry). Rhapsody Statecharts (also known as Harel’s Statecharts [12]) are
a visual state-based formalism implemented in the IBM Rational Rhapsody
framework to describe the behavior of reactive systems. They extend Mealy
Machines - a type of Finite State Machines (FSMs) that perform their action only
on firing transitions - with state action, state hierarchy and concurrency. An action
is a reactive behavior associated with a state/transition that can be carried out
when, for instance, entering a state, leaving a state, or when firing a transition.
Examples of these actions include updating the values of the machine variables
and/or producing an output to be sent to the environment via events. Rhapsody
allows the use of C, C++ or Java to express these actions. A transition is labeled
with an event and optionally with a guard and an action. Events are stimuli
delivered to the statechart from the environment and they can have optional user-
defined parameters (also called arguments). Timeout events are internal events
which can be generated using timers within the statecharts. In contrast with the
machine variables, which are considered as global variables that can be accessed
anywhere within the statechart, event arguments are considered as local variables
that have a limited scope that is restricted only to the guard and the action code
of the transitions that receive their event. A guard is a Boolean expression over

1The term ”Statechart” is used exchangeably with the term ”State Machine” in this report.
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Figure 1: An Example of a Rhapsody Statechart

machine variables and/or events arguments. A transition is fired when its source
state is active, when its corresponding event is received, when its guard evaluates
to true and when no higher priority transition is enabled. When a transition is
fired, its action is executed and, consequently, the system goes to the transition’s
target state. The detailed semantics of Statecharts is very rich and it is outside
the scope of this work to thoroughly discuss it; interested readers are advised to
look at [12] for more details. Figure 1 shows an example of Rhapsody Statechart
which has been adapted from [13] with the subset of features that we consider in
this work.

Although the tool eases the modeling process, it has only limited capabilities for
verifying these models. In such contexts, verification tends to be carried out outside
the scope of the tool using some advanced verification techniques and usually to
verify the generated code rather than the models [18]. The main problem of this
practice is that, although the analysis of code is typically more difficult (code
contains more details), it does not guarantee the correctness of the design; some
design faults cannot be easily detected by code-level verification methods. Another
problem is the difficulty of tracing back the errors generated in the code to its
source at the model level. Also, the effort to generate executable code can slow the
analysis down. The motivation of our research is to highlight the importance of the
types of analysis/verifications to be carried out on the model level.

2.2 Symbolic Execution

Symbolic execution is a decades old static analysis technique for systematically
exploring potential execution paths of programs [14], [5]. It uses symbolic values
instead of concrete data as programs inputs. As the execution proceeds along
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program statements, it updates the values of program variables and the path
condition along each path. A path condition represents all accumulated constraints
that inputs have to satisfy for the particular path to be executed. Both the values
of program variables and path conditions are computed as expressions and logical
formulas, respectively, over constants and symbolic input values. A path is feasible
if its path condition is satisfiable.

A symbolic execution tree (SET) contains the execution paths constructed
during the symbolic execution of a program. The nodes of the tree represent the
symbolic program states where each state defines a program location, the variables’
valuations at this location and the set of constraints collected to reach this location
(i.e., the path condition). The edges of the tree represent transitions between states
(i.e., program locations). The resulting symbolic execution tree forms the basis for
many program analysis, verification and testing activities. For instance, it can be
used to optimize the testing process by generating the minimum number of test
cases required to inspect all feasible program paths.

Symbolic execution is not restricted only to programs; it has been also applied
to a variety of state-based models including Input Output Symbolic Transition
Systems [10], Statecharts [25], UML State Machines [3] and recently UML-RT State
Machines [28].

2.3 Model Differencing

Model differencing is the practice of identifying and locating the changes between
different versions of a model. As models evolve, keeping track of their changes is
essential for their maintainability during their lifetime. Existing approaches and
tools for model differencing depend on some similarity-based matching criteria to
guide the search process [23]. Some of them consider the syntactic similarities
between models elements and others try to search for the semantic similarities
as well [19]. In our work, we use the IBM Rational Rhapsody DiffMerge tool to
find the differences between Rhapsody Statecharts. The tool compares Rhapsody
projects that belong to the same ancestor (i.e., they are all models originating
form the same base version) and generates a difference report with the differences
between the matched elements in each project. As we notice, the tool depends on
some globally unique identifiers which are assigned internally to model elements
once created to match between the elements in each model and then to find the
differences between the matched ones.

2.4 Dependence Analysis

Dependence analysis has been extensively studied in research areas such as program
refactoring, parallelization and optimization. It also supports many activities
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in software maintenance such as comprehension, slicing, impact analysis and
regression test reduction. Dependence analysis has been primarily studied in
the context of programming languages where dependences are defined between
statements and variables using their Control Flow Graphs (CFGs). Eventually, the
same concept has been adapted for other types of software artifacts to capture the
notion of potential interaction within such artifacts, e.g., Extendend Finite State
Machines (EFSMs) [2] where ineractions are defined between transitions since they
are the “active” elements of such types of models. In our setting, we transform
statecharts to EFSMs-like representation, therefore we can adopt the definitions of
such dependencies from conventional EFSMs.

In the sequel, we will refer to a set of definitions for computing control and data
dependences that have been adopted from [7], which is based on the work presented
in [2, 16, 21].

2.4.1 Control Dependence

Classical definitions of control dependence in sequential programs state that a
statement sj is control dependent on a statement si if statement si is a conditional
that affects the execution of statement sj. For example, in an if -then-else construct,
statements in the two branches of the conditional statement are control dependent
on the predicate. Since state-based formalisms differ from sequential programs,
some adapted definitions are given of control dependence in such formalisms. The
one that applies to state machines with non-termination is called Non-Termination
Sensitive Control Dependence (NTSCD) (see Definition 2), which is given in terms
of maximal paths (see Definition 1).

Definition 1. (Maximal Path). A path in a state machine is defined as a finite
sequence of consecutive transitions that are organized such that no state is visited
more than once. A path is called maximal if it terminates in an end state (state with
no outgoing transitions) or it terminates in a cycle. A cycle is a set of transitions
that forms a strongly connected component. Note that the initial state is used as
an end state when computing maximal paths. The reason for this is that reaching
the initial state in a reactive system is analogous to reaching an end node in a
program in the sense that the behavior will start over again.
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Definition 2. (Non-Termination Sensitive Control Dependence

(NTSCD)). ti
NTSCD−−−−−→ tj means that tj is non-termination sensitive control

dependent on a transition ti iff:

1. for all paths π ∈ MaximalPaths(targetState(ti)), the sourceState(tj) belongs
to π;

2. ti has at least one sibling tk and there exists a path π′ ∈
MaximalPaths(sourceState(tk)) such that sourceState(tj) does not belong to
π′;

where MaximalPaths(s) is the set of paths that have s as the source state of
the first transition on each path and tk is said to be a sibling transition of ti if
sourceState(tk)=sourceState(ti).

2.4.2 Data Dependence

Typical data dependence definitions are given in terms of variable definitions and
uses. In the context of state machines, a variable is used on a transition if its
value appears in the guard of the transition or appears on the right side of an
assignment-statement or in the boolean expression of an if-statement, or in an
output-statement in the action code of the transition. A variable is defined on a
transition if it appears on the left hand side of an assignment-statement in the
action code of the transition. Based on this, the following definition is given [2].

Definition 3. (Data Dependence (DD)). ti
DD−−→ tk means that tk is data

dependent on ti with respect to variable v if:

1. v ∈ Def (ti), where Def (ti) is the set of variables defined by the action code
of transition ti;

2. v ∈ Use(tk), where Use(tk) is the set of variables used in the guard or the
action code of transition tk;

3. there exists a path in the state machine from ti to the targetState(tk) along
which v is not modified.

Example 1. By applying Definitions 1-3 to the state-based model shown in Figure
3, we find that there are six maximal paths in this model composed of the following
sequences of transitions: [T1, T4 ], [T1, T3, T10 ], [T1, T2, T7 ], [T1, T2, T6, T10 ],
[T1, T2, T5, T9 ], and [T1, T2, T5, T8, T10 ]. Also, there are control dependences

between each of the following transitions: T2
CD−−→ T5 , T2

CD−−→ T6 , T2
CD−−→ T7 ,

T5
CD−−→ T8 and T5

CD−−→ T9 , while there are data dependences between each of
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Figure 2: Symbolic Execution (SE) of Rhapsody Statecharts

the following transitions: T1
DD−−→ T2, T1

DD−−→ T3 , T1
DD−−→ T5 , T1

DD−−→ T6 and

T1
DD−−→ T8 .

