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Foreword

The Twenty-Seventh Canadian Conference on Com-
putational Geometry took place from August 10-12,
2015 at Queen’s University in Kingston, Ontario. This
annual conference attracts researchers in computational
geometry from around the world to Canada for an
open exchange of ideas and results. This volume
contains 43 contributed papers as well as 3 invited
talks. These proceedings are available on line at
http://research.cs.queensu.ca/cccg2015/ and at
the central CCCG web site http://www.cccg.ca.

The organizing committee would like to thank the in-
vited speakers Jit Bose (Ferran Hurtado Memorial Lec-
ture), Bruce Reed (Paul Erdős Memorial Lecture), and
Jonathan Shewchuk. We also thank all of those who
contributed their papers to the conference.

Thanks go out to the program committee and the lo-
cal arrangements committee for their organizational as-
sistance. Special thanks to Ben Cecchetto and Bahram
Kouhestani. Ben designed the CCCG 2015 web page
and the cover of these proceedings. Furthermore, Ben
is the webmaster and Bahram prepared these proceed-
ings from the submitted LATEX source files.

We gratefully acknowledge financial support from the
Fields Institute for Research in Mathematical Sciences,
the Queen’s University Office of Research Services, the
Queen’s University Faculty of Arts and Science, and the
School of Computing at Queen’s University.

David Rappaport

Avant-Propos

La vignt-septième conférence sur la géométrie al-
gorithmique a eu lieu du 10 au 12 août 2015, à
l’Université Queen’s à Kingston, en Ontario. Cette
conférence annuelle réunit au Canada des chercheurs
en géométrie algorithmique du monde entier, pour un
échange d’idées et de résultats. Ce volume contient
les textes de 43 articles communiqués à la conférence
ainsi que les résumés de 3 articles présentés sur in-
vitation. Ces actes sont disponibles en lignes à
http://research.cs.queensu.ca/cccg2015/ et à la
page Web centrale de CCCG, http://www.cccg.ca.

Le comité organisateur remercie les conférenciers
invités Jit Bose (Ferran Hurtado Memorial Lec-
ture), Bruce Reed (Paul Erdős Memorial Lecture), et
Jonathan Shewchuk. Nous remercions aussi les auteurs
des communications.

Merci au comité de programme et le comité des
préparatifs locaux pour l’ensemble de leur aide organisa-
tionnelle. Un merci spécial à Ben Cecchetto et Bahram
Kouhestani. Ben a conçu la page Web CCCG 2015 et
la couverture de ces actes. De plus, Ben est le webmas-
ter et Bahram a préparé ces actes à partir des fichiers
sources LATEX qui nous furent soumis.

Nous désirons exprimer notre reconnaissance aux or-
ganismes suivants de leur support financier: Fields In-
stitute for Research in Mathematical Sciences, Queen’s
University Office of Research Services, Queen’s Univer-
sity Faculty of Arts and Science, et School of Computing
at Queen’s University.

David Rappaport

i



27th Canadian Conference on Computational Geometry, 2015

Invited Speakers

Jit Bose Carleton University
Bruce Reed McGill University
Jonathan Shewchuk University of California at Berkeley

Program Committee

Mohammad Ali Abam Sharif University
Oswin Aichholzer University of Technology Graz
Greg Aloupis Tufts University
Binay Bhattacharya Simon Fraser University
Therese Biedl University of Waterloo
Paz Carmi Ben-Gurion University
Mirela Damian Villanova University
Stephane Durocher University of Manitoba
William Evans University of British Columbia
Robin Flatland Siena College
Joachim Gudmundsson University of Sydney
Meng He Dalhousie University
John Howat Carleton University
John Iacono New York University
Hiro Ito The University of Electro-Communications (UEC)
Matias Korman National Institute of Informatics
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Connectivity Preserving Iterative Compression

Bruce Reed (McGill University)

Abstract

When applying iterative compression to solve an optimization problem, we construct a smaller auxiliary graph
from the input graph, solve the problem on this smaller graph, and then use the solution to solve the original
problem. We present a variant of this approach in which the smaller graph inherits the connectivity properties of
the original graph. This is especially useful when trying to solve embedding or routing problems. We present three
applications which illustrate this. To warm up we present a simple linear time algorithm which tests planarity and
embeds a planar input in the plane. We then present, for every fixed k, a linear time algorithm which determines
if an input graph has crossing number at most k, and obtains a corresponding embedding if it does. Finally we
present a linear time algorithm which given four vertices s1,s2,t1,t2 of a graph G determines if there are 2 vertex
disjoint paths P1 and P2 such that Pi contains si and ti. It either finds the desired two paths or an embedding up
to 3-cuts of G in a disc which proves that the paths cannot exist. As well as introducing the new technique, our
talk will highlight some of the connections between graph minor theory and embedding algorithms.

(This is a joint work with Kenichi Kawarabayashi and Zhentao Li).
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An Algorithm for the Maximum Weight Independent Set Problem on
Outerstring Graphs∗

J. Mark Keil† Joseph S. B. Mitchell‡ D. Pradhan§ Martin Vatshelle¶

Abstract

Outerstring graphs are the intersection graphs of curves
that lie inside a disk such that each curve intersects the
boundary of the disk. Outerstring graphs are among
the most general classes of intersection graphs studied.
To date, no polynomial time algorithm is known for any
of the classical graph optimization problems on outer-
string graphs; in fact, most are NP-hard. It is known
that there is an intersection model for any outerstring
graph that consists of polygonal arcs attached to a cir-
cle. However, this representation may require an expo-
nential number of segments relative to the size of the
graph.

Given an outerstring graph and an intersection model
consisting of polygonal arcs with a total of N segments,
we develop an algorithm that solves the Maximum
Weight Independent Set problem inO

(
N3
)

time. If
the polygonal arcs are restricted to single segments, then
outersegment graphs result. For outersegment graphs,
we solve the Maximum Weight Independent Set
problem in O

(
n3
)

time where n is the number of ver-
tices in the graph.

1 Introduction

A graph G is a geometric intersection graph if the vertex
set of G is a set of geometric objects and two such ob-
jects are adjacent in G if and only if they intersect. An
independent set in a geometric intersection graph corre-
sponds to a set of disjoint geometric objects in the in-
tersection model. The Maximum (Weight) Indepen-
dent Set problem in intersection graphs of geometric
objects in the plane has many applications, including
train dispatching [8], map labelling [1], and data min-
ing [13]. In the railroad dispatching problem studied
by Filer, Mihalák, Schöbel, Widmayer and Zych [8], we
are given a set of paths (strings) in the plane and asked
for a maximum set of non-conflicting train routes, i.e.
a maximum independent set in a string graph. Due to

∗J. M. Keil supported by NSERC; J. Mitchell is partially sup-
ported by NSF (CCF-1018388) and the US-Israel Binational Sci-
ence Foundation (Grant 2010074).
†Dept. of Computer Science, University of Saskatchewan
‡Dept. of Appl. Math. and Statistics, Stony Brook University
§Dept. of Applied Math, Indian School of Mines, Dhanbad
¶Dept. of Informatics, University of Bergen

the fact that most trains either leave or enter the station
area, it is natural to consider outerstring graphs in this
application. This is the problem we solve in this paper.

String graphs are the intersection graphs of curves in
the plane and they are among the most general geomet-
ric intersection graphs that have been studied. String
graphs are a superclass of planar graphs [25], chordal
graphs, co-comparability graphs [15], subtree filament
graphs [14] and circle graphs. Indeed the intersection
graph of any collection of connected sets in the plane is
a string graph. As early as 1959, Benzer [4] encountered
string graphs in his study of genetic structures. Since
then they have been extensively studied and have many
applications. Kratochv́ıl et al. [19] showed that every
string graph can be realized by a family of polygonal
arcs with a finite number of intersections. However in
1991, Kratochv́ıl and Matoušek [21] constructed string
graphs on n vertices that require at least 2cn intersec-
tion points in any realization. This also implies that a
representation of a string graph with a family of polyg-
onal arcs may require an exponential number of bends
in the polygonal arcs. In 1991, Kratochv́ıl [18] proved
that the problem of recognizing string graphs is NP-
hard, but more than a decade passed before Schaefer et
al. [24] showed that recognizing string graphs is in NP.

In 1966 Sinden [25] showed that all planar graphs are
string graphs, thus the Maximum Independent Set
problem became known to be NP-hard on string graphs
when it was proven to be NP-hard in planar graphs.
Recently, Fox and Pach [10] provided approximation
algorithms and exact sub-exponential algorithms for
the Maximum Independent Set problem in string
graphs. In 1976, the 3-Colorability problem for
string graphs was proven NP-complete by Ehrlich et
al. [7], even when a geometric representation is given as
the input. The Maximum Clique problem has long
been known to be NP-hard [22, 23] on string graphs.
Indeed most of the classical NP-hard graph optimiza-
tion problems remain NP-hard when restricted to string
graphs, even when given a geometric representation.

It seems that one must somehow restrict string graphs
to achieve polynomial time algorithms. The two most
natural ways to restrict string graph are to either limit
the shapes of the strings, or to limit the positions of the
strings. The most commonly studied such restrictions
are to limit the strings to be straight line segments or

2
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to require that each string touches the infinite face of
the plane. We first consider each restriction separately
and then the case combining them.

Segment graphs are the intersection graphs of line
segments in the plane. This restriction to line seg-
ments still allows the graphs to be useful in many ap-
plications, but unfortunately most of the classical NP-
complete graph problems remain intractable on segment
graphs. Since all planar graphs are segment graphs [6],
the 3-Colorability problem and the Maximum In-
dependent Set problem remain NP-complete on seg-
ment graphs. Kratochv́ıl and Nešetřil [22] proved that
the Maximum Independent Set problem in segment
graphs is NP-hard even if all the segments are restricted
to lie in at most two directions in the plane. It has re-
cently been shown that the Maximum Clique problem
is NP-hard on segment graphs [5]. Thus even a severe
limiting of the shapes of the strings in a string graph
does not lead to polynomial time algorithms.

The restriction that each string touches the infinite
face of the plane was explored in 1991 [17] by Kratochv́ıl
who defined outerstring graphs to be the intersection
graphs of curves that lie inside a disk such that each
curve intersects the boundary of the disk in one of its
endpoints. Although outerstring graphs have been stud-
ied for more than 20 years [11, 12, 17, 20], when we con-
sider the classical NP-hard graph optimization problems
on outerstring graphs, we again do not find any known
polynomial time algorithms. For outerstring graphs the
NP-completeness of Minimum Clique Cover, Col-
orability, Minimum Dominating Set, and Hamil-
tonian Cycle follow from the fact that they contain
circle graphs. The Maximum Clique problem was re-
cently shown to be NP-hard on ray graphs [5], a subclass
of outerstring graphs. The Maximum Independent
Set problem remains open on outerstring graphs.

In their study of train dispatching, Flier et al. [9] con-
sider subclasses of outerstring graphs, in particular the
intersection graphs of segments lying inside a disk hav-
ing one endpoint attached to the boundary of the disk,
called outersegment graphs. Applying the additional re-
striction that each segment is either horizontally or ver-
tically aligned, they are able to obtain a polynomial
time algorithm for the Maximum Independent Set
problem given a geometric representation of the graph.

In the next section, we describe a dynamic program-
ming algorithm for the Maximum Weight Indepen-
dent Set problem in an outerstring graph which runs
in time polynomial in the size of the geometric input
representation of the graph. Finally, we show how our
algorithm can be used to find a maximum weight set of
disjoint boundary rectangles in O(n3) time. This prob-
lem has applications in PCB routing [16].

2 Outerstring graphs

Outerstring graphs are the intersection graphs of curves
in the plane that lie inside a circle such that each curve
intersects the boundary of the circle in one of its end-
points. Let G = (V,E) be an outerstring graph with
n weighted vertices. In order to find the Maximum
Weight Independent Set of G, our algorithm as-
sumes the input is a polygonal geometric representation
of G. The circle is represented as a simple polygon P
with O(n) vertices. Lying completely inside P , each
string s corresponding to a vertex of G is represented
by a non-self-intersecting polygonal line with one end-
point, start(s), coinciding with a unique vertex of P .
We call the vertices of s that are different from start(s)
the interior vertices of s, as they lie in the interior of
P . Let S be the set of polygonal lines corresponding to
the vertices of V . Then R(G) = (P, S) is a representa-
tion of G. See the top left of Figure 1. Let N be the
total number of segments used to represent the strings
in S, and the polygon P . In many applications of out-
erstring graphs this polygonal geometric representation
is the natural input.

Figure 1: The representation of an outerstring graph, a
maximum set S∗ of disjoint strings, and a triangulation
of P respecting S∗.

An optimal solution to the Maximum Weight In-
dependent Set problem for an outerstring graph G
with geometric representation R(G) = (P, S) appears
as a set of disjoint polygonal lines S∗ ⊆ S inside P .
See the top right of Figure 1. Together, P ∪ S∗ form
a connected planar straight line graph that can be tri-
angulated. The bottom drawing of Figure 1 show the
triangles that are inside P in a triangulation of P ∪ S∗.
Let u and v be vertices of either P or of the polygonal
lines of S. In order to define the subproblems used in

3
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our dynamic program, we will use u and v to define a
subpolygon P (u, v) of P . The subproblem associated
with P (u, v) is that of finding a maximum weight inde-
pendent set of strings of S that lie wholly inside P (u, v),
where P (u, v) is treated as a closed set. It is sufficient
to consider all u and v such that uv forms an edge in a
triangulation of the planar straight line graph P ∪ S∗,
where S∗ ∈ S is the set of strings in an optimal solu-
tion. We do not know S∗, but if u is an interior vertex of
string Su and v is an interior vertex of string Sv, then
if uv is to be a diagonal in a triangulation of P ∪ S∗
strings Su and Sv must be in the optimal solution, and
thus be disjoint. Thus if u or v are interior vertices of
strings of S, we also insist on including those strings
in the solution to the subproblem for P (u, v) whether
or not they lie completely in P (u, v). Also segment uv
cannot intersect any segment in Su or Sv.

If u and v are both vertices of P , we define P (u, v) to
be the part of P to the left of the directed edge ~uv. See
the top drawing in Figure 2. If v is an interior vertex
of a string A in S, and u lies on polygon P such that
string A does not intersect segment uv then we define
P (u, v) to be the polygonal region bounded by the por-
tion of P clockwise from u to start(A), the portion of
string A from start(A) to v, and the edge uv. See the
top drawing in Figure 3 for an example. If u is an in-
terior vertex of a string and v lies on P then P (u, v) is
defined analogously. If both u and v are interior ver-
tices of distinct strings of P , P (u, v) is defined to be
the polygonal region bounded by the portion of P clock-
wise from start(Su) to start(Sv), the portion of Sv from
start(Sv) to v, segment uv, and the portion of Su from u
to start(Su). See for example the top drawing in Figure
4. Let f(u, v) be the optimal value of a solution to the
subproblem associated with P (u, v). The dynamic pro-
gramming algorithm considers the subpolygons P (u, v)
in increasing order of area, and for each computes the
optimal weight f(u, v) for a solution to the subproblem.

The type of a subproblem depends on whether u or v
or both are interior vertices of strings of S.

Type 0: In a type 0 subproblem neither u nor v is an
interior vertex of a string of S; thus, both are vertices
of P . See Figure 2.

In a triangulation of P (u, v) where P (u, v) contains
the strings of an optimal solution, the third vertex w of
the triangle containing u and v may be a vertex of P . In
this case the optimal solution is the disjoint union of the
solution to the subproblem associated with P (u,w) and
the solution to the subproblem associated with P (w, v).

If w is an interior vertex of a string A then the solu-
tion to P (u, v) will depend upon whether or not string
A contains u or v as start(A). If neither u nor v is
start(A), then the subproblem for P (u,w) is of type
1 and the solution contains string A. Likewise the so-

lution to the subproblem for P (w, v) is of type 1 and
contains string A. The solution to the subproblem for
P (u, v) is the union of the solution to the subproblem
for P (u,w) and the solution to subproblem for P (w, v).
In the union, the string A is only included once; thus,
f(u, v) = f(u,w) + f(w, v) − weight(A). If start(A) is
u, then the region cut off by ~uw is a “pocket” of string
A that cannot contain any other string. See the fourth
situation of Figure 2. The only subproblem that exists
is that for subpolygon P (w, v); thus, f(u, v) = f(w, v).

u

v

u

v

w

u

v

w

A

u

v

w

Figure 2: In a type 0 subproblem, the third vertex w of
triangle uwv may lie on P or on a string A of S.
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Type 1: In this case, exactly one of u and v lie on P .
Without loss of generality, assume that u lies on P and
v is an interior vertex of a string A. Hence, the sub-
problem for P (u, v) includes string A plus the solution
to the Maximum Weight Independent Set problem
for strings that lie inside P , left of ~uv that avoid string
A. See Figure 3. The third vertex w of the triangle that
contains u and v in a triangulation of P (u, v) may lie on
P , A or another string B. If w lies on P then we have
reduced the problem to a smaller type 0 subproblem as-
sociated with P (u,w) and a smaller type 1 subproblem
associated with P (w, v). If w lies on A then we have
reduced the problem to a smaller type 1 subproblem as-
sociated with P (u,w). Note that the region cut off by
~wv is a “pocket” of string A that cannot contain any

other string. See the third situation in Figure 3. If w
lies on another string B, then the problem reduces to
a subproblem of type 1 associated with P (u,w), plus a
subproblem of type 2 associated with P (w, v), as in the
final drawing of Figure 3.

Type 2: In a type 2 subproblem u is an interior vertex
of a string A and v is an interior vertex of a string B.
The third vertex w of a triangle containing u and v
may lie on P , one of A or B, or on another string C.
See Figure 4. If w lies on P then the solution to the
subproblem for P (u, v) is the union of the solutions to
two type 1 subproblems, for P (u,w) and for P (w, v). If
w lies on B, the same string as v, then the region cut
off by segment wv cannot contain any other strings and
the solution to for P (u, v) will consist of the solution
to the smaller subproblem for P (u,w). See the third
drawing of Figure 4. The situation where w lies on A
is analogous. If w lies on a new string C, then the
solution to the subproblem for P (u, v) is the union of
the two type 2 subproblems associated with P (u,w) and
P (w, v), as in the final drawing of Figure 4.

Theorem 1 Given the geometric representation
R(G) = (P, S) of a weighted outerstring graph G,
the dynamic programming algorithm described above
computes the maximum weight of an independent
set for G in O(N3) time, where N is the number of
segments used to represent the strings of S and the
polygon P .

Proof. The correctness of the computation of each
f(u, v) can be verified by induction. If P (u, v) is a tri-
angle then f(u, v) is either zero or equal to the weight
of the input string(s) containing u and/or v. Otherwise
f(u, v) can be computed in constant time from f(u,w)
and f(w, v), for one of the O(N) possible w in P (u, v),
where P (u,w) and P (w, v) are smaller area subpolygons
such that the triangle uwv only intersects the strings in
the optimal solution of the subproblem associated with
P (u, v) in vertices of the representation.

u

v

u

v

w

u

v

A

w

u

v

A

B

w

Figure 3: In a type 1 subproblem, the third vertex w of
triangle uwv may lie on P , on the same string as v, or
on a different string.

The O(N3) running time can be achieved by pre-
computing intersection information. There are O(N2)
segments uv that may potentially define subpolygons
P (u, v). Each of these segments can be tested against
the N segments in the representation to determine the
strings of S that the segment intersects. In order for
P (u, v) to be a subpolygon, segment uv must not in-
tersect with any segment in the string Su containing u
nor in the string Sv containing v. Further, there can be
no intersection between strings Su and Sv. For all Si

and Sj , it can be precomputed in O(N2) time whether
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v

u

A

B

v

u

w

A

B

v

u

w

A

B

v

u

w

A

B

C

Figure 4: A type 2 subproblem

or not the strings Si and Sj intersect, by first precom-
puting all the pairwise intersections of segments in the
representation R(G).

Given a subpolygon P (u, v), where u and v are inte-
rior vertices of strings A and B respectively, a vertex
w is potentially the third vertex of a triangle uwv in
a triangulation of P (u, v) containing the strings corre-
sponding to an optimal solution for P (u, v) if uw and
wv do not intersect the strings A and B. These inter-
sections have been precomputed and stored. It is also
necessary to ensure that w is on the left side of ~uv. �

If the strings in R(G) = (P, S) are each single seg-
ments then G is an outersegment graph. The geometric
representation of an outersegment graph with n vertices
requires only n segments to represent S and P ; thus:

Corollary 1 Given the geometric representation of a
weighted outersegment graph with n vertices, the dy-
namic programming algorithm computes the maximum
weight of an independent set in O(n3) time.

3 Application

We use our Maximum Weight Independent Set
algorithm for outerstring graphs to find a maximum
weight disjoint set of boundary rectangles. Given a
rectangular region R, a rectangle r contained in R is
a boundary rectangle with respect to R if at least one of
the sides of r is a subset of a side of R. The problem
of finding a maximum weight disjoint set of boundary
rectangles has application in printed circuit board rout-
ing [16]. Kong et al. [16] provide the first polynomial
time algorithm for the problem running in O(n6) time.
This was improved to O(n4) in [3] and [2]. Using our
Maximum Weight Independent Set algorithm for
outerstring graphs, we can achieve O(n3) time.

Given a rectangle R and a set Q of n weighted bound-
ary rectangles inside R, we create an instance of the
Maximum Weight Independent Set for an outer-
string graph G with geometric representation R(G) =
(P, S), where P is the boundary of R and each bound-
ary rectangle r in Q maps to a four segment polygonal
chain in S. Let smin be the minimum side length of a
rectangle in Q, and let δ be smin

2 .

A

B

DC

A

B

DC

Figure 5: The boundary rectangles in Q are represented
by strings in S

If a rectangle r ∈ Q has one side contained in a side
of R, then the corresponding string s has start(s) at
the clockwisemost intersection point of the boundary of
r and R. See rectangle and string A in Figure 5. The
first two segments in the polygonal chain of s coincide
with the first two sides of r in a clockwise traversal of
the boundary of r. The third segment of s is a subset of
the third side of r stopping δ before the side of R. The
fourth segment of s is parallel to the side of R containing
start(s) at distance δ from the boundary of R. There
is a gap of δ between the end of the fourth segment of
s and the first segment of s. When a rectangle r ∈ Q
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shares two or three sides with R, the construction of the
strings is illustrated in Figure 5.

The construction of the strings in S corresponding
to the rectangles in R allows us to conclude that two
rectangles r1 and r2 in Q intersect if and only if their
corresponding strings s1 and s2 in S intersect.

Our O(N3) Maximum Weight Independent Set
algorithm for outerstring graphs thus gives us the fol-
lowing theorem.

Theorem 2 Given a rectangle R and a set Q of n
weighted boundary rectangles inside R, a maximum
weight disjoint set of rectangles in Q can be found in
O(n3) time.
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[6] J. Chalopin and D. Gonçalves. Every planar graph
is the intersection graph of segments in the plane.
In Proceedings of STOC, pages 631–638, 2009.

[7] S. Ehrlich, S. Even, and R. Tarjan. Intersection
graphs of curves in the plane. J. Combin. Theory
Ser. B., 21:8–20, 1976.

[8] H. Flier, M. Mihalák, A. Schöbel, P. Widmayer,
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Duality for Geometric Set Cover and Geometric Hitting Set Problems on
Pseudodisks∗

Stephane Durocher† Robert Fraser†

Abstract

Given an instance of a geometric set cover problem on a
set of points X and a set of objects R, the dual is a geo-
metric hitting set problem on a set of points P and a set
of objects Q, where there exists a one-to-one mapping
from each xj ∈ X to a dual object Qj ∈ Q and for each
Ri ∈ R to a dual point in pi ∈ P , so that a dual point
pi is contained in a dual object Qj if and only if the cor-
responding primal point xj is covered by the object Ri.
In this work, we explore the setting of geometric dual-
ity for geometric set cover problems on pseudodisks. We
first show that there does not always exist a geometric
dual on pseudodisks. We initiate the search for a char-
acterization of the class of objects that may be dualized
by identifying a sufficient (but not necessary) property
for a dual to exist on distinct pseudodisks, called the
pair-cover and crossing-quad free property. We show
that such problems may be dualized into hitting set in-
stances on pseudodisks by building a planar support for
the dual instance, and then constructing an orthogo-
nal drawing of the support which we transform into a
dual set of pseudodisks. A corollary of these results is a
PTAS for dualizable set cover problems using the PTAS
for hitting set on pseudodisks.

1 Introduction

Geometric duality is a beautiful and useful tool for com-
putational geometers, as some problems are conceptu-
ally simpler to solve in the dual setting. The classic
example is point-line duality in the plane, see e.g. [8,
§8.2]. Duality has been the catalyst for breakthroughs
such as the first optimal algorithm for the half-plane
range query problem [6]. Our interest lies in geomet-
ric set cover and hitting set problems, motivated by the
distinction that there exists a PTAS for the hitting set
problem on pseudodisks [14],1 while none is known for
the set cover problem on pseudodisks. Therefore, we en-
deavoured to prove that any set cover problem on pseu-
dodisks could be dualized to a hitting set problem on

∗This work was supported in part by the Natural Sciences and
Engineering Council of Canada (NSERC).
†Department of Computer Science, University of Manitoba,

Winnipeg, Canada {durocher,fraser}@cs.umanitoba.ca
1A set of pseudodisks is equivalent to a set of the 2-admissible

regions used in [14].

pseudodisks in polynomial time (and vice versa), which
would permit the use of the PTAS to obtain an approx-
imate solution.

Unfortunately, it turns out that the dualization we de-
sired is not always possible, and we open our study by
proving this fact. We show that dualization is straight-
forward for problems where all regions in the instance
are translations of a geometric object. We proceed by
studying dualization on pseudodisks having the pair-
cover and crossing-quad free property, and we prove
that such objects may always be dualized.

1.1 Definitions and Nomenclature

We begin by reviewing concepts required for our discus-
sion.

Definition 1 Pseudodisk: A pseudodisk is a region of
the plane bounded by a closed Jordan curve, with the
restriction that the boundaries of any two pseudodisks
in a given instance may intersect only transversely and
at most twice.

Definition 1 could be generalized to allow pseudodisks
to intersect exactly once (tangentially at a single point),
but we ignore this detail for clarity of exposition.

Definition 2 Geometric Set Cover Problem: Given a
set of points X and a set of geometric objects R, the
geometric set cover problem is to find a subset R? ⊆ R
of minimum cardinality so that all elements of X are
covered by R?, i.e. X ⊆ ∪R∈R?R ∩X.

Definition 3 Geometric Hitting Set Problem: Given
a set of points P and a set of geometric objects Q, the
geometric hitting set problem is to find a subset P ? ⊆ P
of minimum cardinality so that all objects in Q contain
at least one element of P ?, i.e. ∀Q ∈ Q, Q ∩ P ? 6= ∅.

Definition 4 Geometric Dual: Given an instance of
the set cover problem S = (X,R) (the primal setting),
an instance of the hitting set problem H = (P,Q) is
a geometric dual of S (the dual setting) if there are
bijections between X and Q as well as R and P and
any point pi ∈ P is contained in an object Qj ∈ Q if
and only if the corresponding point xj ∈ X is covered
by the object Ri ∈ R in the primal setting. An optimal
solution P ? for the dual setting corresponds exactly to

8
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an optimal solution R? for the primal setting. A set
cover instance dualizing a hitting set instance is defined
analogously.

In this discussion, we usually omit the prefix “geomet-
ric” from the concepts defined here. We consistently use
X and R for set cover and P and Q for hitting set to
differentiate the two settings. We write ∂Ri to denote
the boundary of a pseudodisk Ri. We assume that all
points and pseudodisks are distinct.

1.2 Related Work

The conventional application of duality is to points and
lines (or pseudolines, which are curves that intersect
pairwise at most once, and such intersections must not
be tangential) [2, 10]. A set of pseudolines can define
the boundaries of a set of pseudo-halfplanes so that the
setting becomes a set cover or hitting set problem, and
the preservation of the “above-below” property in the
dual means that duality exists and is well defined for
our purposes. Our work seeks to extend these results to
pseudodisks.

A corollary of our result is the derivation of a PTAS
for some set cover problems on pseudodisks by showing
that they may be dualized to hitting set problems on
pseudodisks, allowing the hitting set PTAS of Mustafa
and Ray [14] to be applied. This is an active area of
research; a QPTAS for broad classes of set cover prob-
lems was recently found [13]. Our algorithm makes use
of the arrangement of the boundaries of a set of pseu-
dodisks (this set of boundaries is also known as a set
of pseudo-circles); the combinatorial properties of such
arrangements are well studied [1].

A hypergraph is a generalization of a standard graph,
where a hyperedge may contain any number of points.
Therefore, a hypergraph H = (V, F ) may be used
as an abstract representation of a set cover problem
S = (X,R) (or hitting set problem) by creating a ver-
tex vj in V for each point xj in X, and mapping each
edge fi ∈ F to an object Ri ∈ R so that the vertices
in fi ∩ V correspond exactly to the points in Ri ∩ X.
A planar support of a hypergraph H = (V, F ) is a pla-
nar graph G = (V,E) where the subgraph of G induced
by any hyperedge fi ∈ F is connected. Much of the
research with respect to planar supports has been to
determine whether a planar support exists for a given
hypergraph [5, 12]. Our use of planar supports is re-
versed, since finding the hypergraph corresponding to
the hitting set instance dualizing a given set cover in-
stance is straightforward. We build a planar support for
the hypergraph, and the support is used to create the
dual hitting set instance on pseudodisks. To our knowl-
edge, supports have not been used in a similar manner
before.

2 A Counterexample for Duality on Pseudodisks

Theorem 1 There exists a family of set cover problems
on pseudodisks for which there is no dual hitting set for-
mulation on pseudodisks (and equivalently, such hitting
set problems on pseudodisks cannot be dualized into set
cover instances on pseudodisks).

See Appendix A for the proof of Theorem 1.

3 Geometric Dual of Set Cover

Our aim is to identify classes of set cover problems on
pseudodisks that may always be dualized. We begin
with a more general result that is fairly trivial to estab-
lish.

Theorem 2 Problems defined on translates of any sin-
gle object can always be dualized.

See Appendix A for the proof of Theorem 2.
For the remainder of the paper, we outline a method

for reducing an instance of another class of geometric
set cover problems on pseudodisks to an instance of a
geometric hitting set problem on pseudodisks (or vice
versa, of course).

Definition 5 Pair-Cover Free Property: The Pair-
Cover Free (PF) property holds for a set of geometric
objects R if Ri 6⊆ Rj ∪Rk for all Ri, Rj , Rk ∈ R.

Definition 6 Crossing-Quad Free Property: If
Rk ∩ R` 6⊆ Ri ∪ Rj for any four pseudodisks
{Ri, Rj , Rk, R`} ⊆ R where Ri ∩ Rj ⊆ Rk ∪ R`,
then the Crossing-Quad Free (CF) property holds.2

We define the pair-cover and crossing-quad free set
cover (PCF-SC) problem on pseudodisks as the set
cover problem S = (X,R) where R is a set of pseu-
dodisks with the PF and CF properties.

Theorem 3 Any instance S = {X,R} of PCF-SC may
be reduced to an instance of a hitting set problem H =
{P,Q} in polynomial time, where P is a set of points, Q
is a set of pseudodisks (both in R2), and H is a geometric
dual of S.

The reduction progresses in two stages. First, the set
cover instance is converted to a special graph known as
a planar support G = (V,E), where each vertex vi ∈ V
corresponds to a pseudodisk Ri ∈ R and each point
xj ∈ X maps to a connected induced subgraph Sj of G.
Finally, we show how to fatten each of the subgraphs
in the plane to form a pseudodisk, creating an instance
of the hitting set problem on pseudodisks that is a geo-
metric dual of the original set cover instance. We give
an overview of the proof below, which is then proved
formally in the remainder of Section 3:

2This property is only used in the proof of Lemma 9.
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j+

j−

k+
k−

Rj

Rk

Rj ∩Rk

(a) Case 1a. Ri cov-
ers all of Rj ∩Rk.

j+

j−

k+

k−

Rj

Rk

Rj ∩Rk

(b) Case 1b. Ri cov-
ers none of Rj ∩Rk.

j+

j−

k+

k−

Rj

Rk

Rj ∩Rk

(c) Case 2 (and Case
5). Ri covers one
point of ∂Rj ∩ ∂Rk.

j+

j−
k+k− Rj

Rk

Rj ∩Rk

(d) Case 3 violates
the PF property (Ri

encloses ∂Rj ∩ ∂Rk).

j+

j− k+

k−

Rj

Rk

Rj ∩Rk

(e) Case 3 (and Case
4). Ri covers neither
point in ∂Rj ∩ ∂Rk.

j+ j−

k+k−
Rj

Rk

Rj ∩Rk

(f) Case 6. This case
is forbidden by the
PF property.

Figure 1: Cases illustrating the different ways in which one pseudodisk may intersect two others. The figures are
oriented so the walk on Ri is clockwise.

1. Convert the set cover instance to a planar support:

(a) Build the support by iterating over the regions of
the plane in the arrangement of the pseudodisks in
order of increasing depths (Algorithm 1).

(b) Show that the subgraph of the support imposed by
any point is connected (Lemma 7).

(c) Show that the support is planar (Lemma 8).

2. Convert the planar support to a hitting set instance:

(a) Show that the support may be embedded orthogo-
nally (Theorem 10).

(b) Show that each edge may be fattened to define a
bounded region of the plane, and that these objects
may be arranged and manipulated to become pseu-
dodisks (Lemma 11).

3.1 Properties of Pair-Cover Free Set Cover

Various arguments in this discussion consider the possi-
ble ways in which three pseudodisks may interact, and
so we enumerate all possible cases. Consider two pseu-
dodisks Rj and Rk that each intersect a third pseu-
dodisk Ri. Let j+, j−, k+, k− denote the set of events
that occur during a clockwise walk around ∂Ri, where
j+ indicates the point of entry into Rj and j− indicates
the point of exit. We may arbitrarily begin our walk
at j+, and so there are 3! possible walks (see Figure 1),
which we divide into cases. Note that for Cases 1–3, we
begin outside Rk, while for Cases 4–6 we begin inside.

Case 1. j+, j−, k+, k−: A pseudodisk Ri may either
cover Rj ∩ Rk completely or not at all depending on
how the path is closed to create a pseudodisk. Call these
Cases 1a (Figure 1a) and 1b (Figure 1b), respectively.

Case 2. j+, k+, j−, k−: Ri covers exactly one point in
∂Rj ∩ ∂Rk, as shown in Figure 1c.

Case 3. j+, k+, k−, j−: Ri covers either both points or
neither point in ∂Rj ∩ ∂Rk. However, covering both
points entails violating the PF property, since Rk ⊂
Ri ∪Rj in this scenario (see Figure 1d). Therefore, the
only valid scenario for Case 3 is that where Ri covers
neither point in ∂Rj ∩ ∂Rk, shown in Figure 1e.

Case 4. j+, j−, k−, k+: This is symmetric with Case 3
(swap the labels j and k).

Case 5. j+, k−, j−, k+: This is symmetric with Case 2.

Case 6. j+, k−, k+, j−: The beginning of the tour is in
Rj∩Rk. The next event is k−, so the path is now in Rj\
Rk, and the following event is k+, so both intersection
points of ∂Ri ∩ ∂Rk are in Rj . The last event j− is in
Rk, and so both points of ∂Ri∩∂Rj are in Rk, implying
that Ri ⊆ Rj ∪Rk which violates the PF property.

Therefore, the distinct cases are 1a, 1b, 2, and 3.
Lemma 4 is an immediate consequence of Case 2:

Lemma 4 Given any instance of PCF-SC, if a pseu-
dodisk Ri intersects the boundaries of two other pseu-
dodisks (say ∂Rj and ∂Rk) in the closed region Rj∩Rk,
then exactly one point of ∂Rj ∩ ∂Rk is covered by Ri.

3.2 Building the Support

To build the support we describe how to construct an
adjacency list that is a supergraph of the support and a
subgraph of the intersection graph of R; as we explain
later, the support may be derived from the adjacency
list. The support G has the property that if (vi, vj) ∈ G
then Ri∩Rj 6= ∅, but the reverse is not necessarily true.
Rule 1 holds for the adjacency list and the support G:

Rule 1 For any three pseudodisks {Ri, Rj , Rk}, if Ri∩
Rj ⊆ Rk then there is no edge (vi, vj) in the support G.

The adjacency list is stored as a map from each vertex vi
to the set of neighbouring vertices, where a neighbour
vertex corresponds to a pseudodisk that intersects Ri

in the primal without violating Rule 1. A non-empty
intersection between pseudodisks R1 and R2 does not
necessarily imply the existence of the edge (v1, v2) in
the adjacency list; it does, however, imply the following
lemma:

Lemma 5 For every i ≥ 1 and R′ = {Ra1
, . . . , Rai

} ⊆
R, where R′ is the set of all pseudodisks covering some
cell of the arrangement, then G′ is connected, where G′

is the subgraph of the adjacency list induced by the ver-
tices va1

, va2
, . . . , vai

associated with R′.
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Proof. Suppose otherwise. That is, there exists R′ =
{Ra1

, . . . , Rai
} ⊆ R such that

⋂
1≤j≤i Raj

6= ∅ and the
corresponding induced subgraph of the adjacency list is
disconnected. Suppose Raa and Rab

in R′ lie in separate
components in the induced subgraph. Since there is
no edge (vaa

, vab
) in the subgraph, Rule 1 must have

been applied such that Raa
∩ Rab

⊆ Rac
for some Rac

.
Consequently, Rac

∈ R′. Without loss of generality,
suppose Raa and Rac lie in separate components. Again,
Rule 1 must have been applied such that Raa ∩ Rac ⊆
Rad

for some Rad
∈ R′. Observe that Raa

∩Rab
⊆ Raa

∩
Rac
⊆ Rad

. Since R′ is finite, this argument cannot be
applied indefinitely, leading to a contradiction. �

The support is built iteratively using the depths of
regions of the plane in the primal, where the depth
is defined as the number of pseudodisks entirely cov-
ering that region of the plane (a region in this case is a
cell in the arrangement of the set of pseudodisks), and
so a region with depth k is covered by k pseudodisks.
Let A(R) denote the arrangement defined by the pseu-
dodisks in R. Note that although some cells of the ar-
rangement do not necessarily contain a point of X in the
primal, we create a subgraph in the support for each cell
in the arrangement. We show that a pseudodisk may be
created in the dual for each cell, and those not needed
in the dual may be discarded later. The algorithm for
building the support is sketched in Algorithm 1.

Algorithm 1 BUILD-SUPPORT(S = {X,R})
1: Input: An instance of the PCF-SC problem S.
2: Output: G = (V,E), a planar support for the dual

of S.
3: Insert a vertex vi in V for each Ri in R.
4: Consider the arrangement of the plane imposed by

the pseudodisks R, call it A(R). Sort the cells of
A(R) in order of increasing depth. An element Z ∈
A(R) is defined by a subset of R.

5: For each vertex vi ∈ V , compute the adjacency list.
6: For each region of depth 1, add a self-loop to the

corresponding vertex in G (Figure 2).
7: for each region Z ∈ A(R) (in order of depth = 2→
|R|) do

8: If the subgraph of G induced by the vertices corre-
sponding to the set of pseudodisks R′(⊆ R) that
cover Z has two or more connected components,
then iteratively add edges to join pairs of com-
ponents using edges selected from the adjacency
lists until the induced subgraph is connected.

9: end for
10: return G

Each region of depth 1 corresponds to a pseudodisk
that uniquely covers some region of the plane in the
primal (one pseudodisk may cover many such regions).
Each vertex in G corresponding to such a pseudodisk is

R1 R2 R3

(a)

v1

v2

v3

(b)

Figure 2: Building the neighbourhood graph. (a) Three
pseudodisks R1, R2, R3, where R1 ∩R3 ⊆ R2. (b) Each
pseudodisk has a self-edge in G, and there are edges
(v1, v2) and (v2, v3). The region of depth 3 in (a) is
covered by R1, R2, R3, but in the graph v1, v2, v3 form
a connected subgraph of G, so no further edges are re-
quired.

given a self-loop in E so that each cell in the arrange-
ment corresponds to a non-empty set of edges in E.

The iterative procedure continues by considering re-
gions of increasing depth, although edges are only added
to G if the subgraph induced by the set of vertices cor-
responding to the region is not already connected. If
the subgraph is not connected, then a pair of vertices
(vi, vj) is selected so that vi and vj are in separate com-
ponents of the subgraph and vj is in the adjacency list
for vi. As shown in Lemma 5, some such pair must al-
ways exist, and so edges are added until the induced
subgraph is connected. The algorithm can be made
consistent by imposing a total ordering on the edges
using their labels as keys, and always choosing the first
edge in the ordering that connects components of the
graph. The algorithm for connecting induced subgraphs
operates somewhat analogously to Kruskal’s minimum
spanning tree algorithm, where edges already in G have
zero weight, edges permitted by the adjacency lists are
given unit weight, and those not permitted have infi-
nite weight. Our approach has additional complexities,
however, because we are operating on subgraphs of the
support, and we must take care when adding edges to
maintain the planarity of the support.

3.3 Planarity of the Support

The relative order of the edges around a vertex may
be defined unambiguously by the objects in the primal.
Call the pseudodisk R2 a neighbour of pseudodisk R1

if an edge between v1 and v2 exists in G. Let Ri be
a region of the plane which is intersected by both Rj

and Rk, as we examined in Figure 1. If there is an
unambiguous sense that Rj ∩ ∂Ri is clockwise or coun-
terclockwise of Rk ∩ ∂Ri w.r.t. any R` ∩ ∂Ri on ∂Ri,
then the edges (vi, vj) and (vi, vk) must have the same
relative ordering w.r.t. (vi, v`) around vi in G, for each
such R` where the edge (vi, v`) exists. For brevity going
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forward, we simply refer to the relative order of Rj and
Rk on ∂Ri.

The boundaries ∂Rj and ∂Rk may intersect 0, 1, or
2 times in Ri. If 0 times, then we are in either Case
1b or Case 3 (refer to §3.1). If 1b, then Ri ∩ Rj ∩ Rk

is empty and the relative order of Rj and Rk on ∂Ri is
unambiguous. Case 3 does not arise, as it implies that
either Ri ∩ Rj ⊆ Rk or Ri ∩ Rk ⊆ Rj , which means
(vi, vj) 6∈ G or (vi, vk) 6∈ G respectively by Rule 1. If
|∂Rj ∩ ∂Rk ∩ Ri| = 1, i.e. Case 2, then necessarily
|∂Ri ∩ ∂Rk ∩Rj | = 1 and |∂Ri ∩ ∂Rj ∩Rk| = 1 as well,
by Lemma 4. In this case, there is an unambiguous
sense where one of Rj or Rk is clockwise of the other on
Ri. If |∂Rj ∩ ∂Rk ∩ Ri| = 2, then Case 1a applies and
so Rj ∩ Rk ⊆ Ri, which means the relative ordering of
the pseudodisks Rj and Rk on Ri is again unambiguous.
Therefore, relative orderings may always be consistently
applied to the edges of G in the embedding.

A cycle in G corresponds to a set of pseudodisks that
partitions the plane into an unbounded region and a
(possibly empty) set of bounded regions.

Lemma 6 There is a deterministic method for creating
a cycle C in the embedding of G so that the clockwise
ordering of the vertices in C is defined by corresponding
pseudodisks in the primal.

See Appendix A for the proof of Lemma 6.
The support now contains subgraphs corresponding

to cells of the arrangement in the primal, where each
vertex of the support corresponds to a pseudodisk in the
primal that covers the point corresponding to the sub-
graph. This is immediate from the construction, since
the point must exist in one of the regions of the plane
used to build the graph, and a subgraph is built for each
region. G adheres to the definition of a support for the
dual, since each necessary subgraph is a connected in-
duced subgraph of G, which gives the following lemma:

Lemma 7 For any point xj in the primal, and all ver-
tices vi ∈ V in the support corresponding to pseudodisks
Ri ∈ R in the primal, there exists a connected subgraph
Sj ⊆ G where vi ∈ Sj if and only if xj ∈ Ri.

Lemma 8 The support G is planar.3

See Appendix A for the proof of Lemma 8.

3.4 Dual Properties of the Support

The support G encapsulates some of the combinatorial
structure of the dual; to complete the dual we must

3Note that if our goal was to simply derive a PTAS for this
class of set cover problems, we could stop here by showing that
the PTAS of [14] applies given that the support has the requisite
locality property. However our primary goal is to demonstrate
the existence of duality, so we proceed nonetheless.

construct a set of pseudodisks defined by the connected
subgraphs on G that correspond to the points in the
primal. The subgraphs have several characteristics that
allow the creation of the dual hitting set instance.

Lemma 9 Let C denote a cycle in an induced subgraph
S of G in the embedding, where S corresponds to a point
x in the primal and C corresponds to pseudodisks RC .
Any vertices on the interior of the bounded region de-
fined by C must correspond to pseudodisks that cover x
in the primal.

See Appendix A for the proof of Lemma 9.

3.5 Building the Hitting Set Instance

We now describe how to embed the support G in the
plane and transform it into the dual hitting set instance.
To begin, remove subgraphs from the support that do
not correspond to points in X in the primal. We con-
struct a planar orthogonal box drawing4 of the support
G using the following result:

Theorem 10 (Biedl and Kaufmann (1997) [4])
Given a planar triconnected graph G = (V,E), a planar
orthogonal box drawing of G can be drawn in O(m + n)
time on a (m−n+ 1)×min{m−n+ 1,m/2} grid with
m− n edge bends, where n = |V | and m = |E|.

The drawing of the support remains planar, and while
G is not necessarily triconnected, one may add dummy
edges to make it triconnected and then remove the
dummy edges once the drawing is computed [9]. The
placement of the point set P for the dual hitting set in-
stance is simple: place a point inside each of the vertices
(boxes) of the orthogonal drawing of the support, and
these will dualize the corresponding pseudodisks of R
in the primal (and so |P | = |V |). Now we describe how
to create the set of pseudodisks Q for the dual hitting
set instance.

A finer grid is imposed upon the orthogonal drawing
with a resolution of 1/(2m+ 1), where m is the number
of pseudodisks needed in the dual, i.e., the cardinality
of X in the primal. The pseudodisks that are created
for the dual are orthogonal polygons with edges incident
upon the lines in this finer grid. An edge e is made k-fat
by taking the Minkowski sum of e with [−k, k]× [−k, k].
We fatten parts of the edges as necessary using points
on the refined grid, so that parts of the edges may be
(k/(2m + 1))-fat, for k ∈ [0, . . . ,m], (i.e., all edges of
the drawing are less than (1/2)-fat).

If all edges of a subgraph are grown to be k-fat (for
possibly varying values of k), the subgraph defines a
polygon. Any introduced holes are removed (Lemma 9

4A box drawing is a graph with orthogonal non-overlapping
edges, where vertices may be drawn as rectangles in order to ac-
commodate all incident edges.
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established the validity of this action, since removing a
hole never causes the simplified region to cover any new
vertices of G).

The planar regions are constructed iteratively. For
subgraph S1 = (V1, E1), create a polygon so that the
subgraph is (1/(2m+1))-fat. Now S2 is added, and any
overlap must be resolved. Overlapping edges may be
resolved by making one of the edges (2/(2m + 1))-fat
in the area of overlap. Repeating this operation of in-
serting and fattening existing edges for each subgraph
creates a hitting set instance that dualizes the set cover
instance, although the resulting objects are not neces-
sarily pseudodisks. However, the removal of extraneous
intersections is always possible so that all objects are
pseudodisks. See Appendix B for details.

This establishes the following lemma:

Lemma 11 All subgraphs of the support induced by a
set of vertices corresponding to a point in the primal
may be enclosed with a region of the plane so that all
such regions are pseudodisks.

Finally, any cell of the arrangement that contained k
points in the primal requires k − 1 additional pseu-
dodisks in the dual. Since we are not concerned with the
PF property in the dual, we nest the missing dual pseu-
dodisks just inside the existing dual pseudodisk so that
they all have the same combinatorial structure with re-
spect to all other points and pseudodisks in the hitting
set instance. These pseudodisks form the objects Q for
the dual hitting set instance. If the dualization may be
completed in polynomial time, then Theorem 3 follows.

Theorem 12 Dualization of an instance of PCF-SC
on pseudodisks to an instance of the hitting set problem
on pseudodisks can be completed in O(Im5 logm+mn)
time, where m = |R| = |V | = |P |, n = |X| = |Q|, and
I denotes the time required to compute the intersection
points of a pair of pseudodisks.

See Appendix A for the proof of Theorem 12.

4 Conclusions

Our examination of the geometric duality of set cover
and hitting set problems on pseudodisks has revealed
positive and negative results. Perhaps surprising is the
fact that not all instances are dualizable. The construc-
tion of a geometric dual is possible on translates of an
object, or when we restrict instances on pseudodisks to
those that have what we call the pair-cover and quad-
crossing free property. A corollary of the dualization
is that there exists a PTAS for set cover problem on
pseudodisks with this property. Our algorithm for the
construction of the dual applies interesting techniques,
as we make use of graph drawing techniques to build
the dual from a planar support.

There remain several open questions. Our dualiza-
tion technique requires that the primal setting have the
PF property, while the dual instance that is created
does not necessarily have this property. It would be
preferable if the dual instance also had the PF prop-
erty, but we conjecture that there exists a counter-
example to show that such duality does not always ex-
ist. Finally, the dualization also requires that the quad-
crossing free property applies, but this property does
not seem tremendously important to the dualization.
We conjecture that duality is possible on instances with-
out the CF restriction.
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A Appendix: Proofs

Proofs omitted from the main text due to space constraints
appear in full in this section.

Theorem 1 There exists a family of set cover problems on
pseudodisks for which there is no dual hitting set formulation
on pseudodisks (and equivalently, such hitting set problems
on pseudodisks cannot be dualized into set cover instances
on pseudodisks).

Proof. Consider a set X of n points in the plane in general
position. Let R be a maximal set of circular disks so that
Ri ∩X 6= Rj ∩X for any Ri, Rj ∈ R; there are ω(n2) such
disks [11]. Since the arrangement of a set of n pseudodisks
has at most n2 − n + 2 cells [15], this is the maximum num-
ber of cells in the arrangement dualizing the n points of X.
However, the ω(n2) disks in the primal require ω(n2) distinct
cells in the arrangement, and so such an instance cannot be
dualized. �

Theorem 2 Problems defined on translates of any single
object (including pseudodisks) may always be dualized.

Proof. Given a canonical object C, choose a reference point
r so that r ∈ C, and let −C be the reflection of C through
r. To create a dualization, replace every translated object
with a similarly translated instance of r, and replace every
point with a translation of −C so that r is incident upon the
point. Due to the reflection through r, every point (of the
plane) in C maps to a unique point in −C, and this point
maps back to the original point again. Therefore, a set R in
the primal contains a point x if and only if the dual of R is
in the dual of x. �

Lemma 6 There is a deterministic method for creating a
cycle C in the embedding of G so that the clockwise ordering
of the vertices in C is defined by corresponding pseudodisks
in the primal.

Proof. Suppose we wish to add the edge (v1, vk) to the
graph G, which will result in a new cycle C. Let (v1, v2)
be the other edge incident upon v1 in the cycle. We know
that part of ∂R1 lies outside of R2 ∪Rk by the PF property.
Consider a very small pseudodisk R′ that covers some point
on ∂R1 \ R2 ∪ Rk as a reference, and assume that the edge
(v1, v

′) is required in G.
Any edge (vi, vi+1) in the cycle represents two vertices

whose corresponding objects Ri and Ri+1 in the primal have
a non-empty area of intersection. By Rule 1, Ri ∩ Ri+1 is
not covered by any other object, and so there exists a point
in Ri ∩Ri+1 outside of R1. Therefore, we may place a point
in Ri ∩ Ri+1 in the primal for every edge (vi, vi+1) in the
cycle. Given two consecutive edges of the cycle (vi, vi+1) and
(vi+1, vi+2), there exists a path in the primal inside Ri+1\R1

from the point in Ri∩Ri+1 to that in Ri+1∩Ri+2, since the
objects are pseudodisks (to prevent such a path, Ri+1 \ R1

would have to be disjoint). Let H be the path defined by
joining all of the points defined by the cycle in this manner.

The points in R1∩R2 and R1∩Rk are in R1, so the union
of the path H with R1 defines one unbounded region of the
plane and at least one bounded region outside of R1 (H need
not be simple). The reference pseudodisk R′ will either be on
the boundary of the unbounded region or a bounded region.
The relative order of the edges (v1, v2), (v1, vk), and (v1, v

′)
around v1 is uniquely defined, as discussed earlier. Now the
rule for closing the cycle is as follows: the cycle encloses v′

in G if and only if R′ is on the boundary of a bounded region
of the plane defined by H ∪Ri in the primal. �

Lemma 8 The support G is planar.

Proof. We establish that G is planar by demonstrating that
edge crossings are never necessary under this scheme. Sup-
pose the graph G has been built so that the support is planar
so far, but the next edge to be added would violate pla-
narity. Let one such edge be (v1, v2). Therefore, v2 is in the
adjacency list for v1, and R1 ∩ R2 contains the cell of the
arrangement for which we are building an induced subgraph
in the support.

If v1 cannot be connected to v2 with an edge while pre-
serving planarity, then v1 and v2 belong to a connected com-
ponent of G (otherwise we could place them in the same
face), but they are separated by at least one cycle of edges
C whose vertices are not part of the subgraph we are con-
structing (otherwise the vertex in the cycle would be part
of some connected component that we could add an edge
to). At minimum, the cycle C corresponds to a sequence of
pseudodisks that are pairwise intersecting, and whose union
is a bounded region of the plane and which may separate
the plane into several regions. The cell of the arrangement
must lie outside of all pseudodisks in C; any pseudodisk
covering the cell has a vertex in the subgraph. One of the
vertices in {v1, v2} is on the interior of C and the other is
not, and because the combinatorial structure of the primal is
preserved in the support G, one of {R1, R2} lies partially in
the bounded region of the plane defined by the boundaries
of the regions defining the cycle, and the other lies partially
on the unbounded region. Therefore, either R1 or R2 must
cross the pseudodisks in C to cover the cell in the arrange-
ment. However, no pseudodisk may cross C. To do so would
require either intersecting the boundary of a pseudodisk in
C in at least four places (which violates the definition of a
pseudodisk), or covering the area of intersection of at least
two pseudodisks in C (which means that C is not a cycle,
by Rule 1). �

Lemma 9 Let C denote a cycle in an induced subgraph S
of G in the embedding, where S corresponds to a point x
in the primal and C corresponds to pseudodisks RC . Any
vertices on the interior of the bounded region defined by C
must correspond to pseudodisks that cover x in the primal.

Proof. Consider a cycle C in S with a vertex v (correspond-
ing to a pseudodisk R in the primal) where v has a neighbour
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C

v
v′

vcw

vccw

x

R

Rcw

Rccw

R′

v1

vk

{v2, . . . , vk}

{R1, . . . , Rk}

(a) (b)

∂RC

Figure 3: (a) Let C be a cycle in a subgraph S where a
vertex v′ 6∈ S is in the interior of C, and the edge (v, v′)
exists in the support. vcw (resp. vccw) is the clockwise
(resp. counterclockwise) neighbour of v on the cycle. (b)
All vertices in S correspond to pseudodisks covering a
point x in the primal, and R′ (the dual of v′) does not
cover x. The union of the pseudodisks dualizing the
vertices in C (minus v) form a contiguous subset of the
boundary of R which we call ∂RC (drawn as the thick
dashed line). R′ covers a contiguous subset of ∂RC .

v′ on the interior of the cycle and v′ 6∈ S. The pseudodisks
in RC \ R (in the primal) have a common area of inter-
section in R (since they all cover x and x ∈ R), and each
edge of the cycle corresponds to a pair of pseudodisks that
must intersect outside of R by Rule 1. It follows that the
union of the pseudodisks in RC covers a contiguous portion
of the boundary of R, otherwise the boundaries of some pair
of pseudodisks would have to intersect each other at four
points. Let ∂RC denote this portion of the boundary of R,
as illustrated in Figure 3.

Now consider the two neighbours of v in C; call vcw (resp.
vccw) the clockwise (resp. counterclockwise) neighbour of v
on C, and let Rcw (resp. Rccw) denote the corresponding
pseudodisk in the primal. Since v′ lies on the interior of
cycle C, by our construction algorithm, the entry point of
R′ lies between that of Rcw and Rccw on ∂RC . Consider
a pseudodisk Ri ∈ RC that contains the entry point of R′.
The exit point of R′ must be outside of Ri, otherwise either
R′ ⊂ Ri ∪ R, which would violate the PF property, or R ∩
R′ ⊆ Ri, which would mean there is no edge (v, v′) by Rule 1.
Furthermore, the entry and exit points of R′ cannot span
those of any pseudodisk Rj ∈ RC . To do so would require
that |∂Rj ∩ ∂R′ ∩R| = 2, since R′ cannot cover the point x
in R ∩ Rj , which would imply that Rj ⊆ R ∪ R′, violating
the PF property. Therefore, if the entry point of R′ is in Ri,
we can choose a pseudodisk Rj containing the exit point so
that Ri and Rj are dualized by the vertices vi and vj and
the edge (vi, vj) is in C.

Since the entry point of R′ is in Ri \ Rj and the exit
point is in Rj \Ri, we may conclude that Ri ∩Rj ∩ ∂RC ⊂
R′. Therefore, by Lemma 4, R′ must cover either R ∩ Ri ∩
Rj or Ri ∩ Rj \ R. Of course, it cannot cover R ∩ Ri ∩
Rj since this includes the point x, and we assumed that
x 6∈ R′. However, R′ cannot cover Ri ∩ Rj \ R, since this
implies that {Ri, Rj , R,R′} is a crossing quad. Since either

R′ must cover x or v′ must be outside the cycle C, we have
a contradiction. �

Lemma 12 Dualization of an instance of PCF-SC on pseu-
dodisks to an instance of the hitting set problem on pseu-
dodisks can be completed in O(Im5 logm+mn) time, where
m = |R| = |V | = |P |, n = |X| = |Q|, and I denotes the
time required to compute the intersection points of a pair of
pseudodisks.

Proof. We show that the dualization can be completed in
O(Im5 logm + mn) time, where m = |R| = |V | = |P |,
n = |X| = |Q|, and I denotes the time required to compute
the intersection points of a pair of pseudodisks in the input
set cover instance. Better analysis might establish a lower
worst-case running time, but our goal is simply to establish
polynomial running time.

The construction of the support takes O(Im5 logm) time.
The arrangement of a set of m pseudodisks has at most
m2 − m + 2 cells [15], and so the support has O(m2) sub-
graphs. In Algorithm 1, line 3 takes O(m) time, line 4 may
be completed in O(Im2+m2 logm) time (sort the cells), line
5 may be done näıvely in O(m4) time, and line 6 may be com-
pleted in O(m2) time by traversing the arrangement. The
loop iterates O(m2) times, and inside the loop we find the
edges of the induced subgraph in G and then run Kruskal’s
minimum spanning tree algorithm to create a connected sub-
graph. Since we may have O(m2) edges in the graph, the
running time is in O(m2 logm) [7, p.570]. Checking whether
a new edge violates planarity may be done in O(m) time, but
the bottleneck on the running time is when an edge closes a
cycle. We can find the path in O(Im) time, and the determi-
nation of whether the pseudodisk R′ is on a closed face may
be done in O(Im) time by using one point in R′ as a test for
containment. This may be performed any time that an edge
is added, so the work inside the loop takes O(Im3 logm)
time, giving the O(Im5 logm) bound on the running time
for building the support.

The algorithm for the construction of the hitting set in-
stance from the support runs in O(m5 + mn) time. The
orthogonal box drawing of the support runs in O(m) time,
and the determination of the positions of the points in P may
be done at the same time. The insertion of a pseudodisk by
fattening the edges of the corresponding subgraph may be
done in O(m2) time, as each vertex of the subgraph may
require that O(m) other edges be fattened locally. There
are O(m2) pseudodisks to be inserted, and so this may be
done in O(m4) time. Any two objects have at most O(m)
intersections at this point, and each object is composed of
O(m) line segments, so the set of intersection points for the
pair may be found in O(m logm) time [3], and these may
placed in order around the boundary of one of the objects.
Reducing the number of intersection points for the pair re-
quires at most O(m) iterations of the algorithm to remove
pairs of intersection points. The algorithm may require de-
termining which of two differences of the objects contains
no points of P , and this may be done in O(m2) time by
checking each point for containment, since each of the dif-
ference regions has O(m) edges. Therefore, each pair may be
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Q1

Q2

Q1

Q2

(a) (b)

Qc

Figure 4: If ∂Q1 and ∂Q2 intersect in at least four
places, each set of four consecutive intersections falls
into one of two cases: (a) Q1 \Q2 and Q2 \Q1 are con-
nected, or (b) Q1 \Q2 and Q2 \Q1 are not connected.
The regions that may be resolved to reduce the number
of intersections are shaded.

repaired into pseudodisks in O(m3) time, for a total upper
bound of O(m5) time to convert all objects into pseudodisks.
Finally, pseudodisks are added for each point in X that has
no corresponding pseudodisk in Q, i.e., from those cells in
the arrangement containing more than one point from X.
There are O(n) such disks, and each may be placed in O(m)
time. �

B Appendix: Reducing the Number of Intersections

Consider a pair of objects, call them Q1 and Q2, enclosing S1

and S2 respectively, that are not pseudodisks. It has already
been established that the objects are simple and enclosed by
closed Jordan curves, so the only remaining possible viola-
tion is that the boundaries of Q1 and Q2 intersect more than
twice. The sequence of events of a walk on ∂Q1 (w.l.o.g.)
must contain 2+, 2−, 2+, 2−, and this gives rise to two cases
to consider: local to these events, Q1 \ Q2 and Q2 \ Q1 are
both either connected regions or not, as illustrated in Fig-
ure 4. The action taken to reduce the number of intersections
while preserving the dual property depends on the case.

Case 1. If Q1\Q2 and Q2\Q1 are connected, then there must
exist a bounded region of the plane Qc outside of Q1 ∪Q2.
We claim that we may remove the two points of intersection
between Q1 and Q2 on the boundary of this region by moving
the boundary of Q1 (w.l.o.g.) to be just inside that of Q2.
This will not cause Q1 to cover any additional points in
Q2 ∩ P , so the only way that this move affects the hitting
set combinatorially is if there exists any vertex vc of G in
Qc, i.e. the bounded region of the plane that was formerly
not covered by Q1 or Q2, but is now covered by Q1.

Consider the cycle of S1∪S2 that encloses Qc in the planar
embedding of the support. As with the proof of Lemma 9,
we note that if any vertex exists in Qc, then at least one
vertex v′ exists that is a neighbour of a vertex v in S1 ∪ S2,
and say w.l.o.g. that v ∈ S1. We define Rcw and Rccw as
before, and let Ri

cw be the first vertex in S1 ∩ S2 on the
cycle in a clockwise direction from v and Ri

ccw is defined
analogously for the counterclockwise direction (Rcw and Ri

cw

and also Rccw and Ri
ccw are not necessarily distinct). There

is a region of ∂R covered by the pseudodisks in the primal
corresponding to the vertices of the cycle moving clockwise
from Rcw to Ri

cw, and also analogously for Rccw and Ri
ccw,

call them ∂Rcw and ∂Rccw respectively. In fact, since Ri
cw ∩

Ri
ccw contains points dualizing both S1 and S2, their pairwise

area of intersection must extend across the boundary of R
to cover points x1 ∈ R and x2 6∈ R (Si dualizes xi), and so
∂Rcw ∪ ∂Rccw defines a contiguous interval of ∂R. Now the
same argument may be applied as in Lemma 9 to conclude
that either R′ covers x1 (the dual of S1), or else R′ must be
outside of the cycle. Therefore, removing intersections of the
dual in this case may be done without covering additional
vertices.

Case 2. If Q1 \ Q2 and Q2 \ Q1 are not connected, then
one of the two regions of Q2 \ Q1 may be moved inside Q1

unless both regions contain vertices of S2. Suppose this is
the case, and so an edge flip causes Q1 to cover additional
vertices of S2. This implies that there is some path that is a
subset of Q1 for which Q2 has vertices on both sides (i.e., the
endpoints of the path could not be joined to create a cycle
without enclosing vertices of Q2). However, it was demon-
strated that one subgraph cannot cross another in the proof
of Lemma 9, so one of the regions of Q2 \Q1 cannot contain
vertices of S2. Therefore, removing points of intersection
may again be done without covering additional vertices. In
both cases, there are no vertices in the regions where edges
are moved to resolve conflicts. Therefore, these resolutions
may be done without creating additional points of intersec-
tion with other objects by similarly translating other edges
if necessary.
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Abstract

Let P = {C1, C2, . . . , Cn} be a set of color classes, where
each color class Ci consists of a set of points. In this pa-
per, we address a family of covering problems, in which
one is allowed to cover at most one point from each color
class. We prove that the problems in this family are NP-
complete (or NP-hard) and offer several constant-factor
approximation algorithms.

1 Introduction

Let P = {C1, C2, . . . , Cn} be a set of color classes, where
each color class Ci consists of a set of points. In this
paper we address several closely related covering prob-
lems, in which one is allowed to cover at most one point
from each color class. Before defining the problems, let
us introduce some terminology. Let the set P of point
color classes be on a line. We call an interval on the
x-axis that contains at most one point from each color
class a conflict-free interval (or CF-interval for short).

In this paper we consider the following problems.
Covering color classes with CF-intervals: Given
a set P of point color classes on a line where each color
class consists of a pair, find a minimum-cardinality set
I of CF-intervals, such that at least one point from
each color class is covered by an interval in I.
Covering color classes with arbitrary unit
squares: Given a set P of point color classes in the
Euclidean plane where each color class consists of a
vertically or horizontally unit separated pair of points,
find a minimum-cardinality set S of unit squares
(assuming a feasible solution exists), such that exactly
one point from each color class is covered by a square
in S.
Covering color classes with a convex polygon:
Given a set P of point color classes in the Euclidean
plane where each color class consists of either a pair or
a triple of points, decide whether or not there exists
a convex polygon Q such that Q contains exactly one

∗Research supported by US-Israel Binational Science Foun-
dation (project 2010074). E. Arkin and J. Mitchell partially
supported by the National Science Foundation (CCF-1540890).
A. Banik and M. Simakov partially supported by the Lynn and
William Frankel Center for Computer Sciences.
†Applied Math & Statistics, Stony Brook University
‡Computer Science, Ben-Gurion University, Israel

point from each color class. We also consider the
related problem in which each color class consists of a
pair of points and the goal is to maximize the number
of color classes covered by a convex polygon Q, with Q
containing exactly one point from each color class.

1.1 Related work

As far as we know, the first to consider a “multiple-
choice” problem of this kind were Gabow et al. [7], who
studied the following problem. Given a directed acyclic
graph with two distinguished vertices s and t and a set
of k pairs of vertices, determine whether there exists a
path from s to t that uses at most one vertex from each
of the given pairs. They showed that the problem is
NP-complete. A sample of additional graph problems
of this kind can be found in [2, 8, 13]. The first to con-
sider a problem of this kind in a geometric setting were
Arkin and Hassin [3], who studied the following prob-
lem. Given a set V and a collection of subsets of V , find
a cover of minimum diameter, where a cover is a sub-
set of V containing at least one representative from each
subset. They also considered the multiple-choice disper-
sion problem, which asks to maximize the minimum dis-
tance between any pair of elements in the cover. They
proved that both problems are NP-hard and gave O(1)-
approximation algorithms. Recently, Arkin et al. [1]
considered the following problem. Given a set S of n
pairs of points in the plane, color the points in each pair
by red and blue, so as to optimize the radii of the mini-
mum enclosing disk of the red points and the minimum
enclosing disk of the blue points. In particular, they
consider the problems of minimizing the maximum and
minimizing the sum of the two radii. In another recent
paper, Consuegra and Narasimhan [4] consider several
problems of this kind.

1.2 Our results

In Section 2 we consider the problem dealing with cov-
ering color classes, each consisting of a pair of points,
with a minimum-cardinality set of CF-intervals. We
prove that it is NP-hard by first proving that the fol-
lowing problem (covering color classes with a given set of
CF-intervals) is NP-hard. Given a set P of point color
classes and a set I of CF-intervals, find a minimum-
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cardinality set I ′ ⊆ I (if it exists), such that, at least
one point from each color class is covered by an interval
in I ′. The latter proof is by a reduction from minimum
vertex cover. The former proof also requires the follow-
ing auxiliary result, which we state as an independent
theorem. More precisely, we prove that minimum ver-
tex cover remains NP-hard even when we restrict the
underlying set of graphs to graphs in which each vertex
is of degree at least |V |/2, where V is the set of vertices
of the graph. We present a 4-approximation algorithm
for this problem. We also present a 2-approximation
algorithm for covering with arbitrary CF-intervals.

In Section 3 we consider the case where P is a set of
point color classes in the Euclidean plane.

Suppose each color class consists of a pair and each
pair of points from the same color class is unit distance
apart, either vertically or horizontally separated. We
show that finding a minimum-cardinality set S of axis
parallel unit squares (assuming a feasible solution ex-
ists), such that exactly one point from each color class
is covered by a square in S is NP-hard. We then present
a 6-approximation algorithm.

We then consider the case that each color class con-
sists of either a pair or triple of points. We show that
deciding if there exists a convex polygon Q such that Q
contains exactly one point from each color class is NP-
complete. If each color class consists of a pair of points,
we show that maximizing the number of color classes
covered by Q is NP-hard. Finally, we consider the case
that each color class consists of an arbitrary amount of
points and all points from the same color class are verti-
cally collinear. We (optimally) maximize the number of
color classes covered (exactly one point from each color
class) by Q in polynomial time.

2 Covering Color Classes

Let P = {C1, C2, . . . , Cn} be a set of n color classes,
where each color class Ci is a pair of points {pi, pi} on
the x-axis. We call an interval on the x-axis that con-
tains at most one point from each color class a conflict
free interval (CF-interval). A main goal in this section
is to prove that the following problem is NP-hard; ad-
ditionally, we give a 2-approximation.

Problem 1 Covering color classes with CF-
intervals. Find a minimum-cardinality set I of arbi-
trary CF-intervals, such that at least one point from
each color class is covered by an interval in I.

Before presenting the proof, we prove that the problem
in which one has to pick the covering CF-intervals from
a given set of CF-intervals is NP-hard. We then use
this result in our proof for Problem 1, together with an
auxiliary result stated as Theorem 2 below.

2.1 Covering with a given set of CF-intervals

We prove that the following problem is NP-hard.

Problem 2 Covering color classes with a given
set of CF-intervals. Given a set I of CF-intervals,
find a minimum-cardinality set I ′ ⊆ I (if it exists), such
that at least one point from each color class is covered
by an interval in I ′.
We describe a reduction from vertex cover. A vertex
cover of a graph G is a subset of the vertices of G, such
that each edge of G is incident to at least one vertex
of the subset. Given a positive integer k, determining
whether there exists a vertex cover of size k is an NP-
complete problem [9]. Let G = (V,E) be a graph, where
V = {v1, . . . , vn} and E = {e1, . . . , em}. We construct
a set P of point color classes and a set I of CF-intervals,
such that G has a vertex cover of size k if and only if
there exists a subset I ′ ⊆ I of size k that covers at least
one point from each color class.

v1 v2

v3

v4

v5

v6
e1

e2

e3

e4

e5

e6

e7
L1 = {e1} L2 = {e1, e2, e3}

L3 = {e2, e4, e6}

L4 = {e4, e5}

L5 = {e3, e5, e7}

L6 = {e6, e7}

p1
p1

p2 p2
p3 p3p4 p4

p5p6 p6
I1 I2

p5
I3 I4

p7 p7

I5 I6

Figure 1: Reduction from vertex cover.

For each vertex vi create an initially empty set Li.
For each edge ek = {vi, vj}, where i < j, add ek to Li

and ek to Lj . Now, draw n disjoint intervals on the x-
axis, one per set, such that interval Ii+1 is to the right
of interval Ii, i = 1, . . . , n−1. Moreover, for each set Li,
draw |Li| arbitrary points on the interval Ii as follows.
For each element in Li, if it is of the form ej , then add
the point pj to Ii, and if it is of the form ej , then add the
point pj to Ii. Finally, set P = {{p1, p1}, . . . , {pm, pm}}
and I = {I1, . . . , In}. See Figure 1 for an illustration.

It is easy to see that G has a vertex cover of size
k if and only if there exist k intervals in I which to-
gether cover at least one point from each color class in
P . Hence we have the following theorem.

Theorem 1 Problem 2 is NP-hard.

2.2 Covering with arbitrary CF-intervals

In order to show that Problem 1 is NP-hard, we first
need to prove the following theorem, which says that
minimum vertex cover remains NP-hard even when we
restrict our attention to highly dense graphs.
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G1(V1, E1)G

u1

u2

Figure 2: The graph G′.

Theorem 2 (Min vertex cover in dense graphs)
Finding a minimum vertex cover of a graph in which
the degree of each vertex is at least n

2 is NP-hard, where
n is the number of vertices in the graph.

Proof. Let G = (V,E) be any graph. We construct a
new graph G′ = (V ′, E′) in which the degree of each ver-

tex is at least |V
′|

2 , and show that one can immediately
obtain a minimum vertex cover of G from a minimum
vertex cover of G′ (and vice versa).

Let G1 = (V1, E1) be the complete graph of |V | + 2
vertices. We construct G′ as follows. Set V ′ = V ∪
V1 ∪ {u1, u2}, where u1, u2 are two new vertices. Set
E′ = E ∪ E1 ∪ E2 ∪ E3, where E2 = V × V1 and E3 =
V1 × {u1, u2} (see Figure 2). Notice that G′ has the
desired property, i.e., for each v ∈ V ′, the degree of v (in

G′) is at least |V
′|

2 = 2|V |+4
2 = |V |+ 2. (If v comes from

V , then degG′(v) = degG(v)+|V |+2 ≥ |V |+2, if v comes
from V1, then degG′(v) = degG1

(v) + |V |+ 2 ≥ |V |+ 2,
and if v ∈ {u1, u2}, then degG′(v) = |V1| = |V |+ 2.)

