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Abstract 

Cloud computing is a promising paradigm for deploying applications due to its large resource offerings on a 
pay-as-you-go basis. In this report, we examine the problem of determining the most cost-effective provisioning of 
a multi-tenant database system as a service over public clouds. We formulate the problem of resource provisioning, 
and then define a framework to solve it. Our framework uses heuristic based algorithms to select cost-effective 
configurations. The algorithms can optionally balance resource costs against penalties incurred from the violation 
of Service Level Agreements (SLAs) or opt for non SLA violating configurations. The specific resource demands 
on the virtual machines for a workload and SLAs are accounted for by our performance and cost models, which 
are used to predict performance and expected cost respectively. We validate our approach experimentally using 
workloads based on standard TPC database benchmarks in the Amazon EC2 cloud. 

 
Keywords: Cloud computing, multi-tenant database system, Software-as-a-Service, Infrastructure-as-a-Service, 
inexpensive deployment, optimization, resource provisioning, heuristics, tabu search, performance model, cost 
model. 

1. Introduction  

Increasingly, application providers are using Infrastructure-as-a-Service (IaaS) clouds to provide their service 
offerings in a Software-as-a-Service (SaaS) setting. For example, Netflix offers online media streaming and its 
infrastructure is being migrated to Amazon IaaS cloud since 2010 [1]. It is easy to see that Netflix would like to 
minimize the operational costs using IaaS clouds while providing some guarantees on its service, such as “jerk” 
free movie streaming.  

Similarly, NASDAQ offers a SaaS abstraction to store some financial data of an electronic trading market over 
the Amazon cloud [2]. This abstraction is called FinQloud. The query component of FinQloud allows broker-
dealers to run fast, on-demand queries and facilitate efficient retrievals of stored data. Again, the queries must 
return results in a timely manner. 

Likewise, Gallant FX provides a range of trading services using a SaaS abstraction in a foreign exchange trading 
market (Forex) using Rackspace IaaS cloud [3]. Average daily trading on Forex is estimated at $3.21 trillion, and 
brokers are constantly connected to Forex. Gallant FX aims to provide an infrastructure that can withstand this 
strenuous demand and provide a reliable network uptime using Rackspace. In all the above cases, failure to meet 
SaaS user expectations results in monetary losses to the SaaS providers. 

A key question for a SaaS provider is to minimize the cost of hosting an application in a public IaaS cloud. For 
this, a SaaS provider needs to determine appropriate amounts of compute, storage and network resources. Further, 
a SaaS provider must balance resource costs against monetary losses arising from poor service delivery when using 
inadequate resources in an IaaS cloud. 
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Our work is aimed at minimizing the cost2 of providing a multi-tenant database system (mDBMS) as a SaaS 
service using a public IaaS cloud. We capture the quality of service agreements between SaaS users and providers 
as SLAs. The potential loss in failing to meet these SLAs is modeled as a penalty cost that is added to the overall 
cost of hosting the mDBMS in an IaaS. Alternately, any SLA violation may be avoided from the outset by using 
more powerful IaaS resources. 

Determining the least costly resource configuration in an IaaS environment faces several challenges. For 
example, the space of possible configurations is very large, and therefore, exact solutions cannot be efficiently 
determined [4]. Secondly, performance unpredictability is a major issue in meeting SLAs [5]. Thirdly, the 
seemingly unlimited number of resources creates a tradeoff between multiplexing and scaling [6]. Fourthly, the 
availability of multiple resource types (e.g. multiple storage types) increases the dimensionality of the configuration 
space. Further, the existence of various pricing schemes for various resource types not conforming to the pay-as-
you-go philosophy complicates the provisioning problem. 

We see an active interest [7-14] in optimizing an objective in an IaaS cloud, such as resource cost or execution 
times, typically subject to some constraints such as deadline or budget. We see that some work [7, 10, 11, 13, 15] 
that models the provisioning problem are able to offer optimality guarantees but usually at the cost of some 
simplifying assumptions, such as the existence of a single minimum when using linear programming (LP). While 
others assume advanced knowledge of performance parameters [7], or use analytical performance models [10-12, 
14]. 

Analytical performance models have proven to be inadequate for database workloads in the cloud [4, 16]. We 
also see some optimization efforts [8, 17] in employing a cost model that is used at run-time, and cannot be used 
for prediction in the planning phase. Often, the optimization is augmented with a feed-back loop [9, 13, 14, 17, 18], 
which is promising since a public IaaS cloud is a dynamic environment. 

Much of the above work is evaluated against non-standard and/or computational workloads in a simulation, 
private cloud or at best in a hybrid cloud. A private cloud is a controlled environment unlike a public IaaS cloud, 
meanwhile, efficiently executing database workloads in a hybrid cloud remains an open-problem. Some work that 
employs a cost or a performance model typically skips the independent validation of the model and goes straight 
to the evaluation of the optimization. We believe that the independent validation of the models is relevant because 
the errors accumulate through the models and the optimization method. 

In our previous work [4], we present a framework for provisioning data analytics workloads in a public IaaS 
cloud. We formulate provisioning as a search problem and use greedy heuristics to find a cost-effective resource 
configuration prior to application deployment. However, it has several shortcomings including inaccurate response 
time predictions and partial reporting of resource costs.  

Contributions. In this report, we build on our previous work [19, 20] to present a unified framework with 
improved cost and performance models and search algorithms for resource provisioning in the IaaS cloud to support 
the SaaS service. The revised performance and cost models [19, 20] are plugged into our framework to provide 
accurate predictions and account for complete resource costs in the IaaS cloud. The optimal provisioning problem 
is NP-hard in the general case [21]. Therefore, we consider additional search heuristics including genetic algorithms 
and tabu search, in determining a cost-effective configuration in an IaaS cloud. These heuristics explore different 
parts of the configuration space. 

The heuristic algorithms hunt for a suitable resource configuration for database workloads given an objective 
such as the minimal dollar-cost subject to SLA constraints. Alternately, the SLA violations may be allowed at the 
cost of penalties, which are added to the overall cost of the configuration.  

We consider database workloads that consist of transactional, analytical or mixed workloads for evaluation, and 
access multiple tenants. The workloads are based on standard TPC database benchmarks [22]. The SLAs are 
defined on a request’s performance metric such as response time or throughput. The resulting configurations for 

                                                             
2 In this report, we use the term monetary cost, dollar cost and cost interchangeably. 
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the workloads are compared against a baseline, and a global optimum. Finally, the configurations are validated in 
the Amazon Elastic Compute Cloud (EC2) [23]. 

We share several insights gained in the process of formulating the problem, developing the framework, building 
the models and evaluating our work. In particular, we do not see great diversity in the configurations returned by 
the heuristics used or by their hybrids despite the configuration space growing exponentially with increasing 
number of workloads and virtual machines (VMs). We primarily attribute this to the discrete nature of the cost and 
the configuration space. 

The rest of the report is structured as follows. Section 2 discusses related work. Section 3 presents the problem 
addressed in the report. The outline of our framework, and the performance and the cost models are described in 
Section 4. Section 5 presents our heuristic approach to determine a suitable configuration. Section 6 describes a 
combined evaluation of the algorithms, and the performance and cost models. Section 7 shares insights gained in 
the development and experimentation process, and provides suggestions for future work. Section 8 concludes the 
report. 

2. Related Work 

We summarize the related work on performance and cost models, and discuss related work from optimization. 
Summarizing the related work for the performance model, in particular, is important to highlight the inadequacy of 
the analytical models that are predominantly used in the literature to optimize an objective in a cloud. Meanwhile, 
some of the cost models are used in the context of optimizing application execution, maximizing profit or reducing 
cost.  

Performance Model: Analytical performance models have enjoyed great popularity in the database 
management systems (DBMSs) area. Weikum et al. [24] provide a survey of the advances in autonomic tuning in 
database technology. They conclude that self-tuning should be based on a feedback control loop and should use 
mathematical models with proper deployment into the system components. Analytical models, however, are hard 
to evolve with the underlying system and make simplifying assumptions that make them oblivious to the 
interactions of the dynamically changing workloads and their effects [25], which are amplified by the variance in 
the cloud . Therefore, there is an increasing interest in experiment-driven machine learning and statistical modeling.  

The interactions between the concurrently executing requests, or a request mix, can have a significant impact on 
DBMS performance [16]. Ahmad et al. [26] develop an interaction-aware query scheduler that targets report-
generation workloads in Business Intelligence (BI) settings. Under certain assumptions, the schedule found by this 
scheduler is within a constant factor of optimal, and consistently outperforms conventional schedulers that do not 
account for query interactions. 

Ahmad et al. [27] use a combination of an offline statistical model trained on sample query mixes and an online 
interaction-aware simulator to estimate workload completion times. No prior assumptions are made about the 
internal workings of the DBMS or the cause of query interactions, making the models robust. This is particularly 
useful for clouds where access to the underlying devices is limited.  

The performance models used for the DBMS workloads typically access a single data tenant. Further, the 
performance models usually provide predictions for response time only, and are validated on a local server or a 
local VM. In contrast, our experiment-driven performance model [20] predicts both throughput and response times 
for transactional and analytical workloads, and operates over a multi-tenant data-service. We propose the use of 
different classifiers that vary in modeling scopes and development efforts. 