3 Symbolic Execution of Rhapsody Statecharts

In this section, we explain how we build the symbolic execution of Rhapsody
Statecharts; the base module for our optimization techiques is presented in Section
6. We followed the approach of Zurowska and Dingel [28] with some variations
to develop a symbolic execution module for Rhapsody Statecharts. In contrast to
their work [28], our intermediate machine representation of Rhapsody Statecharts
takes the form of Mealy Machines instead of their Functional Finite State Machines
(FFSMs). Additionally, our symbolic execution module is based on an off-the-
shelf symbolic execution engine, KLEE [4], to symbolically execute action code
encountered in the Statecharts, whereas they use an in-house symbolic execution
engine. The reason for choosing the Mealy Machine formalism is to have actions
associated only with transitions, and we do this in such a way that it preserves the
behavior of Statecharts.

The two components of our technique, as shown in Figure 2, are: 1) a trans-
lator that translates a Statechart model to a Mealy-like Machine representation
(SC2MLM Transformation) and 2) an executor that traverses the Mealy Machine
model and symbolically executes the action code encountered in each transition to
build its symbolic state space (KLEE-based MLM2SET Generation).

3.1 Statecharts to Mealy-like Machine Transformation:
SC2MLM

The basic structure of our Mealy-like Machine consists of a set of global variables
(sometimes called attributes), a set of simple states with one of them marked as
an initial state, and a set of transitions between those states. Simple states in
Mealy-like Machines do not have entry/exit actions. Transitions are characterized
in the same way as in Rhapsody Statecharts by the event that triggered them, an
optional guard and an action that occurs upon firing them. More advanced features
that are found in Rhapsody Statecharts such as composite states, concurrent states,
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Figure 3: The Mealy-like Machine of the Rhapsody Statechart in Figure 1

states with entry/exit actions and choice points (also called condition connectors
or OR-connectors, which allow a transition to branch depending on the value of a
guard) need to be mapped to fit the structure of Mealy-like Machines. Our current
transformation supports the mapping of those specific features. For example: 1)
Composite and concurrent states and their outgoing group transitions (formally
called group transitions or high-level transitions) are flattened into simple ones; 2)
Choice points along with their incoming and outgoing branches are replaced with
newly created transitions connecting the source state of each choice point with its
target states; 3) Entry actions of each state are added at the end of the action
code of its incoming transitions; and 4) Exit actions of each state are added at the
begining of the action code of its outgoing transitions. Figure 3 shows the Mealy-
like Machine that represents the Rhapsody Statechart shown in Figure 1.

Formally, a Mealy-like Machine is a tuple MLM =(S, V, E, EA, T, s0, V0), where:

• S is a nonempty finite set of states;

• V is a set of globally typed variables (these are the attributes of the class of
objects whose behavior is modeled by the MLM );

• E is a nonempty finite set of events (called also triggers or signals) by which
the machine communicates with its environment; they are divided into disjoint
sets of input events, Ei, output events, Eo, and internal events, Eint , and
can optionally have arguments (also called parameters), EA;

• EA is a finite set of event arguments that is disjoint with V ;

• T is a set of transitions connecting the states in S. A transition is a tuple
t=(s, e, eA, G, A, s’ ), where:
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– s and s’ are the source state and the target state, respectively;

– e is one of the machine input/internal events in Ei and Eint;

– eA is a subset of EA representing the arguments of e;

– G is a Boolean expression (condition) defined over a subset of V∪eA
and it is called the guard of t ;

– A is a fragment of action code written in C, C++ or Java and it is
called the action of t ; statements in this fragment can be assignment
expressions, conditional statements, iterations or a special type of
statements used to generate some output events to be sent to the
environment; the execution of this fragment may result in updating the
values of a subset of V, constraining some of the variables in V, or the
parameters in eA, or it may cause a sequence of output events in Eo to
be sent;

• s0 ∈ S is the initial state.

• V0 is the initial valuation of the machine variables in V.

Example 2. Figure 3 presents an example of an MLM with:

• S={S0, S1 S0, S1 S1, S1 S2, S1 S3};

• V ={a, b, c};

• Ei={setTraingleSides(x, y, z ), checkPositiveSides(), checkIsTriangle(), check-
TriangleType(), reset()};

• Eo={evStartChecking(), evValidInput(), evInvalidInput(), evIsTriangle(), evIs-
NotTriangle(), evEquilateral(), evScalene(), evIsosceles()};

• Eint={};

• EA={x, y, z};

• s0=S0 ;

• V0={a=0, b=0, c=0};

• T1 =(S0, setTraingleSides, {x, y, z}, {}, A1, S1 S0 );

• T2 =(S1 S0, checkPositiveSides, {}, {(a>0)&&(b>0)&&(c>0)}, A2, S1 S1 )

• ...

• T10 =(S1 S3, reset, {}, {}, A10, S0 ).

9



3.2 Symbolic Execution of Mealy-like Machine: MLM2SET

The main idea is the same as the symbolic execution of programs with some
variations that reflect the different features of Mealy-like Machines. For instance,
states in MLMs are similar to program locations (i.e., program counters), transitions
in MLMs are similar to program statements, and event arguments in MLMs are
similar to program arguments (which both represent the input data passed from
the environment). Just as symbolic execution of programs replaces the concrete
values of all input variables to a program by symbolic values, so too will symbolic
execution of MLMs replace the concrete values of all event arguments received by
a MLM by a unique set of symbolic values. Consequently, both symbolic execution
techniques are able to symbolically trace the given artifact (either a program or a
MLM) and compute the constraints and the variable updates associated with each
execution path. In this case, both constraints and variable updates are defined over
symbolic values. The output from symbolic execution is represented by a symbolic
execution tree (SET). The nodes in this tree represent program locations (or MLM
states) with the symbolic valuations of program variables (or MLM variables)
at those locations and the path constraints collected to reach those locations;
therefore, we call them symbolic. The edges in this tree are links between symbolic
locations/states, and they reflect the control flow of the execution. In the symbolic
execution of MLMs these edges are labeled with the event causing the transition
(along with the symbolic values substituting their arguments if any) and also the
sequence of events resulting from the execution of the transition action code (along
with their arguments, if any). We call these edges symbolic transitions. A symbolic
execution path is a sequence of one or more consecutive symbolic transitions in a
given symbolic execution tree (SET). The root of the tree is the node representing
the initial state of the MLM with the MLM variables set to their initial values and
the path constraint is set to ”true”.

Formally, a symbolic execution tree of a Mealy-Like-Machine, MLM =(S, V, E, EA,
T, s0, V0), is a tuple SET =(SS, L, ST, ss0) where,

• SS is a finite set of symbolic states; a symbolic state is a tuple ss=(s, val, pc)
where,

– s is a state in S ;

– val is the symbolic valuation of machine variables V ;

– pc is the path constraint collected to reach state s.

• L is a finite set of labels; a label is a tuple l=(e, V s, σ, Seq) where,

– e is an input or internal event in Ei or Eint;

– V s is a set of symbolic variables, different from V and EA;
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– σ is a mapping from the original event argument names eA ⊂ EA to the
new set of variables names in V s;

– Seq is an optional sequence of output events paired with symbolic
valuations of their arguments (if any).

• ST is a finite set of symbolic transitions defining the transition relation
between symbolic states; a symbolic transition is a tuple st=(ss, l, ss’ ) where,

– ss is the source symbolic state;

– l is the label of the symbolic transition;

– ss ’ is the target symbolic state.

• ss0 is the initial symbolic state.