We now claim that given a minimum vertex cover of
G′, one can immediately obtain a minimum vertex cover
of G, and vice versa. Let V ∗ be a minimum vertex cover
of G′. We first show that V1 ⊆ V ∗. Since G′ contains
the complete graph G1 of size |V | + 2, any minimum
vertex cover of G′ must include at least |V |+ 1 vertices
of V1. If one of V1’s vertices, v, is not in V ∗, then
both u1 and u2 are necessarily in V ∗ (to cover the edges
{v, u1}, {v, u2}). But, if so, V ∗ is not a minimum vertex
cover, since V ∗ \ {u1, u2} ∪ {v} is also a vertex cover of
G′. We conclude that V1 ⊆ V ∗. Notice that V1 covers
all the edges in E′ except for the edges in E. Thus, the
rest of the vertices in V ∗ consist of a minimum vertex
cover of G. In other words, V ∗∩V is a minimum vertex
cover of G.

On the other hand, let Ṽ be a minimum vertex cover
of G, then V1 ∪ Ṽ is a minimum vertex cover of G′.
(Since, as shown above, V1 is contained in any mini-
mum vertex cover of G′, and in order to cover the re-
maining uncovered edges, we need a minimum vertex
cover of G.) �

Corollary 3 Finding a minimum vertex cover of a
graph G = (V,E) in which the degree of each vertex
is at least ε|V |, where 0 < ε < 1, is NP-hard.

Proof. Similar to the proof of Theorem 2. �

vi−1

ej ek
vi

e1 e2

e3 e4

Ii

pj pk

Ii−1 Ii+1

pj pkp1 p2 p3 p4

vi+1

Figure 3: Illustration of Theorem 4.

We are now ready to prove that Problem 1 is NP-
hard. We describe a reduction from minimum vertex
cover in dense graphs (see Theorem 2 above). Let
G = (V,E) be any graph in which the degree of each ver-
tex is at least n

2 , where n = |V |. By Dirac’s theorem [5]
(or Ore’s theorem [11]), G contains a Hamiltonian cycle;
moreover, Palmer [12] presented a simple and efficient
algorithm for computing such a cycle, under the condi-
tions of Ore’s theorem.

Let v1, v2, . . . , vn, v1 be a Hamiltonian cycle in G.
As for Problem 2, we construct a set P of point color
classes. For each vertex vi ∈ V , we construct a set Li

as follows. For each edge ek = {vi, vj} adjacent to vi,
we add ek (resp., ek) to Li, if i < j (resp., j < i).
We now draw n disjoint intervals on the x-axis, such
that interval Ii corresponds to set Li and precedes in-
terval Ii+1 (for i < n). We draw |Li| points in Ii as
follows. Let ej = {vi−1, vi} and ek = {vi, vi+1}. Then
ej , ek ∈ Li. Place a point pj corresponding to ej at the
left endpoint of Ii and place a point pk corresponding
to ek at the right endpoint of Ii. In addition, place a
point anywhere in the interior of Ii, for each of the other
elements in Li. For example, in Figure 3 ej and ek are
the edges connecting vi to vi−1 and to vi+1, respectively,
and e1, e2, e3, e4 are the other edges incident to vi. The
corresponding interval representation is shown in Fig-
ure 3.

Now, set P = {{p1, p1}, {p2, p2}, . . .} and I =
{I1, . . . , In}. Observe that Ii is conflict free (by con-
struction), for i = 1, . . . , n. Moreover, any other CF-
interval is necessarily contained in one of the intervals
already in I (since any interval that covers the right
endpoint of Ii and the left endpoint of Ii+1 is not con-
flict free). Thus, one might as well pick intervals from
I when covering the color classes of P with a minimum
number of arbitrary CF-intervals. But, by Theorem 1
this is NP-hard. Hence we have the following theorem.

Theorem 4 Problem 1 is NP-hard.

A 4-approximation algorithm for Problem 2.
Let P = {C1, C2, . . . , Cn} be a set of point color classes
(pairs, Ci = {pi, pi}) on the set of points P =

⋃
i Ci.

We assume there exists I ′ ⊆ I such that I ′ covers at
least one point from each color class and we provide a 4-
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approximation algorithm for covering P with the fewest
number of CF-intervals. For a given p ∈ P, let Ip ∈ I
be a CF-interval (if it exists) that covers p and extends
farthest to the right among all intervals that cover p.

Let I
(r)
p ⊆ Ip be the subinterval of Ip that contains p

and all points to the right of p.

Input: P = {C1, C2, . . . , Cn}, a set of point color
classes and I, a set of CF-intervals.
Output: A subset I ′ ⊆ I covering at least one
point from each color class.
T = ∅
while there exists p ∈ P such that p is uncovered
in T and there exists I ∈ I such that p ∈ I do

Let p be the leftmost uncovered point in P that
is contained in some interval in I.

T ← T ∪ I(r)p

end
Compute a subset of intervals T to cover at least
one point of each of the Ci’s, using a low-frequency
set cover approximation algorithm.
Let I ′ be the set of intervals Ip ∈ I corresponding

to each I
(r)
p of T in the resulting cover.

Algorithm 1: An algorithm for Problem 2.

Lemma 5 |I ′| ≤ 4|OPT |.

Proof. Consider the set T of intervals at the end of
the while loop. Let OPTT ⊆ T be an optimal set cover
of the Ci’s. First we claim that |OPTT | ≤ 2|OPT |.
Consider the leftmost point p in an arbitrary interval A
of OPT. By the construction of Algorithm 1, we know
that there must exist an interval T ∈ T that contains
p. If there exists a point that is covered by A and not
covered by T , then let q be the leftmost such point. We

know there exists an interval I
(r)
q ∈ T that starts at q

and extends at least as far to the right as does A. Thus,
for any A ∈ OPT , there exist at most two intervals in
T , the union of which entirely contains A.

Observe that since each newly added interval to T
cannot contain a previously covered point, then, at the
end of the while loop, each p ∈ P is contained in at
most one interval of T ; thus, each pair Ci is covered by
at most two intervals of T (one covering pi, one covering
pi). Therefore, we are approximating a low-frequency
(at most 2) set cover instance, for which LP relaxation
gives a 2-approximation [14] (pp. 119-120). Hence, we
have |I ′| ≤ 2|OPTT | ≤ 4|OPT |. (For color classes of
size at most c, we obtain a 2c-approximation.) �

A 2-approximation algorithm for Problem 1.
Let P = {C1, C2, . . . , Cn} be a set of point color classes
(pairs, Ci = {pi, pi}) on the set of points P =

⋃
i Ci. We

provide a simple 2-approximation algorithm for covering
P with arbitrary CF-intervals. For any point p ∈ P,
denote the maximal CF-interval starting at p and ending
at a point of P to the right of p (or at p) by Imax(p).

Input: P = {C1, C2, . . . , Cn}, a set of point color
classes.
Output: A set I of CF-intervals.
I = ∅
while P 6= ∅ do

Let p be the leftmost point in P
I ← I ∪ Imax(p)
For each point of P that lies in Imax(p), remove
it and its twin point from P

end
Algorithm 2: A greedy algorithm for Problem 1.

Consider the set I computed by Algorithm 2. Clearly,
I is a set of (disjoint) CF-intervals, such that at least
one point from each color class is covered by the in-
tervals of I. It remains to prove that I is a 2-
approximation of OPT , where OPT denotes any op-
timal solution.

Lemma 6 |I| ≤ 2|OPT |.

Proof. For any two points x and y, let [x, y] (resp.,
(x, y)) denote the closed (resp., open) interval with end-
points x and y. Let [pa, pb] and [pc, pd] be two consecu-
tive intervals in I. Observe that since [pa, pb] is a max-
imal CF-interval, there exists a point pi (resp., pi) in
[pa, pb], such that pi (resp., pi) is in (pb, pc). Therefore
any interval in OPT can intersect at most two inter-
vals in I. Moreover, since OPT must cover the color
class Ci = {pi, pi}, there exists an interval I ∈ OPT ,
such that I ∩ {pi, pi} 6= ∅. We thus conclude that
|OPT | ≥ |I|/2. �

3 Two Dimensions

Let P = {C1, C2, . . . , Cn} be a set of n color classes
in the Euclidean plane. We explore covering problems
where exactly one point from each color class must be
covered.

3.1 Unit Squares

Problem 3 Covering color classes with arbitrary
unit squares. Let P = {C1, C2, . . . , Cn} be in the Eu-
clidean plane and let each color class Ci consist of a
vertically or horizontally unit separated pair of points.
Find a minimum-cardinality set S of axis-aligned unit
squares (assuming a feasible solution exists), such that
exactly one point from each color class is covered by a
square in S.

Theorem 7 Problem 3 is NP-hard.

Proof. The reduction is from PLANAR 3-SAT [10],
where one is given a formula in conjunctive normal
form with at most three literals per clause, with the
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objective of deciding whether or not the formula is sat-
isfiable. Given variables {x1, x2, . . . , xn} and clauses
{c1, c2, . . . , cm}, we consider the graph whose nodes are
the clauses and variables and whose edges join variable
xi with clause cj if and only if xi ∈ cj or ¬xi ∈ cj . The
resulting bipartite graph, G, is planar.

In a manner similar to Fowler et al. [6], in a planar
embedding of G we replace all of the edges incident to
a variable node with a variable chain that visits the
corresponding clauses and returns to the variable node
to form a loop. The variable chains consist of a se-
quence of unit separated pairs (see Figure 4) and are
designed in such a way that any minimum cardinality
solution will either cover {ai+k, ai+k+1 : k is even} or
{ai+k, ai+k+1 : k is odd}. That is, for a given variable
chain, either all blue unit squares or all red unit squares
will be used. Using red (resp. blue) squares for variable
xi is equivalent to setting this variable to TRUE (resp.
FALSE). Using planarity of the graph embedding, no
two variable chains intersect, and any two points from
different chains are spaced at least unit distance apart.

ai+1

ai+1

ai+2

ai

ai

ai+2

ai+3

ai+3

1

1 1

1

Figure 4: Variable chain.

Clause ci consists of a single (green) pair (see Fig-
ure 5). If ci evaluates to FALSE, then a square that is
not associated with any variable loop will be needed to
cover ci. If ci evaluates to TRUE, then a point from
ci can be covered by a square from an incoming loop
whose literal evaluates to TRUE.

clause ci

xi

xj

¬xk
1− ε

1− ε

1− ε

1

1

1

1

1

1

1

Figure 5: Clause gadget.

Let ri be the number of pairs used in variable chain
i, 1 ≤ i ≤ 3m. We design the variable chains so that ri
is even for all i. Let r =

∑
i ri. It is now apparent that

there exists a satisfying truth assignment in PLANAR

3-SAT if and only if a minimum cardinality covering
with unit squares uses r

2 squares. �

Remark: If P is on a line and pairs are unit sep-
arated, we can minimize the number of unit intervals
used in a complete cover (assuming a solution exists) in
polynomial time using dynamic programming.

A 6-approximation algorithm. We lay out a grid with
unit dimensions on top of our point set P and two-
color the cells of the grid red and black in the style
of a checkerboard. We say that a cell is occupied if it
contains a point in P . Let R be the set of occupied
red cells and B the set of occupied black cells. As a
solution, we use the set of smaller cardinality.

Lemma 8 min{|R|, |B|} ≤ 6|OPT |.

Proof. Suppose w.l.o.g that min{|R|, |B|} = |R|. Note
that R is a feasible solution because any two points of
a color class are unit separated either vertically or hor-
izontally, thus one of the two points must occupy a red
cell and the other must occupy a black cell. Therefore,
R covers all color classes of points and no two points
from the same color class are covered by R.

Now we claim that in the optimal solution, OPT , at
least 1

12 (|R|+ |B|) unit squares are used. An arbitrary
unit square, s, used in OPT stabs at most four cells
of the checkerboard. These four cells are adjacent to
at most eight other cells in total, each of which can be
occupied by the pair of one of the points covered by s.
Thus, at most 12 occupied cells of the checkerboard can
be accounted for by any unit square used in OPT .

Combining the fact that min{|R|, |B|} ≤ 1
2 (|R|+ |B|)

and OPT ≥ 1
12 (|R|+|B|), we have that min{|R|, |B|} ≤

6|OPT |. �

3.2 Covering with a Convex Polygon

Problem 4 Let P = {C1, C2, . . . , Cn} be in the Eu-
clidean plane and let each color class Ci consist of either
a pair or a triple of points. Decide whether or not there
exists a convex polygon Q such that Q contains exactly
one point from each color class.

Problem 5 Let P = {C1, C2, . . . , Cn} be in the Eu-
clidean plane and let each color class Ci consist of a pair
of points. Maximize the number of color classes covered
by a convex polygon Q such that Q contains exactly one
point from each covered color class.

Theorem 9 Problem 4 is NP-complete.

Proof. Problem 4 is clearly in NP because we can check
whether or not polygon Q is convex and whether or
not Q contains exactly one point from each color class
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in polynomial time. We present a reduction from EX-
ACTLY 1-IN-3-SAT, where one is given a formula in
conjunctive normal form with at most three literals per
clause, with the objective of deciding whether or not the
formula is satisfiable. In a satisfying assignment, every
clause must contain exactly one TRUE literal.

xi
xi+1

xi+3

s2i−1

s2i
s2i+1

s2i+2

s2i−2

s2i+5

s2i+6

qi
qi

dj1dj2qi+1

qi+1

dj3
qi+3 qi+3

Q

Figure 6: Construction of hardness for Problem 4.

xi

s2i−1

s2i
T

F

qi
qi

dj1

Figure 7: Close-up of variable gadget for Problem 4.

Given variables {x1, x2, . . . , xn} and clauses
{c1, c2, . . . , cm}, we start by considering 2n points,
S = {s1, s2, . . . , s2n}, in the position of a regular
2n-gon. These 2n points are not part of any color class;
we use them to help explain the construction. We place
two pairs of points around each point of S in such a
way that convex polygon Q must have vertices at each
point of S (see Figure 6). We create a variable gadget
xi in between points s2i−1 and s2i for 1 ≤ i ≤ n. Each
variable gadget consists of color class that is a pair
of points {qi, qi}, 1 ≤ i ≤ n (see Figure 7). We place
{qi, qi} so that Q can be expanded to cover either qi
(green lines in Figure 7) or qi (red lines in Figure 7),
while remaining convex. Setting xi to TRUE (resp.
FALSE) corresponds to expanding Q to cover qi (resp.
qi). If xi (resp. ¬xi) appears in clause cj , a point
from a color class that contains triple {dj1, dj2, dj3}
will appear in the expansion of Q that covers qi (resp.
qi), and not in the expansion of Q that covers qi (resp.
qi). It is now apparent that there exists a satisfying
truth assignment in EXACTLY 1-IN-3-SAT if and only
if convex polygon Q covers exactly one point from each
color class. �

Theorem 10 Problem 5 is NP-hard.

Proof. The reduction is from MAX EXACTLY 1-IN-
2-SAT where each clause has at most two literals and

the objective is to maximize the number of clauses that
evaluate to TRUE. A clause evaluates to TRUE if and
only if it contains exactly one TRUE literal. Using the
same construction as in Problem 4, it is easy to see that
maximizing the number of TRUE clauses is equivalent
to maximizing the number of color classes covered. �
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Abstract

Several aspects of managing a sensor network (e.g., motion
planning for data mules, serial data fusion and inference)
benefit once the network is linearized to a path. The lin-
earization is often achieved by constructing a space filling
curve in the domain. However, existing methods cannot han-
dle networks distributed on surfaces of complex topology.

This paper presents a novel method for generating space
filling curves for 3D sensor networks that are distributed
densely on some two-dimensional geometric surface. Our
algorithm is completely distributed and constructs a path
which gets uniformly, progressively denser as it becomes
longer. We analyze the algorithm mathematically and prove
that the curve we obtain is dense. Our method is based on the
Hodge decomposition theorem and uses holomorphic differ-
entials on Riemann surfaces. The underlying high genus sur-
face is conformally mapped to a union of flat tori and then a
proportionally-dense space filling curve on this union is con-
structed. The pullback of this curve to the original network
gives us the desired curve.

1 Introduction

In this paper we consider sensors deployed in 3D space such
that the sensors are located densely on some underlying 2-
dimensional geometric surface of possibly complex topol-
ogy. This assumption models many practical scenarios in
sensor deployment — sensors are often attached to the sur-
faces of terrains, exterior/interior of buildings [13], or other
architectural structures, for easy installation and energy sup-
plies, etc. In some other cases, the applications require sen-
sors to be installed to monitor complex 3D structures, such
as underground tunnels [14, 29] or pipes [22]. Therefore the
sensors are located sparsely in 3D space but densely on a 2-
dimensional surface (the “boundary” of some 3D objects) of
possibly complex topology.

We are interested in innovative ways of managing such
sensor networks, in the regime of using mobile entities to
aid such management. Such mobile agents are often termed
‘data mules’, since one of the major applications is to use a
mobile node to collect data from static sensors [1, 10, 17, 23,
27]. Static data sinks suffer from the well known problem of
‘energy hole’, as sensors near the sink are used more often
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and may run out of battery sooner than others. Mobile data
sinks could get around this problem.

Our focus is to plan data mule along a path that uniformly
traverses the entire field for a sensor network. This repre-
sents a periodic solution by which all sensors have a fair
chance of being served by the data mule. It is better for sce-
narios when sensors have the same data generation rate, or
when the sensor network requires a patrolling team to contin-
uously monitor its general functioning and health. It can also
be used for linear, logical operations in sensor networks such
as data fusion [20] or sequential inference. Thus, the main
questions is: given a unit-disk-graph G on n nodes (sensors)
densely placed on a smooth two-dimensional manifold, con-
struct a path γ that 1) passes through each node, and 2) for
any integer ` = Ω(diameter(G)) and any subset A of nodes,
the proportion of nodes among the first ` nodes in γ that lie
in A is equal to the relative size of A.

The above problem is hard in general; however, if the
sensors are densely distributed, one can attack a continu-
ous version of it. The continuous version basically asks
to construct a space filling curve on a two dimensional
manifold M , which gets progressively dense (for any ` =
Ω(diameter(M)) and any submanifold A ⊂ M , the propor-
tion of γ` (the first ` length of γ) that lies inside A is equal
to the relative area of A). The hope is that by “thickening” a
solution to the continuous version, we might get a reasonable
solution to the discrete version.

The representative work in this direction is by
Ban et al. [4], which generalizes the idea of a space
filling curve, often defined for a square, for a general 2D
domain with holes. A space filling curve is a single curve
that recursively ‘fills up’ the square, when the number of
iterations goes to infinity [21]. For a sensor network with
fixed density, a space filling curve nicely tours around all
sensors with total travel length comparable to the traveling
salesman solution. When the sensor network has holes,
however, the space filling curve is broken and loses its nice
properties. For a domain with a single hole, Ban et al. [4]
proposed to map it to a torus such that a space filling
curve can be easily found — by essentially following a
line bouncing back and forth between the inner and outer
boundaries. When there are two or more holes, all but one
holes are mapped to ‘slits’, and the path bounces on these
slits too. It is proved that this curve is dense, i.e., any point
of the domain will be covered by the path of sufficiently
long; and the curve has bounded density, i.e., it does not
path through any point too many times.

However, one major limitation of the mechanism in
Ban et al. [4] is its applicability to 2D domains with holes
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only. Terrains with holes can be handled via an additional
mapping to 2D but general surfaces with high genus (mul-
tiple handles) cannot be handled. For underground deploy-
ment of sensors for monitoring tunnels, handles appear very
often and we need a different scheme for generating the
space filling curves.

Our contribution. The main result in this paper is a new
linearization scheme for general sensor networks on 2D sur-
faces. We generate space filling curves with the same nice
properties as those in [4]. In particular, the curves have 1)
dense, progressive coverage – that as the curve gets longer,
the distance from any point to the curve decreases quickly;
2) efficient coverage – a point is not visited more than a con-
stant number of times.

Moving from a 2D domain to a general 2D surface in 3D
really makes the problem harder. Note that before this work,
there was no algorithm to construct the desired space-filling
curve on a surface, even in the continuous setting. We remark
that the problem is much easier if one drops the progressive
density requirement. For that one can cut the 2D surface
into small patches each mapped to a 2D domain such that
previous methods can be applied.

To summarize, our contribution is not only on the algorith-
mic and application aspects, but also presents a theoretically
proven, continuous-setting algorithm, that may be of inde-
pendent interest. The algorithms presented here can be easily
made to work in a distributed setting for a sensor network.

2 Related Work

In this section we survey other ideas that generate a path to
visit all sensor nodes.
Space filling curves. Space filling curves have been used
for linear/serial fusion [20] in sensor networks when the sen-
sors are deployed uniformly in a square. There has been a
heuristic algorithm that generalizes a Hilbert curve for an el-
lipse [11]. Technically the curves generated by Ban et al. [4]
and the one in this paper are not going to completely fill up
the surface (since topologically a curve is different from a
surface) – but both the curves get infinitesimally closer to
any given point.

Finding a tour. On a sensor network deployed in space,
generating a tour of the graph, depending on the require-
ment, maps to either the Hamiltonian cycle/path problem or
the traveling salesman tour. The former requires each ver-
tex be visited exactly once and only the edges of the graph
can be used. The second tries to minimizes the total travel
distance instead. Both problems are NP-hard [9]. Euclidean
TSP has good approximation schemes [3,19] but these solu-
tions suffer from two potential problems: 1) lack of progres-
sive density; 2) cannot support multiple data mules easily.

Random walk. A practically appealing solution for visit-
ing nodes in a network is by random walk. The downside is
that we encounter the coupon collector problem. Initially a
random walk visits a new node with high probability. After a
random walk has visited a large fraction of nodes, it is highly

likely that the next random node encountered has been vis-
ited before. Thus it takes a long time to aimlessly walk in the
network and hope to find the last few unvisited nodes. Theo-
retically for a random walk to cover a grid-like network, the
number of steps is quadratic in the size of the network [15].
For a random walk of linear number of steps, there are a lot
of duplicate visits as well as a large number of nodes that are
not visited at all. In the case of multiple random walks, since
there is little coordination between the random walks, they
may visit the same nodes and duplicate their efforts.

3 Theory of constructing space filling curves

For ease of exposition, we start by summarizing our method
in this section. We then describe the theory behind our con-
structed curve, and end this section with the proof that the
curve is dense. For the sake of completeness, we have pro-
vided all the theoretical material necessary for understanding
our construction.

3.1 Informal discussion of techniques

Let us consider the mathematical problem of constructing a
dense curve with the desired property of proportional den-
sity on a two dimensional manifold S. We first treat the sur-
face as a one dimensional complex manifold, also called a
Riemann surface. This basically means that locally our sur-
face looks like an open set in the complex plane, and the
transition maps from one such local “chart” to another are
holomorphic.

With this point of view, we consider a holomorphic differ-
ential on our Riemann surface S. A holomorphic differential
is basically an assignment of a complex-valued holomorphic
function on each chart of the surface, that transforms line el-
ements in the correct way; in complex coordinates z and z̄,
it is a tensor of type (1, 0).

Using properties of certain special kinds of holomorphic
differentials called Strebel differentials, we partition our sur-
face into pieces, each of which is a flat torus with some holes
removed. Each such piece is mapped to a parallelogram
with slits (the boundaries of the holes map to the slits). In
other words, we view the surface S as a union of parallelo-
grams with slits, with slits being glued together in a certain
way. This change of coordinates is mathematically termed a
“branched covering”.

In these coordinates, our curve is just a straight line on
the cover. The slope of this line is either irrational, or chosen
randomly, depending on the position of the slits and the sides
of the parallelograms. Using several important and recent
results in Teichmüller theory, we can prove density.

Note that although we partition the surface into pieces,
we do not cover one piece first and then move on to the next.
Instead our curve comes back into each piece infinitely often,
increasing the density proportionally to the length.
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3.2 Theoretic Background

Conformal Atlas Suppose (S,g) is a surface with a Rie-
mannian metric g. Given any point p ∈ S, there is a neigh-
borhood U(p) where one can find the isothermal coordinates
(i.e., local coordinates where the metric is conformal to the
Euclidean metric) (x, y) on U(p), such that

g = e2λ(x,y)(dx2 + dy2),

where the scalar function λ : U(p) → R is the conformal
factor function. The atlas consisting of isothermal coordin-
ates is called a conformal atlas. In the following discussion,
we always assume the local parameters are isothermal.
De Rham Cohomology De Rham cohomology theory is
based on the existence of differential forms with certain pre-
scribed properties. Suppose f : S → R; then its differential
is given by

df(x, y) =
∂f(x, y)

∂x
dx+

∂f(x, y)

∂y
dy,

Suppose ω is a differential 1-form on the surface, which has
local representation as ω(x, y) = f(x, y)dx+g(x, y)dy. The
exterior differential operator d acts on ω as,

dω(x, y) = (
∂g

∂x
− ∂f

∂y
)dx ∧ dy.

If dω = 0, then ω is called a closed 1-form. If there exists a
function h : S → R such that ω = dh, then ω is called an
exact 1-form. Exact 1-forms are closed. The first De Rham
cohomology group of the surface is the group of all non-
exact closed 1-forms.
Hodge Decomposition The Hodge star operator on differen-
tial forms is defined as

∗ω = ∗(f(x, y)dx+g(x, y)dy) = (−g(x, y)dx+f(x, y)dy).

A differential 1-form is called a harmonic, if dω = 0, d∗ω =
0. The Hodge decomposition theorem states that each coho-
mology class has a unique harmonic form. The group con-
sisting of all the harmonic 1-forms is denoted as H1

∆(S,R);
it is isomorphic to H1(S,R).
Holomorphic Differentials Let {(Uα, zα} be the conformal
atla ygs, where the complex parameter zα = xα +

√
−1yα.

Suppose (Uβ , zβ) is another chart, the parameter transition
function is zβ(zα) is holomorphic, namely, it satisfies the
following Cauchy-Riemann equations:

{
∂xβ
∂xα

=
∂yβ
∂yα

∂xβ
∂yα

= − ∂yβ
∂xα

Let Ω be a complex differential form with local represen-
tation Ω(zα) = f(zα)dzα, where f(zα) is holomorphic. A
holomorphic 1-form can be decomposed to a pair of conju-
gate harmonic real differential 1-forms, Ω = ω +

√
−1∗ω,

where ω is harmonic. All the holomorphic differentials form
a group Ω(S), which is isomorphic to H1

∆(S,R).

Branched covering Let X,Y be compact connected topo-
logical spaces. A continuous mapping f : X → Y is called
a branched covering if it is a local homeomorphism every-
where except a finite number of “branch” points. In the com-
plex setting, this would mean that a branched covering is, lo-
cally at a point p, upto composition by biholomorphic maps,
of the form z → zep , where ep > 1 for finitely many branch
points, and ep = 1 everywhere else.
Trajectory Structure and Strebel differentials Given a
holomorphic 1-form Ω on a genus g surface, there are 2g−2
zero points. At each point p ∈ S, the tangent direction
dγ ∈ TMp is called a horizontal direction, if Ω(dγ) is real.
A curve γ ⊂ S is called a horizontal trajectory of Ω, if at
each point p ∈ γ, dγ is along the horizontal direction. The
horizontal trajectories through zeros of Ω are called critical
trajectories. Similar to holomorphic 1-forms, one can con-
sider quadratic differentials, which are tensors of type (2, 0)
in holomorphic coordinates. For quadratic differentials we
define a direction to be horizontal if the differential is posi-
tive along it, and vertical if it is negative.

If the graph of vertical critical trajectories is compact,
the quadratic differential is called Strebel. In the group of
quadratic differentials, Strebel differentials are dense [5]. We
will use a holomorphic-1 form whose square is Strebel. This
will imply that the horizontal trajectories are closed curves.

3.3 Dense curve construction in continuous setting

We describe first the branched covering we use to construct
our curve, and then prove the density.
Branched covering from a Strebel differential Given a
Strebel differential Ω, the critical horizontal trajectories seg-
ment the surface to g connected components, denoted as
{Γ1,Γ2, · · · ,Γg}. Each connected component Γk is of
genus one with boundaries,

∂Γk = b1k + b2k + · · ·+ bnkk .

The Strebel differential Ω induces a flat metric on each Γk,
the integration of Ω on each boundary loop bik maps the
boundary loop to a straight line slit. Namely, then integra-
tion of Ω on each Γk maps Γk to a flat torus with straight
line slits.

The mapping from the surface to the flat tori are diffeo-
morphic except at the zero points. Locally, the mapping at
the zero points is similar to the complex power map z 7→ z2.
Therefore, the zero points are the branch points.
The curve we use Suppose each flat torus is R2/Γk, k =
1, 2, · · · , g. Here Γk represent lattice groups. Then we can
find a line ` on the plane, such that ` does not go through
any points in the union of lattices ∪kΓk, since this union
is countable. In particular if the lattice points are all ratio-
nal then a line with irrational slope would do; otherwise we
chose a random line. Denote the slope of ` as k.

On the“welded flat tori”, start from one point draw a line
γ with slope k. Then γ goes across the handles via the slits;
when it hits a slit it moves from one handle to another and
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Figure 1: Branch covering map.

continues with the same slope k. We take care to chose k in
such a way that this line does not pass through the endpoint
of any slit. Again, this is easy to maintain since we only have
finitely many of these endpoints.

Theorem 1. Let γ be the curve constructed as above. Then
γ is dense and does not go through any point more than once.

Proof. Density would imply aperiodicity of γ, which in turn
would imply that γ does not pass through any point twice.
This is because on each torus, γ is a line with slope k, and if
it visited a point twice it must necessarily become periodic.
Thus it suffices to prove that γ is dense.

Density of such a curve follows from results in Te-
ichmüller theory [18], and we just sketch the proof. Essen-
tially, as long as the direction k does not contain a “saddle
connection”, which is a trajectory connecting two zeroes of
the holomorphic differential, it will be dense. In our case,
if the slit coordinates are rational, we choose an irrational k;
otherwise we choose a random k. In both cases, with prob-
ability 1 we will neither hit the lattice points Γk nor the end
points of the slits. This guarantees density. �

Note that although proving progressive density requires
more sophisticated math techniques, our simulations in [32]
show that the curve we construct does indeed satisfy this
property.

4 Algorithm

In this section we present a centralized algorithm for the in-
put of a sensor network densely deployed on a surface. Note
that this can be generalized to a completely distributed algo-
rithm too; we choose not to present the distributed algorithm
for the sake of simplicity in this extended abstract, and refer
to [32] for details.

We assume that the sensors are densely deployed on some
underlying surface S such that locally the sensors lie on a flat
plane. Thus we can apply existing algorithms to first come
up with a triangulation of the sensors that approximate the
underlying surface S [7, 8].

The surface is approximated by a triangular mesh M =
(V,E, F ), where V,E, F denotes the vertex, edge and face
sets respectively. We use vi ∈ V to represent a vertex,
[vi, vj ] an oriented edge from vi to vj , [vi, vj , vk] an oriented
face where vi, vj and vk are sorted counter-clock-wisely. We
assume the mesh is closed with genus g.

All the mathematics objects we described in Section 3 (ho-
mology groups, cohomology groups, harmonic and holomor-
phic 1-forms, branched covering maps) have straightforward
discrete analogs. We omit the definitions (they can be found
in [32]). In the following, we are talking about the discrete
versions of such objects.

The algorithm pipeline is as follows:

1. Compute the basis of the first homology group
H1(M,Z).

2. Calculate the dual basis of the first cohomology group
H1(M,R).

3. Obtain the basis of the harmonic 1-form group

4. Achieve the basis of the holomorphic 1-form group

5. Integrate a holomorphic 1-form to get the required
branched covering map.

6. Use the curve described in the previous section.

Steps 1− 3 have been carried out in literature (even in the
distributed setting) before, and we give their details in the
appendix. Here we elaborate on the final and novel Steps 4
and 5.

Branch Covering Map We first compute the cut graph1

G of the mesh. Then we slice the mesh along the cut group
to obtain a fundamental domain M/G. Choose one holo-
morphic 1-form ω +

√
−1∗ω and integrate the holomorphic

1-form on the fundamental domain to get a branched cover-
ing map. Fix a vertex v0 ∈ M/G as the base vertex, for any
vertex vi ∈M/G,

ϕ(vi) =

∫ vi

v0

ω +
√
−1∗ω,

the integration path γ ⊂ M/G can be chosen arbitrarily,
which consists a sequence of consecutive oriented edges,
connecting v0 to vi, denoted as

γ = e0 + e1 + · · · ek,

such that target vertex of ei equals to the source vertex of
ei+1, the source of e0 is v0, the target of ek is vi.

∫

γ

ω =

k∑

i=0

ω(ei).

The branching points of ϕ are the zero points of the holo-
morphic 1-form. The slits are the horizontal trajectories con-
necting the zeros of the holomorphic 1-form.

As shown in Fig.1, there are 2g−2 zero points of the holo-
morphic 1-form. The horizontal trajectories through the ze-
ros segment the surface into handles as shown in Frame (a).

1Intuitively, this is the set of edges whose removal transforms the surface
into a disk.
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(a) front view (b) back view

(c) first zero point (d) second zero point

Figure 2: Holomorphic 1-form and zero points.

(a) dense curve (b) zero point

Figure 3: Dense curve on the surface.

Each handle is conformally mapped onto a flat torus with a
slit, the end points of the slit are the zero points, as shown
in Frame (b). The flat tori are glued together through slits,
the top (bottom) edge of the slit on one torus is glued to the
bottom (top) edge of the slit on the other torus, as shown in
Frame (c). In the neighborhood of each zero point, the map-
ping is a branch covering similar to z 7→ z2, as illustrated in
Frame (d).
The curve On the glued tori, start from any point and draw
a line γ with slope k. Then γ goes across the handles via the
slits; when it hits a slit it moves from one handle to another
and continues with the same slope k. We take care to chose
k in such a way that this line does not pass through the end-
point of any slit. This is easy to maintain since we only have
finitely many of these endpoints.

5 Conclusion

We show in this paper a new construction for computing a
dense curve on a 3D sensor network when the sensors are
densely on a 2D manifold. The algorithm substantially gen-

eralizes over the prior work by Ban et al. [4] while keep-
ing essentially the same nice properties. As future work we
would like to see how to generalize the idea to truly 3D net-
works (volumetric 3D sensor networks).
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Appendix–The Algorithm Details

As mentioned, we choose not to present the distributed algo-
rithm for the sake of simplicity in this extended abstract, and
refer the reader to [32] for details.

We assume that the sensors are densely deployed on some
underlying surface S such that locally the sensors lie on a flat
plane. Thus we can apply existing algorithms to first come
up with a triangulation of the sensors that approximate the
underlying surface S [7, 8].

The surface is approximated by a triangular mesh M =
(V,E, F ), where V,E, F denotes the vertex, edge and face
sets respectively. We use vi ∈ V to represent a vertex,
[vi, vj ] an oriented edge from vi to vj , [vi, vj , vk] an oriented
face where vi, vj and vk are sorted counter-clock-wisely. We
assume the mesh is closed with genus g.

The algorithm pipeline is as follows:

1. Compute the basis of the first homology group
H1(M,Z).

2. Calculate the dual basis of the first cohomology group
H1(M,R).

3. Obtain the basis of the harmonic 1-form group.

4. Achieve the basis of the holomorphic 1-form group.

5. Integrate a holomorphic 1-form to get the required
branched covering map.

6. Use the curve described in the Section 3.

Homology Group First, the dual mesh M̄ = (V̄ , Ē, F̄ )
of the input mesh M is constructed. Each vertex vi ∈ V ,
face fj ∈ F and edge ek ∈ E corresponds to a face v̄i ∈ F̄ ,
a vertex f̄j ∈ V̄ and and edge ēk ∈ Ē on the dual mesh
respectively.

Second, a spanning tree T̄ of the dual mesh M̄ is com-
puted. The cut graph G ⊂ M is the union of edges, whose
dual edges are not in the spanning tree:

G = {e ∈ E|ē 6∈ T̄}.

Intuitively, the mesh M \G with the cut graph removed is a
topological disk. Third, a spanning tree T of the cut graph G
is calculated. The complement of T inG is a union of edges:

G/T = {e1, e2, · · · , e2g},

Each edge ei when included in the spanning tree T (thus
T ∪ ei) gives rise to a unique loop γi ⊂ T ∪ ei. These loops

{γ1, γ2, · · · , γ2g}

form the basis of the first homology group H1(M,Z).

Cohomology Group The differential forms are approx-
imated by discrete forms. A discrete 0-form is a function
defined on vertices, f : V → R; a discrete 1-form is
a function defined on the oriented edges, ω : E → R,
ω([vi, vj ]) = −ω([vj , vi]); a discrete 2-form is defined on
the oriented faces τ : F → R. Discrete exterior differential
operator d is dual to the boundary operator ∂, for example

dω([vi, vj , vk]) = ω(∂[vi, vj , vk])
= ω([vi, vj ]) + ω([vj , vk]) + ω([vk, vi]).

Given the first homology group H1(M,Z) basis
{γ1, · · · , γ2g}, the dual cohomology group basis can be ob-
tained as follows. For each base loop γk, slice the mesh M
to get an open mesh Mk. The boundary of Mk has two con-
nected components, denoted them as

∂Mk = γ+
k ∪ γ−k .

Construct a function fk : Mk → R,

fk(vi) =





1 vi ∈ γ+
k

0 vi ∈ γ−k
rand vi 6∈ ∂Mk

Then the 1-form dfk, dfk([vi, vj ]) = fk(vj) − fk(vi) is 0
on all boundary edges. Therefore, one can define ωk on the
original closed mesh M . Suppose e is not on the loop γk,
then it has a unique corresponding edge ẽ on Mk, define
ωk(e) = dfk(ẽ). If e ⊂ γk, then let ωk(e) = 0. ωk is
a closed 1-form, and not exact. These non-exact closed 1-
forms

{ω1, ω2, · · · , ω2g}
form the basis of H1(M,R).

Harmonic Differential Group According to Hodge the-
ory, each cohomological class has a unique harmonic 1-
form. Given a cohomology group basis {ω1, ω2, · · · , ω2g},
for each closed 1-form ωk, there is a function hk : V → R,
such that ωk + dhk is harmonic. By definition, the 1-form is
curl free

d(ωk + dhk) = dωk + d2hk = 0.

The divergence is

∗d∗(ωk + dhk) = 0,

this induces the linear system, for each vertex vi ∈ V ,
∑

[vi,vj ]∈E
wij (hk(vj)− hk(vi) + ωk([vi, vj ])) = 0,

where wij is the cotangent edge weight. Suppose edge
[vi, vj ] is shared by two faces [vi, vj , vk] and [vj , vi, vl], then

wij = cot θijk + cot θjil ,

where θijk is the corner angle at vertex vk in triangle
[vi, vj , vk]. The coefficient matrix of the linear system is
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positive definite, the solution exists and is unique. The 1-
forms

{ω1 + dh1, ω2 + dh2, · · · , ω2g + dh2g}

form the basis of the harmonic 1-form group.

Holomorphic Differential Group Suppose the har-
monic 1-form group basis is given, still denoted as
{ω1, ω2, · · · , ω2g}. Let ω be a harmonic 1-form, its con-
jugate 1-form ∗ω is harmonic as well, therefore it can be
represented as linear combination of {ωk},

∗ω = λ1ω1 + λ2ω2 + · · ·+ λ2gω2g. (1)

The coefficients can be obtained by solving the following the
linear system

∫

M

∗ω ∧ ωk =

2g∑

i=1

λi

∫

M

ωi ∧ ωk, k = 1, 2, · · · , 2g.

On one triangle [vi, vj , vk] embed on the plane R2, the closed
1-form ωk can be represented as a constant 1-form ωk =
akdx+ bkdy, such that

ωk([vi, vj ]) =

∫

[vi,vj ]

akdx+ bkdy,

same equations hold for other edges [vj , vk] and [vk, vi]. The
wedge product on the face is given by

ωi∧ωj = (aidx+bidy)∧(ajdx+bjdy) =

∣∣∣∣
ai bi
aj bj

∣∣∣∣ dx∧dy.

Therefore
∫

[vi,vj ,vk]

ωi ∧ ωj = (aibj − ajbi) Area([vi, vj , vk]).

and ∫

M

ωi ∧ ωj =
∑

[vi,vj ,vk]

∫

[vi,vj ,vk]

ωi ∧ ωj .

Locally, the Hodge operator is given by

∗ωk = ∗(akdx+ bkdy) = akdy − bkdx.

So the coefficients in the linear equation 1 can be easily com-
puted. By solving the linear system, the conjugate harmonic
1-form ∗ω is obtained.

The harmonic 1-form basis {ωk}, paired with its conju-
gate harmonic 1-form {∗ω} form the holomorphic 1-form
basis

{ω1 +
√
−1∗ω1, ω2 +

√
−1∗ω2, · · · , ω2g +

√
−1∗ω2g}

Branch Covering Map Compute the cut graph G of the
mesh, slice the mesh along the cut group to obtain a fun-
damental domain M/G. Choose one holomorphic 1-form
ω +

√
−1∗ω and integrate the holomorphic 1-form on the

fundamental domain to get the branch covering map. Fix
a vertex v0 ∈ M/G as the base vertex, for any vertex
vi ∈M/G,

ϕ(vi) =

∫ vi

v0

ω +
√
−1∗ω,

the integration path γ ⊂ M/G can be chosen arbitrarily,
which consists a sequence of consecutive oriented edges,
connecting v0 to vi, denoted as

γ = e0 + e1 + · · · ek,

such that target vertex of ei equals to the source vertex of
ei+1, the source of e0 is v0, the target of ek is vi.

∫

γ

ω =
k∑

i=0

ω(ei).

The branching points of ϕ are the zero points of the holo-
morphic 1-form. The slits are the horizontal trajectories con-
necting the zeros of the holomorphic 1-form.

As shown in Fig.1, there are 2g−2 zero points of the holo-
morphic 1-form. The horizontal trajectories through the ze-
ros segment the surface into handles as shown in Frame (a).
Each handle is conformally mapped onto a flat torus with a
slit, the end points of the slit are the zero points, as shown
in Frame (b). The flat tori are glued together through slits,
the top (bottom) edge of the slit on one torus is glued to the
bottom (top) edge of the slit on the other torus, as shown in
Frame (c). In the neighborhood of each zero point, the map-
ping is a branch covering similar to z 7→ z2, as illustrated in
Frame (d).
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Inscribing H-Polyhedra in Quadrics Using a Projective Generalization of
Closed Sets∗

Willem Hagemann and Eike Möhlmann†

Abstract

We present a projective generalization of closed sets,
called complete projective embeddings, which allows us
to inscribe H-polyhedra in quadrics efficiently. Essen-
tially, the complete projective embedding of a closed
convex set P ⊆ Kd is a double cone in Kd+1. We show
that complete projective embeddings of polyhedral sets
are of particular interest and already occurred in the
theory of linear fractional programming. Our approach
works as follows: By projective principal axis transfor-
mation the quadric is converted to a hyperboloid and
then approximated by an inner (right) spherical cylin-
der. Now, given an inscribedH-polytope of the spherical
cross section, cylindrification of the polyhedron yields
an inscribedH-polyhedron of the spherical cylinder and,
hence, of the hyperboloid. After application of the in-
verse base transformation this approach finally yields an
inscribed set of the quadric. The crucial task of this pro-
cedure is to find an appropriate generalization of closed
sets, which is closed under the involved projective trans-
formations and allows us to recover the non-projective
equivalents to the inscribed sets obtained by our ap-
proach. It turns out that complete projective embed-
dings are the requested generalizations.

1 Introduction

During our research for an efficient method to gener-
ate inscribed H-polyhedra of quadrics, we developed
the notion of complete projective embeddings of closed
sets. A complete projective embedding of a closed con-
vex set P ⊆ Kd is essentially a double cone in Kd+1

that is obtained by translating P onto the hyperplane
{
(
x
λ

)
| λ = 1} ⊆ Kd+1 and consists of all lines joining the

origin and some point of the translated set. Certainly,
we can always recover the original set by restricting the
double cone to its intersection with the designated hy-
perplane {

(
x
λ

)
| λ = 1}. As we shall apply linear maps

on the double cones, we are interested in what happens

∗This work has been partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Re-
search Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS, www.avacs.org).

†Department of Computer Science, Carl von Ossietzky Univer-
sity of Oldenburg, Germany. Correspond to {willem.hagemann,
eike.moehlmann}@informatik.uni-oldenburg.de.

to the intersections of the images with the designated
hyperplane – a question which is very similar to the
classical theory of conic sections. For the important case
where P is an H-polyhedron we obtain that each of this
intersections can be described by a union of two polyhe-
dra having representation matrices of certain symmetry.

In 2009 Gallier described the double cone representa-
tion of polyhedra which he calls projective polyhedra [5].
It turns out that projective polyhedra are complete pro-
jective embedding of polyhedral sets, and for these we
shall use both notions synonymously. In his introduction
he noted that “to the best of our knowledge, this notion
of projective polyhedron is new”. Although we neither
found any systematic work on this notion, we discov-
ered that projective polyhedra are closely related to the
sets of feasible solutions of linear fractional programs as
given by Charnes and Cooper [2] in 1962. This paper is
a contribution to show the theoretical and practicable
relevance of projective polyhedra and their generaliza-
tion – the complete projective embeddings of closed sets
– and aims for establishing them as independent objects
of investigation.

In the second part of the paper we show how com-
plete projective embeddings can be used to generate in-
scribed H-polyhedra in quadrics. The research is moti-
vated by a combination of reachability analysis and sta-
bility analysis for linear systems1: In reachability anal-
ysis of linear systems one typically computes tight over-
approximations of the reachable states until all trajec-
tories either leave the region of admissible states or a
trajectory enters a certain set Avoid. The computation
is based on a convex representation of flow segments
over a time interval of short length. The convex set
representation is highly compatible with H-polyhedra.
This holds for approaches using support functions as
well as for our particular approach where we have cho-
sen symbolic orthogonal projections as a representation
of polyhedral sets. Symbolic orthogonal projections al-
low an exact and efficient representation and evaluation
of typical geometric operations occurring in reachabil-
ity analysis, including Minkowski sums, convex hulls,
intersections, and arbitrary affine transformations [7].

On the other hand, stability analysis provides Lya-
punov functions in terms of quadratic forms. For each

1Actually we deal with hybrid systems. However, for an expla-
nation of our motivation it suffices to restrict to linear systems.
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admissible state of the system the value of this quadratic
form is positive and decreases monotonically along each
trajectory where the value of the equilibrium point is
0. A level set of a quadratic form consists of all states
whose value is below a certain level. Hence, its bound-
ary is given by a quadric. Assume, there exists a lower
bound b on the value of the quadratic form for all states
in Avoid. If the current flow segment is completely
located within a level set of level b, we conclude that
there will no further intersection with Avoid, and we
may stop the reachability analysis. Alas, while there ex-
ists efficient methods to check whether the current flow
segment – either represented by support functions or
symbolic orthogonal projections – is contained in an H-
polyhedron, we have no efficient method to test whether
the current flow segment is contained in a level set.
Hence, we use an inner approximation of the level set
in terms of an H-polyhedron to assess the inclusion of
the current flow segment instead. For further details we
point the interested reader to [8].

2 Preliminaries

By K we denote an arbitrary ordered field. The cor-
responding euclidean field is denoted by E. A closed
convex polyhedron P is the set P = P (A,a) =
{x |Ax ≤ a}. In the following the term polyhedron will
always refer to a closed convex polyhedron. Vectors and
sets of vectors are denoted by bold letters. All coeffi-
cients of the vectors 0 and 1 are 0 or 1, respectively.
We use the superscript T to indicate the transpose of
a vector or matrix. The notion A−T denotes the trans-
pose of the inverse of the matrix A. The coefficients of
a d-dimensional vector x are denoted by x1, . . . , xd.

2.1 Projective Space

We give a short introduction into projective geometry
as it can be found in many textbooks like [6, 1]. The
projective space Projd(K) induced by K can be identi-
fied with the set Kd+1 \ {0} where two vectors x, y are
projectively equal if and only if there exists some λ 6= 0
such that x = λy, formally

x =p y ⇐⇒ ∃λ 6= 0: x = λy. (1)

The injective mapping ι: Kd → Projd(K), x 7→
(
x
1

)

defines the canonical embedding of Kd into the pro-
jective space Projd(K). On the other hand, any point(
x
λ

)
∈ Projd(K) either represents the point 1

λx in Kd if

and only if λ 6= 0, or
(
x
λ

)
represents a point at infin-

ity, which is a point that has no corresponding point
in Kd. Actually,

(
x
0

)
represents limλ→0+

1
λx, which co-

incides with limλ→0−
1
λx by projective equality.

3 Complete Projective Embeddings

The classical approach allows us to treat projective sets
as subsets of Kd+1 \ {0}, but it has a drawback: Due to
the existential quantifier in (1) it is laborious to assess
projective subset relations in Kd+1\{0}. We shall intro-
duce the notion of projective completeness, which allows
us to assess projective subset relations in a simple way.
The projective vector space Projd(K) is canonically em-
bedded in the vector space Kd+1 \ {0} and, hence, also
embedded in Kd+1.

Definition 1 Let P be a subset of Kd+1. If (i) 0 ∈ P
and (ii) x ∈ P implies that λx ∈ P for all λ ∈ K, then
we call P projectively complete.

Definition 2 Let P be a closed set, and let P̃ be the
least closed and projectively complete set with ι(P) ⊆ P̃.
The set P̃ is called the complete projective embedding
of P.

Hence, the projectively complete embedding P̃ of P al-
ways contains 0 and all projective representations

(
x
λ

)
,

λ 6= 0, of a point x ∈ P. Furthermore, since the union of
two closed sets P1 and P2 is closed again, the complete
projective embedding of P1 ∪ P2 is the union P̃1 ∪ P̃2

of the complete projective embeddings P̃1 and P̃2.

Proposition 3 Let P, Q be two closed sets and P̃, Q̃
their complete projective embeddings. Then P ⊆ Q if
and only if P̃ ⊆ Q̃.

Proof. Assume P ⊆ Q holds. Let
(
x
λ

)
∈ P̃. In the case

λ 6= 0 we have 1
λx ∈ P. Since P ⊆ Q, we also have 1

λx ∈
Q. The set Q̃ is the complete projective embedding of
Q. Hence,

(
x
λ

)
∈ Q̃. In the case λ = 0 we either have

x = 0 and
(
x
λ

)
=

(
0
0

)
is trivially contained in Q̃, or there

exists a sequence
((

xi

λi

))
i∈N ⊆ P̃ with limi→∞

(
xi

λi

)
=

(
x
0

)

and λi 6= 0 for all i ∈ N since P̃ is the least closed
and projective complete set containing ι(P). We already
have seen that any

(
xi

λi

)
∈ P̃ with λi 6= 0 is also in Q̃.

Furthermore, Q̃ is closed. Hence,
(
x
0

)
∈ Q̃. We have

shown that P ⊆ Q implies P̃ ⊆ Q̃.
On the other hand, assume P̃ ⊆ Q̃. Let x ∈ P. Then(

x
1

)
∈ P̃ and P̃ ⊆ Q̃ implies

(
x
1

)
∈ Q̃. Hence, x ∈ Q. We

have shown that P̃ ⊆ Q̃ implies P ⊆ Q. �

Proposition 4 Let P = P (A,a) =
{
x ∈ Kd

∣∣Ax ≤ a
}

be a polyhedron, and let P̃ = P1 ∪P2, where

P1 = P

((
A −a
0T −1

)
,

(
0
0

))
,

P2 = P

((
−A a
0T 1

)
,

(
0
0

))
.

Then P̃ is the complete projective embedding of P.
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Proof. Obviously, we have ι(P) ⊆ P1 ⊆ P̃.
We show that P̃ is projectively complete. Obviously,(

0
0

)
∈ P̃. Let

(
x
λ

)
∈ P̃, i. e., Ax − λa ≤ 0, −λ ≤ 0 or

−Ax+ λa ≤ 0, λ ≤ 0. Let µ ∈ K. Either we have µ ≥ 0
or µ < 0. In both cases we obtain Aµx − µλa ≤ 0,
−µλ ≤ 0 or −Aµx+ µλa ≤ 0, µλ ≤ 0. Hence,

(
x
λ

)
∈ P̃

implies µ
(
x
λ

)
∈ P̃ for all µ ∈ K.

We show that P̃ is a closed set. Let
((

xi

λi

))
i∈N be a

sequence with
(
xi

λi

)
∈ P̃ for all i ∈ N and limi→∞

(
xi

λi

)
=(

x
λ

)
. We have to show that

(
x
λ

)
∈ P̃. In the case λ 6= 0

let J be the set of all indices i where λi 6= 0. Then
( 1
λi
xi)i∈J is an infinite sequence of members in P which

converges to 1
λx. The polyhedron P is closed, hence

1
λx ∈ P and

(
x
λ

)
∈ P̃. Let λ = 0. Either we have an

infinite subset J ⊆ N such that λi = 0 for all i ∈ J .
Then Axi ≤ 0 or −Axi ≤ 0 for all i ∈ J . The sets
{y |Ay ≤ 0} and {y | −Ay ≤ 0} are closed, and so is
their union. It follows Ax ≤ 0 or −Ax ≤ 0 and by
definition of P̃ also

(
x
0

)
∈ P̃. Otherwise, there exists

an index i0 with λi 6= 0 for all i ≥ i0. The remaining
sequence

((
xi

λi

))
i≥i0

has the same limes. Hence, with-

out loss of generality, we may assume λi 6= 0 for all
i ∈ N. Setting yi = xi − λi

λ0
x0 yields the equalities(

yi

0

)
=

(
xi

λi

)
− λi

λ0

(
x0

λ0

)
for all i ∈ N. Since limi→∞ λi = 0

and limi→∞ xi = x, we obtain limi→∞
λi

λ0
x0 = 0 and

limi→∞
(
yi

0

)
= limi→∞

(
xi

λi

)
− limi→∞

λi

λ0

(
x0

λ0

)
=

(
x
0

)
.

Hence,
(
yi

0

)
is a sequence with limi→∞

(
yi

0

)
=

(
x
0

)
where

the last coefficient of all members is equal to zero. For
this case we already have shown that

(
x
0

)
∈ P̃.

It remains to show that P̃ is the least closed set which
includes ι(P) and is projectively complete. Assume, P̃′

is an arbitrary closed set that includes ι(P) and is pro-
jectively complete. We have to show that any

(
x
λ

)
∈ P̃

is also contained in P̃′. Therefore, let
(
x
λ

)
∈ P̃. In the

case λ 6= 0 we have 1
λx ∈ P. Then 1

λx ∈ ι(P) and,

hence, 1
λx ∈ P̃′. Since P̃′ is projectively complete, it

follows
(
x
λ

)
∈ P̃′. In the case λ = 0 we have Ax ≤ 0 or

−Ax ≤ 0. Hence, for all y ∈ P, i. e., Ay ≤ a, we have
y+µx ∈ P for all µ ≥ 0 or y+µx ∈ P for all µ ≤ 0. The
set P̃′ includes ι(P), hence,

(
y+µx

1

)
∈ P̃′ for all µ ≥ 0 or(

y+µx
1

)
∈ P̃′ for all µ ≤ 0. In the former case let µi = i

and in the latter case let µi = −i. Since P̃′ is projec-
tively complete, we have 1

µi

(
y+µix

1

)
∈ P̃′ for all i ≥ 1.

Hence, limi→∞ 1
µi

(
y+µix

1

)
= limi→∞

( 1
µi

y+x
1
µi

)
=

(
x
0

)
.

Since P̃′ is closed, it follows
(
x
0

)
∈ P̃′. �

Proposition 5 Let P̃ be the union of two cones

P̃ = P
((
A −a

)
,0

)
∪P

((
−A a

)
,0

)
.

Then P̃ is the complete projective embedding of
P (A,a) ∪P (−A,−a).

Proof. Let R̃ be the complete projective embedding of
P (A,a) ∪P (−A,−a), i. e.,

R̃ = P

((
A −a
0T −1

)
,

(
0

0

))
∪P

((
−A a
0T 1

)
,

(
0

0

))
∪

P

((
−A a
0T −1

)
,

(
0

0

))
∪P

((
A −a
0T 1

)
,

(
0

0

))

= P
((
A −a

)
,0

)
∪P

((
−A a

)
,0

)
.

Hence, R̃ = P̃. �

Any complete projective embedding P̃ of the form P̃ =
P
((
A −a

)
,0

)
∪P

((
−A a

)
,0

)
is a double cone. Gal-

lier calls these double cones projective polyhedra [5]. In
the following we shall make use of his nomenclature.
Note that the transition from the projective polyhe-
dron P̃ = P

((
A −a

)
,0

)
∪ P

((
−A a

)
,0

)
⊆ Kd+1

to P (A,a) ∪ P (−A,−a) ⊆ Kd geometrically corre-
sponds to the intersection of P̃ with the hyperplane{(

x
λ

) ∣∣λ = 1
}
⊆ Kd+1.

Lemma 6 Any linear map φ : Kd+1 → Kd′+1 is com-
patible with projective equality =p.

Proof. Let u,v ∈ Projd(K) with u =p v, i. e., there
exists some λ 6= 0 with u = λv. Then φ(u) = φ(λv) =
λφ(v), hence φ(u) =p φ(v). �

Definition 7 Let φ : Kd+1 → Kd+1 be a bijective linear
map. Then φ is called a projectivity.

Proposition 8 The class of projective polyhedra is
closed under projectivities. It is also closed under lin-
ear maps φ : Kd+1 → Kd′+1.

Proof. The proof is obvious since the image of a closed
convex cone is a closed convex cone again. �

In case of a projectivity φ let M be its transforma-
tion matrix. Then we can explicitly state the follow-
ing formula for the image of a projective polyhedron
P̃ = P

((
A −a

)
,0

)
∪P

((
−A a

)
,0

)
:

MP̃ = P
((
A −a

)
M−1,0

)
∪P

((
−A a

)
M−1,0

)
.

Notes on Projective Polyhedra. During our research
we found the following interesting properties of projec-
tive polyhedra:

(i) The class of projective polyhedra is not closed un-
der intersections [5].

(ii) There is a close relationship between projective
polyhedra and the set of feasible solutions of the
linear fractional program

maximize
cTx+ α

dTx+ β
subject to Ax ≤ a.

33



27th Canadian Conference on Computational Geometry, 2015

Under the regularity conditions that {x | Ax ≤ a}
is bounded and not empty, Charnes and Cooper [2]
show that it suffices to solve the two linear pro-
grams

maximize cTy + αλ subject to

Ay − aλ ≤ 0,dTy + βλ = 1, λ ≥ 0

maximize cTy + αλ subject to

−Ay + aλ ≤ 0,dTy + βλ = 1, λ ≤ 0.

It is not hard to see that the intersection of the pro-
jective embedding P

((
A,−a

)
,0

)
∪P

((
−A,a

)
,0

)

ofP (A,a) with the hyperplane {
(
x
λ

)
|
(
d
β

)T (x
λ

)
= 1}

corresponds to the set of feasible solutions of the
linear programs above. Moreover, projective poly-
hedra allow us to drop the regularity conditions.

In the remainder of this section we return to general,
non-polyhedral complete projective embeddings.

Proposition 9 Let Q =
{
x
∣∣xTQx ≤ c2

}
be a quadric.

Further, let

Q̃ =

{(
x
λ

) ∣∣∣∣∣

(
x
λ

)T (
Q 0
0T −c2

)(
x
λ

)
≤ 0

}
.

Then Q̃ is the complete projective embedding of Q.

Proof. Obviously, Q̃ includes ι(Q). Furthermore,(
x
λ

)T( Q 0

0T −c2

)(
x
λ

)
≤ 0 implies µ

(
x
λ

)T( Q 0

0T −c2

)
µ
(
x
λ

)
≤ 0

for all µ ∈ K. Hence, Q̃ is projectively complete.
We show that Q̃ is closed. Let

((
xi

λi

))
i∈N be a con-

vergent sequence with
(
xi

λi

)
∈ Q̃ for all i ∈ N and

limi→∞
(
xi

λi

)
=

(
x
λ

)
. Assume, λ 6= 0. Let J be the set

of all indices where λi 6= 0. Then
(( 1

λi
xi

1

))
i∈J

is an in-

finite sequence which converges to
( 1

λx
1

)
. Furthermore,

for all i ∈ J we have 1
λi

∈ Q. Since Q is closed, we

have 1
λx ∈ Q. Hence,

( 1
λx
1

)
∈ ι(Q) and, by projective

completeness,
(
x
λ

)
∈ Q̃. Assume, λ = 0. Either we have

an infinite subset J ⊆ N such that xT
i Qxi ≤ 0 for all

i ∈ J . The set
{
y
∣∣yTQy ≤ 0

}
⊆ Q is closed. Hence,

xTQx ≤ 0 and
(
x
0

)T( Q 0

0T −c2

)(
x
0

)
≤ 0. That is,

(
x
0

)
∈ Q̃.

Otherwise, there exists an index i0 with λi 6= 0 for all
i ≥ i0. The remaining infinite sequence

((
xi

λi

))
i≥i0

has

the same limes and without loss of generality we may as-
sume that i = 0. Setting yi = xi− λi

λ0
x0 yields the equal-

ities
(
yi

0

)
=

(
xi

λi

)
− λi

λ0

(
x0

λ0

)
for all i ∈ N. Since limi→∞ λi =

0 and limi→∞ xi = x, we obtain limi→∞
λi

λ0
x0 = 0

and limi→∞
(
yi

0

)
= limi→∞

(
xi

λi

)
− limi→∞

λi

λ0

(
x0

λ0

)
=

(
x
0

)
.

Hence,
(
yi

0

)
is a sequence with limi→∞

(
yi

0

)
=

(
x
λ

)
where

the last coefficient of the members is equal to zero. For
this case we already have shown that

(
x
0

)
∈ Q̃.

It remains to show that Q̃ is the least closed projec-
tively complete set which contains ι(Q). Assume Q̃′ is
another closed projectively complete set that contains
ι(Q). We have to show that any

(
x
λ

)
∈ Q̃ is also in

Q̃′. Therefore, let
(
x
λ

)
∈ Q̃, i. e., xTQx ≤ λ2c2. In the

case λ 6= 0 we have 1
λx ∈ Q and, hence

( 1
λx
1

)
∈ ι(Q).

The set Q̃′ includes ι(Q) and is projectively complete.
Hence,

(
x
λ

)
∈ Q̃′. Otherwise, we have λ = 0, i. e.,

xTQx ≤ 0. Then for any µ we have µxTQµx ≤ 0.
Let µi = i. Since 0 ≤ c2, we have µix ∈ Q for all
i ≥ 1. Further, since ι(Q) ∈ Q̃′ and Q̃′ is projectively
complete, we also have 1

µi

(
µix
1

)
=

(
x
1
µi

)
∈ Q̃′. We obtain

limi→∞
(

x
1
µi

)
=

(
x
0

)
∈ Kd+1. Since Q̃′ is closed, it follows

(
x
λ

)
=

(
x
0

)
∈ Q̃′. �

4 Inner Approximation of a Quadric

In the following we show how to find an inner polyhedral
approximation of a quadricQ =

{
x
∣∣xTQx ≤ c2

}
⊆ Ed.

Without loss of generality we may assume that Q is a
symmetric matrix.2 We will show that it suffices to pro-
vide an inscribed polyhedron of the unit sphere in any
dimension to find an inner approximation of the quadric.
For example, for any dimension d the polyhedron

B(d) = P
((

I
−I

)
, 1√

d
( 11 )

)
=

{
x
∣∣∣x ≤ 1√

d
1,−x ≤ 1√

d
1
}

is an inscribed hypercube of the hyperball

Sd =
{
x
∣∣xTx ≤ 1

}
=

{
x
∣∣x2

1 + x2
2 + · · ·+ x2

d ≤ 1
}
.

Proposition 10 (Principal Axis Transformation)
Let Q =

{
x
∣∣xTQx ≤ c2

}
be a quadric in Ed where Q

is a symmetric matrix. Further, let

Q̃ =

{(
x

λ

) ∣∣∣∣∣

(
x

λ

)T

Q̃

(
x

λ

)
≤ 0

}
with Q̃ =

(
Q 0
0T −c2

)

be the complete projective embedding of Q in Ed+1. Then
there exists an invertible matrix L and a diagonal matrix

E =
(

I O O
O O O
O O −I

)
such that Q̃ = LELT .

While the matrix L is in general not unique, the matrix
E is uniquely determined by Sylvester’s law of inertia.
If Q is positive semidefinite, then E has exactly one
negative entry.

Proof. Symmetric Gaussian elimination yields an in-
vertible diagonal matrix D = diag(d1, . . . , dd+1) =
UQ̃UT where U represents the row operations and the

2Otherwise, let Q̂ = 1
2
(Q + QT ), i. e., xT Q̂x = 1

2
(xTQx +

xTQTx) = 1
2
(xTQx+(xTQTx)T ) = 1

2
(xTQx+xTQx) = xTQx

for all x, and use Q̂ instead of Q.
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transposed matrix UT represents the corresponding col-
umn operations. We normalize the elements of D by
multiplying with the matrix S = diag(s1, . . . , sd+1) =
ST , where each si is defined as si = 1 if di = 0, or si =

1√
|di|

if di 6= 0. Then SDST = SUQ̃UTST is a diagonal

matrix whose entries are 1, −1 or 0. Finally, we sort
the entries of the diagonal matrix SDST in descend-
ing order, yielding a row permutation matrix P and
a corresponding column permutation matrix PT and

E =
(

I O O
O O O
O O −I

)
= PSDSTPT = PSUQ̃UTSTPT . Since

P , S, and U are invertible, we define L = (PSU)−1 and
obtain the factorization Q̃ = LELT . �

Note that the decomposition Q̃ = LELT as given above
is only possible in a projective vector space. In a non-
projective setting we would obtain a richer variety of
resulting forms.

Let Q, Q̃, Q, Q̃, and L, E be given as in Prop. 10.
We define

(
y
µ

)
= LT

(
x
λ

)
and obtain the identity xTQx−

λ2c2 =
(
x
λ

)T
Q̃
(
x
λ

)
=

(
x
λ

)T
LELT

(
x
λ

)
=

(
y
µ

)T
E
(
y
µ

)
. Hence,

the base transformation matrix L transforms the pro-
jective quadric Q̃ into a projective hyperboloid of the

form H̃ =
{(

y
µ

) ∣∣∣
(
y
µ

)T
E
(
y
µ

)}
.

We explain how to find an inner approximation of
the projective hyperboloid H̃. Application of the inverse
base transformation finally yields (a union of two) in-
scribed polyhedra of Q. Let k the number of 1s, l the
numbers of 0s, and m the number of −1s in E, with
k + l+m = d+ 1. According to Sylvester’s law of iner-
tia, k, l, and m are uniquely determined by Q.

We characterize the solutions
(
y
µ

)
of

(
y
µ

)T
E
(
y
µ

)
≤ 0,

or equivalently:

y21 + · · ·+ y2k − y2k+l+1 − · · · − y2d − µ2 ≤ 0. (2)

We have the following mutual exclusive cases:

(i) If k = 0, then H̃ = Ed+1, i. e., H̃ is the complete
projective embedding of the entire vector space Ed.

(ii) If k = d+1, then H̃ = {0}, i. e., H̃ is the complete
projective embedding of the empty set.

(iii) If 0 < k < d+1 andm = 0, then H̃ = {0}k×Ed−k×
E, i. e., H̃ is the complete projective embedding of
the subspace {0}k × Ed−k.

(iv) If 0 < k < d + 1 and m = 1, then H̃ = {
(
y
µ

)
|

yT ( I O
O O )y ≤ µ2} is the complete projective embed-

ding of the cylinder Sk×Ed−k. Let T(k) = P (A,a)
be an inscribed polyhedron of Sk. The cylindri-
fication T(k) × Ed−k of T(k) is given by P =
P
((
A O

)
,a

)
. We have P ⊆ Sk × Ed−k. Accord-

ing to Prop. 3 the subset relation carries over to
the complete projective embeddings P̃ ⊆ H̃, where

P̃ = P
((

A O −a

0T 0T −1

)
,
(
0
0

))
∪ P

((
−A O a

0T 0T 1

)
,
(
0
0

))
.

Hence, after application of the base transforma-
tion L−T on P̃ we obtain a union of polyhedra
LT (P̃) = P

((
A1 −a1

)
,0

)
∪ P

((
−A1 a1

)
,0

)

with LT (P̃) ⊆ Q̃ and the matrices are given by(
A1 −a1

)
=

(
A O −a

0T 0T −1

)
LT and

(
−A1 a1

)
=

(
−A O a

0T 0T 1

)
LT . According to Prop. 5, LT (P̃) is the

complete projective embedding ofR = P (A1,a1)∪
P (−A1,−a1). Furthermore, by Prop. 3 we have
R ⊆ Q.

(v) Otherwise, we have 0 < k < d+1 and m > 1. Now,
let E′ be the matrix which is obtained by replacing
all but the last occurrence of −1 in E by 0, i. e.,
E′ = diag(1, . . . , 1, 0, . . . , 0,−1). Any solution of(
y
µ

)T
E′(y

µ

)
≤ 0 is also a solution of (2), since for all

y1, . . . , yd it holds y
2
1+· · ·+y2k ≥ y21+· · ·+y2k−y2k+l−

· · ·− y2d. Hence, H̃
′ =

{(
y
µ

) ∣∣∣
(
y
µ

)T
E′(y

µ

)
≤ 0

}
is the

complete projective embedding of the cylinder Sk×
Ed−k and H̃′ ⊆ H̃. Now, we proceed like in the
previous item, where we use E′ and H̃′ instead of
E and H̃.
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Figure 1: Hexagon Inscribed in Hyperbola xy ≥ 1

5 Generating Polytopes With Circumsphere

In this section we discuss the problem of generating
polytopes with circumsphere of arbitrary dimensions.

Obviously, the convex hull of several sampling points
v1, . . . , vn on the boundary of the d-dimensional hyper-
ball S results in an inscribed V-polytope P. Hence, to
obtain the corresponding H-representation, we had to
perform a costly facet-enumeration and lose control on
the number of facets of the resulting H-representation.
Instead, we are interested in methods which allow us to
generate inscribed H-polytopes directly. We abandon
the idea of taking samples and provide a more regular
way to generate inscribed H-polyhedra. An interesting
class of polytopes with circumsphere is the class of uni-
form polytopes [4, 3] which includes the class of regular
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polytopes. A complete enumeration of uniform polyhe-
dra is only known in low dimensions. In two dimensions
the uniform polytopes are the infinitely many regular
polygons. In three dimensions the uniform polytopes
cover the five Platonic solids, the 13 Archimedean solids,
and the infinite set of prisms and antiprisms. In all di-
mensions the class of uniform polytopes contains the
regular simplex, the hypercube, and the cross polytope.
A d-dimensional simplex has only d+ 1 facets and ver-
tices, which is certainly insufficient to provide a good in-
ner approximation of a sphere. The d-dimensional cross
polytope has 2d facets and 2d vertices. Hence, the re-
sulting H-polytopes are only feasible in lower dimen-
sions. The dual of a d-dimensional cross polytope is the
d-dimensional hypercube having 2d facets and 2d ver-
tices. Apparently, the hypercube is well suited for com-
putational purposes, but still may have too less facets
to provide a good inner approximation of the sphere.

Hence, it is desirable to have a regular method which
allows us to generate a richer variety of uniform poly-
topes. The next proposition provides such a method.

Proposition 11 Given a polytope P1 = P (A1,a1) ∈
Kd1 with unit circumsphere Sd1 and a polytope P2 =
P (A2,a2) ∈ Kd2 with unit circumsphere Sd2 . Then for
any α > 0, β > 0 with α2 + β2 = 1 the weighted cross
product

P = αP1 × βP2 = {( xy ) |x ∈ αP1, y ∈ βP2}
= P

((
A1 O
O A2

)
,
( αa1

βa2

))

is a polytope in Kd1+d2 with unit circumsphere Sd1+d2 .
Furthermore, let f1, f2 be the number of facets of P1

and P2, and let v1, v2 be the number of vertices of P1

and P2. Then P has f1 + f2 facets and v1v2 vertices.

Proof. The statement on the number of vertices and
facets is rather obvious and belongs to mathemati-
cal folklore. We show that P has the circumsphere
Sd1+d2 . That is, for any vertex

(
αxi

βyj

)
, i = 1, . . . , v1,

j = 1, . . . , v2 of P we have
∣∣∣
(
αxi

βyj

)∣∣∣ =
(
αxi

βyj

)T (αxi

βyj

)
=

α2xT
i xi + β2yT

j yj = α2 + β2 = 1. �

Clearly, the previous proposition can be generalized to
the weighted cross product of finitely many circum-
scribed polytopes. For example, the d-dimensional hy-
percube is the d-fold weighted cross product of the line
segments [−1, 1] with weight α = 1√

d
.

6 Conclusion

We discussed a projective generalization of closed sets
which coincides in the case of polyhedral closed set with

Gallier’s projective polyhedra and the set of feasible so-
lutions of a linear fractional program. Within this frame-
work we used projective base transformation to generate
inscribed H-polyhedra of arbitrary quadrics provided
we have given inscribed H-polyhedra of the unit sphere.
Finally, we discussed an easy method to generate in-
scribed polyhedra of a higher dimensional sphere out of
inscribed polyhedra of spheres of lower dimension.

We have not discussed any quantifiable predication
on the quality of the approximation, like ratio of the
volumes or Hausdorff distance of both sets. Although
it would be interesting to have some measure for the
quality of the approximation, both notions are not well-
defined for unbounded sets which may occur in our set-
ting. However, for our purpose – finding inner approx-
imation of a level set – the presented approach turned
out to work well and there was no need to extend our
very limited selection of template polyhedra with cir-
cumsphere.
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1-String B1-VPG Representations of Planar Partial 3-Trees
and Some Subclasses

Therese Biedl∗ Martin Derka†

Abstract

Planar partial 3-trees are subgraphs of those planar
graphs obtained by repeatedly inserting a vertex of de-
gree 3 into a face. In this paper, we show that planar
partial 3-trees have 1-string B1-VPG representations,
i.e., representations where every vertex is represented
by an orthogonal curve with at most one bend, every
two curves intersect at most once, and intersections of
curves correspond to edges in the graph. We also show
that some subclasses of planar partial 3-trees have {L}-
representations, i.e., a B1-VPG representation where
every curve has the shape of an L.