Cost Model: The problem of resource provisioning and modeling associated costs in clouds has received a great 
deal of attention recently. Vazquez-Poletti et al. [28] determine a suitable number of homogenous VMs to execute 
a given workload in the Amazon cloud based on the values of a novel cost-performance metric (C/P). Their method 
does not consider other resource costs such as storage or communication, and is applied to a workload consisting 
of a single work-unit, which is equivalent to a single query or a transaction. The C/P-based approach does not 
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account for any SLAs, or its penalties in case of violations. 
Tsakalozos et al. [17] use principles from microeconomics to dynamically converge to a suitable number of VMs 

for a workload given a user’s budget. Their approach is used at runtime and cannot be used to provide an a priori 
prediction of resource allocations. Bicer et al. [8] also propose a runtime resource allocation framework and their 
cost model’s parameters are acquired by monitoring an application during execution. 

Sharma et al. [29] develop a pricing model to provide “high” satisfaction for the users and the providers in terms 
of QoS guarantees and profitability requirements, respectively. The thrust of their work is towards valuation of 
cloud resources, and they employ financial option theory and treat the cloud resources as underlying assets. 

Li et al. [30] propose a cost-effective data reliability mechanism to reduce the storage cost in a cloud. Their 
mechanism checks the availability of replicas and reduces storage consumption up to one-third by making certain 
assumptions on the reliability. Du [31] looks at maximizing revenue from cloud vendor’s perspective by modeling 
hybrid and public cloud markets using Markovian traffics. Interestingly, her work suggests that the hybrid cloud is 
the most profitable model for cloud vendors.  

Amazon’s monthly calculator [32] estimates charges for Amazon EC2 resources, if they are used for an entire 
month. While the time-bound on a workload may be unknown in advance, we argue that the time-unit of a month 
for resource cost is excessively coarse-grained. The calculator does not have any knowledge of a workload and 
cannot account for application performance with a given set of resource allocations. 

Our cost model [19] accounts for all the resources needed (compute, storage and network) to execute a database 
workload consisting of multiple queries and transactions accessing multiple data partitions. Further, our cost model 
accommodates user-defined SLAs and associated penalties. Moreover, the execution cost is provided at the 
granularity of an hour. 

Optimization: Some of the cost models described earlier have been used in the context of optimizing application 
execution, maximizing profit or minimizing cost. For example, Bicer et al. [8] propose a runtime resource allocation 
framework to optimize time or cost of an application execution given a budget or a deadline, respectively. As stated 
in Section 1, we see some recent work [7-15, 17, 18] on optimizing resource or cloud provisioning. Many of these 
works are formulated as constrained optimizations, and contain both linear [7] and non-linear [15] formulations.  

One approach is to optimize a goal with “hard” constraints, such as a budget or a deadline [7-11]. Li et al. [10] 
find minimum cost application deployment subject to processing capacity and throughput SLAs. Ruiz-Alvarez et 
al. use LP for optimal placement of data in the hybrid clouds [7]. Often problem requirements are transformed into 
hard constraints, for example, computation required does not exceed the site capacity [7, 33].  

Another approach is to treat the constraints as having “soft” boundaries [12], or to combine them into a utility 
function that is optimized [13, 14]. Li et al. [12] find optimal deployments for large service centers and clouds 
subject to many constraints but with soft limits on the license availability by imposing additional licensing costs if 
the permitted license quota is exceeded. 

Maximizing a utility function allows multi-objective optimization. Li et al. [14] find the solutions that describe 
the best tradeoff between conflicting performance and cost-saving goals instead of a single global optimum. In 
particular, they explore “good” tradeoffs between minimizing cost and maximizing QoS attributes, and observe 
their solutions concentrate around the “knee” of a multi-objective curve aiming for Pareto-optimal solutions. 

Some of the above work are augmented with a feed-back loop, and offer revised solutions to adapt to the changes 
in the system [9, 13, 14, 17, 18]. For example, Ghanbari et al. [13] allocate resources in a private cloud to minimize 
cost to the provider while accounting for the application’s SLAs. They also employ a utility function, and update 
applications’ performance models to adapt to the changes in the system, which change the optimal configuration. 

Work that solves the provisioning problem using methods like LP and mixed integer programming (MIP) offer 
optimality guarantees [7, 10, 11, 13, 15], but in doing so make some simplifying assumptions. For example, Ruiz-
Alvarez et al. [7] use LP, which assumes linear relationships among the building blocks of the problem. Others 
[10-12, 14] employ analytical performance models like queuing network models (QNM) or its variants. We find 
that the response times for queries on a VM as predicted by simple single server center models, vary by as much 
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as 70% from the measured response times [4]. A simple model does not capture the impact on the workload 
performance of the interactions among different query types. Developing a more detailed QNM for a VM is not 
feasible because of the difficulties in acquiring detailed performance parameters in a public cloud environment.  

Our optimization algorithms are based on heuristics and do not guarantee to find a global optimum. Heuristic 
based algorithms have also been explored to optimize an objective function given some constraints. For example, 
Wada et al. [34] use genetic algorithms to find efficient deployment of different application instances, which have 
different levels of SLAs. Our heuristic algorithms employ standalone cost and performance models that have been 
validated in a public cloud. Our algorithms and models are aimed at providing a suitable resource configuration for 
database workloads, which access multiple tenants. Finally, the resulting resource configurations are validated in a 
public cloud such as Amazon unlike much of the above work. 

3. Problem Statement 

We start describing the problem by providing a simple example, and then providing the formal and the general 
problem statement. Suppose we are given some applications as shown in Table 1. The databases used by 
applications belong to TPC-C, TPC-E and TPC-H database benchmarks [22]. TPC-C emulates an order processing 
system, TPC-E mimics workload of a brokerage firm, while TPC-H models a decision support system. 

Table 1: Examples of Applications, Workloads, Request Types and Databases.  

Application Workload Request type Database 
Analytics Read-only Q1, Q6 TPC-H 
Trading Write-only Trade-order, trade-update TPC-E 

Intelligent Ordering Hybrid Q12, Q21, new-order, payment TPC-H, TPC-C 
 
The workloads stated in Table 1 consist of a number of requests that are issued by the clients of the applications. 

Each request is an instance of a request type, such as payment in the hybrid workload for the Intelligent Ordering 
application. The instances of the payment transaction vary in the payee or the amount of debit. The payment 
transaction accesses (reads/writes) data from the TPC-C database, but Q12 query accesses TPC-H database; 
therefore, the hybrid workload accesses multiple databases. In contrast, read-only and write-only workloads only 
access a single database, namely TPC-H and TPC-E respectively. Service-level Objectives (SLOs) are defined on 
a request type, such as trade-update. The SLA on the write-only workload consists of SLOs on all its request types, 
namely trade-order and trade-update. 

An mDBMS hosts all three databases as tenants, and serves workloads from the clients of all three applications. 
The provisioning problem is to select a configuration for the mDBMS such that the resource costs in the cloud are 
minimal and all the SLAs are satisfied. 

We formalize and generalize this problem statement as follows. Given a set of applications A = {A1, A2, …, Am}, 
we say that a workload Wi for Ai, is a set of requests that are issued by the set of clients of Ai. Each request is an 
instance of a request type Rij from a set Ri = {Ri1, Ri2, …, Rin} for Ai.  The databases used by A consist of a set of 
data objects D = {D1, D2, …, Dm}. A request type Rij for Ai has a service level objective SLOij and accesses some 
data objects in Pi, where Pi is a data partition and Pi ⊆   D and Pi contains all the data objects accessed by Wi. The 
SLA for Wi  is composed of the set of all SLOi’s for the request types in Ai. 

We need compute, storage and network resources to execute Wi. A configuration C for a set of workloads, W = 
{W1, … ,Wn}, consists of the following: 
• A set of VMs V = {v1, v2, …, vr}, where each VM vk is a specific type (for example small, large, xlarge). Each 

VM type has a specific set of system attributes (e.g. OS, memory, cores), and a specific cost rate. 
• A mapping of the workloads, W, to VMs in V such that every workload is assigned to one VM. 
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• A mapping of data partitions used by W to VMs in V such that every data partition is assigned to at least one 
VM. The partitions are stored in cloud storage. The partitions typically vary in sizes and have different access 
patterns, resulting in different storage and network costs. Overlapping partitions on the same VM share the 
same copy of the common data objects. Assignment to more than one VM involves replication of the partition, 
and we assume that the replicas are read-only. 

 
The provisioning problem is then to determine a configuration C for W such that the resource cost for executing 

workloads in W is minimized and all the SLAs are satisfied. Selecting a suitable configuration involves: (a) 
determining an appropriate set of VMs, and (b) generating an efficient mapping of data partitions, and workloads 
onto those VMs. Determining appropriate resources balances resource costs against the penalty costs generated by 
SLO violations. Meanwhile, generating an efficient mapping of data partitions and workloads to VMs balances the 
execution time of the requests on the provisioned resources against the thresholds defined in the SLOs in order to 
minimize penalties. 

Executing a configuration in a public cloud results in a dollar-cost expense. Such an expense is a function over 
resource costs. We extend this expense with penalties for violations of SLOs defined over the workload. There are 
primarily three types of resources needed to execute a workload in an IaaS-cloud: (a) compute, (b) storage, and (c) 
network. The cost function over a configuration C in the pay-as-you-go pricing scheme is stated as: 

cost(C) = compute_cost(C) + storage_cost(C) + 
network_cost(C) + penaly(C ) 

(1) 

 
This is also the objective function, which needs to be minimized. Assume that W and V are finite sets containing 

w and v elements, respectively. Then, the number of unique mappings from W to V is vw. This serves as the lower 
bound on the number of possible configurations. Determining an optimal configuration for a set of workloads given 
some SLO constraints or penalties is a NP-hard problem in general [21]. 

We consider that a data partition represents a database tenant in our report, and use them interchangeably. 
Tenants on the same VM share the same instance of a database system. Meanwhile, tenants on different VMs have 
their own database system instances, and may share the host server if the VMs are deployed on the same server. 
Otherwise, they only share the network.  