In the remainder of this section, we provide the details of our algorithm to
symbolically execute MLMs as listed in Algorithm 1.
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Algorithm 1 Standard Symbolic Execution (SE) Algorithm

Input: A Mealy-Like Machine MLM =(S, V, E, EA, T, s0, V0)
Output: A Symbolic Execution Tree SET =(SS, L, ST, ss0)

1: ss0 ← (s0, v0, true)
2: SS← {ss0}
3: Create a queue q
4: q← [ss0]
5: //Explore the MLM in Breadth-First-Search fashion
6: while q is not empty do
7: currentStateToExplore← remove the first element ss=(s, val, pc) from q
8: for all outgoing transitions t=(s, e, eA, G, A, s’ ) of s do
9: Create a unique set V s of new variables in one-to-one relation with the

transition’s event arguments eA
10: Create a map σ between eA and V s

11: Substitute every occurrence of a variable x∈eA in the guard G and the
action code A by σ(x ) to obtain Gs ← σ(G) and As ← σ(A)

12: if Gs is satisfiable given val and pc then
13: feasiblePaths← SymbolicExecutionOfCode(As, val, Gs, pc)
14: for all feasiblePath=(val’, pc’, out’ )∈feasiblePaths do
15: Create a new symbolic state, ss’=(s’, val’, pc’ )
16: if ss’ is not subsumed by any previously generated symbolic state

in SS then
17: SS←SS∪{ss’}
18: Create a new label, l’=(e, V s, σ, out’ )
19: L←L∪{l’}
20: Create a new symbolic transition, st’=(ss, l’, ss’ )
21: ST←ST∪{st’}
22: q← enqueue(q, ss’)
23: end if
24: end for
25: end if
26: end for
27: end while

The first task in this algorithm concerns the exploration of the MLM, which is
done in a breadth-first-search fashion, starting from the initial state and proceeding
through each of its outgoing transitions, and so on, until all states have been
visited. Since some MLMs may have loops, we need to limit the exploration by
some criterion. The criterion that we consider here is to check if a symbolic state
is subsumed by some other previously explored symbolic state; if so, we should not
explore it again. A symbolic state ss=(s, val, pc) is subsumed by another symbolic
state ss’=(s’, val’, pc’ ) if s=s’, val=val’, and pc is included in pc’ (i.e., pc ⇒pc’ or
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pc is more constrained than pc’ ).

The second task is the symbolic execution of transitions. In this task, we perform
the following steps for each transition: 1) We create and assign a unique set of
symbolic variables to replace the event arguments of the transition, if any (Lines
9-10); 2) We substitute the occurrences of those event arguments in the guard
expression and the action code statements, by their assigned symbolic values (Line
11); 3) We check if the guard is satisfiable with respect to the variable updates
and the path constraint of the current symbolic state (Line 12); if so, 4) We
use the symbolic execution engin KLEE to execute the updated action code of
the transition; the result from KLEE is a set of variable assignments and path
constraints that trigger different feasible paths in that code (Line 13); 5) We use
the results from the previous step to both create a new set of symbolic states/nodes
representing the target state of this transition and also to label the edges to these
new symbolic states/nodes (Lines 15-19).

The complete SET of the Mealy-like Machine in Figure 3 is shown in the top
left corner of Figure 4. As we notice, the SET is of depth 6, and it has 14 symbolic
execution paths identified by the number of leaves in the tree. In the following, we
show the detailed steps for generating the first three levels of the tree, based on
Algorithm 1.

Figure 4: SET of checkTriangleType Statechart (highlighted levels: 1, 2 and 3)
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Example 3. As it is shown, the root of the tree is the symbolic state SS1 =(S0,
(a=0, b=0, c=0), []). Exploring state S0 of SS1 will symbolically execute its
outgoing transition T1, which creates new symbolic values x, y and z, assigns them
to the arguments X, Y and Z of the event setTraingleSides(), updates the machine
variables a, b and c to have the new symbolic values of the setTraingleSides event
arguments, creates a new symbolic state SS2 =(S1 S0, (a=x, b=y, c=z ), []), and
finally forms the label for the symbolic transition (i.e., the edge) connecting SS1
and SS2 with the transition event e=[setTriangleSides(x, y, z )] and the output
out=[itsOutput.evStartChecking()]. Because there is no guard associated with the
transition T1 and there are no conditional statements in its action code, there is
no update to be made on the path constraint of the symbolic state SS2. The next
step is exploring state S0 S1 of SS2 which will symbolically execute its outgoing
transitions, T2, T3 and T4, in sequence. Symbolically executing T2 creates
a new symbolic state SS3 =(S1 S1, (a=x, b=y, c=z ), [!(x ¡=0)ˆ!(y ¡=0)ˆ!(z ¡=0)])
and forms the label for the edge between SS2 and SS3 with the transition event
e=[checkPositiveSides()] and the output out=[itsOutput.evValidInput()]. As we
notice, the value of the path constraint of SS3 reflects the guard condition of
transition T2. In contrast with T2, symbolically executing T3 creates three
symbolic states representing state S1 S2, which are SS4, SS5 and SS6. All
have the same variables valuation VAL=(a=x, b=y, c=z ) but have different path
constraints representing all feasible cases for the guard condition of T3. The
edges connecting SS3 with SS4, SS5 and SS6 are all labeled with the input event
e=[checkPositiveSide()] and the output out=[itsOutput.evInvalidInput()]. Finally,
symbolically executing T4 creates a new symbolic state SS7 =(S0, (a=0, b=0,
c=0 ), []) and forms the label for the edge between symbolic state SS2 and symbolic
state SS7 with the transition input event e=[reset()] and the output out=[]. The
difference between the symbolic state SS7 and ther other symbolic states SS4, SS5
and SS6 is that we find that there is another symbolic state, SS1, that has been
already explored before, and it subsumes SS7, therefore no further exploration is
needed for SS7 compared with the others which need to be explored.

4 Motivating Example

Symbolic execution is an expensive approach: scalability (known as the path-
explosion problem) is one of the main challenges of this technique especially when
applying it to big, complex artifacts (programs or models) where the number of
execution paths increases dramatically. Software artifacts can undergo several
iterations and refinements and repeating the symbolic execution of those artifacts
from scratch after every iteration or refinement step can be very tedious and time
consuming. The new version of an artifact can be very similar to the previous
one, so excluding the similar/unchanged parts from successive runs of the symbolic
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(a) V0 - The base version of an example Statechart

(b) V1 - A modified version of the Statechart in (a)

Figure 5: Two Versions of an Example Statechart

execution technique reduces the time required for any symbolic execution-based
types of analyses. Alternatively, directing the successive runs of the symbolic
execution technique away from execution paths that are not impacted and towards
execution paths that are impacted also reduces the time required for any symbolic
execution-based types of analyses. Inspired by the work in [27] and [20], we propose
two techniques for optimizing the symbolic execution of an evolving state machine
model. We use the models in Figure 5 and their symbolic execution trees as shown
in Figures 6 and 7 to illustrate how our optimization techniques work.

In Figure 5, we have two versions of an example Rhapsody Statechart model,
V0 (in Figure 5a) is the base version, and V1 (in Figure 5b) is a modified version
of the base version where we modified the conditional statement in the action code
of transition T2. In Figure 6, we show the symbolic execution tree of V0, SET(V0),
however in Figures 7a and 7b, we show two different illustrations for the symbolic
execution tree of V1, SET(V1).

4.1 Optimization Via Reuse

By comparing the unhighlighted parts (i.e., those coloured black) of the symbolic
execution tree of V1, SET (V1 ), in Figure 7a with the symbolic execution tree of
V0, SET (V0 ), in Figure 6, we notice that these parts have their equivalents in
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Figure 6: SET(V0) - Symbolic Execution Tree for the Statechart in Figure 5a

the SET (V0 ). However, by looking at the highlighted parts (i.e., those which are
coloured red) of the SET (V1 ), we find that: 1) they are slightly different from their
corresponding parts in the SET (V0 ); 2) they represent the symbolic execution of
transition T2 (the changed transition in V1 ) and subsequent transitions; and 3)
they reflect the parts of the SET (V0 ) that are impacted by the changes made on
V1.

Therefore, if we already have the SET (V0 ) and we manage to identify the parts
of it that need to be updated in order to account for the changes made on V1, then
we can direct the symbolic execution of V1 to generate only the new updated parts
to replace the old ones.

The applicability and utility of running this process depends, first, on the
existence of the SET (V0 ) and, second, on the amount of savings gained from
reusing it which can be very large for big complex models that undergo some minor
changes (i.e., changes with limited impact).