1 Introduction

A string representation is a representation of a graph
where every vertex v is assigned a curve v. Vertices u, v
are connected by an edge if and only if curves u,v inter-
sect. A 1-string representation is a string representation
where every two curves intersect at most once.

String representations of planar graphs were first in-
vestigated by Ehrlich, Even and Tarjan in 1976 [12].
They showed that every planar graph has a 1-string
representation using “general” curves. In 1984, Schein-
erman conjectured [18] that every planar graph has
a 1-string representation, and furthermore curves are
line segments (not necessarily axis-parallel). Chalopin,
Gonçalves and Ochem [7, 8] proved that every planar
graph has a 1-string representation in 2007. Scheiner-
man’s conjecture itself remained open until 2009 when
it was proved true by Chalopin and Gonçalves [6].

Our paper investigates string representations that use
orthogonal curves, i.e., curves consisting of vertical and
horizontal segments. If every curve has at most k bends,
these are called Bk-VPG representations. The hierar-
chy of Bk-VPG representations was introduced by Asi-
nowski et al. [1, 2]. VPG is an acronym for Vertex-
Path-Grid since vertices are represented by paths in a
rectangular grid.

It is easy to see that all planar graphs are VPG-graphs
(e.g. by generalizing the construction of Ehrlich, Even
∗David R. Cheriton School of Computer Science, University of

Waterloo, biedl@uwaterloo.ca. Research supported by NSERC.
†David R. Cheriton School of Computer Science, University

of Waterloo, mderka@uwaterloo.ca. Research supported by an
NSERC Vanier CGS.

and Tarjan). For bipartite planar graphs, curves can
even be required to have no bends [17, 11]. For arbitrary
planar graphs, bends in orthogonal curves are required.
Chaplick and Ueckerdt showed that 2 bends per curve
always suffice [10]. In a recent paper we strengthened
this to give a B2-VPG representation that is also a 1-
string representation [3].

Bk-VPG representations were further studied by
Chaplick, Jelínek, Kratochovíl and Vyskočil [9] who
showed that recognizing Bk-VPG graphs is NP-
complete even when the input graph is given by a Bk+1-
VPG representation, and that for every k, the class of
Bk+1-VPG graphs is strictly larger than Bk-VPG.

Our Contribution Felsner et al. [14] showed that every
planar 3-tree has a B1-VPG representation. Moreover,
every vertex-curve has the shape of an L (we call this an
{L}-representation). This implies that any two vertex-
curves intersect at most once, so this is a 1-string B1-
VPG representation. In this paper, we extend the result
to more graphs, and in particular, show:

Theorem 1 Every planar partial 3-tree G has a 1-
string B1-VPG representation.

There are 4 possible shapes of orthogonal curves with
one bend. Depending on where the bend is situated,
we call them L, L, Land Lrespectively. Note that a
horizontal or vertical curve without bends can be turned
into any of the shapes by adding one bend.

The construction of our proof of Theorem 1 uses all 4
possible shapes L, L, L, L. However, for some subclasses
of planar partial 3-trees, we can show that fewer shapes
suffice. We use the notation {L, L}-representation for a
B1-VPG representation where all curves are either L orL, and similarly for other subsets of shapes. We can
show the following:

Theorem 2 Any IO-graph has an {L}-representation.

Theorem 3 Any Halin-graph has an {L, L}-
representation, and only one vertex uses a L-shape.

We give the definitions of these graph classes and the
proof of these theorems in the next three sections, and
end with open problems in Section 5.
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2 Planar partial 3-trees

A planar graph is a graph that can be drawn without
edge crossings. If one such drawing Γ is fixed, then a
face is a maximal connected region of R2−Γ. The outer
face corresponds to the unbounded region; the interior
faces are all other faces. A vertex is called exterior if it
is on the outer face and interior otherwise.

A 3-tree is a graph that is either a triangle or has a
vertex order v1, . . . , vn such that for i ≥ 4, vertex vi is
adjacent to exactly three predecessors and they form a
triangle. A partial 3-tree is a subgraph of a 3-tree.

Our proof of Theorem 1 employs the method of “pri-
vate regions” used previously for various string represen-
tation constructions [3, 8, 14]. We define the following:

Definition 1 (F-shape and rectangular shape)
An F-shaped area is a region bounded by a 10-sided
polygon with CW or CCW sequence of interior angles
90◦, 270◦, 90◦, 90◦, 270◦, 270◦, 90◦, 90◦, 90◦ and
90◦. A rectangle-shaped area is a region bounded by an
axis-aligned rectangle.

Definition 2 (Private region) Given a 1-string rep-
resentation, a private region of vertices {a, b, c} is an
F-shaped or rectangle-shaped area that intersects (up to
permutation of names) curves a,b, c in the way depicted
in Figure 1(a), and that intersects no other curves and
private regions.

a

b

c

a

c b

b

(a)

a

c

b

(b)

Figure 1: (a) An F-shaped (left) and rectangle-shaped
(right) private region of {a, b, c}. (b) The base case.
Intersections among {a,b, c} can be omitted as needed.

Now we are ready to prove Theorem 1. Let G be a
planar partial 3-tree. By definition, there exists a 3-tree
H for which G is a subgraph. One can show [4] that we
may assume H to be planar. Let v1, . . . , vn be a vertex
order of H such that for i ≥ 4 vertex vi is adjacent to
3 predecessors that form a triangle. In particular, v4 is
incident to a triangle formed by {v1, v2, v3}. One can
show (see e.g. [4]) that the vertex order can be chosen
in such a way that {v1, v2, v3} is the outer face of H in
some planar drawing.

For i ≥ 3, let Gi and Hi be the subgraphs of G (re-
spectively H) induced by vertices v1, . . . , vi. We prove
Theorem 1 by showing the following by induction on i:

Gi has a 1-string B1-VPG representation with
a private region for every interior face of Hi.

In the base case, i = 3 and G ⊆ K3 ' H. Construct a
representation R and find a private region for the unique
interior face of H as depicted in Figure 1(b).

Now consider i ≥ 4. By induction, construct a repre-
sentation R0 of Gi−1 that contains a private region for
every interior face of Hi−1.

Let {a, b, c} be the predecessors of vi inH. Recall that
they form a triangle. Since H is planar, this triangle
must form a face in Hi−1. Since {v1, v2, v3} is the outer
face of H (and hence also of Hi−1), the face into which
vi is added must be an interior face, so there exists an
interior face {a, b, c} in Hi−1. Let P0 be the private
region that exists for {a, b, c} in R0; it can have the
shape of an F or a rectangle.

Observe that in G, vertex vi may be adjacent to any
possible subset of {a, b, c}. This gives 16 cases (two
possible shapes, up to rotation and reflection, and 8
possible adjacencies).

In each case, the goal is to place a curve vi inside P0

such that it intersects exactly the curves of the neigh-
bours of vi in {a, b, c} and no other curve. Furthermore,
having placed vi into P0, we need to find a private re-
gion for the three new interior faces in Hi, that is, the
three faces formed by vi and two of {a, b, c}.
Case 1: P0 has the shape of an F. After possible
rotation / reflection of R0 and renaming of {a, b, c} we
may assume that P0 appears as in Figure 1(a). If (vi, a)
is an edge, then place a bend for curve vi in the region
above a. Let the vertical segment of vi intersect a and
(optionally) c. Let the horizontal segment of vi intersect
(optionally) the top occurrence of b. If (vi, a) is not an
edge but (vi, c) is an edge, then place a bend for vi in the
region below a, let the vertical segment of vi intersect c
and the horizontal segment of vi intersect (optionally)
b. Finally, if neither (vi, a) nor (vi, c) is an edge, then vi

is a horizontal segment in the region below a and above
c that (optionally) intersects b.

In all sub-cases, vi remains inside P0, so it cannot
intersect any other curve of R0. Private regions for the
newly created faces can be found as shown in Figure 2.

c

b

a

vi

c

b

a

vi

c

b

a

vi

Figure 2: Inserting curve vi into an F-shaped private
region. (Left) (vi, a) is an edge. (Middle) (vi, a) 6∈ E,
but (vi, c) ∈ E. (Right) (vi, a), (vi, c) 6∈ E.
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Case 2: P0 has the shape of a rectangle. After pos-
sible rotation / reflection of R0 and renaming of {a, b, c}
we may assume that P0 appears as in Figure 1(a). If
(vi, a) is an edge, then v is a vertical segment that inter-
sects a and (optionally) b and (optionally) c. If (vi, c)
is an edge, then symmetrically vi is a vertical segment
that intersects c and (optionally) b and a. Finally if
neither (vi, a) nor (vi, c) is an edge, then let v be a
horizontal segment between a and c with (optionally) a
vertical segment attached to create an intersection with
b.

In all cases, vi remains inside P0, so it cannot intersect
any other curve of R0. Private regions for the newly
created faces can be found as shown in Figure 3.

c

b

a

vi

vi

c

b

a

c

b

a

vi

Figure 3: Inserting curve vi into a rectangle-shaped
private region. (Left) (vi, a) is an edge. (Mid-
dle) (vi, a), (vi, c) 6∈ E, but (vi, b) ∈ E. (Right)
(vi, a), (vi, b), (vi, c) 6∈ E.

Theorem 1 now holds by induction. �

We note here that in our proof-approach, both types
of private regions and all four shapes with one bend are
required in some cases.

3 IO-Graphs

An IO-graph [13] is a 2-connected planar graph with a
planar embedding such that the interior vertices form a
(possibly empty) independent set. One can easily show
[13] that every IO-graph is a planar partial 3-tree.

We now prove Theorem 2 by constructing an {L}-
representation of an IO-graph G. Let O be the set of
exterior vertices; by definition these induce an outer-
planar graph, i.e., a graph that can be embedded so
that all vertices are on the outer face. Moreover, since
G is 2-connected, the outer face is a simple cycle, and
hence the outerplanar graph G[O] is also 2-connected.
We first construct an {L}-representation of G[O], and
then insert the interior vertices. To do so, we again use
private regions, but we modify their definition slightly
in three ways: (1) Interior vertices may have arbitrarily
high degree, and so the private regions must be allowed
to cross arbitrarily many curves. (2) Interior vertices
may only be adjacent to exterior vertices. It therefore
suffices for the private region of a face f to intersect
only those curves that belong to exterior vertices on f .

x1

xd

xd−1

x2

x3

xd−2

Figure 4: An IO-private region. We require that the
supporting line of xi (for i = 2, . . . , k− 2) intersects the
upper segment of xd.

It is exactly this latter observation that allows us to find
private regions more easily, therefore use fewer shapes
for them, and therefore use fewer shapes for the curves.
We can therefore also add: (3) The private region must
be an F-shape, and it must be in the rotation F. The
formal definition is given below:

Definition 3 (IO-private region) Given a 1-string
representation of an IO-graph, an IO-private region of
a face f is an F -shaped area P , in the rotation F, which
intersects curves x1,x2, . . . ,xd as shown in Figure 4.
Here, {x1, . . . , xd} is a subset of the vertices of f enu-
merated in CCW order, and includes all exterior ver-
tices that belong to f (it may or may not include other
vertices). Lastly, P intersects no other curves and no
other private regions.

Lemma 4 Any outer planar graph has an {L}-
representation with an IO-private region for every in-
terior face.

Proof. We may assume that the outerplanar graph is
2-connected, otherwise we can add vertices to make it
so and delete their curves later. Enumerate the vertices
on the outer face as v1, . . . , vk in CCW order. For every
vertex vi on the outer-face, let vi be an L with bend at
(i,−i). The vertical segment of vi reaches until (i,−ri+
ε), where ri = min{j : (vj , vi) ∈ E}. (Use r0 = 0.) The
horizontal segment of vi reaches until (si + ε, i), where
si = max{j : (vj , vi) ∈ E}. (Use sk = k.) See also
Figure 5.

It is quite easy to see that this is a 1-string repre-
sentation. For every edge (vi, vk) with i < k we have
created an intersection at (k,−i). Assume for contra-
diction that vi and vk intersect for some (vi, vk) 6∈ E
with i < k. Then we must have s = max{j : (vi, vj) ∈
E} > k, else there is no intersection. Also r = min{j :
(vj , vk) ∈ E} < i, else there is no intersection. But
then {vi, vk, vs, vr}, together with the outer face, form
a K4-minor; this is impossible in an outer planar graph.
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v8

v9
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Figure 5: Example of an IO-graph and the {L}-
representation of G[O]. The IO-private regions are
shaded in grey.

Thus we found the {L}-representation. To find IO-
private regions, we stretch horizontal segments of curves
further as follows. For vertex vi, set ti = max{j : vi
and vj are on a common interior face}. If ti > si,
then expand vi horizontally until ti − ε. To see that
this does not introduce new crossings, observe that
adding (vi, vti) to the graph would not destroy outerpla-
narity, since the edge could be routed inside the common
face. The {L}-representation of such an expanded graph
would contain the constructed one and also contain the
added segment. Therefore the added segment cannot
intersect any other curves.

After stretching all curves horizontally in this way,
an IO-private region for each interior face f can then
be inserted to the left of the vertical segment of vj,
where vj is the vertex on f with maximal index; see
also Figure 5. �

Now we can prove Theorem 2, i.e., we can show that
every IO-graph G has an {L}-representation. Start with
the {L}-representation of G[O] of Lemma 4. We add the
interior vertices v1, . . . , vn−k to this in arbitrary order,
maintaining the following invariant:

For every interior face of the current graph
there exists an IO-private region.

Clearly this invariant holds for the representation of
G[O]. Let v be the next interior vertex to be added,
and let f be the face where it should be inserted. By
induction there exists a IO-private region P0 for face f
such that the curves x1, . . . ,xd that intersect P0 include
the curves of all exterior vertices that are on f , in CCW
order. We need to place an L-curve v into P0, intersect-

ing curves of neighbours of v and nothing else, and then
find IO-private regions for every newly created face.

Since the interior vertices form an independent set, all
neighbours of v are on the outer face, and hence belong
to {x1, . . . , xd}. Since G is 2-connected, v has at least
two such neighbours. We have two cases.

Case 1. If (v, xd) is not an edge, then v is a vertical
segment that extends from the topmost to the bottom-
most of the curves of its neighbours, and intersects these
curves after expanding them rightwards.

Since the order of x1, . . . ,xd is CCW around the
outer face, for every newly created face f ′ incident to v
we have a region inside P0 in which the curves of outer
face vertices on f ′ appear in CCW order. IO-private
regions for these faces can be found as shown in Fig-
ure 6(top). Note that some of these private regions in-
tersect v while others do not; both are acceptable since
v is on those faces, but not an exterior vertex.

x1

x2
x3

xd−1

xd

v

x1

xd

xd−1

x2

x3

v

x1

x2
x3

xd−1

xd

v

x1

xd

xd−1

x2

x3

v

x1

x2
x3

xd−1

xd

v

x1

xd

xd−1

x2

x3

v

Figure 6: Inserting a vertex into a face of an IO-graph.
(Top) v is not adjacent to xd. (Middle) v is adjacent
to xd, but not xd−1. (Bottom) v is adjacent to both xd

and xd−1.

Case 2. If (v, xd) is an edge, then v is an L, with
the bend below xd−1 if (v, xd−1) is an edge and above
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xd−1 otherwise. The vertical segment of v extends
from this bend to the topmost of v’s neighbours in
{x1, . . . ,xd−1}, and intersects the curves of these neigh-
bours after expanding them rightwards. The horizontal
segment extends as to intersect xd.

IO-private regions can again be found easily, see Fig-
ure 6(middle and bottom).

Repeating this insertion operation for all interior ver-
tices hence gives the desired representation of G. �

4 Halin graphs

A Halin-graph [16] is a graph obtained by taking a tree
T with n ≥ 3 vertices that has no vertex of degree 2 and
connecting the leaves in a cycle. Such graphs were orig-
inally of interest since they are minimally 3-connected,
but it was later shown that they are also planar partial
3-trees [5].

We now prove Theorem 3 and show that any Halin-
graph G has a { L,L}-representation. We note here that
our construction works even if T has some vertices of
degree 2. Fix an embedding of G such that the outer
face is the cycle C connecting the leaves of tree T . Enu-
merate the outer face as v1, . . . , vk in CCW order. Since
every exterior vertex was a leaf of T , vertex vk has de-
gree 3; let r be the interior vertex that is a neighbour of
vk. Root T at r and enumerate the vertices of T in post-
order as w1, . . . , wn, starting with the leaves (which are
v1, . . . , vk) and ending with r.

Let Gi be the graph induced by w1, . . . , wi. Call ver-
tex vj unfinished in Gi if it has a neighbour in G−Gi.
For i = k, . . . , n, we create an {L}-representation of
Gi − (v1, vk) that satisfies the following:

For any unfinished vertex v, curve v ends in
a horizontal ray, and the top-to-bottom order
of these rays corresponds to the CW order of
the unfinished vertices on the outer face while
walking from v1 to vk.

The {L}-representation of Gk − (v1, vk) (i.e., the path
v1, . . . , vk) is obtained easily by placing the bend for vi

at (i,−i), giving the vertical segment length 1 + ε and
leaving the horizontal segment as a ray as desired. To
add vertex wi for i > k, let x1, . . . , xd be its children in
T ; their curves have been placed already. Insert a ver-
tical segment for wi with x-coordinate i, and extending
from just below the lowest curve of x1, . . . ,xd to just
above the highest. The rays of x1, . . . ,xd end at x-
coordinate i + ε, while wi appends a horizontal ray at
its lower endpoint.

Since adding wi means that x1, . . . , xd are now fin-
ished (no vertex has two parents), the invariant holds.
Continuing until i = n yields an {L}-representation of
G− (v1, vk). It remains to add an intersection for edge
(v1, vk). To do so, we change the shape of v1. Observe

that its vertical segment was not used for any intersec-
tion, and that its horizontal segment can be expanded
until (n + 1,−1) without intersecting anything except
its neighbours. After this expansion, we add a vertical
segment going downward at its right end. Since vk is
a neighbour of r, curve vk ended when r was added,
i.e., at x-coordinate n + ε, and we can extend it until
x-coordinate n + 1 + ε. Hence v1 and vk can meet at
(n + 1,−k) if we change the shape of v1 to L. We have
hence proved Theorem 3. �
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v4
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Figure 7: Example of an extended Halin-graph and its
{L, L}-representation, obtained by changing the curve of
v1 so that it intersects vk.

Notice that in the construction for Halin-graphs, any
intersection of curves occurs near the end one of the two
curves. Our result therefore holds not only for Halin
graphs, but also for any subgraph of a Halin graph.

The natural question to ask is whether any Halin
graph has an {L}-representation, i.e., whether it is
possible to avoid the single L-shape that we used for
v1. In very recent work [15] done independently from
ours, Francis and Lahiri answered this question affirma-
tively and proved that every Halin graph has an {L}-
representation.

v1

v2

v3

v5

w7

w8

w9

v6

r

v4

Figure 8: {L}-representation, obtained by changing the
curve of r and vk, if r has no other neighbours on the
outer face.

5 Conclusion

In this paper, we studied 1-string VPG-representations
of planar graphs such that curves have at most one bend.
It is not known whether all planar graphs have such a
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representation, but curiously, also no planar graph is
known that does not have an {L}-representation. Fel-
sner et al. [14] asked whether every planar graph has a
{L, L}-representation since (as they point out) a positive
answer would provide a different proof of Scheinerman’s
conjecture. They proved this for planar 3-trees.

In this paper, we made another step towards their
question and showed that every planar partial 3-tree has
a 1-string B1-VPG representation. We also showed that
IO-graphs and Halin-graphs have {L}-representations,
except that for Halin-graphs one vertex curve might be
a L.

The obvious direction for future work is to show that
all planar partial 3-trees have {L}-representations, or
at least {L, L}-representations. As a first step, an in-
teresting subclass would be those 2-connected planar
graphs G where deleting the vertices on the outer face
leaves a forest; these encompass both IO-graphs and
Halin graphs.

Note that all representations constructed in this pa-
per are ordered, in the sense that the order of inter-
sections along the curves of vertices corresponds to the
order of edges around the vertex in a planar embed-
ding. This is not the case for the 1-string B2-VPG-
representations in our earlier construction [3]. One pos-
sible avenue towards showing that planar graphs do not
always have an {L}-representation is to restrict the at-
tention to ordered representations first. Thus, is there
a planar graph that has no ordered {L}-representation?
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Diversity Maximization via Composable Coresets
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Abstract

Given a set S of points in a metric space, and a diver-
sity measure div(·) defined over subsets of S, the goal
of the diversity maximization problem is to find a sub-
set T ⊆ S of size k that maximizes div(T ). Motivated
by applications in massive data processing, we consider
the composable coreset framework in which a coreset
for a diversity measure is called α-composable, if for
any collection of sets and their corresponding coresets,
the maximum diversity of the union of the coresets α-
approximates the maximum diversity of the union of the
sets. We present composable coresets with near-optimal
approximation factors for several notions of diversity,
including remote-clique, remote-cycle, and remote-tree.
We also prove a general lower bound on the approxi-
mation factor of composable coresets for a large class of
diversity maximization problems.

1 Introduction

The diversity maximization problem—finding a subset
of k points to maximize some function of the inter-point
distances—is a fundamental problem in location the-
ory [20,21] and has received considerable attention over
the past few years, due to its application to search re-
sult diversification [5, 6, 14]. Various notions of diver-
sity have been studied in the literature, most of which
are proved to be NP-hard in both metric and geomet-
ric settings, and hence, the focus has been on providing
efficient approximation algorithms. Among the most
well-studied diversity problems are remote-edge, whose
objective is to maximize the minimum distance in the k-
subset [7,11,22], and the remote-clique problem, whose
aim is to maximize the average distance [8, 12, 13, 18].
There are also some results on maximizing other com-
binatorial structures such as minimum spanning trees
and minimum-weight tours [10,16].

Motivated by applications in massive data process-
ing, we consider the coreset framework, which is a fun-
damental tool for designing approximation algorithms,
especially for large data sets [4]. In this framework,
a small subset of input data set, called a “coreset”, is
extracted in such a way that solving the optimization
problem on the coreset yields a solution to the whole

∗Department of Computer Engineering, Sharif University of
Technology, Tehran, Iran. Email: {aghamolaei, m farhadi}@
ce.sharif.edu, zarrabi@sharif.edu.

data set with a guaranteed approximation factor. Many
coresets considered in the literature are “decomposable”
in the sense that taking the union of two coresets com-
puted for two given sets yields a coreset for the union
of those two sets with the same approximation guar-
antee. This property is essentially useful for designing
streaming algorithms [9, 17], as it allows to maintain a
coreset for the points recently inserted, and merge it to
the coreset maintained for the rest of the points.

In [24], Zarrabi-Zadeh introduced a special class of
decomposable coresets, called “core-preserving”, hav-
ing an additional property that taking a coreset of a
coreset yields a coreset with the same size and approxi-
mation factor. Such coresets are in particular useful for
obtaining streaming algorithms whose working space is
independent of the size of input. The idea was used to
obtain efficient streaming algorithms for problems such
as k-center [24] and maintaining ε-kernels of fat point
sets [25]. A similar idea was coined as “mergeable core-
sets” by Agarwal et al. [3], and was used to obtain better
algorithms for maintaining statistical data summaries in
the data stream model.

Very recently, Indyk et al. [19] introduced the no-
tion of “composable coresets” in which the union of
a collection of coresets gives a coreset for the points
in the union of the sets within a guaranteed approxi-
mation factor. All decomposable coresets (and hence,
core-preserving and mergeable coresets) are composable
by definition. However, in composable coresets, the ap-
proximation factor may be increased after taking union,
though it is still guaranteed to be within a certain fac-
tor. Composable coresets are in particular useful for
distributed settings and MapReduce computation, in
which a massive point set is partitioned among a set
of machines/mappers, and each machine maps its input
data into a composable coreset. A single reducer then
takes the union of all the coresets received from the
mappers, and computes a solution to the union, which
is guaranteed to be within a good approximation factor.

Our contributions. In this paper, we revisit the
composable coresets framework of Indyk et al. [19], and
further refine it to the notion of “disjoint composable
coresets”, in which input data sets are assumed to be
disjoint. We present improved composable coresets for
several diversity maximization problems in both disjoint
and non-disjoint settings. The problems studied in this
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Problem Diversity Measure

Approximation Factor

Previous [19]
New

Disjoint General

Remote-edge minp,q∈S d(p, q) 3 3† 3†

Remote-clique
∑

p,q∈S d(p, q) 51 6 + ε 7 + 4
√

2 + ε

Remote-star minp∈S
∑

q∈S\{p} d(p, q) 102 12 26

Remote-bipartition minQ⊂S,|Q|=k/2

∑
p∈Q,q∈S\Q d(p, q) 255 18 38

Remote-tree w(MST(S)) 6 4 4

Remote-cycle w(TSP(S)) 12 3† 3†

Remote t-trees minS=S1|···|St

∑t
i=1 w(MST(Si)) 6 4 4

Remote t-cycles minS=S1|···|St

∑t
i=1 w(TSP(Si)) 12 5 5

Table 1: Summary of the new results. In this table, S denotes the input set, d is the distance function in the
underlying metric space, ε > 0 is an arbitrarily small constant, and S = S1| · · · |St denotes a partition of S into t
subsets. Tight factors are marked with † sign.

paper are listed and formally defined in Table 1. Here
is a brief summary of our results.

• For the remote-clique problem, a factor-51 com-
posable coreset was presented in [19]. When in-
put sets are disjoint, we show that a much bet-
ter approximation factor of 6 + ε (for any ε > 0)
is achievable for the problem. In general non-
disjoint case, we provide an approximation factor
of 7 + 4

√
2 + ε ≈ 12.66 + ε, greatly improving over

the best previous factor of 51.

• For the remote-edge problem, a factor-3 com-
posable coreset was presented in [1, 19]. Indyk
et al. [19] left this question open whether a bet-
ter approximation factor is possible. We settle this
question in negative by showing that 3 is the best
factor possible for the remote-edge problem. Our
proof is indeed very general, and implies a lower
bound of 3 for all notions of diversity listed in Ta-
ble 1.

• We show that for any point set, the weight of its
clique approximates the weight of its minimum par-
tition to within a factor of 3 − 4

k , improving upon
the previous bound of 5 proved in [19]. Combined
with our new factor for the remote-clique problem,
this yields improved factors of 18 and 38 for the
remote partition problem in the disjoint and non-
disjoint settings, respectively, substantially improv-
ing over the previous bound of 255 available for the
problem.

• We prove a tight upper bound of 2− 2
k on the ratio

of the weight of the minimum star of a point set
and the weight of its clique. This yields improved
factors of 12 and 26 for the remote-star problem in
the disjoint and non-disjoint settings, respectively,
greatly improving over the previous bound of 102
available for the problem.

• For the remote-cycle problem, we present a factor-
3 composable coreset, improving the best previous
bound of 12 available for the problem. Our core-
set is indeed optimal, considering the general lower
bound of 3 that we have presented in this paper.

• For the remote-tree and remote t-trees problems,
we provide an approximation factor of 4, improving
over the best previous factor of 6 obtained in [19].
We also improve the approximation factor of the
remote t-cycles problem from 12 to 5.

As with many other approximation algorithms, our
algorithms for extracting the coresets are simple, and
are based on two known off-line algorithms, namely the
Gonzalez’s algorithm and the local search. However, the
analyses of the approximation factors are non-trivial,
and are based on finding a careful mapping from the
points in the optimal solution to the points in the core-
set, while keeping the error incurred as small as possible.

2 Preliminaries

Let (X, d) be a metric space, and f be a measure de-
fined over subsets of X. A function c(·) that maps a set
S ⊆ X into one of its subsets is called an α-composable
coreset for f , if for any collection of sets S1, . . . , S`, with
S = ∪`i=1Si and T = ∪`i=1c(Si),

max

{
f(S)

f(T )
,
f(T )

f(S)

}
6 α.

The value α > 1 is called the approximation factor of
the coreset. A disjoint α-composable coreset is anal-
ogously defined, with an additional property that the
input sets Si are assumed to be disjoint.

Given a point set S in a metric space (X, d), we denote
by G[S] a complete graph over vertex set S, with edge
weights specified by the metric distance d. Let Π denote
a specific graph structure (e.g., a clique or a spanning
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Algorithm 1 GMM(S, k)

1: T ← {an arbitrary point p ∈ S}
2: for i = 2, . . . , k do
3: find a point p ∈ S \ T maximizing d(p, T )
4: T ← T ∪ {p}
5: return T

Algorithm 2 LocalSearch(S, k)

1: T ← a k-subset of S containing the two farthest pts
2: while ∃ p ∈ T, q ∈ S \ T s.t.

div(T \ {p} ∪ {q}) > (1 + ε
k ) div(T ) do

3: T ← T \ {p} ∪ {q}
4: return T

tree). Following the terminology of [10], we define the
remote-Π problem as follows. For a point set S ⊆ X, the
diversity of S (with respect to Π), denoted by div(S),
is the weight of a Π structure in G[S] whose total edge
weight is minimum. The k-diversity of S, denoted by
divk(S), is the maximum diversity over all k-subsets of
S, i.e., divk(S) = maxP⊆S,|P |=k div(P ). The remote-
Π problem is then to compute, for a given point set S
and a parameter k, the k-diversity of S with respect
to Π. For example, the remote-tree problem involves
finding a k-subset of S whose minimum spanning tree
has maximum weight. Note that divk(S) is undefined
when |S| < k.

For a weighted graph G, we denote by w(G) the total
weight of the edges in G. Given a set S, we denote by
S = S1| · · · |St the partition of S into t disjoint subsets
S1, . . . , St.

2.1 Algorithms

The two offline algorithms that we will use for comput-
ing the coresets are the Gonzalez’s algorithm and the
local search. The Gonzalez’s algorithm [15], presented
in Algorithm 1, starts from an arbitrary point, and iter-
atively adds a point whose distance to the points already
chosen is maximized. If r denotes the minimum pairwise
distance in the set T = GMM(S, k), then the following
two properties, known as anti-cover properties, hold:

• ∀p ∈ T : d(p, T \ {p}) > r

• ∀p ∈ S : d(p, T ) 6 r

The local search algorithm [2], presented in Algo-
rithm 2, starts with an arbitrary subset of size k contain-
ing the two farthest points, and then, at each iteration
tries to locally improve its current solution by exchang-
ing a single point. The total number of iterations of this
algorithm is at most log1+ ε

k
(k2) = O(k

ε log k).

3 Composable Coresets for Diversity Problems

Consider a collection of sets S1, . . . , S`, and let S =
∪`i=1Si. For each set Si, we compute a coreset Ti =
c(Si), and set T = ∪`i=1Ti. Let O be an optimal solution
for S, i.e. a k-subset of S for which div(O) = divk(S).
We denote by Oi the portion of O lying inside Si, but
not in any other Sj (j < i), i.e., Oi = O ∩ Si \ ∪j<iSj .
This partitions O into ` disjoint subsets Oi.

In the following, we obtain upper bounds on the ap-
proximation factor of composable coresets designed for
various notions of diversity. More precisely, we show
how to compute coresets Ti such that their union T is
a good representation of S, i.e., its diversity is within
a guaranteed factor of divk(S). We accomplish this by
comparing the k-diversity of T with that of O, which is
in turn equal to the k-diversity of S.

3.1 Remote Clique

In this section, we show that the local search algo-
rithm computes a factor 6 + ε composable coreset for
the remote-clique problem when input sets are disjoint.
Throughout this subsection, div(·) refers to the remote-
clique diversity.

Let Ti = LocalSearch(Si, k). We denote by ri the
average weight of edges in Ti, i.e., ri = div(Ti)/

(
k
2

)
, and

set r = maxi {ri}. Note that, for i = arg maxi {ri},
divk(T ) > divk(Ti) =

(
k
2

)
ri =

(
k
2

)
r. We first prove the

following lemma.

Lemma 1 For any point o ∈ Oi \ Ti,
∑

t∈Ti

d(o, t) 6 (1 + ε)kr.

Proof. For any a ∈ Ti, the termination condition of
local search implies that

div(Ti \ {a} ∪ {o}) 6 (1 +
ε

k
) div(Ti).

By the definition of remote-clique diversity we have

∑

p,q∈Ti

d(p, q)−
∑

t∈Ti

d(a, t) +
∑

t∈Ti

d(o, t)− d(o, a)

6 (1 +
ε

k
) div(Ti).

Summing over all points a ∈ Ti, we get

k div(Ti)− 2 div(Ti) + k
∑

t∈Ti

d(o, t)−
∑

t∈Ti

d(o, t)

6 (k + ε) div(Ti),

which simplifies to

(k − 1)
∑

t∈Ti

d(o, t) 6 (2 + ε) div(Ti).
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Replacing ri = div(Ti)/
(
k
2

)
, we get

∑

t∈Ti

d(o, t) 6 (1 +
ε

2
)× kri 6 (1 + ε)kr.

Hence, the proof. �
Lemma 2 Let Qi = Oi \ Ti. There exists a bipartite
matching between Qi and Ti that covers Qi and has
weight at most (1 + ε)|Qi|r.
Proof. Let M be the set of all maximal bipartite
matchings between Qi and Ti. Any maximal match-
ing in M covers Qi, because |Qi| 6 |Ti|. There are
P (k, |Qi|) = k!

(k−|Qi|)! matchings in M . Each edge

(q, t) ∈ Qi × Ti appears in exactly P (k − 1, |Qi| − 1)
of such matchings. Therefore, the sum of the weights of
all matchings in M is:

P (k − 1, |Qi| − 1)
∑

q∈Qi

∑

t∈Ti

d(q, t)

6 P (k − 1, |Qi| − 1)
∑

q∈Qi

(1 + ε)kr

= P (k − 1, |Qi| − 1)(1 + ε)|Qi|kr
= P (k, |Qi|)(1 + ε)|Qi|r,

where the first inequality holds by Theorem 1. There-
fore, the expected weight of the matchings in M is at
most (1 + ε)|Qi|r, and hence, there must exist a match-
ing in M whose weight does not exceed this expecta-
tion. �
Theorem 3 The local search algorithm computes a
factor-(6+ε) disjoint composable coreset for the remote-
clique problem.

Proof. Let Mi be a maximal bipartite matching be-
tween Qi and Ti, obtained by Lemma 2. Let M be
the union of Mi’s. Since all Ti’s are disjoint, M forms
a matching between Q = O \ T and T that covers all
vertices of Q and has weight at most (1 + ε)|Q|r.

Let f : O → T be a function that maps each vertex
o ∈ O ∩ T to o itself, and each vertex o ∈ O \ T to the
vertex matched to o by M . The weight of this mapping
is equal to the weight of M , and hence, is at most (1 +
ε)|Q|r. Moreover, for each vertex in range(f), there are
at most two vertices of O mapped to it. Now, we can
use triangle inequality to get:

div(O) =
∑

o1,o2∈O
d(o1, o2)

6
∑

o1,o2∈O
[d(o1, f(o1)) + d(f(o1), f(o2)) + d(f(o2), o2)]

= (|O| − 1)
∑

o∈O
d(o, f(o)) +

∑

o1,o2∈O
d(f(o1), f(o2))

6 (|O| − 1)(1 + ε)(|Q|r) + 4 div(range(f))

6 2(1 + ε)

(
k

2

)
r + 4 divk(T ) 6 (6 + 2ε) divk(T ),

where in the last two inequalities we used |Q| 6 |O| = k,
and divk(T ) >

(
k
2

)
r. �

Remark. When input sets are not necessarily disjoint,
we prove that the local search algorithm computes a fac-
tor 7+4

√
2+ε composable coreset for the remote-clique

problem. Details will be provided in the full version.

3.2 Remote Bipartition and Remote Star

In order to provide improved composable coresets for
the remote-bipartition and remote-star problems, we
first show that the weight of the clique of a point set ap-
proximates the weight of the minimum bipartition and
the minimum star of that point set to within factors
3− 4

k and 2− 2
k , respectively. These improve the previ-

ous bounds of 5 and 2, respectively, proved in [19]. Both
our new bounds are indeed tight.

Lemma 4 For any point set of size k > 2, the weight
of its clique is a (3− 4

k )-approximation of the weight of
its minimum bipartition. This bound is tight.

Proof. Recall that a bipartition of a point set P of size
k is obtained by dividing P into two subsets L and R of
equal size k/2, and the weight of such bipartition is the
total weight of edges between L and R. It is clear from
the definition that w(bipartition(L,R)) 6 w(clique(P )).
By triangle inequality, for any two vertices u, v ∈ R
and any w ∈ L, we have d(u, v) 6 d(u,w) + d(w, v).
Summing this inequality over all u, v ∈ R and w ∈ L
yields:

k

2
× w(clique(R)) 6

(
k

2
− 1

)
w(bipartition(L,R)).

The same inequality holds for w(clique(L)). There-
fore, w(clique(P )) = w(clique(L)) + w(clique(R)) +
w(bipartition(L,R)) 6

(
3− 4

k

)
w(bipartition(L,R)).

To see tightness, consider an example in which all edges
inside L and R have weight 2, and the edges between L
and R have weight 1. The approximation factor in this

case is
(

(k
2 )2 + 4

(
k/2
2

))
/(k

2 )2 = 3− 4
k . �

The proof for the remote-star is similar, and is omit-
ted here. Combined with the factor-(6 + ε) composable
coreset for the remote-clique problem presented in The-
orem 3, and by setting ε = O(1/k), we get the following
result.

Theorem 5 The local search algorithm computes a
factor-12 composable coreset for the remote-star prob-
lem, and a factor-18 composable coreset for the remote-
bipartition problem, when input sets are disjoint.
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MST(F)

Tree(O)

Figure 1: Tree(O) built from MST(F ). Dotted lines
show the mapping from O to F .

Remark. When input sets are not disjoint, our im-
proved composable coreset for the remote-clique prob-
lem which has an approximation factor of 7+4

√
2+ε ≈

12.32 + ε yields a factor-26 composable coreset for the
remote-star problem, and a factor-38 composable core-
set for the remote-bipartition problem.

3.3 Remote Tree and Remote Cycle

In this section, we provide a factor-4 composable core-
set for the remote-tree problem, and a factor-3 compos-
able coreset for the remote-cycle problem. For both
problems, we first run GMM on each Si to obtain
Ti = GMM(Si, k). We then obtain the union of the
coresets T = ∪`i=1Ti, and set r = maxi minp,q∈Ti

d(p, q).

Theorem 6 The GMM algorithm computes a factor-4
composable coreset for the remote-tree problem.

Proof. Let div(S) = w(MST(S)) denote the remote-
tree diversity, and let O be a k-subset of S maximizing
div(O). We show that div(O) 6 4 divk(T ).

Consider a mapping f : O → T that maps each
point o ∈ O to its closest point in T . Let F =
{f(o) : o ∈ O} ⊆ T be the range of f , and fix a min-
imum spanning tree MST(F ) of F .

We partition O into subsets Q1, . . . , Qm such that
p, q ∈ Qi if and only if f(p) = f(q). We now build a
spanning tree Tree(O) on O by first building an arbi-
trary tree on each subset Qi, and then connecting two
components Qi and Qj if there are oi ∈ Qi and oj ∈ Qj

such that f(oi) and f(oj) are connected in MST(F ).
(See Figure 1.)

By the anticover property of GMM, the length of
edges between each oi and f(oi) is at most r. So, by
triangle inequality, the total cost of edges corresponding
to the trees Qi is at most (k− |F |)× 2r. For each edge
ef ∈ MST(F ), there is an edge eo ∈ Tree(O) such that
eo 6 ef + 2r. There are |F | − 1 such edges in total.
Therefore,

w(Tree(O)) 6 w(MST(F )) + 2r(k − |F |) + 2r(|F | − 1)

= w(MST(F )) + 2r(k − 1).

Now, let R ⊆ T be an arbitrary superset of F of
size k, and let ST(R) be a minimum Steiner tree of
R that connects the vertices of F . It is well-known
that w(MST(F )) 6 2 ·w(ST(R)) (see, e.g., [23]). More-
over, it is obvious that w(ST(R)) 6 w(MST(R)), be-
cause ST(R) is a minimum-weight tree that only con-
nects a subset of R, as opposed to MST(R) that con-
nects all points in R. Therefore, we have w(MST(F )) 6
2 · w(MST(R)), and hence,

w(MST(O)) 6 w(Tree(O))

6 w(MST(F )) + 2r(k − 1)

6 2 · w(MST(R)) + 2 divk(T ) 6 4 divk(T ),

where, the inequality (k − 1)r 6 divk(T ) follows from
the fact that by the definition of r, there is a set Ti with
k points whose pairwise distance is at least r. �

Theorem 7 The GMM algorithm computes a factor-3
composable coreset for the remote-cycle problem.

Proof. Let div(S) = w(TSP(S)) denote the remote-
cycle diversity, and let O be a k-subset of S maximizing
div(O). We show that div(O) 6 3 divk(T ).

Consider a function f : O → T that maps each
vertex o ∈ O to its closest point in T . By the anti-
cover property of GMM, we have d(o, f(o)) 6 r. Let
R = {f(o) : o ∈ O} ⊆ T be the range of f , and let
TSP(R) be an optimal tour on R.

We build a graph G on the vertex set O ∪R, by first
adding to G the edges of TSP(R), and then, adding
for each o ∈ O, two copies of the edge (o, f(o)) to G.
Obviously, G is connected and all its vertices are even.
Therefore, G contains an Eulerian tour E. Let C be a
cycle obtained from E by short-cutting the vertices not
in O. Then,

w(TSP(O)) 6 w(C) 6 w(E)

6 w(TSP(R)) + 2kr

6 w(TSP(R)) + 2 divk(T ) 6 3 divk(T ),

where, the inequality w(TSP(R)) 6 divk(T ) holds be-
cause TSP(·) is a monotone increasing function—i.e.,
for any A ⊆ B, we have w(TSP(A)) 6 w(TSP(B)).
Moreover, the inequality kr 6 divk(T ) holds because
by the definition of r, there is a set Ti with k points
whose pairwise distance is at least r. �

Using similar arguments, we can obtain a factor-4 com-
posable coreset for the remote t-trees problem, and
a factor-5 composable coreset for the remote t-cycles
problem. Details are omitted in this version.

4 Lower Bound

In this section, we prove a general lower bound of 3 on
the approximation factor of composable coresets for var-
ious notions of diversity in a metric space. This implies
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Figure 2: A lower bound example

the optimality of the composable coreset presented in
Section 3.3 for the remote-cycle problem. This also set-
tles an open problem posed by Indyk et al. [19] on the
existence of better composable coresets for the remote-
edge problem.

Theorem 8 Let (X, d) be a metric space, and Π be a
graph structure defined over induced subsets of X, such
that all graphs with Π structure on a k-point set have
the same number of edges. Then, the remote-Π problem
admits no α-composable coreset, for any α < 3.

Proof. Consider k sets Si ⊆ X, where each set has at
least k+ 1 points. Suppose that the optimal solution O
has exactly one point from each set Si. Let the edges
inside each Si, as well as the edges between non-optimal
points from different Si’s have weight 1, the edges con-
necting points in O have weight 3, and the remaining
edges have weight 2. (See Figure 2.) It is easy to verify
that this weight function is metric.

Let c be any function that computes a composable
coreset Ti = c(Si) for the remote-Π problem. Due to
edge weight symmetry inside each Si, we can assume
that Ti is a k-subset of Si \O. Therefore, the resulting
set T = ∪iTi will be a subset of S \ O, and hence,
includes only edges of weight 1. Since all edges between
the vertices of O have weight 3, the k-diversity of O will
be 3 times the k-diversity of T with respect to Π. �
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Abstract

In this work, we introduce the Minimum Trilateration
Problem, the problem of placing distance measuring
guards in a polygon in order to locate points in the in-
terior. We provide the first non-trivial bounds on trilat-
erating simple polygons, by showing that b 8N9 c guards
suffice for any non-degenerate polygon of N sides, and
present an O(N logN) algorithm for the corresponding
placement. We also show how this mapping can be effi-
ciently inverted, in order to determine a point’s location
given its distances to the guards which can see it.

1 Introduction

Trilateration is the technique of determining absolute
locations of points using distances and the geometry of
circles and spheres. For example, in 2-D if the two dis-
tances of a point from two fixed centers are known then
there are only two possible candidate locations for the
point. If three distances of a point from three fixed, non
collinear points are known, there is only one possible lo-
cation for the unknown point.

Formally, suppose we have a set of known points {ri},
and their corresponding distances {di} to an unknown
point p. Then, to trilaterate p, we must solve the sys-
tem:

‖ri − p‖ = di (1)

for all possible solutions p. If there exists a unique
solution, then we say that the set {ri} trilaterates p.

Observation 1 If r1, r2, r3 are non collinear points,
and the di’s are valid distances, then the system in
Equation 1 is always solvable for a unique p.

We define distance measuring guards as points which
can measure the distance to other points in their
visibility region. Given a polygon P , we wish to find
a set of distance measuring guards R such that for
every point p, when we consider only those {ri} which
can view p, the system in Equation 1 has a unique so-
lution in P . We will formalize this problem in Section 2.

∗College of Computer Science, Northeastern University,
mdippel@ccs.neu.edu
†College of Computer Science, Northeastern University,
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We call the problem of finding the smallest such
guard set for a polygon as the Minimum Trilater-
ation Problem. Our results show upper bounds for
this problem analogous to the upper bounds for the
Art Gallery Problem [12]. As the Art Gallery Problem
is analogous to dominating sets in visibility graphs, our
problem also has an analogous graph theory problem
known as the metric dimension of the graph. [8].
There has also been work on guarding polygons where
each point must be viewed by multiple guards [3], but
although they mention trilateration as an application,
k-guarding a polygon is not sufficient for unambiguous
trilateration.

First, we show that when constrained to certain prop-
erties, partitioning a polygon and finding a trilaterating
guard set for each individual piece can result in a valid
trilateration of the original polygon. We demonstrate
that every polygon admits such a partition, and show
how to efficiently map these partitions into trilaterating
guard sets of size no more than 8N/9 when the polygon
has N sides.

We also show how these algorithms and bounds can
be extended to the case where the polygon is not in
general position. This is an important case because
of the role that collinearity plays in our problem. We
show that even in this case, collinear guards can locate
points by taking advantage of the visibility geometry
of the polygon.

2 Simple Trilateration

2.1 Definitions

Let P be a simple polygon, which may or may not be
in general position (both cases will be addressed in this
paper). For any two points a, b ∈ P , we say that a and
b are mutually visible if ab ⊂ P . For a specific point
p, we define the visibility region V (p), as the set of all
points visible from p. The kernel of P , K(P ) is the
set of points k ∈ P such that V (k) = P . A polygon is
star-shaped if K(P ) is non-empty.

For a specific point r, we can define a “vision-
masked distance” function, dr : P → R, such that
dr(p) = ‖p− r‖ if r can view p, and −1 otherwise. For
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a group of k points R, we similarly define DR : P → Rk

as the vector of vision-masked distances from p to the
various r ∈ R.

Our goal is to find a guard set such that, for all
pairs of points p, q ∈ P , we have DR(p) 6= DR(q). We
formalize this with the following definition:

Definition 1 For a simple polygon P , and a finite set
of points R ⊂ P , we say that R trilaterates P without
ambiguity if the vision-masked distance vector function
DR(p) is injective over the domain P .

2.2 Simple cases

There are several simple cases to consider. The most
obvious is when P is the unbounded plane, and R is a
set of three, non-collinear guards. Then, by solving a
system of equations describing the intersection of three
circles, we can uniquely locate any point p. If P is a
star shaped polygon with at least 3 non-collinear points
in the kernel, then we can trilaterate P with these three
points.

When the kernel of P includes two points on the same
edge, we can trilaterate P with only those two points.
To see why, consider when R is two such points a and b,
and we attempt to solve System 1. Solving the system
of equations yields two points, p and p′, reflected across
ab. WLOG p is on the same side of ab as the polygon
P . Then, since a and b are in the kernel of P and are
on an edge of it, this edge alone blocks their view of the
other half of the plane induced by ab. Thus we know
that p′ is not in the domain polygon P , and return p as
the correct point. We give a generalized observation:

Observation 2 Let R be a guard set in P , and consider
two a, b ∈ R. If V (a) ∩ V (b) is entirely on one side of
the closed half plane induced by ab, then a and b can
trilaterate points in the set V (a) ∩ V (b).

The logic is the same as above. Solving System 1 with
the distances to a and b yields two points, in opposite
half planes induced by ab. Thus we can rule out one of
them from our domain, based on which one is on the
same side of ab as the region V (a) ∩ V (b).

2.3 Partition and cover

One possible approach for finding a trilaterating set is to
partition P into polygons which are simple to trilaterate
(star-shaped or otherwise), individually trilaterate each
one, and take the union of all guard sets. However, this
doesn’t always work. Consider the simple case where
we wish to trilaterate a square, and we split it into two
triangles via a diagonal. If we trilaterate each piece with
two guards on the shared diagonal, the square cannot be

trilaterated, as all guards are collinear. If we partition
the polygon and use two guards on an edge to cover a
piece, we need to be sure that the piece sharing that
edge does not also put guards on it. We address this
issue with the following lemma:

Lemma 1 Let P be a simple polygon, partitioned into
P1, P2, ..., Pk. Let Ri ⊂ K(Pi) be sets of disjoint guards
that trilaterate each respective polygon in the partition.
Then, if Ri∪Rj contains three non-collinear guards for
all i, j, R trilaterates P .

Proof. We show that given any p ∈ P , we can derive
p from the given distance vector DR(p). We will split
it into parts DRi

(p), projected onto the respective Ri

components. Note that since Ri ⊂ K(Pi), all points in
Ri can see all points in Pi. Thus if an entry of DRi(p)
is −1, we can conclude that p 6∈ Pi. If this is the case,
we will say that Pi is an impossible location for p, else
we consider it plausible. Observe that there must be at
least one plausible Pi, since we have that p is in some
Pi, we just do not know which yet.

Suppose there is only one plausible Pi. Then, the
same process used to trilaterate Pi with Ri can be
reused.

Suppose instead that there are at least two plausible
Pi, Pj . Then all guards in Ri∪Rj can see p and yield dis-
tance values. Since Ri∪Rj contains three non-collinear
guards, we can solve for the location of p. �

We will show how to find such a partition for a gen-
eral polygon P which satisfies Lemma 1. In particular,
we will partition using only diagonals of P . For each
piece and corresponding guard placement (Pi, Ri), we
will have either Ri being three non-collinear guards, or
two guards on an edge of Pi, which is a diagonal or edge
of P . If we make sure not to reuse the same diagonal
for different placements, this will limit our placement to
distinct diagonals. Our first argument will assume that
P is in general position, meaning the above placement
satisfies Lemma 1. Our second argument will address
the case when diagonals of P may be collinear, and show
that, as long as we are still using distinct diagonals for
placement, an application of Observation 2 will let us
locate all points in P .

Observation 3 If P is in general position, and a, b
and c, d are on distinct diagonals, then a, b, c, d are not
collinear.

3 Upper bound for general position polygons

Before we state our main theorem, we first show a
trivial upper bound and lower bound. Suppose we put
a distance measuring guard on each vertex of a polygon
with N vertices. If we consider its triangulation, then
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we can see that any point in P can always view three
non-collinear vertices of P . Hence it can see three
non-collinear guards, and can be trilaterated. Thus N
guards always suffices for any polygon.

To show a lower bound, we can reuse the comb
polygon lower bound for the art gallery problem. No
point in the comb can view into two different comb
spikes. Thus we need at least two guards per spike to
trilaterate all of the points in its interior. Thus 2N/3
is a lower bound for minimum trilateration.

We now present the main theorem of this paper,
which is giving an upper bound better than N guards:

Theorem 2 Any simple polygon P with N vertices can
be trilaterated by a guard set of size no more than 8N/9.

To prove Theorem 2, we give both a method of con-
structing a guard set, and a method for inverting dis-
tance vectors back to points. Our method has several
steps. First, we use a generic fan partition to divide P
into N/3 pieces, each piece being star shaped, and some
having several prospective edges (which are either diag-
onals or edges of P ) on which we could place guards.
Second, we use a bipartite graph connecting pieces of
the partition to possible diagonals / edges for place-
ment of guards, preventing separate pieces from using
the same diagonal for placement. After finding a maxi-
mum matching in this graph, we return, along with each
piece of the partition, the set of guards which trilaterate
that piece. The pseudocode for this algorithm is pre-
sented later on as Algorithm 1. For inverting these dis-
tances, we still use the procedure presented in Lemma
1, the pseudocode for which is presented as Algorithm
2.

The partition that we use is Chvátal’s fan partition
from the original proof of the art gallery theorem [5].
Although it is classic, it has largely been overshadowed
by the Fisk proof using coloration [7]. Thus we will
restate it here:

Definition 2 A fan is a polygon P with at least one
vertex u, such that for all other vertexes v not adjacent
to u, uv is a proper diagonal of P . We call u the center
of the fan.

Theorem 3 Every N -triangulation can be partitioned
into m fans where m ≤ bn/3c. Furthermore, this can
be done in O(N logN) time.

This theorem is useful as it allows us to use any trian-
gulation method we wish in order to find a fan partition.
Thus our algorithm is agnostic to the method used to
find the triangulation. Our run time is essentially dom-
inated by the O(N logN) time needed to convert the
triangulation into a fan partition. Thus, we can use the

Figure 1: A polygon partitioned into three fans, with
centers labeled c1, c2, c3.

standard O(N logN) triangulation method. See Figure
1 for an example of a polygon partitioned into fans.

3.1 Trilaterating fans

We show several important structural lemmas. Mainly,
we show that every fan with 4 or more triangles can
be trilaterated by 3 guards, while every fan with fewer
than 4 triangles can be trilaterated by 2 guards on an
edge.

We refer to a fan with k triangles in its triangulation
as a k-fan.

Definition 3 For an edge e of a polygon P , we say that
e is a prospective edge if there are two points a, b ∈ e in
the kernel of P . As such, any polygon with a prospective
edge can be trilaterated with 2 guards.

Lemma 4 Every fan of k edges can be trilaterated with
3 guards, which can be found in O(k) time.

Lemma 5 Every 1-fan has 3 prospective edges, every
2-fan has at least 2 prospective edges, and every 3-fan
has at least 1 prospective edge. Further, these edges can
be found in O(1) time.

We defer the proof of these structural lemmas to the
appendix.

3.2 Finding a diagonal disjoint placement

We have shown that every fan can be trilaterated,
either with three guards in its kernel, or two guards on
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Figure 2: The fan partition from Figure 1 with guards
covering each fan.

its boundary. Such a boundary placement corresponds
to a placement on a diagonal or edge of P . In order to
maintain the requirement of Lemma 1, we must find a
placement such that no two fans put their guards on
the same diagonal.

To do this, our algorithm uses the following steps:

• Partition P into a set F of no more than N/3 fans.

• For each fan f , associate with it all diagonals or
edges which intersect K(f) in at least two points.
We do not bother attempting this step if f has 4
or more triangles.

• Given each fans’ prospective edges, find a max
matching between fans and edges.

• For each fan, report an appropriate pair of guards
if it was matched to an edge, or triple of guards
inside its kernel otherwise.

To do this, we create a bipartite graph G =
((F ∪D), E), where F is the set of fans, and D is the
set of diagonals and edges of the partition. We add the
edge (f, d) if d is a viable boundary edge for fan f . We
note a few properties of the graph. First, all 3-fans have
degree at least 1, 2-fans at least 2, 1-fans exactly 3, and
4+-fans exactly 0. Second, if d ∈ D, then deg(d) ≤ 2.
Lastly, Because our graph is defined by the partition, it
is a tree. Note that in finding a matching on this graph

and reporting approprite guards, we do not guarantee
that a fan which could have been trilaterated with 2
guards will still only use 2 in our placement. However,
this is necessary in order to satisfy Lemma 1. See Fig-
ure 2 for an example of a valid placement of guards in
a fan partition which could result from this algorithm.

Consider the number of fans using i triangles, for
i = 1, 2, 3, 4, ..... Call these sets Fi. As previously
shown in Lemma 5, all fans in F1 have at least 3
prospective edges, F2 at least 2, and F3 at least 1.
Hence these nodes in the bipartite graph will have
degrees at least 3, 2, and 1 respectively. Fans with 4 or
more triangles we will simply cover with 3 guards and
not pair with any diagonals. Any diagonal can border
at most 2 distinct fans, so every diagonal node in the
graph will have degree no more than 2.

Suppose that we had k fans, so that |F | = k, and we
found a matching of size j. Then, for j of the fans, we
could use 2 guards, and for the remaining k − j fans
we would use 3 guards. This makes our total guard
usage 2j + 3(k − j) = 3k − j. Since Theorem 3 implies
k ≤ bN3 c, we are using no more than N − j guards. We
thus minimize our guard count by maximizing j.

We now present the main lemma regarding our graph
construction, which we present as a generalized result
on bipartite graphs with certain degree constraints:

Lemma 6 Let G = (A ∪ B,E) be a bipartite graph,
satisfying that for all nodes v ∈ B, deg(v) ≤ 2. Let
c0, c1, c2+ be the sets of nodes in A with degrees 0, 1,
and ≥ 2, respectively, as well as the sizes of these sets.
Then a matching of size c1

2 + c2+ is always possible.

Proof. We prove the above by an application of the
deficit version of Hall’s Theorem [10]. Let S ⊂ A. Then
the defect of S is defined as df(S) = |S| − |N(S)|, the
size of S minus the number of unique neighbors of S
in B. Then the maximum matching M satisfies |M | =
minS⊂A{|A| − df(S)}.

We will upper bound df(S), which gives us a lower
bound on |M |. Consider an arbitrary such S. Let m
be the number of edges leaving S, and let d(k) be the
number of nodes of degree k in S. Then |N(S)| ≥ m/2,
as each node in B has degree at most 2. Also note that
m =

∑
kd(k), and |A| = c0 + c1 + c2+.

|S| − |N(S)| ≤ |S| −m/2
=
∑

d(k)− 1/2
∑

kd(k)

=
∑

(1− k/2)d(k)

≤ d(0) + d(1)/2

≤ c0 + c1/2

Hence df(S) ≤ c0+c1/2, and |M | ≥ A−(c0+c1/2) =
c1/2 + c2+, as desired. �
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We can now prove the main theorem of the paper,
restated below:

Theorem 2 Any simple polygon P with N vertices can
be trilaterated by a guard set of size no more than 8N/9.

Proof. We can partition P into k ≤ N/3 fans, asso-
ciate with each fan its plausible diagonal placements,
and find a matching on the graph G as above. For
any set Ri ∪ Rj , either Ri contains three non collinear
guards, or Ri and Rj are on distinct, non-collinear
diagonals. Thus the placement satisfies Lemma 1 and
trilaterates P .

The matching of G will have size at least c1/2+c2+ =
F3/2+F2 +F1. Thus, the number of guards we will use
is no more than 3k−F3/2−F2−F1. Thus we can bound
the number of guards returned by analyzing the linear
program:

max 3k − F3/2− F2 − F1

s.t. F1 + F2 + ... = k

k ≤ bN/3c
F1 + 2F2 + 3F3 + ... = N − 2

Fi ≥ 0

It can be shown via standard dual arguments that for
all N the objective function is bounded above by 8N/9.
See the appendix for a derivation of this bound. Thus
we can always achieve less than 8N/9 guards. �

We now present the algorithm pseudocode for place-
ment and for location. Although the lemma for locating
points provides an algorithm, we will explicitly give it
as pseudocode, in order to generalize our results to ar-
bitrary simple polygons in the next section.

Lemma 7 Algorithm 1 runs in O(N logN) time.

We defer the proof to the appendix, as it is a routine
examination of the algorithm step by step.

4 Extending the upper bound to polygons that are
not in general position

Consider now a polygon which may not be in general
position. The argument that guards on distinct diago-
nals can trilaterate points is no longer valid, as distinct
diagonals may be collinear. We show how to augment
the the location step with an additional method, in or-
der to still locate points, even if the only guards that
can see them are all collinear. To do this, we use the
following lemma:

Algorithm 1: guard Locations Algorithm

Input : Polygon P
Output: Partition of P with corresponding guard

placements
T = Any triangulation of P
F = FanPartition(T)
D = Edges of F
f = Faces of F
G = (f ∪D, {})
for fi ∈ f do

di ← viable diagonal edges for fi
Add edge (fi, d) to G for all d ∈ di

end
M = MaxMatching(G)
for (fi, di) ∈M do

r1, r2 ← two points ∈ di ∩K(fi)
Yield (fi, {r1, r2})

end
for fi 6∈M do

r1, r2, r3 ← three non-collinear points ∈ K(fi)
Yield (fi, {r1, r2, r3})

end

Algorithm 2: Distance Vector Reversing

Input : Polygon P, Partition {Pi, Ri}, Distance
Vector D

Output: Unique point p that generates D
for {Pi, Ri} in partition do

Di ← D projected onto Ri

if Di has a −1 entry then
Disregard {Pi, Ri}

end

end
if At least two (Pi, Ri), (Pj , Rj) remain then

locatePoint(Ri ∪Rj , Di ∪Dj)
end
else

locateWithinP (Pi, Ri)
end

Lemma 8 Let r1 6= r2 be points in P such that the line
segment e = r1r2 intersects δ(P ), the boundary of P .
Then, the intersection of visibility regions V (r1)∩V (r2)
is entirely in one closed half plane induced by r1r2.

We defer the proof of the above to the appendix. The
application of this lemma is that, if r1 and r2 are on
distinct diagonals, at least one point directly between
them is on the border of P . Thus if p ∈ V (r1) ∩ V (r2),
we can narrow down its location to a specific half plane
defined by r1, r2.

Suppose we had a method which took queries of pairs
of collinear diagonals dl, dr, and returned which of their
sides cannot have common visibility to both. Then, up-
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dating our location method involves only updating the
method locatePoint. First check if the input guards
are collinear. If they are not, solve the system as before.
If they are collinear, then since they are on distinct di-
agonals, we determine on which side of these diagonals p
cannot be in. Once we know this side, we can solve the
system for two potential points, and return the point
that is on the correct side.

Our proposed method will require us to maintain the
triangulation structure from the placement part of the
algorithm, and perform path finding in the dual graph.
Let d1, d2 be collinear diagonals in a triangulation T ,
and consider how the graph dual of T is partitioned by
the edge corresponding to d1. Then the piece of the
partition which has d2 contains the piece of the polygon
which can have common visibility to d1 and d2. We can
make a similar claim on d2. To determine which side
of d1 this piece is on, use the triangulation structure
to determine the triangle which uses d1 and is in the
same piece of the partition as d2. Use a clockwise test
to return whether the third point of this triangle is to
the right or the left of d1. The piece of P with common
visibility must also be to the right or to the left of d1.
See Algorithm 3 for the pseudocode for this method.

Algorithm 3: General Position locatePoint

Input : Polygon Triangulation T, Guard
positions R, Distance Vector d

Output: Unique point p that generates d
P = All solutions to system ‖ri − di‖ = p
if |P | = 1 then

Return the unique p ∈ P
end
else

P = {p1, p2}
Take ri, rj ∈ R on distinct diagonals Di, Dj

Let t be the first triangle in the unique path
between Di and Dj in T
Let x be the vertex of T not on Di

if ccw(ri, rj , x) == ccw(ri, rj , p1) then
return p1

end
else

return p2
end

end

5 Conclusion

We introduced the minimum trilateration problem, and
showed that it has an upper bound of 8N/9 guards.
We gave an O(N logN) algorithm for achieving this
bound, as well as an algorithm for using the given
placement to invert distance vectors to locate points in

the polygon.

Having introduced the trilateration problem and de-
rived an upper bound similar to that for the art gallery
problem, there are several questions left unanswered.
The ones we are most interested in are finding a tight
upper bound, giving an algorithm to verify proposed
guard sets, and showing improved bounds for the usual
variants of art gallery, such as orthogonal polygons,
guards which can move along edges, or guards which
can see through k walls.
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[4] J. Cáceres, M. C. Hernando, M. Mora, I. M. Pelayo,
M. L. Puertas, C. Seara, and D. R. Wood. On the
metric dimension of cartesian products of graphs. SIAM
J. Discrete Math., 21(2):423–441, 2007.
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Appendix

We provide the omitted proofs for several lemmas.

Lemma 4 Every fan of k edges can be trilaterated with 3
guards, which can be found in O(k) time.

Proof. First, note that if a vertex can view all other ver-
tices, it can view all other points in the polygon [1]. This
asserts that all fans have a non-null kernel containing the
center vertex v. We will now examine the kernel as the in-
tersection of k half-planes.

Each edge of the polygon defines a half plane, the inter-
section of which is the kernel of the polygon. The two edges
adjacent to v will map to half planes which intersect v. Since
these half planes cannot be parallel or anti-parallel (defining
opposite half-spaces of the plane), their intersection is a re-
gion which v is on the border of. Observe that every other
half plane must contain v, since v is in the kernel, and that
every other half plane cannot intersect v on its boundary.
To see why, consider the half plane defined by the edge ab.
We have that both av and bv are non-intersecting valid diag-
onals of P . Since they are not intersecting, v is not collinear
with ab. Hence the edge of that half plane is at least some
distance ε away from v.

Hence if we take the intersection of all these half planes,
the result is a region around v with an infinite number of
points. Taking any 3 of them as the guard set will suffice.

To find these guards, the linear time kernel algorithm
can be used to determine the kernel [9], from which we re-
turn several random non-collinear points. If we wished for a
slightly simpler algorithm, we do not need the explicit ker-
nel, but just a subset of it. We calculate the distance of v
from each half plane, and take the min of these as r. Then
any point which is in the intersection of the av and bv half
planes and within distance r of v will be in the kernel. It
suffices to pick one and move it ±ε to get three non-collinear
points.

�

Lemma 5 Every 1-fan has 3 prospective edges, every 2-fan
has at least 2 prospective edges, and every 3-fan has at least
1 prospective edge. Further, these edges can be found in O(1)
time.

Proof. The lemma is clearly true of a 1-fan since it is a
triangle which is convex. Thus all edges are prospective
edges.

A 2-fan is a quadrilateral. Let v be the center of the fan,
a and b the vertices adjacent to v, and c the last vertex.
Note that the angles at a and b must be convex. Consider
the visibility regions V (a) and V (b). First note they must
intersect an edge not adjacent to a and b respectively.
Hence V (a) contains ac and intersects part of bc, while V (b)
contains bc and intersects part of ac. Thus some sections of
bc and ac are in the kernel, making them prospective edges.

A 3-fan is a pentagon. Consider the vertices of the fan
labeled in CW order a, v, b, c, d, so that a and b are adjacent
to v. Note that the angles at a and b must be convex. If
the angle at v is convex, then following Lemma 4, the kernel
intersects both va and vb. Else, we consider the case where
v is a reflex angle. Since a pentagon can have at most two
reflex angles, at least one of c or d is a convex angle. WLOG
assume c is convex.

Suppose that d is a reflex angle. Then, we have that we
can extend both ad and av until they hit the boundary of
the fan. They must both end at bc, creating a subsegment
which can see every vertex. Thus bc is a prospective edge.

Suppose instead that d is a convex angle. Then instead
consider extending av and bv until they hit the boundary of
the fan. If av hits bc, then because d is convex, c can see a.
Thus c could also be the vertex center, and we can reduce
to the case where it is a fan with convex angle at the center.
A similar argument applies to if bv hits ad. Thus, we must
have that both av and bv extend to meet cd. Then similar
to the previous case, they create a subsegment which can
see every vertex. Thus cd is a prospective edge. Thus in all
cases, a pentagon has a prospective edge.

To find these edges, we can explicitly compute the kernel,
and determine which edge of the polygon it intersects with
in a continuous region. Since our fan size is no more than 5
edges, this takes O(1) time.

�

Lemma 1 Algorithm 1 runs in O(N logN) time.

Proof. Triangulating the polygon can be done in
O(N logN) time. 3-coloring this triangulation and de-
termining the resulting fan partition can be done in
O(N logN) time, by computing the DCEL representation
of the partition [2], and considering the bounded faces to
be the fans.

For each fan of k edges, either determining the prospec-
tive edges or finding three points in the kernel takes O(k)
time. Thus summing over all fans in the partition, the total
time from these operations is O(N).

To find the maximum matching in our bipartite graph,
it is known that a maximum matching on trees can be
found in O(N) time by using dynamic programming. Since
our graph was induced by the edges of the polygon and
diagonals of the fan partition, it is a tree.

Thus the dominating factor in the run time is using the
diagonals of the triangulation to retrieve the DCEL repre-
sentation of the partition, which takes O(N logN) time.

�

Theorem 2 Any simple polygon P with N vertices can be
trilaterated by a guard set of size no more than 8N/9.

Proof. We derive an upper bound for the linear program,
which we restate here:
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max 3k − F3/2− F2 − F1

s.t. F1 + F2 + ... = k

k ≤ bN/3c
F1 + 2F2 + 3F3 + ... = N − 2

Fi ≥ 0

First note that our objective function is equivalent to
2F1 + 2F2 + 2.5F3 + 3F4 + 3F5 + .... We show that a linear
combination of the constraints bounds our objective func-
tion.

Take 5/3 of the first inequality, and add it to 1/3 of the
second equality, yielding:

(5/3)(F1 + F2 + F3 + ...) ≤ (5/3)bN/3c ≤ 5N/9

(1/3)(F1 + 2F2 + 3F3 + ...) = (N − 2)/3

2F1 + (7/3)F2 + (8/3)F3 + 3F4 + ... ≤ (8N − 6)9

Where the LHS of the final inequality is greater than our
objective function. Thus our objective function is bounded
above by 8N/9. �

Lemma 2 Let r1 6= r2 be points in P such that the line
segment e = r1r2 intersects δ(P ), the boundary of P . Then,
the intersection of visibility regions V (r1)∩V (r2) is entirely
in one closed half plane induced by r1r2.

Proof. We will consider a coordinate frame of axis where
r1 and r2 are both on the x-axis and have opposite signs for
their x coordinate. First, we consider the case where either
r1 or r2 is on an edge e of P . In our coordinate frame, e is
coincident with the x-axis. In this case, it should be clear
that, depending on which side of e P is on, WLOG r1 can
only see above or below the x axis, but not both. Hence the
intersection of visibility regions must be above or below the
x-axis, as desired.

Let X 6= r1, r2 be a point in δ(P ) which is on e. Take a
point with arbitrarily small x coordinate Z = (−∞, 0), and
consider any closed curve path from Z to X which does not
intersect P before touching X. Let Y be the first point on
e which P meets, which may end up being Z. Then, we
now consider the close curve path P ′, which is P from Z to
Y . Consider the side of e that P ′approaches Y from. Since
there is a path from Z to Y that lies completely outside
the polygon, V (r1) and V (r2) cannot intersect on that side
of e, as this would mean that they also intersect P ′, which
lays entirely outside the polygon.

�

Figure 3: An illustration of Lemma 2. The existence of
the path P guarantees us that V (r1) and V (r2) cannot
intersect above the x-axis.
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Constrained Empty-Rectangle Delaunay Graphs∗

Prosenjit Bose‡ Jean-Lou De Carufel‡ André van Renssen§¶

Abstract

Given an arbitrary convex shape C, a set P of points in
the plane and a set S of line segments whose endpoints
are in P , a constrained generalized Delaunay graph of
P with respect to C denoted CDGC(P ) is constructed
by adding an edge between two points p and q if and
only if there exists a homothet of C with p and q on
its boundary and no point of P in the interior visible
to both p and q. We study the case where the empty
convex shape is an arbitrary rectangle and show that the
constrained generalized Delaunay graph has spanning
ratio at most

√
2·(2l/s+ 1), where l and s are the length

of the long and short side of the rectangle.

1 Introduction

A geometric graph G is a graph whose vertices are points
in the Euclidean plane and whose edges are line segments
between pairs of points. Every edge is weighted by the
Euclidean distance between its endpoints. A geometric
graph G is called plane if no two edges intersect properly.
The distance between two vertices u and v in G, denoted
by δG(u, v), is defined as the sum of the weights of the
edges along the shortest path between u and v in G.
A subgraph H of G is a t-spanner of G (for t ≥ 1) if
for each pair of vertices u and v, δH(u, v) ≤ t · δG(u, v).
The smallest value t for which H is a t-spanner is the
spanning ratio or stretch factor of H. The spanning
properties of various geometric graphs have been studied
extensively in the literature (see [5, 9] for an overview
of the topic).

We study this problem in the presence of line segment
constraints. Specifically, let P be a set of points in the
plane and let S be a set of line segments with endpoints in
P , with no two line segments intersecting properly. The
line segments of S are called constraints. Two vertices u
and v can see each other or are visible to each other if
and only if either the line segment uv does not properly
intersect any constraint or uv is itself a constraint. If
two vertices u and v can see each other, the line segment

∗Research supported in part by FQRNT, NSERC, and Carleton
University’s President’s 2010 Doctoral Fellowship.
‡School of Computer Science, Carleton University, Ottawa,

Canada. jit@scs.carleton.ca, jdecaruf@cg.scs.carleton.ca
§National Institute of Informatics (NII), Tokyo, Japan.
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¶JST, ERATO, Kawarabayashi Large Graph Project.

uv is a visibility edge. The visibility graph of P with
respect to a set of constraints S, denoted Vis(P, S), has
P as vertex set and all visibility edges as edge set. In
other words, it is the complete graph on P minus all
edges that properly intersect one or more constraints.

This setting has been studied extensively within the
context of motion planning amid obstacles. Clarkson [7]
was one of the first to study this problem and showed how
to construct a linear-sized (1 + ε)-spanner of Vis(P, S).
Subsequently, Das [8] showed how to construct a spanner
of Vis(P, S) with constant spanning ratio and constant
degree. Bose and Keil [4] showed that the Constrained
Delaunay Triangulation is a 4π

√
3/9 ≈ 2.419-spanner

of Vis(P, S). The constrained Delaunay graph where
the empty convex shape is an equilateral triangle was
shown to be a 2-spanner [3]. Recently, it was shown that
regardless of the empty convex shape C used, the con-
strained generalized Delaunay graph is a plane spanner
with constant spanning ratio, where the spanning ratio
depends on the perimeter and the width of C [2].