4. Framework 

We present a generic framework for determining effective configurations. The high-level architecture of the 
framework is shown in Figure 1. Given a set of workloads, a search algorithm looks for a minimal dollar cost 
configuration. In each iteration, the search algorithm chooses a suitable modification of the current configuration. 
The modified configuration is evaluated using a cost model. The cost model, in turn, employs a performance model 
to predict workload performance on a modified configuration. The cost model passes a cost value back to the search 
algorithm. Then the algorithm decides to either keep exploring the search space or to flag the evaluated 
configuration as a suitable one. 

The elegance of this architecture is that various search algorithms can be used with various cost models. 
Similarly, different cost models can be used with different performance models. In this report, our objective is to 
minimize the dollar cost of the mDBMS deployment given user preferences expressed as SLOs. This is equivalent 
to minimizing the objective function (eq. 1) subject to SLO penalties or constraints. In the case of a SLO specified 
as a constraint, the algorithm discards any violating configuration. Meanwhile in the case a penalty is defined as a 
part of the SLO, the penalty cost is added to the overall cost of the configuration when the SLO is violated. 
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Figure. 1: Architecture of the framework for determining configurations given an objective function 

4.1. Performance Model 

The performance model predicts the performance of a workload on a VM type. We explore an experiment-driven 
approach for creating performance models for data-centric workloads on an IaaS public cloud, namely the Amazon 
EC2. Our approach consists of three steps: (a) sampling the space of possible request types and their instances for 
a request mix, (b) collecting data by executing possible samples or request mixes in a real cloud, and (c) pre-
processing data and building performance models. The pre-processing activity includes analyzing the data to 
identify any data patterns such as non-linear trends and removing the outliers. 

We use the Latin Hypercube Sampling (LHS) protocol [35], a variant of stratified sampling, over possible request 
types to generate two sets of samples with different random seeds. We execute both sets in the Amazon cloud using 
separate VMs and clients. We consider the larger set (150 samples) for training and the smaller set (100 samples) 
for validation. It is possible to train multiple classifiers on this data set. Therefore, we evaluate a number of 
classifiers on the correlation metric including linear regression, multi-layer perceptron, gaussian processes and 
support vector machine (SVM), and choose linear and non-linear variants of SVM [36] for our performance model. 
We validate the performance model against the test set. High correlation coefficients (around 0.80 or above) and 
low prediction errors (around 20% or below) indicate the success of our performance model.  

Our performance models predict throughputs for transactions, and response times for queries. We find that linear 
classifiers, such as linear regression, are suitable for most request types and are fast to build and validate. They 
require less involvement on a developer’s part and can often be employed straight out-of-the-box with default 
parameters in a commonly used machine learning toolkit such as Weka [37]. However, the results are unsatisfactory 
where there are non-linear trends in the performance data. In such cases, we explore non-linear modeling methods, 
which require choosing a suitable kernel and searching for appropriate parameter values.  

We validate our approach by building a performance model for the workloads described in Table 1 for three 
different VM types, namely small, large and xlarge in the Amazon EC2 cloud. Studies have shown that EC2 does 
not always provide consistent performance so we chose to run our experiments in the region with the least variance, 
namely US-East-1d [5]. 

We wrap up the tenant databases with MySQL database system and Ubuntu Linux, and store that as an image3 
in the Amazon cloud. This greatly simplifies the engineering process, and the workloads can start execution as soon 
as the compute and storage resources are available, i.e. when the image is instantiated on a VM. On instantiation, 
the buffer pool of the mDBMS occupies 80% of the total memory of a VM instance, and is partitioned in proportion 

                                                             
3 Our image (ami-7bc16e12) is publicly available at: http://thecloudmarket.com/owner/966178113014. Once 

the image is instantiated, the clients can connect (ssh in) to the instance and access the MySQL DBMS as root user 
with wlmgmt password. 
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to the number of tenants. 
The VMs vary in their price, processing power and their capacity to hold data in memory as specified in Table 

2. The request types vary in their characteristics and resource requirements. Meanwhile, the VM types vary in their 
system capacity, which includes the ability to hold data in memory. 

Table 2: VM Types for Amazon EC2.  

VM Type Cores (#) Memory (gb) Cost/hr($)4 

m1.small 1 1.7 0.08 

m1.large 2 7.5 0.32 

m1.xlarge 4 15 0.64 
 

We show the mean %error5 for the performance model built for the small VM type in Table 3. It can be seen that 
all mean-%errors lie below the threshold of 20%. The mean-%errors and correlation coefficients for the 
performance model for both large and xlarge VM types are better. This is due to the availability of more resources 
on powerful VMs that result in lesser variance in response times and throughput compared to the small VM type. 

Table 3: Mean-%errors of the Performance Model built for the small VM type.  

Queries Q1 Q6 Q12 Q21 
mean-%error 

(correlation coefficients) 
16% 

(0.90) 
8% 

(0.97) 
13% 

(0.90) 
17% 

(0.90) 
Transactions New-order Payment Trade-order Trade-update 
mean-%error 

(correlation coefficients) 
16% 

(0.96) 
10% 

(0.97) 
3% 

(0.98) 
4% 

(0.79) 
 

The behavior of a request is also affected by other concurrently executing requests both in terms of the request 
types and their number of instances. For example, a smaller number of query instances in the request mix results 
in less load, and consequently an overall lower response time for queries, and higher throughput for transactions. 
We also observe that interactions between concurrently executing requests, such as lock contentions, can have a 
significant impact on the performance of a database system as claimed by Ahmed et al. [16]. 

4.2. Cost Model 

Our cost model estimates the dollar costs for the resources executing the database workloads in a public cloud. 
The SaaS user’s performance requirements are expressed as SLOs, violation of which incur a penalty and increase 
the cost of the configuration. Our cost model provides an hourly cost of workload execution, and assumes that the 
data already exists in the cloud. This is a reasonable assumption since many data sets such as US census data or 
NASA images are available in the Amazon cloud [38]. We account for the component cost for each resource type 
as well as penalty values in eq. 1.  

The VM and the storage costs can be estimated analytically using the published unit resource costs. However, 
we still need to determine the communication or the network cost experimentally.  

A VM is the typical compute unit in an IaaS cloud. Its price is generally metered by the hour, and any partial 
usage is rounded up to the next hour. The compute cost for a configuration C can be expressed as: 

                                                             
4 Amazon has revised these costs since we started experimentation.  
5 %error = |measured value – predicted value| / measured value. 
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⎥
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∈Vv
vVMCost )(st(C)compute_co  (2) 

 
where V is the set of VMs in the configuration C, and VMCost(v) is the hourly cost of a VM, v. 
We assume that the tenants' databases are stored on a shared cloud storage, which is metered by the month. We 

prorate the monthly cost down to an hour. The hourly cost for the storage used in a configuration C is estimated 
by: 

⎥
⎥

⎤
⎢
⎢

⎡ ×
=

hoursmonth
Eq
_

st(C)storage_co  (3) 
 

where q is the unit cost of storage (in dollars per gigabyte per month), E is the aggregated size of tenants’ 
databases in gigabytes, and month_hours is the number of hours in a month (e.g. 24h ×30days). Any fractional cost 
is rounded up to the next cent. 

The network costs are estimated by: 

⎥
⎥

⎤
⎢
⎢

⎡
×= ∑

∈Vv
v scst(C)network_co  (4) 

 
 

where cv is the estimated number of accesses to the network storage in a time-unit (hour), determined 
experimentally, and s is the unit network cost for accessing storage. Like storage costs, the network cost is rounded 
up to the next cent. 

We propose a function that assigns a penalty in each time-unit in which a violation occurs. For a particular 
configuration C and a request type r, the penalty incurred in a given time-unit (hour) is given by: 

 

∑
∈

×=
Rr

rpenaltyCrpcond )(),(penalty(C)  (5) 
 

where penalty(r) is the penalty value (in dollars) for requests of type r missing their SLOs in a time-unit. The 
binary function pcond indicates whether or not an SLO defined over r and C has been violated.  In our case, SLOs 
consist of two metrics, namely a threshold and a penalty. We employ a binary penalty model to calculate the 
penalties based on the throughput and response times. In the case when a threshold specified in the SLO is not met, 
the full penalty stated in the SLO is applied. 

We examine the effectiveness of our proposed cost model for the Amazon EC2 cloud, and consider possible 
configurations for an mDBMS with each tenant with its own workload. The workloads are made up of the request 
types stated in Table 3, meanwhile, the SLOs over a subset of the request types are defined in Table 4.  

Table 4: SLOs for different Request. 

Tenant Request Threshold Penalty 
a Q1 200s $0.05 

b Trade-update 0.04tps $0.15 

c Payment 50tps $0.10 
 
We instantiate our cost model for the Amazon cloud and choose Elastic Block Storage (EBS) [39] to store tenant 

databases, primarily because EBS appears as a network mounted hard disk. Further, the data on EBS persists after 
the termination of VMs. In our evaluation, the clients and mDBMS are present in the same area so the only 
communication charges are for accesses to EBS storage. We experimentally determine the number of accesses 
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required for each workload Wi on each VM type at the optimal multi-programming level (MPL)6. This profiling is 
used to estimate the number of storage accesses per hour for executing W on a VM type as the average of the 
number of accesses by each Wi in W. 

We observe that there are three main factors that influence the cost for a configuration, namely the mix of 
workloads in W, the VM types used in the configuration and the SLOs enforced in the configuration. The network 
cost varies with the workload and the VM type, while the storage cost varies with the tenant type.  