Possible measures for quantifying the amount of savings are: 1) the time gained
from not generating the SET (V1 ) from scratch; 2) the perecentage of nodes (or
symbolic states) in the SET (V0 ) that can be safely reused; or 3) the perecentage of
execution paths in the SET (V0 ) that can also be safely reused. A very important
benefit from this latter measure is that it provides us with a good estimate of how
many of the test cases generated from the SET (V0 ), to test V0, can be reused for
testing V1.

We notice that the location of the change in the model may suggest the
effectiveness of reusing the SET (V0 ). We believe that the closer the change is to the
initial state of the model, the less the number of nodes in the SET (S0 ) that can be
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(a) Highlighted (in red) the parts that are different from SET(V0)

(b) Grayed out the pruned parts resulting from the partial exploration of
transitions: T1, T3, and T4

Figure 7: SET(V1) - Symbolic Execution Tree for the Statechart in Figure 5b
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reused. Additionally, the more model paths a changed state or transition can reach,
the more updates of the SET (V0 ) are needed and the smaller the effectiveness of
reusing SET (V0 ). For example, having a change in state S1 or transition T1 in
V1 will require to update all the descendents of the symbolic state SS2 in the
SET (V0 ), leaving only two symbolic states to be reused.

4.2 Optimization Via Reduction

First, we assume that the base version of a model (i.e., the version before the
change) has already been analyzed successfully to, e.g., determine reachability of
states or generate test cases. This assumption enables the optimization described
below.

Second, as we discussed in Section 3.2, the symbolic execution of a transition,
ti, in an MLM model may result in zero, one or many symbolic transitions of ti in
the symbolic execution tree of that model, depending on: 1) the path constraints
and the variable valuation of the symbolic state representing the source state of ti;
2) the satisfiability of the guard condition of ti; and 3) the number of execution
paths of the action code of ti. For example, the symbolic execution of transition
T1 in the two versions of the model in Figure 5 results in two symbolic transitions
connecting the symbolic state SS2 of state S1 (the source state of T1 ), with the
two symbolic states SS3 and SS4 of state S3 (the target state of T1 ). The first
symbolic transition is taken if a=7, while the second takes place if a=1 (these are
the two cases that satisfy the guard condition of T1 ). Similarily, the symbolic
execution of T2 results in having two symbolic transitions originating from each of
the symbolic states SS3 and SS4 and ending at the symbolic states SS5 and SS6
(resp. SS8 and SS9 ) as a result of having a conditional statement in the action
code of T2. On the other hand, the symbolic execution of transition T3, which
does not have a guard or any conditional statements in its action code, results in
having only one symbolic transition originating from each of the symbolic states
SS5, SS6, SS7 and SS8 and ending at the symbolic states SS11, SS12, SS13 and
SS14, respectively. In the same way, the symbolic execution of transition T4 results
in having one symbolic transition originating from each of the symbolic states SS3
and SS4 and ending at the symbolic states SS7 and SS10, respectively.

Third, as we also discuss in Section 2.4, applying a dependency analysis on
a modified version of a model given the list of the changes made on its previous
version allows us to identify all the parts of the model that have an impact on or
are impacted by the changes.

Now, with all that said, our question is: Can we direct the symbolic exploration
of a modified version of a model to exhaustively explore all changed transitions and
all other transitions that either impact or are impacted by one or more changed
transitions and to reduce the exploration of the remaining transitions (i.e., the
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transitions that neither impact nor are impacted by the change) to a minimum (i.e.,
to consider only one symbolic transition per such transition)? Our goal is twofold:
1) to explore the minimum set of symbolic transitions to perform the analysis on the
evolved state machine model (to, e.g., reveal states that have become unreachable
by the change or to generate test cases for the new executions introduced by the
change); and 2) to reduce the time of exploration as well as the size of the resulting
SETs.

For example, applying a dependency analysis on V1 given that transition T2
has been changed with respect to its base version, V0, shows that there is no
dependency between T2 and any other transitions as none of them defines a variable
that transition T2 uses (and vice versa). Now, with this information in mind, we
can direct the symbolic execution of V1 to “fully” explore the changed transition T2
(i.e., to explore all its symbolic transitions) and to only “partially” explore the rest
of the transitions in the model (i.e., to explore any one of its symbolic transitions).
Following this process to symbolically execute V1 results in the SET shown in
Figure 7b, which has 6 symbolic states less than the complete SET (V1 ). Although
the new SET is not complete, it is sufficient to run regression types of analysis. For
instance, the SET in Figure 7b can be used to determine if the change introduced
any unreachable states or which test cases must be run to test the execution paths
introduced by the change.

As the amount of savings to be gained here depends on the number of symbolic
transitions to be pruned from the partial exploration of unimpacted transitions,
this technique is most beneficial if applied to Statecharts that have transitions with
multi-path guards or action code, which both results in more than one symbolic
transition in the SET. The more symbolic transitions we have for an unimpacted
transition, the more savings we gain if it is partially explored.

4.3 Reuse Or Reduction?

From our brief discussion of the idea behind each technique, we summarize the
following:

• For the first technique, we need to have access to the SET of the original
model V0 to be reused and we need to identify the differences between the
new version of the model and the original one. The effectiveness of this
technique is highly dependent on the change location. The resulting SET
represents all execution paths of V1 and can thus be used to, e.g., maintain
the test suite for the model.

• For the second technique, we need to identify the differences between the new
version of the model and the original one as well as to integrate a dependence
analysis to identify the impact of the change. Models with complex guards
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and action codes will benefit most from this technique. As the resulting SETs
may not be complete and omit executions that are guaranteed to not have
been impacted by the change, they can be used only to run regression-types
of analysis.

Having said that, we think that both optimization techniques complement each
other, in the sense that they both serve the same purpose but with different
requirements, and it is the role of the analyst to choose among them. For instance,
the applicability of the results from previous analysis is a basic requirement for
applying the first technique, while the complexity of the guards or action code of
the transitions in the model under study is a key factor for the effectiveness of the
second technique.

5 Optimizing Symbolic Execution of Evolving

State Machines

5.1 Memoized-based Symbolic Execution (A Reuse Ap-
proach)

In this section we present our memoized-based symbolic execution technique (MSE)
as shown in Figure 8.

Figure 8: Memoized-based Symbolic Execution (MSE)

The inputs to MSE are: 1) an MLM representation of a modified version of a
Statechart model, MLMmodV er; 2) the symbolic execution tree of the base version
of the model, SET baseV er; and 3) the differences between the modified version of
a Statechart model and its base version mapped to a set of updated transitions in
their corresponding MLM representations. Currently, we consider only the following
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types of changes: adding/removing states; adding/removing transitions; updating
the actions of states; and updating transitions. All these types of changes can be
represented as changes to transitions in our MLM representation. For example,
adding/removing states can be represented by an addition/deletion of transitions
connecting these states with other states in the model; also updating the entry/exit
actions of states can be represented by an update of their incoming/outgoing
transitions, respectively. Therefore, we manage to represent these differences in
terms of a set of updated transitions T updated including all transitions that have been
added to, deleted from or updated in the modified version of the model. To find
the differences between two Rhapsody Statecharts models, we use the Rhapsody
DiffMerge tool that we mentioned in Section 2.3. These differences are mapped to
their MLM correspondences using our “SC2MLM DiffMap” module, which outputs
the set of all transitions that are found to have been updated T updated in the modified
MLM version.

The output from MSE is a new symbolic execution tree SETmodV er that shares
all what can be reused from the old tree but also contains the modifications
resulting from the SE of the parts of the new version of the model that are found
changed. We use a tree-based data structure for representing, storing, retrieving,
and manipulating these symbolic execution trees.

The detailed steps of our MSE module are shown in Algorithm 2. Below, we
explain each of these steps.

The first step in this algorithm (Lines 1-15) is to load and explore the symbolic
execution tree to be reused (i.e., the SET of the base version of the Statechart
Model) in order to remove all the edges representing any updated transitions (note
that removing an edge leads to removing the entire subtree rooted at the target
node of the edge).