In this paper, we improve the spanning ratio for the
case where the empty convex shape is a rectangle. In
the unconstrained setting, Chew [6] showed that the
spanning ratio for squares is at most

√
10 ≈ 3.16. This

was later improved by Bonichon et al. [1], who showed a

tight spanning ratio of
√

4 + 2
√

2 ≈ 2.61. We show that
in the constrained setting the spanning ratio is at most√

2 · (2l/s+ 1), where l and s are the length of the long
and short side of C. For squares (the rectangles that
minimize l/s), this implies a ratio of 3

√
2 ≈ 4.25.

2 Preliminaries

Throughout this paper, we fix a convex shape C. We
assume without loss of generality that the origin lies in
the interior of C. A homothet of C is obtained by scaling
C with respect to the origin, followed by a translation.
Thus, a homothet of C can be written as

x+ λC = {x+ λz : z ∈ C},

for some scaling factor λ > 0 and some point x in the
interior of C after translation. We refer to x as the
center of the homothet x+ λC.

For a given set of vertices P and a set of constraints
S, we now define the constrained generalized Delaunay
graph. Given any two visible vertices p and q, let C(p, q)
be any homothet of C with p and q on its boundary. The
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constrained generalized Delaunay graph contains an edge
between p and q if and only if there exists a C(p, q) such
that there are no vertices of P in the interior of C(p, q)
visible to both p and q. Note that this implies that
constraints are not necessarily edges of the constrained
generalized Delaunay graph. We assume that no four
points lie on the boundary of any homothet of C.

2.1 Auxiliary Lemmas

Next, we present three auxiliary lemmas that are needed
to prove our main results. First, we reformulate a lemma
that appears in [10].

Lemma 1 Let C be a closed convex curve in the plane.
The intersection of two distinct homothets of C is the
union of two sets, each of which is either a segment, a
single point, or empty.

We say that a region R contains a vertex v if v lies in
the interior or on the boundary of R. We call a region
empty if it does not contain any vertex of P . Though
the following lemma was applied to constrained θ-graphs
in [3], the property holds for any visibility graph.

Lemma 2 Let u, v, and w be three arbitrary points in
the plane such that uw and vw are visibility edges and
w is not the endpoint of a constraint intersecting the
interior of triangle uvw. Then there exists a convex
chain of visibility edges from u to v in triangle uvw,
such that the polygon defined by uw, wv and the convex
chain is empty and does not contain any constraints.

Finally, we re-introduce a definition and lemma
from [2]. Let p and q be two vertices that can see
each other and let C(p, q) be a convex polygon with
p and q on its boundary. We look at the constraints
that have p as an endpoint and the edge(s) of C(p, q) on
which p lies, and extend them to half-lines that have p
as an endpoint (see Figure 1a). Given the cyclic order
of these half-lines around p and the line segment pq, we
define the clockwise neighbor of pq to be the half-line
that minimizes the strictly positive clockwise angle with
pq. Analogously, we define the counterclockwise neigh-
bor of pq to be the half-line that minimizes the strictly
positive counterclockwise angle with pq. We define the
cone Cp

q that contains q to be the region between the
clockwise and counterclockwise neighbor of pq. Finally,
let C(p, q)pq , the region of C(p, q) that contains q with
respect to p, be the intersection of C(p, q) and Cp

q (see
Figure 1b).

Lemma 3 Let p and q be two vertices that can see each
other and let C(p, q) be any convex polygon with p and q
on its boundary. If there is a vertex x in C(p, q)pq (other
than p and q) that is visible to p, then there is a vertex
y (other than p and q) in C(p, q) that is visible to both
p and q and triangle pyq is empty.

p

q

C(p, q)

C(p, q)pq

p

q

C(p, q)

r

s

(a) (b)

Figure 1: Defining the region of C(p, q) that contains q
with respect to p: (a) The clockwise and counterclock-
wise neighbor of pq are the half-lines through pr and ps,
(b) C(p, q)pq is marked in gray.

3 The Constrained Empty-Rectangle Delaunay
Graph

We look at the case where the empty convex shape is an
arbitrary rectangle. We assume without loss of generality
that the rectangle is axis-aligned. We do not, however,
assume anything about the ratio between the height and
width of the rectangle. We first show that if two visible
vertices cannot see any vertices in C(p, q) on one side of
pq, then no vertex in C(p, q) on the opposite side of pq
can see any vertices beyond pq either.

Lemma 4 Let p and q be two vertices that can see each
other, such that pq is not vertical, and let C(p, q) be
any convex polygon with p and q on its boundary. If the
region of C(p, q) below pq does not contain any vertices
visible to p and q, then no point x in C(p, q) above pq
can see any vertices in C(p, q) below pq.

Proof. We prove the lemma by contradiction, so assume
that there exists a vertex y in C(p, q) below pq that is
visible to x, but not to p and q. Since C(p, q) is a convex
polygon and x and y lie on opposite sides of pq, the
visibility edge xy intersects pq. Let z be this intersection
(see Figure 2).

p

q

x

y

z

C(p, q)

w

Figure 2: If x can see a vertex below pq, then so can q.

Hence, zy and zq are visibility edges. Since z is not
a vertex, it is not the endpoint of any constraints in-

58



CCCG 2015, Kingston, Ontario, August 10–12, 2015

tersecting the interior of triangle yzq. It follows from
Lemma 2 that there exists a convex chain of visibility
edges between y and q and this chain is contained in yzq.
However, this implies that w, the neighbor of q along
this chain, is visible to q and lies in C(p, q) below pq.
Next, we apply Lemma 2 on triangle pqw and find that
the neighbor of p along the chain from p to w is visible to
both p and q and lies in C(p, q) below pq, contradicting
that this region does not contain any vertices visible to
p and q. �

Next, we introduce some notation for the following
lemma. Let p and q be two vertices of the constrained
generalized Delaunay graph that can see each other.
Let R be a rectangle with p and q on its West and
East boundary and let a, b, and r be the Northwest,
Northeast, and Southwest corner of R. Let m1, ...,mk−1
be any k − 1 points on pq in the order they are visited
when walking from p to q (see Figure 3). Let m0 = p
and mk = q. Consider the homothets Si of R with mi

and mi+1 on their respective boundaries, for 0 ≤ i < k,
such that |pa|/|ra| = |miai|/|riai|, where ai, bi, ri are
the Northwest, Northeast, and Southwest corner of Si.

p

q

a b

m1

m2

a1 b1

a2 b2b0a0

r

r0 r1

r2

Figure 3: The total length
of the sides of the rectangles
Si equals that of C(p, q).

p

q

x = p0

m0

a b

a′ b′

Figure 4: An inductive
path from p to q.

Lemma 5 We have

k−1∑

i=0

(
|miai|+ |aibi|+ |bimi+1|

)
= |pa|+ |ab|+ |bq|.

Proof. Let c = (|pa|+|ab|+|bq|)/|pq|. Since for every Si

we have that |pa|/|ra| = |miai|/|riai|, we have (|miai|+
|aibi| + |bimi+1|)/|mimi+1| = c, for 0 ≤ i < k. Hence,
we get

k−1∑

i=0

(
|miai|+ |aibi|+ |bimi+1|

)
=

k−1∑

i=0

(
c · |mimi+1|

)

= c · |pq|
= |pa|+ |ab|+ |bq|,

proving the lemma. �

Before we prove the bound on the spanning ratio of the
constrained generalized Delaunay graph, we first bound

the length of the spanning path between vertices p and
q for the case where the rectangle C(p, q) is partially
empty. We call a rectangle C(p, q) half-empty when
C(p, q) contains no vertices in C(p, q)pq below pq that are
visible to p and C(p, q) contains no vertices in C(p, q)qp
below pq that are visible to q. We denote the x- and
y-coordinate of a point p by px and py.

Lemma 6 Let p and q be two vertices that can see each
other. Let C(p, q) be a rectangle with p and q on its
boundary, such that it is half-empty. Let a and b be
the corners of C(p, q) on the non-half-empty side. The
constrained generalized Delaunay graph contains a path
between p and q of length at most |pa|+ |ab|+ |bq|.

Proof. We prove the lemma by induction on the rank
of C(x, y) when ordered by size, for any two visible
vertices x and y, such that C(x, y) is half-empty. We
assume without loss of generality that p lies on the West
boundary, q lies on the East boundary and that C(p, q)
is half-empty below pq. This implies that a and b are
the Northwest and Northeast corner of C(p, q). We also
assume without loss of generality that the slope of pq is
non-negative, i.e. px < qx and py ≤ qy (see Figure 4).

We note that the case where p lies on the West bound-
ary, q lies on the North boundary and C(p, q) is half-
empty below pq can be viewed as a special case of the
one above: We shrink C(p, q) until one of p and q lies
in a corner. This point can now be viewed as being on
both sides defining the corner and hence p and q are on
opposite sides. An analogous statement holds for the
case where p lies on the West boundary, q lies on the
North boundary and C(p, q) is half-empty above pq.

Let r be the Southwest corner of C(p, q). Let R be
a homothet of C(p, q) that is contained in C(p, q) and
whose West boundary is intersected by pq. Let a′, b′, r′

be the Northwest, Northeast, and Southwest corner of
R and let m be the intersection of a′r′ and pq. We call
homothet R similar to C(p, q) if and only if |pa|/|ra| =
|ma′|/|r′a′|.

Base case: If C(p, q) is a rectangle of smallest area,
then C(p, q) does not contain any vertices visible to both
p and q: Assume this is not the case and grow a rectangle
R similar to C(p, q) from p to q. Let x be the first
vertex hit by R that is visible to p and lies in C(p, q)pq .
Note that this implies that R is contained in C(p, q).
Therefore, R is smaller than C(p, q). Furthermore, R
is half-empty: By Lemma 4, the part below the line
through p and q does not contain any vertices visible to
p or x in C(p, q)pq , and the part between the line through
p and x and the line through p and q does not contain
any vertices visible to p or x since x is the first visible
vertex hit while growing R. However, this contradicts
that C(p, q) is the smallest half-empty rectangle.

Hence, C(p, q) does not contain any vertices visible
to both p and q, which implies that pq is an edge of
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the constrained generalized Delaunay graph. Therefore
the length of the shortest path from p to q is at most
|pq| ≤ |pa|+ |ab|+ |bq|.

Induction step: We assume that for all half-empty
rectangles C(x, y) smaller than C(p, q) the lemma holds.
If pq is an edge of the constrained generalized Delaunay
graph, the length of the shortest path from p to q is at
most |pq| ≤ |pa|+ |ab|+ |bq|.

If pq is not an edge of the constrained generalized
Delaunay graph, there exists a vertex in C(p, q) that
is visible from both p and q. We grow a rectangle R
similar to C(p, q) from p to q. Let x be the first vertex
hit by R that is visible to p and lies in C(p, q)pq and let a′

and b′ be the Northwest and Northeast corner of R (see
Figure 4). Note that this implies that R is contained in
C(p, q). We also note that px is not necessarily an edge
in the constrained generalized Delaunay graph, since if
it is a constraint, there can be vertices visible to both
p and x above px. However, since R is half-empty and
smaller than C(p, q), we can apply induction on it and
we obtain that the path from p to x has length at most
|pa′| + |a′b′| + |b′x| when x lies on the East boundary
of R, and that the path from p to x has length at most
|pa′|+ |a′x| when x lies on the North boundary of R.

Let m0 be the projection of x along the vertical axis
onto pq. Since m0 is contained in R, x can see m0.
Since xm0 and m0q are visibility edges and m0 is not
the endpoint of a constraint intersecting the interior
of triangle xm0q, we can apply Lemma 2 and obtain
a convex chain x = p0, p1, ..., pk = q of visibility edges
(see Figure 4). For each of these visibility edges pipi+1,
there is a homothet Ri of C(p, q) that falls in one of the
following three types (see Figure 5): (i) pi lies on the
North boundary and pi+1 lies in the Southeast corner,
(ii) pi lies on the West boundary and pi+1 lies on the
East boundary and the slope of pipi+1 is negative, (iii)
pi lies on the West boundary and pi+1 lies on the East
boundary and the slope of pipi+1 is not negative. Let
ai and bi be the Northwest and Northeast corner of Ri.
We note that by convexity, these three types occur in
the order Type (i), Type (ii), and Type (iii).

Let mi be the projection of pi along the vertical axis
onto pq, let Ci be the homothet of C(p, q) with mi and
mi+1 on its boundary that is similar to C(p, q), and
let a′i and b′i be the Northwest and Northeast corner of
Ci. Using these Ci, we shift Type (ii) and Type (iii)
rectangles down as far as possible: We shift Ri down until
either pi or pi+1 lies in one of the North corners or the
South boundary corresponds to the South boundary of
Ci. In the latter case, Ri and Ci are the same rectangle.

Since all rectangles Ri are smaller than C(p, q), we
can apply induction, provided that we can show that Ri

is half-empty. For Type (i) visibility edges, the part of
the rectangle that lies below the line through pi and pi+1

is contained in R, which does not contain any visible

pi

pi+1

pi

pi+1

pi

pi+1

(i) (ii) (iii)

bi ai bi biaiRi Ri Ri

Figure 5: The three types of rectangles along the convex
chain.

vertices, and the region of C(p, q)pq below the convex
chain, which is empty. For Type (ii) and Type (iii)
visibility edges, the part of the rectangle that lies below
the line through pi and pi+1 is contained in the region
of C(p, q)pq below the convex chain, which is empty, and
the region of C(p, q) below the line through p and q,
which does not contain any visible vertices by Lemma 4.
Hence, all Ri are half-empty and we obtain an inductive
path of length at most: (i) |pibi|+ |bipi+1|, (ii) |piai|+
|aibi|+ |bipi+1|, (iii) |piai|+ |aibi|+ |bipi+1|.

To bound the total path length, we perform case
distinction on the location of x on R and whether the
convex path from x to q goes down: (a) x lies on the East
boundary of R and the convex path does not go down,
(b) x lies on the East boundary of R and the convex
path goes down, (c) x lies on the North boundary of R
and the convex path does not go down, (d) x lies on the
North boundary of R and the convex path goes down.

Case (a): The vertex x lies on the East boundary
of R and the convex path does not go down. Recall
that the length of the path from p to x is at most
|pa′| + |a′b′| + |b′x|, which is at most |pa′| + |a′b′| +
|b′m0|. Since the convex chain does not go down, it
cannot contain any Type (i) or Type (ii) visibility edges.
Furthermore, since x lies on the East boundary of R,
R and all Ci are disjoint. Thus, Lemma 5 implies that
the boundaries above pq of R and all Ci sum up to
|pa|+ |ab|+ |bq|. Hence, if we can show that, for all Ri,
|piai|+ |aibi|+ |bipi+1| ≤ |mia

′
i|+ |a′ib′i|+ |b′imi+1|, the

proof of this case is complete.
By convexity, the slope of pipi+1 is at most that of

pq and mimi+1. Hence, when pi+1 lies in the Northeast
corner of Ri, we have pi+1 = bi and |piai|+ |aipi+1| ≤
|mia

′
i| + |a′ib′i| + |b′imi+1|. If pi+1 does not lie in the

Northeast corner, Ri = Ci. Hence, since pi and pi+1

lie above pq, we have that |piai| + |aibi| + |bipi+1| ≤
|mia

′
i|+ |a′ib′i|+ |b′imi+1|.

Case (b): The vertex x lies on the East boundary of
R and the convex path goes down. Recall that the length
of the path from p to x is at most |pa′|+ |a′b′|+ |b′x|. Let
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pj be the lowest vertex along the convex chain. Since pj
lies above pq and pq has non-negative slope, the descent
of the convex path is at most |xm0|. Hence, when we
charge this to R, we used |pa′| + |a′b′| + |b′m0| of its
boundary (see Figure 6).

p

q

m0

a b

a′
b′

Figure 6: Going down along
the convex chain (blue) is
charged to R (orange).

p

q

a b

a′
a0

a1 b1
a′′

b′′

Figure 7: Charging the
path from p to pj to
C(p, pj).

Like in the Case (a), since x lies on the East boundary
of R, R and all Ci are disjoint. Thus, Lemma 5 implies
that the boundaries above pq of R and all Ci sum up to
|pa|+|ab|+|bq|. Hence, if we can show that, for all Ri, the
inductive path length is at most |mia

′
i|+ |a′ib′i|+ |b′imi+1|,

the proof of this case is complete.

For Type (i) visibility edges, we have already charged
|bipi+1| to R, so it remains to show that |pibi| ≤ |mia

′
i|+

|a′ib′i| + |b′imi+1|. This follows, since mi and mi+1 are
the vertical projections of pi and pi+1, which implies
that |pibi| = |a′ib′i|.

For Type (ii) visibility edges, we already charged
|bipi+1| − |piai| to R, so we can consider pipi+1 to
be horizontal and it remains to charge the remain-
ing 2 · |piai| + |aibi|. If pi lies in the Northwest cor-
ner of Ri, it follows that |piai| = 0 and we have that
|pibi| = |a′ib′i| ≤ |mia

′
i| + |a′ib′i| + |b′imi+1|. If pi does

not lie in the Northwest corner, Ri is the same as
Ci. Hence, since we can consider pipi+1 to be hor-
izontal and pi and pi+1 lie above pq, it follows that
2 · |piai|+ |aibi| ≤ |mia

′
i|+ |a′ib′i|+ |b′imi+1|.

Finally, Type (iii) visibility edges are charged as in
Case (a), hence we have that |piai|+ |aibi|+ |bipi+1| ≤
|mia

′
i| + |a′ib′i| + |b′imi+1|, completing the proof of this

case.

Case (c): Vertex x lies on the North boundary of R
and the convex path does not go down. Recall that the
length of the path from p to x is at most |pa′| + |a′x|.
Since the convex chain does not go down, it cannot
contain any Type (i) or Type (ii) visibility edges. Let
pj be the first vertex along the chain, such that Rj−1 is
the same as Cj−1. Since q lies on the East boundary of
C(p, q), this condition is satisfied for the last visibility
edge along the convex chain, hence pj exists.

Let C(p, pj) be the homothet of C(p, q) that has p and

pj on its boundary and is similar C(p, q). Let a′′ and
b′′ be the Northwest and Northeast corners of C(p, pj)
(see Figure 7). Since pj is first vertex along the convex
chain that does not lie in the Northeast corner of Rj−1,
we have that along the path from p to pj the projections
of a′x, all aipi+1, and aj−1bj−1 onto a′′b′′ are disjoint
and the projections of pa′, all piai, and pj−1aj−1 onto
pa′′ are disjoint. Hence, their lengths sum up to at most
|pa′′|+ |a′′b′′|. Finally, since |bj−1pj | ≤ |b′′pj |, the total
length of the path from p to pj is at most |pa′′|+ |a′′b′′|+
|b′′pj |, which is at most |pa′′|+ |a′′b′′|+ |b′′mj |.

All Type (iii) visibility edges following pj are charged
as in Case (a), hence we have that |piai| + |aibi| +
|bipi+1| ≤ |mia

′
i| + |a′ib′i| + |b′imi+1|. We now apply

Lemma 5 to C(p, pj) and all Ci following pj and obtain
that the total length of the path from p to q is at most
|pa|+ |ab|+ |bq|.

Case (d): Vertex x lies on the North boundary of R
and the convex path goes down. Recall that the length
of the path from p to x is at most |pa′|+ |a′x| and that p1
is the neighbor of x along the convex chain. Let C(p, p1)
be the homothet of C(p, q) that has p and p1 on its
boundary and is similar to C(p, q). Let a′′ and b′′ be the
Northwest and Northeast corners of C(p, p1). Since p1
lies to the right of R and lower than x, it lies on the East
boundary of C(p, p1). We first show that the length of
the path from p to p1 is at most |pa′′|+ |a′′b′′|+ |b′′p1|.

If xp1 is a Type (i) visibility edge, the length of the
path from x to p1 is at most |xb0|+|b0p1|. Hence we have
a path from p to p1 of length at most |pa′|+|a′x|+|xb0|+
|b0p1| = |pa′| + |a′′b′′| + |b0p1|. Since |pa′| ≤ |pa′′| and
|b0p1| ≤ |b′′p1|, this implies that the path has length at
most |pa′′|+ |a′′b′′|+ |b′′p1|. If xp1 is a Type (ii) visibility
edge and x lies in the Northwest corner an analogous
argument shows that the path from p to p1 is at most
|pa′′| + |a′′b′′| + |b′′p1|. If xp1 is a Type (ii) visibility
edge and R0 = C0, we have that the projections of a′x
and a0b0 onto a′′b′′ are disjoint and the projections of
pa′ and xa0 onto pa′′ are disjoint. Hence, their total
lengths sum up to at most |pa′′|+ |a′′b′′|. Finally, since
|b0p1| ≤ |b′′p1|, the total length of the path from p to p1
is at most |pa′′|+ |a′′b′′|+ |b′′p1|.

Next, we observe, like in Case (b), that starting
from p1 the convex path cannot go down more than
|p1m1|. Hence, when we charge this to C(p, p1), we
used |pa′′| + |a′′b′′| + |b′′m1| of its boundary. Finally,
we use arguments analogous to the ones in Case (b) to
show that each inductive path after p1 has length at
most |mia

′
i|+ |a′ib′i|+ |b′imi+1|. We now apply Lemma 5

to C(p, p1) and all Ci following p1 and obtain that
the total length of the path from p to q is at most
|pa|+ |ab|+ |bq|. �

Lemma 7 Let p and q be two vertices that can see each
other. Let C(p, q) be the rectangle with p and q on
its boundary, such that p lies in a corner of C(p, q).
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Let l and s be the length of the long and short side of
C(p, q). The constrained generalized Delaunay graph
contains a path between p and q of length at most(
2l
s + 1

)
· (|px − qx|+ |py − qy|).

Proof. We assume without loss of generality that p
lies on the Southwest corner and q lies on the East
boundary. Note that this implies that the slope of pq is
non-negative, i.e. px < qx and py ≤ qy. We prove the
lemma by induction on the rank of C(x, y) when ordered
by size, for any two visible vertices x and y, such that
x lies in a corner of C(x, y). In fact, we show that the
constrained generalized Delaunay graph contains a path
between x and y of length at most c·(qx−px)+d·(qy−py)
and derive bounds on c and d.

Base case: If C(p, q) is the smallest rectangle with p
in a corner, then C(p, q) does not contain any vertices
visible to both p and q: Let u be a vertex in C(p, q)
that is visible to both p and q. Let C(p, u) be the
rectangle with p in a corner and u on its boundary.
Since u lies in C(p, q), C(p, u) is smaller than C(p, q),
contradicting that C(p, q) is the smallest rectangle with
p in a corner. Hence, C(p, q) does not contain any
vertices visible to both p and q, which implies that
pq is an edge of the constrained generalized Delaunay
graph. Hence, the constrained generalized Delaunay
graph contains a path between p and q of length at most
|pq| ≤ (qx− px) + (qy − py) ≤ c · (qx− px) + d · (qy − py),
provided that c ≥ 1 and d ≥ 1.

Induction step: We assume that for all rectangles
C(x, y), with x in some corner of C(p, q), smaller than
C(p, q) the lemma holds. If pq is an edge of the con-
strained generalized Delaunay graph, by the triangle
inequality, the length of the shortest path from p to q is
at most |pq| ≤ |px − qx|+ |py − qy|.

If there is no edge between p and q, there exists a
vertex u in C(p, q) that is visible from both p and q.
We first look at the case where u lies below pq. Let
g be the intersection of the South boundary of C(p, q)
and the line though q parallel to the diagonal of C(p, q)
through p, and let h be the Southeast corner of C(p, q)
(see Figure 8). If u lies in triangle pgq, by induction
we have that the path from p to u has length at most
c · (ux − px) + d · (uy − py) and the path from u to q
has length at most c · (qx − ux) + d · (qy − uy). Hence,
there exists a path from p to q via u of length at most
c · (qx − px) + d · (qy − py).

If u lies in triangle ghq, by induction we have that the
path from p to u has length at most c · (ux − px) + d ·
(uy − py) and the path from q to u has length at most
d · (qx − ux) + c · (qy − uy). When we take c and d to be
equal, this implies that there exists a path from p to q
via u of length at most c · (qx − px) + d · (qy − py).

If there does not exist a vertex below pq that is visible
to both p and q, than Lemma 3 implies that there are
no vertices in C(p, q)pq below pq that are visible to p and

p

q

g h

Figure 8: Rectangle C(p, q) with points g and h.

that there are no vertices in C(p, q)qp below pq that are
visible to q. Hence, we can apply Lemma 6 and obtain
that there exists a path between p and q of length at
most |pa|+ |ab|+ |bq|, where a and b are the Northwest
and Northeast corner of C(p, q). Since |ab| is (qx − px)
and |bq| ≤ |pa| ≤ l

s · (qx − px), we can upper bound

|pa|+ |ab|+ |bq| by c ·(qx−px) when c is at least
(
2l
s + 1

)
.

Hence, since c and d need to be equal, we obtain that
all cases work out when c = d =

(
2l
s + 1

)
. �

Finally, since (|px− qx|+ |py− qy|)/|pq| is at most
√

2,
we obtain the following theorem.

Theorem 8 The constrained generalized Delaunay
graph using an empty rectangle as empty convex shape
has spanning ratio at most

√
2 ·
(
2l
s + 1

)
.
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Flips in Edge-Labelled Pseudo-Triangulations∗

Prosenjit Bose§ Sander Verdonschot§

Abstract

We show that O(n2) exchanging flips suffice to trans-
form any edge-labelled pointed pseudo-triangulation
into any other with the same set of labels. By using in-
sertion, deletion and exchanging flips, we can transform
any edge-labelled pseudo-triangulation into any other
with O(n log c + h log h) flips, where c is the number
of convex layers and h is the number of points on the
convex hull.

1 Introduction

A pseudo-triangle is a simple polygon with three convex
interior angles, called corners, that are connected by re-
flex chains. Given a set P of n points in the plane, a
pseudo-triangulation of P is a subdivision of its convex
hull into pseudo-triangles, using all points of P as ver-
tices (see Figure 1a). A pseudo-triangulation is pointed
if all vertices are incident to a reflex angle in some face
(including the outer face; see Figure 1b for an example).
Pseudo-triangulations find applications in areas such as
kinetic data structures [6] and rigidity theory [9]. More
information on pseudo-triangulations can be found in a
survey by Rote, Santos, and Streinu [8].

(a) (b)

Figure 1: (a) A pseudo-triangulation with two non-
pointed vertices. (b) A pointed pseudo-triangulation.

Since a regular triangle is also a pseudo-triangle,
pseudo-triangulations generalize triangulations (subdi-
visions of the convex hull into triangles). Triangula-
tions have numerous applications and are extremely
well-studied; the particular topic we are interested in is
that of flips. In a triangulation, a flip is a local transfor-
mation that removes one edge, leaving an empty quadri-
lateral, and inserts the other diagonal of that quadrilat-
eral. Note that this is only possible if the quadrilateral
is convex. Lawson [7] showed that any triangulation

∗This work was partially supported by NSERC.
§School of Computer Science, Carleton University, Ottawa,

jit@scs.carleton.ca, sander@cg.scs.carleton.ca

with n vertices can be transformed into any other with
O(n2) flips, and Hurtado, Noy, and Urrutia [5] gave a
matching Ω(n2) lower bound.

Pointed pseudo-triangulations support a similar type
of flip, but before we can introduce this, we need to
generalize the concept of pseudo-triangles to pseudo-k-
gons: weakly simple polygons with k convex interior
angles. A diagonal of a pseudo-k-gon is called a bitan-
gent if the pseudo-k-gon remains pointed after inser-
tion of the diagonal. In a pointed pseudo-triangulation,
flipping an edge removes the edge, leaving a pseudo-
quadrilateral (a pseudo-4-gon), and inserts the unique
other bitangent of the pseudo-quadrilateral (see Fig-
ure 2a). In contrast with triangulations, all internal
edges of a pointed pseudo-triangulation are flippable.
Bereg [3] showed that O(n log n) flips suffice to trans-
form any pseudo-triangulation into any other.

Aichholzer et al. [2] showed that the same result holds
for all pseudo-triangulations (including triangulations)
if we allow two more types of flips: insertion and dele-
tion flips. As the name implies, these either insert
or delete one edge, provided that the result is still a
pseudo-triangulation. To disambiguate, they call the
other flips exchanging flips. In a later paper, this bound
was refined to O(n log c) [1], where c is the number of
convex layers of the point set.

(a) (b)

Figure 2: (a) A flip in a pseudo-quadrilateral. (b) A
left-shelling pseudo-triangulation.

In this paper, we investigate flips in edge-labelled
pseudo-triangulations: pseudo-triangulations where
each internal edge has a unique label in {1, . . . , 3n−3−
2h}, where h is the number of vertices on the convex hull
(3n−3−2h is the number of internal edges in a triangu-
lation). In the case of an exchanging flip, the new edge
receives the label of the old edge. For a deletion flip, the
edge and its label are simply removed, and for an inser-
tion flip, the new edge receives an unused label from
the set of all possible labels. The edge-labelled version
is more difficult than the unlabelled version, since we no
longer have the freedom to choose the mapping between
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edges in the initial and final pseudo-triangulation.

Bose et al. [4] initiated the study of flips in edge-
labelled triangulations. They gave a tight Θ(n log n)
bound on the worst-case number of flips required for
triangulations of points in convex position. However,
in general, they show that it is not always possible to
flip between two given edge-labelled triangulations. In
contrast, we show that it is always possible to transform
two given edge-labelled pseudo-triangulations into each
other using flips.

Our results are the following: using only exchang-
ing flips, we show that O(n2) flips suffice to transform
any edge-labelled pointed pseudo-triangulation into any
other with the same set of labels. By using insertion,
deletion and exchanging flips, we can transform any
edge-labelled pseudo-triangulation into any other with
O(n log c + h log h) flips.

Before we prove our results, we need a few more defi-
nitions. Given a set of points in the plane, let v0 be the
point with the lowest y-coordinate, and let v1, . . . , vn be
the other points in clockwise order around v0. The left-
shelling pseudo-triangulation is the union of the convex
hulls of v0, . . . , vi, for all 2 ≤ i ≤ n (see Figure 2b).
Thus, every vertex after v1 is associated with two edges:
a bottom edge connecting it to v0 and a top edge that is
tangent to the convex hull of the earlier vertices. The
right-shelling pseudo-triangulation is similar, with the
vertices added in counter-clockwise order instead.

2 Transforming pointed pseudo-triangulations

In this section, we show that every edge-labelled pointed
pseudo-triangulation can be transformed into any other
with the same set of labels by O(n2) exchanging flips.
We do this by showing how to transform a given edge-
labelled pointed pseudo-triangulation into a canonical
one. The result then follows by the reversibility of flips.
We use the left-shelling pseudo-triangulation as canoni-
cal pseudo-triangulation, with the bottom edges labelled
in clockwise order around v0, followed by the internal
top edges in the same order (based on their associated
vertex).

Since we can transform any pointed pseudo-
triangulation into the left-shelling pseudo-triangulation
with O(n log n) flips [3], the main part of the proof
lies in reordering the labels of a left-shelling pseudo-
triangulation. We use two tools for this, called a sweep
and a shuffle, that are implemented by a sequence of
flips. A sweep interchanges the labels of some internal
top edges with their respective bottom edges, while a
shuffle permutes the labels on all bottom edges.

Lemma 1 We can transform any left-shelling pseudo-
triangulation into the canonical one with O(1) shuffle
and sweep operations.

Proof. In the canonical pseudo-triangulation, we call
the labels assigned to bottom edges low, and the labels
assigned to top edges high. In the first step, we use a
shuffle to line up every bottom edge with a high label
to a top edge with a low label. Then we exchange these
pairs of labels with a sweep. Now all bottom edges have
low labels and all top edges have high labels, so all that
is left is to sort the labels. We can sort the low labels
with a second shuffle. To sort the high labels, we sweep
them to the bottom edges, shuffle to sort them there,
then sweep them back. �

The remainder of this section describes how to per-
form a sweep and a shuffle with flips.

Lemma 2 We can interchange the labels of the edges
incident to an internal vertex v of degree two with three
exchanging flips.

Proof. Consider what happens when we remove v.
Deleting one of its edges leaves a pseudo-quadrilateral.
Removing the second edge then either merges two cor-
ners into one, or removes one corner, leaving a pseudo-
triangle T . There are three bitangents that connect v
to T , each corresponding to the geodesic between v and
a corner of T . Any choice of two of these bitangents
results in a pointed pseudo-triangulation. When one of
them is flipped, the only new edge that can be inserted
so that the result is still a pointed pseudo-triangulation
is the bitangent that was not there before the flip. Thus,
we can interchange the labels with three flips (see Fig-
ure 3). �

Figure 3: Interchanging the labels of the edges incident
to a vertex of degree two.

Lemma 3 (Sweep) In the left-shelling pseudo-
triangulation, we can interchange the labels of any
number of internal top edges and their corresponding
bottom edges with O(n) exchanging flips.

Proof. Let S be the set of vertices whose internal top
edge should have its label swapped with the correspond-
ing bottom edge. Consider a ray L from v0 that starts
at the positive x-axis and sweeps through the point set
to the negative x-axis. We will maintain the following
invariant: the graph induced by the vertices to the left
of L is their left-shelling pseudo-triangulation and the
graph induced by the vertices to the right of L is their
right-shelling pseudo-triangulation (both groups include
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Figure 4: Interchanging the labels of two bitangents of a pseudo-pentagon with five bitangents. An edge in the
pentagon corresponds to a geodesic between two corners of the pseudo-pentagon.

v0). Furthermore, the labels of the top edges of the ver-
tices in S to the right of L have been interchanged with
their respective bottom edges. This invariant is satisfied
at the start.

Suppose that L is about to pass a vertex vk. If vk is
on the convex hull, its top edge is not internal and no
action is required for the invariant to hold after passing
vk. So assume that vk is not on the convex hull and
consider its incident edges. It is currently part of the
left-shelling pseudo-triangulation of points to the left of
L, where it is the last vertex. Thus, vk is connected to v0
and to one vertex to its left. It is not connected to any
vertex to its right, since there are 2n− 3 edges in total,
and the left- and right-shelling pseudo-triangulations to
each side of L contribute 2(k+1)−3+2(n−k)−3 = 2n−4
edges. So the only edge that crosses L is an edge of the
convex hull. Therefore vk has degree two, which means
that we can use Lemma 2 to swap the labels of its top
and bottom edge with three flips if vk ∈ S.

Furthermore, the sides of the pseudo-triangle that re-
mains if we were to remove vk, form part of the convex
hull of the points to either side of L. Thus, flipping
the top edge of vk results in the tangent from vk to
the convex hull of the points to the right of L – ex-
actly the edge needed to add vk to their right-shelling
pseudo-triangulation. Therefore we only need O(1) flips
to maintain the invariant when passing vk.

At the end, we have constructed the right-shelling
pseudo-triangulation and swapped the desired edges.
An analogous transformation without any swapping can
transform the graph back into the left-shelling pseudo-
triangulation with O(n) flips in total. �
Lemma 4 In the left-shelling pseudo-triangulation, we
can interchange the labels of two consecutive bottom
edges with O(1) exchanging flips.

Proof. When we remove the two consecutive bottom
edges (say a and b), we are left with a pseudo-pentagon
X. A pseudo-pentagon can have up to five bitangents,
as each bitangent corresponds to a geodesic between two
corners. If X has exactly five bitangents, this correspon-
dence is a bijection. This implies that the bitangents of
X can be swapped just like diagonals of a convex pen-
tagon (see Figure 4). On the other hand, if X has only
four bitangents, it is impossible to swap a and b without
flipping an edge of X.

Fortunately, we can always transform X into a
pseudo-pentagon with five bitangents. If the pseudo-
triangle to the right of b is a triangle, X already has five
bitangents (see Lemma 19 in the Appendix). Otherwise,
the top endpoint of b is an internal vertex of degree two
and we can flip its top edge to obtain a new pseudo-
pentagon that does have five bitangents (see Lemma 20
in the Appendix). After swapping the labels of a and b,
we can flip this top edge back. Thus, in either case we
can interchange the labels of a and b with O(1) flips. �

We can use Lemma 4 to reorder the labels of the
bottom edges with insertion or bubble sort, as these
algorithms only swap adjacent values.

Corollary 5 (Shuffle) In the left-shelling pseudo-
triangulation, we can reorder the labels of all bottom
edges with O(n2) exchanging flips.

Combining this with Lemmas 1 and 3, and the fact
that we can transform any pointed pseudo-triangulation
into the left-shelling one with O(n log n) flips [3], gives
the main result.

Theorem 6 We can transform any edge-labelled
pointed pseudo-triangulation with n vertices into any
other with O(n2) exchanging flips.

The following lower bound follows from the Ω(n log n)
lower bound on the flip distance between edge-labelled
triangulations of a convex polygon [4].

Theorem 7 There are pairs of edge-labelled pointed
pseudo-triangulations with n vertices that require
Ω(n log n) exchanging flips to transform one into the
other.

3 Transforming general pseudo-triangulations

In this section, we extend our results for edge-
labelled pointed pseudo-triangulations to all edge-
labelled pseudo-triangulations. Since not all pseudo-
triangulations have the same number of edges, we need
to allow flips that change the number of edges. In par-
ticular, we allow a single edge to be deleted or inserted,
provided that the result is still a pseudo-triangulation.
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Since we are dealing with edge-labelled pseudo-
triangulations, we need to determine what happens to
the edge labels. It is useful to first review the prop-
erties we would like these flips to have. First, a flip
should be a local operation – it should affect only one
edge. Second, a labelled edge should be flippable if and
only if the edge is flippable in the unlabelled setting.
This allows us to re-use the existing results on flips in
pseudo-triangulations. Third, flips should be reversible.
Like most proofs about flips, our proof in the previous
section crucially relies on the reversibility of flips.

With these properties in mind, the edge-deletion flip
is rather straightforward – the labelled edge is removed,
and other edges are not affected. Since the edge-
insertion flip needs to be the inverse of this, it should
insert the edge and assign it a free label – an unused
label in {1, . . . , 3n− 3− 2h}, where h is the number of
vertices on the convex hull (3n − 3 − 2h is the number
of internal edges in a triangulation).

With the definitions out of the way, we turn our at-
tention to the number of flips required to transform any
edge-labelled pseudo-triangulation into any other. In
this section, we show that by using insertion and dele-
tion flips, we can shuffle (permute the labels on bottom
edges) with O(n + h log h) flips. Combined with the
unlabelled bound of O(n log c) flips by Aichholzer et
al. [1], this brings the total number of flips down to
O(n log c+h log h). Note that, by the results of Bose et
al. [4], this holds for a set of points in convex position
(h = n). In the remainder of this section we assume
that h < n. As before, we first build a collection of
simple tools that help prove the main result.

Figure 5: Interchanging the label of an edge incident to
a vertex of degree two with a free label.

Lemma 8 With O(1) flips, we can interchange the la-
bel of an edge incident to an internal vertex of degree
two with a free label.

Proof. Let v be a vertex of degree two and let e be
an edge incident to v. Since v has degree two, its re-
moval leaves an empty pseudo-triangle T . There are
three bitangents that connect v to T , one for each cor-
ner. Thus, we can insert the third bitangent f with the
desired free label, making v non-pointed (see Figure 5).
Flipping e now removes it and frees its label. Finally,
flipping f moves it into e’s starting position, completing
the exchange. �

This implies that, using an arbitrary free label as
placeholder, we can swap any two edges incident to in-
ternal degree-two vertices – no matter where they are
in the pseudo-triangulation.

Corollary 9 We can interchange the labels of two
edges, each incident to some internal vertex of degree
two, with O(1) flips.

Recall that during a sweep (Lemma 3), each internal
vertex has degree two at some point. Since the number
of free labels for a pointed pseudo-triangulation is equal
to the number of internal vertices, this means that we
can use Lemma 8 to swap every label on a bottom edge
incident to an internal vertex with a free label by per-
forming a single sweep. Afterwards, a second sweep can
replace these labels on the bottom edges in any desired
order. Thus, permuting the labels on bottom edges in-
cident to internal vertices can be done with O(n) flips.
Therefore, the difficulty in permuting the labels on all
bottom edges lies in bottom edges that are not incident
to an internal vertex, that is, chords of the convex hull.
If there are few such chords, a similar strategy (free
them all and replace them in the desired order) might
work. Unfortunately, the number of free labels can be
far less than the number of chords.

We now consider operations on maximal groups of
consecutive chords, which we call fans. As the vertices
of a fan are in convex position, fans behave in many
ways like triangulations of a convex polygon, which can
be rearranged with O(n log n) flips [4]. The problem
now becomes getting the right set of labels on the edges
of a fan.

vl

vr

(a) (b)

Figure 6: (a) An indexed fan. (b) Shifting the index.

Consider the internal vertices directly to the left (vl)
and right (vr) of a fan F , supposing both exist. Vertex
vl has degree two and forms part of the reflex chain of
the first pseudo-triangle to the left of F . Thus, flipping
vl’s top edge connects it to the leftmost vertex of F
(excluding v0). Vertex vr is already connected to the
rightmost vertex of F , so we just ensure that it has
degree two. To do this, we flip all incident edges from
vertices further to the right, from the bottom to the
top. Now the diagonals of F form a triangulation of a
convex polygon whose boundary consists of v0, vl, the
top endpoints of the chords, and vr (see Figure 6a). It
is possible that there is no internal vertex to one side of
F . In that case, there is only one vertex on that side of
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F , which is part of the convex hull, and we can simply
use that vertex in place of vl or vr without flipping any
of its edges. Since there is at least one internal vertex by
assumption, either vl or vr is an internal vertex. This
vertex is called the index of F . If a vertex is the index
of two fans, it is called a shared index.

A triangulated fan is called an indexed fan if there is
one edge incident to the index, the indexed edge, and the
remaining edges are incident to one of the neighbours
of the index on the boundary. Initially, all diagonals of
F are incident to v0, so we transform it into an indexed
fan by flipping the diagonal of F closest to the index.
Next, we investigate several operations on indexed fans
that help us move labels between fans.

Lemma 10 (Shift) In an indexed fan, we can shift the
indexed edge to the next diagonal with O(1) flips.

Proof. Suppose that vl is the index (the proof for vr
is analogous). Let e be the current indexed edge, and
f be the leftmost diagonal incident to v0. Then flip-
ping f followed by e makes f the only edge incident to
the index and e incident to the neighbour of the index
(see Figure 6b). Since flips are reversible, we can shift
the index the other way too. �

Lemma 11 We can switch which fan a shared index
currently indexes with O(1) flips.

Proof. Flipping the current indexed edge “parks” it by
connecting it to the two neighbours of the index, and
reduces the degree of the index to two (see Figure 7).
Now, flipping the top edge of the index connects it to the
other fan, where we parked the previously indexed edge.
Flipping that edge connects it to the index again. �

Lemma 12 In a pointed pseudo-triangulation, we can
always decrease the degree of a vertex v of degree three
by flipping one of the edges incident to its reflex angle.

Proof. Consider the geodesic from v to the opposite
corner c of the pseudo-triangle v is pointed in. The line
supporting the part of the geodesic when it reaches v
splits the edges incident to v into two groups. As there
are three edges, one of these groups must contain multi-
ple edges. Flipping the edge incident to its reflex angle
in the group with multiple edges results in a geodesic
to c. If this geodesic passed through v, it would insert
the missing edges along the geodesic from v to c (oth-
erwise we could find a shorter path). But inserting this
geodesic would make v non-pointed. Thus, v cannot be
on this geodesic. Therefore the new edge is not incident
to v and the flip reduces the degree of v. �

Since the index always has degree three, this allows
us to extend the results from Lemma 8 and Corollary 9
regarding vertices of degree two to indexed edges.

Corollary 13 In an indexed fan, we can interchange
the label of the indexed edge with a free label in O(1)
flips.

Corollary 14 Given two indexed fans, we can inter-
change the labels of the two indexed edges with O(1)
flips.

Now we have enough tools to shuffle the bottom
edges.

Lemma 15 (Shuffle) In the left-shelling pseudo-
triangulation, we can reorder the labels of all bottom
edges with O(n + h log h) flips, where h is the number
of vertices on the convex hull.

Proof. In the initial pseudo-triangulation, let B and F
be the sets of labels on bottom edges and free labels,
respectively. Let Fi be the set of labels on the i-th fan
(in some fixed order), and let F be the set of labels on

non-fan bottom edges. Let F ′i and F
′

be these same
sets in the target pseudo-triangulation. As we are only
rearranging the bottom labels, we have that B = F1 ∪
. . .∪Fk ∪F = F ′1 ∪ . . .∪F ′k ∪F

′
, where k is the number

of fans.
We say that a label ` belongs to fan i if ` ∈ F ′i . At

a high level, the reordering proceeds in four stages. In
stage one, we free all labels in F . In stage two, we place

each label from B \ F ′ in the fan it belongs to, leaving

the labels in F
′

free. Then, in stage three, we correct
the order of the labels within each fan. Finally, we place

the labels in F
′

correctly.
Since each internal vertex contributes exactly one top

edge, one bottom edge, and one free label, we have that
|F | = |F|. To free all labels in F , we perform a sweep
(see Lemma 3). As every internal vertex has degree two
at some point during the sweep, we can exchange the
label on its bottom edge with a free label at that point,
using Lemma 8. This requires O(n) flips. The labels in
F remain on the bottom edges incident to internal ver-
tices throughout stage two and three, as placeholders.

To begin stage two, we index all fans with O(n) flips
and shift these indices to the first ‘foreign’ edge: the
first edge whose label does not belong to the current
fan. If no such edge exists, we can ignore this fan for
the remainder of stage two, as it already has the right
set of labels. Now suppose that there is a fan Fi whose
indexed edge e is foreign: `e /∈ F ′i . Then either `e ∈
F ′j for some j 6= i, or `e ∈ F

′
. In the first case, we

exchange `e with the label on the indexed edge of Fj ,
and shift the index of Fj to the next foreign edge. In
the second case, we exchange `e with a free label in

B \ F ′. If this label belongs to Fi, we shift its index
to the next foreign edge. In either case, we increased
the number of correctly placed labels by at least one.
Thus n − 1 repetitions suffice to place all labels in the

67



27th Canadian Conference on Computational Geometry, 2015

Figure 7: Changing which side a shared index indexes.

fan they belong to, wrapping up stage two. Since we
perform a linear number of swaps and shifts, and each
takes a constant number of flips, the total number of
flips required for stage two is O(n).

For stage three, we note that each indexed fan corre-
sponds to a triangulation of a convex polygon. As such,
we can rearrange the labelled diagonals of a fan Fi into
their desired final position with O(|Fi| log |Fi|) flips [4].
Thus, if we let h be the number of vertices on the convex
hull, the total number of flips for this step is bounded
by

∑

i

O(|Fi| log |Fi|) ≤
∑

i

O(|Fi| log h) = O(h log h).

For stage four, we first return to a left-shelling pseudo-
triangulation by un-indexing each fan, using O(n) flips.

After stage two, the labels in F
′
are all free, so all that is

left is to place these on the correct bottom edges, which
we can do with a final sweep. Thus, we can reorder all
bottom labels with O(n + h log h). �

This leads to the following bound.

Theorem 16 We can transform any edge-labelled
pseudo-triangulation with n vertices into any other with
O(n log c + h log h) flips, where c is the number of con-
vex layers and h is the number of vertices on the convex
hull.

Proof. Using the technique by Aichholzer et al. [1], we
first transform the pseudo-triangulation into the left-
shelling pseudo-triangulation T with O(n log c) flips.
Our canonical pseudo-triangulation contains the labels
{1, . . . , 2n − h − 3}, but it is possible for T to con-
tain a different set of labels. Since all labels are drawn
from {1, . . . , 3n − 2h − 3}, at most n − h labels differ.
This is exactly the number of internal vertices. Thus,
we can use O(n + h log h) flips to shuffle (Lemma 15)
all non-canonical labels on fan edges to bottom edges
incident to an internal vertex. Once there, we use a
sweep (Lemma 3) to ensure that every internal ver-
tex has degree two at some point, at which time we
replace its incident non-canonical labels with canoni-
cal ones with a constant number of flips (Lemma 8).
Once our left-shelling pseudo-triangulation has the cor-
rect set of labels, we use a constant number of shuf-
fles and sweeps to sort the labels (Lemma 1). Since
we can shuffle and sweep with O(n + h log h) and O(n)

flips, respectively, the total number of flips reduces to
O(n log c + n + h log h) = O(n log c + h log h). �

The correspondence between triangulations of a con-
vex polygon and pseudo-triangulations gives us the fol-
lowing lower bound.

Theorem 17 There are pairs of edge-labelled pseudo-
triangulations with n vertices such that any sequence
of flips that transforms one into the other has length
Ω(n log n).
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Appendix
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Figure 8: (a) A corner of a pseudo-triangle and an edge
such that the entire pseudo-triangle on the other side of
the edge lies inside the corner’s wedge. (b) If a can see
a point past x, then the geodesic does not contain x.

Lemma 18 Let a be a corner of a pseudo-triangle with
neighbours x and y, and let e be an edge on the chain oppo-
site a. If all vertices of the other pseudo-triangle containing
e lie in the wedge formed by extending the edges ax and ay
into half-lines (see Figure 8a), then flipping e will result in
an edge incident on a.

Proof. Let T be the pseudo-triangle on the other side of
e, and let b be the corner of T opposite e. Then flipping e
inserts the geodesic between a and b. This geodesic must
intersect e in a point s and then follow the shortest path
from s to a. If s lies strictly inside the wedge, nothing can
block as, thus the new edge will contain as and be incident
on a.

Now, if all of e lies strictly inside the wedge, our result
follows. But suppose that e has x as an endpoint and the
geodesic between a and b intersects e in x. As a can see x
and all of T lies inside the wedge, there is an ε > 0 such
that a can see the point X on the boundary of T at distance
ε from x (see Figure 8b). The line segment ap intersects
the geodesic at a point s′. By the triangle inequality, s′a
is shorter than following the geodesic from s′ via x to a.
But then this would give a shorter path between a and b,
by following the geodesic to s′ and then cutting directly to
a. As the geodesic is the shortest path by definition, this is
impossible. Thus, the geodesic cannot intersect e at x and
the new edge must be incident to a. �

Lemma 19 Let a and b be two consecutive internal bot-
tom edges in the left-shelling pseudo-triangulation, such that
the pseudo-triangle to the right of b is a triangle. Then the
pseudo-pentagon X formed by removing a and b has five bi-
tangents.

Proof. Let c0, . . . , c4 be the corners of X in counter-
clockwise order around the boundary. By Lemma 18, flip-
ping b results in an edge b′ that intersects b and is incident on
c1. This edge is part of the geodesic between c1 and c3, and
as such it is tangent to the convex chain v0, va, . . . , c3, where
va is the top endpoint of a (va could be c3). Therefore it is
also the tangent from c1 to the convex hull of {v0, . . . , va}.
This means that the newly created pseudo-triangle with c1
as corner and a on the opposite pseudo-edge also meets the

conditions of Lemma 18. Thus, flipping a results in another
edge, a′, also incident on c1. As b separates c1 from all ver-
tices in {v0, . . . , va}, a′ must also intersect b. This gives us
four bitangents, of which two are incident on v0 (a and b),
and two on c1 (a′ and b′). Finally, flipping a before flipping
b results in a bitangent that is not incident on v0 (as v0 is a
corner and cannot be on the new geodesic), nor on c1 (as b
separates a from c1). Thus, X has five bitangents. �

Lemma 20 Let a and b be two consecutive internal bottom
edges in the left-shelling pseudo-triangulation, such that the
pseudo-triangle to the right of b is not a triangle. Then the
pseudo-pentagon X formed by flipping the corresponding top
edge of b and removing a and b has five bitangents.

Proof. Let va and vb be the top endpoints of a and b. By
Lemma 18 and since b had degree two, flipping the top edge
of b results in the edge vbc1. We get three bitangents for
free: a, b, and b′ – the old top edge of b and the result of
flipping b.

X consists of a reflex chain C that is part of the convex
hull of the points to the left of a, followed by three successive
tangents to C, va, or vb. Since C lies completely to the
left of a, it cannot significantly alter any of the geodesics or
bitangents inside the polygon, so we can reduce it to a single
edge. Now, X consists either of a triangle with two internal
vertices, or a convex quadrilateral with one internal vertex.

If X is a triangle with two internal vertices, the internal
vertices are va and vb. Let its exterior vertices be v0, x, and
y. Then there are seven possible bitangents: a = v0va, b =
v0vb, xva, xvb, yva, yvb, and vavb. We know that xva and
yvb are edges, so there are five possible bitangents left. As
all vertices involved are either corners or have degree one
in X, the only condition for an edge to be a bitangent is
that it does not cross the boundary of X. Since the exterior
boundary is a triangle, this reduces to it not crossing xva and
yvb. Two line segments incident to the same vertex cannot
cross. Thus, xvb, yva, and vavb cannot cross xva and yvb,
and X has five bitangents.

If X’s convex hull has four vertices, the internal vertex
is vb (otherwise the pseudo-triangle to the right of b would
be a triangle). Let its exterior vertices be v0, x, va, and
y. Then there are six possible bitangents: a = v0va, b =
v0vb, xy, xvb, yvb, and vavb, of which one (yvb) is an edge
of X. Since a and b are guaranteed to be bitangents, and
xy, xvb, and vavb all share an endpoint with yvb, the argu-
ments from the previous case apply and we again have five
bitangents. �
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The Shadows of a Cycle Cannot All Be Paths

Prosenjit Bose∗ Jean-Lou De Carufel∗ Michael G. Dobbins † Heuna Kim ‡ Giovanni Viglietta§

Abstract

A shadow of a subset S of Euclidean space is an orthog-
onal projection of S into one of the coordinate hyper-
planes. In this paper we show that it is not possible for
all three shadows of a cycle (i.e., a simple closed curve)
in R3 to be paths (i.e., simple open curves).

We also show two contrasting results: the three shad-
ows of a path in R3 can all be cycles (although not all
convex) and, for every d ≥ 1, there exists a d-sphere
embedded in Rd+2 whose d + 2 shadows have no holes
(i.e., they deformation-retract onto a point).

1 Introduction

Oskar’s maze, named after the Dutch puzzle designer
Oskar van Deventer, who invented it in 1983, is a me-
chanical puzzle consisting of a hollow cube and three
mutually orthogonal rods joined at their centers (see
Figure 1). Each face of the cube has slits forming a
maze, and the mazes on opposite faces are identical.
Each rod is orthogonal to a pair of opposite faces, and it
is able to slide in the slits, tracing out the maze. Hence,
in order to move the rods around, one has to solve three
mazes simultaneously.

In 1994, Hendrik W. Lenstra asked if the mazes could
be chosen so that the common point of the three rods
could trace a simple closed curve. Observe that none of
the mazes may contain any cycles, or some pieces of the
cube would fall out of the puzzle. So, what Lenstra was
really asking for is a simple closed curve whose projec-
tions onto three pairwise orthogonal planes contain no
cycles. In other words, he wanted the three shadows of
a simple closed 3D curve to all be trees.

As Peter Winkler reported in his book Mathemati-
cal mind-benders [4], a solution had already been found
some years before by John R. Rickard, who discovered
the curve illustrated in Figure 2, also appearing on the
front cover of Winkler’s book.
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Figure 1: Oskar’s maze, produced by Bits and Pieces.

Several other, more complex solutions to Lenstra’s
problem are known. Notably, in 2012 Adam P. Goucher
constructed a simple closed curve having shadows that
are all trees, which also happens to be a trefoil knot [3].
The curve was therefore named Treefoil. Goucher also
constructed a pair of linked cycles whose union has shad-
ows that are all trees.

Figure 2: Rickard’s curve, illustrated by Afra Zomoro-
dian, and appearing on the front cover of Peter Win-
kler’s book Mathematical mind-benders.

Our research is motivated by the following two ques-
tions. Is it possible for the three shadows of a simple
closed curve to be paths, i.e., have neither cycles nor
branch points? Can the three shadows of a simple open
curve be simple closed curves? Both these questions are
related to Lenstra’s question, whose history is outlined
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in [4]. These questions have also been posed indepen-
dently (see [1, 2]).

Our contribution. In Section 2 we answer the first
question in the negative: the three shadows of a sim-
ple closed curve in R3 cannot all be paths.

In Section 3 we answer the second question in the
affirmative: there exist simple open curves in R3 whose
three shadows are simple closed curves, although the
shadows cannot all be convex. Furthermore, we exhibit
a polygonal chain with this property having only six
vertices, and we prove that six is the minimum.

In Section 4 we extend Rickard’s curve to higher di-
mensions, giving an inductive construction of a d-sphere
embedded in Rd+2, for every d ≥ 1, whose d+2 shadows
are all contractible. (A contractible set is one that can
be continuously shrunk to a point, and hence it has no
holes.)

Section 5 concludes the paper with some remarks and
suggestions for further work.

This research has obvious applications in computer
vision and 3D object reconstruction, where the goal is to
deduce properties of an unknown 3-dimensional object
given its three projections. Specifically, we may want to
study the topology of an object that projects to three
given paths. It is easy to see that such an object may
not be unique, and hence it makes sense to study the
set of 3-dimensional objects that are compatible with
three given projections. Observe that any such set is
closed under taking unions, and therefore it has a unique
“largest” object, which is the union of all the objects in
the set.

It is interesting to note that there are triplets of paths
that are not compatible with any connected set, such as
the one in Figure 3. This means that an Oskar’s-maze-
like puzzle could be “unsolvable” even if it had no cross-
roads on any face. By “unsolvable” we mean that the
set of locations that are reachable by the central point
of the three rods depends on where the rods are located.
Therefore, if we assign two points in the 3-dimensional
maze determined by the three 2-dimensional mazes, it
may be impossible to go from one to the other by mov-
ing the rods around.

2 The shadows of a cycle

In this section we prove that the shadows of a simple
closed curve in R3 cannot all be simple open curves. We
start with some notation and definitions.

For a point p ∈ Rn and 1 ≤ i ≤ n, we denote by pi the
i-th coordinate of p. The xi-projection, or xi-shadow,
of a set A ⊆ Rn, denoted by πi(A), is the orthogonal
projection of A into the i-th coordinate hyperplane, e.g.,
π1(A) = {(p2, p3, · · · , pn) | p ∈ A}. If A = {p}, we may
simply write πi(p) instead of πi({p}).

Figure 3: Connected shadows whose unique compatible
set is disconnected.

A path is a (non-degenerate) simple open curve, and
the interior γ◦ of a path γ is a copy of the path with
its endpoints removed. A cycle is a (non-degenerate)
simple closed curve.

An xi-strand of a simple curve is a minimal path
between the xi-extremes of the curve. That is, an
xi-strand of a simple curve γ with xi-minimum ai =
minx∈γ xi and xi-maximum bi = maxx∈γ xi is a path
σ ⊆ γ whose endpoints s and t are such that si = ai
and ti = bi, and every internal point x ∈ σ◦ is such that
xi 6= ai, bi.

Observation 1 The interiors of any two distinct xi-
strands of a simple curve are disjoint. Hence any two
distinct xi-strands of a path intersect at most at one
common endpoint.

Observation 2 If σ is an xi-strand of a simple curve
γ, then πj(σ) is an xi-strand of πj(γ), for j 6= i.

If πj(γ) is a path, the converse of Observation 2 is also
true, as stated in the next lemma.

Lemma 1 If σ is an xi-strand of the xj-projection of
a simple curve γ, with i 6= j, and πj(γ) is a path, then
there exists an xi-strand of γ whose xj-projection is σ.

Proof. Let a and b be the endpoints of πj(γ), let a′, b′ ∈
γ such that πj(a

′) = a and πj(b
′) = b, and let γ′ ⊆ γ be

a path with endpoints a′ and b′. Since πj(γ) is a path,
πj(γ) = πj(γ

′). Let c and d be the endpoints of σ, such
that a and c belong to the same connected component
of πj(γ

′) \ σ◦. Parameterizing γ′ from a′ to b′, let c′

be the last point of γ′ such that πj(c
′) = c. Because d

separates c and b in πj(γ
′), there are points of γ′ after

c′ whose xj-projection is d. Letting d′ be the first of
such points, the sub-path of γ′ with endpoints c′ and d′

is an xi-strand of γ whose xj-projection is σ. �

In the following lemma we show that, if two shadows
of a non-degenerate cycle are paths, then each of the
two shadows has at least two similarly-oriented strands.
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Lemma 2 If γ is a cycle in R3 that is not contained in
any x1-orthogonal plane, and π2(γ) and π3(γ) are paths,
then π3(γ) has at least two distinct x1-strands.

Proof. Since γ is not in an x1-orthogonal plane, γ and
π3(γ) both have at least one x1-strand. Let σ be an x1-
strand of γ, let τ2 = π2(σ), and assume for contradiction
that π3(γ) has a unique x1-strand τ3, as sketched in
Figure 4.

σ

′σ

2τ3τ

Figure 4: Some x1-strands of the curve in Lemma 2.

Since τ2 is an x1-strand of π2(γ) by Observation 2,
and the endpoints of a path cannot be in the interior
of one of its strands, π2(γ) \ τ◦2 contains the endpoints
of π2(γ). Also, the x2-shadow of γ \ σ◦ is a superset
of π2(γ) \ τ◦2 , and hence it contains the endpoints of
π2(γ), as well. Moreover, γ \ σ◦ is connected (because
γ is a cycle), hence π2(γ \ σ◦) is a connected subset of
the path π2(γ) containing its endpoints, and therefore it
must be all of π2(γ). By Lemma 1, γ has an x1-strand
σ′ ∈ γ \ σ◦ such that π2(σ′) = π2(σ) = τ2. Since π3(γ)
has a unique x1-strand τ3, we have π3(σ′) = π3(σ) = τ3,
again by Observation 2.

Respectively parameterize σ, σ′, τ2, and τ3 each from
the x1-minimum a1 to the x1-maximum b1 of γ. Choose
some value c1 strictly between these extremes, a1 <
c1 < b1. Let s ∈ σ, s′ ∈ σ′, t2 ∈ τ2, t3 ∈ τ3 respectively
be the first point of each strand where the x1 coordinate
attains the value c1. With this we have π2(s) = π2(s′) =
t2 and π3(s) = π3(s′) = t3, which implies s = s′. So the
interiors of the strands σ and σ′ intersect, contradicting
Observation 1. Thus our assumption must be wrong:
π3(γ) must have at least two distinct x1-strands. �

Next we prove that an x1-strand and an x2-strand of
a planar path must intersect each other, and therefore
their union must be a sub-path.

Lemma 3 If σ1 and σ2 are respectively an x1-strand
and an x2-strand of a path γ in R2, then σ1 ∪ σ2 is a
path.

Proof. Let B = [a1, b1] × [a2, b2] be the bounding box
of γ, and let s1 and t1 be the leftmost and rightmost

points of σ1, respectively. Consider the polygonal chain
τ with vertices s1, (a1 − 1, a2 − 1), (b1 + 1, a2 − 1), t1,
in this order. Then σ1 ∪ τ is a cycle which, by the
Jordan Curve Theorem, disconnects the plane into two
components: an interior I and an exterior E.

Let s2 and t2 be the lowest and highest points of σ2,
respectively. Note that s2 lies on the bottom edge of
B, and hence it lies either in I or on the curve σ1 ∪ τ .
Similarly, t2 lies on the top edge of B, and hence it lies
either in E or on the curve σ1 ∪ τ . Thus, s2 /∈ E and
t2 /∈ I. It follows that σ2 must intersect R2 \ (I ∪ E) =
σ1∪ τ . Since σ2 ⊂ B and τ◦∩B = ∅, σ2 must intersect
σ1.

Thus, σ1∪σ2 is a connected subset of the path γ, and
is therefore a path. �

In our final lemma we show that a planar path can-
not have two distinct x1-strands and two distinct x2-
strands.

Lemma 4 A path in R2 has either a unique x1-strand
or a unique x2-strand.

Proof. Assume for a contradiction that γ is a path
in R2 with distinct x1-strands σ1, σ2 and distinct x2-
strands τ1, τ2. By Observation 1, σ1 and σ2 are ei-
ther disjoint, or their intersection is precisely a com-
mon endpoint. Suppose for a contradiction that they
are disjoint, and let σ′ ⊂ γ be the minimal path con-
necting them. By Lemma 3, σ1∪ τ1 is a path, as well as
σ2 ∪ τ1, which implies that σ′ ⊆ τ1. Similarly, σ′ ⊆ τ2,
and therefore σ′ ⊆ τ1 ∩ τ2, contradicting Observation 1.
Thus σ1 ∩ σ2 is a single point p, and by a symmetric
argument τ1 ∩ τ2 = p, as well. Let B = [a1, b1]× [a2, b2]
be the bounding box of γ. Then p must be a vertex
of B, and we may assume that p = (b1, b2). Also, by
symmetry, we may assume that τ1 ⊆ σ1. It follows that
σ1 ∩ τ2 = σ2 ∩ τ1 = p, and either τ2 ⊆ σ2 or σ2 ⊆ τ2.

1
τ\1
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2τ\2σ

p

1x

2x

1a 1b
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2σ\2τ
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τ\1

σ 1τ
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Figure 5: Cases of Lemma 4.

Suppose that τ2 ⊆ σ2, as in Figure 5(a). Then τ◦2 is
in the same connected component of B \ τ1 as the edge
{b1} × [a2, b2). This implies that σ2 \ τ2 intersects τ1,
contradicting the fact that σ2 ∩ τ1 = p.
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Suppose that σ2 ⊆ τ2, as in Figure 5(b). Then σ◦2 is
in the same connected component of B \ σ1 as the edge
[a1, b1) × {b2}. This implies that τ2 \ σ2 intersects σ1,
contradicting the fact that σ1 ∩ τ2 = p.

Thus our assumption fails: γ has either a unique x1-
strand or a unique x2-strand. �

We are now able to prove the main result of this sec-
tion.

Theorem 5 There is no cycle in R3 whose shadows are
all paths.

Proof. Assume for a contradiction that the three shad-
ows of a cycle γ in R3 are all paths. Note that γ can-
not lie in any xi-orthogonal plane, or πi(γ) would not
be a path. By Lemma 2, since the x2-shadow and the
x3-shadow are both paths, the x3-shadow must have
at least two distinct x1-strands. Likewise, since the
x1-shadow and the x3-shadow are both paths, the x3-
shadow must also have at least two distinct x2-strands.
But by Lemma 4, a path in the (x1, x2)-plane can-
not have two distinct x1-strands and two distinct x2-
strands, which is a contradiction. �

3 The shadows of a path

Here we study the simple open curves in R3 whose
shadows are simple closed curves. In contrast with the
similarly-defined curves of the previous section, in this
case we can construct a wealth of such curves. An ex-
ample is illustrated in Figure 6.

Figure 6: Axis-aligned polygonal path whose shadows
are all cycles.

Note that the curve in Figure 6 is a polygonal path
(i.e., a simple open polygonal chain) consisting of axis-
parallel segments. If we allow arbitrarily oriented seg-
ments, we can find an example with only six vertices,
which is the minimum possible.

Theorem 6 There exists a polygonal path in R3 with
six vertices whose shadows are cycles. No such polygo-
nal path exists with fewer than six vertices.

Proof. An example of such a polygonal path is
(1, 0, 1) (0, 0, 0) (1, 1, 0) (0, 3, 0) (2, 0, 2) (1, 0, 0), which is
shown in Figure 7.

Figure 7: Minimal polygonal path whose shadows are
all cycles.

Suppose for a contradiction that a polygonal path in
R3 with n < 6 vertices exists such that its shadows
are cycles. If n ≤ 3, then clearly no shadow can be a
cycle. Suppose that n = 4, and let the polygonal path
be v1 v2 v3 v4. Then each shadow must be a triangle,
and hence πi(v1) = πi(v4) for every i ∈ {1, 2, 3}. It
follows that v1 = v4, which contradicts the fact that a
polygonal path is an open curve.

Assume now that n = 5, and the polygonal path is
v1 v2 v3 v4 v5. For every i ∈ {1, 2, 3}, the x1-projection
of the polygonal path is either a triangle or a quadrilat-
eral. In both cases, the xi-shadows of the segments v1 v2
and v4 v5 have a non-empty intersection. Since v1 6= v5,
the xi-shadows of v1 and v5 do not coincide for at least
two i’s, say, i = 1 and i = 2. Then the x1-shadow
of the polygonal path must be a triangle, πi(v1 v2) and
πi(v4 v5) are collinear, and hence the segments v1 v2 and
v4 v5 lie on a plane that is orthogonal to the (x2, x3)-
plane. Similarly, the segments v1 v2 and v4 v5 lie on
a plane that is orthogonal to the (x1, x3)-plane, too.
Hence v1 v2 and v4 v5 are either collinear or they lie on
a common x3-orthogonal plane. If v1 v2 and v4 v5 are
collinear (and disjoint), then their xi-shadows are dis-
joint for some i ∈ {1, 2, 3}, contradicting the fact that
their intersection must be non-empty. If v1 v2 and v4 v5
lie on a common x3-orthogonal plane, then π3(v1 v2)
and π3(v4 v5) are disjoint, which is again a contradic-
tion. �

Note that, in all the above examples, one of the shad-
ows is a non-convex cycle. It is natural to ask whether a
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path exists whose shadows are all convex cycles. In the
following theorem, we answer in the negative. (Due to
space constraints, we only give a sketch of the proof.)

Theorem 7 There is no path in R3 whose shadows are
convex cycles.

Proof (sketch). Suppose for contradiction that there
exists a path γ in R3 whose shadows are convex cycles.
For every i ∈ {1, 2, 3}, γ lies on the surface Γi of a
cylinder with section πi(γ) and xi-parallel axis.

The intersection of Γ1 and Γ2 is sketched in Fig-
ure 8. It consists of two horizontal axis-aligned rect-
angles R1 and R2 (assuming that the vertical direction
is x3-parallel) whose vertices are joined by four paths
σ1, σ2, σ3, and σ4. The rectangles R1 and R2 may be
degenerate, i.e., they may be x1-parallel or x2-parallel
segments, or points. Let a horizontal plane intersect
the interior of the path σi in the point si, for each
i ∈ {1, 2, 3, 4}. Then, for all i ∈ {1, 2, 3, 4}, either si ∈ γ
or si+1 ∈ γ, where indices are taken modulo 4.

1R

2R

4σ

3σ
2σ

1σ

Figure 8: Intersection of Γ1 and Γ2.

Further intersecting Γ1 ∩ Γ2 with Γ3, we reduce R1

and R2 to at most four horizontal curves each. There-
fore, in total we have n ≤ 12 curves, whose union is an
embedding in R3 of a graph G with n edges. Also, we
may assume without loss of generality that each end-
point of γ lies at a vertex of the embedding of G, or at
the midpoint of one of the n edges. Hence there are only
finitely many possible graphs G to consider, and only
finitely many choices of γ in each graph embedding. By
exhaustively examining all the possible choices of γ, we
conclude that none of them has shadows that are all
convex cycles. �

4 Shadows in higher dimensions

In this section we generalize Rickard’s curve to higher
dimensions. We inductively construct an embedding of
a d-sphere in Rd+2 whose d + 2 shadows are all con-
tractible, i.e., they deformation-retract to a point.

An xi-slice of a set A ⊆ Rn, with 1 ≤ i ≤ n, is a
non-empty intersection between A and an xi-orthogonal
hyperplane.

Theorem 8 For every d ≥ 1, there exists an embedding
of a d-sphere in Rd+2 whose shadows are all contractible.

Proof. Let S1 be Rickard’s curve, introduced in Sec-
tion 1. Then, for all d ≥ 1, we inductively define

Sd+1 =
⋃

λ∈[−1,1]
(1− |λ|) · Sd × {λ}.

It is easy to see that Sd is an embedding of a d-sphere
in Rd+2 for every d ≥ 1. We claim that all the shadows
of Sd deformation-retract to the point {0}d+1. This is
true for d = 1, as suggested by Figure 2. Assume now
the inductive hypothesis that the claim is true for Sd,
and therefore there exists a continuous map

Fd,i : πi(Sd)× [0, 1]→ πi(Sd)

with Fd,i(x, 0) = x and Fd,i(x, 1) = {0}d+1, for every
1 ≤ i ≤ d + 2. Now, for each 1 ≤ i ≤ d + 3, we can
construct a continuous map

Fd+1,i : πi(Sd+1)× [0, 1]→ πi(Sd+1)

with Fd+1,i(x, 0) = x and Fd+1,i(x, 1) = {0}d+2.

Figure 9: xi-shadow of S2, for 1 ≤ i ≤ 3.

If 1 ≤ i ≤ d+ 2, we first define the auxiliary map

F ′ : πi(Sd+1)× [0, 1]→ πi(Sd+1)

as follows. For every x ∈ πi(Sd+1) such that |xd+2| 6= 1
and λ ∈ [0, 1], we let

F ′(x, λ) = (1− |xd+2|) ·Fd,i
(

πd+2(x)

1− |xd+2|
, λ

)
×{xd+2} .

If x ∈ πi(Sd+1) with |xd+2| = 1 and λ ∈ [0, 1], we let
F ′(x, λ) = x. Observe that every xd+2-slice of πi(Sd+1)
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is a scaled copy of πi(Sd). (Figure 9 shows πi(Sd+1)
for d = 1.) Informally, F ′ applies Fd,i with parame-
ter λ to a suitably scaled copy of each xd+2-slice, and
then it rescales it back. Therefore, since Fd,i is a de-
formation retraction of πi(Sd) to the point {0}d+1, F ′

is a deformation retraction of πi(Sd+1) to the segment
{0}d+1× [−1, 1]. To obtain Fd+1,i, one just has to com-
pose F ′ with a deformation retraction of {0}d+1×[−1, 1]
to the point {0}d+2. In formulas, for x ∈ πi(Sd+1) and
λ ∈ [0, 1],

Fd+1,i(x, λ) =

{
F ′(x, 2λ) if λ < 1/2
(2− 2λ) · F ′(x, 1) if λ ≥ 1/2.

Figure 10: x4-shadow of S2.