We conduct three experiments where each factor is varied while holding the other two constant and the 
workloads are executed in the Amazon cloud. We compare the estimated resource costs directly against the invoice 
rendered by Amazon. We calculate the penalties based on the measured metrics (throughput and response time) 
instead of estimated metrics at this point. This is because we want to study errors in the cost model independent of 
the performance model. 

 

Figure 2: Estimated and measured costs for all workloads executing simultaneously with payment+update+Q1 SLOs on each VM type. 

We share the details of one experiment where VM type is varied while keeping the workload mix and SLOs 
constant. In this case, we compare the costs of simultaneously executing all workloads with SLOs stated in Table 
4 on each VM type, and display the results in Figure 2. The average error in estimating costs varies by about $0.01, 
which is about 2% of the total measured cost on average. 

The average errors in the cost estimate for all three experiment are stated in Table 5.  

Table 5: Difference between estimated and measured costs on average. 

VM type Workload Mix SLA Penalties 
$0.01 $0.03 $0.04 

Given the smallest chargeable cost unit in the Amazon cloud is a cent, we argue that these errors are small and 
tolerable. 

                                                             
6 Conceptually, the workload throughput increases as the number of concurrent requests increase, up to a point 

where the MPL plateaus, and then it starts decreasing. We consider the optimal MPL value to be the beginning of 
the plateau. The optimal MPL of small, large and xlarge VM types are 14, 75 and 115 respectively for the workloads 
stated in Table 1. 
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5. Determining a Cost-Effective Configuration  

We employ heuristic-based search algorithms to find a cost-effective configuration. We represent the set of all 
possible configurations for a set of workloads W as a directed graph Configs = (N(W), E(W)). The set of nodes, 
N(W), and the set of edges, E(W), are defined respectively as: 

N(W) = {Ci | Ci is a valid configuration for W} and  
E(W) = {(Ci, Cj) | configuration Cj is obtained from Ci using a permitted modification}, 

We discuss modifications and the algorithms below. 

5.1. Modifications  

We define modifications that change the number and types of VMs in a configuration to adjust the cost. This is 
because we find that setting SLO penalty costs aside, the highest cost is typically incurred by the types of VMs 
used. Also, a user has more control in selecting the VM type in a configuration but not much over storage size and 
network usage.  

We embed some additional heuristics in the modifications at a finer level based on four metrics, namely VM 
utility, workload weight, VM utilization and a busy rank. We define the utility of a VM instance as a ratio between 
the number of workloads and the price for the VM. Any SLO violations on a VM decrease its utility value.  

The workloads may consume different amounts of resources for execution, and we represent the resource usage 
property by a weight value. For example, online transaction processing (OLTP) workloads consist of short and 
efficient transactions that require small amounts of CPU and disk I/O to complete, and are represented by a small 
weight value. Whereas, online analytical processing (OLAP) workloads are typically longer, more complex and 
resource-intensive queries that can take hours to complete, and are represented by a large weight value. The 
workload with the greatest weight is the heaviest workload on that VM.  

We also define the utilization of a VM instance as a ratio of the sum of the number of workloads and their 
weight values divided by the system memory. Finally, we differentiate between a highly utilized VM instance from 
a VM instance with multiple workloads by using a busy metric, which simply represents the number of workloads 
on a VM. 

The legal modifications to a configuration allowed in our model are listed below: 
• Upgrade: Upgrade by scaling up the most utilized VM in the configuration to the next more expensive VM 

type. If the most utilized VM is already at the highest cost rank, then scale up the VM with the lowest cost 
rank. 

• Add-cheapest: If the number of VMs is less than the number of workloads, then add an instance of the least 
expensive VM type to the configuration, and offload the heaviest workload from the busiest VM to the new 
VM. 

• Add-expensive: This modification is identical to the Add-cheapest modification except that the newly added 
VM instance belongs to the most expensive VM type. 

• Add-same: If the number of VMs is less than the number of workloads, then identify the VM with the highest 
utility, add an instance of the same VM type, and offload the heaviest workload from the busiest VM to the 
new VM. 

• Load-Balance: If there is at least one VM executing two or more workloads, then move the heaviest workload 
from the busiest VM to the least utilized VM. 

• Downgrade: Identify a VM with the lowest utility and replace it with the next cheaper VM type. 
• Downsize: Offload all the workloads from the VM instance with the lowest utility to the least utilized VM, 

and remove the former from the configuration.  

Note that we do not need to be concerned with tenant migration in our modifications since these modifications 
are applied prior to workload execution. All the modifications but one change the VM costs in a configuration, and 
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therefore, the cost change is referred to as modification cost. The modified configuration may result in decreased 
overall cost due to reduced network and penalty costs despite an increase in the VM costs. Alternately, the overall 
cost may increase due to under-provisioning and increased penalties. The resultant overall cost is determined after 
modifying the configuration and invoking the cost model with the modified configuration. 

Figure 3 shows a conceptual view of the configuration space. An edge (Ci, Cj) in the search space indicates that 
a configuration Cj can be obtained from a configuration Ci by applying the modification. 

 

C1

C2

C3

Ca

Add-cheapest ($0.08)Upgrade ($0.65)

Load-Balance ($0)

Cp

Upgrade ($0.65)

... ...

......
Downsize (-$0.65)Add-same ($0.08)

 

Figure 3: Conceptual view of the configuration space. An edge transforms a configuration into another configuration. 

5.2. Search Algorithms  

We consider three heuristics to select the modifications in each iteration, and they explore different parts of the 
configuration space. These algorithms are adaptive and continue to explore the configuration space provided that 
they keep finding cheaper configurations. We also provide non-SLO violating variants of these algorithms, by 
defining a simple switch which in its ‘on’ state discards configurations that violate SLOs. 

The adaptive algorithms are based on a common template based on greedy algorithm [40]. However, they differ 
in their choice of modification selection.  We describe the algorithms below, and present their pseudo-code in 
Appendix A. 

Greedy template: The greedy search algorithm starts by building an initial configuration by mapping all the 
workloads and the data partitions on a single instance of the cheapest VM type. It then greedily selects the lowest 
cost modification amongst the permitted modifications in each iteration. As a possible consequence, the cost of a 
configuration decreases due to reduced penalties, for example. The algorithm stops at the first minimum cost 
configuration it finds, which serves as a baseline for the experimental results. 

Adaptive greedy heuristic: The adaptive greedy algorithm extends the greedy algorithm with an ability to 
continue to look ahead for another minimum once the first one is found. The extension is a function of the number 
of workloads in the configuration and the number of iterations taken to find the last minimum. For example, if the 
adaptive greedy algorithm finds the last minimum in n iterations and the number of workloads is w, then it explores 
the search space a further wn iterations in the hope of finding a better (cheaper) minimum. If one is found then it 
resets the iteration counter (n) and continues to look for a better minimum until one is not found in the additional 
wn iterations. 

Pseudo genetic algorithm (pseudo-GA): In contrast to the greedy heuristic, the pseudo-genetic algorithm chooses 
a random modification in each iteration from all possible modifications. This algorithm makes excessive use of 
random selection amongst the permitted modifications. Each permitted modification has an equal probability of 
being selected. Therefore, this algorithm is not entirely random nor does it contain all the building blocks of a 
genetic algorithm [41], thus, the name pseudo-GA. 
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Tabu search: In contrast to pseudo-GA, the tabu search algorithm selects the modifications systematically. The 
algorithm uses tabu constructs that consist of intensification and diversification strategies [42]. The intensification 
strategies promote the selection of modifications which were historically found to be good. For example, recent 
modifications that lowered the cost, or the modification that has lowered cost most of the time. The diversification 
stage, on the other hand, encourages the search process to examine unvisited regions and to generate configurations 
that differ significantly from those considered earlier. For example, this strategy promotes previously unselected 
modifications. In tabu search, each chosen modification is intentionally flagged unavailable (tabu’ed) for some 
number of iterations despite being a perfectly eligible and/or a promising modification. The tabu’ing of a 
modification is particularly useful in breaking out of cycles. The tabu duration is determined randomly over the 
size of the permitted modification list. 

The starting point for all the algorithms is the initial configuration, where all the workloads and the tenants are 
mapped to a single instance of the cheapest VM type. This configuration exploits a heuristic, namely it has the 
lowest VM costs. Further, this configuration often turns out to be the optimal configuration when there are no SLOs 
defined. 

6. Evaluation  

The scope of the evaluation is to gauge the combined work of the framework components in finding the most 
cost-effective configurations with a focus on algorithms. In this report, we execute two sets of experiments to 
evaluate different aspects of the algorithms. The objective of the first set is to compare the results with the optimal 
solutions determined by an exact algorithm using small numbers of workloads, namely three. Meanwhile, the 
objective of the second set is to compare the performance of the promising algorithms in executing realistic 
workloads where the number of workload instances is thirty. In both cases, we validate some of the configurations 
in the Amazon cloud in order to confirm our framework’s outputs.  

There are four variables to the configuration cost, namely VM, storage, network and penalty costs. All four are 
varied in our experiments. A user has direct control over workloads and tenants which impact storage and network 
costs, and over SLOs which impact penalty costs. Considering different workload types allows us to vary the 
tenants, and hence the aggregate storage size and costs. Considering a large number of workload instances and 
placing SLOs on them rewards the algorithms that place them on different VM types, hence treating VM cost as a 
variable. The performance of an algorithm is measured by the dollar-cost of the configuration provided. 

We first present the tenants and their workloads. After that, we evaluate the algorithms against the global optima 
in some restricted cases. Then we evaluate the algorithms with realistic workloads and discuss the diversity of the 
configurations provided. A summary is presented at the end of this section. 