The second step is to re-explore the symbolic execution tree, resulting from
the previous step, to find all symbolic states representing states with outgoing
transitions belonging to T updated (Lines 17-24). For each of these symbolic states,
we symbolically execute MLMmodV er using an adapted version of Algorithm 1 (Line
26) in which we symbolically execute a given model based on some parameters.
These parameters determine where the exploration starts (i.e., the symbolic state
to begin the exploration at), which updated transitions to consider when exploring
the state representing the start symbolic state for the first time, and the set of
symbolic states that have been previously explored to be used for the purpose of
subsumption checking. The resulting symbolic execution trees are then merged
with SET baseV er (Line 27).
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Algorithm 2 Memoized-based Symbolic Execution (MSE) Algorithm

Input: MLM =(S, V, E, EA, T, s0, V0), SET
baseV er=(SS, L, ST, ss0), T

updated

Output: A Symbolic Execution Tree SETmodV er=(SS’, L’, ST’, ss0)

1: //Explore the symbolic execution tree of the based version, SET baseV er, in
breadth-first-search fashion to remove the parts that need to be updated;
symbolic states in the resulting tree are to be used for the purpose of
subsumption checking

2: ss0 ← (s0,V0, true)
3: Create a queue q
4: q← [ss0]
5: while q is not empty do
6: Remove the first element ss=(s, val, pc) from q
7: for all outgoing symbolic transitions st=(ss, l, ss’ ) of ss do
8: Find t in T such that: (sourceState(t)=ss)∧(targetState(t)=ss’ )
9: if t ∈ T updated then

10: Remove l and ss’ with all its children from SET baseV er

11: else
12: q←enqueue(q, ss’ )
13: end if
14: end for
15: end while
16: //Re-explore SET baseV er to merge the results from the symbolic execution of

MLMmodV er for the parts that need to be updated
17: q← [ss0]
18: while q is not empty do
19: Remove the first element ss=(s, val, pc) from q
20: T toConsider ← {}
21: if s has one or more outgoing transitions in T updated then
22: for all (t’ ∈ OutTrans(s)) ∧ (t’ ∈ T updated) do
23: T toConsider ← T toConsider ∪ {t’}
24: end for
25: //Given the set of symbolic states to be reused SSbaseV er, symbolically

execute MLMmodV er starting at state s and considering only the outgoing
transitions of s that belong to T toConsider when we explore s for the first
time

26: SETsub ← SymbolicExecution(MLMmodV er, ss, T toConsider, SSbaseV er)
27: Merge the root of SETsub with the symbolic state ss of SET baseV er

28: else
29: for all outgoing symbolic transitions st’=(ss, l’, ss’ ) of ss do
30: q ←enqueue(q, ss’ )
31: end for
32: end if
33: end while
34: SETmodV er ← SET baseV er 22



5.2 Dependency-based Symbolic Execution (A Reduction
Approach)

A high level overview of the main tasks of our dependency-based symbolic execution
technique (DSE)2 is depicted in Figure 9. In the following, we describe each task
in detail.

Figure 9: Dependency-based Symbolic Execution (DSE)

The first task is to identify the differences between the two versions of a
Statechart model and to map these differences into a set of updated transitions
in their corresponding MLM representations. We follow the same procedure as in
the previous section to manage this task.

The second task is to perform a dependency analysis on the modified version of
the model to compute the list of transitions that have an impact or are impacted by
any of the updated transitions set resulting from the previous task. In this module,
we implement the algorithms that compute the types of dependences discussed in
Section 2.4. The output from this task is a list of all transitions that are found
updated or impacted in any way. These transitions are the ones that we need to
fully explore when we symbolically execute the modified version of the model.

The third and the last task is to run the symbolic execution of the modified
version of the model, guided by the list of updated/impacted transitions resulting
from the dependency analysis task. The detailed steps of our DSE module are
shown in Algorithm 3. Two modes of exploration are defined: full and partial. A
full exploration mode requires a complete exploration of all execution paths of an
explored transition and is applied for all transitions that are found to have been
updated or impacted (Lines 15-26). However, a partial exploration mode requires

2Note that we can also call it regression or partial symbolic execution.
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the execution of only one representative path of an exploring transition and is
applied to transitions that are found neither updated nor impacted (Lines 27-38).

6 Implementation and Evaluation

6.1 IMPLEMENTATION

We implemented our symbolic execution techniques as two Eclipse plug-ins; one
of them runs on Windows and the other runs in an Ubuntu Virtual Machine.
Both the translation from Rhapsody Statecharts to Mealy-like Machines and the
computation of control and data dependency of these Statecharts are implemented
in the context of the Rhapsody RulesComposer Add-On. Identifying the differences
between different versions of Rhapsody Statecharts is carried out using Rhapsody
DiffMerge, however we needed to map these differences into their corresponding
elements in the MLM representation. Identifying the impact of the changes in these
versions is done based on the outputs from the two previous modules, which are all
implemented under Windows. Because we use the KLEE symbolic execution engine
to symbolically execute action code in our Statecharts, we developed our symbolic
execution techniques in Ubuntu, where it was easier to run KLEE. We set up a
file-sharing mechanism to access the Mealy-like Machines, the differences report,
and the change impact report, which are all created and saved under the Windows
environment, from the Ubuntu VM (where both KLEE and our symbolic execution
implementation work). In order to use KLEE for the symbolic execution of the
fragments of action code encountered in Rhapsody Statecharts, we only consider
a subset of Java/C++ code that has the same syntax as C code, including the
basic assignment statements, conditional statements and iterative statements. The
data types supported are the basic types including characters, Booleans and integer
numbers. We also consider the type of statements that are used in the action code
for sending events to other objects.

6.2 EVALUATION

6.2.1 Research Questions and Variables of Interest

We consider the following four research questions:

– RQ1. How effective are our optimizations (i.e., how much do they reduce the
resouce requirements of the symbolic execution of the changed state machine
model) compared to a standard SE of the changed state machine model?
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Algorithm 3 Dependency-based Symbolic Execution (DSE) Algorithm

Input: MLMmodV er=(S, V, E, EA, T, s0, V0), T
ofInterest=T updated ∪ T impacted

Output: A Symbolic Execution Tree SET=(SS, L, ST, ss0)

1: ss0 ← (s0,V0, true)
2: SS← SS ∪ {ss0}
3: Create a queue q
4: q← [ss0]
5: //Explore the MLM in Breadth-First-Search fashion
6: while q is not empty do
7: Remove the first element ss=(s, val, pc) from q
8: for all outgoing transitions t=(s, e, eA, G, A, s’ ) of s do
9: Create a unique set V s of new variables in one-to-one relation with the

transition event’s arguments eA
10: Create a map σ between eA and V s

11: Substitute every occurrence of a variable x ∈ eA in the guard G and the
action code A by σ(x ) to obtain Gs ← σ(G) and As ← σ(A)

12: if Gs is satisfiable given val and pc then
13: feasiblePaths← SymbolicExecutionOfCode(As, val, Gs, pc)
14: if t ∈ T ofInterest then
15: for all feasiblePath=(val’, pc’, out’ )∈feasiblePaths do
16: Create a new symbolic state, ss’=(s’, val’, pc’ )
17: if ss’ is not subsumed by any previously generated state then
18: SS← SS ∪ {ss’}
19: Create a new label, l’=(e, V s, σ, out’ )
20: L← L ∪ {l’}
21: Create a new symbolic transition, st’=(ss, l’, ss’ )
22: ST← ST ∪ {st’}
23: q←enqueue(q, ss’ )
24: end if
25: end for
26: else
27: Select only one feasiblePath=(val’, pc’, out’ )∈feasiblePaths
28: Create a new symbolic state, ss’=(s’, val’, pc’ )
29: if ss’ is not subsumed by any previously generated state then
30: SS← SS ∪ {ss’}
31: Create a new label, l’=(e, V s, σ, out’ )
32: L← L ∪ {l’}
33: Create a new symbolic transition, st’=(ss, l’, ss’ )
34: ST← ST ∪ {st’}
35: q←enqueue(q, ss’ )
36: end if
37: end if
38: end if
39: end for
40: end while
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– RQ2. Does the change location have an impact on the effectiveness of the
MSE technique?

– RQ3. Does the SET generated from MSE match the one generated from
standard SE?

– RQ4. Can we identify state machine characteristics that gurantee the
effectiveness of the DSE technique?

For the study of RQ1, we considered the following three correlated variables:
1) the time taken to run each technique, 2) the number of newly computed/created
symbolic states and 3) the number of execution paths in the resulting SETs.