If i = d+ 3, we can simply set

Fd+1,i(x, λ) = (1− λ) · x

for every x ∈ πi(Sd+1) and λ ∈ [−1, 1]. This is easily
seen to be a deformation retraction to {0}d+2. (Fig-
ure 10 shows πi(Sd+1) for d = 1.)

Hence all the shadows of the d-sphere Sd deformation-
retract to a point for every d ≥ 1, meaning that they
are contractible. �

5 Concluding remarks

In this paper we studied the shadows of curves in R3 (a
shadow being an axis-parallel projection), also settling
some long-standing open problems posed in [1, 2].

In Section 2 we proved that there is no cycle in R3

whose shadows are all paths. Note that by applying a
projective transformation, we may equivalently define
shadows to be perspective projections, provided that
the three viewpoints are not collinear, and the plane
through them does not intersect the curve.

In Section 3 we proved that there exist paths in R3

whose shadows are all cycles. We also showed that, if

such a path is a polygonal chain, it must have at least
six vertices, and we found an example with exactly six
vertices. Then we proved that there is no path in R3

whose shadows are all convex cycles.
Finally, in Section 4 we showed that there exists an

embedding of a d-sphere in Rd+2 whose shadows are all
contractible, for every d ≥ 1. This generalizes Rickard’s
curve (see Figure 2), which is a cycle in R3 whose shad-
ows contain no cycles.

Our results can be expanded in several directions. A
natural goal would be to minimize the total number of
branch points of the shadows of a cycle in R3, assuming
that all shadows are cycle-free. Because each shadow of
Rickard’s curve has two branch points, such a minimum
is at most six. On the other hand, by Theorem 5, the
minimum is at least one. With the same proof technique
employed in Section 2, we can prove the following gen-
eralized version of Theorem 5, which implies that the
minimum number of branch points of the shadows must
be at least three.

Theorem 9 There is no cycle γ in R3 with cycle-free
shadows such that π1(γ) is a path, and π2(γ) and π3(γ)
have at most one branch point each. �

We conjecture Rickard’s curve to be an optimal example
in terms of branch points of its shadows.

Conjecture 1 If the shadows of a cycle in R3 are all
cycle-free, then each shadow has at least two branch
points.
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A Fault Tolerant Data Structure for Peer-to-Peer Range Query Processing

Zahra Mirikharaji∗ Bradford G. Nickerson†

Abstract

We present a fault tolerant dynamic data structure
based on a constant-degree Distributed Hash Table
(DHT) called FissionE that supports orthogonal range
search in d-dimensional space. A publication algorithm,
which distributes data objects among all nodes in the
network is described, along with a search algorithm that
processes range queries and reports all objects in range
to the query issuer. Routing messages between two
nodes is performed by the FissionE routing algorithm.
The worst case orthogonal range search cost in our data
structure with n nodes is O(log n+m) messages plus re-
porting cost, where m is the minimum number of nodes
intersecting the query. Storing d complete copies of each
data object on d different nodes provides redundancy
for our scheme. This redundancy permits completely
answering a query in the case of simultaneous failure of
d− 1 nodes.

1 Introduction

In structured peer-to-peer networks, the P2P overlay
network topology is tightly controlled to place contents
at specified locations that will make data discovery more
efficient. Many structured P2P systems like Chord [15],
Tapestry [19], Pastry [11], CAN [9] and FissionE [8] use
a DHT [10] to distribute data objects deterministically
among the peers and retrieve them with the data ob-
ject’s unique key. DHT-based systems employ hashing
to assign IDs to the peers; each peer is responsible for
a small specific subset of the data. The number of re-
quired messages exchanged between nodes to answer a
query defines search cost in these networks.

DHT schemes are normally capable of processing ex-
act match searches, but not more complex searches such
as range search . A number of recent papers have in-
vestigated DHTs to process range queries. DHT-based
techniques for range query answering are classified into
two groups [18]; layered indexing and customized in-
dexing. In layered indexing techniques, the underlying
topology and routing algorithm of DHTs are used to
answer range queries. Our work is in the layered cate-
gory. Customized indexing uses a custom-designed P2P

∗Faculty of Computer Science, University of New Brunswick,
zahra.miri@unb.ca
†Faculty of Computer Science, University of New Brunswick,

bgn@unb.ca

overlay or modifies an existing P2P overlay network to
support range search.

In layered indexing, Gupta et al. [5] use a prob-
abilistic scheme that relies on locality sensitive hash-
ing. However, this method can only report approxi-
mate answers for one dimensional range queries. Squid
[12] and DCF-CAN [1] use space-filling curves (SFC) to
map multi-dimensional keys to the peers. Space-filling
curves are locality preserving, but they lead to a less
efficient search cost, because a single range query may
cover several parts of the curve, each of which requires a
separate query. In customized indexing, the skip graph
[2] and SkipNet [6] are P2P networks having O(log n)
degree that support one dimensional orthogonal index-
ing. Family trees [17] and the rainbow skip graph [4]
are both constant-degree and support one dimensional
range queries. Mercury [3], Znet [13] and MIDAS [16]
provide indexing schemes for multi-dimensional space.
Mercury [3] provides multiple attribute range queries
by indexing the data set along each attribute. The la-
tency of the message routing algorithm in Mercury [3] is
log2 n

k when each node maintains k links to other nodes.
MIDAS [16] resolves the request in O(log n) hops when
each peer’s degree is O(log n). In Znet [13], SFCs (Space
Filling Curves) are used and skip graphs [2] are extended
for query routing, with each node maintaining O(log n)
states.

Most distributed indexing structures supporting
range search don’t work on a constant-degree graph.
Among the existing constant-degree schemes support-
ing range search, Armada [7] provides a higher efficiency
in terms of query delay and number of required mes-
sages. It has been proven in [7] that the lower bound
on the message cost of general range query schemes
on constant-degree distributed hash tables (DHTs) is
Ω(log n)+m−1, where m is the number of nodes inter-
secting queries. Armada uses the FissionE P2P network
topology DHT scheme based on Kautz graphs [8]. Li et
al. [7] have proven that the average message cost of one
dimensional queries on uniformly distributed data in
PIRA (PrunIng Routing Algorithm) is close to the lower
bound on message cost of range queries on constant-
degree DHTs. For multi-dimensional indexing, Li et al.
[7] have not presented any guarantee on the number of
messages required to answer a d-dimensional orthogonal
range query. They used simulation to show that the av-
erage message cost of MIRA (Multiple attribute prunIng
Routing Algorithm) is about log n + 4m − 1 messages.
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Armada uses the failure recovery mechanisms of the un-
derlying DHT structure of FissionE [8] to accommodate
routing recovery, but they don’t provide data recovery.
Our work improves on Armada’s MIRA algorithm by ef-
ficiently providing support for orthogonal range search
even with simultaneous failure of up to d− 1 nodes in a
network of n nodes.

2 Results

Our paper presents a peer-to-peer distributed dynamic
data structure employing FissionE [8] as a constant-
degree DHT to route the messages. We give a data
publication algorithm to assign d copies of each object
to d different nodes. An orthogonal rage search algo-
rithm for each node in an n-node peer-to-peer network
is given that can answer d-dimensional range queries Q
issued from any network node. The worst case cost for
a d-dimensional range search on our data structure with
n nodes is O(log n + m) messages, for m the minimum
number of nodes intersecting the query. To support dy-
namic joining and departure of nodes and failure recov-
ery, we use split large and merge small policies [8]. To
the best of our knowledge, our data structure is the first
distributed dynamic spatial data structure to fully sup-
port orthogonal range search with simultaneous failure
of d− 1 nodes.

3 Data Structure

3.1 Introduction to FissionE

FissionE [8] is a constant-degree distributed hash table
based on the Kautz graph. A Kautz graph is a directed
graph with static topology that uses Kautz strings as
node identifiers. In the following, we present related
definitions explaining Kautz graph topology on which
the FissionE DHT is built.

The string u1u2...uk of length k and base d is a Kautz
string where ui ∈ {0, 1, 2, ..., d} and ui 6= ui+1 (1 ≤ i ≤
k − 1). All Kautz strings of length k and base d create
the KautzSpace(d, k) of size dk+dk−1. To show the size
of KautzSpace(d, k), we know that the first symbol in
a Kautz string has d+ 1 possibilities. Two consecutive
symbols in a Kautz string must be different, so all other
symbols have d possibilities.

The Kautz graph K(d, k) is a directed graph of de-
gree d with dk + dk−1 nodes labelled by strings in
KautzSpace(d, k). Each node U = u1u2...uk of a
Kautz graph has the same out-degree and in-degree d.
There is an outgoing edge from U to V if and only if
V = u2u3...ukα where α ∈ {0, 1, ..., d} and α 6= uk. Fig-
ure 1 shows Kautz graph K(2, 3) with out-degree 2 and
12 nodes.

The Kautz graph has desirable properties like optimal
diameter that are important in peer-to-peer networks.

Figure 1: Kautz graph K(2, 3) (from [8]).

Figure 2: An example of FissionE topology (from [8]).

Diameter is the longest shortest path between any two
vertices of a graph and is always in trade-off with the
degree of a graph. For a graph with n = dk + dk−1

nodes and degree d, the Kautz graph has the smallest
diameter of any possible directed graph. In addition, in
Kautz graph K(d, k), there are d disjoint paths between
any two nodes and failure of d− 1 nodes is tolerable.

FissionE uses a K(2, k) Kautz graph. A Kautz graph
is a static topology, so it needs some adjustment to be
used for dynamic peer-to-peer networks. Li et al. in
[8] propose a new topology called approximate Kautz
graph. To achieve an approximate Kautz graph, the
network topology is first initiated with a Kautz graph,
and then in dynamic operations (addition and deletion
of nodes) a topological rule called the neighbourhood in-
variant rule is adopted. Based on this rule, the length
of identifiers may be different for different peers and the
difference in length of node identifiers of any two neigh-
bours must be one or zero. Figure 2 shows an example
of neighbourhoods in FissionE topology. This topology
is first initiated with Kautz graph K(2, 3). Node 202 is
split to permit node 2021 to join the network with ex-
isting node 202 becoming node 2020. Data in nodes 101
and 102 are merged to provide one less node which re-
sults in node 101 being relabelled to node 10, and node
102 departing from the network.

To distribute objects among nodes in the FissionE
scheme, the Kautz hash algorithm is proposed in [8].
The Kautz hash algorithm maps an object’s unique key
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(of any length) to the destination Kautz string of length
m consisting of digits vi ∈ 0, 1, 2, where consecutive dig-
its must be different. Li et al. [8] show that when m =
100, the Kautz hash algorithm uniformly distributes
the Kautz strings it generates in Kautz namespace
KautzSpace(2, 100). As mentioned in Algorithm 1.2.2
of [8], this namespace has size 2100+299 ' 1.9×1030. To
publish an object O in a FissionE topology from node
p, the Kautz string V of the object is first computed.
Next, node p (the original node) routes the generated
Kautz string V to place O in the node whose identifier
is a prefix of V . To locate an object in the network, the
same process is performed, with node p being the query
issuer.

The long path routing algorithm in a Kautz graph
is chosen as the Routing algorithm in FissionE. In this
algorithm, routing from node U to the node where desti-
nation Kautz string V resides is performed by left shift-
ing the symbols of U and adding the symbols of V from
left to right at the end of U . For example, if U = 021
and V = 12010, the longest common prefix of V and
suffix of U is equal to 1. So the length of path from
node U to the node whose identifier is a prefix of V is
2, and the routing path is 021→ 212→ 120.

It is proven in [8] that the average degree of vertices
in a FissionE network is 4 and its Kautz graph diame-
ter is less than 2 log n. These desirable characteristics
motivate us to use FissionE as our overlay network to
route messages between nodes and provide dynamic op-
erations of node arrival and departure.

3.2 Data Distribution

DHT-based peer-to-peer networks usually use consis-
tent hashing functions to map data objects and peers
to a namespace. In the namespace, each node takes
the responsibility of storing values with IDs close to its
own ID. In the case of range queries, a peer-to-peer net-
work requires data ordering, so the hash function used
to map values into the namespace is replaced by a local-
ity preserving mapping function. Although the FissionE
scheme is a high performance distributed peer-to-peer
network and achieves optimal diameter on a constant
degree graph, it supports only processing of exact match
queries (point queries). In this work, we present a gen-
eral range query scheme that uses FissionE for routing
messages. Two main components of our work are the
data distribution and the range search algorithms. Our
data distribution algorithm publishes d copies of each
object on d different nodes in a way that preserves data
locality. Our range search algorithm efficiently forwards
queries to the appropriate nodes in range. We first give
a formal definition of a total order relation, and then
explain our data distribution algorithm. To efficiently
answer a range query over a peer-to-peer network, it is
required to define a total order relation on the dataset

to keep the order of data in each dimension. A total or-
der relation is a binary relation on set X denoted by ≤
which has the following properties for all a, b and c ∈ X
:

1. Antisymmetry: If a ≤ b and b ≤ a then a = b.

2. Transitivity: if a ≤ b and b ≤ c then a ≤ c.

3. Totality: a ≤ b or b ≤ a.

A total order relation on data provides propagation
of objects on FissionE nodes in such a way that objects
with close values are placed on the same or neighbouring
nodes. In our data structure, we define a total order
relation for each dimension i as follows:
For two points P (p1, p2, ..., pd) and Q(q1, q2, ..., qd), P ≤
Q in dimension i if pi ≤ qi.

As explained in section 3.1, in FissionE the identi-
fier of nodes are Kautz strings and network nodes are
initiated to a Kautz graph. All Kautz graphs have a
Hamiltonian path. A Hamiltonian path in a graph is a
path that visits each node of a graph exactly one time.
In our work, we use the Hamiltonian path in the under-
lying Kautz graph of FissionE, and assign the index of
each node in the Hamiltonian path as the key to each
node.

To preserve data locality along all dimensions, we dis-
tribute data objects among nodes by partitioning the
space based on point coordinates. In d-dimensional
space, we assign d sets of points to each node i on the
network, each set corresponding to one dimension. Set
Sji is the data stored on node i based on the total order
relation in dimension j. For example, in 2-dimensional
space, if we denote dimension 0 with x coordinates, and
dimension 1 with y coordinates, we assign two sets of
points Sxi and Syi to every FissionE node i.

The distribution of points based on each dimen-
sion over n nodes is a noncrossing partition NC(S) =
{Sj1, Sj2, ..., Sjn} [14]. A partition over set S on dimen-
sion j has the following properties:

• The union of the sets of NC(S) =
{Sj1, Sj2, ..., Sjn} is equal to S. The elements
of NC(S) are said to cover S; i.e. for any j,
0 ≤ j ≤ d− 1, ∪ni=1Sji = S where d is the number
of dimensions in the data structure.

• The intersection of any two distinct sets of NC(S)
is empty; i.e. the elements of NC(S) are pairwise
disjoint. Thus Sji ∩ Sjk = ∅ if Sji ∈ NC(S), Sjk ∈
NC(S), i 6= k.

In 2-dimensional space, our data structure provides
one backup copy of data published on all nodes to
achieve search cost near the lower bound, in addition
to providing data recovery. A copy of data stored in
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Figure 3: A Hamiltonian path on Kautz graph K(2, 2).

node i is stored in all n − 1 other nodes except node
i. Figure 4 shows an overview of the data distribution
in a 2-dimensional space over the Kautz graph K(2, 2)
shown in Figure 3. If the data is distributed in a uniform
random fashion in space, a balanced load for each node
results. The horizontal colour bar in each cell indicates
the place of the first copy of data in that cell based on
dimension 0 (X), and the vertical colour bar indicates
the place of the second copy of data in that cell based
on dimension 1 (Y). For example, assume L = [0, 0] and
U = [12, 12] are the lower and upper bound of the entire
2-dimensional space, and P = [0.8, 1.2] is a point. By
uniformly partitioning the space among the six nodes
in Figure 3, point P is placed in the lower left cell with
red and orange bars. The red and orange bars show
that the first and second copies of point P are stored on
nodes 12 and 20, respectively.

12
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21

01

20

X

Y

𝑳𝟎
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Figure 4: An overview of a 2-dimensional data distribu-
tion in our data structure.

Algorithm 1 shows how d-dimensional data objects
are distributed on a network of n nodes. This algorithm
publishes d copies of object O on d different nodes. The

place of the ith copy of object O depends on Oi and
the place of the other i− 1 copies of O that are already
specified. [Li, Ui] in this algorithm is the entire interval
of object values in dimension i. When a network is
initiated with a Kautz graph, a Hamiltonian path of
the graph is found and stored on all nodes. In the case
of join and departure of a node, this Hamiltonian path
P is updated on all nodes.

Algorithm 1 Publish data object O on a network with
n nodes.
1: procedure DataDistribution(ObjectVal O,

NumofNodes n, NumofDims d, LowerBound L,
UpperBound U , HamiltonianPath P )
// O = [O0, O1, ..., Od−1] is the coordinate of a point
that should be published on d nodes.
// L = [L0, L1, ..., Ld−1] and U = [U0, U1, ..., Ud−1] are
the lower and upper bounds, respectively, of the entire
space.

2: if (O < L‖O > H) then
3: return (O is not in range.)
4: end if
5: NodeIndex← null // NodeIndex is an array of

size d showing the indices of nodes that O will be
published on.

6: for i← 0, d− 1 do

7: node = dOi − Li

Ui − Li
(n)e − 1

8: for j ← 0, i do
9: if NodeIndex[j] == node then

10: node = (node + 1) mod n
11: j ← 0
12: end if
13: end for
14: NodeIndex[i]← node
15: end for
16: NodeID ← null // NodeID is an array of size d

showing the Kautz string of nodes where O is stored.
17: for i← 0, d− 1 do
18: NodeID[i]← P [NodeIndex[i]]
19: end for
20: return(NodeID)
21: end procedure

3.3 Range Search

We initially assume that the query Q is searching for
one specific point P (x, y) in our data structure. The
query can be issued at any one of the nodes. Routing
starts at the query issuer node. The query issuer uses
Algorithm 1 to find the NodeID list corresponding to
point P which contains d distinct addresses of P . The
query issuer then determines which of the point’s ad-
dresses to use. To do that, the longest Kautz string Si

which is a suffix of the query issuer ID and a prefix of
NodeID[i] is calculated for each i, 0 ≤ i ≤ d− 1. Then
the query issuer uses the FissionE routing algorithm [8]
to pass the query to the NodeID[j], where Sj has the
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maximum length among all Sis.
A Hamiltonian path A, B, C, D, E for the Kautz

graph K(2, 2) is shown in Figure 3. Algorithm 2 an-
swers a d-dimensional range query Q in a network of n
nodes. Our range search algorithm has two main parts.
First, it determines which dimension of Q intersects the
minimum number of nodes. Second, the first node i in
range is found and the first portion of data in range
is reported. Node i checks if the query upper bound
is greater than the node i upper bound; if so then the
rest of the search result might be in the next node and
an updated query is sent to the next node in range.
The new query rectangle is the result of subtracting the
query range of node i from the old query rectangle. The
same process continues until the last node intersecting
the query reports the last part of the result to the query
issuer node.

For example, assume that j is the dimension inter-
secting the fewest nodes. Node i is the first node
that sends the result back to the query issuer if
ThisNodejL < QjL < ThisNodejU where ThisNodejL
and ThisNodejU are node i’s lower bound and up-
per bound respectively, in dimension j and QjL is the
lower bound of the query in dimension j. If the up-
per bound QjU of the query in dimension j is greater
than ThisNodejU , the query is passed to the next node
in range by the call at line 17. The next node on the
Hamiltonian path now receives the query, which was
updated as shown on line 16.

Theorem 1 The worst case orthogonal range search
cost in our fault tolerant data structure for any data
distribution in a d-dimensional space with n nodes is
O(log n + m) messages plus reporting cost, where m is
the minimum number of nodes intersecting the query on
d dimensions.

4 Fault Tolerance

When failure of one node occurs, problems arise due to
an outdated routing table and the fact that the data
set assigned to the failed node will be unavailable. To
enhance fault tolerance, most distributed data indexing
schemes use replication based mechanisms. Data redun-
dancy is part of our distributed spatial data structure
as explained in section 3.2. In d-dimensional space, our
data structure stores d copies of data in such a way that
one copy of each object resides on d different nodes. If
one network node fails, we use the involuntary depar-
ture of nodes methods in FissionE (Figure 7 in [8]).
Each node periodically checks whether its neighbours
are alive. When the failure of node k is detected by its
neighbour, two neighbour nodes y1 and y2 in the net-
work are found which have no neighbour node with less
data. They are merged into a new node ` and the neigh-
bour lists of ` and related nodes are updated. We now

Algorithm 2 Report data objects in a range query to
its issuer node.
1: procedure IssueQuery(rangeQuery Q)

// Find the dimension j with minimum range
QjU −QjL in query Q
// Lj and Uj are the lower bound and upper bound,
respectively, of all possible values for dimension j.

2: j ← MinRangeDim(Q) // Proper dimension for
query processing

3: dstIndex← dQjL − Lj

Uj − Lj
(n)e − 1

4: dstID ← HamiltonianPath[dstIndex]
5: FissionERouting(thisNode, dstID,Q, j)
6: end procedure
7: procedure FissionERouting(srcNode src, dstNode

dst, Rangequery Q, properD j)
// Assume that src = src1src2...srck and
dst = dst1dst2...dstm.

8: SP ←SuffixPrefix(src, dst)
// SP = SP 1SP 2...SP t the longest Kautz string that
is a prefix of dst and a suffix of src.

9: src.Routing(dst, k − t, SP,Q, j)
10: end procedure
11: procedure U.Routing(dstNode dst, pathLen L,

sufPre SP , rangeQuery Q, properD j)
12: if (L = 0) then
13: if (QjL > ThisNodejL) and (QjL <

ThisNodejU ) then
// Report all objects in range where Oj < ThisNodejU .

14: ReportAnswer(LocalSearch(Q), Q.issuer)
// If not the last node in range

15: if (QjU > ThisNodejU ) then
16: QjL ← ThisNodejU

// Route updated query to the next node in
Hamiltonian path

17:

FissionERouting(thisNode, thisNode.next,Q, j)
18: end if
19: end if
20: else if ∃Q ∈ Outneighbors(U) & Q = U2...UkX &

IsPrefix(SX, dst) then
// Routing method has been called i times.

21: S ← SX
22: Q.Routing(dst, L− 1, S,Q, j)
23: end if
24: end procedure

have one extra node (y1 or y2) to get the NodeID of the
failed node k and be responsible for its data. If a query
requests data from a failed node, all queries can be pro-
cessed completely. Our data structure can retrieve data
of failed nodes whenever failure of one or more (up to
d − 1) nodes occurs. Thus, our data structure can an-
swer orthogonal range search queries after simultaneous
failure of d− 1 nodes.

Theorem 2 In our fault tolerant data structure with
n nodes storing N points, the cost of recovering net-
work topology and data after failure of one node in d-

80



27th Canadian Conference on Computational Geometry, 2015

dimensional space is O(
dN

nB
log n) messages, where B is

the number of points that fit in one message.

5 Conclusion

We have designed a dynamic peer-to-peer data struc-
ture for d-dimensional data that is capable of process-
ing orthogonal range search on a set of N points. The
constant degree FissionE topology was used to coor-
dinate message passing among nodes. The worst case
range search cost is O(log n + m) messages plus re-
porting cost, where n is the number of nodes in the
peer-to-peer network, and m is the minimum number of
peers intersecting a query. A failure recovery method
was introduced that permits our data structure to sup-
port d-dimensional orthogonal range search when up to
d−1 nodes fail simultaneously. It remains an open ques-
tion how to provide load balancing of nodes in our data
structure if the distribution of data is changed due to
dynamic updates.
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Appendix

Proof of Theorem 1

Proof. Since the most efficient dimension j for the issued
query is selected at the beginning of the range search algo-
rithm, the worst case search cost occurs when the query is an
equal-sided box. Li et al. have proven in [8] that the diame-
ter of FissionE is O(logn). So, in the worst case, the cost of
finding the node containing the lower bound of the orthog-
onal range query QjL is O(logn). After that we need O(m)
messages to pass the updated query to the following nodes
in range using the current Hamiltonian path to find data ob-
jects intersecting the query. Adding the two costs gives the
worst case orthogonal range search cost for d-dimensional
points distributed on a peer-to-peer network of n nodes as
O(logn + m) messages plus reporting cost. �

Corollary 3 Assuming B points fit in one message, the cost
of reporting K points found in range back to the query issuer
node is O((K

B
+ m) logn) messages.

Proof. The cost to report the points in range is∑m
i=1dKi

B
eO(logn) messages, where Ki is the number of

points in range on node i and
∑m

i=1 Ki = K. As∑m
i=1dKi

B
eO(logn) ∈ O((K

B
+m) logn), we have the claimed

reporting cost. �

Proof of Theorem 2

Proof. It has been proven in [8] that when one node fails,
depart messages are propagated less than logn hops. So, the
cost of merging two nodes and maintenance of the overlay
network is O(logn). After that, each node finds which parts
of its own data were stored on the failed node, and sends this
data to the replacement node. If we assume that B points
can fit in one message, the data recovery process requires
O( dN

nB
logn) messages since when one node fails, dN

n
points

residing on the failed node are lost. So, O( dN
nB

) messages are
forwarded at most O(logn) hops to send back the lost data
to the replacement node. The overall cost is thus O(logn +
dN
nB

logn) = O( dN
nB

logn) messages. �
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Range Counting with Distinct Constraints

J. Ian Munro∗ Yakov Nekrich† Sharma V. Thankachan‡

Abstract

In this paper we consider a special case of orthogo-
nal point counting queries, called queries with distinct
constraints. A d-dimensional orthogonal query range
Q = [b1, b2]× [b3, b4]× . . .× [b2d−1, b2d] is a range with r
distinct constraints if there are r distinct values among
b1, b2, . . ., b2d. We describe a data structure that sup-
ports orthogonal range counting queries with r distinct
constraints. We show that the space and query time
complexity of such queries depend only on the number
of distinct constraints r even if r is much smaller than
d. An application of queries with r distinct constraints
to persistent range counting is also considered.

1 Introduction

In the orthogonal range counting problem we keep a
set S of d-dimensional points in a data structure; for
any orthogonal query range Q = [b1, b2] × [b3, b4] ×
. . .× [b2d−1, b2d] we must be able to compute the num-
ber of points from S that are inside Q. Henceforth
[s, e] denotes a closed interval that contains all real val-
ues x satisfying s ≤ x ≤ e; (−∞, a] (or [b,+∞)) de-
notes a half-open interval that contains all real values
x satisfying x ≤ a (resp. x ≥ b). Two-dimensional
orthogonal range counting queries can be supported
in O(log n/ log log n) using an O(n)-space data struc-
ture [7]. For d > 2, the query time and space usage grow
by a factor O(log n/ log log n) with every further di-
mension; thus d-dimensional orthogonal range counting
queries can be answered in O((log n/ log log n)d−1) time
by a data structure that needs O(n(log n/ log log n)d−2)
space [7]. In this paper we consider a special case of or-
thogonal range counting queries that can be supported
in less time and using less space. For a query range
Q = [b1, b2]× [b3, b4]× . . .× [b2d−1, b2d] let r denote the
number of distinct values bi in the multiset { b1 . . . , b2d }
such that bi 6= ±∞. We will say that r is the number of
distinct constraints of a query Q. A query Q such that
r < d will be called a distinct-constraint query. We
show that distinct-constraint queries can be answered

∗Cheriton School of CS, University of Waterloo, Waterloo,
Canada. imunro@uwaterloo.ca
†Cheriton School of CS, University of Waterloo, Waterloo,

Canada. ynekrich@uwaterloo.ca
‡School of CSE, Georgia Institute of Technology, Atlanta,

USA. sharma.thankachan@gatech.edu

faster and using less space than the general orthogonal
range counting queries.

We describe our data structure in Sections 2 and 3.
Potential applications are discussed in Section 4 and
Section 5. In Section 4 we describe a data structure that
supports persistent range counting queries. In Section 5
we describe data structures for some special cases of the
orthogonal color counting problem; our solution for the
color counting problem has the same complexity as the
best previously known data structure.

2 Stabbing Counting Queries

As a warm-up we describe a folklore data structure for
counting one-dimensional intervals that are stabbed by
a query point.

Lemma 1 Suppose that there exists an s(n)-space data
structure that counts the number of points in a one-
dimensional range (−∞, a] in time q(n). Then there
exists a 2s(n)-space data structure that counts the num-
ber of intervals that are stabbed by a query point q in
time 2q(n).

Proof : Let Ss be the set that contains the starting
points of all intervals and let Se be the set that con-
tains the endpoints of all intervals. An interval [s, e] is
stabbed by a query point q if and only if s ≤ q.x1 ≤ e.

Let cq = |{ [s, e] ∈ S | s ≤ q ≤ e }|, c+ = |{ s ∈
Ss | s ≤ q }| and c− = |{ e ∈ Se | e < q }|. That is, cq is
the answer to a query q, c+ is the number of intervals
with starting point at most q, and c− is the number of
intervals with endpoint before q. If the endpoint of an
interval is smaller than q, then its starting point is also
smaller than q. If the starting point of an interval s is
smaller than q, then either its endpoint is smaller than q
or q stabs s. Hence cq = c+− c−. We can thus compute
cq by answering two range counting queries on sets of
one-dimensional points. �

3 Counting with Distinct Constraints

In this section we generalize the result of Section 2 to
d > 1 dimensions. We consider queries that ask for
the number of points in a set { p ∈ S | p.x1 ≷ a1, p.x2 ≷
a2, . . . , p.xd ≷ ad} where ≷ denotes either “greater than
or equal” or “smaller than or equal”. We show that the
complexity of such queries depends only on the number
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of distinct values in the sequence a1, . . . , ad and does
not depend on d itself.

Lemma 2 Suppose that there exists a (d + 1)-
dimensional s(n)-space data structure that counts the
number of points in a range (−∞, a] × Qd, where Qd

is an arbitrary d-dimensional range and a is an ar-
bitrary real value, in time q(n). Then there exists a
(d+2)-dimensional data structure that uses space 3s(n)
and counts the number of points in a range (−∞, a] ×
[a,+∞)×Qd in time 3q(n).

Proof : Let Qm = (−∞, a] × [a,+∞) × Qd. We
define Q+ = (−∞, a] × (−∞,+∞) × Qd, Q− =
(−∞, a] × (−∞, a] × Qd, and Qa = (−∞, a] × [a, a] ×
Qd. Then Qm = (Q+ \ Q−) ∪ Qa. We keep two
(d + 1)-dimensional sets. The set S+ contains a point
plus(p) = (p.x1, p.x3, . . . , p.xd+2) for every point p =
(p.x1, p.x2, p.x3, . . . , p.xd+2) in S. Whereas the set S−

contains a point max(p) = (p.x′1, p.x3, . . . , p.xd+2) for
every p ∈ S, where the new coordinate x′1 is defined as
p.x′1 = max(p.x1, p.x2). We also keep a set Sv that
contains the point plus(p) for all p ∈ S, such that
p.x2 = v. We keep a set Sv for every value v, such that
p.x2 = v for at least one p ∈ S. All auxiliary sets are
kept in data structures that support (d+1)-dimensional
range counting queries. A point p ∈ S is in Q+ if and
only if plus(p) is in (−∞, a] × Qd. A point p ∈ S is
in Q− if and only if p.x′1 = max(p.x1, p.x2) ≤ a and
(p.x3, . . . , p.xd+2) ∈ Qd. Hence p is in Q− if and only if
max(p) is in (−∞, a]×Qd. Finally p ∈ S is in Qa if and
only if p ∈ Sa and plus(p) is in (−∞, a] × Qd. Hence
the numbers of points in Q+, Q−, and Qa can be found
by answering range counting queries on S+, S− and Sa

respectively. Thus a query (−∞, a]×[a,+∞)×Qd is an-
swered by answering three (d+ 1)-dimensional counting
queries. �

The following Theorem is a direct corollary of
Lemma 2 for the case when a (d+2r)-dimensional query
contains at most d+ r distinct constraints.

Theorem 3 Suppose that there exists a (d + r)-
dimensional s(n)-space data structure that counts the
number of points in a range (−∞, a1]× (−∞, a2]× . . .×
(−∞, ar]×Qd, where Qd is an arbitrary d-dimensional
range and a1, . . . , ar are arbitrary real values, in time
q(n). Then there exists a (d + 2r)-dimensional data
structure that uses space 3rs(n) and counts the number
of points in a range (−∞, a1]× [a1,+∞)× (−∞, a2]×
[a2,+∞)×. . .×(−∞, ar]×[ar,+∞)×Qd in time 3rq(n).

Proof : Lemma 2 is applied r times. �

We can also generalize our result for the case when
the same constraint value occurs more than twice.

Lemma 4 Suppose that there exists a (d + 1)-
dimensional s(n)-space data structure that counts the
number of points in a range (−∞, a] × Qd, where Qd

is an arbitrary d-dimensional range and a is an ar-
bitrary real value, in time q(n). Then there exists a
(d+d1 +d2)-dimensional data structure that uses space
3s(n) and counts the number of points in any range
Q = (−∞, a1] × . . . × (−∞, ad1 ] × [ad1+1,+∞) × . . . ×
[ad1+d2 ,+∞) ×Qd, where a1 = a2 = . . . = ad1+d2 = a,
in time 3q(n).

Proof : Let S be a set of (d + d1 + d2)-dimensional
points. We replace the first d1 coordinates of each
point by their maximum and the following d2 co-
ordinates by their minimum. The resulting set
Snew contains a (d + 2)-dimensional point pnew =
(µ1, µ2, p.xd1+d2+1, . . . , p.xd1+d2+d) for every point p ∈
S where µ1 = max(p.x1, . . . , p.xd1

) and µ2 =
min(p.xd1+1, . . . , p.xd1+d2

). Clearly, pnew is in Qnew =
(−∞, a]× [a,+∞)×Qd if and only if the corresponding
point p is in Q. By Lemma 2 we can count the num-
ber of points in Snew ∩Qnew in time 3q(n) using 3s(n)
space. �

Theorem 5 The problem of answering d-dimensional
range counting queries with r distinct constraints has
the same asymptotic space and query time complexity
as the general r-dimensional range counting, when r is
constant.

Proof : For each point p = (p.x1, . . . , p.xd)
in S we create a 2d-dimensional point p =
(x1, x1, x2, x2, . . . , xd, xd). That is, p contains two
copies of each p’s coordinate. Let S be the set of
such points p. A query Q = [a1, b1] × [a2, b2] ×
. . . × [ad, bd] on S is equivalent to a 2d-dimensional
query [a1,+∞) × (−∞, b1] × [a2,+∞) × (−∞, b2] ×
. . . × [ad,+∞) × (−∞, bd] on S. We re-order the co-
ordinates of points in S so that half-open intervals
with the same constraint value are grouped together
and intervals (−∞, a] precede intervals [a,+∞) for the
same value a. The transformed query is of the form
Q′ = (−∞, a1] × (−∞, a2] × . . . × (−∞, a2d] and only
Q′ = Q1 × Q2 × . . . × Qr where each Qi is a query
range with one distinct constraint: for 1 ≤ i ≤ r, Qi =
(−∞, a1]×. . .×(−∞, afi ]×[afi+1,+∞)×. . .×[agi ,+∞)
where aj = vi for some v and for all j such that
fi ≤ j ≤ gi. Lemma 4 is applied r times to query
range Q′. In this way the query is reduced to 3r r-
dimensional queries. The total space usage of our data
structure is 3rs(n), where s(n) is the space needed by a
data structure for r-dimensional counting queries.

�
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4 Persistent Counting

Now we turn to applications of our approach. Consider
a dynamic set of points S. A data structure on S is
called partially persistent if every update (insertion or
deletion of a point) creates a new version and queries
on any version of the data structure are supported. A
partially persistent range counting query (Q, tq) asks
for the number of points p ∈ Q ∩ S that were stored
in D at time t. A data structure is called offline par-
tially persistent if the sequence of updates is known in
advance (that is, all updates of S are known when the
data structure is constructed). We refer to the seminal
paper of Driscoll et al. [5] and to a survey of Kaplan [9]
for an extensive description of persistence.

In this section we describe a general method of design-
ing persistent data structures for counting problems.
Let Qd denote an arbitrary d-dimensional range. Our
approach enables us to transform any data structure
that answers (d + 1)-dimensional queries of the form
Qd × (−∞, a] into a partially persistent data structure
that counts the number of points in Qd and supports
both insertions and deletions. The same method can
be also applied to other geometric objects (segments,
rectangles etc.) We show that d-dimensional offline par-
tially persistent range counting is equivalent to (d+ 1)-
dimensional static orthogonal range counting. For in-
stance, one-dimensional partially persistent counting
queries can be answered in O(log n/ log log n) time us-
ing an O(n) space data structure. We remark that a
straightforward application of techniques for obtaining
partially persistent data structures from dynamic data
structures [5] does not lead to a linear space data struc-
ture for one-dimensional persistent range counting: the
data structure of Driscoll et al [5] can be used to turn a
balanced tree into a persistent data structure. In order
to support one-dimensional counting queries, we have to
keep information about the number of leaves stored be-
low every tree node. Every insertion or deletion changes
this information forO(log n) nodes. Hence a straightfor-
ward algorithm for making a data structure persistent
would result in an O(n log n)-space data structure.

Lemma 6 Suppose that there exists an s(n)-space data
structure that counts the number of points in a range
Qd × (−∞, a], where Qd is an arbitrary d-dimensional
range, in time q(n). Then there exists an offline par-
tially persistent data structure that uses space 3s(n) and
counts the number of points in a range Qd in time 3q(n).

Proof : We associate a lifetime interval [ts(p), te(p)] with
each point p, where ts(p) and te(p) denote the times
when p was inserted into S and deleted from S. We
associate a point temp(p) = (ts(p), te(p), p.x1, . . . , p.xd)
to each p ∈ S. Let Stemp = { temp(p) | p ∈ S }. Given
a query (Qd, t), we must count points p such that p ∈

Qd and ts(p) ≤ t ≤ te(p). Counting all points that
are in Qd and are stored in a data structure at time
t is equivalent to answering (d + 2)-dimensional query
(−∞, t]× [t,+∞)×Qd on Stemp. Such queries have at
most d + 1 constraint. By Lemma 2, such queries can
be answered in time 3q(n) using 3s(n) space. �

5 Color Counting

Colored or categorical orthogonal range searching is an
important variant of the range searching problem. The
set of points S of size n, such that each point is assigned
a color, is pre-processed and stored in a data structure.
For any rectangular query range Q, we must be able to
find some information about colors of points in S∩Q. In
the case of color counting queries, we want to compute
the number of distinct point colors in S ∩ Q. In the
case of color reporting queries, we want to enumerate all
distinct point colors in S∩Q. In this section we describe
a data structure for color counting. Our solution, based
on counting with distinct constraints, matches the best
previously known bounds. Thus we show that distinct-
constraint counting provides an alternative solution for
this problem.

Color searching problems arise naturally in many
database applications when the input data objects are
distributed into categories. We may want to enumer-
ate (or count the number of) categories of objects
whose attribute values are in a certain range. For in-
stance, suppose that a geographic database contains
data about locations. Given a query area, we may be
interested in listing (or counting) types of soil in that
area. Other applications of this problem include doc-
ument retrieval [12, 13], computational geometry [10],
and VLSI layout [6].

Color range searching problem were studied exten-
sively during the last two decades, see e.g., [8, 6, 3, 4, 2,
12, 10, 14, 15, 11]. In spite of significant efforts, space-

efficient data structures (i.e., using n logO(1) n space)
are known only for color reporting in d ≤ 3 dimensions.
Space-efficient color counting in d ≥ 2 dimensions is
possible only in some special cases. Thus counting or re-
porting distinct point colors appears to be significantly
harder than counting or reporting all points in an or-
thogonal range.

Gupta et al. [6] describe a data structure for one-
dimensional color counting queries that uses O(n log n)
space and supports queries in O(log n) time. This result
is obtained by reducing one-dimensional color count-
ing to two-dimensional point counting. Using the re-
duction from [6] and a linear size data structure for
point-counting, described by JaJa et al. [7], we can
obtain an O(n)-space data structure that answers one-
dimensional color counting queries in O(log n/ log log n)
time. Space-efficient data structures for some special
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cases of two-dimensional queries are also known. A
two-dimensional dominance query is a product of two
half-open intervals, e.g., (−∞, b] × (−∞, h]. A three-
sided query range is a product of a closed interval and
a half-open interval, e.g., [a, b]× (−∞, h]. In [6] the au-
thors describe an O(n log n)-space data structure that
supports dominance color counting in O(log n) time and
an O(n log2 n)-space structure that supports three-sided
color counting in O(log2 n) time; they also describe an
O(n2 log2 n) data structure that answers general queries
in 2-D in O(log2 n) time. Kaplan et al [10] describe a
general method that reduces the problem of counting
colors in d-dimensional dominance range to counting
d-dimensional rectangles that are stabbed by a point
q. The set of rectangles used in [10] consists of O(n)
rectangles for d = 2 or d = 3. Kaplan et al [10] de-
scribe an O(n log n)-space data structure that answers
two-dimensional dominance color counting queries in
O(log n) time and an O(n log2 n) space data structure
that answers three-dimensional dominance color count-
ing queries in O(log2 n) time.

However if we combine the best currently known
data structures for rectangle stabbing counting with
the reduction from [10], then both query time and
space usage can be reduced. There is a data struc-
ture that answers two-dimensional dominance color
counting queries in O(log n/ log log n) time and uses
space O(n). There is also a data structure that
answers three-dimensional dominance color counting
queries in O((log n/ log log n)2) time and uses space
O(n(log n/ log log n).

Below we provide an alternative solution for color
dominance in two and three dimensions. Although our
data structures have the same complexity as previous
best solutions, we believe that our alternative solution
is also of interest.

Dominance Color Counting in 2-D. In the
two-dimensional dominance query (aka 2-sided two-
dimensional query), the query range Q is a product
of two half-open intervals. We will consider queries
(−∞, a] × (−∞, b]. A two-dimensional point q domi-
nates a point p if both coordinates of q are not smaller
than p, q.x1 ≥ p.x1 and q.x2 ≥ p.x2. The skyline M of a
set S consists of all points in S that do not dominate any
other point in S. If we arrange the points on a skyline
M in increasing order of their first coordinates, then the
second coordinates of points in M will form a decreas-
ing sequence. For a point p ∈ M , let next(p) = p′.x1
where p′ is the right neighbor of p on M .

Let the set Sc contain all points of color c in S. Let
Mc denote the skyline of Sc. The set S1 contains a
three-dimensional point p1 = (p.x1, next(p), p.x2) for
each p ∈ Mc and for all colors c. It was shown in [6]
that Q = (−∞, a] × (−∞, b] contains a point of color

a

b

Figure 1: Answering a two-dimensional dominance color
counting query on a set of red, blue, and green points.
Skyline points are connected by straight lines. For a
query Q = (−∞, a] × (−∞, b], we count the number of
circled points. Exactly one point for each color that
occurs in (−∞, a]× (−∞, b] is considered.

c if and only if there is exactly one point p ∈ Mc such
that p.x1 ≤ a, next(p) ≥ a, and p.x2 ≤ b. See Fig. 1 for
an example.

Thus we can count the number of colors in Q by an-
swering a query (−∞, a] × [a,+∞) × (−∞, b] with 2
distinct constraints on S1.

Theorem 7 Two-dimensional dominance color count-
ing has the same space and query time complexity as
two-dimensional point counting.

Optimal data structures in the RAM and external mem-
ory models follow immediately. We plug the data struc-
tures from [7] and [1] into Theorem 7.

Corollary 1 There exists an O(n)-space data structure
that answers two-dimensional dominance color counting
queries in optimal O(log n/ log log n) time.

Corollary 2 There exists an external-memory data
structure that uses O(n) words of space and answers
two-dimensional dominance color counting queries in
O(logB n) I/Os.

Insertion-Only Dominance Color Counting in 2-D.
Let D1 denote the data structure that supports two-
dimensional dominance queries. The data structure D1

can also support insertions. Suppose that a new point
pnew of color c is inserted. If p1 dominates some p ∈Mc,
then we do not have to change Mc and no updates of
D1 are necessary. Otherwise, we insert pnew into Mc.
In this case we also may have to remove a number of
other points from Mc. Data structure D1 is updated
accordingly. An insertion of a single point into Mc can
lead to a large number of updates. But Gupta et al. [6]
have shown that n insertions into an initially empty data
structure require O(n) updates of skylines Mc. Hence
D1 is also updated O(n) times. The key observation is
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that each point in inserted and removed from some Mc

at most once: if p is removed from Mc, it will not be
re-inserted into Mc in the future. We refer to [6] for
details.

Dominance Counting in 3-D. Following the ap-
proach of [6], we can transform a 2-D dominance query
into a 3-D dominance using a persistent version of the
two-dimensional data structure described above. While
in [6] this technique was applied to range reporting, we
use it to obtain a range counting data structure. We sort
points of a three-dimensional set S in increasing order
by their z-coordinates. These points are then inserted
in the same order into a partially persistent variant of
the data structure D1 which we will denote by D2. We
use the approach outlined in Section 4 for adding per-
sistence. Each point in D2 is associated with two ad-
ditional coordinates. For every point p ∈ D1 that was
inserted at time ts and removed at time te, D2 contains
a point p = (p.x, next(p), p.y, ts, te). In order to an-
swer a query (−∞, a] × (−∞, b] × (−∞, h],we find the
version th that corresponds to the largest z-coordinate
that does not exceed h. Then we count the number
of colors in a two-dimensional range (−∞, a]× (−∞, b]
at time th. That is, we answer a counting query
(−∞, a] × [a,+∞) × (−∞, b] at time th. As shown
in Section 4, this is equivalent to answering a query
(−∞, a]× [a,+∞)× (−∞, b]× (−∞, th]× [th,+∞). Al-
though this is a five-dimensional query, it has three dis-
tinct constraints. Hence, it has the same complexity as
three-dimensional point counting.

Theorem 8 Three-dimensional dominance color
counting has the same space and query time complexity
as three-dimensional point counting.

Again we plug the data structures from [7] and [1]
into Theorem 8.

Corollary 3 There exists an O(n(log n/ log log n))-
space data structure that answers three-
dimensional dominance color counting queries in
O((log n/ log log n)2) time.

Corollary 4 There exists an external-memory data
structure that uses O(n logB n) words of space and
answers three-dimensional dominance color counting
queries in O((logB n)2) I/Os.
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Abstract

Let R be a set of n red segments and B a set of n blue
segments, we wish to find the minimum value d∗, such
that there exists a perfect matching between R and B
with bottleneck d∗, i.e., the maximum distance between
a matched red-blue pair is d∗. We first solve the corre-
sponding decision problem: Given R, B and a distance
d > 0, find a maximum matching between R and B
with bottleneck at most d. We begin with the simpler
case where d = 0 and then extend our solution to the
case where d > 0. We focus on the settings for which
we are able to solve the decision problem efficiently, i.e.,
in roughly O(n1.5) time. The most general of these, is
when one of the sets consists of disjoint arbitrary seg-
ments and the other of vertical segments. We apply
similar ideas to find a matching in the setting in which
the vertical segments are replaced by points in the plane.

After solving the decision problem, we explain how
to find the minimum value d∗. Finally, we show how
to compute a shortest path tree for a given set of n
orthogonal segments and a designated root segment in
O(n log2 n) time.

1 Introduction

The maximum matching problem is a fundamental
problem in graph theory. Given a graph G = (V,E),
find a matching in G of maximum cardinality, where
M ⊆ E is a matching in G if each vertex of V is ad-
jacent to at most one edge of M . If |V | is even and
|M | = |V |/2, then M is perfect. The maximum match-
ing problem has received a lot of attention, see below
for some of the known algorithmic results. When G
is a weighted graph, i.e., when each edge of E is as-
signed some weight, then one often is interested in a
minimum weight matching or bottleneck matching in G,
i.e., in a perfect matching that minimizes the sum of the
edge weights or the weight of the heaviest edge, respec-
tively. In this context, bipartite graphs received special
attention, since many of the motivating problems are
naturally modeled using bipartite graphs.

∗Work by A. Banik and M. Simakov was partially supported
by the Lynn and William Frankel Center for Computer Sciences.

Bottleneck matching and minimum weight matching
in geometric graphs, i.e., in graphs induced by geomet-
ric settings, are well-studied topics. The most common
geometric setting is of course points in the plane. For
a set P of points in the plane, the bottleneck matching
problem (alternatively, the minimum weight matching
problem) is to compute a bottleneck matching (resp., a
minimum weight matching) in the complete graph in-
duced by P , where the weight of an edge e = {p, q} is
the Euclidean distance between points p and q. In the
bipartite version of this problem, one is given two sets
of points, a red set R and a blue set B, each of size n,
and the induced bipartite graph consists of all red-blue
edges.

In this paper we study maximum matching problems
in bipartite graphs induced by a pair of sets of line seg-
ments, i.e., a red set R and a blue set B, each consisting
of n line segments. We are not aware of any previous
results dealing with these problems. We are mainly in-
terested in the variants for which a maximum matching
can be found efficiently, i.e., in time roughly O(n1.5).

In the first variant that we study, R is a set of vertical
segments and B is a set of arbitrary disjoint segments,
and there is an edge between r ∈ R and b ∈ B if and
only if the two segments intersect. The goal is to com-
pute a maximum matching in this graph. One could
do this by applying one of the known graph algorithms
for maximum matching in bipartite graphs, however,
the running time of these algorithms is in general su-
perquadratic; it is either O(

√
nm) [4], or O(n2.376) [8],

or Õ(m10/7) [7], where m is the number of edges in the
graph. We present an O(n1.5 log2 n)-time algorithm for
this variant.

In the second variant, we are also given a distance d >
0, such that there is an edge between r ∈ R and b ∈ B if
and only if the distance between the two segments is at
most d; we denote this graph by G(R,B, d). We would
like to compute a maximum matching in this graph.
This variant is more difficult than the former, and we
present an O(n1.5+ε)-time algorithm for it.

When R is also a set of arbitrary disjoint segments,
the time bound increases to roughly O(n11/6) (which is
still subquadratic), for both variants above.

Our algorithms are based on the algorithm of Efrat
et al. [2] for computing a maximum matching in a bi-
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partite graph induced by a set of n red points and a set
of n blue points in the plane, where there is an edge be-
tween a red and a blue point if and only if the distance
between them is at most d, for a given parameter d.
For each of the variants above, we need to replace the
“oracle” component in their algorithm with a different
oracle that meets our needs, see below for more details.

Using similar ideas, we also obtain an efficient algo-
rithm for the following “mixed” problem. Given a set
of n arbitrary disjoint segments and a set of n points,
compute a maximum matching in the induced bipartite
graph, where there is an edge between a segment and
a point if and only if the distance between them is at
most d, for a given parameter d. This problem can be
viewed as a special case of the second variant above.

The second variant above is actually the decision ver-
sion of the following optimization problem: Given R
and B, find the minimum distance for which there ex-
ists a perfect matching in the graph G(R,B, d), or, in
other words, find a bottleneck matching in the graph
G(R,B,∞). We show that this optimization prob-
lem can be solved within the same time bound, i.e.,
in O(n1.5+ε) time.

Finally, we present an efficient algorithm for comput-
ing a shortest path tree from a designated segment s.
Consider a scene consisting of n horizontal and vertical
segments and let s be one of the segments. Let G be
the bipartite graph induced by the scene (i.e., there is
an edge between a horizontal and a vertical segment if
and only if they intersect). The distance in G between
two segments is the length (in terms of number of edges)
of a shortest path between them. We wish to compute
a shortest path tree T from s, that is, a tree rooted at s,
such that, for any other input segment s′, the length of
the path in T between s and s′ is the distance between
them in G. We show how to construct a shortest path
tree from s in O(n log2 n) time.

2 Solving the decision problem

2.1 The basic segment matching problem

The basic segment matching problem is defined as fol-
lows: let R be a set of n vertical segments and B a
set of n disjoint arbitrary segments, find a maximum
matching between R and B, where two segments may
be matched only if they intersect. This is the decision
problem of the extended problem for the case d = 0.

Consider the corresponding bipartite intersection
graph G = (V,E), where each segment in R ∪ B cor-
responds to a vertex in V , and the edge (r, b) between
a red vertex r and a blue vertex b is in E if and only if
the segments intersect. Computing G explicitly requires
O(n2) time, and the best known graph-theoretic bipar-
tite matching algorithm runs in O(n2.376) time [8] (or
O(
√
nm), where m = |E| [4]). We seek a subquadratic

Figure 1: A segment’s arena (race track) of radius d.

solution.

Theorem 1 The basic segment matching problem can
be solved in time O(n1.5 log2 n).

Proof. Efrat et al. [2] show how to find a maximum
matching without constructing the entire graph, by im-
plicitly computing augmenting paths until a maximum
matching is obtained. Their solution relies on an or-
acle, which is actually a data structure supporting a
certain type of queries and an update operation. They
show that if each of these operations (i.e., handling a
query and deletion) can be performed within T (n) time,
then the maximum matching problem can be solved in
O(n1.5 · T (n)).

In our case, the oracle data structure, D(S), would be
a segment tree for a set of segments S ⊆ B, which con-
sists of disjoint arbitrary segments. The data structure
requires O(n log n) space (see, e.g., [1]). The required
operations are defined as follows:

• match(D(S), q) — For a query segment q ∈ R,
return a segment s ∈ S such that q intersects s, or
null if no such segment exists.

• delete(D(S), s) — Delete the segment s from S.

Since we are using a segment tree and the the query
segments are vertical, each operation can be completed
in T (n) = O(log2 n) time [1]. Thus, by using the or-
acle we can compute a maximum matching in O(n1.5 ·
T (n)) = O(n1.5 log2 n). �

2.2 An extended segment matching problem

After solving the basic matching problem, we consider
the case where d > 0. We define the extended segment
matching problem: let R be a set of n vertical segments
and B a set of n disjoint arbitrary segments, find a max-
imum matching between R and B, where two segments
may be matched if the distance between them is at most
d.

Given a segment b ∈ B, denote the arena (or race
track) of radius d induced by it by Ad(b) (see Figure 1).
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(a) Case 2 (b) Case 3

Figure 2: Matching segments.

In order to solve the given problem, we require a data
structure which supports the following operations:

• match(D(S), q) — For a query segment q ∈ R,
return a segment s ∈ S, such that q ∩ Ad(s) 6= ∅,
or null if no such segment exists.

• delete(D(S), s) — For a segment s ∈ S, delete s
from D(S) to prevent s from being returned again.

If we can solve these queries efficiently, we can obtain
an efficient maximum matching algorithm, by applying
the scheme of Efrat et al. [2], as we did for the basic
matching problem.

Let us distinguish between the different cases in which
we can match a vertical segment r to a segment b (notice
that there is no restriction on b):

1. The segments r and b intersect.

2. At least one of r’s endpoints lies inside Ad(b) (see
Figure 2(a)).

3. The most difficult case we have to consider is the
one in which the segments do not intersect, and
none of r’s endpoints lies inside Ad(b). Let us draw
two horizontal segments of length d starting at each
of b’s endpoints and extending away from b (see
Figure 2(b)). If r intersects one of the horizontal
segments we have added, then it can be matched
with segment b.

Lemma 2 If b and r are at distance at most d from
each other, then they satisfy at least one of the condi-
tions described above.

Proof. Given segments b and r at distance at most d
from each other, we will prove that r, b satisfy at least
one of the conditions described above. Assume the seg-
ments do not satisfy the first and second conditions, we
will show that they must satisfy the third one. Note
that this means that the segments do not intersect, and
none of r’s endpoints lies inside Ad(b). Since the dis-
tance between r and b is at most d, segment r must
intersect Ad(b) in at least one point. Also, since r is

a vertical segment which does not intersect segment b,
we infer that it must intersect one of the horizontal seg-
ments we have added. We conclude that the segments
satisfy the third condition. �

We conclude that by detecting each of the three
cases, we can determine whether two segments can be
matched. We will maintain three data structures, each
one allowing the detection of one of the cases. Our goal
is to use the oracle once again, so each data structure
must support the match, delete operations. The follow-
ing data structures will be required:

1. Data structure D1: A segment tree for the segments
in B, as in the previous section. This data structure
allows us to detect segments which satisfy the first
condition. match, delete operations are performed
in O(log2 n).

2. Dynamic data structure D2: A structure for the
arenas Ad(S), induced by a set of segments S ⊆ B.
Let us define the required operations for using the
oracle:

• match(D2(Ad(S)), q) — Given point q, return
a segment s, such that q ∈ Ad(s). For a verti-
cal segment r ∈ R we will perform two queries
using the segment’s endpoints, this way we
can match segments which satisfy the second
condition.

• delete(D2(Ad(S)), s) — Given segment s ∈ S,
remove the arena Ad(s) from the data struc-
ture. Note that this operation requires D2 to
be a dynamic data structure.

Lemma 3 The complexity of the union of the are-
nas induced by S is linear in |S|.

Proof. First we observe that any two arenas can
intersect in at most two points, this is due to the
assumption that the segments b ∈ B are pairwise
disjoint, and that the arenas are all of the same
radius. By a result of Kedem et al. [6], we conclude
that the complexity of the union of the arenas is
linear in |S|. �

Lemma 3 enables us to use the dynamic data struc-
ture of Efrat et al. [3], which is able to perform
queries in O(log2 n) time and deletions in O(nε)
time, for any constant ε > 0. Thus, the running
time of a single match, delete operation in D2 is
bounded by O(nε). The size of the data structure
is near linear in |S|.

3. Data structure D3: A segment tree for the hori-
zontal segments of length d, starting at the end-
points of the segments in B and extending away
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from them. For each segment b ∈ B, we add two
segments, thus the size of the segment tree remains
O(n log n). This data structure allows the detec-
tion of segments which satisfy the third condition.
Let us define the required operations:

• match(D3(S), q) — Given a vertical segment
q, return a segment s ∈ S such that q inter-
sects s.

• delete(D3(S), s) — Delete segment s from S.
When deleting s we must also delete its ‘twin’
segment, so that the corresponding segment in
B would not be matched twice.

These operations can be implemented in time
O(log2 n) per operation.

Now, given a vertical segment r ∈ R, we will conduct
at most four queries for each match operation of the
oracle, and exactly four removals for each delete oper-
ation of the oracle. The running time of each of the
oracle’s operations is determined by the maximum run-
ning time in the three data structures, which is bounded
by O(nε). Thus, using the oracle, we conclude that the
extended segment matching problem can be solved in
O(n1.5+ε) time. The following theorem summarizes the
main result of this section.

Theorem 4 The extended segment matching problem
can be solved in time O(n1.5+ε).

2.3 Maximum matching between segments and
points

Let d > 0. An important special case of the extended
segment matching problem is the problem of comput-
ing a maximum matching between a set of n disjoint
arbitrary segments and a set of n points, both in the
plane, where we match match a point to a segment if
the Euclidean distance between them is at most d.

Theorem 5 The segments and points matching prob-
lem can be solved in time O(n1.5+ε).

Proof. We observe that the distance between point p
and segment s is at most d if and only if p lies inside
Ad(s). Thus, this is the only case in which a matching
between p and s is valid. By maintaining a single data
structure, similar to D2 in the previous section, we can
detect all relevant matchings satisfying this condition.
Since each operation is bounded by O(nε), the overall
matching problem can be solved in O(n1.5+ε). �

2.4 The general case

The most general setting of the segment matching prob-
lem is when both sets consist of disjoint arbitrary seg-
ments. This case requires more sophisticated data struc-
tures, and balancing between the space allocation and
the total time required for query processing in one round
of the matching algorithm. This case can be solved in
roughly O(n11/6) time using O(n4/3) space, which is
still subquadratic, but significantly worse than our goal
of roughly O(n1.5) time.

2.5 Optimization

After solving the decision problem, we focus on the op-
timization problem which is defined as follows: let R
be a set of n vertical segments and B a set of n dis-
joint arbitrary segments, find d∗, which is the smallest
value d for which there exists a perfect matching with
bottleneck d.

Theorem 6 The segment matching optimization prob-
lem can be solved in time O(n1.5+ε).

Proof. We perform a binary search in the set of po-
tential values. This set consists of all the distances
between a segment in R and a segment in B. Such
a distance, if not 0, is determined by the distance be-
tween an endpoint of one of the segments and the other
segment. The size of the set is O(n2), so we cannot af-
ford to compute it explicitly. Instead, we slightly adapt
the distance selection algorithm of Katz and Sharir [5],
so that given k, it returns the k’th smallest distance
in roughly O(n4/3) time. For each potential value we
run the algorithm for the decision problem described
in section 2.2, each run requires O(n1.5+ε), and there
would be at most O(log n) potential values examined
until d∗ is found. Thus, we reach the total running time
of (O(n4/3) + O(n1.5+ε)) · log n = O(n1.5+ε). �

3 Computing a shortest path tree

The shortest path tree problem in our setting is defined
as follows: Given S, a set of n orthogonal segments and
a segment s ∈ S, compute a shortest path tree T rooted
at s; (see Figure 3). We say that there is a path from u
to v if there exist segments u = s1, s2, . . . , sn = v ∈ S,
such that any two consecutive segments intersect and
have different orientations. We show how to construct
T efficiently.

Theorem 7 Given S, a set of n orthogonal segments,
and a segment s ∈ S, we can compute a shortest path
tree rooted at s in O(n log2 n) time.

Proof. Our algorithm is based on the well-known BFS
algorithm. We maintain two segment trees: one for
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Figure 3: A shortest path tree for a set of orthogonal
segments and root segment s.

the horizontal segments, D1, and one for the vertical
segments, D2. Assume s is a vertical segment, we can
find all the segments at distance 1 from s by performing
a query in D1, let us denote all these segments by S1.
In a similar manner, we can find all the segments at
distance 2 from s by performing a query in D2 with each
of the segments in S1. A segment that is found during
a query, is deleted from the appropriate data structure
in O(log2 n) time. We repeat the previous step, until no
new intersections are found, implying that our shortest
path tree is complete.

Running time: for a given segment t, a query re-
quires O(log2 n + k) time, where k is the number of
segments (remaining in the data structure) intersecting
t. We perform at most n queries for each data structure
and each segment is returned at most once, thus overall
the construction takes O(n log2 n) time. �
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Reconfiguring a Chain of Cubes∗
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Abstract

Any configuration of a chain of cubes can be trans-
formed into any other while maintaining contact be-
tween adjacent cubes in the chain using a quadratic
number of moves. We show that this result is also true in
the more constrained setting of a “Kibble chain” where
the cubes are threaded on an elastic string, and slits in
the cubes allow limited turns at joints.

1 Introduction

This paper is about a puzzle shown in Figure 1 that
consists of a sequence of n cubes threaded on an elastic
string. The string forces cubes that are adjacent in the
sequence to remain in contact, but slits in the cubes
allow limited rotations. We show that any configuration
of such a puzzle can be transformed to any other using
O(n2) steps. A main tool is to show the same result in
a more abstract setting without the elastic string or the
slits: to reconfigure a chain of cubes while maintaining
contact between adjacent cubes.

More generally, reconfiguring a set of disjoint cubes
or modules is of interest both for puzzles and for modu-
lar robotics. Different constraints on the reconfiguration
process arise in different scenarios. In modular robotics,
one well-studied constraint is that the set of modules
should remain connected. More precisely, the graph
with vertices representing modules and edges represent-
ing contact between pairs of modules must remain con-
nected. A common model of allowable motions for cube
modules is that one cube may “slide” along another
cube [3, 5, 6]. Dumitrescu and Pach [11] showed how
to reconfigure a set of squares in this model, and Abel
and Kominers [2] extended to cubes in three and higher
dimensions. More general “mover” problems were sur-
veyed by Dumitrescu [10]. Hurtado et al. [12] considered
distributed algorithms. Alternative “pivoting” motions
were considered in [15] and can be physically realized.
Reconfiguration of rectilinear chains is also relevant for
protein folding [13].

Our setting is more constrained in that an ordering
c1, c2, . . . , cn of the cubes is specified, and each cube

∗INRIA-UVic-McGill 2015 Geometry Workshop at Bellairs
†Davidson College, USA, laheyer@davidson.edu
‡University of Waterloo, Canada, alubiw@uwaterloo.ca
§University of Manitoba, Canada, jyoti@cs.umanitoba.ca
¶University of Victoria, Canada, {ustege,sue}@uvic.ca

must remain in contact with its neighbours in the se-
quence. We show in Section 3 that any configuration
of a chain of n cubes can be straightened using O(n2)
slide motions, and hence that any configuration can be
transformed into any other with the same bound. This
is an easy generalization of a result known in 2D1. The
idea (similar to those in [7, 13]) is to pull the chain out
at a cube that lies on the boundary.

There are a number of physical puzzles made of cubes
strung together in a chain. See Figure 2. In a “snake
puzzle” each cube has a hole drilled through it, either
straight through or making a right angle turn, and the
face contacts between successive cubes are determined
by the placement of the holes. A snake puzzle cannot
be straightened to have all the cubes in a line and de-
ciding whether one configuration can be transformed to
another is of open complexity [1].

Figure 1: The Wooden Fidget puzzle.

Figure 2: A snake puzzle (left) and a Kibble puzzle
(right).

A “Kibble chain” is different from a snake puzzle in
that there are slits in each cube that allow the face con-
tacts to change as the elastic cord moves in the slits.
It is crucial to have some stretch in the cord, other-
wise face contacts are fixed and it becomes a snake puz-
zle. The commercial Kibble puzzle also involves face
colours, but we will not be concerned with colours. A

1Aloupis, Demaine, Lubiw, private communication, from a
2009 Carleton workshop
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commercial version of the puzzle we deal with is called
“Shapeshifter Creativity blocks” or “Wooden Fidget
Puzzle”—see Figure 1. Details of the slits are shown
in Figure 3. We show in Section 4 that any configu-
ration of a Kibble chain can be straightened in O(n2)
moves, and hence that any configuration can be trans-
formed into any other. We need rotations in addition to
slides. We also show in Section 5 that in some special
cases, pivot moves (to be defined) suffice to straighten
a chain.

Figure 3: The slits in a single Kibble cube and the ways
the string can go through it. (Model and photo: Tom
Whitesides.)

Note that we assume we are given the initial and final
configurations of the chain. Even in 2D the problem of
deciding whether some collection of squares has a chain
through it is the known NP-hard problem of finding a
Hamiltonian path in a grid graph. For the snake puzzle,
even the special case of deciding whether a large cube
can be formed from a given snake (ignoring the actual
reconfiguration process) is NP-hard [1].

Since we are dealing with a chain, our work is re-
lated to linkage reconfiguration [9, 14], and to the ver-
sion where one joint is straightened at a time [4]. There
has also been work on reconfiguring a chain of polygons
that must remain connected at fixed points of contact
between successive pairs [8]. Our version is different in
that two adjacent cubes must remain in contact, but
the point of contact may change.

2 Models of Motion

Slides and pivots are two basic motions used to recon-
figure cubes. The faces of contact between two cubes
A and B can be changed with either motion: the face
of contact for both A and B can be changed using two
slides (see Figure 4); and the face of contact for just one
of them can be changed using a pivot (see Figure 5).
Both motions can be carried out for some orientations
of Kibble cubes.

To define the motions more exactly, we must specify
what happens to the rest of the chain. A slide translates
some cubes that lie along a line of consecutive grid posi-
tions (in one of the axis directions) by at most one grid
position along the line. All other cubes remain fixed.
Of course there must be some clear space for the lead-
ing cube to move into, and the constraint of maintain-
ing contact along the chain further restricts the slides

A B

A

B

Figure 4: Changing face of contact with slides in the
contact model (top)—block A slides up, then block B
slides left. These slides can be performed for some ori-
entations of Kibble cubes (bottom).

A B

A

B

Figure 5: Changing face of contact with a pivot in the
contact model (top)—block A pivots around block B. A
pivot can be performed for some orientations of Kibble
cubes (bottom).

that can be performed. A rotation rotates one cube,
while all others stay fixed. Rotation may be around an
axis through the center or an edge of the rotating cube.
Some clear space is needed around a cube before it can
be rotated. Finally, we will use the term pivot for the
operation shown in Figure 5 that translates and rotates
a cube and the subchain attached to it. In Figure 6 we
show how a chain with one bend can be straightened
using one pivot or using a sequence of slides.

A B

A

B

A

B BA

Figure 6: Straightening a chain with one bend using a
sequence of slides (top) or a single pivot (bottom).

Note that the pivot requires a lot of free space, but the
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sequence of slides only requires that one endpoint of the
chain extends to a line in free space. Because of this, we
will use pivots only to straighten chains that are initially
monotone (Section 5). More generally, we use slides.
Slides maintain the axis alignment of each cube. How-
ever, it is not possible to straighten every Kibble chain
while maintaining axis alignment, for example see Fig-
ure 7. We need to use rotations as well. (To straighten
this example see Figure 19 in the Appendix.) To rotate
a cube about an axis through its center, we must clear
some space around it. See Figure 8 for one example
of how to do this, and observe that there are alterna-
tives that keep any particular row/column fixed. We
also need to clear some space in order to rotate a cube
about an axis through an edge. See Figures 14 and 15.
We perform these operations so that all required con-
tacts are maintained.

Figure 7: This chain (drawn in schematic and 3D form)
cannot be straightened while keeping the cubes aligned
with the axes, nor by keeping the cubes in the current
plane, nor by a single pivot.

A AA

Figure 8: When cube A is connected to a cube in front
of the page and to a cube below or behind, A can be
rotated after we slide three rows/columns out of the
way.

For a Kibble chain we note that sliding a subsequence
of the chain increases the length of the string by an
additive constant because the two end cubes may change
their contact types—when two cubes are in face-to-face
contact the length of the piece of string between their
centers is 1, but when they are in edge-to-edge contact
the length is

√
2. However, sliding a row/column (as

may be needed for rotations) may increase the length
by a multiplicative constant because a linear number of
cube contacts may deviate from full face-to-face contact.

3 Reconfiguring in the Contact Model

In this section we deal with the “contact” model in
which adjacent cubes must remain in contact, but we

make no further restrictions on their motions. In the ini-
tial and final configurations, we assume complete face-
to-face contact between cubes that are adjacent in the
chain. During reconfiguration, most contacts will still
be face-to-face contacts, but we allow edge-to-face or
edge-to-edge contact.

The idea is to “pull” the chain out at a cube (or pair
of cubes) on the boundary. The rest of the chain moves
along the paths to these boundary cubes. We call this
the “snake in a tunnel” method. See Figure 9. This idea
was used by Cheung et al. [7] who showed how to recon-
figure any 3D shape to any other by subdividing it into
“micropixels” (spheres) joined in a Hamiltonian path
with an endpoint on the boundary, and then pulling the
chain out at this endpoint. The same idea was used ear-
lier in work by Lesh et al. [13] for protein folding (with
a slightly different set of elementary moves), where it
was called a “reptation” method in keeping with a ba-
sic principle of polymer science.

Theorem 1 Any configuration of a chain of n cubes
with face-to-face contacts between cubes adjacent in the
chain can be transformed to any other such configura-
tion using O(n2) slides, while maintaining contact be-
tween adjacent cubes in the chain.

Proof. As noted in the Introduction, this proof was
already known for 2D. It suffices to show that slides can
transform any configuration into a straight chain which
then acts as an intermediate “canonical” configuration.

Consider a cube c in the topmost plane of the con-
figuration that is connected to a cube below this plane.
(If no such c exists then all the cubes lie on one plane,
and we consider the rightmost column instead of the
topmost plane.) Either c is an end cube of the chain,
or else there is a cube c′ that is adjacent to c in the
chain and also lies in the topmost plane. If c is an end
cube, the idea is to “pull” the chain out at c until it is
straight. If c is not an end cube then we pull c and c′

out until the two subchains from c and c′ to the ends of
the chain are straight.

Let χ(c) and χ(c′) be the disjoint subchains from c
and c′, respectively, to the ends of the chain. A phase
moves χ(c) or χ(c′) along its tunnel by one grid posi-
tion. If c′ exists, the phases alternate between c′ and c.
At the end of each phase all contacts are face-to-face.
Each phase is implemented as a sequence of slides, one
for each bend in the subchain. Each slide moves a maxi-
mal subchain of collinear cubes (a “line” of cubes) along
by one grid position, effectively transferring an empty
position from the front of the line to the end of the line.
We begin each phase by moving c or c′ upwards, along
with a maximal vertical subchain below it. This leaves
a vacant grid position where the last cube of the sub-
chain was. In general suppose that cube ci has vacated
a position at the front of line ` that consists of cubes
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c ć c

ć

c

ć c ć

(a) (b)

(c) (d)

Figure 9: The snake in a tunnel method in 2D: (a) initial
configuration; (b) in the first step cube c′ moves up (in
this example, c′ is alone in its line); (c) at the end of
the first phase χ(c′) has moved one position further in
its tunnel; (d) in the second phase c and its line move
up and χ(c) moves one position further in its tunnel.

ci+1 . . . , cj , j ≥ i. Cube ci+1 is in edge-to-edge contact
with ci. We move the cubes in line ` so that ci+1 enters
the empty position, regaining face-to face-contact with
ci. Since the chain turns at cj , the contact between cj
and cj+1 becomes edge-to-edge.

At the end of O(n) phases χ(c) will be in one line. If
χ(c′) exists, it will also be in one line, and we can do
a sequence of O(n) slides to move the two chains into
one line. Each phase takes O(b) slides, where b is the
number of bends in the chain, so the total number of
slides is O(nb) which is in O(n2). �

4 Reconfiguring a Kibble Chain

The theorem in the previous section does not apply to
Kibble chains because motions are restricted by the po-
sitions of the slits. Reconfiguration is possible if we
allow rotations as well as slides:

Theorem 2 Any configuration of a Kibble chain of n
cubes with face-to-face contacts between cubes adjacent
in the chain can be transformed to any other such config-
uration using O(n2) rotations/slides, while maintaining
contact between adjacent cubes in the chain.

Proof. We follow the same plan as above, but must
rotate cubes in order to re-orient the slits. Recall that
a phase means moving c (or c′) and its subchain along
by one position, and each phase is composed of steps,
where each step involves sliding a line of cubes along by
one grid position.