6.1. Tenants and their Workloads  

The tenants for the mDBMS used in our experiments are described in Table 6. The tenants’ workloads are made 
up of requests from the benchmarks and are chosen to exhibit different behaviours, namely read-only, write-heavy 
and mixed read/write. They consist of data-intensive request types, which spend significant part of their execution 
time accessing (reading and/or writing) data.  

Table 6: Example Application Tenants. 

Tenant Workload Data-bases Request types 

a read-only TPC-H Q1, Q6 (TPC-H) 

b write-heavy TPC-E trade-order,  
trade-update (TPC-E) 

c read-write (mixed) TPC-H, 
TPC-C Q12, Q21 (TPC-H), new-order, payment (TPC-C) 
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A request type in a workload may have multiple instances that execute concurrently. In general, the size of a 

workload is unknown. Therefore, we parameterize our workload execution by a time-unit, an hour. During the 
workload execution, a request instance is continuously re-submitted if finished early. This ensures that the request 
mix is consistent at an mDBMS throughout the hour. 

6.2. Evaluation against optimal comparison point 

We first experiment with a small number of workloads so that the correctness of our algorithms can be judged by 
comparing them to an exact solution for these limited cases. We keep the workloads fixed at the combination abc, 
where the workloads a, b and c are defined in Table 6. This combination is executed concurrently at the optimal 
MPL level of the VM types specified in Table 2. We keep the SLOs’ thresholds fixed, but vary their penalty values. 
We use the penalties in Table 4 as a base case, and amplify them, two times, rerunning the algorithms to see the 
resulting configurations provided by the algorithms. We compare the configuration costs returned by the search 
algorithms in Figure 4. 

 

Figure 4: Cost of resulting configurations when SLOs’ penalties are varied, and workload and SLOs’ thresholds are fixed with a single 
instance of a, b and c. 

Interestingly, adaptiveGreedy always returns the same configurations as greedy in the above cases. This is 
because once it finds a cost minimum, it always chooses the lowest cost modifications that do not allow it to move 
away from the minimum. Surprisingly, pseudo-GA, despite selecting random modifications, returns cheaper or 
equal cost configurations than adaptiveGreedy. In contrast, tabu search always provides the optimal configuration 
in the above cases. It may appear that the algorithms provide only two types of configurations, which are either the 
initial configurations or the optimal configurations. This pattern changes when we consider realistic workloads, 
where we see more variation in the configuration costs. In this analysis, we find pseudo-GA and tabu search 
promising, and we evaluate them using realistic workloads in Section 6.3. 

We validate the costs of the configurations provided by the algorithms for the base case (i.e. when penalty 
multiplier is 1). The algorithmic validation also serves as the correctness analysis. All the heuristic algorithms 
except tabu search return the initial configuration, which consists of only a single small VM instance. Meanwhile, 
tabu search and brute-force return identical configurations, which have a single large VM instance. We execute 
these configurations in the Amazon cloud for about an hour. The costs of simultaneously executing all workloads 
on each configuration is compared in Figure 5. 

We see considerable penalty costs due to lack of resources to avoid violations in the case of the configuration 
containing a small VM instance. We see that the overall cost reduces slightly for the configuration containing a 
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large VM instance due to reduced penalties but higher VM costs. This is an example of the tradeoff between 
penalties and resource costs.  

In Figure 5, we also see that the total measured cost of the optimal configuration is just under the measured cost 
of the initial configuration. We anticipate that there will be cases when estimation errors will lead to a wrong 
configuration identified as the most cost-effective configuration. We see such a case in Section 6.3, and explore 
possible reasons there. 

 

 

Figure 5: Estimated and measured costs for a, b and c workloads executing simultaneously subject to payment, trade-update and Q1 SLOs. 

6.3. Evaluation with realistic workloads 

With difficulties in obtaining real workloads, we do a best-effort job in defining workloads that exhibit 
characteristics of real applications. We use a combination of our workloads to exhibit behaviour similar to the 
aspects of web-applications listed by Cooper et al. [43] as shown in Table 7. 

Table 7: Web-application Type Workloads.  

Workload 
type 

Percentage 
Mix Web-application characteristics 

Read-only a (100%) User profile cache, where profiles are constructed elsewhere (e.g., 
Hadoop) 

Read-heavy a (80%), 
b (20%) Photo tagging; add a tag is an update, but most operations are to read tags 

Update-heavy c (100%) Session store recording recent actions in a user session 
 

Using a combination of the workloads similar to the ones used by Cooper et al., we define realistic workloads. 
We define two levels of thresholds and penalties in an SLO, namely lenient and strict. Suppose our workloads are 
present in equal proportions in a normal session. For example, if the number of permitted workload instances is 
thirty then each Wi gets an equal proportion of ten. We present a list of cases below, where one workload becomes 
dominant in the aggregate workload mix. 

Read-only dominant (ro-dom): Let us assume that write and update workloads deplete at night. For example, 
consider the example of a trading market which closes in the evening, and the back-end and house keeping 
workloads kick in. This also provides a window to execute more analytical workloads over-night, hence we see 
read-only dominant.  

Update-heavy dominant (up-dom): Group-on is a popular daily deal website that features discounted gift 
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certificates usable at local or national companies. It has over 35 million subscribers and offers coupons in over 150 
markets. Recently, it sold over 25,000 GPS units in a span of few days [44]. We see update-heavy dominant in this 
behaviour. 

Read-heavy dominant (rh-dom): Yahoo! News reported “The 5 Most Successful Viral Videos Ever” in early 
2012 [45]. The number one video is a short clip about the atrocities committed in Uganda by Joseph Kony and his 
rebel army. This clip aims to raise awareness about Kony, who is believed to have kidnapped and enslaved some 
66,000 children since the late 1980s. The film generated immense interest with a total of 100 million views over 
the Web in a record six days, with some viewers posting comments. We see read-heavy dominant in the workload 
mix in this case. With the above description, we define the mix of workloads in W in Table 8. The fractions 
represent the share of a workload type from the total permissible number of workload instances, which we set at 
thirty. 

Table 8: Workload Mix on a mDBMS Representing Different Cases.  

               Share 
Use-case 

Read-only (threshold 
/penalty) 

Update-heavy (threshold/ 
penalty) 

Read-heavy (threshold/ 
penalty) 

Normal 1/3rd (lenient/lenient) 1/3rd (strict/lenient) 1/3rd (lenient/strict) 
Read-only 
dominant 2/3rd (strict/strict) 1/6th (lenient/lenient) 1/6th (lenient/lenient) 

Update-heavy 
dominant 1/6th (lenient/lenient) 2/3rd (strict/strict) 1/6th (lenient/strict) 

Read-heavy 
dominant 1/6th (lenient/lenient) 1/6th (lenient/strict) 2/3rd (strict/strict) 

We define SLOs over request types accessing different tenants in Table 9. All workloads instances belonging to 
a single workload type have the same SLOs. 

Table 9: SLO Definitions Over Different Request Types in our Workloads. 

Request types Tenants Threshold (tps) Penalty ($) 
Lenient Strict Lenient Strict 

Q1 a 0.005 0.01 0.05 0.08 
Payment c 50 140 0.10 0.24 

Trade-order7 b 40 60 0.15 0.32 

Due to the large number of workload instances, determining a global optimum using an exact method becomes 
impractical. Therefore, we use two promising algorithms, namely pseudo-GA and tabu search and their non-
violating variants, to determine suitable configurations. We plot the cost of the resulting configurations in Figure 
6. 

In Section 6.2, we saw that the resource cost trades off against the penalty cost. To avoid violations, an algorithm 
may have to over-provision resources, or try alternate VM types. Over-provisioning resources is likely to result in 
a higher configuration cost, which we see for pseudo-GA (non-violating) in the normal and the update-heavy cases. 
Alternate VM types pay off for pseudo-GA in the case of read-only and read-heavy cases. 

The tabu search and its no SLO variant, though searching for different number of iterations, find identical 
configurations for each of the use-cases. They consist of either a single large or an xlarge VM instance. These 
configurations appear to be the optimal configurations, given the small size and cost. 

Finally, we validate the configurations provided by the algorithms in the normal case, where they are allowed to 
                                                             
7 Our client crashes when executing large number of workload instances and trade-update is present in the 

workload mix. Instead, we replace it with trade-order transaction that accesses the same tenant.  
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violate the SLOs, and configurations in the read-only dominant case, where they are not allowed to violate SLOs. 
We compare the estimated and measured costs of executing normal and read-only dominant cases in Figure 7. 

 

Figure 6: Costs of resulting configurations provided by pseudo-GA and tabu search, and their non-violating variants with the realistic 
workloads. 

 

Figure 7: Estimated (E) and measured (M) costs for the normal case, where pseudo-GA and tabu search are allowed to violate the SLOs, and 
the read-only dominant case, where they are not allowed to violate SLOs. 

We observe high penalty costs, where the SLOs are violated. This is because each instance of a workload has an 
SLO associated with it. On a single VM instance, either all SLOs of a workload type are met or none. The resulting 
penalty is the aggregation of all SLO violations. More importantly, the non-violating variant of the tabu search 
over-estimates the throughput in the read-only dominant case. It gives an illusion of SLOs being met, but the 
suggested configuration incurs violations when executed in the Amazon cloud as explained below resulting in a 
false negative. In this case, the %error in cost is a three digit number (183%).  Meanwhile, the %error is a single 
digit number in the other cases. We explore the possible reasons below. 

First, we use a binary penalty model, where full penalty applies when a SLO is violated, which tends to 
exaggerate the failure. Therefore, we see a large discrepancy between the estimated and measured costs if our 
performance model fails to predict the SLO breaches. 