For the study of RQ2, we defined two independent measures in order to quantify
the impact of a change in one or more transitions within an MLM model. The two
measures have been computed as a result of performing the dependency analysis,
discussed in Section 2.4, on the MLM representations of the models under study
(i.e., before running our optimization techniques). The first measure, M1, is a value
indicating the percentage of the maximal paths in an MLM model that do not go
through (or include) any of the changed transitions; the lower this value is, the
higher the number of maximal paths involving the change is and the higher the
impact of the change on the given model. The second measure, M2, is a normalized
value between zero and one-hundred indicating the average position of a changed
transition within its maximal paths; the lower this value, the closer the changed
transition to the beginning of these paths is and the higher the impact of this
changed transition on all successive transitions sharing the same path.

For the study of RQ3, we first calculated/recorded the differences in the
number of symbolic states and the number of execution paths generated in the
SETs resulting from standard symbolic execution and memoized-based symbolic
execution. Then, we performed manual inspection of a subset of the two SETs to
ensure their equivalence.

For the study of RQ4, we choose the following two factors: 1) the first and most
influential factor is the number of transitions in the subject model with multiple
symbolic transitions (i.e., those with multi-path guards or action code) - the higher
this value is, the more effective the dependency-based symbolic execution technique
is, and 2) the second factor is the number of transitions that are found in 1) and have
data dependencies with each other or with some other transitions in the model - the
higher this value is, the less the opportunity for savings from the partial exploration
is and the less effective the dependency-based symbolic execution technique is. This
is because if the change occurs in a transition that depends on or is dependent on
some other transitions then our dependency-based symbolic execution will have to
fully explore the changed transition and all its dependences.
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6.2.2 Artifacts

To evaluate the effectiveness of our optimization techniques, we chose three
industrial-sized models from the automotive domain. The first model, the Air
Quality System (AQS), is a proprietary model that we obtained from our industrial
partner that is responsible for air purification in the vehicle’s cabin. The second
and the third models, the Lane Guide System (LGS) and the Adaptive Cruise
Control System (ACCS), are non-proprietary models designed at the University of
Waterloo [8]. The LGS is an automotive feature used to assist drivers in avoiding
unintentional lane departure by providing alerts when certain events occur. The
ACCS is an automotive feature used to automatically maintain the speed of a
vehicle set by the driver through the automatic operation of the vehicle. The three
models were developed as Simulink/Stateflow models and therefore we manually
converted them to Rhapsody Statecharts. Table 1 summarizes the characteristics
of the three models and their equivalent MLM representations.

6.2.3 Evaluation Setup

To perform our evaluation, we first prepared a set of different versions for each
artifact; the base version and a number of modified versions. Each modified version
introduces a single change to one simple or group transition in the base version.
Each change is made in the form of an alteration to the event name or adding a
send event statement to the action code of the subject transition. The main reason
for selecting those specific types of changes is to keep the number of modified
models manageable in such a way that enables us to ensure the correctness of our
implementation and to analyze the evaluation results. The total numbers of the
modified versions created for each model are: 26 for the AQS model, 19 of the LGS
and 19 for the ACCS model. For each modified version, we recorded the following
information related to the change that was made: 1) the number of transitions
in the MLM representation of the subject model corresponding to the changed
transition in Rhapsody, 2) the number of transitions in the MLM representation of
the subject model that have been found to impact or be impacted by a changed
transition and 3) the values for the two measures, M1 and M2, computed for the
study of RQ2.

Second, we ran our standard symbolic execution (SE) on all the versions of the
three selected artifacts, while we ran both the memoized-based symbolic execution
(MSE) and the dependency-based symbolic execution (DSE) only on the modified
versions, given the results of the SE of their base version in the case of MSE. For
each run, we recorded the time to generate the symbolic execution tree, and the
number of symbolic states and execution paths in the generated SET. Note that we
only considered the symbolic states and execution paths that were newly created
when we recorded the results for the MSE runs. To measure the effectiveness of
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Table 1: Characteristics of the Artifacts Used in our Evaluation

(a) Air Quality System (AQS)

Rhapsody
Statechart

(before flattening)

MLM
(after flattening)

# Concurrent regions 1 1
# Hierarchical levels 3 1
# States 3 CS + 14 SS 14 SS
# Transitions 8 GT + 22 ST 55 ST
# Transitions with multi-path guards
or action code

5 ST 5 ST

# Transitions with dependencies with
each other

3 ST 3 ST

(b) Lane Guide System (LGS)

Rhapsody
Statechart

(before flattening)

MLM
(after flattening)

# Concurrent regions 1 1
# Hierarchical levels 3 1
# States 2 CS + 10 SS 10 SS
# Transitions 6 GT + 16 ST 40 ST
# Transitions with multi-path guards
or action code

2 GT 10

# Transitions with dependencies with
each other

0 0

(c) Adaptive Cruise Control System (ACCS)

Rhapsody Statechart
(before flattening)

MLM
(after

flattening)

# Concurrent regions
2 1

Region 1 Region 2 1

# Hierarchical levels 3 1 1

# States 2 CS + 6 SS 3 SS 19 SS

# Transitions 9 GT + 5 ST 9 ST 73 ST

# Transitions with multi-path guards
or action code

1 ST 0 1 ST

# Transitions with dependencies with
each other

2 GT + 2 ST 4 ST 16 ST

SS=Simple State, CS=Composite State, ST=Simple Transition, GT=Group Transition
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Table 2: Characteristics of the SETs generated from standard SE on the base
versions of the three used examples

SET Characteristics Air Quality System
(AQS)

Lane Guide System
(LGS)

Adaptive Cruise
Control System

(ACCS)

Time (sec) 748 626 796
No. Symbolic States 6039 1769 3492
No. Execution Paths 5019 1325 2855

MSE and DSE compared to standard SE, we computed the ratios between the
values of the three aforementioned variables recorded for the standard SE and their
correspondences in MSE and DSE. Moreover, we calculated, for each MSE run, the
differences between the total numbers of symbolic states and execution paths of the
SET generated from MSE and the one generated from standard SE for the study
of RQ3. We performed this evaluation on a standard PC with Intel Core i7 CPU
3.4 GHz and 8 GB of RAM and running Windows 7 as a host and Ubuntu 12.04
as VM. Table 2 shows the time taken to perform standard SE on the base versions
and the numbers of symbolic states and execution paths in the resulting SETs.
Tables 3, 4 and 5 summarize the results of running the three symbolic execution
techniques on the modified versions of the AQS, the LGS and the ACCS models,
respectively.

6.2.4 Results and Analysis

In this section, we discuss the results presented in Tables 3, 4 and 5, according to
our four research questions.

RQ1. How effective are our optimizations compared to a standard SE of the
changed model? In Figures 10a and 10b, we show a line graph of the average and
the standard deviation values of the data shown in columns 6-7, 9 (resp. 11-13) in
Tables 3, 4 and 5, corresponding to the amount of savings in execution times and
in the numbers of symbolic states and execution paths gained from applying MSE
(resp. DSE) on all the versions of the three given models. Figure 10a shows that,
on average, MSE achieved savings of 76% for the ASQ model, 66% for the LGS
model, and 48% for the ACCS model, while DSE achieved savings of 96% for the
ASQ model, 68% for the LGS model, and only 5.5% for the ACCS model. Also,
Figure 10b shows that the standard deviation values of the achieved savings ratios
for the three models are higher for MSE than they are for DSE.