We first claim that before each phase, we can rotate
each cube in χ(c) and χ(c′) (except the initial cubes c
and c′) so that: (1) the string enters the middle of a
slit; and (2) if the string turns 90◦ in the cube then

the string exits at the end of a slit (Figure 3, middle,
with the string entering from the top). To justify this,
observe that the other orientations in Figure 3 can be
rotated to satisfy this.

We now show how to implement each step in the gen-
eral situation. The first two phases when c and c′ move
up the first time need some extra care, and we discuss
them later. The general situation is that we have an
empty grid position at the front of a line ` of cubes.
Suppose that X is the cube that just vacated the empty
position, Y is the first cube of line `, and Z is the cube
after Y . Then Z is part of ` unless the string turns in
Y . After appropriately rotating our frame of reference,
the configuration of X and Y is as shown in Figure 10.

Y

X

Y

X

Figure 10: The two proper configurations of cubes X
and Y before a step. The dotted position is empty.

For the rest of our argument, we will assume this
configuration and speak of “above”, “in front”, etc. We
will implement steps in such a way as to ensure that
X is in one of two orientations, as shown in Figure 10.
We call these proper configurations. In particular, note
that if X moved upward via a slide, then we have the
first proper configuration.

Because the string enters the middle of a slit of cube
Y , there are two possibilities for Y—the string enters
a vertical slit or a horizontal slit—see Figure 11. We
consider each of them.

Y

X

Y

X

Figure 11: The slit in Y may be vertical (left) or hori-
zontal (right).

Case 1. The string enters Y on a vertical slit. Cube
Z can lie in one of three possible positions: (a) in line
`; (b) behind Y ; (c) in front of Y . See Figure 12. In all
cases, we slide the cube(s) of line ` along by one position,
which moves Y into the empty position. Observe that
the resulting configuration is proper in all cases.
Case 2. The string enters Y on a horizontal slit. The
next cube, Z, can lie in one of three possible positions
as shown in Figure 13. We consider these in turn.
(a) Z lies in line `. Rotate cube Y around the axis of
line `. This yields Case 1(a).

(b) Z lies below Y . As shown in Figure 14, rotate cube
Y into the empty position maintaining contact with X
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Z

Figure 12: Positions for Z in Cases 1(a) and (b).

Y

X

(a) (c)(b)

Y

Y
Z Z

Z

X

X

Figure 13: Positions for Z in Case 2.

Z

X

Y

Z

X

Y

Z

X

Y
Z

X

Y

Figure 14: Handling Case 2(b) by rotating Y . Empty
space is lightly shaded. Observe that instead of mak-
ing room for the rotation by pushing the lower cubes
downward, we could push the upper ones upward.

and Z. In order to do this, we pull two columns of cubes
downward. Observe that the resulting configuration is
proper.

(c) Z lies above Y . This “U-turn” is the trickiest case.
We may find it necessary to do two steps at once. Note
that we cannot have two U-turns in a row.

Rotate cube Y into the empty position as in the previ-
ous case (see Figure 15(a)). The resulting configuration
is not proper. The bottom of cube Z may have a side-
to-side slit or a front-to-back slit. In the first case (see
Figure 15(b)), we slide Z (and any cubes in its line)
downward, observing that the resulting configuration is
proper. In the second case (see Figure 15(c)), the next
cube Z ′ may lie above Z or to the right of Z, but it
cannot lie to the left of Z because X is already there. If
Z ′ lies above then rotate cube Z so it has a side-to-side
slit, which we just saw how to handle. Finally, if Z ′ lies
to the right of Z then rotate Z into the empty position.
Observe that the resulting configuration is proper.

There are two issues outstanding. One is the orienta-
tion of c and c′ in the initial phases. We rotate them into
the orientations shown in Figure 16. In the first phase
c′ moves up and in the second phase c moves up. At the
beginning of each phase we have a proper configuration.

The other issue is that during odd-numbered phases, c

(a) (c)(b)

Y

ZX ZX

Y

Z’
ZX

Y

Figure 15: Handling Case 2(c) by rotating Y (a) and
then either moving Z down (b) or rotating it (c).

(a) (b)

c ć c ć

Figure 16: The initial orientations of c and c′: (a) if the
string turns in c′; (b) if the string goes straight through
c′.

and c′ will only be in edge-to-edge contact, which poses
some difficulties for sliding an axis-parallel “column” of
cubes to accommodate rotations. During phase 1 if we
want to slide a non-vertical column that contains c, we
simply slide c′ as well, thus maintaining the edge-to-
edge contact. The other difficulty, which may arise in
any odd-numbered phase, is sliding the vertical column
that contains c′ upward. We note that in all cases of
rotations we have the freedom to avoid sliding one par-
ticular column.

Our method uses O(nb) steps in total, and requires
the string to stretch by a small constant factor. �

5 Straightening a Chain with Minimum Moves

The methods in the previous sections used a quadratic
number of moves to straighten a chain of cubes. One
would hope that a linear number of moves would suffice,
although we have not been able to prove this, nor to find
a lower bound larger than b, the number of bends in the
chain. In this section we consider configurations where
b moves or O(b) moves suffice.

The only way to straighten a chain with b moves is to
use one pivot per bend. The pivot can happen on either
face of the cube where the bend occurs—for example,
in Figure 6(bottom) the pivot could instead be done be-
tween cube B and its right neighbour. Except for this
choice, the straight sections of the chain act as rigid
fixed-length segments. There is relevant work by Arkin
et al. [4] on straightening a chain of line segments by
straightening one joint at a time. They showed that the
decision problem is weakly NP-hard even for a 2D rec-
tilinear chain. This does not carry over to our situation
because weak NP-hardness is incompatible with repre-
senting segments by unit cubes. Is it NP-hard to decide
if a chain of cubes can be straightened in b moves?

Arkin et al. also considered the special case where
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joints must be opened in order along the chain. It is
easy to test if this works because the motion of the
chain is completely determined. Similarly, for a chain of
cubes we can test in polynomial time if the bends can
be straightened in order along the chain via pivots.

We can make the same test for Kibble chains. In this
case not every bend can be straightened with one pivot.
Consider a bend in a Kibble chain, and change the frame
of reference so that the bend is an L-shape as in the
figure below. There are six possible orientations of the
slits in the central cube: two of them cannot occur in
this L-shaped bend; the two full-slit orientations shown
in Figure 17 are impossible to straighten with one pivot;
and the remaining two orientations, and the pivots that
straighten them, are shown in Figure 18.

Figure 17: These full-slit orientations cannot be
straightened with one pivot.

Figure 18: These two orientations of a bend in a Kibble
chain can be straightened with one pivot each.

By straightening bends in order along the chain, we
can prove that some chains with monotonicity proper-
ties can be straightened (details in Appendix):

Lemma 3 Any 2D or 3D Kibble chain that is mono-
tone in all but one of the axis directions can be straight-
ened with b + f pivots, where b is the number of bends
and f is the number of full-slit bends. In the case of
a 2D chain with full-slit bends, the height must expand
from 1 to

√
2 in the third dimension.
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Appendix

Figure 19: To straighten the chain in Figure 7, rotate
the bottom two cubes around the horizontal (side-to-
side) axis, and then slide (or pivot) the right-hand cube
to the bottom.

Proof. [of Lemma 3] Suppose that the chain is monotone in
the x-direction and, in the case of a 3D chain, also monotone
in the y-direction. Direct the chain so that a sequence of
cubes in a line increases in the x (and y) directions. We will
straighten bends one at a time in order along the chain. In
the general step, let ` be the initial straight portion of the
chain (up to the first bend at block b) and let R be the rest
of the chain. Ignoring slits for the moment, observe that if
we straighten bends one at a time by keeping R fixed and
moving `, then R always lies in certain quadrants/octants
relative to placing the origin at block b. In 2D, R will lie in
the two quadrants where x is positive. In 3D, R will lie in
the two octants where x and y are positive.

Bends such as those in Figure 18 can be straightened with
one pivot. To deal with a full-slit bend we first rotate the
cubes of ` around the axis of `. See Figure 19 for an example
(where ` is horizontal). Note that this motion is actually a
pivot (by changing our frame of reference). Observe that this
can be done without entering the quadrants/octants that R
lies in. This converts the full-slit bend to a standard one,
which requires one pivot. �
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Folding Polyominoes into (Poly)Cubes∗

Oswin Aichholzer† Michael Biro‡ Erik Demaine§ Martin Demaine§ David Eppstein¶
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Abstract

We study the problem of folding a given polyomino S
into a polycube C under different folding models, allow-
ing faces of C to be covered multiple times.

1 Introduction

When can a polyomino S be folded into a polycube C?
This problem has been considered by Abel et al. [1] and
Aloupis et al. [2], but with the restriction that there
must be a one-to-one mapping between the unit squares
of S and the faces of C. We allow polycube faces to be
covered multiple times, only requiring C to be covered
by S. We show that different sets of allowed folding an-
gles give distinct variations from each other. We charac-
terize polyominoes that can fold to a single cube, count
foldings of polyominoes of different orders into cubes,
and investigate the complexity of finding foldings into
higher-order polycubes.

2 Notation

A polyomino S is a 2D polygon formed by a union of
|S| = n unit squares on the square lattice connected
edge-to-edge. Not all edge-to-edge connections of the n
unit squares must be used for the polyomino, that is we
allow “cuts” on the lattice. A polyomino is a tree shape
if the dual graph of its unit squares is a tree. A polycube
C is a connected 3D polyhedron formed by a union of
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unit cubes on the cubic lattice connected face-to-face. If
C is a rectangular parallelipiped, we refer to its size by
its exterior dimensions, e.g., a 2×2×1-polycube.

We study the problem of folding a given S into a
given C, allowing axis-aligned +90◦ and +180◦ moun-
tain folds, −90◦ and −180◦ valley folds, folds of any
degree, diagonal folds through opposite corners of a
square, and half-grid folds that bisect a unit square in
an axis-parallel fashion.

A face of S is an interior face of C if it is not flat
folded on any of the outer faces of C; see Fig. 3(a) and
(b) for examples. A folding model F specifies a subset
of F = {grid: +90◦,−90◦, +180◦, −180◦, any◦; interior
faces; diagonal; half-grid} as allowable folds.

3 Folding hierarchy

We say that model Fx is stronger than Fy (Fx ≥ Fy)
if for all polyomino-polycube pairs {S,C} such that S
folds into C in Fy, S also folds into C in Fx. If there
also exists a pair {S′,C ′} such that S′ folds into C ′ in
Fx, but not in Fy, then Fx is strictly stronger than
Fy (Fx > Fy). The relation ‘≥’ satisfies the properties
of reflexivity, transitivity and antisymmetry, therefore
it defines a partial order on the set of folding models.
Fig. 1 shows the resulting hierarchy of the folding mod-
els that consist of combinations of the following folds:
{grid: +90◦,−90◦, +180◦, −180◦, any◦; interior faces}.

Integrating diagonal and half-grid folds (which are
omitted from this section) can result in stronger mod-
els: a 1×7 polyomino can be folded into a unit cube
C in model {grid: ± 90◦/180◦; diagonal}, but not
in {grid: any◦; interior} (the strongest model from
Fig. 1); the example from Fig. 4(b)–(c) shows that
Fall = {grid: any◦; interior faces; diagonal; half-grid}
is strictly stronger than F = {grid: any◦; interior faces;
diagonal}. In addition, Lemma 3 still holds for F =
{grid: ± 90◦/180◦; interior faces; diagonal; half-grid}.

The following establishes the relationships between
models presented in Fig. 1.

Theorem 1 The folding models consisting of combina-
tions of the following folds {+90◦, −90◦, +180◦, −180◦,
arbitrary degree folds, interior folds} have the mutual re-
lations presented in Fig. 1. In particular, these mutual
relations hold for polyominoes without holes.
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Figure 1: Hierarchy of fold operations. A black arrow from
Fx to Fy indicates that Fy > Fx. Blue and green arrows
indicate incomparable models.

(a) (b)

(c)

(d)

Figure 2: Examples for Thm. 1, where C is (a) a unit cube,
(b) a 2×1×1 polycube, (c) a 3×3×2 polycube with a 1-cube
hole centered in a 3×3 face, and (d) a 5-cube cross.

Proof. All cases can be shown using the polyomino-
polycube pairs from Fig. 2. They fold with: (a)
+90◦/180◦ folds, (b) +90◦ and interior faces (see
Lemma 3), (c) ±90◦folds, (d) +90◦, 180◦ and interior
faces.

Ex. (a) shows relations 2, 4, 7, 12, 15, 19, 20, 23.
Ex. (b) shows relations 3, 6, 9, 10, 13, 16, 21, 22.
Ex. (c) shows relations 1, 5, 8, 11, 14, 17, 18, 24.
Ex. (d) shows relation 25.
We will detail as an example the proof for relation

25; the others are left to the reader. The claim is
that F9 = {grid: any◦; interior faces} is strictly stronger
than F8 = {grid: ±90◦/180◦; interior faces}. Any poly-
omino S that folds into polycube C in F8 also folds into
C in F9. To prove a strict relation, we are left to show
that there exists some polyomino S′ that folds into some
polycube C ′ in F9, but that does not fold into C ′ in F8.
Let C ′ consist of five cubes forming a cross, and let S′

be as in Fig. 2(d). Assume that S′ can be folded into C ′

in folding model F8. |S′| = 24, while C ′ has 22 square
faces on its surface. Therefore, 22 out of the 24 squares

(a) (b) (c)

Figure 3: (a)/(b) Examples for interior faces shown in green.
They connect to the red cube edges. (c) Shape S from the
proof of Lemma 2.

(a) (b) (c)

Figure 4: (a) Shape S needs interior faces to be folded into
a 2×1×1-cube. (b) Shape S does not fold to a unit cube C,
if we allow ±90◦/180◦ and diagonal folds. However, if we
allow half-grid folds, S does fold into C, the mountain (red)
and valley folds (blue) are shown in (c).

of S′ will be the faces of C ′ when folded. Consider the
12×1 sub-polyomino of S′. When folded, it has to form
the “walls” of the cross C ′, otherwise this strip can form
not more than eight faces of the cross (looping around
one of the 3×1×1 sub-polycubes). It is straightforward
to see now, that in F8 the two yellow squares prevent
S′ from folding into C ′. While in F9 the two yellow
squares can form interior faces with a 60◦ interior fold.
Therefore, F8 < F9. �

Conjecture 1 Theorem 1 holds for tree shapes.

Lemma 2 There exist tree shapes S that need both
mountain and valley folds to cover a unit cube.

Proof. The shape S from Fig. 3(c) does not fold into a
unit cube C with only valley folds: the four unit squares
in the left column (gray) fold to a ring of size four, and
the two flaps can only cover one of the two remaining
cube faces. But with both mountain and valley folds S
can be folded into C, by using a 180◦ fold between the
first column and the longer flap. �

Lemma 3 Folding the tree shape S from Fig. 2(b) into
a 2× 1× 1-cube C with F = {grid: ±90◦/180◦; interior
faces} requires interior faces. (Any of the faces A, 8 or
10 from Fig. 4(a) can be the interior face.)

Proof. We label the faces of S as shown in Fig. 4(a).
The case analysis below shows that a folding without
interior faces does not exist:

If A covers one of the 1×1 faces of C, face 1 or 2 is
needed for the opposite 1×1 face. By symmetry suppose
face 1 covers that side. Thus, 3 needs to be folded on top
of A. Face 4 folds either on 5 or A. So, we doubled two
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faces. But as |S|= 11 and C has 10 faces, the remaining
faces are not enough.

If 3, A, and 4 all cover parts of 1×2 faces of C, then
the row of 5, 3, A, 4, 6 maps to only four 1×2 faces with
at least one overlap. But then the 1× 1 face adjacent
to A cannot be covered by 7, 8, 9, 10, 1 or 2 without
doubling on 3 or 4—again more than one overlap.

If A covers part of a 1×2 face of C and one of 3 or 4
(without loss of generality 3) covers the adjacent 1× 1
face, then the only way to cover the two squares that are
adjacent to A in the polycube but not in the polyomino
is to double 4 with A and wrap column 4–9–10–2 around
the polycube; but then 6 must also be doubled, again
leading to more than one overlapping pair. �

4 Polyominoes that fold into a cube

In this section we characterize all polyominoes that can
be folded into a unit cube and all tree shaped polyomi-
noes that are a subset of a 2×n or 3×n strip that can
be folded into a unit cube using arbitrary grid folds.

Theorem 4 Consider a polyomino S of size |S| = n
and a unit cube C under a folding model F = {grid:
any◦; diagonal; half-grid}, such that each face of C has
to be covered by a full unit square of S. Then n ≥ 10
is the best possible universal bound, i.e., there is a poly-
omino of size n = 9 that cannot be folded into C, while
all polyominoes with n≥ 10 can be folded.

(k)

X

X

(g)

X

(a) (b) (c)

O

(d)

(h) (i)

(j)

(e) (f)

Figure 5: Proof details for Theorem 4. Unit squares marked
with ”X” can be located at an arbitrary height. For the two
adjacent corner reductions in the left of (f), fold away the
upper shaded corner before folding away the lower one.

Proof. We consider a bounding box of S of size X×Y,
with X ≤ Y . The unit squares are arranged in columns
and rows, indexed 1, . . . ,X and 1, . . . ,Y , with ni unit
squares S in column i, and mj unit squares in row j.

For the lower bound see Fig. 4(b). Note that if we
allow half-grid folds without requiring faces of C to be
covered by full unit squares of S, we can turn this shape
S into a unit cube; see Fig. 4(c).

For the upper bound n ≥ 10, we start by identifying
several target polyominoes shown in Fig. 5(a)–(c). Each
can be folded into a cube using only grid folds:
(a) A 1+4+1 polyomino, composed of one contiguous

column of four unit square, with one more unit
square on either side, at an arbitrary height.

(b) A 2–2–2 polyomino, composed of three (vertical)
pairs attached in the specific manner shown.

(c) A 2–3+1 polyomino, composed of a (vertical) pair
and triple attached in the specific manner shown,
with one more unit square at an arbitrary height.

See Fig. 5(d)–(g) for the following. If ni is the maxi-
mum number of unit squares in any column (say, in i),
we can apply a connectivity reduction (d) by using (hor-
izontal) half-grid folds to convert S into a polyomino S′

in which these ni unit squares form a contiguous set,
while leaving at least one unit square in each previously
occupied column. A number reduction (e) lets us fold
away extra unit squares for n > 10. Corner reductions
(f) fold away unneccessary unit squares (or half-squares)
in target shapes by using diagonal folds when turning
them into a unit cube. Finally, width and height reduc-
tions (g) fold over whole columns or rows of S onto each
other, producing a connected polyomino with a smaller
total number of columns.

Now consider a case distinction over X; see Fig. 5(h)–
Fig. 6(t). For X = 1, the claim is obvious, as we can
reduce S to a 1+4+1 target; see Fig. 5(h). For X = 2,
note that Y ≥ 5 and assume that n1 ≥ n2. If n1 ≥ 8,
a width reduction yields the case X = 1, so assume
n1 ≤ 7, and therefore n2 ≥ 3. By a number reduction,
we can assume n2 ≤ 5. If S is a 2×5 polyomino, we
can make use of a 1+4+1 polyomino with corner reduc-
tions; see Fig. 5(i). If n1 > n2, we have n1 ≥ 6. Be-
cause S is connected, any two units squares in column 1
must be connected via column 2, requiring at least three
unit squares; because of n2 ≤ 5, we conclude that col-
umn 1 contains at most two connected components of
unit squares. Thus, at most one connectivity reduction
makes column 1 connected, with n′2 ∈ {n2− 1,n2} unit
squares in column 2. Possibly using height reduction, we
get a connected polyomino S′′ with vertical size six, six
unit squares in column 1, and n′′2 ∈{1,. . .,4} unit squares
in column 2. For n′′2 ∈ {1, . . . ,3}, there is a reduction to
target shape 1+4+1; see Fig. 5(j). For n′′2 = 4, a simi-
lar reduction exists; see Fig. 5(k). This leaves n1 = 5,
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(r)

(o)(m)(l)

(t)(s)

(p) (q)

Figure 6: Proof details for Theorem 4.

and thus n2 = 5, without S being a 2×5 polyomino. As
shown in Fig. 6(l), this maps to a 1+4+1 target shape,
by folding a unit square from column 2 that extends be-
yond the vertical range of the unit squares in column 1
over to column 0.

For X = 3 and n2 ≥ 4, we can use connectivity, height
and width reductions to obtain a new polyomino S′ that
has height four, a connected set of n′2 = 4 unit squares
in column 2 and 1 ≤ n′1 ≤ 4, as well as 1 ≤ n′3 ≤ 4 unit
squares in columns 1 and 3. This easily converts to
a 1+4+1 shape, possibly with corner reductions; see
Fig. 6(m). Therefore, assume n2 ≤ 3 and (w.l.o.g.)
n1 ≥ n3, implying n1 ≥ 4. If n1 ≥ 5 and column 2 is
connected, then S contains a 2–3+1 target shape, see
Fig. 6(o); if column 2 is disconnected, we can use a ver-
tical fold to flip one unit square from column 3 to col-
umn 0, obtaining a 1+4+1 target shape, see Fig. 6(p).
As a consequence, we are left with n1 = 4, 2 ≤ n2 ≤ 3,
3 ≤ n3 ≤ 4, n2 + n3 = 6, possibly after folding away an
extra unit square in column 3 in case of n2 = 3,n3 = 4.
If n2 = 2, the unit squares in columns 1 and 3 must be
connected. For this it is straightforward to check that
we can convert S into a 2–2–2 target polyomino; see
Fig. 6(q). Therefore, consider n2 = 3, n3 = 3. This im-
plies that column 1 contains at most two connected sets
of unit squares. If there are two, then the unit squares in
column 2 must be connected, implying that we can con-
vert S into a 2–3+1 target shape; see Fig. 6(r). Thus,
the four unit squares in column 1 must be connected.
If the three unit squares in column 1 are connected, we
get a 2–3+1 target shape; see Fig. 6(r). If the unit
squares in column 2 are disconnected, but connected by
the three unit squares in column 3, we convert this to
a 2–2–2 target shape; see Fig. 6(s). This leaves the sce-
nario in which there is a single unit square in column 1
whose removal disconnects the shape; for this we can
flip one unit square from column 3 to column 0 in order

Figure 7: A vertical edge in a subset of a 2×n strip with
possible adjacent vertices for subtrees.

(a) (b) (c) (d) (e)

Figure 8: (a) A shape S that folds into a unit cube. (b)–(e)
Shapes S, only (d) folds into a unit cube.

Figure 9: Infinite families that cannot fold into a unit cube.

to create a 1+4+1 target shape; see Fig. 6(t).
For X ≥ 4, we proceed along similar lines. If there is

a row or column that contains four unit squares, we can
create a 1+4+1; otherwise, a row or column with three
unit squares allows generating a 2–3+1. If there is no
such row or column, we immediately get a 2–2–2. �

Theorem 5 Given a tree shape S, a unit cube C and
F = {grid: any◦}.

(a) If S is a subset of a 2×n strip, then only the infinite
families defined by Fig. 9 cannot fold into C.

(b) If S is a subset of a 3×n strip, then only the infinite
families defined by Fig. 10 cannot fold into C.

Proof. For the subset of a 2×n strip consider one ver-
tical edge, as shown in Fig. 7, and the possible subtrees
attached at A, B, C and D. One such vertical edge has
to exist, otherwise the strip is a 1×n strip and never
folds to a cube. We consider the length of subtrees at-
tached at A, B, C and D when folded to the same row
as this “docking” unit square to the vertical edge. With
slight abuse of notation we refer to these lengths by A,
B, C and D again.

The first observation is: If (A≥ 2 and B ≥ 2) or (C ≥
2 and D ≥ 2), S folds to a cube; see Fig. 8(a). Not
included in this categorization are the 4 shapes shown
in Fig. 8(b)–(e). Of those only (d) folds into a cube.

Thus, more precisely, we obtain a cube for:

{(A≥ 2 or D ≥ 3) and (B ≥ 2 or C ≥ 3)} or
{(A≥ 3 or D ≥ 2) and (B ≥ 3 or C ≥ 2)} or
{(A≥ 2 and C ≥ 3) or (A≥ 3 and C ≥ 2)} or
{(B ≥ 2 and D ≥ 3) or (B ≥ 3 and D ≥ 2)} or
{(A≥ 1 and C ≥ 1 and B ≥ 2 and D ≥ 2)} or
{(A≥ 2 and C ≥ 2 and B ≥ 1 and D ≥ 1)} .

For the subset of a 3×n strip: If there are vertical
edges adjacent to a 1×n strip to two different sides
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n free dual foldable and and n
poly- trees with ±180◦ dia- o

ominoes ±90◦ gonal t
2 1 1
3 2 2
4 5 5
5 12 15
6 35 54 11 0 0 43
7 108 212 90 24 39 59
8 369 908 571 175 126 36
9 1285 4011 3071 697 233 10

10 4655 18260 15645 2230 385 0
11 17073 84320 77029 6673 618 0
12 63600 394462 374066 19337 1059 0
13 238591 1860872 1803568 55477 1827 0
14 901971 8843896 8682390 158208 3298 0

Table 1: Different ways of folding small polyominoes into a
cube.

(above and below), this folds to a cube. Consequently, if
we have height three, a long 1×n strip cannot be located
in the center row. W.l.o.g. let the 1×n strip be located
in the lowest row. As we have height three, there is at
least a height two part which is a subset of the red part
in Fig. 10. If there exists another vertical edge of length
at least one that is only adjacent to the 1×n strip (but
not directly to the height two part) we can fold over the
height two part and obtain a case from above which can
easily be folded to a unit cube. Consequently, only a
single vertical subset of length two can be attached, as
shown in red in Fig. 10. �

4.1 Enumeration of cube-foldable polyominoes

In this section we present results on folding polyominoes
of constant size—consisting of up to 14 unit squares—
into a cube. These results have been obtained by ex-
haustive computer search. For polyominoes whose dual
graph contains cycles, we considered all possible dual
trees. Thus, we first generated all such dual trees for
polyominoes of size up to 14. The third column of Ta-
ble 1 shows their number, compared to the number of
different free polyominoes, given in the second column.
In both cases, elements which can be transformed into
each other by translation, rotation and/or reflection are
counted only once. While the number of different free
polyominoes is currently known for shapes of size up to
28 (http://oeis.org/A000105), the number of differ-
ent dual trees was known only for up to 10 elements,
see http://oeis.org/A056841.

Based on the generated dual trees we checked each of

Figure 10: Infinite families that cannot fold into a unit cube,
with at least a height 2 red subset (others are optional).

Figure 11: Polyominoes of size 6 that cannot be folded to a
cube (for any dual tree).

them whether it can be folded into a unit cube. We did
this in three different steps. First, only 90◦ folds have
been allowed. Column 4 of Table 1 shows how many
(dual trees of) polyominoes can be folded to a cube this
way. It is interesting to observe that while for n = 6
only 11 polyominoes can be folded to a cube, for n = 14
it already works for over 98% of all shapes.

In the second step we tried ±90◦ and ±180◦ folds for
the remaining dual trees. Table 1 gives in column 5
how many additional cube foldings can be obtained this
way. It is interesting to note, that never more than two
±180◦ folds were needed, if the shape was foldable this
way at all. For n = 11 and n = 12 there are each only
one example which needs two ±180◦ folds, and no such
examples for n ≥ 13 exist, i.e., in that case all foldable
examples can be folded with just one ±180◦ fold.

In the last step we allowed for the remaining dual
trees also diagonal folds. Column 6 of Table 1 shows
how many additional dual trees can be folded in this
case, and the last column gives the number of remaining
(non-foldable) dual trees. The most interesting result
here is that for n≥ 10 all polyominoes, regardless which
dual tree we select for them, can be folded this way.
This partially affirms Theorem 4: here we do not allow
half-grid folds, but covering a cube face with triangles
from diagonal folds. Moreover, all such foldings need
at most one such diagonal fold, with the exception of
the 7×1 strip, which is the only example that needs two
diagonal folds.

Figs. 11 and 12 show all polyominoes of size n ≥ 6
for which dual trees exist, such that they cannot be

n = 7

n = 8 n = 9

Figure 12: Polyominoes of size 7 to 9 that can be cut into
a tree shape that cannot be folded to a cube.
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Figure 13: Puzzle: which cuttings of a 3×3 square fold to
a cube? (For solution see the full version of the paper.)

folded to the unit cube using 90◦, 180◦, and diagonal
folds. There are 24 such polyominoes with a total of
43 different dual trees for n = 6, 12 polyominoes with
59 dual trees for n = 7, 3 polyominoes with 36 dual
trees for n = 8, and one polyomino with 10 dual trees
for n = 9. Note, however, that for many of them there
are cuts (i.e., dual trees) such that they can be folded
to the cube. For example, the 3×3 square has 18 dual
trees that can fold to a cube (Fig. 13).

5 Dynamic program for trees

Theorem 6 Let S be a tree shape, C be a polycube with
O(1) cubes, no four squares meeting at an edge, and
F = {grid :±90◦}. Then it is possible in linear time to
determine whether S can fold to C in folding model F .

Proof. (sketch) We choose an arbitrary root of S; for
each square s of S define the subtree of s to be the
tree shape consisting of all squares whose shortest path
in S to the root passes through s. For a square s of S,
define a placement of s to be an identification of s with
a surface square of C together with the subset of the
squares of C covered by squares in the subtree of s. We
use a dynamic program that computes, for each square
s of S, and each placement of s, whether there is a
folding of the subtree of s that places s in the correct
position and correctly covers the specified subset. Each
square has O(1) placements, and we can test whether a
placement has a valid folding in constant time given the
same information for the children of s. Therefore, the
algorithm takes linear time. �

We have been unable to extend this result to fold-
ing models that allow 180◦ folds, nor to folds with in-
terior faces, nor to polycubes for which four or more
squares meet at an edge. The difficulty is that the dy-
namic program constructs a mapping from the poly-
omino to the polycube surface (topologically, an im-
mersion) but what we actually want to construct is a

three-dimensional embedding of the polyomino without
self-intersections, and in general testing whether an im-
mersion can be lifted to a three-dimensional embedding
is NP-complete [3]. For 90◦ folds, a three-dimensional
lifting always exists, as can be seen by induction on the
number of squares in the tree shape: given a folding of
all but one square of the tree shape, there can be noth-
ing blocking the addition of the one remaining square to
its neighbor in the tree shape. However, if a pentomino
formed by a single row of five squares is given +180◦
folds at the two edges incident to its central square,
the result cannot be embedded into three dimensional
space: one of the two-square flaps will be blocked by
the fold from the other flap.

It is tempting to attempt to extend our dynamic
program to a fixed-parameter algorithm for non-trees
(parameterized by feedback vertex number in the dual
graph of the polyomino), by finding an approximate
minimum feedback vertex set, trying all placements of
the squares in this set, and using dynamic programming
on the remaining tree components of the graph. How-
ever, the problem of parts of the fold blocking other
parts of the fold becomes even more severe in this case,
even for 90◦ folds. Additionally, we must avoid knots
and twists in the three-dimensional embedding. These
issues make it difficult to extend the dynamic program
to the non-tree case.

6 Conclusion

Various open problems remain. We gave an example
of a tree shape S that does fold into a polycube C for
F = {grid: any◦; interior faces}, but not in weaker mod-
els, in particular, not without interior faces. C consists
of 5 unit cubes; is it minimal? Moreover, we charac-
terized tree shapes that fold into a unit cube in the
F = {grid: any◦} model—can we characterize polyomi-
noes with holes (possibly of area zero) that fold into a
unit cube? If a tree shape folds into a unit cube, can it
be folded with rigid faces (continuous blooming)?
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Abstract

In this paper, we consider the problem of touring a se-
quence of line segments in presence of polygonal do-
main fences. In this problem there is a sequence S =
(s = S0, . . . , Sk, Sk+1 = t) in which s and t are respec-
tively start and target points and S1, . . . , Sk are line
segments in the plane. Also, we are given a sequence
F = (F0, . . . , Fk) of planar polygonal domains called
fences such that Si ∪ Si+1 ⊂ Fi. The goal is to obtain
a shortest path from s to t which visits in order each
of the segments in S in such a way that the portion
of the path from Si to Si+1 lies in Fi. In 2003, Dror
et. al. proposed a polynomial time algorithm for this
problem when the fences are simple polygons. Here, we
propose an efficient polynomial time algorithm for this
problem when the fences are polygonal domains (simple
polygons with some polygonal holes inside).

1 Introduction

Computing a shortest path between two points hav-
ing some desired properties is one of the classic and
well studied problems in computer science and compu-
tational geometry. In many applications, we need to
visit a sequence of certain regions while traversing from
s to t. We call this class of problems as visiting prob-
lems. In such visiting problems, a desired path may be
restricted to a fence (or fences) which means that the
path must completely lie inside a special region. Zoo-
Keeper [7], Safari [11] and Watchman Route [4] prob-
lems are famous examples of such visiting problems. In
Zoo-keeper and Safari problems we need to obtain a
shortest tour visiting a set of disjoint convex polygons
(called cages) inside a simple polygon P (the fence) each
of which shared an edge with the boundary of P . The
difference between these two problems is that in the first
one, the desired path cannot enter into the cages while
this restriction does not exist in the second one. In
watchman route problem (fixed source version) we have
a point inside a simple polygon P (the fence) and we
seek for a shortest tour inside P containing s such that
every point in P is visible from at least one point of the
tour.

∗Department of Mathematical Science, Sharif University of
Technology

Dror et. al. [5] in 2003 introduced a general ver-
sion of these visiting problems called touring polygons
problem (TPP). In this problem there is a sequence
P = (s = P0, . . . , Pk, Pk+1 = t) of polygons where s
and t are respectively start and target points and a se-
quence (F0, . . . , Fk) of simple polygonal fences where
Pi ∪ Pi+1 ⊂ Fi. The goal of this problem is to obtain a
shortest path from s to t which intersects the polygons
of P in order and its subpath from Pi to Pi+1 lies inside
Fi. They proved that TPP is NP-hard for intersecting
polygons and proposed a O(nk2 log n) time algorithm
for convex polygons. They also gave a O(kn log(n/k))
time algorithm for the cases where the polygons are con-
vex and pairwise disjoint and the fences are the whole
plane. Here, n is the total number of vertices of all
fences and polygons. In 2006, Arkin et al. [3] considered
the touring polygons problem in L1 metric for the cases
where polygons are pairwise disjoint segments and the
fences are the whole plane and proposed a O(k2) time
algorithm for this version.

For one decade the complexity of TPP for disjoint
non-convex polygons was unknown and during these
years several approximation algorithms have been pro-
posed for solving this version of the problem [6, 10].
Finally, Ahadi et al. [1] in 2013 proved that TPP is
NP-hard for disjoint polygons in any Lp norm.

Despite many investigations and results on various
kinds of visiting problems with simple polygon fences,
there are less results on visiting problems whose fences
are polygonal domains. In 2014, Ahadi et al. [2] gave a
polynomial time algorithm for touring polygonal objects
problem in which the fences are polygonal domains.
This problem is similar to TPP but in this problem a
desired path cannot enter into the polygons (this is like
the Zoo-Keeper problem in which the tour cannot enter
the cages).

In this paper, we present a polynomial time algorithm
for a version of the TPP called Touring Line Segments
Problem (TLSP) in which the polygons are line seg-
ments and the fences are polygonal domains. This is the
first polynomial time algorithm which considers TPP
when the fences are polygonal domains. Figure 1 shows
an example of TLSP. We show that this problem can
be solved in O(n3k) time where n is the number of ver-
tices of all fences and segments and k is the number
of segments. We use the well-known continuous Dijk-
stra paradigm [9, 8] to obtain a shortest path for our
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problem.

Figure 1: An example of TLSP where (s, S1, S2, S3, t)
is the sequence of segments and (PLN,F1, PLN,F2) is
the sequence of fences and PLN represents the whole
plane.

2 Preliminaries and Definitions

Let T = (S,F) be an instance of TLSP with segments
S = (s = S0, S1, . . . , Sk, Sk+1 = t) and fences F =
(F0, . . . , Fk) in the plane such that Si ∪ Si+1 ⊂ Fi.

Observation 1. Any optimal path is a polygonal
chain which bends only on some vertices of the fences,
endpoints of segments, intersection point of two con-
secutive segments or on some reflection points on the
interior of segments of S.

According to the above observation, when an optimal
path intersects the interior of a segment (not on the
sgment endpoints) according to its order, the optimal
path either passes or reflects on this segment. We de-
note by Ti(x) an instance of TLSP with (S0, . . . , Si, x)
and (F0, . . . , Fi) as its segments and fences, respectively.
The set of optimal paths of Ti(x) is denoted by Pi(x).
Let x ∈ Fi and p ∈ Pi(x) and v be a vertex of Fj or
an endpoint of Sj (j ≤ i). We call v an origin of x if v
is the last fence vertex or segment endpoint on p when
we traverse p from s to x. Thus, p must pass or reflect
on the remaining segments from Sj+1 to Si to reach x.
We say that v′ is a source of x if it is obtained by the
sequence of reflections of v on the supporting lines of
segments that p reflects from v to x in order. For exam-
ple, s is the origin of points x,x′,x′′ and x′′′ in Figure 2,
and s,s′,s′′ and s′′′ are respectively the corresponding
sources of the points x,x′,x′′ and x′′′. According to this
definition, the length of the portion of p from v to x
is equal to |v′x|. According this definition, the number
of distinct sources of all points in Fi can exponentially
grows. Figure 2 shows an example of such situations. In
this figure, if we consider S = (s), s is the only source of
the points in the plane. After adding S1 to S, the set of
sources of points in the plane becomes {s, s′} and after
adding S3, the sources are {s, s′, s′′, s′′′}. In this exam-
ple, each segment doubles the set of sources of all points
of the plane. We say that a point x ∈ Fi is straightly
reachable from Sj(1 ≤ j ≤ i) if it has an optimal path
with an origin in vertices of Fl or an endpoint of Sl

where l < j.

Figure 2: The number of sources can grow exponen-
tially: s,s′,s′′ and s′′′ are respectively the corresponding
sources of the points x,x′,x′′ and x′′′.

To find an optimal path for T , we use the continuous
Dijkstra paradigm [9, 8] (In Appendix 1, we briefly de-
scribe the continuous Dijkstra paradigm using our ter-
minology). Basically, we need some modifications on
this paradigm to enforce shortest paths to visit the seg-
ments in order from s to t. But, as we said before, the
number of sources of all points of the fences may grow
exponentially and we cannot consider them as the set
of initial sites in the continuous Dijkstra paradigm to
obtain a shortest path map for each fence from which
an optimal path is obtained. In next sections, we first
prove some properties about optimal paths and based
on these properties a modified version of the continuous
Dijkstra paradigm is proposed to solve TLSP in poly-
nomial time.

3 TLSP for Consecutively Disjoint Segments

In this section, we restrict ourselves to instances of
TLSP in which the segments of S are consecutively dis-
joint. Our algorithm can be extended to solve TLSP
for intersecting segments as described in Appendix 4
and we skip it because of the limited space here. Let
T = (S,F) be such an instance of the problem. If Si,
for 1 ≤ i ≤ k, is a single point, we can break this prob-
lem into two sub-problems one from s to Si and another
from Si to t. Therefore, we assume that s and t are the
only points in S. To obtain an optimal path for T , we
use the continuous Dijkstra paradigm to build a shortest
path map for each Fi (0 ≤ i ≤ k) namely SPMi such
that having the sequence SPM = (SPM0, . . . , SPMk)
we can obtain a solution for T . For simplicity, we imag-
ine k + 1 planes such that the ith-plane (0 ≤ i ≤ k)
contains only Si, Fi and Si+1, and construct SPMi in
this plane. To construct the shortest path maps we need
k + 1 wavefronts each of which propagates in one plane
and sweeps its fence. To identify the initial wavelets of
these wafefronts, we need some information about the
configuration of T . For this purpose, our algorithm con-
sists of three phases: pre-processing T , building SPM

108



CCCG 2015, Kingston, Ontario, August 10–12, 2015

and computing an optimal path.

3.1 The pre-processing phase

Before we describe the first phase, we need some defini-
tions. We inductively define the extensions of Sj in ith-
plane (0 < j ≤ i) as follows: For i = j, the extensions
of Sj is simply the two half-lines along S̄j starting from
its endpoints and going away from Sj where S̄j is the
supporting line of Sj . For i > j, let r be the intersection
of Si and an extension e of Sj in the (i−1)th-plane. For
any one of these intersection points, the half-line from
r along e and its reflection with respect to S̄i are ex-
tensions of Sj in the ith-plane. In fact, each extension
of Sj in the (i − 1)th-plane which intersects Si, gener-
ates two extensions of Sj in the ith-plane (If Si does not
intersect any extension of Sj in the (i − 1)th-plane, we
have no extension of Sj in the ith-plane)(See Figure 3).
According to this definition, Si and extensions of Sj in
the ith-plane induces a subdivision which is called the
jth-subdivision of the ith-plane.

Lets assign α and β marks arbitrary to the sides of
the supporting line of each segment Sj ∈ {S1, . . . , Sk}.
Based on this initial marking assignment, we mark all
regions of the jth-subdivision of the ith-plane (i ≥ j) as
follows: For i = j, we mark the half-plane lies on α-side
of Sj as α-region and the other as β-region. For i > j,
each region R of the jth-subdivision of the ith-plane con-
tains exactly one sub-segment of Si on its boundary. We
assign to R the mark of the region of the jth-subdivision
of the (i − 1)th-plane which contains this sub-segment.
Note that according to our definition, this sub-segment
must entirely lie in one region of the jth-subdivision of
the (i− 1)th-plane (Figure 3).

Figure 3: Extensions of S1 in the 1th,2th and 3th-plane
are shown by dashed half-lines.

Let x be a point in the ith-plane. The jth-component
of x for 1 ≤ j ≤ i is defined to be the mark (α or
β) of that region of the jth-subdivision of the ith-plane
which contains x. According to Observation 1 and this
definition, it is simple to verify that if x is straightly
reachable from Sj (1 ≤ j ≤ i) in some path p ∈ Pi(x),

then, for all j ≤ l < i, the mark of the region of the jth-
subdivision of the lth-plane in which p traverses from
Sl to Sl+1 is equal to the jth-component of x. This
fact gives us an intuition about the optimal paths to x
that their origins are vertices of Fl ∪ Sl for some l < j.
These paths will reflect on or pass through segments
Sj , Sj+1, . . . , Si and their traversal (passing through or
reflecting on) from Sj to Si is according to the jth, j +
1th, . . . ,ith component of x.

Let M be an initial marking assignment for sides
of the supporting lines of segments {S1, . . . , Sk}. The
characteristic sequence of a point x ∈ ith-plane is de-
fined as a vector < x1, . . . , xi > in which its jth-term is
computed as follows (this has been described formally
in Algorithm 1 in Appendix 3. In this algorithm, pro-
cedure PChar(j,i,x) is used to find the jth-term of the
characteristic sequence of a point x ∈ ith-plane). The
last term xi is equal to the mark of that side of S̄i which
contains x. For j < i, the jth-term is recursively defined
to be either the jth-term of the characteristic sequence
of x in the (i − 1)th-plane or the jth-term of the char-
acteristic sequence of the reflection of x on S̄i in the
(i− 1)th-plane. The former case happens when x lies in
the α side of S̄i and the later is used otherwise.

Note that the jth-term of the characteristic sequence
of a point in the ith-plane (i > j) is not necessarily equal
to its jth-component. For example, the 1th-component
of x ∈ 3th-plane in Figure 3 is β while its first character-
istic sequence term is α. However this difference is due
to the initial marking assignment used in this example.

Assume that e is an extension of Sj in the (i − 1)th-
plane (j < i) which starts from point r on Si−1 and
intersects Si. We say that an initial marking assign-
ment M has passing property if for all such extensions,
r lies in β-side of Si. The following lemma implies that
there is always an initial marking assignment of S hav-
ing passing property.

Lemma 1. The starting point of all extensions of all
segments Sj ∈ {S1, . . . , Si−1} in the (i−1)th-plane that
intersect Si lie on one side of S̄i.

Proof. See Appendix 2.�
Lemma 1 implies that there is always an initial mark-

ing assignment of sides of segments {S1, . . . , Sk} having
passing property and shows how to obtain such an as-
signment. But, before describing a method for obtain-
ing such a marking assignment we describe how such
a marking is used in obtaining optimal paths. As said
before, identifying all jth-component of a point x ∈ ith-
plane (1 ≤ j ≤ i) are critical in obtaining an optimal
path to x. The following lemma shows how we can ob-
tain these data.

Lemma 2. Let M be an initial marking assignment
of segments which satisfies the passing property, and
x ∈ Fi is straightly reachable from Sj (j ≤ i). Then,
the jth-term of the characteristic sequence of this point
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for marking M is equal to its jth-component.

Proof. See Appendix 2.�
Now, we return to the concept of the initial mark-

ing assignment and propose a method for obtaining a
marking which has passing assignment. This method
has been formally described as procedure MarkSides(S)
in Algorithm 2 in Appendix 3.

Our marking algorithm iteratively marks both sides
of segments from S1 to Sk. According to the definition
of the passing property, the starting points of all exten-
sions of S1, . . . , Si−1 that intersect Si in the (i − 1)th-
plane lie in the β-side of S̄i. Also, from the definition of
the extensions in the (i − 1)th-plane, all these starting
points lie on Si−1. For S1, we do not have any preceding
segment and s = S0 is a point which can be considered
as a degenerate segment. Therefore, we mark the con-
taining half-plane of s as β-side of S̄1 and the other as
α-side. Then, each half-line extension of S0 that starts
from s and intersects S1 has its starting point in the
β-side of S1. Therefore, marking S1 this way supports
the passing property.

Now assume that we have marked sides of segments
S1, . . . , Si−1 in such a way that supports the passing
property. If Si−1 lies completely in one side of S̄i, the
two extensions of Si−1 (from its endpoints) as well as ex-
tensions of preceding segments that intersect Si−1 have
starting point on one side of S̄i. To support the passing
property, we mark this side as β-side and the other as α-
side. Otherwise (if Si−1 intersects S̄i), Si must lie com-
pletely in one side of ¯Si−1. This is due to our assumption
that segments are consecutively disjoint. Then, none of
the two extensions of Si−1 intersects Si. Therefore, the
extensions that intersect Si in the ith-plane are either
extensions in (i − 2)th-plane that intersect Si−1 or the
reflections of these extensions. Thinking inductively, we
have already marked the sides of S̄i−1 which supports
the passing property. This implies that all of the exten-
sions of the (i− 2)th-plane that intersect Si−1 continue
in α-side of S̄i−1 and their reflections continue in β-side.
Then, if Si lies in α-side of S̄i−1 it can be intersected by
extensions of the (i− 2)th-plane and if it lies in β-side,
it may be intersected by reflections of these extensions
on Si−1. For the first case, all extensions that intersect
Si have a starting point on Si−2. This fact helps us to
ignore Si−1 and mark sides of Si considering Si−2 as
its preceding segment. If we do this inductively, we will
finally reach a base case from which the marks of sides
of Si are obtained. In the other case where Si lies in β
side of Si−1, we first reflect Si on S̄i−1 and obtain the
marks for sides of this new segment namely S′i. Then,
the marks of the sides of Si will be the marks of the cor-
responding sides of S′i. It is important to note that the
extensions of the (i−1)th-plane diverse in both α and β
sides of S̄i−1. This forces that when S̄i intersects Si−1
it will be intersected by only extensions whose starting

points from Si−1 lie on one side of S̄i.
There is still one flaw in this inductive algorithm. We

assumed that consecutive segments do not intersect each
other. But, when we reflect Si on S̄i−1 and consider
Si−2 as the preceding segment of Si (ignoring Si−1), Si

may intersect Si−2. To solve this problem, we cut that
part of Si−2 which lies on the α-side of Si−1. Precisely,
in each iteration after marking sides of a segment Si we
cut and remove from Si−1 that part that lies in α-side
of Si (line 16 in Algorithm 2 in Appendix 3). This does
not affect our algorithm because non of the extensions
of the (i − 2)th-plane that have their starting point on
the α-side of ¯Si−1 intersect Si−1, and consequently, does
not affect the passing property of Si.

According to the above discussion, the pre-processing
phase of our algorithm consists of two steps. First,
marking the sides of S using procedure MarkSides and
second, computing the characteristic sequences of all
vertices of Fi and endpoints of Si+1 in the ith-plane
(1 ≤ i ≤ k). These information enables us to efficiently
construct the shortest path maps in the second phase of
our algorithm.

3.2 Building shortest path maps

In order to build the k+ 1 shortest path maps SPM =
(SPM0, . . . , SPMk), we need to perform in parallel k+1
instances of our modified version of the continuous Di-
jkstra algorithm inside fences F0, . . . , Fk in their corre-
sponding planes. The initial wavefront of each Fi prop-
agates from Si and sweeps Fi to build SPMi. For F0,
the initial wavefront is a complete circle with zero radius
around s. For i > 0, the initial wavefront of Fi is deter-
mined according to the wavelets intersect Si during the
wavelet propagation of the wavefront of Fi−1. Precisely,
when a wavelet ω in Fi−1 intersects an endpoint of Si,
a new wavelet centred at this endpoint and zero radius
starts to propagate in Fi. If ω intersects the interior
of Si, it can generate one or two wavelets in Fi accord-
ing to the information we obtained in the pre-processing
phase. In order to detect the wavelets which intersect
Si in Fi−1 in our implementation of the continuous Di-
jkstra paradigm, we consider Si as an obstacle (hole)
in Fi−1. So, we can use the standard event handling
of continuous Dijkstra paradigm [9, 8] to identify such
events. Let ω be a wavelet in Fi−1. When it touches
the interior of Si, it can generate two wavelets in Fi.
One, called passing wavelet, propagates in Fi along ω
and the other, called reflecting wavelet, is the reflection
of the passing wavelet with respect to S̄i. Let ω be a
wavelet in Fi−1 with center Cω which intersects Si = ab
at point I. Without lose of generality, assume that Cω

lies in the α-side of Si. Two cases may happen: First,
I is a point in the interior of ω and second, I is an end-
point of ω. In the first case, the passing wavelet of ω
is a wavelet with center Cω which propagates from I in
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the α-side of Si and is restricted to the angle âCωb in
Fi (See Figure 4).

Figure 4: ω generates a passing wavelet ω′ in Fi when
an interior point of ω intersects Si.

In the second case, the passing wavelet of ω is a
wavelet with center Cω which propagates from I in the
α-side of Si. This wavelet is restricted to the angle

âCωI if a lies on that side of CωI which contains ω, and

is restricted to ÎCωb, otherwise (Figure 5).

Figure 5: ω generates a passing wavelet ω′ in Fi when
an endpoint of ω intersects Si. In this case, another
wavelet (ω′′) from this intersection point is propagated
in Fi.

Note that the center of passing and reflecting wavelets
may lie outside Fi. According to the above discussion,
the initial wavelets of Fi are the wavelets propagate from
the endpoints of Si (these endpoints act like initial sites
in Fi whose weights are assigned by the wavefront of
Fi−1) and a set of passing or reflecting wavelets obtained
according to the pre-processing information. Moreover,
when a wavelet ω in Fi−1 generates a passing or reflect-
ing wavelet in Fi by intersecting Si in its endpoint (the
second case in the above discussion) we consider the in-
tersection point (I in Figure 5) as an initial site in Fi

whose weight is assigned by ω in Fi−1.

If we consider both passing and reflecting wavelets for
all wavelets that intersect Si in Fi−1 for all 1 ≤ i ≤ k+1,
the corresponding cells of passing (resp. reflecting)
wavelets in Fi represent the set of points x ∈ Fi for
which there is an optimal path in Pi(x) that passes
through (resp. reflects on) Si. Furthermore, the site
of each cell (center of the wavelet which sweeps this
cell) in Fi will be a source of its containing points and
for each x ∈ Fi we can recursively construct an opti-
mal path in the same way as what we do in obtaining

an optimal path between two points in a polygonal do-
main using continuous Dijkstra paradigm [9]. But, as we
said in Section 2, the number of sources and therefore
the number of cells can grow exponentially this way.
To overcome this problem, we filter the passing and
reflecting wavelets generated by the wavelets in Fi−1
according to the pre-processing information. For this
purpose, we assign a sequence SQ(ω) to each wavelet
ω in Fi (0 ≤ i ≤ k) as follows: The sequence of all
wavelets in Fi whose center is a vertex of Fi or an end-
point of Si is the empty sequence. If a wavelet ω in Fi−1
generates a wavelet ω′ in Fi (by passing or reflecting)
which propagates in α-side (resp. β-side) of Si, we have
SQ(ω′) = (SQ(ω), α) (resp. SQ(ω′) = (SQ(ω), β)).

Let Pi be the set of all vertices of Fi and endpoints
of Si+1 (1 ≤ i ≤ k) and ω be a wavelet in Fi−1 with
SQ(ω) = (w1, . . . , wl) which intersects the interior of
Si. The wavelet ω generates a wavelet in Fi only when
there exists a point x ∈ Pj (j ≥ i) with characteristic
sequence (x1, . . . , xi−1, xi, . . . , xj) where (w1, . . . , wl) =
(xi−l, . . . , xi−1). Then, if xi = α, ω generates a wavelet
(by passing or reflecting) in α-side of Si and if xi =
β, ω generates a wavelet in β-side of Si in Fi. This
filtering mechanism prevents the exponential growth of
the wavelets in our algorithm.

Lemma 3. The total size of the shortest path maps
SPM obtained according to the above propagation
rules is polynomial in terms of the number of vertices
of all fences and k.

Proof. The complexity of SPMi ∈ SPM is pro-
portional to the number of wavelets propagates in Fi.
Trivially, this is linear with respect to the number
of vertices in F0 for SPM0. The wavelets of SPMi

for i > 0 are generated due to either a vertex in
Fi or intersecting Si by a wavelet in SPMi−1. For
the first case, each vertex of Fi generates exactly one
wavelet. Wavelets of the second type have non-empty
sequences. For each wavelet with non-empty sequence
(w1, . . . , wl) in Fi, there must exist a vertex in Pj with
characteristic sequence (x1, . . . , xi−1, xi, . . . , xj) where
(w1, . . . , wl) = (xi−l+1, . . . , xi). Therefore, the number
of distinct wavelet sequences of length l is proportional
to the number of vertices in

⋃Pj . On the other hand, all
wavelets with sequence of length l in Fi have emerged in
a vertex of Fi−l. Therefore, |Pi−l|.|

⋃i
j=k Pj | is an upper

bound for the number of wavelets in Fi with sequence
of length l. Summing this for all 1 ≤ l ≤ i results the
lemma.�

Lemma 4. The weights assigned by the wavefront
in SPMi to each vertex v of Fi ∪ Si+1 is equal to the
length of all optimal paths for Ti(v).

Proof. We prove this lemma by induction on i. Ac-
cording to the standard continuous Dijkstra paradigm,
the theorem is true for vertices of F0∪S1. For i > 0, let
x be a vertex of Fi or an endpoint of Si+1. The vertex x
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either has an origin v in the vertices of Fj ∪Sj+1 where
j < i or all of its origins belong to Fi. The first case
means that x is straightly reachable from Sj+1. Ac-
cording to the induction hypothesis, the weight of v is
the optimal length from s to v. Also, by Lemma 2 and
the propagation rules, the wavelet with center v in Fj

generates wavelets in fences Fl(j < l ≤ i) according to
the characteristic sequence of x. This means that we
traverse along an optimal path from v to x which im-
plies the lemma for x. For the other case where in all
optimal paths the origin of x belongs to Fi, let v ∈ Fi

be the origin of x in an optimal path. If v is straightly
reachable from Si+1 then we have the optimal length to
v according to the first case and our version of continu-
ous Dijkstra paradigm computes the shortest path from
v to x. Otherwise, we can repeat this process induc-
tively until reaching an endpoint of Si+1 or a straightly
reachable vertex of Fi from Si+1. �

3.3 Obtaining an optimal path

As the final phase of our algorithm we find an optimal
path from s to t. This is a straightforward usage of
the data in SPM. For this purpose, we use procedure
OPT (i, x) (Described formally in Algorithm 3 in Ap-
pendix 3) which returns an optimal path for Ti(x) as a
list of points. Then, OPT (k, t) will be an optimal path
for T . In this procedure, if s = x, the optimal path
for T0(s) is trivially the single point s. If x is an end-
point of Si, an optimal path for Ti(x) is just an optimal
path for Ti−1(x) which is the optimal path computed by
OPT (i − 1, x). Otherwise, there are two cases for the
last segment of an optimal path to x in Ti(x): First, the
site c of the cell C in SPMi which contains x is a ver-
tex of Fi or an endpoint of Si. Second, this cell belongs
to a passing or reflecting wavelet ω. For the first case
the optimal path is (OPT (i, c), x) which means that the
last segment of the optimal path is cx. For the second
case, let v be an origin of x. We obtain a sub-path
from v to x by a list L of points according to SQ(ω).
Then, (OPT (i−|SQ(ω)|, v), L) is an optimal path from
s to x which means that the optimal path goes to v and
then, from v to x it acts (passes or reflects) according
to SQ(ω).

3.4 Complexity of the Algorithm

In the first phase of our algorithm we compute charac-
teristic sequences of all vertices of fences and endpoints
of segments in T . We use procedure MarkSides to prop-
erly mark the sides of each segment in S. The function
Mark in this procedure takes O(k) time. Therefore,
procedure MarkSides can be run in O(k2) time. Each
execution of procedure PChar takes O(k) and each char-
acteristic sequence have O(k) terms which means that
obtaining characteristic sequence of each point takes
O(k2) time. Therefore, the time complexity of the

first phase of our algorithm is O(k2n) where n is the
total number of all fences vertices and segments end-
points. In the second phase, as discussed in the proof
of Lemma 3, the total number of wavelets in all planes
is O(n2) and we should handle O(n2) events according
to [8]. However, in each event handling procedure, we
have to perform O(k) comparison for all O(n) points to
decide whether this wavelet must generate a passing or
reflecting wavelet in the next plane. Therefore, the com-
plexity of the second phase is O(n3k). The complexity
of the third phase depends on the number of bends and
intersection points on the obtained optimal path which
is O(n). We can store enough information in shortest
path maps to restore such an optimal path in linear time
in terms of the output path length (storing the site of
each cell and the corresponding sequence of its wavelet).
Summing all these costs implies that the complexity of
our algorithm is O(n3k).
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Appendix 1: An Overview on the continuous Dijkstra
paradigm

The Dijkstra paradigm is originally proposed to obtain a
shortest path between two points namely p and q in a polyg-
onal domain namely D [9, 8]. This is done by simulating the
propagation of a wavefront starting to propagate from p and
sweeping the entire polygonal domain. Precisely, If we define
the length of a shortest path between p and x in D as the
weight of x and denote it by w(x), the wavefront at distance
d is :

WF (d) := {x ∈ D|w(x) = d}

A wavefront consists of a set of wavelets each of which is
a circular arc whose center is p or some vertex of D. The
initial wavefront contains a single point p as its only wavelet
(a circle of radius zero centred at p). When a wavefront
propagates, its structure (the set of its wavelets) changes,
i.e., some wavelets may disappear, some may break into two
wavelets and new wavelets may appear. A wavelet is elimi-
nated from the structure of a wavefront when its two neigh-
bour wavelets collide on each other and a wavelet may break
into two wavelets when it collides the interior of an edge
of D. Also, if a wavefront collides a vertex v of D, a new
wavelet with center v appears and starts to propagate in the
region of D that v blocks the wavefront to sweep it.

When the wavefront propagates, the traces of these end-
points decompose the swept part of D into regions having
this property that all points of a region have combinatorially
equivalent shortest paths. Therefore, this wavefront propa-
gation induces a subdivision called shortest path map on D
(See Figure 6). The site of each cell of this subdivision is
the center of the wavelet that has swept it. If q belongs to
a cell with site r, then the last segment of a shortest path
from p to q is rq and the length of the shortest path from
p to q is w(r) + |rq|. We can replace q by r and use the
shortest path map to obtain the last segment of a shortest
path from p to r and repeat this procedure until a shortest
path from p to q is obtained.

We can use the continuous Dijkstra paradigm to solve a
more general shortest path problem in which instead of hav-
ing one initial site (p in the above discussion) we have mul-
tiple initial weighted sites namely {p1, . . . , pi} with weights
w(pj) (1 ≤ j ≤ i). Then, for a query point q in D we
seek a shortest path from q to an initial site pj such that
w(pj) + d(pj , q) is minimum where d(pj , q) is the length of
a shortest path from pj to q. This can be done by delay-
ing wavelet propagation of each site according to its weight.
Hershberger and Suri in [8] gave an implementation of the
continuous Dijkstra paradigm which handles such cases.

Figure 6: An example of a shortest path map

Appendix 2: Proofs

Lemma 1. The starting point of all extensions of all seg-
ments Sj ∈ {S1, . . . , Si−1} in the (i − 1)th-plane that inter-
sect Si lie on one side of S̄i.

Proof. Let e1 be an extension of Sl1 and e2 be an ex-
tension of Sl2 in the (i − 1)th-plane with starting points r1
and r2 respectively which intersect Si (1 ≤ l1, l2 < i). We
prove that both, r1 and r2 lie in one side of S̄i. According to
the fact that the definition of extensions is independent to
the fences, we assume that the fences are the whole plane.
It is simple to see that if x lies on an extension e in the
(i− 1)th-plane, there is always an optimal path p ∈ Pi−1(x)
for which e overlaps the last segment of p. For the sake of a
contradiction, assume that r1 and r2 lie on different sides of
Si. Then, e1 and e2 must intersect each other on a point like
x. Without loss of generality, we assume that e1 intersects
Si after x (Figure 7). Then, there will be two optimal paths
in Pi−1(x): one reaches x from r1 and the other from r2.
But, this implies that for each point x′ after Si on e1 in the
ith-plane there exist an optimal path with two last segments
r2x and xx′ which contradicts Observation 1. �

Figure 7: r1 and r2 must lie on one side of Si.

Lemma 2. Let M be an initial marking assignment of
segments which satisfies the passing property, and x ∈ Fi is
straightly reachable from Sj (j ≤ i). Then, the jth-term of
the characteristic sequence of this point for marking M is
equal to its jth-component.

Proof. Let x ∈ Fi be straightly reachable from Sj in some
optimal path p ∈ Pi(x). This means that x is straightly
reachable from all Sl(j ≤ l ≤ i). Trivially, all fences
Fj , . . . , Fi−1 dos not affect the optimal path p. Therefore,
we can consider this fences as the whole plane and ignore
them at all.

We can prove the lemma by induction on i− j. For i = j,
the lemma follows from the definition of the ith-component
and ith-term of the characteristic sequence. In both cases,
it is the mark of the half-plane of S̄i that contains x.

Now, suppose that the lemma holds for all 0 ≤ i− j < l.
To prove the lemma for i− j = l, we first assume that x lies
in α-side of S̄i. According to the definition, jth-component
of x is equal to the mark of the containing region of x in
jth-subdivision of the ith-plane. As shows in Figure 8, let R
be this region. The mark of this region in this subdivision
is equal to the mark of the containing region of segment ab
in jth-subdivision of the (i − 1)th-plane. While x lies in α-
side of S̄i and our initial marking assignment has passing
property, all extensions of Sj in this half-plane are exactly
the extensions of Sj in the (i − 1)th-plane that intersect Si
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and by considering x as a point in the i− 1th-plane, it is still
straightly reachable from Sj . This means that x and ab lie in
the same region in jth-subdivision of the (i− 1)th-plane and
by induction the jth-term of the characteristic sequence of x
in the (i−1)-plane and its jth-component are equal. On the
other hand, the jth-term of x in the ith-plane is considered
to be equal to the jth-term of its characteristic sequence in
the (i − 1)-plane. These two equalities imply that jth-term
of the characteristic sequence of x ∈ Fi is equal to its jth-
component.

When x lies in β-side of Si, because of having passing
property, all regions of the jth-subdivision of the ith-plane
in this side are reflections of the regions in α-side of S̄i in
this subdivision, and the marks of corresponding regions are
the same. This means that the jth-component of x in β-side
of S̄i is equal to the jth-component of the reflection of x on
S̄i. Similarly, our algorithm computes the jth-term of the
characteristic sequence of the reflection of x on S̄i as the
jth-term of x which follows the lemma in this case as well.
�

Figure 8: An optimal path to x from a point of ab.

Appendix 3: Algorithms

Algorithm 1 PChar(j,i,x)

1: if j = i then
2: if x ∈ α-side of S̄j then
3: return α
4: else
5: return β
6: end if
7: else
8: if x lies in the α-side of S̄i then
9: return PChar(j,i− 1,x)

10: else
11: Let x′ be the reflection of x on S̄i

12: return PChar(j,i− 1,x′)
13: end if
14: end if

Algorithm 2 MarkSides(S)

1: function Mark(S,i)
2: if Si completely lies on one side of S̄ then
3: Mark the side of S̄ which contains Si as β-

side and the other as α-side.
4: else
5: if S lies in the α-side of S̄i then
6: Mark(S,i− 1)
7: else
8: Let S′ be the reflection of S on S̄i

9: Mark(S′,i− 1)
10: Mark sides of S̄ the same as marks of their

corresponding sides of S̄′.
11: end if
12: end if
13: end function
14: for i← 1 to k do
15: Mark(Si,i− 1)
16: Cut Si−1 by removing from it the part that lies

on the α-side of S̄i.
17: end for

Algorithm 3 OPT(i,x)

1: if i = 0 and x = s then
2: return s.
3: end if
4: if x is an endpoint of Si then
5: return OPT(i− 1,x).
6: end if
7: Let C with sequence SQ(C) = (c1, . . . , cl) be the

cell with site c of SPMi which contains x.
8: if the length of SQ(C) is zero then
9: return <OPT(i,c),x >.

10: end if
11: Let j = l and L be a list with L =< x >.
12: while j 6= 0 do
13: Let I be the intersection of cx and Si−(l−j).
14: Append I to the beginning of L.
15: if x does not lie on the cj-side of Si−(l−j) then.
16: Let c be the reflection of c on S̄i−(l−j).
17: end if
18: x = I.
19: j = j − 1.
20: end while
21: return <OPT(i− l,c),L >.

Appendix 4: TLSP for intersecting line segments

In this section, we briefly describe how to extend our algo-
rithm to solve TLSP when a segment Si ∈ S may have in-
tersection with Si+1. Two types of intersections can be hap-
pened when Si intersects Si+1: point intersection and inter-
val intersection. In point intersection, Si and Si+1 have only
one point in common but in interval intersection Si ∩ Si+1
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is a segment. If Si and Si+1 overlap in interval I, we can
simply remove Si and Si+1 from S and replace them by seg-
ment I. So, we consider that there is no interval intersection
between consecutive segments of S.

Let Sj = ab intersects Sj+1 at point r. We define the
extensions of Sj in the ith-plane (i ≥ j) as the union of
extensions of ar and br in the ith-plane (their interior is
disjoint from Sj+1). So, If we mark the sides of Sj by α
and β, each segment ar and br induces its own marking on
the jth-subdivision of the ith-plane. Therefore, the mark of
each region R of the jth-subdivision of the ith-plane is in
{αα, αβ, βα, ββ} which is composed of two letters. Assume
that we have marked R as x1x2 where x1, x2 ∈ {α, β}. If
we replace Sj by ar, R completely lies in the x1-region and
if we replace Sj by rb, R completely lies in the x2-region of
the jth-subdivision of the ith-plane.

If we have characteristic sequences of all vertices and end-
points of segments, we can filter the wavelets in the second
phase as follows: Let ω be a wavelet in Fj−1 and SQ(ω)
coincides (xj−|SQ(ω)|, . . . , xj−1). Assume that the jth-term
of the characteristic sequence of a point in Pj is αβ (other
cases are similar). This means that if ω intersects ar, it
must generate a wavelet by passing or reflecting on ar in the
α-side of Sj in Fj and if it intersects rb it must generate
a wavelet by passing or reflecting on br in the β side of Sj

in Fj . Note that we must also consider r as an initial site
in Fj and its weight is computed by the wavefront of Fj−1.
In both of the above cases the sequences of the generated
wavelets in Fj are (SQ(ω), αβ).

Similar to Section 3, we use characteristic sequences and
according to Lemma 2 if a point x is straightly reachable
from Sj−1, the (j − 1)th-term of its characteristic sequence
is equal to its (j−1)th-component if we have a marking with
passing property. When Sj = ab intersects Sj+1 = cd, two
extensions in the jth-plane may be intersected by Sj+1 while
their starting points lie on different sides of Sj+1. Figure 9
shows an example of such situations.

Figure 9: Extensions of Sj which intersect Sj+1 are
shown by gray dots and the extensions of Sj+1 are shown
by solid dots.

To handle such situations we extend the definition of α-
side and β-side of Sj+1 such that using this new definition,
we can use procedure MarksSides and PChar to obtain char-
acteristic sequences of vertices of fences and endpoints of

segments.
Assume that function Mark marks the sides of cr and

rd in such a way that the starting point of each extension
in the jth-plane which intersects these segments lies in β
side of cr and rd. Lets consider a half-line from r which
does not intersect any extension of Sl in the (j + 1)th-plane
(1 ≤ l ≤ j). We call this half-line and its reflection on S̄j+1

as separators (there is infinite separators of Sj+1 but we
need one in our algorithm) in the (j+1)th-plane (separators
are shown by dashed lines in Figure 9). These separators
divide the plane into two regions namely R1 and R2. Lets
R1 be the one containing rc. We say that a point x or a
segment S lies in α-side of Sj+1 if it completely lies in α-
side of rc and R1 or α-side of rd and R2. Otherwise, we say
that it lies in β-side of Sj+1. By this definition, we see that
all extensions in α-side of Sj+1 coincide their corresponding
extensions in the jth-plane which is exactly the definition
of the passing property. But, we need an extra clause in
function Mark to handle the situation when a segment S
intersects the separators in the (j+ 1)th-plane: If a segment
intersects a separator with starting point r in the (j + 1)th-
plane, we mark the side of it which contains r as β-side and
the other as α-side.

Therefore, in procedure MarkSides, when Sj+1 intersects
Sj we need to use function Mark for both cr and dr. Then,
using a separator we can define its α and β-side. Now, be-
cause the marking obtained by MarkSides has the passing
property, we can use procedure PChar to obtain the charac-
teristic sequences of vertices of fences and endpoints of the
segments.

Note that a separator for Sj+1 from a point r in it can be
easily obtained by considering r or its reflection recursively
on α sides of Sj , . . . , S1 (Similar to procedure PChar) and
in each step l ≤ j we maintain the bounds on the slope
of a separator in which a separator does not intersect an
extension of Sl.

According to the above discussion, if Sj+1 intersects Sj ,
we need a linear time to obtain a separator for it. Also
MarkSides performs function Mark at most 2k times. Also,
the extra clause in Mark does not affect its complexity.
Therefore, the running time of our algorithm remainsO(n3k)
for intersecting segments.
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A Geometric Perspective on Sparse Filtrations∗

Nicholas J. Cavanna† Mahmoodreza Jahanseir‡ Donald R. Sheehy§

Abstract

We present a geometric perspective on sparse filtrations
used in topological data analysis. This new perspective
leads to much simpler proofs, while also being more
general, applying equally to Rips filtrations and Čech
filtrations for any convex metric. We also give an algo-
rithm for finding the simplices in such a filtration and
prove that the vertex removal can be implemented as a
sequence of elementary edge collapses.

A video illustrating this approach is available [7].

1 Introduction

Given a finite data set in a Euclidean space, it is natural
to consider the balls around the data points as a way to
fill in the space around the data and give an estimate of
the missing data. The union of balls is often called the
offsets of the point set. Persistent homology was origi-
nally invented as a way to study the changes in topology
of the offsets of a point set as the radius increases from
0 to ∞. The input to persistent homology is usually a
filtered simplicial complex, that is, an ordered collection
of simplices (vertices, edges, triangles, etc.) such that
each simplex appears only after its boundary simplices
of one dimension lower. The Nerve Theorem and its
persistent variant allow one to compute the persistent
homology of the offsets by instead looking at a discrete
object, a filtered simplicial complex called the nerve (see
Fig. 1). The simplest version of this complex is called
the Čech complex and it may be viewed as the set of
all subsets of the input, ordered by the radius of their
smallest enclosing ball. Naturally, the Čech complex
gets very big very fast, even when restricting to subsets
of constant size. A common alternative is the Rips com-
plex but it suffers similar difficulties. Over the last few
years, there have been several approaches to building
sparser complexes that still give good approximations
to the persistent homology [21, 17, 11, 3, 2].

Our main contributions are the following.

1. A much simpler explanation for the construction
and proof of correctness of sparse filtrations. Our

∗Partially supported by the National Science Foundation under
grant number CCF-1464379
†University of Connecticut nicholas.j.cavanna@uconn.edu
‡University of Connecticut reza@engr.uconn.edu
§University of Connecticut don.r.sheehy@gmail.com

Figure 1: A point set sampled on a sphere, its offsets,
and its (sparsified) nerve complex.

new geometric construction shows that the sparse
complex is just a nerve in one dimension higher.

2. The approach easily generalizes to Rips, Čech and
related complexes (the offsets for any convex met-
ric). This is another advantage of the geomet-
ric view as the main result follows from convexity
rather than explicit construction of simplicial map
homotopy equivalences.

3. A simple geometric proof that the explicit removal
of vertices from the sparse filtration can be done
with simple edge contractions. This can be done
without resorting to the full-fledged zigzag persis-
tence algorithm [5, 4, 18, 19] or even the full sim-
plicial map persistence algorithm [11, 1].

The most striking thing about this paper is perhaps
more in what is absent than what is present. Despite
giving a complete treatment of the construction, cor-
rectness, and approximation guarantees of sparse filtra-
tions that applies to both Čech and Rips complexes,
there is no elaborate construction of simplicial maps or
proofs that they induce homotopy equivalences. In fact,
we prove the results directly on the geometric objects,
the covers, rather than the combinatorial objects, the
complexes, and the result is much more direct. In a way,
this reverses a common approach in computational ge-
ometry problems in which the geometry is as quickly as
possible replaced with combinatorial structure; instead,
we delay the transition from the offsets to a discrete
representation until the very end of the analysis.