Second, our performance models are validated against a large set of training samples, and we determine their 
quality over the prediction values over the entire validation set of 100 samples. It is possible to have a few bad 
predictions but still have a good model as evident by non-zero mean-%errors in Table 3. Therefore, we expect to 
see fewer bad predictions for a larger number of use-cases. 

Unexpected SLA violation! 
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Third, errors are cumulative in our framework. This is because the algorithms use the cost model, which in turn 
use the performance model. Therefore, any errors in the lower layers are likely to be amplified as they travel 
upwards. The errors could be handled better if the models and algorithms provide confidence in their solutions. For 
example, an algorithm may over-provision to avoid penalties if the performance model is unsure in its predictions. 
 
SUMMARY 

The space complexity of the configuration search is, at worst, linear in the number of workloads. This is because 
each VM type must have at least one workload mapped to it, and the size of data structures to store mappings is 
linear in the number of VMs, and the tenants and their replicas. Otherwise, our algorithms consider only three 
configuration types at any time. They are current configuration, modified configuration, and the best configuration 
found so far. 

The upper bound on the time complexity of our algorithms is equal to the optimal provisioning, which is NP-
hard in general. This is due to the adaptive nature of the algorithms. The lower bound is linear in the number of 
workloads since that is used in defining the size of look ahead window. In the experiments considered, our 
algorithms explore the search space between 10 and 1,000 iterations, where each iteration takes around 25ms on 
our desktop machine.  

We observe that tabu search and its non-violating variant appear to find the best configurations compared to 
other algorithms. Further, it takes relatively fewer iterations to return a configuration. We consider tabu search to 
be the most effective algorithm in the heuristics considered. 

In all the validation results, we usually observe a moderate %error in the estimated cost. Nonetheless, there are 
cases when we observe very high %error in the estimated cost due to over-estimating the performance of the 
mDBMS. This high %error is an exaggeration of over-estimation of the predicted throughput. 

Setting penalty costs aside, we see that the VM costs are the next highest. They are also the highest costing 
resources. Amazon EC2 now offers over a dozen different VM types [46] that vary in their system capacities and 
hourly rates. Further, Amazon has recently introduced EBS-Optimized instances that provide bandwidth guarantees 
at an additional premium [39]. An interesting study would be to optimize an objective given more VM types with 
or without bandwidth guarantees, and validating the results in the Amazon cloud. 

In all the experiments, we observe low storage costs, especially compared to the network and VM costs. This is 
because monthly storage costs are already low, and prorating it gives even lower hourly cost, which is then rounded 
up to the next cent. This relatively lower storage cost is in-line with the widening cost-value gap between storage 
and other computational resources including network and processors. 

Our workloads are distorted versions of the realistic workloads presented by Cooper et al. [43]. Nonetheless, we 
argue that they suffice for the evaluation. Our workload combination contains at most eight request types. This is 
reasonable since TPC-C and TPC-E benchmarks have five and ten transactions, respectively, although TPC-H has 
22 queries. A real database system is rarely a read-only or a write-only service. It usually serves a combination of 
transactional and analytical workloads [47]. 

 
7. Insights and Opportunities  
 

We gained several insights in the process of formulating the problem, developing the framework, building the 
models and evaluating our work. We discuss them below with suggestions for future work. 

Discrete configuration space: We do not see a great variety in the configurations returned by algorithms, despite 
employing different heuristics. We attribute this to the discontinuous or the discrete nature of the cost and the 
configuration space. The cost of a configuration consists of four component costs: VM, storage, network, and 
penalty costs. The VM instances are available in discrete units, i.e. there is no way of acquiring “two-and-a-half” 
VM instances, and only paying for that. Similarly, the storage space is usually allocated in discrete units, say 1gb 
[39], and typically charged using a step function. Similarly, the network cost associated with accessing data storage 
also follows a step function. Finally, we use a binary penalty model with fixed thresholds and penalties. Any SLO 
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violations result in discrete penalties. Alternate views are possible by using a prorated model for calculating penalty, 
for example, and are left for future consideration.  

The discrete nature of the configuration cost is very limited compared to a continuous quantity like time. This 
does not reduce the complexity of the search problem, which is still NP-hard in the general case. Nonetheless, 
exploring whether the above characterization of the configuration cost be exploited to provide us with an optimal 
configuration merits some investigation. 

Hybrid heuristics: The basic heuristics our algorithms use are greedy, pseudo-GA and tabu. We have explored 
different hybrids of these heuristics but find that they provide similar configurations as the pure heuristics in most 
cases with the workloads and VM types considered. This might be due to the discrete nature of the configuration 
space. For example, the tabu greedy algorithm is an extension to the adaptive greedy heuristic, where each chosen 
modification is tabu’ed for some iterations. Tabu greedy does not use additional tabu constructs. We find that the 
results of adaptive greedy and tabu greedy are the same in many cases. The hybrid heuristics may become relevant 
when considering many more workloads and VM types. This is because they may perform “fine-tuning” of the 
configuration. We leave this for future consideration. 

Guaranteed global optimum: The heuristic search algorithms vary in their sophistication and their ability to 
find suitable configurations. However, the algorithms do not guaranty optimality of the configuration. It can be 
seen that we are optimizing an objective function subject to some constraints.  

With appropriate formalization of the problem statement and constraints, it becomes possible to use off-the-shelf 
modeling packages like AIMMS [48] to find the guaranteed global optimum though it may take a very long time. 
We are particularly inspired by the work of Curino et al. [15] in this matter, who perform non-linear constrained 
optimization to find an assignment that minimizes the number of machines while avoiding resource over-
commitment. 

Performance model: Presently, the performance model provides raw predictions without expressing any 
confidence in them. This is an important issue since the errors are cumulative in our framework, and we need some 
method of managing the errors across the framework components. We seek performance models that express 
confidence in their predictions, and have the ability to reuse prior data and adapt online for unknown requests or 
VM types.  

We consider an adaptive model to satisfy these requirements, and see some promising work in this direction by 
Sheikh et al. [25]. While the adaptive model may eventually evolve to an unknown environment, the evolution can 
be sped up by an “appropriate” initial state. Therefore, we envision a meta-model that generates the initial version 
or the bootstrap of the adaptive model given a workload and SLOs. Both meta and adaptive models are 
complementary and are particularly suited for a cloud environment. This is because a public cloud has a high level 
of variance [5].  

Cost model: Our cost model does not account for any migration expense, which would be required in the case 
of deploying a revised configuration during workload execution. A configuration revision may be necessary with 
changing workloads or SLAs. There are two major components to migration, namely execution state and the data 
state. The primary goal of the execution state to our interest is the progress-so-far of the currently executing 
requests. Meanwhile, the data partitions exist on the network-type disks, which can be remounted to the new VM.  

The execution state can be migrated in a few ms [49], meanwhile, the EBS volumes can be reattached to the new 
VM using Amazon EC2’s Application Programming Interface (API) [50]. There will be some disruption to the 
workload execution. However, in both cases, the scope of the cost model is to account for the expense and not for 
the process. 

Similarly, our work does not include the processes of data partitioning and maintaining data consistency. We 
assume that partitions already exist, which they do in the case of multi-tenant databases. Like migration, the 
partitioning process is orthogonal to our work, and we see some promising research on partitioning and providing 
consistency guarantees [51, 52]. Modeling the cost of partitioning and consistency also requires extensions to our 
cost model.  

Our cost model assumes that the data already exists in the cloud, and does not model data transfer over WAN. 
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While adequate for workload execution in a single data-center, our cost current cost model needs to be expanded 
in order to deal with any inter data-center communication costs. 

We believe that the migration, partitioning and consistency processes can be incorporated into our framework to 
provide dynamic refinements and an autonomic framework. 

Workloads: We use transactional, analytical and mixed workloads based standard transactional (TPC-C and 
TPC-E) and analytical benchmarks (TPC-C) in our evaluation. However, these workloads are static. We intend to 
explore dynamic workloads, which change in request types or number, or in SLA. We intend to consider different 
workload types including analyzing data of E-opinions.com [53]. Finally, we will use a random benchmark, which 
will be a synthetic dataset aimed to stretch the prediction and the cost models. 

 
8. Conclusions  

 
We formulate the provisioning problem for providing a multi-tenant DBMS in an IaaS cloud, and evaluate the 

combined effects of the performance and cost models with the heuristic based algorithms in a public IaaS cloud. In 
the search space, each node is a possible configuration and edges between nodes are the modifications that convert 
one configuration into another. We are able to consider a variety of possible modifications with this representation.  

The search space representation allows us to apply standard search heuristics and algorithms. Given that the 
problem of finding a suitable configuration is NP-hard, we present heuristic-based algorithms to find a suitable 
configuration. We see from the evaluation of the algorithms that there are a number of local minima in the 
configuration space and that the adaptivity of the algorithms results in better configurations. 

The evaluation supports the claim that our framework is an effective tool for provisioning multi-tenant DBMS 
as a SaaS over an IaaS cloud. The framework takes into account properties of the workload, such as request types, 
frequencies and SLOs, as well as the resource costs in the IaaS cloud, and discovers a minimal cost configuration 
for the workload. The impact of SLOs is captured by a penalty cost or a constraint. 

Our work is relevant to multi-tenant DBMSs that seek to find the best resource configuration for the workloads 
of their tenants. We claim that our work is a valuable contribution and provides a basis for executing any database 
workload type in a SaaS service over an IaaS cloud. 

 
Acknowledgements 

The authors acknowledge research support from National Science and Engineering Research Council of Canada 
(NSERC), and ServiceCloud (MINECO TIN2012-31518). 