RQ2. Does the change location have an impact on the effectiveness of the MSE
technique? In Figure 11, we show the Pearson’s correlation coefficients3 that we

3Pearson’s correlation coefficient is a measure with values between +1 (for total positive
correlation) and -1 (for total negative correlation) inclusive of the degree of linear correlation
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Table 3: Results of MSE and DSE on the AQS Example

Change Information SE : MSE SE : DSE
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V1 7 0 70 100 1 : 0.26 1 : 0.08 1 : 1 1 : 0.08 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V2 1 0 96 100 1 : 0.43 1 : 0.36 1 : 1 1 : 0.36 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V3 1 0 0 22 1 : 1.01 1 : 1 1 : 1 1 : 1 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V4 1 0 80 43 1 : 0.16 1 : 0.23 1 : 1 1 : 0.23 1 : 1 1 : 0.03 1 : 0.04 1 : 0.03
V5 1 2 70 41 1 : 0.03 1 : 0.01 1 : 1 1 : 0.01 1 : 1 1 : 0.12 1 : 0.14 1 : 0.13
V6 1 2 10 32 1 : 0.53 1 : 0.64 1 : 1 1 : 0.66 1 : 1 1 : 0.12 1 : 0.14 1 : 0.13
V7 1 2 100 100 1 : 0.06 1 : 0.06 1 : 1 1 : 0.06 1 : 1 1 : 0.12 1 : 0.14 1 : 0.13
V8 1 0 70 41 1 : 0.16 1 : 0.23 1 : 1 1 : 0.23 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V9 1 0 100 100 1 : 0.02 1 : 0 1 : 1 1 : 0 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V10 1 0 60 48 1 : 0.17 1 : 0.23 1 : 1 1 : 0.23 1 : 1 1 : 0.03 1 : 0.04 1 : 0.03
V11 1 0 70 54 1 : 0.04 1 : 0.06 1 : 1 1 : 0.06 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V12 1 0 99 100 1 : 0.02 1 : 0.02 1 : 1 1 : 0.02 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V13 5 0 3 56 1 : 0.66 1 : 0.87 1 : 1 1 : 0.91 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V14 7 0 70 100 1 : 0.39 1 : 0.39 1 : 1 1 : 0.43 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V15 1 0 6 66 1 : 0.47 1 : 0.61 1 : 1 1 : 0.64 1 : 1 1 : 0.1 1 : 0.17 1 : 0.16
V16 1 0 86 100 1 : 0.01 1 : 0.01 1 : 1 1 : 0.02 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V17 5 0 86 100 1 : 0.11 1 : 0.15 1 : 1 1 : 0.17 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V18 5 0 58 90 1 : 0.04 1 : 0.06 1 : 1 1 : 0.06 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V19 1 0 65 75 1 : 0.01 1 : 0.01 1 : 1 1 : 0.01 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V20 1 0 52 74 1 : 0.18 1 : 0.41 1 : 1 1 : 0.42 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V21 1 0 73 83 1 : 0.06 1 : 0.01 1 : 1 1 : 0.01 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V22 1 0 98 100 1 : 0.06 1 : 0 1 : 1 1 : 0 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V23 1 0 65 80 1 : 0.29 1 : 0.41 1 : 1 1 : 0.41 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V24 1 0 86 88 1 : 0.09 1 : 0.03 1 : 1 1 : 0.03 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V25 1 0 75 87 1 : 0.37 1 : 0.4 1 : 1 1 : 0.4 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02
V26 5 0 98 100 1 : 0.43 1 : 0.09 1 : 1 1 : 0.08 1 : 1 1 : 0.02 1 : 0.03 1 : 0.02

Average Savings 76.6 % 75.5 % 74.9 % 96.4 % 95.6 % 96.1 %
Standard Deviation 24.6 % 28.0% 28.8 % 3.4 % 4.4 % 4.2 %
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Table 4: Results of MSE and DSE on the LGS Example

Change Information SE : MSE SE : DSE
MLM
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V1 1 0 0 36 1 : 1.05 1 : 1 1 : 1 1 : 1 1 : 1 1 : 0.31 1 : 0.30 1 : 0.40
V2 7 0 72 100 1 : 0.44 1 : 0.25 1 : 1 1 : 0.33 1 : 1 1 : 0.28 1 : 0.30 1 : 0.40
V3 7 0 72 100 1 : 0.55 1 : 0.25 1 : 1 1 : 0.33 1 : 1 1 : 0.26 1 : 0.30 1 : 0.40
V4 1 0 3 53 1 : 0.97 1 : 1 1 : 1 1 : 1 1 : 1 1 : 0.26 1 : 0.30 1 : 0.40
V5 4 0 87 100 1 : 0.49 1 : 0.5 1 : 1 1 : 0.5 1 : 1 1 : 0.38 1 : 0.47 1 : 0.62
V6 1 0 87 100 1 : 0.64 1 : 0.58 1 : 1 1 : 0.59 1 : 1 1 : 0.26 1 : 0.30 1 : 0.40
V7 5 0 60 84 1 : 0.63 1 : 0.74 1 : 1 1 : 0.74 1 : 1 1 : 0.57 1 : 0.73 1 : 0.98
V8 1 0 78 68 1 : 0.44 1 : 0.27 1 : 1 1 : 0.27 1 : 1 1 : 0.26 1 : 0.30 1 : 0.40
V9 1 0 78 68 1 : 0.43 1 : 0.27 1 : 1 1 : 0.27 1 : 1 1 : 0.26 1 : 0.30 1 : 0.40
V10 1 0 78 68 1 : 0.4 1 : 0.27 1 : 1 1 : 0.27 1 : 1 1 : 0.29 1 : 0.30 1 : 0.40
V11 1 0 78 68 1 : 0.41 1 : 0.27 1 : 1 1 : 0.27 1 : 1 1 : 0.28 1 : 0.30 1 : 0.40
V12 1 0 97 100 1 : 0.04 1 : 0.04 1 : 1 1 : 0.04 1 : 1 1 : 0.31 1 : 0.30 1 : 0.40
V13 1 0 87 81 1 : 0.12 1 : 0.12 1 : 1 1 : 0.12 1 : 1 1 : 0.28 1 : 0.30 1 : 0.40
V14 1 0 97 100 1 : 0.04 1 : 0.04 1 : 1 1 : 0.04 1 : 1 1 : 0.28 1 : 0.30 1 : 0.40
V15 1 0 87 81 1 : 0.11 1 : 0.12 1 : 1 1 : 0.12 1 : 1 1 : 0.28 1 : 0.30 1 : 0.40
V16 1 0 87 81 1 : 0.15 1 : 0.12 1 : 1 1 : 0.12 1 : 1 1 : 0.28 1 : 0.30 1 : 0.40
V17 1 0 97 100 1 : 0.05 1 : 0.04 1 : 1 1 : 0.04 1 : 1 1 : 0.27 1 : 0.30 1 : 0.40
V18 1 0 87 81 1 : 0.14 1 : 0.12 1 : 1 1 : 0.12 1 : 1 1 : 0.27 1 : 0.30 1 : 0.40
V19 1 0 97 100 1 : 0.05 1 : 0.04 1 : 1 1 : 0.04 1 : 1 1 : 0.27 1 : 0.30 1 : 0.40

Average Savings 62.2 % 68.2 % 67.2 % 70.2 % 67.2 % 66.6 %
Standard Deviation 30.6 % 30.6 % 30.5 % 7.3 % 10.5 % 10.4 %
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Table 5: Results of MSE and DSE on the ACCS Example

Change Information SE : MSE SE : DSE
MLM

Ver. N
o.

of
C

h
an

ge
d

T
ra

n
si

ti
on

s

N
o.

of
Im

p
ac

te
d

T
ra

n
si

ti
on

s

M
1

[0
,

10
0]

M
2

[0
,

10
0]

T
im

e

N
o.

of
N

ew
S
y
m

b
ol

ic
S
ta

te
s

N
o.

of
T

ot
al

S
y
m

b
ol

ic
S
ta

te
s

N
o.

of
N

ew
E

x
ec

u
ti

on
P

at
h
s

N
o.

of
T

ot
al

E
x
ec

u
ti

on
P

at
h
s

T
im

e

N
o.

of
T

ot
al

S
y
m

b
ol

ic
S
ta

te
s

N
o.