Related Work. Soon after the introduction of persis-
tent homology by Edelsbrunner et al. [13], there was
interest in building more elaborate complexes for larger
and larger data sets. Following the full algebraic char-
acterization of persistent homology by Zomorodian and
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Carlsson [23], a more general theory of zigzag persis-
tence was developed [5, 4, 18, 19] using a more compli-
cated algorithm. Zigzags gave a way to analyze spaces
that did not grow monotonically; they could alternately
grow and shrink such as by growing the scale and then
removing points [22]. A variant of this techniques was
first applied for specific scales by Chazal and Oudot
in work on manifold reconstruction [9] and was imple-
mented as a full zigzag by Morozov in his Dionysus li-
brary [12]. Later, Sheehy gave a zigzag for Rips filtra-
tions that came with guaranteed approximation to the
persistent homology of the unsparsified filtration [21].
Other later works gave various improvements and gen-
eralizations of sparse zigzags [20, 17, 11, 2].

2 Background

Distances and Metrics. Throughout, we will assume
the input is a finite point set P in Rd endowed with some
convex metric d. A closed ball with center c and radius
r will be written as ball(c, r) = {x ∈ Rd|d(x, c) ≤ r}.
For illustrative purposes, we will often draw balls as
Euclidean (`2) balls.

For a non-negative α ∈ R, the α-offsets of P are
defined as

Pα :=
⋃

p∈P
ball(p, α).

The sequence of offsets as α ranges from 0 to∞ is called
the offsets filtration {Pα}.

The doubling dimension of a metric space is log2 γ,
where γ is the maximum over all balls B, of the min-
imum number of balls of half the radius of B required
to cover B. Metric spaces with a small constant dou-
bling dimension are called doubling metrics. Such met-
rics allow for packing arguments similar to those used
in Euclidean geometry.

Simplicial Complexes. A simplicial complex K is a
family of subsets of a vertex set that is closed under
taking subsets. The sets σ ∈ K are called simplices and
|σ| − 1 is called the dimension of σ. A nested family
of simplicial complexes is called a simplicial filtration.
Often the family of complexes will be parameterized by
a nonnegative real number as in {Kα}α≥0. Here, the
filtration property guarantees that α ≤ β implies that
Kα ⊆ Kβ . In this case, the value of α for which a
simplex first appears is called its birth time, and so, if
there is a largest complex Kα in the filtration, the whole
filtration can be represented by Kα and the birth time
of each simplex. For this reason, simplicial filtrations
are often called filtered simplicial complex.

Persistent Homology. Homology is an algebraic tool
for characterizing the connectivity of a space. It cap-
tures information about the connected components,

holes, and voids. For this paper, we will only consider
homology with field coefficients and the computations
will all be on simplicial complexes. In this setting, com-
puting homology is done by reducing a matrix D called
the boundary matrix of the simplicial complex. The
boundary matrix has one row and column for each sim-
plex. If the matrix reduction respects the order of a
filtration, i.e. columns are only combined with columns
to their left, then the reduced matrix also represents
the so-called persistent homology of the filtration. Per-
sistent homology describes the changes in the homology
as the filtration parameter changes and this information
is often expressed in a barcode (See Fig. 2). Barcodes
give topological signatures of a shape [14].

Figure 2: A filtration and its barcode.

Each bar of a barcode is an interval encoding the lifes-
pan of a topological feature in the filtration. We say
that a barcode B1 is a (multiplicative) c-approximation
to another barcode B2 if there is a partial matching be-
tween B1 and B2 such that every bar [b, d] with d/b > c
is matched and every matched pair of bars [b, d], [b′, d′]
satisfies max{b/b′, b′/b, d/d′, d′/d} ≤ c. A standard re-
sult on the stability of barcodes [8] implies that if two
filtrations {Fα} and {Gα} are c-interleaved in the sense
that Fα/c ⊆ Gα ⊆ F cα, then the barcode of {Fα} is a
c-approximation to {Gα}.

Nerve Complexes and Filtrations. Let U =
{U1, . . . , Un} be a collection of closed, convex sets. Let⋃U denote the union of the sets in U , i.e.

⋃U :=⋃n
i=1 Ui. We say that the set U is a cover of the space⋃U . The nerve of U , denoted Nrv(U) is the abstract

simplicial complex defined as

Nrv(U) :=

{
I ⊆ [n] |

⋂

i∈I
Ui 6= ∅

}
.

This construction is illustrated in Fig.3. The Nerve The-
orem [16, Cor. 4G.3] implies that Nrv(U) is homotopy
equivalent to

⋃U .
Similarly, one can construct a nerve filtration from

a cover of a filtration by filtrations. Let U =
{{Uα1 }, . . . {Uαn }} be a collection of filtrations param-
eterized by real numbers such that for each i ∈ [n] and
each α ≥ 0, the set Uαi is closed and convex. Let Uα
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Figure 3: The nerve has an edge for each pairwise in-
tersection, a triangle for each 3-way intersection (right),
etc.

to denote the set {Uα1 , . . . , Uαn }. As before, the Nerve
Theorem implies that

⋃Uα is homotopy equivalent to
Nrv(Uα). The Persistent Nerve Lemma [9] implies that
the filtrations {⋃Uα}α≥0 and {Nrv(Uα)}α≥0 have iden-
tical persistent homology.

Čech and Rips Filtrations. A common filtered nerve
is the Čech filtration. It is defined as {Cα(P )}, where

Cα(P ) := Nrv{ball(pi, α) | i ∈ [n]}.

Notice that this is just the nerve of the cover of the α-
offsets by the α-radius balls. Thus, the Persistent Nerve
Lemma implies that {Pα} and {Cα(P )} have identical
persistence barcodes.

A similar filtration that is defined for any metric is
called the (Vietoris-)Rips filtration and is defined as
{Rα(P )}, where

Rα(P ) := {J ⊆ [n] | max
i,j∈J

d(pi, pj) ≤ 2α}.

Note that if d is the max-norm, `∞, then Rα(P ) =
Cα(P ). Moreover, because every finite metric can be
isometrically embedded into `∞, every Rips filtration is
isomorphic to a nerve filtration.

Greedy Permutations. Let P be a set of points in
some metric space with distance d. A greedy permu-
tation of P goes by many names, including landmark
sets, farthest point sampling, and discrete center sets.
We say that P = {p1, . . . , pn} is ordered according to a
greedy permutation if each pi is the farthest point from
the first i − 1 points. We let p1 be any point. For-
mally, let Pi = {p1, . . . , pi} be the ith prefix. Then, the
ordering is greedy if and only if for all i ∈ {2, . . . , n},

d(pi, Pi−1) = max
p∈P

d(p, Pi−1).

For each point pi, the value λi := d(pi, Pi−1) is known
as the insertion radius. By convention, we set λ1 =∞.
It is well-known (and easy to check) that Pi is a λi-
net in the sense that it satisfies the conditions: for all
distinct p, q ∈ Pi, d(p, q) ≥ λi (packing) and P ⊆ Pλi

i

(covering).

Figure 4: Left: two growing balls trace out cones in
one dimension higher. Center: One of the cones has
a maximum radius. Right: Limiting the height of one
cone guarantees that the top is covered.

3 Perturbed Distances

A convenient first step in making a sparse version of
the Čech filtration is to “perturb” the distance. Given
a greedy permutation, we perturb the distance function
so that as the radius increases, only a sparse subset
of points continues to contribute to the offsets. This
can most easily be viewed as changing the radius of
the balls slightly so that some balls will be completely
covered by their neighbors and thus will not contribute
to the union. Fix a constant ε < 1 that will control
the sparsity. As we will show in Lemma 1, at scale α,
there is an εα-net of P whose perturbed offsets cover
the perturbed offsets of P . Assuming the points P =
{p1, . . . , pn} are ordered by a greedy permutation with
insertion radii λ1, . . . , λn, we define the radius of pi at
scale α as

ri(α) :=

{
α if α ≤ λi(1 + ε)/ε

λi(1 + ε)/ε otherwise.

The perturbed α-offsets are defined as

P̃α :=
⋃

i∈[n]
ball(pi, ri(α)).

To realize the sparsification as described, we want to
remove balls associated with some of the points as the
scale increases. This is realized by defining the α-ball
for a point pi ∈ P to be

bi(α) :=

{
ball(pi, ri(α)) if α ≤ λi(1 + ε)2/ε

∅ otherwise.

The usefulness of this perturbation is captured by the
following covering lemma, which is depicted in the tops
of the cones in Fig. 4.

Lemma 1 (Covering Lemma) Let P = {p1, . . . , pn}
be a set of points ordered by a greedy permutation with
insertion radii λ1, . . . , λn. For any α, β ≥ 0, and any
pj ∈ P , there exists a point pi ∈ P such that

1. if β ≥ α then bj(α) ⊆ bi(β), and

2. if β ≥ (1 + ε)α, then ball(pj , α) ⊆ bi(β).
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Proof. Fix any pj ∈ P . We may assume that β ≥
λj(1 + ε)2/ε, for otherwise, choosing pi = pj suffices
to satisfy both clauses, the first because bj(α) ⊆ bj(β)
and the second because ball(pj , α) = bj(α) ⊆ bj(β).
This assumption is equivalent to the assumption that
bj(β) = ∅.

By the covering property of the greedy permutation,
there is a point pi ∈ P such that d(pi, pj) ≤ εβ/(1 + ε)
and λi ≥ εβ/(1 + ε). It follows that ri(β) = β and
bi(β) = ball(pi, β). Recall that λ1 = ∞ by convention,
so b1(β) 6= ∅, and for large values of β, choosing pi = p1
suffices.

To prove the first clause, fix any point x ∈ bj(α). By
the triangle inequality,

d(x, pi) ≤ d(x, pj) + d(pi, pj) ≤ rj(α) + εβ/(1 + ε)

≤ λj(1 + ε)/ε+ εβ/(1 + ε) ≤ β = ri(β).

So, x ∈ bi(β) and thus, bj(α) ⊆ bi(β) as desired.
To prove the second clause of the lemma, fix any x ∈

ball(pj , α). By the triangle inequality,

d(x, pi) ≤ d(x, pj) + d(pi, pj) ≤ α+ εβ/(1 + ε)

≤ β/(1 + ε) + εβ/(1 + ε) = ri(β).

So, as before, x ∈ bi(β) and thus, ball(pj , α) ⊆ bi(β) as
desired. �

Corollary 2 Let P = {p1, . . . , pn} be a set of points
ordered by a greedy permutation with insertion radii
λ1, . . . , λn. For all α ≥ 0, P̃α =

⋃
i bi(α) and P̃α ⊆

Pα ⊆ P̃ (1+ε)α.

A proof may be found in the full paper [6]. Corollary 2
implies the following proposition using standard results
on the stability of persistence barcodes [8].

Proposition 3 The persistence barcode of the per-
turbed offsets {P̃α}α≥0 is a (1 + ε)-approximation to
the persistence barcode of the offsets {Pα}α≥0.

4 Sparse Filtrations

The sparse Čech complex is defined as Qα :=
Nrv{bi(α) | i ∈ [n]}. Notice that because bi(α) = ∅
unless λi is sufficiently large compared to α, there are
fewer vertices as the scale increases. This is the desired
sparsification. Unfortunately, it means that the set of
complexes {Qα} is not a filtration, but this is easily
remedied by the following definition. The sparse Čech
filtration is defined as {Sα}, where

Sα :=
⋃

δ≤α
Qδ =

⋃

δ≤α
Nrv{bi(δ) | i ∈ [n]}.

This definition makes it clear that the sparse complex
is a union of nerves, but it not obvious that it has the

same persistent homology as the filtration defined by
the perturbed offsets P̃α :=

⋃
i bi(α). For such a state-

ment, it would be much more convenient if {Sα} was
itself a nerve filtration rather than a union of nerves,
in which case the Persistent Nerve Lemma could be ap-
plied directly. In fact, this can be done by adding an
extra dimension corresponding to the filtration param-
eter extending the balls bi(α) into the perturbed cone
shapes

Uαi :=
⋃

δ≤α
(bi(δ)× {δ}).

These sets, depicted in Figs. 4 and 5, allow the following
equivalent definition of the complexes in the sparse Čech
filtration.

Sα := Nrv {Uαi | i ∈ [n]} .

Theorem 4 The persistence barcode of the sparse
nerve filtration {Sα}α≥0 is a (1 + ε)-approximation to
the persistence barcode of the offsets {Pα}α≥0.

Proof. For all i, the set Uαi is convex because ri is con-
cave (see the full paper [6] for a proof). It follows
that the sets Uαi satisfy the conditions of the Persis-
tent Nerve Lemma. So, {Sα} has the same persistence
barcode as the filtration {Bα}, where Bα :=

⋃
i U

α
i .

Figure 5: The collection of cones Bα at two different
scales. The top of Bα is the union of (perturbed) balls.

The Covering Lemma implies that the linear projec-
tion of Bα to P̃α that maps (x, δ) to x is a homotopy
equivalence as each fiber is simply connected. More-
over, the projection clearly commutes with the inclu-
sions Bα ↪→ Bβ and P̃α ↪→ P̃ β , from which, it follows
that Pers{P̃α} = Pers{Bα} = Pers{Sα}. So, the claim
now follows from Proposition 3. �

5 Algorithms

In this section, we present an algorithm to construct the
sparse filtration. In previous work, it was shown how to
use metric data structures [15] to compute the sparse
Rips filtration in O(n log n) time [21] when the doubling
dimension is constant. The same approach also works
for the sparse nerve filtrations described here. However,
in our implementation, we found it to be efficient to
construct the edge set in O(n2) time and then find the
remaining simplices in linear time.

In order to find the edges in the sparse filtration, we
consider every two points and determine whether their
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corresponding balls have a common intersection. If the
balls intersect, it returns the birth time of the corre-
sponding edge and∞ otherwise. We store every edge as
a directed edge, which is used to find other k-simplices.
Edges are directed from smaller to larger insertion ra-
dius. This will allow us to charge the simplices we find
to their vertex of minimum insertion radius.

Let E(v) be the vertices adjacent to a vertex v
with larger insertion radius. To find a k-simplex for
k > 1 containing a vertex v, we consider all subsets
{u1, . . . , uk} of k vertices in E(v). If {v, u1, . . . , uk}
forms a (k+1)-clique, we check the clique to see whether
it creates a k-simplex and compute its birth time. The
birth time of a k-simplex σ in a nerve filtration is the
minimum α such that Uαj 6= ∅. If no such α exists,
then we define the birth time to be ∞. We assume
the user provides a method, SimplexBirthTime, to
compute birth times for their metric that runs in time
polynomial in k. This function takes a (k+ 1)-clique as
input. If at some scale α, the corresponding balls have
a common intersection, it returns the minimum such α,
otherwise, it returns ∞ indicating the (k + 1)-clique is
not a k-simplex in the sparse filtration.

For the case of Rips filtrations (i.e. `∞), Sim-
plexBirthTime(σ) needs to compute the maximum
birth time of the edges and compare it to minpi∈σ λi(1+
ε)2/ε (the first time t after which some pi ∈ σ has
bi(t) = ∅). For `2, the corresponding computation is
a variation of the minimum enclosing ball problem.

Algorithm 1 finds the k-simplices and birth times in a
sparse filtration. Here, G = (V,E) is a directed graph,
and the output S is the set of pairs (σ, t), where σ is a
k-simplex with birth time t.

Algorithm 1 Find all k-simplices and birth times

1: procedure FindSimplices(G = (V,E), k)
2: S ← ∅
3: for all v ∈ V do
4: for all {u1, . . . , uk} ⊆ E(v) do
5: if {v, u1, . . . , uk} is a (k+ 1)-clique then
6: σ ← {v, u1, . . . , uk}
7: t←SimplexBirthTime(σ)
8: if t <∞ then
9: S ← S ∪ (σ, t)

10: return S

Theorem 5 Given the edges of a sparse filtration,
Algorithm 1 finds the k-simplices of {Sα} in ((1 +
ε)2/ε)O(kρ)n time, where ρ is the doubling dimension
of the input metric.

Proof. In Algorithm 1, for every vertex v in the di-
rected graph G, there are

(|E(v)|
k

)
subsets with size k.

Therefore, if we find an upper bound ∆ on the number

of adjacent vertices for all v ∈ V , the total running time
of the algorithm will be O(∆kn).

In the directed graph G, a vertex pj is adjacent to
vertex pi if the insertion radius of pi is less than insertion
radius of pj and their corresponding balls intersect at
some scale α, i.e. bi(α) ∩ bj(α) 6= ∅. We know that
λi ≤ λj , and also they intersect before pi disappears, so

bi(λi(1 + ε)2/ε) ∩ bj(λi(1 + ε)2/ε) 6= ∅.
The distance between pi and pj is bounded as follows.

d(pi, pj) ≤ ri(λi(1 + ε)2/ε) + rj(λi(1 + ε)2/ε)

≤ λi(1 + ε)/ε+ λi(1 + ε)2/ε < 2λi(1 + ε)2/ε

Thus, all adjacent vertices to pi lie in a ball with cen-
ter pi and radius 2λi(1 + ε)2/ε. Moreover, the in-
sertion radii of the neighbors are all at least λi, so
by a standard packing argument for doubling metrics,
|E(pi)| = ((1 + ε)2/ε)O(ρ). Consequently, the running
time of this algorithm will be ((1 + ε)2/ε)O(kρ)n. �

6 Removing Vertices

Because the sparse filtration is a true filtration, no ver-
tices are removed. When the cone is truncated, no new
simplices will be added using that vertex, but it is still
technically part of the filtration. The linear-size guar-
antee is a bound on the total number of simplices in the
complex. Thus, by using methods such as zigzag per-
sistence or simplicial map persistence to fully remove
these vertices when they are no longer needed cannot
improve the asymptotic performance. Still, it may be
practical to remove them (see [2]). A full theoretical
or experimental analysis of the cost tradeoff of using a
heavier algorithm to do vertex removal is beyond the
scope of this paper.

In this section, we show that the geometric construc-
tion leads to a natural choice of elementary simplicial
maps (edge collapses) which all satisfy the so-called link
condition. In the persistence by simplicial maps work
of Dey et al. [11] and Boissonat et al. [1], a key step in
updating the data structures to contract an edge is to
first add simplices so that the so-called Link Condition
is satisfied. The link of a simplex σ in a complex K is
defined as Lk σ = {τ \ σ | τ ∈ K and σ ⊆ τ}. That
is, the link σ is formed by removing the vertices of σ
from each of its cofaces. An edge {u, v} ∈ K satisfies
the Link Condition if and only if

Lk {u, v} = Lk {u} ∩ Lk {v}.
Dey et al. [10] proved that edge contractions induce ho-
motopy equivalences when the link condition is satisfied.
Thus, it gives a minimal local condition to guarantee
that the contraction preserves the topology. More re-
cently, it was shown that such a contraction does not
change the persistent homology [11].
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Proposition 6 If (P,d) is a finite subset of a convex
metric space and {Sα} is its corresponding sparse filtra-
tion, then the last vertex pn has a neighbor pi such that
the edge {pn, pi} ∈ Sα satisfies the link condition, where
α = λn(1 + ε)2/ε and λn is the insertion radius of pn.

Proof. It follows directly from the definition of a link
that Lk {u, v} ⊆ Lk {u}∩Lk {v} for all edges {u, v}. By
the Covering Lemma (Lemma 1), we know that there
exists a pi ∈ P such that bn(α) ⊆ bi(α). Thus, it suffices
to check that Lk {i} ∩ Lk {n} ⊆ Lk {i, n}. Because the
vertices are ordered according to a greedy permutation,
λn ≥ λj for all pj ∈ P . It follows that a simplex J ∈ Sα
if and only if

⋂
i∈J bj(α) 6= ∅.

Let J be any simplex in Lk {i}∩Lk {n}. So, i, n /∈ J
and

⋂
j∈J∪{n} bj(α) 6= ∅. Because bn(α)∩bi(α) = bn(α),

it follows that
⋂
j∈J∪{i,n} bj(α) 6= ∅. Thus, we have

J ∈ Lk {i, n} as desired. �

7 Conclusion

In this paper, we gave a new geometric perspective
on sparse filtrations for topological data analysis that
leads to a simple proof of correctness for all convex
metrics. By considering a nerve construction one di-
mension higher, the proofs are primarily geometric and
do not require explicit construction of simplicial maps.
This geometric view clarifies the non-zigzag construc-
tion, while also showing that removing vertices can be
accomplished with simple edge contractions.
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complexes in low and high dimensions. In 24th Inter-
national Symposium on Algorithms and Computation,
volume LNCS 8283, pages 666–676, 2013.

[18] C. Maria and S. Y. Oudot. Zigzag Persistence via Re-
flections and Transpositions. In Proc. ACM-SIAM Sym-
posium on Discrete Algorithms, January 2015.

[19] N. Milosavljevic, D. Morozov, and P. Skraba. Zigzag
persistent homology in matrix multiplication time. In
Proceedings of the 27th ACM Symposium on Computa-
tional Geometry, 2011.

[20] S. Y. Oudot and D. R. Sheehy. Zigzag zoology: Rips
zigzags for homology inference. Foundations of Com-
putational Mathematics, pages 1–36, 2014.

[21] D. R. Sheehy. Linear-size approximations to the
Vietoris-Rips filtration. Discrete & Computational Ge-
ometry, 49(4):778–796, 2013.

[22] A. Tausz and G. Carlsson. Applications of zigzag per-
sistence to topological data analysis. arxiv:1108.3545,
Aug 2011.

[23] A. Zomorodian and G. Carlsson. Computing persis-
tent homology. Discrete & Computational Geometry,
33(2):249–274, 2005.

121



CCCG 2015, Kingston, Ontario, August 10–12, 2015

Online Packing of Equilateral Triangles

Shahin Kamali∗ Alejandro López-Ortiz∗ Zahed Rahmati∗

Abstract

We investigate the online triangle packing problem in
which a sequence of equilateral triangles with different
sizes appear in an online, sequential manner. The goal
is to place these triangles into a minimum number of
squares of unit size. We provide upper and lower bounds
for the competitive ratio of online algorithms. In partic-
ular, we introduce an algorithm which achieves a com-
petitive ratio of at most 2.474. On the other hand, we
show that no online algorithm can have a competitive
ratio better than 1.509.

1 Introduction

The classic 1-dimensional bin packing problem asks for
assignment of a set of items of different sizes into a min-
imum number of bins of unit capacity. For convenience,
it is often assumed that bins have capacity 1 and items’
sizes are in the range (0, 1]. In the online version, the
items are revealed in a sequential manner, and an algo-
rithm has to place an item into a bin without any in-
formation about forthcoming items. Online algorithms
are often compared according to their competitive ratio,
which is the maximum ratio between the cost of an on-
line algorithm and that of an optimal offline algorithm,
denoted by Opt, for serving the same sequence. For
bin packing, we are particularly interested in asymp-
totic competitive ratio which only considers sequences
for which the cost of Opt is arbitrary large.

Online bin packing has many applications in practice,
from server consolidation to cutting stock. In the lat-
ter application, the goal is to cut patterns of given sizes
from stocks of unit size. Clearly, this application can be
extended into two dimensions. In the 2-dimensional bin
packing problem, bins are typically squares of unit size
while items are similar objects of different sizes. Two
studied variations are box packing and square packing
in which items are boxes (rectangles) and squares, re-
spectively, of different sizes.

In this paper, we consider the equilateral triangle
packing problem, which is stated as follows. The prob-
lem can be thought as a two-dimensional version of the
classic bin packing problem.

Let σ = 〈x1, x2, . . . , xn〉 be an online sequence of equi-
lateral triangles, where xi ∈ (0, 1.035] indicates the side

∗School of Computer Science, University of Waterloo
{s3kamali, alopez-o, zrahmati}@uwaterloo.ca

length of the ith equilateral triangle, 1 ≤ i ≤ n. The
online equilateral triangle packing problem is to place
these equilateral triangles into a minimum number of
squares of unit size so that no two triangles overlap.
Upon receiving an equilateral triangle, an online algo-
rithm makes an irrevocable decision for placing the tri-
angle into a square. For that, the algorithm does not
have any information about the (sizes of) forthcoming
triangles. Triangles are allowed to be rotated.

The assumption xi ∈ (0, 1.035] comes from the
fact that no equilateral triangle of length larger than
1/ cos π

12 ≈ 1.035 fits in a square of unit size. In the
rest of the paper by “triangle of size x” we mean “an
equilateral triangle whose side length is x”. We inter-
changeably use terms “bin” for “square of unit size”,
and “items” for incoming “equilateral triangles of dif-
ferent sizes”.

Related work. The 1-dimensional bin packing problem
has been extensively studied in the past few decades
(see [2, 3] for excellent surveys). The most practical
online algorithms are First Fit and Best Fit, which are
greedy in the sense that they avoid opening a new bin
if possible. The competitive ratio of both algorithms is
1.7 [11]. The Harmonic family of algorithms is based on
classifying items by their sizes [12]. A member of this
family is Harmonic++ of Seiden [13] with a competitive
ratio of 1.588 which is the best among online bin packing
algorithms.

For online square packing, the first set of results in-
cluded an upper bound of 2.6875 and a lower bound
of 4/3 [4]. The upper bound was later improved a few
times ([5, 6, 9]). The best existing upper bound is given
by an algorithm of competitive ratio 2.1187 [10]. In [14],
a lower bound of 1.62176 was proved for the competi-
tive ratio of any online algorithm. This lower bound
was later improved to 1.6406 [6].

The best existing online algorithm for the box packing
problem has a competitive ratio of 2.5545 [8] while there
is a lower bound of 1.907 for the competitive ratio of any
online box packing algorithm [1].

To our knowledge, there is no previous work address-
ing online packing of triangles. While we currently have
no particular application in mind, we believe that tri-
angle packing is of inherent and compelling interest.
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Figure 1: The triangle spots of a classification of large triangles of size x. The dark triangles indicate the lower
bound for the size of the triangles.

Our contributions. We provide an online algorithm for
packing equilateral triangles, which achieves a compet-
itive ratio of 2.474. Our algorithm is bounded-space in
the sense that it only keeps a constant number of squares
opened at any given time. We prove a lower bound of
1.509 for any online equilateral triangle packing algo-
rithm.

Our algorithm, in Section 2, classifies the triangles
based on their sizes into different classes, and places
triangles of the same class into the same bin. It requires
a careful classification, which is more detailed compared
to prior packing algorithms of boxes and squares.

For lower bound, in Section 3, we consider a sequence
formed by triangles of three different sizes. To achieve
a competitive ratio, we provide a linear program which
captures the requirements for different subsequences of
the original sequence.

2 Algorithm

In this section, we introduce our algorithm for packing
of equilateral triangles, which has a competitive ratio of
2.474.

Similar to Harmonic family of algorithms, we classify
triangles by their sizes. We refer to a triangle as being
large if its size is larger than 1/3, medium if its size is
in the range (1/20, 1/3] and small if it is at most 1/20.
Triangles that belong to any of these three groups are
classified further into smaller classes, and members of
each class are packed separately from others. In what
follows, we describe the classification and packing for
each group separately.

2.1 Large Triangles

The large triangles are classified into 12 groups, denoted
by Lc, c = 1, . . . , 12, based on their sizes. A large trian-
gle of size x belongs to class Lc if at most c items of size
x fit into a bin. Figure 1 shows the (best known) way
of placing c (1 ≤ c ≤ 12) equal triangles of maximum
size into a square [7]. If 0.816 < x ≤ 1.035, at most one
item of size x can fit in a unit square and the triangle
belongs to class L1. If 0.676 < x ≤ 0.816, at most two
items of size x fit in the same bin and it belongs to class
L2. Similarly, we can obtain the boundaries (lc, rc] for
any class Lc; see Table 1.

Triangles of each class are treated separately from
other classes. For each class Lc (1 ≤ c ≤ 12) with
boundaries (lc, rc], the algorithm has at most one active
bin of type c. When a bin of type Lc is opened, it is
declared as the active bin of the class and c triangle
spots of size rc are reserved in that (this is feasible by
definition of classes). Upon arrival of an item of type
Lc, it is placed in one of the c spots of the active bin. If
all these spots are occupied by previous items, a new bin
of type Lc is opened. This ensures that all bins of type
Lc, except potentially the current active bin, include c
items of size greater than lc.

2.2 Medium Triangles

The size of a medium triangle is in the range (1/20, 1/3].
Similar to that of Section 2.1, medium triangles are
classified and items of each class are treated sepa-
rately. Here, the classification is performed in a more
regulated manner. We define 34 groups with ranges
(1/20, 1/19.5], (1/19.5, 1/19], . . . , (1/3.5, 1/3] as bound-
aries of the classes. In particular, we say a triangle of
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Figure 2: The triangle spots of a classification of medium triangles of size x. The dark triangles indicate the lower
bound for the size of the triangles.

size x belongs to class M1
k if x ∈ (1/k, 1/(k − 0.5)],

and belongs to class M2
k if x ∈ (1/(k+ 0.5), 1/k], where

3 ≤ k ≤ 20; classes M1
3 and M2

20 are not defined.
The item placement is similar to large triangles. As

before, there is at most one active bin for each class Lc
with boundaries (lc, rc]. When an active bin of type Mc

is opened, Xc spots of size rc are reserved in it. Upon
arrival of an item of type Mc, it is placed in one of
the spots in the active bin (and a new bin is opened if
required). The following lemma gives the value of Xc.

Lemma 1 It is possible to place 2k2 − 2k triangles of
class M1

k in the same bin. Similarly, 2k2 − k triangles
of class M2

k can be placed in the same bin (3 ≤ k ≤ 20).

Proof. Consider a horizontal triangle strip constructed
by r connected equilateral triangles of size x, for an inte-
ger r ≥ 5. The vertical width of the triangle strip is the
height of an equilateral triangle, i.e.,

√
3x/2. Assume

the horizontal width of the triangle strip is 1. Therefore,
x = 2/(r + 1).

For a triangle of size x = 1/k, which is associated
with class M2

k , we obtain r = 2k − 1. Note that, with-
out overlappings, we can place at most k copies of the
corresponding strip in a bin, where k ≥ 3; see M2

3 and
M2

4 in Figure 2. Therefore, there exist 2k2−k triangles
of class M2

k in the same bin.
In a similar way, for a triangle with x = 1/(k − 0.5)

of class M1
k , we obtain r = 2k − 2. Since we can place

at most k (k ≥ 4) copies of the corresponding strip in
a bin, there exist 2k2 − 2k triangles of class M1

k in the
same bin; see M1

4 and M1
5 in Figure 2. �

2.3 Small Triangles

A small triangle has size at most to 1/20. We maintain
at most one active bin for placing small items. When
a bin is opened for these items, we reserve four triangle
spots of size 0.633, i.e., the four triangles of class L4

in Figure 1. These triangle spots are used as bins for
placing small items.

Epstein and van Stee [5] provide an approach to assign
small squares into unit squares. The algorithm is to

find an appropriate sub-bin for an item, which can be
found by partitioning a (sub-)bin into four identical sub-
bins (see [5], for more details). A similar approach to
that of Epstein and van Stee can be used for assigning
equilateral triangles into unit equilateral triangle bins.
The analysis of the algorithm for the case when both
the items and bins are equilateral triangles is the same
to the case when both the items and bins are squares.
Therefore, we can use Claim 3 of [5] for our case. That
is,

Claim 1 Given an online sequence of equilateral trian-
gles of sizes no more than 1/M , for some integer M , one
can pack items into equilateral triangle bins of unit size
so that the total occupied space in each bin is at least
M2−1
(M+1)2 .

Lemma 2 The occupied area of each bin opened for
small items, except possibly a constant number of them,
is more than 0.585.

Proof. Note that the side length (≤ 1/20) of a small
triangle is within a factor of at most 1/12.66 of the side
length (0.633) of the triangle spots. Assuming M = 12,
by Claim 1, a fraction of at least (122−1)/132 = 0.846 of
all triangle spots, except potentially a constant number
of them, is occupied by small triangles.

Since the area of each bin covered by four triangle
spots is 4 × 0.173 = 0.692 (see L4 of Figure 1), the
occupied area of each bin opened for small items is more
than 0.692× 0.846 = 0.585. �

2.4 Analysis

For analyzing our algorithm, we use a weighting argu-
ment. Corresponding to each triangle of size x, we de-
fine a weight w(x) as follows.

Recall that a large triangle of a class Lc (1 ≤ c ≤ 12)
is placed in a square which has c spots for items of
this class. All bins opened for these triangles, except
possibly the last active bin, include c items of this class.
We define the weight of items of class c to be 1/c. This
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Class Side length x Occupied Area Weight Density

L1 (0.816, 1.035] > 1(0.288) = 0.288 1 < 3.472
L2 (0.676, 0.816] > 2(0.197) = 0.395 1/2 < 2.538
L3 (0.633, 0.676] > 3(0.173) = 0.520 1/3 < 1.926
L4 (0.554, 0.633] > 4(0.132) = 0.531 1/4 < 1.893
L5 (0.525, 0.554] > 5(0.119) = 0.596 1/5 < 1.680
L6 (0.500, 0.525] > 6(0.108) = 0.649 1/6 < 1.543
L7 (0.476, 0.500] > 7(0.098) = 0.686 1/7 < 1.457
L8 (0.437, 0.476] > 8(0.082) = 0.661 1/8 < 1.524
L9 (0.420, 0.437] > 9(0.076) = 0.682 1/9 < 1.461
L10 (0.401, 0.420] > 10(0.069) = 0.696 1/10 < 1.449
L11 (0.390, 0.401] > 11(0.065) = 0.724 1/11 < 1.398
L12 (1/3, 0.390] > 12(0.048) = 0.577 1/12 < 1.732
M2

3 (1/3.5, 1/3] > 15(0.035) = 0.530 1/15 < 1.886
M1

4 (1/4, 1/3.5] > 24(0.027) = 0.649 1/24 < 1.540
M2

4 (1/4.5, 1/4] > 28(0.021) = 0.598 1/28 < 1.672
M1

5 (1/5, 1/4.5] > 40(0.017) = 0.692 1/40 < 1.445
. . . . . . . . . . . . . . .
M2

19 (1/19.5, 1/19] > 703(0.00113) = 0.800 1/703 < 1.250
M1

20 (1/20, 1/19.5] > 760(0.00108) = 0.822 1/760 < 1.216

Small (0, 1/20] > 0.585
√
3/4x2

0.585 < 1.708

Table 1: A summary of classes: range of the side length
x, minimum occupied area, weights, and densities.

way, the total weight of items in bins opened for large
triangles, except possibly 12 of them, is exactly 1.

For medium triangles of class M1
k , we define the

weight to be 1/(2k2 − 2k), where 4 ≤ k ≤ 20. By
Lemma 1, the algorithm places 2k2 − 2k triangles of
this class in each open bin (except possibly the last ac-
tive bin), which implies the weight of all bins opened for
this class is exactly 1. Similarly, the weight of triangles
of class M2

k is defined as 1/(2k2−k), where 3 ≤ k ≤ 19.
This implies a weight of 1 for all bins (except possibly
the last one) opened for this class. To summarize, the
total weight of triangles in all bins opened for medium
items, except possibly 34 of them (one for each class),
is 1.

For a small triangle ∆ of size x, we define its weight
as area(∆)/0.585, where area(∆) =

√
3x2/4 is the area

of ∆. By Lemma 2, the occupied area of all bins opened
for small items (except a constant number of them) is
at least 0.585 which implies their total weight is at least
0.585/0585 = 1.

Table 1 gives a summary of the weights of items in
different classes. From the above argument, we conclude
the following:

Lemma 3 The total weight of triangles in each bin
opened by the algorithm, except possibly a constant num-
ber of then, is at least 1.

Next, we provide an upper bound for the total weight
of items in a bin of the optimal offline algorithm (Opt).

Lemma 4 The total weight of items in a bin of Opt is
less than 2.474.

Proof. Define the density of an item as the ratio be-
tween its weight and its area. An upper bound for the

density of items of each class is reported in Table 1. For
large and medium triangles, these values are simply the
ratio between the weight and minimum area of items in
each bin. For a small triangle ∆, the density is less than
1/0.585 = 1.708, which is the ratio between the weight
((
√

3x2/4)/0.585) and the area of ∆.
Note that the density of all triangles except those of

types L1 and L2 cannot be more than 1.926 (by Table 1).
In the following, we consider different cases, and show
that no bin B of Opt can have a total weight more than
2.474.

First, assume there are no triangles of type L1 or L2

in B. The density of all triangles is less than 1.926,
which implies the total weight of items in B is less than
1× 1.926 (which is < 2.474).

Assuming there is no item of type L1, there exist two
cases: (I) If there are two items of type L2, the total
weight of these two items is 2 × 1/2 = 1. Since the
remaining area is at most 1 − (2 × 0.197) < 0.606, the
total weight of the items that fit in the remaining area
would be at most 0.606× 1.926 < 1.168. Therefore, the
total weight of all items in B is less than 1+1.168 (which
is < 2.474). (II) If there is only one item of type L2,
it would have a weight of 1/2 and the remaining area
in B is at most 1 − 0.197 = 0.803. The total weight of
other items that fit in the remaining area of B would
be at most 0.803 × 1.926 < 1.547. Therefore, the total
weight of items in the bin will be less than 1/2 + 1.547
(which is < 2.474).

Note that no two items of type L1 fit in B. Assume
there is one item of type L1. The remaining area is
at most 1 − 0.288 = 0.712. In such case, we can only
place at most one item of type L2 in B. If there is no
item of type L2, the total weight of items that fit in the
remaining area of B is at most 0.712 × 1.926 < 1.372.
Thus the total weight of items in B would be less than
1 + 1.372 (which is < 2.474).

The only remaining case is when B contains a triangle
∆1 of type L1 and a triangle ∆2 of type L2 (see Fig-
ure 3). Assume the remaining area is tightly covered by
triangles of smaller sizes. It easy to check that when B
contains ∆1 and ∆2, there is no way to place triangles
of smaller sizes of class L3 in B. The total weights of
∆1 and ∆2 is 1 + 1/2 = 1.5. The remaining area in B
has size at most 1 − 0.288 − 0.197 = 0.515. Since the
density of items (except those of types L1, . . . , L3) is at
most 1.893 (by Table 1), the total weight of the items
would be at most 0.515× 1.893 < 0.974. Therefore, the
total weight of items in B is less than 1.5+0.974 (which
is equal to 2.474). �

Now, we give the main result of this section.

Theorem 5 There exists an online algorithm for pack-
ing equilateral triangles into squares with a competitive
ratio less than 2.474.
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Figure 3: The maximum weight for a bin of Opt is
achived when it contains an item of class L1 and an
item of class L2. Other items that fit in the bin will
have denisity smaller than 1.893.

Proof. For an input σ, let A(σ) and Opt(σ) denote
the cost of the presented algorithm and Opt, respec-
tively. Let w(σ) denote the total weight of items of
σ. Lemmas 3 and 4 imply that A(σ) ≤ w(σ) + c,
where c is a constant independent of the length of σ,
and Opt(σ) ≥ w(σ)/2.474. From these inequalities we
conclude A(σ) ≤ 2.474Opt(σ) + c, which proves an
upper bound 2.474 for the competitive ratio of the al-
gorithm. �

3 General Lower Bound

In this section, we show that no online algorithm for
triangle packing can achieve a competitive ratio better
than 80/53 ≈ 1.509. In our proof, we build sequences
containing only triangles of sizes x = 0.554, y = 0.676+
ε, and z = 0.816 + ε, where ε is a sufficiently small
constant. Note that triangles of size x are the largest
triangles of the class L5, and triangles of sizes y and z
belong to the classes L2 and L1, respectively.

Let σ = σ1σ2σ3 be a sequence of triangles, where σ1,
σ2, and σ3 are n replicas of the triangles of sizes x, y,
and z, respectively. Assume n is sufficiently large. We
compare the cost of any online algorithm A with that
of Opt after serving sequences σ1, σ1σ2, and σ1σ2σ3.

Lemma 6 Opt(σ1) = n/5 + 1, Opt(σ1σ2) ≤ n/2 + 1,
and Opt(σ1σ2σ3) ≤ n+ 1.

Proof. For σ1, Opt places five triangles in one bin;
see Figure 4a. Thus each bin, except potentially the
last one, contains five triangles, which gives a total of
n/5 + 1 bins for placing σ1. For σ1σ2, Opt can place
two triangles of size x with two triangles of size y in the
same bin (see Figure 4b), so all bins (except potentially
the last one), contain four triangles, which gives a total
of 2n/4+1 bins. For σ1σ2σ3, Opt can place one triangle
of each size x, y, z in the same bin; see Figure 4c. Thus

all bins include three triangles, which results a total of
at most 3n/3 + 1 bins for placing σ1σ2σ3. �

Now, we obtain the main result of this section.

Theorem 7 The competitive ratio of any online algo-
rithm A for triangle packing is at least 80

53 ≈ 1.509.

Proof. Let aij be the number of bins which include i
replicas of size x and j replicas of size y, where 1 ≤ i ≤ 5
and 0 ≤ j ≤ 2.

Denote by A(σ1) the number of bins opened by the al-
gorithm A for σ1. Note that if a square contains four or
five triangles of size x, then it cannot contain a triangle
of size y. Similarly, if a square contains three triangles
of size x, then it cannot contain more than one triangle
of size y. In summary,

A(σ1) = a10 + a11 + a12 + a20 + a21 + a22 + a30 + a31

+ a40 + a50.

Assume A has a competitive ratio of at most r. By
Lemma 6, for some constant c1,

A(σ1) ≤ r × n/5 + c1. (1)

By counting the number of triangles of size x, we obtain

a10 + a11 + a12 + 2a20 + 2a21 + 2a22 + 3a30

+ 3a31 + 4a40 + 5a50 = n.
(2)

Let b1 be the number of bins that include only one
replica of size y, and also let b2 be the number of bins
that include only two replicas of size y and no replica
of size x. Consider a packing of A after serving σ1σ2,
meaning that A has placed n triangles of size x and n
triangles of size y. In a similar way to that of A(σ1),
we can obtain A(σ1σ2), the number of bins opened by
A for σ1σ2:

A(σ1σ2) = a10 + a11 + a12 + a20 + a21 + a22 + a30 + a31

+ a40 + a50 + b1 + b2,

which can be bounded as follows (by Lemma 6, for some
constant c2):

A(σ1σ2) ≤ r × n/2 + c2. (3)

Counting the number of triangles of size y gives

a11 + 2a12 + a21 + 2a22 + a31 + b1 + 2b2 = n. (4)

Now, consider a packing of A after placing triangles
of size z. The algorithm A can place triangles of size z
in bins which either (I) include at most two triangles
of size x and no triangle of size y (i.e., a10 + a20 bins),
or (II) include one triangle of size x and one triangle of
size y (i.e., a11 bins), or (III) include only one triangle
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Figure 4: Opt uses different packings for different prefix sequences of σ1σ2σ3.

of size y (i.e., b1 bins). Except these bins, A has to
open one bin for each triangle of size y, which implies
n− a10 − a20 − a11 − b1 new bins. In summary,

A(σ1σ2σ3) = a12 + a21 + a22 + a30 + a31 + a40 + a50

+ b2 + n

By Lemma 6, for some constant c3, the number of
bins opened by A for σ1σ2σ3 bounds as follows:

A(σ1σ2σ3) ≤ r × n+ c3. (5)

Equations 1-5 should hold for a competitive ratio of r.
If we scale these equations by 1/n, the constants c1, c2,
and c3 can be ignored. Let αij = aij/n, β1 = b1/n, and
β2 = b2/n. The following linear program summarizes
the above discussion.

minimize r subject to

α10 + α11 + α12 + α20 + α21 + α22 + α30 + α31 + α40

+ α50 ≤ r/5;

α10 + α11 + α12 + α20 + α21 + α22 + α30 + α31 + α40

+ α50 + β1 + β2 ≤ r/2;

α12 + α21 + α22 + α30 + α31 + α40 + α50 + β2 + 1 ≤ r;
α10 + α11 + α12 + 2α20 + 2α21 + 2α22 + 3α30 + 3α31

+ 4α40 + 5α50 = 1;

α11 + 2α12 + α21 + 2α22 + α31 + β1 + 2β2 = 1;

αij , β1, β2 ≥ 0.

This linear program obtains the optimal value r =
80/53. Therefore, we conclude the actual competitive
ratio is at least 80/53. �
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Relaxed Disk Packing∗

Herbert Edelsbrunner† Mabel Iglesias-Ham‡ Vitaliy Kurlin§

Abstract

Motivated by biological questions, we study configurations
of equal-sized disks in the Euclidean plane that neither pack
nor cover. Measuring the quality by the probability that a
random point lies in exactly one disk, we show that the regu-
lar hexagonal grid gives the maximum among lattice config-
urations.

Keywords. Packing and covering, disks, lattices, Voronoi domains,
Delaunay triangulations.

1 Introduction

High-resolution microscopic observations of the DNA or-
ganization inside the nucleus of a human cell support the
Spherical Mega-base-pairs Chromatin Domain model [3,
10]. It proposes that inside the chromosome territories in
eukaryotic cells, DNA is compartmentalized in sequences
of highly interacting segments of about the same length [4].
Each segment consists of roughly a million base pairs and
resembles a round ball. The balls are tightly arranged within
a restricted space, tighter than a packing since they are not
rigid, and less tight than a covering to allow for external ac-
cess to the DNA needed for gene expression.

Motivated by these biological findings, [8] considered
configurations in which the overlap between the balls is lim-
ited and the quality is measured by the density, which we
define as the expected number of balls containing a random
point. We introduce a new measure that favors configura-
tions between packing and covering without explicit con-
straints on the allowed overlap. Specifically, we measure a
configuration by the probability a random point is contained
in exactly one ball. Since empty space and overlap between
disks are both discouraged, the optimum lies necessarily be-
tween packing and covering. The interested readers can find
references for traditional packing and covering in two and
higher dimensions in [2, 5]. In this paper, we restrict atten-
tion to equal-sized disks in the plane whose centers form a
lattice, leaving three and higher dimensions as well as non-
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lattice configurations as open problems. Our main result is
the following non-surprising fact.

Theorem 1 (Main) Among all lattice configurations in R2,
the regular hexagonal grid in which each disk overlaps the
six neighboring circles in 30◦ arcs maximizes the probability
that a random point lies exactly in one disk.

For obvious reasons, we call this the 12-hour clock config-
uration. While preparing the final version of this paper, we
have learnt that László Fejes Tóth in his book on Regular
Figures introduced the same measure and conjectured that
the 12-hour clock configuration is optimal among all con-
figurations in the plane. He mentions that J. Balázs proved
the conjecture for lattices [6, page 195]. Without finding any
written record, we are unsure whether we rediscover Balázs’
proof or we give a different proof for the same result. In any
case, we present the proof in four sections: preparing the
background in Section 2, showing an equilibrium condition
in Section 3, developing the main argument in Section 4, and
giving the technical details in Appendix A.

2 Background

In this section, we introduce notation for lattices, Voronoi
domains, and Delaunay triangulations.

Lattices. Depending on the context, we interpret an el-
ement of R2 as a point or a vector in the plane. Vectors
a, b ∈ R2 are linearly independent if αa + βb = 0 implies
α = β = 0. A lattice is defined by two linearly independent
vectors, a, b ∈ R2, and consists of all integer combinations
of these vectors:

L(a, b) = {ia+ jb | i, j ∈ Z}. (1)

Its fundamental domain is the parallelogram of points αa +
βb with real numbers 0 ≤ α, β ≤ 1. Writing ‖a‖ for
the length of the vector and γ for the angle between a and
b, the area of the fundamental domain is detL(a, b) =
‖a‖‖b‖ sin(γ). The same lattice is generated by different
pairs of vectors, and we will see shortly that at least one of
these pairs defines a non-obtuse triangle. We will be more
specific about this condition shortly, as it is instrumental in
our proof of the optimality of the regular hexagonal grid.

Voronoi domain. Given a lattice L, the Voronoi domain
of a point p ∈ L is the set of points for which p is the closest:

V (p) = {x ∈ R2 | ‖x− p‖ ≤ ‖x− q‖,∀q ∈ L}. (2)
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It is a convex polygon that contains p in its interior. Any two
Voronoi domains have disjoint interiors but may intersect in
a shared edge or a shared vertex. The lattice looks the same
from every one of its points, which implies that all Voronoi
domains are translates of each other: V (p) = p + V (0).
Similarly, central reflection through the origin preserves the
lattice, which implies that V (0) is centrally symmetric.

Figure 1: A primitive Voronoi diagram on the left, and a non-
primitive Voronoi diagram on the right. The Delaunay triangula-
tions are superimposed.

The Voronoi diagram of L is the collection of Voronoi do-
mains of its points. It is primitive if the maximum number
of Voronoi domains with non-empty common intersection is
3. In this case, the Voronoi domain is a centrally symmet-
ric hexagon; see Figure 1. In the non-primitive case, there
are generators that enclose a right angle, and the Voronoi do-
mains are rectangles. To the first order of approximation, the
area of any sufficiently simple and sufficiently large subset of
R2 is the number of lattice points it contains times the area
of V (0). Similarly, it is the number of lattice points times
the area of the fundamental domain. It follows that the area
of V (0) is equal to detL.

Packing and covering. For % > 0, we write B(p, %)
for the closed disk with center p and radius %. The pack-
ing radius is the largest radius, rL, and the covering radius
is the smallest radius, RL, such that B(0, rL) ⊆ V (0) ⊆
B(0, RL). The density of the configuration of disks with ra-
dius % centered at the points of L is the area of a disk divided
by the area of the Voronoi domain:

δL(%) = %2π
detL . (3)

It is also the expected number of disks containing a random
point in R2. The packing density is δL(rL), which is neces-
sarily smaller than 1. It is maximized by the regular hexag-
onal grid, H , for which we have δH(rH) = 0.906 . . .. The
covering density is δL(RL), which is necessarily larger than
1. It is minimized by the regular hexagonal grid for which we
have δH(RH) = 1.209 . . .. More generally, it is known that
H maximizes the density among all configuration of con-
gruent disks whose interiors are pairwise disjoint [11], and
it minimizes the density among all configurations that cover
the entire plane [9]. Elegant proofs of both optimality results
can be found in Fejes Tóth [5].

Delaunay triangulations. Drawing a straight edge be-
tween points p and q in L iff V (p) and V (q) intersect along
a shared edge, we get the Delaunay triangulation of L. In
the primitive case, the edges decompose the plane into trian-
gles. Among the six triangles sharing 0 as a vertex, three are
translates of each other and, going around 0, they alternate
with their central reflections. It follows that all six triangles
are congruent and, in particular, they have equally large cir-
cumcircles that all pass through 0. Since their centers are
vertices of the Voronoi domain of 0, we have the following
result.

Lemma 2 (Inscribed Voronoi Domain) The vertices of
V (0) all lie on the circle bounding B(0, RL).

The discussion above proves the Inscribed Voronoi Domain
Lemma in the primitive case. It is also true in the simpler,
non-primitive case in which V (0) is a rectangle. Return-
ing to the primitive case, we note that the two angles op-
posite to a shared edge in the Delaunay triangulation add
up to less than 180◦. In a lattice, these two angles are the
same and therefore both acute. The two types of triangles in
the Delaunay triangulation of a lattice can be joined across a
shared edge in three different ways. We can therefore make
the same argument three times and conclude that all angles
are less than 90◦. A slightly weaker bound holds in the non-
primitive case.

Lemma 3 (Non-obtuse Generators) Every lattice L in R2

has vectors a, b ∈ R2 with L = L(a, b) such that

(i) in the primitive case 0, a, b are the vertices of an acute
triangle,

(ii) in the non-primitive case 0, a, b are the vertices of a
non-obtuse triangle with a right angle at 0.

Assuming a, b satisfy the Non-obtuse Generators Lemma,
the triangle 0ab has edges of length ‖a‖, ‖b‖, and ‖c‖ =
‖a− b‖. In the non-primitive case (ii), ‖a‖ and ‖b‖ are the
lengths of the sides of the rectangle V (0), and ‖c‖ is the
length of a diagonal. We have ‖c‖2 = ‖a‖2 + ‖b‖2, and
therefore ‖a‖ ≤ ‖b‖ ≤ ‖c‖, possibly after swapping a and
b. In the primitive case (i), we can choose a, b, and c = a− b
such that ‖a‖ ≤ ‖b‖ ≤ ‖c‖. In this case, V (0) is a centrally
symmetric hexagon with distances ‖a‖, ‖b‖, ‖c‖ between an-
tipodal edge pairs.

3 Equilibrium Configurations

Given a lattice in R2, we are interested in the radius of the
disks for which the probability that a random point lies in-
side exactly one disk is maximized. Further maximizing this
probability over all lattices, we get the main result of this
paper.
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Partial disks. Fix a lattice L in R2. For a radius % > 0,
consider the set of points that belong to the disk centered at
the origin but not to any other disk centered at a point of L:

D(0, %) = B(0, %) \
⋃

06=p∈L
B(p, %). (4)

As illustrated in Figure 2, for radii strictly between the
packing radius and the covering radius, this set is partially
closed and partially open. We distinguish between the con-
vex boundary that belongs to the circle bounding B(0, %),
and the concave boundary that belongs to other circles:

∂xD(0, %) = ∂B(0, %) ∩D(0, %), (5)
∂vD(0, %) = ∂D(0, %) \ ∂xD(0, %). (6)

We note that ∂xD(0, %) = ∂B(0, %)∩V (0). By the Inscribed
Voronoi Domain Lemma, the vertices of V (0) are all at the
same distance from 0. This implies that for rL < % < RL,
the convex boundary consists of 2, 4, or 6 circular arcs that
alternate with the same number of circular arcs in the con-
cave boundary.

Figure 2: The shaded partial diskD(0, %) with its boundary divided
into a solid convex portion and a dotted concave portion.

Angles. Recall that the concave boundary consists of at
most three pairs of arcs, and let ϕi(%) be the angle of each of
the two arcs in the i-th pair, for i = 1, 2, 3. The total angle
of the concave boundary is

ΦL(%) =

3∑

i=1

2ϕi(%), (7)

and the total angle of the convex boundary is 2π − ΦL(%).
We have ΦL(rL) = 0 and ΦL(RL) = 2π, and between these
two limits, the function is continuous and monotonically in-
creasing.

Lemma 4 (Monotonicity) Let L be a lattice in R2. Then
ΦL : [rL, RL] → [0, 2π] is continuous, with ΦL(%1) <
ΦL(%2) whenever %1 < %2.

Proof. The continuity of the function follows from the fact
that ∂B(0, %) intersects ∂V (0) in at most a finite number of
points.

To prove monotonicity, we recall that 2π − ΦL(%) is the
total angle of ∂xD(0, %) = ∂B(0, %) ∩ V (0). The Voronoi
domain is a convex polygon with 0 ∈ V (0). Drawing circles
with radii %1 < %2 centered at 0, we let 0 ≤ θ < 2π and write
p1(θ) and p2(θ) for the points on the circles in direction θ.
Either both points belong to V (0), both points do not belong
to V (0), or p1(θ) ∈ V (0) but p2(θ) 6∈ V (0). The fourth
combination is not possible, which implies 2π − ΦL(%1) ≥
2π − ΦL(%2) or, equivalently, ΦL(%1) ≤ ΦL(%2). To prove
the strict inequality, we just need to observe that there is
an arc of non-zero length in ∂xD(0, %1) such that the cor-
responding arc in ∂B(0, %2) lies outside V (0) and therefore
does not belong to ∂xD(0, %2). �

Area. The probability that a random point belongs to ex-
actly one disk is the area of D(0, %) over the area of V (0).
The latter is a constant independent of the radius. We will
prove shortly that the former is a unimodal function in %with
a single maximum at the radius % = %L that balances the
lengths of the two kinds of boundaries; see Figure 3. We call
%L the equilibrium radius of L. Write AL : [rL, RL] → R
for the function that maps % to the area of D(0, %).

Figure 3: Increasing the radius grows D(0, %) along the convex
boundary and shrinks it along the concave boundary.

Lemma 5 (Equilibrium Radius) Let L be a lattice in R2.
The function AL : [rL, RL] → R is strictly concave, with a
unique maximum at the equilibrium radius %L that satisfies
ΦL(%L) = π.

Proof. Recall that ΦL(%) is the total angle of the concave
boundary ofD(0, %), and 2π−ΦL(%) is the total angle of the
convex boundary. When we increase the radius, the partial
disk grows along the convex boundary and shrinks along the
concave boundary. Indeed, the derivative is the difference
between the two lengths:

∂AL

∂% (%) = %[2π − ΦL(%)− ΦL(%] (8)

= 2%[π − ΦL(%)]. (9)
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The derivative vanishes when ΦL(%) = π, is positive when
ΦL(%) < π and negative when ΦL(%) > π, as claimed. �

4 Optimality of the Regular Hexagonal Grid

In this section, we present the proof of our main result. After
writing the probability that a random point lies in exactly one
disk as a function of the radius, we distinguish between three
cases, showing that the maximum is attained at the regular
hexagonal grid.

Probability. Given a lattice L in R2, we write rL < %L <
RL for the packing, equilibrium, and covering radii. Recall
that the probability in question is

PL(%L) = AL(%L)
‖a‖‖b‖ sin γ , (10)

in which L = L(a, b) and γ is the angle between a and b.
Recall furthermore that the convex boundary consists of at
most six arcs, two each with angle ϕ1, ϕ2, ϕ3, in which we
set the angle to zero if the arc degenerates to a point or is
empty.

Lemma 6 (Equilibrium Area) Let L = L(a, b) be a lattice
in R2 with angle γ between a and b. Then

PL(%L) =
2%2L

‖a‖‖b‖ sin γ ·
3∑

i=1

sinϕi. (11)

Proof. Recall that ‖a‖‖b‖ sin γ is the area of V (0). Let
Ain be the area of B(0, %L) ∩ V (0), let Aout be the area
of B(0, %L) \ V (0), and note that Ain − Aout is the area of
D(0, %L). Since Ain +Aout = %2Lπ, we have Ain −Aout =
%2Lπ − 2Aout. The portion of B(0, %L) outside the Voronoi
domain consists of up to three symmetric pairs of disk seg-
ments, with total area

Aout = 2

3∑

i=1

%2L
2 (ϕi − sinϕi) (12)

= %2L

(
π
2 −

3∑

i=1

sinϕi

)
, (13)

in which the second line is obtained using
∑3
i=1 ϕi = π

2
from the Equilibrium Radius Lemma. The probability is
Ain −Aout divided by the area of the Voronoi domain:

PL(%L) =
%2Lπ−2Aout

‖a‖‖b‖ sin γ . (14)

Together with (13) this implies the claimed relation. �

Case analysis. We focus on the primitive case in which
the Voronoi domain is a hexagon, considering the non-
primitive case a limit situation in which two of the edges
shrink to zero length. Let a, b ∈ R2 be generators of the

lattice satisfying the condition in the Non-obtuse Generators
Lemma, set c = a − b, and assume ‖a‖ ≤ ‖b‖ ≤ ‖c‖. Re-
call that these three lengths are the distances between parallel
edges of the hexagon. Further notice that we have rL = ‖a‖

2

for the packing radius and RL > ‖c‖
2 for the covering ra-

dius. As before, we write ϕi for the angles of the arcs of
∂xD(0, %), and we index such that ϕ1 ≥ ϕ2 ≥ ϕ3.

CASE 1: ‖a‖2 < %L ≤ ‖b‖2 . Then ϕ1 > 0 and ϕ2 = ϕ3 = 0.

CASE 2: ‖b‖2 < %L ≤ ‖c‖2 . Then ϕ1 ≥ ϕ2 > 0 and ϕ3 = 0.

CASE 3: ‖c‖2 < %L < RL. Then ϕ1 ≥ ϕ2 ≥ ϕ3 > 0.

For example the configuration depicted in Figure 2 falls into
Case 2. Using the expression for the probability in the Equi-
librium Area Lemma, we determine the maximum for each
of the three cases. Here we state the results, referring to
Appendix A for the proofs. By the probability we mean of
course the probability that a random point belongs to exactly
one disk.

Lemma 7 (Two Arcs) In Case 1, the maximum probability
is attained for ‖b‖ =

√
2‖a‖, γ = arccos 1

2
√
2

, and %L =

‖a‖/
√

2, which gives PL(%L) = 0.755 . . ..

Lemma 8 (Four Arcs) In Case 2, the maximum probability
is attained for ‖b‖ = ‖a‖, γ = arccos(

√
2 − 1), and %L =

‖a‖
√

1− 1/
√

2, which gives PL(%L) = 0.910 . . ..

Lemma 9 (Six Arcs) In Case 3, the maximum probability
is attained for ‖b‖ = ‖a‖ = ‖c‖, γ = π

3 and %L =
‖a‖/(2 cos π

12 ), which gives PL(%L) = 0.928 . . ..

Note that the lattice in the Six Arcs Lemma is the regular
hexagonal grid. Comparing the three maximum probabili-
ties, we see that the regular hexagonal grid gives the global
optimum; see Figures 4. For this lattice, we get %H such that

Figure 4: Left: for
√
2‖a‖ = ‖b‖ ≤ ‖c‖, the angle γ is between

arccos 1

2
√
2

and π
2

. Right: for ‖a‖ = ‖b‖ ≤ ‖c‖, the angle γ is
between π

3
and π

2
. In both cases, the probability increases as the

angle decreases, attaining its maximum at the minimum angle.

each disk overlaps with six others and in each case covers
30◦ of the bounding circle: the 12-hour clock configuration
in the plane. This implies the Main Theorem stated in Sec-
tion 1. We further illustrate the result by showing the graph
of the function that maps ‖a‖/‖b‖ and the angle γ to the
probability at the equilibrium radius; see Figure 5.
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Figure 5: The graph of the function that maps 0 ≤ ‖a‖/‖b‖ ≤
1 and arccos ‖a‖

2‖b‖ ≤ γ ≤ 90◦ to the probability that a random
point lies in exactly one disk. The thus defined domain resembles a
triangle and decomposes into three regions corresponding to Cases
1, 2, 3. The regular hexagonal grid is located at the lower left corner
of the domain.

5 Discussion

The main result of this paper is a proof that the 12-hour clock
configuration of disks in the plane maximizes the probability
that a random point lies in exactly one of the disks. Other
criteria favoring configurations between packing and cover-
ing can be formulated, see [8], and it would be interesting
to decide which one fits the biological data about DNA or-
ganization within the nucleus best. There are also concrete
mathematical questions related to the work in this paper:

• Is the 12-hour clock configuration optimal among all
configurations of congruent disks in the plane?

• What is the optimal lattice configuration of balls in R3?

To appreciate the difficulty of the second question, we note
that the FCC lattice gives the densest packing [7], while the
BCC lattice gives the sparsest covering [1]. Does one of
them also maximize the probability that a random point lies
inside exactly one ball?
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A Proofs

In this appendix, we give detailed proofs of the three Arc
Lemmas. As described in Section 4, the three lemmas add
up to a proof of the Main Theorem stated in Section 1 of
this paper. We begin with a few relations that will be useful
in all three proofs. Given a triangle with edges of lengths
‖a‖, ‖b‖, ‖c‖ and angle γ opposite the edge c, the law of
cosines implies

‖c‖2 = ‖a‖2 + ‖b‖2 − 2‖a‖‖b‖ cos γ. (15)

Assuming ‖a‖ ≤ ‖b‖ ≤ ‖c‖, the angle γ is at least as large
as each of the other two angles. From (15) together with
‖b‖ ≤ ‖c‖, we get cos γ ≤ ‖a‖

2‖b‖ . As justified by the Non-
obtuse Generators Lemma, we may assume the triangle is
non-obtuse, which implies

arccos ‖a‖2‖b‖ ≤ γ ≤ π
2 . (16)

The range of possible angles is largest for ‖a‖ = ‖b‖ where
we get 60◦ ≤ γ ≤ 90◦. Furthermore, we write the angles
ϕi of the arcs in the convex boundary of the partial disk in
terms of the edge lengths and the radius:

cos ϕ1

2 = ‖a‖
2% , (17)

cos ϕ2

2 = ‖b‖
2% , (18)

cos ϕ3

2 = ‖c‖
2% . (19)

The first relation holds provided ‖a‖2 ≤ % < RL, and sim-
ilar for the second and third relations. Finally, we note that
scaling does not affect the density of a configuration. We can
therefore set ‖b‖ = 1, which we will do to simplify compu-
tations.

Proof of the Two Arcs Lemma. Case 1 is defined by
‖a‖
2 < %L ≤ ‖b‖2 , which implies ϕ1 > 0 and ϕ2 = ϕ3 = 0.

Since sinϕ2 = sinϕ3 = 0, the probability at the equilibrium
radius simplifies to

PL(%L) =
2%2L

‖a‖‖b‖ sin γ · sinϕ1 (20)

= ‖a‖
‖b‖ sin γ , (21)

where we get the second line by combining ϕ1 = π
2 with

(17) to imply %L = ‖a‖/
√

2. For the remainder of this proof,
we normalize by setting ‖b‖ = 1. To maximize the proba-
bility, we choose ‖a‖ as large as possible and γ as small as
possible. From ‖a‖/

√
2 = %L ≤ 1

2 , we get ‖a‖ ≤ 1/
√

2,
and from ‖b‖ ≤ ‖c‖ we get γ ≥ arccos 1

2
√
2

. The two pa-
rameters can be optimized simultaneously, which gives

PL(%L) = 1
√
2 sin

(
arccos

1
2
√
2

) = 0.755 . . . . (22)

Proof of the Four Arcs Lemma. Case 2 is defined by
‖b‖
2 < %L ≤ ‖c‖2 , which implies ϕ1 ≥ ϕ2 > 0 and ϕ3 = 0.

The probability at the equilibrium radius is therefore

PL(%L) =
2%2L

‖a‖‖b‖ sin γ · (sinϕ1 + sinϕ2). (23)

To get a handle on the maximum of this function, we first
write the the sum of sinϕ1 and sinϕ2 and second the equi-
librium radius in terms of other parameters. Using cos 2α =
cos2 α − sin2 α and cos2 α + sin2 α = 1, we get cosϕ2 =
2 cos2 ϕ2

2 − 1, and since ϕ1 + ϕ2 = π
2 , we have sinϕ1 =

cosϕ2. Recalling (18), we get sinϕ1 = ‖b‖2/(2%2L)−1, and
recalling (17), we get sinϕ2 = ‖a‖2/(2%2L)− 1. Adding the
two relations gives

sinϕ1 + sinϕ2 = ‖a‖2+‖b‖2
2%2L

− 2. (24)

To find a substitution for the equilibrium radius, we begin
with (18), use ϕ2

2 = π
4 −

ϕ1

2 , and finally apply cos(α+β) =
cosα cosβ − sinα sinβ:

‖b‖
2%L

= cos
(
π
4 −

ϕ1

2

)
(25)

= 1√
2

(
cos ϕ1

2 + sin ϕ1

2

)
. (26)

Next, we substitute the two trigonometric functions using
(17) and sin2 α = 1 − cos2 α. Simplifying the resulting
relation and squaring it, we get

%2L = 1
2

(
‖a‖2 + ‖b‖2 −

√
2‖a‖‖b‖

)
. (27)

Plugging (24) and (27) into the equation for the probability
and normalizing by setting ‖b‖ = 1, we get

PL(%L) = 2
√
2‖a‖−‖a‖2−1
‖a‖ sin γ (28)

= 2
√
2‖a‖−‖a‖2−1

‖a‖

√√√√1−
(
√
2−‖a‖

2+1
2‖a‖

)2
(29)

where we maximize to get the second line by choosing γ as
small as possible. Specifically, γ is implicitly restricted by
‖b‖
2 < %L ≤ ‖c‖

2 , so we can use 4%2L ≤ ‖c‖
2 together with

(15) and (27) to get

cos γ ≤
√

2− ‖a‖
2+‖b‖2

2‖a‖‖b‖ . (30)

Checking with the Maple software [12], we find that the
right-hand-side of (29) increases in [0, 1] attaining its max-
imum at ‖a‖ = 1. We therefore get γ = arccos

(√
2− 1

)

from (30), %2L = 1− 1/
√

2 from (27), and

PL(%L) =

√
2
√

2− 2 = 0.910 . . . (31)

from (29).
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Proof of the Six Arcs Lemma. Case 3 is defined by
‖c‖
2 < %L < RL, which implies ϕ1 ≥ ϕ2 ≥ ϕ3 > 0. Start-

ing with the expression for the probability given in the Equi-
librium Area Lemma, we first express the sinϕi in terms of
the other parameters:

sinϕ1 =
‖a‖
√

4%2L−‖a‖2
2%2L

, (32)

sinϕ2 =
‖b‖
√

4%2L−‖b‖2
2%2L

, (33)

sinϕ3 = 1−
[
‖a‖
√

4%2L−‖b‖2+‖b‖
√

4%2L−‖a‖2
]2

8%4L
. (34)

To get (32), we use sin 2α = 2 sinα cosα with α = ϕ1

2 ,
together with (17). To get (33), we use the same trigonomet-
ric identity with α = ϕ2

2 , together with (18). To get (34),
we use the equilibrium condition together with sinϕ3 =
sin(π2 − ϕ1 − ϕ2) = cos(ϕ1 + ϕ2) = 1 − 2 sin2 ϕ1+ϕ2

2 ,
and finally substitute sin(α+β) = sinα cosβ+sinβ cosα,
with α = ϕ1

2 and β = ϕ2

2 .
To do the same for sin γ, we take the cosine of both sides

of the equilibrium condition, which is ϕ3

2 = π
4 −

ϕ1

2 −
ϕ2

2 .
Writing ci = cos ϕi

2 and si = sin ϕi

2 , for i = 1, 2, 3, and
applying standard trigonometric identities, we get

c3 = 1√
2
[c1c2 − s1s2 + s1c2 + c1s2]. (35)

c23 = 1
2 + (2c1c

2
2 − c1)

√
1− c21

+ (2c21c2 − c2)
√

1− c22. (36)

Using (17), (18), (19) and substituting ‖c‖2 using (15), we
get the following relation after a few rearrangements:

cos γ = ‖a‖2+‖b‖2−2
2‖a‖‖b‖ − ‖b‖

2−2%2L
4%2L‖b‖

√
4%2L − ‖a‖

2

− ‖a‖
2−2%2L

4%2L‖a‖

√
4%2L − ‖b‖

2
. (37)

Using cos2 γ = 1− sin2 γ, we can substitute sin γ in the for-
mula for PL(%L). We thus arrived at a relation that gives the
probability in terms of ‖a‖, ‖b‖, and %L only. While being
lengthy, this relation is readily obtained by plugging (32),
(33), (34), and (37) into (11). We therefore take the liberty
to omit the formula here and refer the interested readers to
the website of the second author of this paper1.

It remains to determine the parameters that maximize the
probability. To simplify this task, we normalize by setting
‖b‖ = 1. The probability is thus a function of two variables,
‖a‖ and %L. Using the Maple software, we compute the two
partial derivatives, ∂PL/∂‖a‖ and ∂PL/∂%L. Setting both

1A Maple file with the main steps in the formulas related with
this paper is available at http://mabelih9.wix.com/mabelhome#
!publications/cee5.

to zero, we get ‖a‖ = 1 matched up with three radius values:

%L = 1
2

(√
6−
√

2
)

= 0.517 . . . , (38)

%L = 1
2

√
C

1
3 − 1 + C−

1
3 = 0.582 . . . , (39)

%L = 1
2

(√
6 +
√

2
)

= 1.931 . . . , (40)

with C = 3 + 2
√

2. Setting ‖a‖ = ‖b‖ = 1, the covering
radius depends only on the angle γ, which ranges from π

3 to
π
2 . It is largest for γ = π

2 , where RL =
√

2/2 = 0.707 . . ..
The radius we get at the third root is larger than that and can
therefore be excluded.

Figure 6: The quadrangle in the plane defined by the length of a
and the radius is shaded. Along its boundary, we encounter three
local minima (two corners and a point along the right edge) and
three local maxima (a corner and a point each along the lower edge
and the right edge).

The maximum probability is attained at one of the two re-
maining roots or along the boundary of the domain region
that corresponds to Case 3. As illustrated in Figure 6, we
simplify the computation by taking a quadrangle that con-
tains this region. The quadrangle is defined by

√
2
2 ≤ ‖a‖ ≤ 1 (41)
1
2 ≤ % ≤ ‖c‖

2 sin γmax
, (42)

in which the first interval follows from the bounds that define
Case 3, and the second interval is obtained by limiting the
radius by the covering radius of the configuration in which
a and b enclose its maximum angle. The maximum angle
for Case 3, γmax, corresponds to the minimal angle for Case
2 derived from (30). The upper boundary on % is a convex
curve and so we replace it with the straight line connecting
its extremes.
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We evaluate the probability at the four vertices and, us-
ing the Maple software, at the roots of the derivatives along
the four edges. As shown in Figure 6, we find three lo-
cal minima alternating with three local maxima along the
boundary of the quadrangle. The maximum and minimum in
the interior of the right edge coincide with the roots in (38)
and (39). Among the three local maxima, the probability is
largest at (38), which is characterized by ‖a‖ = ‖b‖ = 1 and
%L = 1

2

(√
6−
√

2
)

= 1/(2 cos π
12 ). This gives PL(%L) =

0.928 . . ., as claimed in the Six Arcs Lemma. Indeed, plug-
ging the values into the equilibrium condition of Case 3, we
get ‖c‖ = 1, which shows that the probability is maximized
by the regular hexagonal grid.
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Approximating the Minimum Closest Pair Distance and Nearest Neighbor
Distances of Linearly Moving Points

Timothy M. Chan∗ Zahed Rahmati∗

Abstract

Given a set of n moving points in Rd, where each point
moves along a linear trajectory at arbitrary but con-
stant velocity, we present an Õ(n5/3)-time algorithm1

to compute a (1 + ε)-factor approximation to the min-
imum closest pair distance over time, for any constant
ε > 0 and any constant dimension d. This addresses an
open problem posed by Gupta, Janardan, and Smid [12].

More generally, we consider a data structure version
of the problem: for any linearly moving query point
q, we want a (1 + ε)-factor approximation to the min-
imum nearest neighbor distance to q over time. We
present a data structure that requires Õ(n5/3) space and
Õ(n2/3) query time, Õ(n5) space and polylogarithmic
query time, or Õ(n) space and Õ(n4/5) query time, for
any constant ε > 0 and any constant dimension d.