 
References 

 
[1] A. Cockcroft, Netflix (keynote). OSCON data open source convention (Portland, OR, USA), O’Reilly, 2011. 

http://www.oscon.com/oscon2011/public/schedule/detail/20187. 
[2] NASDAQ-OMX, FinQloud Retrieved on 25th Dec, 2015. 

http://ir.nasdaq.com/releasedetail.cfm?releaseid=709164. 
[3] RackSpace, Gallant FX Finds On-demand Support for an On-demand Market via Rackspace Retrieved on 

25th Dec, 2015. http://www.rackspace.com/knowledge_center/case-study/gallant-fx-finds-on-demand-
support-for-an-on-demand-market-via-rackspace. 

[4] R. Mian, P. Martin, J.L. Vazquez-Poletti, Provisioning data analytic workloads in a cloud. Future Generation 
Computer Systems (FGCS), vol. 29, issue  6, 2013, pp. 1452–1458. 

[5] J. Schad, J. Dittrich, J.-A. Quiane-Ruiz, Runtime measurements in the cloud: observing, analyzing, and 
reducing variance. Proceedings of VLDB Endowment vol. 3, issue  1-2, 2010, pp. 460-471. 

[6] R. Mian, Managing Data-Intensive Workloads in a Cloud (Ph.D. Depth Paper).  Technical Report#: 2011-
581, P. Martin. School of Computing, Queen's University 2011. [Online] Retrieved on Dec 25th, 2015. 
http://research.cs.queensu.ca/TechReports/Reports/2011-581.pdf. 



  22 

[7] A. Ruiz-Alvarez, M. Humphrey, A Model and Decision Procedure for Data Storage in Cloud Computing. 
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (Ottawa, ON, 
Canada), 2012. pp. 572-579. 

[8] T. Bicer, D. Chiu, G. Agrawal, Time and Cost Sensitive Data-Intensive Computing on Hybrid Clouds. 12th 
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (Ottawa, ON, 
Canada), 2012. pp. 636-643. 

[9] Q. Zhu, G. Agrawal, Resource Provisioning with Budget Constraints for Adaptive Applications in Cloud 
Environments. IEEE Trans. on Services Computing, vol. 5, issue  4, 2010, pp. 497-511. 

[10] J. Li, J. Chinneck, M. Woodside, M. Litoiu, Fast scalable optimization to configure service systems having 
cost and quality of service constraints. Proceedings of the 6th International Conference on Autonomic 
computing (ICAC) (Barcelona, Spain), ACM, 2009. pp. 159-168. 

[11] J. Li, J. Chinneck, M. Woodside, M. Litoiu, G. Iszlai, Performance model driven QoS guarantees and 
optimization in clouds. Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of 
Cloud Computing (Vancouver, BC, Canada), IEEE Computer Society, 2009. pp. 15-22. 

[12] J.Z. Li, M. Woodside, J. Chinneck, M. Litoiu, CloudOpt: Multi-goal optimization of application 
deployments across a cloud. Network and Service Management (CNSM), 2011 7th International Conference 
on (Paris, France), IEEE, 2011. pp. 1-9. 

[13] H. Ghanbari, B. Simmons, M. Litoiu, G. Iszlai, Feedback-based optimization of a private cloud. Future 
Generation Computer Systems (FGCS), vol. 28, issue  1, 2012, pp. 104-111. 

[14] H. Li, G. Casale, T. Ellahi, SLA-driven planning and optimization of enterprise applications. Proceedings of 
the first joint WOSP/SIPEW international conference on Performance engineering (San Jose, CA, USA), 
ACM, 2010. pp. 117-128. 

[15] C. Curino, E.P.C. Jones, S. Madden, H. Balakrishnan, Workload-aware database monitoring and 
consolidation. Proceedings of the 2011 ACM SIGMOD International Conference on Management of data 
(Athens, Greece), ACM, 2011. pp. 313-324. 

[16] M. Ahmad, A. Aboulnaga, S. Babu, Query interactions in database workloads. Proceedings of the Second 
International Workshop on Testing Database Systems (Providence, RI, USA), ACM, 2009. pp. 1-6. 

[17] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, A. Delis, Flexible use of cloud resources 
through profit maximization and price discrimination. 27th International Conference on Data Engineering 
(ICDE) (Hannover, Germany), IEEE, 2011. pp. 75-86. 

[18] M. Litoiu, J. Rolia, G. Serazzi, Designing process replication and activation: a quantitative approach. IEEE 
Transactions on Software Engineering, vol. 26, issue  12, 2000, pp. 1168-1178. 

[19] R. Mian, P. Martin, F. Zulkernine, J.L. Vazquez-Poletti, Estimating Resource Costs of Data-intensive 
Workloads in Public Clouds. 10th International Workshop on Middleware for Grids, Clouds and e-Science 
(MGC) in conjunction with ACM/IFIP/USENIX 13th International Middleware Conference 2012 (Montreal, 
QC, Canada), ACM, 2012.article. 3. 

[20] R. Mian, P. Martin, F. Zulkernine, J.L. Vazquez-Poletti, Towards Building Performance Models for Data-
intensive Workloads in Public Clouds. 4th ACM/SPEC International Conference on Performance 
Engineering (ICPE) (Prague, Czech Republic), ACM, 2013. pp. 259-270. 

[21] R. Mian, Cost-Effective Resource Configurations for Executing Data-Intensive Workloads in Public Clouds 
(PhD Thesis). School of Computing. Queen's University 2013. [Online] Retrieved on 25th Dec, 2015. 
http://qspace.library.queensu.ca/jspui/bitstream/1974/8497/1/Mian_Rizwan_201311_PhD.pdf. 

[22] TPC, Transaction Processing and Analytical Database Benchmarks Retrieved on 25th Dec, 2015. 
http://www.tpc.org/information/benchmarks.asp. 

[23] Amazon, Elastic Compute Cloud (EC2) Retrieved on 25th Dec, 2015. http://aws.amazon.com/ec2/. 
[24] G. Weikum, A. Moenkeberg, C. Hasse, P. Zabback, Self-tuning database technology and information 

services: from wishful thinking to viable engineering. Proceedings of the 28th international conference on 
Very Large Data Bases (Hong Kong, China), VLDB Endowment, 2002. pp. 20-31. 



  23 

[25] M.B. Sheikh, U.F. Minhas, O.Z. Khan, A. Aboulnaga, P. Poupart, D.J. Taylor, A bayesian approach to 
online performance modeling for database appliances using gaussian models. 8th ACM international 
conference on Autonomic computing (ICAC) (Karlsruhe, Germany), ACM, 2011. pp. 121-130. 

[26] M. Ahmad, A. Aboulnaga, S. Babu, K. Munagala, Modeling and exploiting query interactions in database 
systems. Proceedings of the 17th ACM conference on Information and knowledge management (Napa 
Valley, CA, USA), ACM, 2008. pp. 183-192. 

[27] M. Ahmad, S. Duan, A. Aboulnaga, S. Babu, Predicting completion times of batch query workloads using 
interaction-aware models and simulation. Proceedings of the 14th International Conference on Extending 
Database Technology (EDBT'11) (Uppsala, Sweden), ACM, 2011. pp. 449-460. 

[28] J.L. Vazquez-Poletti, G. Barderas, I.M. Llorente, P. Romero, A Model for Efficient Onboard Actualization 
of an Instrumental Cyclogram for the Mars MetNet Mission on a Public Cloud Infrastructure. PARA2010: 
State of the Art in Scientific and Parallel Computing, Lecture Notes in Computer Science (LNCS), vol. 
7133, issue 2010, pp. 33-42. 

[29] B. Sharma, R.K. Thulasiram, P. Thulasiraman, S.K. Garg, R. Buyya, Pricing Cloud Compute Commodities: 
A Novel Financial Economic Model. 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid 
Computing (CCGrid) (Ottawa, ON, Canada), 2012. pp. 451-457. 

[30] W. Li, Y. Yang, J. Chen, D. Yuan, A cost-effective mechanism for Cloud data reliability management based 
on proactive replica checking. 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid 
Computing (CCGrid) (Ottawa, ON, Canada), 2012. pp. 564-571. 

[31] L. Du, Pricing and Resource allocation in a Cloud Computing Market. Workshop on Cloud Computing 
Optimization (CCOPT 2012) in conjunction with 12th IEEE/ACM International Symposium on Cluster, 
Cloud and Grid Computing (CCGrid). (Ottawa, ON, Canada), 2012. pp. 817-822. 

[32] Amazon, Simple Monthly Calculator Retrieved on 25th Dec, 2015. 
http://calculator.s3.amazonaws.com/calc5.html. 

[33] S. Chaisiri, L. Bu-Sung, D. Niyato, Optimal virtual machine placement across multiple cloud providers. 
IEEE Asia-Pacific Services Computing Conference (APSCC) (Singapore), 2009. pp. 103-110. 

[34] H. Wada, J. Suzuki, K. Oba, Queuing Theoretic and Evolutionary Deployment Optimization with 
Probabilistic SLAs for Service Oriented Clouds. 2009 World Conference on Services - I (Los Angeles, CA, 
USA), IEEE, 2009. pp. 661-669. 

[35] C.R. Hicks, K. Turner Jr, Fundamental concepts in the design of experiments, Oxford University Press, New 
York, 1999. 

[36] S.K. Shevade, S.S. Keerthi, C. Bhattacharyya, K.R.K. Murthy, Improvements to the SMO algorithm for 
SVM regression. IEEE Trans. on Neural Networks, vol. 11, issue  5, 2000, pp. 1188-1193. 