of
T

ot
al

E
x
ec

u
ti

on
P

at
h
s

V1 1 0 0 26 1 : 1.02 1 : 1.00 1 : 1 1 : 1.00 1 : 1 1 : 0.97 1 : 0.92 1 : 0.90
V2 12 0 70 93 1 : 0.42 1 : 0.17 1 : 1 1 : 0.17 1 : 1 1 : 1.02 1 : 0.92 1 : 0.90
V3 12 0 70 93 1 : 0.44 1 : 0.15 1 : 1 1 : 0.17 1 : 1 1 : 1.01 1 : 0.92 1 : 0.90
V4 2 4 98 100 1 : 0.78 1 : 0.93 1 : 1.15 1 : 0.95 1 : 1.15 1 : 1.00 1 : 0.92 1 : 0.90
V5 2 4 98 100 1 : 0.50 1 : 0.62 1 : 1.18 1 : 0.64 1 : 1.18 1 : 1.00 1 : 0.92 1 : 0.90
V6 2 4 40 57 1 : 0.79 1 : 0.87 1 : 1 1 : 0.87 1 : 1 1 : 1.01 1 : 0.92 1 : 0.90
V7 2 4 40 57 1 : 0.45 1 : 0.57 1 : 1.02 1 : 0.58 1 : 1.02 1 : 0.92 1 : 0.92 1 : 0.90
V8 2 0 80 68 1 : 1.06 1 : 1.13 1 : 1.38 1 : 1.17 1 : 1.4 1 : 0.91 1 : 0.92 1 : 0.90
V9 2 0 80 68 1 : 0.26 1 : 0.18 1 : 1 1 : 0.20 1 : 1 1 : 0.97 1 : 0.92 1 : 0.90
V10 4 0 64 95 1 : 0.04 1 : 0.05 1 : 1 1 : 0.04 1 : 1 1 : 0.99 1 : 0.92 1 : 0.90
V11 4 0 64 95 1 : 0.19 1 : 0.21 1 : 1.01 1 : 0.21 1 : 1.01 1 : 1.02 1 : 0.92 1 : 0.90
V12 1 13 1 39 1 : 1.03 1 : 1.00 1 : 1 1 : 1.00 1 : 1 1 : 0.96 1 : 1.00 1 : 1.00
V13 6 0 86 82 1 : 0.42 1 : 0.22 1 : 1 1 : 0.19 1 : 1 1 : 1.00 1 : 0.92 1 : 0.90
V14 1 13 89 100 1 : 0.59 1 : 0.67 1 : 1 1 : 0.68 1 : 1 1 : 1.01 1 : 1.00 1 : 1.00
V15 1 0 89 100 1 : 0.01 1 : 0.01 1 : 1 1 : 0.01 1 : 1 1 : 1.00 1 : 0.92 1 : 0.90
V16 3 2 17 55 1 : 0.80 1 : 0.87 1 : 1 1 : 0.88 1 : 1 1 : 1.07 1 : 0.92 1 : 0.90
V17 3 2 70 75 1 : 0.37 1 : 0.17 1 : 1 1 : 0.20 1 : 1 1 : 0.91 1 : 1.00 1 : 1.00
V18 6 0 69 78 1 : 0.73 1 : 0.72 1 : 1 1 : 0.73 1 : 1 1 : 1.04 1 : 0.92 1 : 0.90
V19 6 0 69 78 1 : 0.34 1 : 0.09 1 : 1 1 : 0.12 1 : 1 1 : 1.03 1 : 0.92 1 : 0.90

Average Savings 46.1 % 49.4 % 48.5 % 0.9 % 7.0 % 8.6 %
Standard Deviation 31.8 % 38.5 % 38.9 % 4.3 % 3.1 % 3.8 %
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(a) Average of Savings

(b) Standard Deviation of Savings

Figure 10: Statistical Measures of the Effectiveness of MSE and DSE for the
Three Models
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Figure 11: Pearson’s Correlation Coefficients between the Average Savings Gained
from MSE and the Estimated Change Impact Measures: M1 and M2

have caluclated to measure the correlation between our estimated change impact
measures, M1 and M2, and the different savings gained from running MSE on the
three given models as recorded in Tables 3, 4 and 5. From this graph, we can see that
there is high positive correlation between the different savings gained from MSE
and M1 for AQS and LGS, however it is slightly low for ACCS. Moreover, we can
see that there is a medium positive correlation between the different savings gained
from MSE and M2 for the three models. Our explanation to these observations is
due to the discrepancy between the number of maximal paths in a model, which we
used to define the two measures, M1 and M2, and the actual number of execution
paths in the SET of that model. Another reason is due to the optimization gained
from the subsumption checking, which might prune away some of the execution
paths related to some transitions. This also lead to some discrepancy between the
number of maximal paths in a model and its corresponding ones in the SET of that
model.

RQ3. Does the SET generated from MSE match the one generated from
standard SE? The results show that MSE generated the exact SETs as standard SE
for all the versions of the AQS and the LGS model, and 14/19 versions of the ACCS
model. However, for the versions V4, V5, V7, V8 and V11 of the ACCS model,
we found that MSE generated larger SETs than the ones generated from standard
SE. By investagating the reason for this difference, we found that some symbolic
states have been explored further although there were some pre-visited symbolic
states that can subsume them. This is due to the way the MSE algorithm works
where updating the nodes is performed in a sequential manner, starting from the
higher-level nodes and proceeding toward the lower-level nodes, which reduces the

between two variables. We use the sample Pearson correlation coefficient formula, r, that has
been implemented in the Microsoft Excel function CORREL.
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chance for the sub-trees of the higher-level nodes to benefit from the subsumption
checking savings that could be gained from the sub-trees of the lower-level nodes.
This means that, in some cases, the SETs resulting from MSE are less optimized
than they could be if they were generated from running standard SE on the same
models. In such a case, iterating over the SET resulting from MSE and removing
the children of symbolic states that could be subsumed by some other symbolic
states that are higher in the tree will result in a SET that exactly matches the one
generated from standard SE. We developped this latter procedure and added it to
our MSE implementation as an optional step to be performed only if needed.

RQ4. How are the characteristics of the model related to the effectiveness of
the DSE technique? According to the two factors considered and based on the data
shown in Table 1 and Tables 3, 4 and 5, we can see the following: 1) the number
of transitions with multiple symbolic transitions (i.e., with multi-path guards or
actions) is higher in both the AQS and the LGS models than it is in the ACCS
model, 2) the LGS model has the least dependency between its transitions, while
ACCS has the largest dependency between its transitions, and 3) there is high
savings in execution time, in number of symbolic states, and in number of execution
paths gained from applying DSE on the AQS and the LGS models in contrast with
the ACCS model. Based on these findings, we can confidently conclude that the
two factors considered have direct influence on the effectiveness of DSE.

Therefore, we conclude that our optimization techniques are complementary
in the sense that the effectiveness of MSE depends mostly on the impact of the
change, while the effectiveness of DSE depends more on the numbers of transitions
with multi-path guards or action code as well as the numbers of transitions with
dependencies with each other.

7 Related Work

Existing approaches to alleviate the scalability problem and improve the efficiency
of symbolic execution when re-applying on an evolving version of a program are
discussed in [27] and [20].

In [27], Yang et. al. present memoized symbolic execution of source code; a
technique that stores the results of symbolic execution from a previous run and
reuses them as a starting point for the next run of the technique to avoid the re-
execution of common paths between the new version of a program and its previous
one, and to speed up the symbolic execution for the new version. The same idea has
been applied earlier by Lauterburg et. al. in [17] but in the context of state-space
exploration for evolving programs using some model checkers.

In [20], Person et. al. introduce DiSE (directed incremental symbolic execution);
a technique that uses static analysis and change impact analysis to determine the
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differences between program versions and the impact of these differences on other
locations in the program, and uses this information to direct the symbolic execution
to only explore those impacted locations. A similar approach has been proposed
by Yang et. al. in [26] for regression model checking.

In contrast to all the aforementioned approaches, which work for optimizing the
analysis of evolving programs, our work targets the same objective but for evolving
state machine models.

In his statement paper “Evolution, Adaptation, and the Quest for Incremen-
tality”, Ghezzi [11] argues that supporting software evolution requires building
incremental methods and tools to speed up the maintenance process with the focus
on the analysis and the verification activities. An incremental approach in such
contexts would try to characterize exactly what has been changed and reuse (as
much as possible) the results of previous processing steps in the steps that must
be rerun after the change. The motivation for this is twofold: time efficiency
and scalability. Given the iterative development approach suggested by MDD, we
believe that our work fits very well with this vision.

8 Conclusion

In this paper, we presented two different techniques for optimizing the symbolic
execution of evolving state machine models. The first technique reuses the symbolic
execution tree of a previous version of a model to improve the symbolic execution of
the current version such that it avoids redundant exploration of common execution
paths between the two versions, whereas the second technique uses a change impact
analysis to reduce the scope of the exploration to mainly exercise the parts impacted
by the change. The results from our experiments look promising and show a
significant amount of savings up to 99 % in some cases with respect to the size
of the symbolic execution trees generated from applying either technique and the
time taken to generate them. We plan to extend our work to consider the symbolic
execution of a collection of state machine models describing the behavior of inter-
communicating objects and how to optimize this in the context of undergoing
changes.
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