[37] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA data mining software: 
An update. ACM SIGKDD Explorations Newsletter, vol. 11, issue  1, 2009, pp. 10-18. 

[38] Amazon, Public Data Sets Retrieved on 25th Dec, 2015. http://aws.amazon.com/datasets. 
[39] Amazon, Elastic Block Store (EBS) Retrieved on 25th Dec, 2015. http://aws.amazon.com/ebs/. 
[40] D. Jungnickel, Chapter 5: The Greedy Algorithm, in:  Graphs, Networks and Algorithms, Springer, 2005, pp. 

123-146. 
[41] M. Mitchell, An Introduction to Genetic Algorithms, 5th ed., MIT Press, Cambridge, Massachusetts, 1999. 
[42] F. Glover, M. Laguna, Tabu Search, Springer, 1998. 
[43] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Benchmarking cloud serving systems with 

YCSB. 1st ACM Symposium on Cloud Computing (SoCC) (Indianapolis, IN, USA), ACM, 2010. pp. 143-
154. 

[44] R. Mohammed, How to Save Groupon in Harvard Business Review 2012.[Online] Retrieved on 25th Dec, 
2015. http://blogs.hbr.org/cs/2012/12/how_to_save_groupon.html. 

[45] Wolchover, The 5 Most Successful Viral Videos Ever by Yahoo! NEWS 2012.[Online] Retrieved on 25th 
Dec, 2015. http://ca.news.yahoo.com/5-most-successful-viral-videos-ever-154806218.html. 

[46] Amazon, EC2 Instance Types Retrieved on 27th April, 2011. http://aws.amazon.com/ec2/instance-types/. 



  24 

[47] M. Zhang, B. Niu, P. Martin, W. Powley, P. Bird, Utility Functions in Autonomic Workload Management 
for DBMSs. International Journal On Advances in Intelligent Systems, vol. 5, issue  1 and 2, 2012, pp. 66-
75. 

[48] AIMMS,  Retrieved on 25th Dec, 2015. http://www.aimms.com/. 
[49] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield, Live migration of virtual 

machines. USENIX Association Proceedings of the 2nd Symposium on Networked Systems Design & 
Implementation (NSDI) (Berkeley, CA, USA), Usenix Assoc, 2005. pp. 273-286. 

[50] Amazon, Amazon EBS Dimensions and Metrics Retrieved on 1st Aug, 2010. 
http://docs.amazonwebservices.com/AmazonCloudWatch/latest/DeveloperGuide/CW_Support_For_AWS.h
tml#ebs-metricscollected. 

[51] C. Curino, E. Jones, Y. Zhang, S. Madden, Schism: a workload-driven approach to database replication and 
partitioning. Proc. VLDB Endow., vol. 3, issue  1-2, 2010, pp. 48-57. 

[52] A. Pavlo, C. Curino, S. Zdonik, Skew-aware automatic database partitioning in shared-nothing, parallel 
OLTP systems. Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data 
(Scottsdale, AZ, USA), ACM, 2012. pp. 61-72. 
http://dl.acm.org/citation.cfm?id=2213844&CFID=83613397&CFTOKEN=28959253. 

[53] P. Massa, P. Avesani, Controversial users demand local trust metrics: An experimental study on 
Epinions.com community. 20th National Conference on Artificial Intelligence and the 17th Innovative 
Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05 (Pittsburgh, PA, USA), American 
Association for Artificial Intelligence, 2005. pp. 121-126. 

	
Appendix A: Pseudo-code of Algorithms 

 
Figure 8 shows how different variants of the heuristic algorithms are derived from the greedy search template. 

The greedy algorithm is a standard heuristic. Therefore, we do not reproduce its pseduo-code. Instead, we present 
the pseduo-code of the adaptiveGreedy algorithm, and the differences in pseduo-GA and tabu search compared to 
the adaptiveGreedy heuristic. 

greedy

adaptiveGreedy

Pseudo-GA Tabu search

adaptivity

random 
modification 

selection

tabu 
constructs

 
Figure 8. Relation between search algorithms, and their derivation path. 

AdaptiveGreedy 

Input: initial configuration # set of all the workloads  
 # mapped to the cheapest VM type 

Output: a minimum  
 
Proc adaptiveGreedy(Config initial){ 
 current_conf := initial # initial configuration 



  25 

 # boolean for representing a minimum 
 minimumFound := false  
 # boolean indicating when we should terminate 
 terminate := false   
 
 # representing mandate to explore after a minimum is found 
 lease := 0 
 # to keep track of mandate explored    
 counter := 0   
 look_ahead  := init_conf.numOfWorkloads 
 
 while (terminate = false) { 
  # variable to keep track of number of iterations   
  iter = iter + 1  
 

  # selecting a suitable modification  
  # and modify current config accordingly 
  candidateMods :=  ValidModsListOrderedByIncreasingModCost (current_conf) 

 
  if (candidateMods.size = 0) { 
   if (minimumFound = true AND counter = lease) { 
    # minimum exists and lease expired 
    terminate := true 
    break # break loop 
   } else if (minimumFound = true) {  
    #skip iteration but increment counter 
    counter := counter + 1 
   }  
   # else just skip iteration and  
   # hope some modification will become available 
   continue # skip iteration 
  } else { 
   chosenMod := candidateMods.head 
     
   #modify current modification  
   # based on chosen modification 
   new_conf :=modify(current_conf, chosenMod) 
  } 
 
  # detecting minimum and setting lease period 
  # call to cost model is embedded in reference to “.cost” 
  if (current_conf.cost < new_conf.cost ){ # minimum 
   if (minimumFound = false){ 
    minimumFound := true  # 1st minimum found 
    counter := 1   # initialize counter for lease 
    lease := look_ahead x iter # initialize lease 
    minimum := current_conf 
    current_conf := new_conf 
   } else { 
    if (current_conf.cost < minimum.cost) { 
     lease := lookahead x counter # reset lease 
     counter := 1   # reset counter 
     current_conf := new_conf 
    } else if (counter ≤ lease) {  
     # new minimum is not lower than current minimum,  
     # so ignore it and increment counter 
      counter := counter + 1 
      current_conf := new_conf 
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    } else { # lease expired -- terminate 
      terminate := true 
    } 
   } 
  } else { # not a minimum 
   If (minimumFound = true) { 
    If (counter ≤ lease) { 
     counter := counter + 1 
     current_conf := new_conf 
    } else { # lease has expired 
     terminate := true 
    } 
   } else { 
    # no minmum found yet so keep looking 
    current_conf := new_conf 
   }   
  } 
 } 
 Return minimum 
} 

Psuedo-GA  

Pseduo-GA is identical to adaptiveGreedy except that the modification is chosen randomly at each iteration. The 
differences are stated below.  

 
candidateMods := ValidModsList(current_conf) 

randomIndex := randomgenerator.nextInt 
 (candidateMods.size()) 

chosenMod := candidateMods.randomIndex 

Tabu GA 

Tabu search is also similar to adaptiveGreedy except the modification is selected based on tabu constructs. The 
differences are stated below.  

 
candidateMods	 :=	

generateModificationListUsingTabuConstructs(current_conf)	
 
We present the pseduo-code for sorting permitted modifications based on tabu constructs below.  
 
Input: current configuration 
Output: modification list generated by tabu constructs 
 
Proc generateModificationListUsingTabuConstructs  
(Config conf){  
 # this procedures uses a set of auxiliary procedures  
 # (prefixed by get)  to obtain modificaitons that satisfy a  
 # certain property. An auxiliary procedure only returns  a  
 # modification that is valid for the current configuration 

 
# hash avoids adding the same modification  
# twice to the candidate list 
OrderedHash candidatelist  
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# intensify 
   recent := getRecentModificationThatLoweredCost 

candidatelist.add(recent) 
 

   # quality is the ratio of number of times lowered  
   # cost/number of times chosen 

quality := getHighestQualityModification 
candidatelist.add(quality) 
 
frequent = getHighestChosenModification 
candidatelist.add(frequent) 

 
#diversify 
  unchosen := getNeverChosenModification 

candidatelist.add(unchosen) 
 
neverImprove := getNeverLoweredCostModification 
candidatelist.add(neverImprove) 
 

# intensify/diversify depending on the VMs  
# in the current configuration 
  cheapest := getCheapestModification 

candidatelist.add(cheapestModification) 
 

   # get most expensive modification  
   # for current configuration 

expensive := getExpensiveModification 
candidatelist.add(expensiveModification) 

 
return candidatelist 

} 
 
Further, the selected modification is checked for tabu status and tabu override. A tabu status can be overridden 

if the new configuration results in a lower cost than the current minimum. 
 
Foreach mod in candidateMods { 

chosenMod = mod 
 if (chosenMod.tabu=false) { 
  chosenMod.tabu := true 
 
  # set tenure based on the current candidate  

# size list instead of a constant this makes tenure duration  
# adaptive and avoids large cycles  

  chosenMod.tenure := randomgenerator.nextInt  
            

   (candidateMods.size) 
  new_conf := modify(current_conf, chosenMod) 
  break # break out of foreach loop 
 } else if (minimumFound) { 
  # tabu is true but still need to check for tabu or 

# aspiration override before discarding chosenMod 
 
  new_conf := modify(current_conf, chosenMod)  
 
  If (new_conf.cost < minimum.cost) {  
   # aspiration override successful 
   Break  # break out of foreach loop 
  } else {  
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   # override unsuccessful 
   # continue foreach and explore next modification  
   New_conf = null 
  
   # continue to the next cycle of foreach 
   # to explore next modification in the candidateList 
   Continue 
  } 
} # foreach loop ends 

 