1 Introduction

In the last two decades, there has been a lot of re-
search on problems involving objects in motion in dif-
ferent computer science communities (e.g., robotics and
computer graphics). In computational geometry, main-
taining attributes (e.g., closest pair) of moving objects
has been studied extensively, and efficient kinetic data
structures are built for this purpose (see [17] and ref-
erences therein). In this paper, we pursue a different
track: instead of maintaining an attribute over time,
we are interested in finding a time value for which the
attribute is minimized or maximized.

Let P be a set of moving points in Rd, and denote by
p(t) the position (trajectory) of p ∈ P at time t. Let
d(p(t), q(t)) denote the Euclidean distance between p(t)
and q(t). The following gives the formal statements of
the two kinetic problems we address in this paper, gener-
alizing two well-known standard problems for stationary
points, closest pair and nearest neighbor search:

• Kinetic minimum closest pair distance: find a pair
(p, q) of points in P and a time instant t, such that
d(p(t), q(t)) is minimized.

∗Cheriton School of Computer Science, University of Waterloo,
{tmchan, zrahmati}@uwaterloo.ca

1The notation Õ is used to hide polylogarithmic factors. That
is, Õ(f(n)) = O(f(n) logc n), where c is a constant.

• Kinetic minimum nearest neighbor distance: build
a data structure so that given a moving query
point q, we can find a point p ∈ P and a time
instant t such that d(p(t), q(t)) is minimized.

Related work. The collision detection problem, i.e.,
detecting whether points ever collide [10], has attracted
a lot of interest in the context. This problem can triv-
ially be solved in quadratic time by brute force. For a set
P of n linearly moving points in R2, Gupta, Janardan,
and Smid [12] provided an algorithm, which detects a

collision in P in O(n5/3 log6/5 n) time.
Gupta et al. also considered the minimum diameter

of linearly moving points in R2, where the velocities
of the moving points are constant. They provided an
O(n log3 n)-time algorithm to compute the minimum di-
ameter over time; the running time was improved to
O(n log n) using randomization [7, 9]. Agarwal et al. [2]
used the notion of ε-kernel to maintain an approxima-
tion of the diameter over time. For an arbitrarily small
constant δ > 0, their kinetic data structure in R2 uses
O(1/ε2) space, O(n+1/ε3s+3/2) preprocessing time, and
processes O(1/ε4+δ) events, each in O(log(1/ε)) time,
where s is the maximum degree of the polynomials of
the trajectories; this approach works for higher dimen-
sions.

For a set of n stationary points in Rd, the closest
pair can be computed in O(n log n) time [5]. Gupta et
al. [12] considered the kinetic minimum closest pair dis-
tance problem. Their solution is for the R2 case, and
works only for a limited type of motion, where the points
move with the same constant velocity along one of the
two orthogonal directions. For this special case their al-
gorithm runs in O(n log n) time. Their work raises the
following open problem: Is there an efficient algorithm
for the kinetic minimum closest pair distance problem in
the more general case where points move with constant
but possibly different velocities and different moving di-
rections?

For a set of stationary points in Rd, there are data
structures for approximate nearest neighbor search with
linear space and logarithmic query time [4]. We are not
aware of any prior work on the kinetic minimum nearest
neighbor distance problem. Linearly moving points in
Rd can be mapped to lines in Rd+1 by viewing time as
an extra dimension. There have been previous papers
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on approximate nearest neighbor search in the setting
when the data objects are lines and the query objects
are points [13], or when the data objects are points and
the query objects are lines [16] (in particular, the lat-
ter paper contains some results similar to ours for any
constant dimension d). However, in our problem, both
data and query objects are mapped to lines; moreover,
our distance function does not correspond to Euclidean
distances between lines in Rd+1.

An approach to solve the kinetic minimum closest pair
distance and nearest neighbor distance problems would
be to track the closest pair and nearest neighbor over
time using known kinetic data structures [3, 18, 19].
The chief drawback of this approach is that the closest
pair can change Ω(n2) times in the worst case, and the
nearest neighbor to a query point can change Ω(n) times
(even if approximation is allowed). The challenge is to
solve the kinetic minimum closest pair distance problem
in o(n2) time, and obtain a query time o(n) for the
kinetic minimum nearest neighbor distance problem. To
this end, we will allow approximate solutions.

Our contributions. We focus on the setting where each
point in P (and each query point) has an arbitrary, con-
stant velocity, and moves along an arbitrary direction.

We present an algorithm to compute a (1 + ε)-factor
approximation to the minimum closest pair distance in
Õ(n5/3) time for any constant ε > 0. More generally,
we present a data structure for the kinetic minimum
nearest neighbor distance problem with approximation
factor 1 + ε with Õ(m) preprocessing time and space,
and Õ(n/m1/5) query time for any m between n and
n5. For example, setting m appropriately, we obtain a
data structure with Õ(n5/3) space and Õ(n2/3) query
time, Õ(n5) space and Õ(1) query time, or Õ(n) space
and Õ(n4/5) query time. The results hold in any con-
stant dimension d. Our solution uses techniques from
range searching (including multi-level data structures
and parametric search).

Perhaps the most notable feature of our results is that
the exponents do not grow as a function of the dimen-
sion. (In contrast, for the exact kinetic minimum clos-
est pair problem, it is possible to obtain subquadratic-
time algorithms by range searching techniques, but with
much worse exponents that converge to 2 as d increases.)

2 Kinetic Minimum Nearest Neighbor Distance

Let p(t) = p′+tp′′ denote the linear trajectory of a point
p ∈ P , where p′ ∈ Rd is the initial position vector of p,
and p′′ ∈ Rd is the velocity vector of p. For any moving
query point q with a linear trajectory q(t) = q′ + tq′′,
we want to approximate the minimum nearest neighbor
distance to q over time.

We first consider the following decision problem:

Decision Problem 1 Given a point q and a real pa-
rameter r, determine whether there exists p ∈ P with

min
t∈R

d(p(t), q(t)) ≤ r. (1)

Afterwards we use the parametric search technique to
find the minimum nearest neighbor distance of q in P .

Approximating Decision Problem 1. Let w be a vec-
tor in Rd. The Euclidean norm ‖w‖ of w can be ap-
proximated as follows [6]. Assume θ = arccos(1/(1+ε)),
for a small ε > 0. The d-dimensional space around
the origin can be covered by a set of b = O(1/θd−1) =
O(1/ε(d−1)/2) cones of opening angle θ [20]. i.e., there
exists a set V = {v1, . . . ,vb} of unit vectors in Rd that
satisfies the following property: for any w ∈ Rd there is
a unit vector vi ∈ V such that ∠(vi,w) ≤ θ. Note that
∠(vi,w) = arccos(vi ·w/‖w‖), where vi ·w denotes the
inner product of the unit vector vi and w. Therefore,

‖w‖/(1 + ε) ≤ max
i∈B

vi ·w ≤ ‖w‖, (2)

where B = {1, . . . , b}.
From (2), we can use the following as an approxima-

tion of d(p(t), q(t)):

max
i∈B

vi · (p′ − q′ + t(p′′ − q′′)).

Let p′i = vi · p′, p′′i = vi · p′′, q′i = vi · q′, and
q′′i = vi · q′′. From the above discussion, a solution to
Decision Problem 1 can be approximated by deciding
the following.

Decision Problem 2 Given a point q and a real pa-
rameter r, test whether there exists p ∈ P with

min
t∈R

max
i∈B

(p′i − q′i) + t(p′′i − q′′i ) ≤ r. (3)

Solving Decision Problem 2. Consider the inequality
in (3). Minimizing the maximum of γi(t) = (p′i − q′i) +
t(p′′i − q′′i ), over i ∈ B, is equivalent to finding the low-
est point on the upper envelope of the linear functions
γi(t) in the tγ-plane; see Figure 1(a). Thus (3) is equiv-
alent to checking whether the lowest point of the upper
envelope is on or below the line γ = r.

Let ti = (r − p′i + q′i)/(p
′′
i − q′′i ) denote the time that

γi(t) intersects with γ = r, i.e., the root for γi(t) = r.
Let mi = p′′i − q′′i denote the slope of the linear function
γi(t).

Deciding the following is equivalent to deciding
whether the lowest point on the upper envelope of γi(t)
is on or below the line γ = r.

• The maximum root of the linear functions γi(t) =
r with negative slope is less than or equal to the
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Figure 1: The intersections of γi with γ = r are shown
by empty circles (#) if the slope mi of γi is positive,
or empty squares (2) if mi < 0. (a) The lowest point
(bullet point  ) on the upper envelope is below γ = r.
(b) The lowest point on the upper envelope is above
γ = r, m3 < 0, m4 > 0, and t3 > t4.

minimum root of the linear functions with positive
slope. In other words,

max
i:mi<0

ti ≤ min
j:mj>0

tj . (4)

Note that if the lowest point of the upper envelope
is above the line γ = r, then there exists a pair (i, j) of
indices such that the clause (mi > 0)∨ (mj < 0)∨ (ti <
tj) is false (see Figure 1(b)); otherwise, the conjunction
of all clauses (for all i, j ∈ B) is true. Therefore, we can
obtain the following.

Lemma 1 The inequality of (3) is satisfied iff the fol-
lowing conjunction is true:

∧

i,j∈B
((p′′i > q′′i ) ∨ (p′′j < q′′j ) ∨ (ti < tj)),

where ti = (r − p′i + q′i)/(p
′′
i − q′′i ).

Each condition in the clauses in Lemma 1 may be
represented as a half-space in the following manner.

Consider the inequality ti < tj , i.e.,

r − p′i + q′i
p′′i − q′′i

<
r − p′j + q′j
p′′j − q′′j

.

Assuming (p′′i < q′′i )∧ (p′′j > q′′j ), ti < tj is equivalent to

(r − p′i + q′i)(p
′′
j − q′′j )− (r − p′j + q′j)(p

′′
i − q′′i ) > 0,

which can be expanded as

rp′′j − rq′′j − p′ip′′j + p′iq
′′
j + q′ip

′′
j − q′iq′′j − rp′′i + rq′′i

+ p′jp
′′
i − p′jq′′i − p′′i q′j + q′′i q

′
j > 0.

By factoring some terms in the above inequality, we
obtain

p′i(q
′′
j ) + p′′i (−r − q′j) + p′j(−q′′i ) + p′′j (r + q′i) + p′′i p

′
j

− p′ip′′j + rq′′i − rq′′j − q′iq′′j + q′′i q
′
j > 0,

which can be expressed in the form

A1X1 +A2X2 +A3X3 +A4X4 +X5 > A5,

where X1 = p′i, X2 = p′′i , X3 = p′j , X4 = p′′j , X5 =
p′′i p
′
j − p′ip′′j , A1 = q′′j , A2 = −r − q′j , A3 = −q′′i , A4 =

r + q′i, and A5 = −rq′′i + rq′′j + q′iq
′′
j − q′′i q′j .

Lemma 2 For each pair (i, j) of indices, the clause
(p′′i > q′′i ) ∨ (p′′j < q′′j ) ∨ (ti < tj) in Lemma 1 can
be represented as

(X2 > −A3) ∨ (X4 < A1) ∨ (5)

(A1X1 +A2X2 +A3X3 +A4X4 +X5 > A5). (6)

From Lemmas 1 and 2, we have reduced Decision
Problem 2 to a searching problem S, which is the con-
junction of O(b2) simplex range searching problems Sl,
l = 1, . . . , O(b2). Each Sl is a 5-dimensional simplex
range searching problem on a set of points, each with
coordinates (X1, X2, X3, X4, X5) that is associated with
a point p ∈ P . The polyhedral range (5–6) for Sl, which
can be decomposed into a constant number of simplicial
ranges, is given at query time, where A1, . . . , A5 can be
computed from the query point q and the parameter r.

Data structure for the searching problem S. Multi-
level data structures can be used to solve complex range
searching problems [1] involving a conjunction of mul-
tiple constraints. In our application, we build a multi-
level data structure D to solve the searching problem S
consisting of O(b2) levels. To build a data structure for
a set at level l, we form a collection of canonical subsets
for the 5-dimensional simplex range searching problem
Sl, and build a data structure for each canonical subset
at level l + 1. The answer to a query is expressed as
a union of canonical subsets. For a query for a set at
level l, we pick out the canonical subsets correspond-
ing to all points in the set satisfying the l-th clause by
5-dimensional simplex range searching in Sl, and then
answer the query for each such canonical subset at level
l + 1.

A multi-level data structure increases the complexity
by a polylogarithmic factor (see Theorem 10 of [1] or
the papers [8, 14]). In particular, if S(n) and Q(n) de-
note the space and query time of 5-dimensional simplex
range searching, our multi-level data structure D re-

quires O(S(n) logO(b2) n) space and O(Q(n) logO(b2) n)
query time.

Assume n ≤ m ≤ n5. A 5-dimensional simplex range
searching problem can be solved in Õ( n

m1/5 ) query time
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with Õ(m) preprocessing time and space [8, 14]. We
conclude:

Lemma 3 Let n ≤ m ≤ n5. A data structure D for De-

cision Problem 2 can be built that uses O(m logO(b2) n)
preprocessing time and space and can answer queries in

O( n
m1/5 logO(b2) n) time.

Solving the optimization problem. Consider Decision
Problem 2, and denote by r∗ the smallest r satisfying
(3). We use Megiddo’s parametric search technique [15]
to find r∗. This technique uses an efficient parallel al-
gorithm for the decision problem to provide an efficient
serial algorithm for the optimization problem (comput-
ing r∗); the running time typically increases by loga-
rithmic factors. Suppose that the decision problem can
be solved in T time sequentially, or in τ parallel steps
using π processors. Then the running time to solve the
optimization problem would be O(τ · π + T · τ · log π).

In our case, T = π = O( n
m1/5 logO(b2) n) (by

Lemma 3) and τ = O(logO(b2) n), where b2 =
O(1/εd−1). Therefore, we obtain the main result of this
section:

Theorem 4 Let n ≤ m ≤ n5. For a set P of n lin-
early moving points in Rd for any constant d, there

exists a data structure with O(m logO(1/εd−1) n) prepro-
cessing time and space that can compute a (1+ε)-factor
approximation of the minimum nearest neighbor dis-
tance to any linearly moving query point over time in

O( n
m1/5 logO(1/εd−1) n) time.

Remark 1 Our approach can be modified to compute
the minimum distance over all time values inside any
query interval [t0, tf ]. The conjunction in Lemma 1 be-
comes

∧
i,j∈B((p′′i > q′′i ) ∨ (p′′j < q′′j ) ∨ (ti < tj) ∨ (ti >

tf ) ∨ (tj < t0)). The condition ti > tf is equivalent to
r − p′i + qi > tf (p′′i − q′′i ), which can be expressed in
the form B1Y1 + Y2 < B2, where Y1 = p′′i , Y2 = p′i,
B1 = tf , and B2 = r + qi + tfq

′′
i . This corresponds

to a 2-dimensional halfplane range searching problem.
The condition tj < t0 can be handled similarly. We can

expand the entire expression into a disjunction of 5O(b2)

subexpressions, where each subexpression is a conjunc-
tion of O(b2) conditions and can then be handled by a
multi-level data structure similar to D.

Remark 2 Our approach can be used to compute the
exact minimum nearest neighbor distance in the L∞
metric to any moving query point. Let vj and vd+j
be the unit vectors of the negative xj-axis and posi-
tive xj-axis, respectively, in the d dimensional Carte-
sian coordinate system, where 1 ≤ j ≤ d. We define
V = {v1, . . . ,vb} with b = 2d, and solve the problem as
before.

3 Kinetic Minimum Closest Pair Distance

To approximate the kinetic minimum closest pair dis-
tance, we can simply preprocess P into the data struc-
ture of Theorem 4, and for each point p ∈ P , approxi-
mate the minimum nearest neighbor distance to p. The

total time is O((m+ n2

m1/5 ) logO(1/εd−1) n) time. Setting
m = 5/3 gives the main result:

Theorem 5 For a set of n linearly moving points in Rd
for any constant d, there exists an algorithm to compute
a (1 + ε)-factor approximation of the minimum closest

pair distance over time in O(n5/3 logO(1/εd−1) n) time.

Remark 3 By Remark 2, we can compute the exact
minimum closest pair distance in the L∞ metric, of a set

of n linearly moving points in Rd, in O(n5/3 logO(d2) n)
time.

4 Discussion

For a set P of linearly moving points in Rd, we have
given efficient algorithms and data structures to ap-
proximate the minimum value of two fundamental at-
tributes: the closest pair distance and distances to near-
est neighbors. We mention some interesting related
open problems along the same direction:

• The Euclidean minimum spanning tree (EMST) on
a set P of n moving points in R2 can be main-
tained by handling nearly cubic events [19], each
in polylogarithmic time. Can we compute the min-
imu weight of the EMST on P , for linearly moving
points, in subcubic time?

• For a set of n moving unit disks, there exist ki-
netic data structures [11] that can efficiently answer
queries in the form “Are disks D1 and D2 in the
same connected component?”. This kinetic data
structure handles nearly quadratic events, each in
polylogarithmic time. Can we find the first time
when all the disks are in the same connected com-
ponent in subquadratic time?

References

[1] P. K. Agarwal and J. Erickson. Geometric range
searching and its relatives. Contemporary Mathemat-
ics, 223:1–56, 1999.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan.
Approximating extent measures of points. Journal of
the ACM, 51(4):606–635, 2004.

[3] P. K. Agarwal, H. Kaplan, and M. Sharir. Kinetic and
dynamic data structures for closest pair and all nearest
neighbors. ACM Transactions on Algorithms, 5:4:1–37,
2008.

139



CCCG 2015, Kingston, Ontario, August 10–12, 2015

[4] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching in fixed dimensions. Journal
of the ACM, 45(6):891–923, 1998.

[5] J. L. Bentley and M. I. Shamos. Divide-and-conquer
in multidimensional space. In Proceedings of the 8th
Annual ACM Symposium on Theory of Computing
(STOC), pages 220–230, ACM, 1976.

[6] T. M. Chan. Approximating the diameter, width, small-
est enclosing cylinder, and minimum-width annulus. In-
ternational Journal of Computational Geometry & Ap-
plications, 12(1-2):67–85, 2002.

[7] T. M. Chan. An optimal randomized algorithm for max-
imum Tukey depth. In Proceedings of the 15th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 430–436, SIAM, 2004.

[8] T. M. Chan. Optimal partition trees. Discrete & Com-
putational Geometry, 47(4):661–690, 2012.

[9] K. L. Clarkson. Algorithms for the minimum diameter
of moving points and for the discrete 1-center problem,
1997. http://kenclarkson.org/moving diam/p.pdf.

[10] K. Fujimura. Motion Planning in Dynamic Environ-
ments. Springer-Verlag, Secaucus, NJ, USA, 1992.

[11] L. Guibas, J. Hershberger, S. Suri, and L. Zhang. Ki-
netic connectivity for unit disks. Discrete & Computa-
tional Geometry, 25(4):591–610, 2001.

[12] P. Gupta, R. Janardan, and M. Smid. Fast algorithms
for collision and proximity problems involving moving
geometric objects. Computational Geometry, 6(6):371–
391, 1996.

[13] S. Mahabadi. Approximate nearest line search in high
dimensions. In Proceedings of the 26th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 337–354, SIAM, 2015.
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Time-Windowed Closest Pair∗

Timothy M. Chan† Simon Pratt†

Abstract

Given a set of points in any constant dimension, each of
which is associated with a time during which that point
is active, we design a data structure with O(n log n)
space that can find the closest pair of active points
within a query interval of time in O(log log n) time using
a quadtree-based approach in the word-RAM model.

1 Introduction

Let P be a set of n points in Rd. Additionally, let
each point p ∈ P be associated with a time tp at which
that point is active. In the time-windowed closest pair
problem, we want to preprocess P into a data structure
that can efficiently determine the closest pair of points
that are active during an interval of time [t1, t2] called
a time window.

Time-windowed geometric problems are motivated by
Geographic Information System (GIS) data which some-
times consists not only of longitude, latitude, and alti-
tude coordinates but also time. Bannister et al. [3] ex-
amined time-windowed versions of convex hull, approx-
imate spherical range searching, and approximate near-
est neighbor queries. Their solution for this last prob-
lem is to store the points in a balanced binary search
tree indexed by time, and store the Z-order (also known
as Morton or shuffle order) [4] of subsets of the points.
However, the time-windowed closest pair problem ap-
pears more challenging, because it involves minimizing
quadratically many pairs.

We can consider the time of each point as its coordi-
nate in the (d+1)th dimension. If we do so, the problem
becomes finding the closest pair of points within a strip
in Rd+1. Sharathkumar and Gupta [10] wrote a tech-
nical report in which they solve the problem of finding
the closest pair in 2 dimensions within a query range, a
special case of which is when the range is a strip. Their
solution can be used to solve the time-windowed closest
pair problem in 1 dimension in O

(
n log2 n

)
space and

O(log n) query time.
Our approach answers queries in O(log log n) time

using O(n log n) space and O(n log n log log n) prepro-
cessing time in the w-bit word-RAM model for any

∗Research supported by The Natural Sciences and Engineering
Research Council of Canada and the Ontario Graduate Scholar-
ship.
†{tmchan,s2pratt}@cs.uwaterloo.ca

constant dimension d. (The algorithm finds the ex-
act closest pair.) Here, we assume the time value of
each point is an integer from 0 to n − 1 and that each
point has a distinct time value. If time is given as a
w-bit integer instead, we can pre-sort the time values
and replace them by their ranks; this adds the cost of a
predecessor search to the query time (which is at most

O
(

min{logw, logw n,
√

log n/ log log n}
)

[9]).

The main idea behind our approach is to compute a
centroid cell B of a quadtree, consider O(n) pairs in
which one point is inside the centroid cell and the other
is outside, then recurse on P ∩B and P \B.

The idea of the centroid cell of a quadtree is due to
Arya et al. [2]. In that paper they describe a data struc-
ture related to quadtrees called a Balanced Box Decom-
position (BBD) tree, which they use to answer approx-
imate nearest neighbor queries efficiently.

2 Preliminaries

We work in the w-bit word-RAM model, which models
the computer as a sequence of w-bit memory locations
each indexed by a w-bit integer. In this model, we as-
sume that w ≥ log n and standard operations on words
take constant time.

Let P be a set of n points in Rd, and B is a hypercube
(which we call a cell) containing those points. To build
the quadtree for P , we divide B into 2d congruent child
hypercubes. For each of these child hypercubes which
contain more than a single point, we recursively build a
quadtree for that box.

The following lemma, similar to Lemma 4 from Arya
et al. [2], bounds the number of points in a hypercube by
a constant with respect to the hypercube’s side length
and the distance between the closest pair within that
hypercube.

Lemma 1 (Packing) If a point set has closest-pair
distance at least r and lies in a d-dimensional hyper-
cube with side length at most b · r, then there are less
than c0(b + 1)d points, where c0 is some constant that
depends only on d. We call c0 the packing constant.

The following lemma is due to Arya et al. [2]
(Lemma 1).

Lemma 2 (Centroid) Given a point set P containing
n points, there exists a quadtree cell B, which we call a
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centroid cell, such that |P ∩B| ≤ αn and |P \B| ≤ αn
for some constant α < 1 that depends only on d.

Recursive application of this lemma gives a data
structure on a set of points P , called a balanced
quadtree [5], defined as a binary tree where the root
stores B, the left subtree is the balanced quadtree for
P ∩ B, and the right subtree is the balanced quadtree
for P \B where B is a centroid cell of P .

We have the following lemma due to Chan [5] (Obser-
vation 3.2, Lemma 3.3), that says if we draw a constant
number of grids over our points, each shifted by some
amount, then we can guarantee that any pair of points
must be in the same cell in at least one such grid. Since
quadtree cells are related to grid cells, this also implies
that the closest pair will be in the same quadtree cell if
we build a constant number of quadtrees.

Lemma 3 (Shifting) Suppose d is even. Let v(j) =
(bj2w/(d+1)c, . . . , bj2w/(d+1)c) ∈ Rd. For any points
p and q and r = 2` such that ||p− q||∞ ≤ r, there exists
j ∈ {0, 1, . . . , d} such that p+ v(j) and q+ v(j) belong to
the same c1r-grid cell, where c1 is the smallest power of
2 bigger than or equal to 2d+ 2. We call c1 the shifting
constant.

While the preceding lemma requires that d be even,
for odd values of d we can use d+ 1.

3 Decision Problem

Before we solve the time-windowed closest pair prob-
lem, it helps to consider the decision problem version, in
which we are additionally given a fixed distance r and
we want to preprocess P into a data structure which
can efficiently determine, for any query time window,
if there exists a pair of active points pq such that the
distance between p and q is at most r. We call such a
pair a satisfying pair.

The main idea of our approach is to use a constant
number of shifted grids, which by Lemma 3 ensures that
any two points will appear in the same cell together in
at least one such shifted grid. For each point, we con-
sider a constant number of its time-order predecessors
and successors within the same cell, which by Lemma 1
we know must include a satisfying pair if one exists.
From there, we reduce the problem to a standard 2-
dimensional dominance range searching problem.

3.1 Computing Candidate Satisfying Pairs

We begin by bucketing the points of P into grid cells
with side length c1r

′, where c1 is the shifting constant
from Lemma 3 and r′ is the smallest power of 2 bigger
than or equal to r. Each grid cell is assigned a label
` and for each point p we create a tuple (`, tp, p). We

can determine the label of the grid cell containing each
point by hashing in O(n) total expected time.

For each cell, we build a time-ordered array of the
points within that cell. This is done by running radix
sort on the tuples created in the previous step, sorting
first by grid cell label, and then by time. The radix sort
takes O(n) time.

For each such point p, we consider its c0(c1 + 1)d

predecessors and the same number of successors in the
time-ordered array, where c0 is the packing constant
from Lemma 1. Let q be such a predecessor or successor.
If the distance between p and q is at most r, then tp and
tq form a candidate satisfying pair.

We do the preceding steps d + 1 times, where each
time the cells are shifted by v(j) for j ∈ {0, 1, . . . , d} as
defined in Lemma 3. We union together the results to
build the full set of candidate satisfying pairs.

Lemma 4 There are O(n) candidate satisfying pairs.

Proof. Over the d+1 shifts, the total is upper-bounded
by (d+ 1) · c0(c1 + 1)dn = O(n).

�

Lemma 5 If a time window contains a satisfying pair,
then the time window must contain a candidate satisfy-
ing pair.

Proof. Let pq be a satisfying pair for the window which
is closest in terms of time order. From Lemma 3, there
exists j ∈ {0, 1, . . . , d} such that p+ v(j) (which we will
call p′) and q + v(j) (which we will call q′) are in the
same grid cell of side length c1r. Since p′ and q′ are
active, all points between them in time order must also
be active. No two points strictly between p′ and q′ can
have distance smaller than r, for otherwise we would
have a satisfying pair that is closer than pq in terms of
time order. By Lemma 1 there are less than c0(c1 + 1)d

points strictly between p′ and q′. Therefore p′q′ must
be among the candidate satisfying pairs.

�

3.2 Reduction to 2D Dominance Range Emptiness

Now that the number of pairs we need to consider is
reduced to O(n), we would like to store these pairs in
a data structure to support efficient querying. Specifi-
cally, given a query window [t1, t2] we wish to determine
if there exists a candidate satisfying pair pq such that
t1 ≤ min{tp, tq} and t2 ≥ max{tp, tq}.

Consider each candidate satisfying pair as
a point in 2 dimensions with coordinates
(−min{tp, tq},max{tp, tq}). Our query problem is
equivalent to determining whether the quadrant
(−∞,−t1] × (−∞, t2] contains any of these points.
This is exactly the 2D dominance range emptiness
problem. This problem can be solved by computing
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the minima of the 2D point set [8] and testing whether
the query point is above or below the staircase formed
by the minima. Computing the minima of O(n) points
takes O(n) time by a standard sweep-line algorithm,
assuming that the x-coordinates have been pre-sorted.
Since the x-coordinates are in {0, . . . , n−1}, pre-sorting
takes O(n) time.

We can use an array to store the y-value of the stair-
case at every x-value; this requires O(n) words of space.

To save space, we can build a succinct rank/select
data structure [7] with all the same time bounds but
using just 2n+ o(n) bits of space. We do so by consid-
ering the staircase as a monotone chain (after negating
the x-coordinates) through the n× n grid from the ori-
gin to (n− 1, n− 1). This grid is effectively a plot with
start time on the x-axis, and end time on the y-axis.
We can encode a monotone chain as a sequence of 2n
bits. Starting at the origin, whenever the chain moves
upwards from end time i to i+ 1, we store a 0 bit. Sim-
ilarly, whenever the chain moves rightwards, we store
a 1 bit. The answer to the query is yes if and only if
t2 ≥ rank(select(t1)), where select(i) denotes the po-
sition of the ith 1 in the sequence and rank(j) denotes
the number of 1s in the first j positions of the sequence.
The rank and select operations take constant time.

We have thus proven the following result:

Theorem 6 The decision problem version of the time-
windowed closest pair problem in any fixed dimension
can be solved in O(1) time using O(n) bits of space
and O(n) expected preprocessing time in the word-RAM
model.

4 Closest Pair

To solve the original time-windowed closest pair prob-
lem, the main new idea is to replace shifted grids with
shifted balanced quadtrees. For each point outside of
the centroid cell, we consider a constant number of its
time-order predecessors and successors within the cen-
troid cell. We then recurse separately on the points
inside and outside of the centroid cell. This divide-and-
conquer approach gives us O(n log n) candidate pairs.
From there, we reduce the problem to a 2-dimensional
dominance range minimum problem.

4.1 Computing Candidate Pairs

We describe our algorithm to generate candidate pairs
recursively. We first compute the centroid cell B of the
given point set P . Define the set of neighbors N(p) of a
point p as its c0(2c1 + 1)d time-order predecessors and
successors within the centroid cell B, where c0 is the
packing constant from Lemma 1 and c1 is the shifting
constant from Lemma 3. For each point p outside of

the centroid, we consider each pair pq for q ∈ N(p) as a
candidate pair. We then recurse on P ∩B and P \B.

We run the preceding algorithm d + 1 times, where
each time the quadtrees are shifted by v(j) for j ∈
{0, 1, . . . , d} as defined in Lemma 3. We union together
the results to build the full set of candidate pairs.

Lemma 7 There are O(n log n) candidate pairs.

Proof. For each fixed shift, the number of candidate
pairs is given by the recurrence P (n) ≤ P (n1)+P (n2)+
c0(2c1+1)dn, where n1 and n2 are the number of points
inside and outside of the centroid respectively.

Since n1 + n2 = n and n1, n2 ≤ αn, the recurrence
solves to P (n) = O(n log n).

�

Lemma 8 The closest pair for any time window must
be among the candidate pairs.

Proof. Let pq be the closest pair in the window, with
distance r. From Lemma 3, there exists j ∈ {0, 1, . . . , d}
such that p + v(j) (which we will call p′) and q + v(j)

(which we will call q′) are in the same quadtree cell
of side length c1r

′ where r′ is the smallest power of 2
greater than r.

There are 3 cases. Either p′, q′ are both inside or
outside of the centroid cell B, or one is inside and the
other is outside of B. The first 2 cases can be handled
by induction. Now we are in case 3, so suppose q′ is
inside the centroid. (The case where p′ is inside the
centroid is symmetric.)

From Lemma 1, there are no more than c0(2c1 + 1)d

active points in the centroid cell B, since B has side
length at most 2c1r. Since p and q are active during
the time window, all points between them in time or-
der must also be active. Therefore, there are less than
c0(2c1 + 1)d points between p and q in time order, so
q ∈ N(p). �

4.2 Reduction to 2D Dominance Range Minimum

Now that the number of pairs we need to consider is
reduced to O(n log n), we would like to store these pairs
in a data structure to support efficient querying. Specif-
ically, given a query window [t1, t2] we wish to find
a candidate pair pq such that t1 ≤ min{tp, tq} and
t2 ≥ max{tp, tq} while minimizing the distance d(p, q).

Consider each candidate pair as a weighted
point in 2 dimensions with coordinates
(−min{tp, tq},max{tp, tq}) and weight d(p, q). Our
query problem is equivalent to finding a point in the
quadrant (−∞,−t1] × (−∞, t2] with the minimum
weight. This is exactly the 2D dominance range
minimum problem, which we can solve by using
standard techniques. Namely, we first lift the 2D
weighted points to 3D where the weights become
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z-coordinates. We compute the staircase polyhedron of
the 3D point set, defined as the region of all points that
are not dominated by any input point. Then a query
can be answered by finding the highest point on the
staircase polyhedron at a given x- and y-coordinate.
Computing the staircase polyhedron is related to the
standard problem of computing the minima of the
3D point set [8, 1] and can be done by a standard
sweep-plane algorithm. For a set of N points in 3D,
the sweep-plane algorithm takes O(N log logN) time
using van Emde Boas trees, assuming that the x- and
y-coordinates have been pre-sorted (the z-coordinates
need not be pre-sorted). Since the x-coordinates are
in {0, . . . , n− 1}, pre-sorting can be done in O(N + n)
time.

Finding the highest point of the staircase polyhedron
(a monotone polyhedron in 3D) at a query x- and y-
coordinate reduces to point location in a 2D subdivi-
sion of O(N) size, after projecting the faces onto the
xy-plane. We can use Chan’s planar orthogonal point
location structure [6] as a black box to answer queries
in O(log logN) time using O(N) space and O(N) pre-
processing time.

Setting N = O(n log n) gives our main result:

Theorem 9 Time-windowed closest pair queries in any
fixed dimension can be answered in O(log log n) time
using O(n log n) words of space and O(n log n log log n)
preprocessing time in the word-RAM model.

4.3 A Lower Bound on the Number of Candidate
Pairs

As a final remark, we point out that any approach which
stores all candidate pairs must use Ω(n log n) space by
proving the following observation.

Observation 1 There exists a set of n points, where
each point is associated with a time value, such that
there are Ω(n log n) distinct closest pairs over all possi-
ble time windows.

Proof. Our construction works in one dimension. Sup-
pose n is a power of 2. The base case n = 2 is trivial.
To construct a set S of n points on a line, we first re-
cursively construct a set S1 of n/2 points, and duplicate
S1 to create S2. We increase the labels of points in S2

by n/2 and we shift the points along the line by δ for a
sufficiently small δ > 0 (less than half of the closest pair
distance in S1). Since the time labels of S1 and S2 are
disjoint, any closest pair between points in S remains a
closest pair for some time window. Symmetrically, we
have the same closest pairs between points in S2. In
addition, for each time value i ∈ {1, . . . , n/2}, the pair
of points with time values i and i+n/2 is a closest pair
for the time window [i, i+n/2], because the pair has the

smallest possible distance δ, and any other pair with dis-
tance δ has time values of the form j and j+n/2, which
can’t both lie inside [i, i+n/2]. This gives n/2 additional
closest pairs. Therefore, the number of distinct closest
pairs is given by the recurrence C(n) ≥ 2C(n/2) + n/2,
which solves to C(n) = Ω(n log n).

(Note: the construction can alternatively be de-
scribed without recursion using bit-reversal permuta-
tions.) �
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An Output-Sensitive Algorithm for Computing Weighted α-Complexes∗

Donald R. Sheehy†

Abstract

An α-complex is a subcomplex of the Delaunay tri-
angulation of a point set P ⊂ Rd that is topologi-
cally equivalent to the union of balls of radius α cen-
tered at the points of P . In this paper, we give an
output-sensitive algorithm to compute α-complexes of
n-point sets in constant dimensions, whose running time
is O(f log n log α

s ), where s is the smallest pairwise dis-
tance and f is the number of simplices in the cα-complex
for a constant c. The algorithm is based on a refinement
of a recent algorithm for computing the full Delaunay
triangulation of P . We also extend the algorithm to
work with weighted points provided the weights are ap-
propriately bounded. The new analysis, which may be
of independent interest, bounds the number of intersec-
tions of k-faces of a Voronoi diagram with (d− k)-faces
of the Voronoi diagram of a carefully constructed super-
set.

1 Introduction

The starting point for many algorithmic problems in
computational geometry is the discrete representation
of continuous objects. The α-complex gives a topolog-
ically faithful representation of a union of balls as a
subcomplex of the Delaunay triangulation of the cen-
ters [6]. Weighted α-complexes model the case where
the radii of the balls are permitted to vary.

As with the Delaunay triangulation, the α-complex
has a dramatic difference in the number of simplices
in best- and worst-case examples. However, it can be
that even though the Delaunay triangulation may be
large, say Θ(ndd/2e) simplices, the α-complex may still
be quite small. Thus, our goal is to compute the α-
complex without computing the full Delaunay triangu-
lation. Our approach will be to modify a recent output-
sensitive algorithm for computing Delaunay triangula-
tions [11] as well as providing a new perspective to the
analysis that gives nearly tight bounds on the number
of bistellar flips in a restricted case of kinetic Delaunay
triangulations, a result of independent interest.

Contributions Our main contributions are the follow-
ing.

∗Partially supported by the National Science Foundation under
grant number CCF-1464379
†University of Connecticut don.r.sheehy@gmail.com

1. We introduce a generalization of the aspect ratio
of a Voronoi cell that applies also to the cells of
dimension less than d and relate the aspect ratio
to the number of flips needed in removing a sub-
set of vertices from a Delaunay triangulation in the
output-sensitive Delaunay triangulation algorithm
of Miller and Sheehy [11]. This gives a tighter anal-
ysis and also leads to the following algorithmic re-
sults.

2. We give a generalization of the Miller-Sheehy al-
gorithm to handle weighted points, assuming the
weight of any point is less than half the distance to
its nearest neighbor.

3. We give a variation of the algorithm that returns
the (weighted) α-complex of the point set without
computing the full Delaunay triangulation.

Figure 1: The Voronoi diagram and α-complex of a
point set in the plane.

Related Work The classic reference for α-complexes
is the survey by Edelsbrunner [6]. Several interesting
variations of α-complexes have been proposed including
conformal α-complexes [8] which use an alternative to
weighting to approximate variations in radii and alpha-
beta witness complexes [1] which relax the condition
that the output be embedded in Rd.

We put a restriction on the class of weight func-
tions that are permitted. A generalization to arbitrary
weights would mean a new output-sensitive algorithm
for convex hulls. The restriction is precisely that used by
Cheng et al. [4] on sliver exudation, a method that adds
weights to Delaunay triangulations to eliminate certain
badly shaped simplices. That work is closely related to
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further use of weights in surface reconstruction to ac-
count for curvature [3]. Other curve and surface recon-
struction algorithms explicitly use α-complexes [2, 13].

2 Background

Voronoi and Power Diagrams The Euclidean norm
of a point x ∈ Rd is denoted ‖x‖ and the Euclidean
distance between points x, y ∈ R2 is ‖x − y‖. The dis-
tance from a point to a set is defined as d(x, P ) :=
minp∈P ‖x − p‖. A weighted point set is a finite set
P ⊂ Rd and a weight function w : P → R≥0. An un-
weighted set may be viewed as a weighted set with all
weights 0. The power of a weighted point p is the func-
tion πp(x) := ‖p − x‖2 − w(p)2. The power distance
between a point x and a weighted set P is defined as
πP (x) := minp∈P πp(x). The power diagram VorP of
a weighted point set P is the set of nonempty polyhe-
dra called Voronoi cells indexed by subsets S ⊆ P as
follows.

VorP (S) := {x ∈ Rd | ∀s ∈ S : πP (x) = πs(x)}

One can easily check that for unweighted point sets, this
yields the standard Euclidean Voronoi diagram.

The dual diagram, DelP , is the set of convex clo-
sures of the sets S such that VorP (S) is nonempty.
Duals of power diagrams go by several names includ-
ing weighted Delaunay triangulations, regular triangu-
lations, and coherent triangulations. These names as-
sume that the points are in sufficiently general posi-
tion that the duals are triangulations. In general the
weighted Delaunay triangulation is the orthogonal pro-
jection in Rd of the lower convex hull of the points
P+ := {(p, ‖p‖2 − w(p)2) ∈ Rd+1 | p ∈ P}.

We say that a point set P is mildly weighted if for
all p ∈ P , we have w(p) < 1

2 minq∈P\{p} ‖p − q‖. In
particular, this implies that if the points are viewed as
balls with radii equal to the weights, then the balls are
disjoint. Unweighted points are mildly weighted.

For mildly weighted points P , we define the weighted
feature size as

fP,w(x) :=
√

min
(u,v)∈(P

2)
max
p∈{u,v}

πp(x).

This is the square root of the second smallest power
distance from x to a point of P . If the points were not
mildly weighted, the feature size could be imaginary at
some points. If the points are unweighted, then we will
simply write fP for the feature size, and, in this case,
the square root of the power distance is just the Eu-
clidean distance. The function fP is sometimes called
the Ruppert local feature size and is ubiquitous in the
analysis of Delaunay and Voronoi refinement mesh gen-
eration [12].

Weighted α-Complexes An orthoball of a set of
weighted points S is a ball B with center c and radius
r such that πp(c) = r2 for all p ∈ S. The minimum ra-
dius for an orthoball of S is called the orthoradius. For
unweighted points, the orthoball is called the circumball
and the orthoradius is called the circumradius.

The α-offsets of a weighted point set are defined as
Pα := {x ∈ Rd | πP (x) ≤ α2}. A Voronoi cell of
a subset σ ⊆ P restricted to the offsets is defined
as VorαP (σ) := VorP (σ) ∩ Pα and the corresponding
Voronoi diagram is VorαP := {VorαP (σ) | σ ⊆ P}. The
α-complex is the subcomplex of the Delaunay triangu-
lation restricted to the α-offsets as follows.

DelαP := {σ ∈ DelP | VorαP (σ) 6= ∅}.

Equivalently the α-complex may be defined as the
nerve of set of clipped Voronoi cells {ball(p, α) ∩
VorP (p) | p ∈ P}, i.e. an abstract simplicial com-
plex with a simplex for every subset of P whose cor-
responding clipped Voronoi cells have a common inter-
section. The Nerve Theorem, a standard result in alge-
braic topology guarantees that DelαP is homotopy equiv-
alent to Pα. This topological guarantee was extended
by Edelsbrunner and Shah [7] and forms the foundation
of many of the topological guarantees in surface recon-
struction [5].

Aspect Ratios of Voronoi Cells We will assume here
and throughout that all Voronoi cells are bounded and
convex. There are two different ways this will be en-
forced. First, we will consider a global bounding ball
Ω that contains all the points and restrict our atten-
tion to the intersection of the full Voronoi cells with Ω.
Second, when considering α-complexes, we will intersect
the Voronoi cell of a point p with the ball of radius α
centered at P . Having bounded cells allows the follow-
ing definition (illustrated in Figure 2).

Definition 1 If P is a set of mildly weighted points and
F ∈ V orP , the aspect ratio of F is defined as

aspectP (F ) :=
maxx∈F fP,w(x)

miny∈F fP,w(y)
.

More generally, we let aspectP denote the geomet-
ric mean of the aspect ratios of all Voronoi cells (of all
dimensions) in VorP , i.e.

aspectP :=

( ∏

F∈VorP

aspect(F )

)1/f

,

where f = |VorP |. A more useful way to write this
definition is the following.

f log(aspectP ) =
∑

F∈VorP

log(aspectP (F )). (1)
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Figure 2: The aspect ratio of two cells of a Voronoi
diagram. Left: a 2-dimensional cell. Right: a 1-
dimensional cell. In both cases, the distances are mea-
sured from the point of P (in the interior of the 2-
dimensional cell) to the nearest and farthest points in
the cell F .

Well-Spaced Points A set of points M inside a bound-
ing domain Ω is called τ -well-spaced if for all q ∈ M ,
aspectM (VorM (q)) ≤ τ . As Voronoi cells of well-spaced
points are nearly balls, simple packing arguments im-
ply that there is a constant c1 such that VorM (q) has
at most c1 faces for all q ∈ M . Given a set of n
points P and a bounding ball Ω, there exists a τ -well-
spaced superset M of P as long as τ > 2. Asymp-
totically minimal well-spaced supersets are graded in
the sense that there is a constant K such that for all
v ∈ M , we have fP (v) ≤ KfM (v). The grading con-
dition implies that there is a constant c2 such that for
all r > 0, at most c2 points of M have Voronoi cells
intersecting annulus(q, r, 2r) for any q ∈ P [14], where
annulus(q, r, 2r) denotes ball(q, 2r)\ball(q, r). The con-
stants K, c1 and c2 only depend on d and τ . More-
over, such a superset can be found in O(n log n + |M |)
time [10]. Finally, we will use another important fact
about graded, well-spaced point sets, namely that there
is a constant γ such that r ≤ γfM (x) for all x in any
empty ball of radius r (see [9, Lemma 6.1]).

We will say a point set P is annulus-free if there is no
point p and radius R such that ball(p, r) contains more
than one point of P and annulus(p, r, 10r) contains no
points of P . The constant 10 here is arbitrary. The
size of a τ -well-spaced superset M from an annulus-
free set P is known to be O(n), so the running time to
compute M is O(n log n) [14]. For α-complexes, point
sets that are not annulus-free are rather uninteresting:
if r > α then the ball points in the ball form a separate
component; if r � α then the points are much closer
than the scale and so replacing them with a single point
results in (Hausdorff-)close offsets.

A Kinetic View of Refinement Given a set S ⊂ Rd of
d+ 2 points in general position, there are precisely two
different triangulations of S. A bistellar flip is a local
change in a triangulation that swaps between the two

triangulations of such a subset of d+ 2 points. Given a
point set P in a bounding ball B and a constant τ , there
exists a τ -well-spaced superset M ⊇ P . Starting from
the Delaunay triangulation of M , one may obtain the
Delaunay triangulation of P , by incremental bistellar
flips that ultimately remove the points of M \P except
those on the convex hull. This is done by changing the
weights linearly and tracking the incremental changes
that occur in the weighted Delaunay triangulation. As
the change in weights may be viewed as a change in
heights for a kinetic convex hull problem, the combi-
natorial changes can all be computed by replacing the
coordinates in the usual Delaunay in-sphere predicate
with the linear functions describing the motion. These
changes are stored in a heap and are processed one at a
time.

3 The Algorithm

Figure 3: The algorithm is illustrated from top to bot-
tom in terms of the Voronoi diagram. Starting from the
input points (black), Steiner points are added (white).
Weight is then added to the input points causing lo-
cal changed to the Voronoi diagram until the weighted
Voronoi cells of the input points contain the α-offsets.

In this section, we describe the algorithm for com-
puting the α-complex of a set of mildly weighted points
and prove its correctness. The algorithm starts by build-
ing a linear-size Delaunay triangulation of a well-spaced
superset M of the input points P . The extra points
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are called Steiner points. Then it adjusts the weights
to match the input weights, leaving the weights of the
Steiner points as zero. The projective view of weighted
Delaunay triangulation assigns a height to a point p
equal to ‖p‖2 − w(p)2. Now, this height is treated as a
(d+1)st coordinate and the weighted Delaunay triangu-
lation is the orthogonal projection of the lower convex
hull back into Rd. In the algorithm, we treat the weights
as a function of time, so, the weight w(p) is specified in
the input but the algorithm uses

w(p, t) =

{√
w(p)2 + t if p ∈ P

w(p) otherwise.

The weighted point set at time t is denoted Mt. The
height of a point p at time t is

h(p, t) := ‖p‖2 − w(p, t)2.

As t increases, the input points get pulled downward.
Generically, each combinatorial change in the weighted
Delaunay triangulation is a single bistellar flip. As the
input points move downward, the Steiner points are
flipped out of the triangulation. Note that the defi-
nition of w(p, t) guarantees that the height h(p, t) is ei-
ther constant or a linear function of t. Weighted points
S = {p1, . . . , pd+2} in Rd have a common orthoball ex-
actly when they lie on a common hyperplane after lift-
ing. Thus, we can check this condition by computing

flipS(t) = det




p1,1 · · · pd+2,1

... · · ·
...

p1,d · · · pd+2,d

h(p1, t) · · · h(pd+2, t)
1 · · · 1



.

Note that flipS(t) is a linear function of t and so we can
compute the flip time tS satisfying flipS(tS) = 0. More
generally, when the coordinates of the points (and not
just the heights) are polynomials in t, flipS(t) is some
polynomial, and computing the roots of flipS(t) gives
the changes in the Delaunay triangulation as the points
move. This more general setting is the quintessential
example in the field of kinetic data structures, a gener-
alization of the line-sweep paradigm.

In our case, we are only modifying the height and so
the algebraic computations are much simpler. The main
data structure is a heap called the flip heap that stores
the possible flips ordered by time. We identify each flip
with a facet in DelMt

The steps of the construction given
in Algorithm 1.

The following lemma guarantees that stopping the
kinetic part of the algorithm at time t = α2, will still
allow us to construct the α-complex.

Lemma 2 If a simplex σ ∈ DelP is contained in a d-
simplex σ′ ∈ DelP , of orthoradius at most

√
t then the

Algorithm 1 Compute the α complex for a mildly
weighted point set.

1: procedure AlphaComplex(P, α)
2: Compute a graded, τ -well-spaced superset M of
P in a bounding ball B containing P .

3: For each facet F of DelM , compute the flip time
tF and insert the key-value pair (tF , F ) into the flip
heap. Skip the insertion if tF > α2.

4: while The flip heap is nonempty do
5: Pop a facet F off the heap
6: Attempt to flip F , and push any new facets

to the heap if their flip time is at most α2.

7: Output all simplices containing only points of P
that have an orthoradius at most α.

flip time when σ first appears in the AlphaComplex
algorithm is at most t.

Proof. First, observe that for sufficiently large α, every
simplex of DelP will appear at some time. Let t0 be the
time when σ first appears and let c be the orthocenter
of the corresponding flip. Let p be any vertex of σ, so
t0 = πp(c). This means that c is the orthocenter of
σ′, the smallest d-dimensional simplex (by orthoradius)
in DelP containing σ. Suppose for contradiction that
t0 > t. At time t, some vertex q of M has a Voronoi cell
containing c such that q 6= p. So, πq(c, t) < πp(c, t) and
so it follows from the definition of the power distance
that 0 ≤ πq(c) ≤ πp(c) − t. Because t0 = πp(c), the
preceding inequality implies that t0 ≤ t, a contradiction.
Therefore, we conclude that the flip time t0 when σ first
appears is at most t as claimed. �

Lemma 2 now implies the following theorem as it
guarantees that the algorithm finds all simplices of the
α-complex despite stopping at time α2.

Theorem 3 Given a set P of mildly weighted points
and a parameter α, the AlphaComplex algorithm
above returns the weighted α-complex of P .

4 Analysis

The starting point for the analysis of the running time
of our output-sensitive algorithm for α-complexes is the
following lemma of Miller & Sheehy (proven as a first
step in Lemma 6 of [11]) describing the flips in the al-
gorithm; it says that the flips are in one-to-one corre-
spondence with intersections between VorM and VorP .
We extend it to the weighted case.

Lemma 4 Let P ⊂ Rd be a finite point set and let M ⊇
P be any superset of P . A set S of d+2 points of M will
be involved in a flip in the kinetic refinement reversal if
and only if VorM (S \ P ) ∩VorP (S ∩ P ) 6= ∅.
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The preceding lemma gives a static way to count the
kinetic changes in the algorithm; it suffices to count in-
tersections between the starting and ending Voronoi dia-
grams. In previous work, a coarse bound on the number
of intersections was given by exploiting the fact that the
point set M in the algorithm is well-spaced. That anal-
ysis give a bound of O(log ∆) flips per simplex. We will
now give a more refined analysis that bounds these flips
instead in terms of a more local parameter. Inciden-
tally, this will also improve the running-time guarantee
for certain known hard instances for Delaunay trian-
gulation, such some that are known to produce Θ(n2)
simplices in R3.

Lemma 4 implies a natural way to partition the set
of flips by assigning the set of points S in the flip to the
simplex S ∩P of DelP . This is clearly possible, because
according to the lemma VorP (S∩P ) must be nonempty
for the flip to occur and so S ∩P ∈ DelP . To count the
total flips, it will suffice to bound the number of flips
assigned to each simplex of DelP .

Lemma 5 Let P ⊂ Rd be a set of mildly weighted
points. Let M be a τ -well-spaced superset of P . Let
F ∈ VorP be any face. There is a constant c that de-
pends only on d and τ such that

|{G ∈ VorM | F ∩G 6= ∅}| ≤ c log(aspectP (F )).

Proof. Let S ⊂ P be such that F = VorP (S) and let
q ∈ S be any point. Recall from Section 2, for graded
supersets M , there is a constant c2 such that for all r >
0, at most c2 points of M have Voronoi cells intersecting
annulus(q, r, 2r). Moreover, there is a constant c1 such
that each such Voronoi cell has at most c1 faces. Let
x = argmaxx∈F fP,w(x) and y = argminy∈F fP,w(y). Let

Ai = annulus(q, 2ir, 2i+1r) for all integers i, where r =
‖q − y‖. By Lemma 9, ‖x − q‖ ≤ r aspectP (F ). It

follows that F ⊂ ⋃dlog(aspectP (F ))e−1
i=0 Ai. As there are

at most c1c2 intersections in any Ai and thus at most
c1c2dlog(aspectP (F ))e faces of VorM intersect F . �

We first give an upper bound on the total number of
flips in terms of the aspect ratio of VorP . This bound
applies independent of the value of α and thus gives
a potentially tighter bound on the number of flips in
computing the full Delaunay triangulation of P .

Theorem 6 For a mildly weighted point set P and
any constant α ≥ 0, the total number of flips in the
AlphaComplex algorithm is O(f log(aspectP )), where
f = |VorP |.

Proof. By Lemma 4 and (1), it will suffice to
prove that each k-face F of VorP intersects at most
O(log aspect(F )) (d − k)-faces of VorM , which is pre-
cisely the conclusion of Lemma 5. �

The following lemma guarantees that the flips that
occur in the algorithm, all happen “close” to the input
points. That is, none of the intersections causing a flip
are farther than a constant times α from the points of P .
This is the key to proving an output-sensitive running
time for α-complexes as it says that the output sim-
plices are discovered (approximately) in order of their
orthoradius.

Lemma 7 Let P be a set of mildly weighted points, let
p ∈ P , let α ∈ R, and let x be the center of a flip in the
AlphaComplex algorithm that occurs at time t. There
is a constant c3 that depends only on τ and d such that
if fP (p) ≤ 2

√
2α and t ≤ α2, then ‖x− p‖ ≤ c3α.

Proof. Let b := w(p, t) =
√
w(p)2 + t ≤

√
2α, where

the last inequality follows from the mildness assump-
tion and the hypothesis that t ≤ α2. Let r be the
radius of the orthoball of the flip centered at x, so
r =

√
‖x− p‖2 − b2. Let y be the point on the line seg-

ment xp such that ‖x− y‖ = r. Now, for τ -well-spaced
points M , it is known that there is a constant γ such
that any ball of radius r that contains no points of M
has the property that r ≤ γfP (z) for all z in the ball.
So, in our case, this implies that r ≤ γfP (y) because
y ∈ ball(x, r) and no points M lie in this ball.

We consider two cases. First, if r < b, then ‖x−p‖2 =
r2 + b2 implies that ‖x − p‖ ≤ 2α. So in that case,
it suffices to choose c3 ≥ 2. Second, if r ≥ b, then
similarly,

‖x− p‖ ≤
√

2r

≤
√

2γfM (y)

≤
√

2γfP (y)

≤
√

2γ(fP (p) + ‖p− y‖)
≤
√

2γ(2
√

2α+ b)

≤ 6γα.

So, c3 = 6γ is the desired constant. �

The preceding lemma provides the main new tool
for analyzing the running time of AlphaComplex and
also indicates why the output-sensitive term is not pre-
cisely the output size but rather the size of a constant
factor larger α-complex.

Theorem 8 For a mildly weighted, annulus-free point
set P ⊂ Rd, the total running time of AlphaComplex
(P, α) is O(f log(n) log(α/s)) where s := minp∈P fP (p),
f = |Delc3αP |, and c3 is the constant from Lemma 7.

Proof. The preprocessing phase to compute M and
DelM takes O(n log n) time [12]. Adjusting DelM to
form DelMt

requires only a constant number of flips per
vertex. This fact is used in the work of Cheng et al. on
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sliver exudation [4], but also follows from the arguments
of Lemma 7.

The main loop processes flips and adds them to a
heap. Lemma 7 implies that all of the flips are contained
in P c3α. Let f be the number of faces of Vorc3αP . The
aspect ratio of each such face is at most log(c3α/s).
So, Theorem 6 implies that the total number of flips is
O(f log(α/s)). Not every flip on the heap is performed,
but at most a constant number of potential flips are
added to the flip heap for every actual flip, so the total
number of heap operations is also O(f log(α/s)). Thus,
the total running time is O(f log(n) log(α/s)). �

5 Conclusion

In this paper, we generalized the output-sensitive algo-
rithm of Miller and Sheehy for Delaunay triangulations
to also give guarantees for mildly weighted points and
for α-complexes. Along the way, we generalized the no-
tion of the aspect ratio of a Voronoi cell to give a mean-
ingful definition for weighted Voronoi cells of dimension
less than d. This new definition gives a sharper analysis
for the Miller and Sheehy algorithm and also simplifies
the analysis of the modified algorithm.

One future direction is to look at more recent gen-
eralizations of α-complexes introduced for topological
inference from point cloud data such as the alpha-beta
witness complexes of Attali et al. [1]. It may also be
useful to apply this approach to Voronoi-based mani-
fold reconstruction as many use the Delaunay triangu-
lation restricted to the manifold which is a subcomplex
of the Delaunay triangulation restricted to a union of
balls (see for example [2, 13]). We are also interested in
relaxing the mild weighting assumption and replacing it
with a Lipschitz condition on the weights. In that case,
weights could be larger as long as they don’t vary too
quickly.
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A The Weighted Aspect Ratio

In the following lemma, we show that if we replace the
power distance with the Euclidean distance, the aspect
ratio cannot go up.

Lemma 9 Let P be a mildly weighted point set. Let
S ⊂ P and let F = VorP (S), where |S| ≥ 2. Let x =
argmaxx∈F fP,w(x) and y = argminy∈F fP,w(y). For all
q ∈ S, ‖q − x‖ ≤ ‖q − y‖aspectP (F ).

Proof. First, observe that by the choice of x and y, we
know that fP,w(x)2 = πq(x) and fP,w(y)2 = πq(y). The
desired inequality now follows from the definitions of πq
and aspectP (F ) as follows.

‖q − x‖2 = πq(x) + w(q)2

= πq(y)aspectP (F )2 + w(q)2

≤ aspectP (F )2(πq(y) + w(q)2)

= ‖q − y‖2aspectP (F )2.

�
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Dynamic data structures for approximate Hausdorff distance in the word
RAM

Timothy M. Chan∗ Dimitrios Skrepetos†

Abstract

We give a fully dynamic data structure for maintaining
an approximation of the Hausdorff distance between two
point sets in a constant dimension d, a standard prob-
lem in computational geometry. Our solution has an
approximation factor of 1 + ε for any constant ε > 0
and expected update time O( logU

log logn ), where U is the
universe size, and n is the number of the points. The re-
sult of the paper greatly improves over the previous ex-
act method, which required O(n5/6polylogn) time and
worked only in a semi-online setting. The model of com-
putation is the word RAM model.

1 Introduction

The problem of computing the Hausdorff distance be-
tween a red point set R and a blue point set B is to find
maxb∈B minr∈R d(b, r) where d(·, ·) is a distance func-
tion. The dynamic version of the Hausdorff distance
problem is to solve the problem under a series of inser-
tions and deletions of points both from the red point set
and from the blue point set. The approximate dynamic
version of the Hausdorff distance is to solve the dynamic
version of the problem allowing a factor of approxima-
tion.

Chan [4] provided a solution for the semi-online main-
tenance of Hausdorff distance in 2-d that had an up-
date time of O(n5/6polylogn) in the worst case. Here
semi-online means that when we insert an element we
are given its deletion time in advance. Chan also gave
a fully dynamic solution for a decision version of the
problem in 2-d that had an amortized update time of
O(n1/2polylogn).

In this paper we show that the update time can be
greatly improved if we allow approximation. We give
a dynamic data structure that maintains the Haus-
dorff distance within an approximation factor of 1 +
ε in sublogarithmic update time—or more concretely,
O( logU

log logn ) time.

Note that our update time of O( logU
log logn ) greatly im-

proves over the previous bound of O(n5/6polylogn) for

∗Cheriton School of Computer Science, University of Waterloo,
tmchan@uwaterloo.ca
†Cheriton School of Computer Science, University of Waterloo,

dskrepet@uwaterloo.ca

the semi-online maintenance of the exact Hausdorff dis-
tance, as it is purely polylogarithmic and fully dynamic.
Furthermore, our solution works for any constant di-
mension d, while the previous method works only in
2-d.

We originally started this research for a closely re-
lated problem, the dynamic bichromatic closest pair
problem, studied by Eppstein [3], which involves find-
ing minb∈B minr∈R d(b, r). However, this seems easier
to approximate than the Hausdorff distance, as one
could obtain a constant-factor approximation with up-
date time of O(log logU) by extending the technique of
Chan [1].

1.1 Model of computation

We assume the word RAM model of computation; that
is, the point coordinates are drawn from the set [U ] =
{0, 1, . . . , U − 1}, the words are composed of Θ(logU)
bits, and each standard word operation (such as shifting,
arithmetic and logical operations) takes constant time.
The distance function is assumed to be the Euclidean
distance function. The approximation factor ε and the
dimension d are considered to be constant in both the
running time and space of our algorithms.

2 Approximate dynamic Hausdorff distance

In section 2.1 we give a dynamic data structure that
solves the approximate decision Hausdorff distance
problem. That is, given a distance r and an approx-
imation factor ε fixed at preprocessing time, we want to
answer decision queries of the form: “Is the Hausdorff
distance greater than r?”. The data structure should
return “yes” if the Hausdorff distance is greater than
r(1 + ε) and “no” if it is less than r. In section 2.2 a
stronger version of the decision problem is considered:
instead of a fixed r, the data structure can answer deci-
sion queries for all r ∈ {2i | 0 ≤ i ≤ logU} at the same
time. Finally, in section 2.3 we solve the original version
of the approximate Hausdorff distance problem; that is,
we compute a (1 + ε)-approximation of the Hausdorff
distance.
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2.1 Decision queries for a fixed distance r

The first step is to compute a grid Gs of the d-
dimensional space composed of cells that are hypercubes
with s = rε side length. For a cell c, another cell c′ is a
neighbor of c if the minimum distance between the cen-
ters of c and c′ is less than or equal to r. We imagine
that all the points that fall inside a cell are rounded to
the center of the cell. Let neighborsc denote the set of
the neighbors of the cell c that is produced by this defi-
nition. It is clear that the number of neighbors of a cell
is dependent only on ε and d, so it will be treated as a
constant in the rest of the paper. Because of rounding
the approximation factor is 1 +O(ε).

Each cell c of the grid has a unique ID; thus, for
each point p = (x1, x2, . . . , xd) ∈ c the ID of the cell
is id(c) = (bx1

s c, bx2

s c, . . . , bxd

s c). Each cell c also has
three counters, one for the number of blue points inside
the cell, blueCountc, one for the number of red points
inside the cell, redCountc, and one for the number of red
points in any cell c′ that belongs to the set neighborsc,
redNeighborsCountc. Furthermore, each cell c maintains
a boolean flag, flagc, with the following semantic: flagc
is set if and only if blueCountc > 0 and there is no
neighbor cell c′ such that redCountc′ > 0, which is the
same with checking whether redNeighborsCountc > 0.
If there is at least one such flag set, then the Hausdorff
distance is greater than r (after rounding). Otherwise,
it is at most r. We keep a global variable globalCount
that stores the number of cells with flags that have been
set. With this variable, we can answer decision queries
in constant time.

In order to keep the total space linear in the number of
points in the red and blue point sets, we use a hash table
to store only the O(n) cells that are nonempty (where n
is the number of points of both the point sets), since in
the worst case each point occupies a different cell. We
use the ID of the cell as key. The hash table supports
insertions, deletions, and searching in expected constant
time.

To insert a point p, we compute the ID of the
cell c that contains the point (that is, id(c) =
(bx1

s c, bx2

s c, . . . , bxd

s c)). If the cell does not exist in the
hash table, a new entry for the cell is created and in-
serted to the hash table with redCountc and blueCountc
equal to zero, redNeighborsCountc equal to the accumu-
lation of all the redCountc′ values for every cell c′ in
the set neighborsc, and flagc equal to zero. Assume that
the inserted point is red. Then, the redCountc value
is incremented. Afterwards, for each cell c′ in the set
neighborsc we increment the value redNeighborsCountc′ ,
and if blueCountc′ > 0 and redNeighborsCountc′ was
zero prior to the insertion, then the flagc′ is reset, and
the globalCount is decremented. Now, assume that the
inserted point is blue. Then the blueCountc value is in-
cremented. Afterwards, if the blueCountc value was zero

prior to the insertion and redNeighborsCountc > 0, the
flagc is set, and globalCount is incremented. The pseu-
docode of the algorithm for inserting points is given in
Algorithm 1.

1 Find the cell c that contains the point p
2 if c does not exist in the hash table then
3 create it and insert to the hash table
4 set blueCountc, redCountc,

redNeighborsCountc, flagc to 0
5 for all c′ ∈ neighborsc do
6 redNeighborsCountc += redCountc′

7 if p is red then
8 increment redCountc
9 for all c′ ∈ neighborsc do

10 increment redNeighborsCountc′
11 if blueCountc′ == 1 then
12 set flagc′
13 increment globalCount

14 else
15 increment blueCountc
16 if blueCountc == 1 then
17 if redNeighborsCountc > 0 then
18 set flagc increment globalCount

Algorithm 1: Insert-Point

To delete a point p, the ID of the cell c that contains
the point is computed (id(c) = (bx1

s c, bx2

s c, . . . , bxd

s c)),
and redCountc or blueCountc is accordingly decre-
mented. If the point is red, for every c′ in the set
neighborsc we decrement the redNeighborsCountc′ value,
and if this value becomes zero, the flagc′ is reset and
the globalCount is decremented. If the point is blue
and the cell c does not have any other blue points af-
ter the deletion, the flagc is reset and the globalCount is
decremented. Finally, if the cell does contain any points
(either red or blue), it is deleted from the hash table.
The pseudocode of the algorithm for deleting points is
given in Algorithm 2.

In order to answer a distance query, we check the
value globalCount, and we return “yes” if it is zero and
“no” otherwise.

The aforementioned data structure can handle inser-
tions and deletions of points in constant time. The
queries can be answered in constant time as well. Con-
sequently, this data structure with a linear space and
preprocessing time can handle point insertions and dele-
tions and can answer queries for a fixed distance r and
a fixed ε in constant time.

2.2 Decision queries for all distances r ∈ {2i | 0 ≤
i ≤ logU}

The naive way to perform the query for all distances
r ∈ 1, 2, 4, ..., U would be to create O(logU) instances
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1 Find the cell c that contains the point p
2 if p is red then
3 decrement redCountc
4 for all c′ ∈ neighborsc do
5 decrement redNeighborsCountc′
6 if redNeighborsCountc′ == 0 then
7 reset flagc′
8 decrement globalCount

9 else
10 decrement blueCountc
11 if blueCountc == 0 then
12 reset flagc
13 decrement globalCount

14 if (redCountc == blueCountc == 0) then
15 delete cell c from the hash table

Algorithm 2: Delete-Point

of the above data structure, but this would increase the
required space to O(n logU) words and the required up-
date time to O(logU). In order to reduce these bounds,
we use standard word RAM techniques, more specifi-
cally word packing tricks.

2.2.1 Interpreting the grids as a quadtree

In order to handle multiple distance values of r at the
same time, we imagine the space decomposition that
is implicitly imposed by the grids of the multiple side
lengths as a d-dimensional complete quadtree with all
the leaves at the same depth (although such a tree is not
explicitly maintained) for the hypercube of side length
U and with height O(logU). Such a quadtree creates
hypercubes of side length r with r ∈ {2i | 0 ≤ i ≤
logU}, but we need hypercubes of side length rε as
explained in section 2.1. Therefore, in order to adjust
the standard quadtree decomposition of the space, we
have to create 1

εd
children to each of the leaves of the

tree. Notice that all the nodes of the tree at depth i
correspond to the grid Gs for s = U

2i ε, and each node of
the tree at depth i corresponds to a cell of that grid.

The flagc value of a cell c of a grid Gs has the same
meaning as in section 2.1, but it is not explicitly main-
tained. The single register globalCount is replaced by
the array globalCountArray that has O(logU) size, and
each value at index i corresponds to the number of the
cells c with nonzero flagc for the grid Gs with s = U

2i ε.
The goal of the update process is to find the array
changeArray that stores the changes that need to be
done to globalCountArray.

Two flags are related to each node of the tree,
emptyRedc and emptyBluec. The first flag is set to 1
if there are no red points in the cell c of the grid Gs

with s = U
2i ε that corresponds to that node, and 0 oth-

erwise. The second flag is similarly defined for the blue

points.

2.2.2 Applying word RAM techniques

The key idea in achieving sublogarithmic time is to
perform the operations for multiple grids in constant
time by taking advantage of the tools that word RAM
provides us with; that is, we have O(logU) grids, but
we need to compress them. Starting at the root of
the quadtree, we store all the emptyRedc flags of the
nodes of the quadtree that are in the subtree s of the
root of depth b, where b is a value to be determined
later, in a RAM word (emptyReds), and we store all
the emptyBluec flags of that subtree in another word
(emptyBlues). The same is done for each subtree of
depth b of every node at depth ib+1 for 0 ≤ i ≤ logU

b −1.
We note that only the words of the subtrees that are not
entirely composed of zeros need to be stored, and we
store them in a hash table using the ID of the cell that
corresponds to the root of the subtree and the depth of
the subtree as key. The redCountc and the blueCountc
of the nonempty cells c of the most detailed grid Gs

with s = ε are stored in a separate word in another
hash table using their ids as keys.

2.2.3 Maintaining the flags

When a point is inserted (deleted), we find the leaf cell
c that corresponds to the grid Gs with s = ε, and we
increment (decrement) redCountc or blueCountc accord-
ingly. We create or delete subtrees from the hash table
when needed. If the number of the points of the same
color with the inserted point is nonzero (zero for deleted
point), there is nothing that needs to be done. Other-
wise, we start processing the subtrees that lie in the
path from c to the root of the quadtree in a bottom-up
manner as follows.

If the inserted (deleted) point is red, for each subtree
s on the path we update the emptyReds word. To find
the part of the changeArray that corresponds to s, we
need to count the changes of the flagc′ values of the
cells c′ ∈ neighborsc for each cell c in the path from
the leaf of s in which the insertion (deletion) took place
to the root of s, as only these cells are affected from
the insertion (deletion). First we fetch the emptyBlues′
words of the subtrees s′ that contain neighbors c′root ∈
neighborscroot of the root cell croot of s (it is easy to see
that these words also contain the neighbors for all cells
c described above), and then we fetch the emptyReds′′

words of subtrees s′′ that contain the neighbors c′′root ∈
neighborsc′root for all the root cells c′root of the subtrees
s′ (similarly, these words also contain the neighbors for
all cells in the subtree s′). With these words we can find
the cells c′ of each subtree s′ whose flagc′ needs to be set
(reset) since we have access to all the neighbors of these
cells. That can be done by checking for each cell c′ if
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there is at least one neighbor cell other than the cells c
of p with nonzero number of red points. If there is at
least one such cell, and we have an insertion of a red
point, then the flagc′ does not change. Otherwise, it is
reset. On the contrary, if there is at least one such cell,
and we have a deletion of a red point, then the flagc′
does not change. Otherwise, it is set.

If the inserted (deleted) point is blue, for each subtree
s on the path we update the emptyBlue word. To find
the part of the changeArray that corresponds to s, we
need to count the changes of the flagc values for each
cell c in the path from the leaf of s in which the in-
sertion (deletion) took place to the root of s, as only
these cells are affected from the insertion (deletion).
We fetch the constant number of emptyRed words of
the subtrees of the same depth that contain neighbors
c′root ∈ neighborscroot of the root cell croot of s (these
words contain also the neighbors for all cells c in the
subtree s). With these words, if we have an insertion,
we can determine if flagc for each cell c needs to be set
by checking if there is at least one neighbor cell c′ with
nonzero number of red points. On the contrary, if we
have a deletion, we only need to reset flagc.

2.2.4 Choosing the value of b

We notice that the number of subtrees that need to be
fetched while processing a subtree s is constant because
a cell in a grid has only a constant number of neighbors.
Supposing that the word operations take constant time,
the update requires O( logU

b ) RAM words to be accessed
and processed because there are that many subtrees on
the path from the root to the leaf in which the update
was done. The value of b needs to be maximized in
order to minimize the update time, but there is an upper
bound on b that is imposed by the need to fit all the
empty flags of a subtree of depth b in a single word.
More concretely, there are O(2db) nodes in a tree of
branching factor b and depth d, and each node needs
only a bit for its flag. Therefore, we choose b to be
δ log log n for a sufficiently small constant δ > 0, so that
O(2db) = o(log n). Since the space usage is O(n) words
of nonempty subtrees with the same root depth and
there are O( logU

log logn ) different depths of subtrees’ roots,

our data structure requires O(n logU
log logn ) words.

The word operations described in the previous section
require only constant time, as it is easy to create a look-
up table of o(n) words with preprocessing time of o(n).
This is because the number of bits in a word in the above
word operations is O(2db) = o(log n), so the number of
possible words is sublinear.

2.2.5 Maintaining the globalCountArray in
O( logU

log logn ) worst-case time

Since each update adds or subtracts at each index of
globalCountArray a is bounded by O(1), which is de-
pendent on the number of set flagc′ for c′ ∈ neighborsc,
the changes at every position of that array are of con-
stant size per update, so we can encode O(log log n)
consecutive indexes of changeArray in a single word;
thus we maintain an array called tempCountArray
of size O(logU/ log log n) words. In a period of
O(logU/ log log n) updates, we store the changes in the
tempCountArray array in O( logU

log logn ) time per update.

After a period of O(logU/ log log n) updates, we update
the globalCountArray in O(logU) steps. Therefore, the
overall update of the globalCountArray can be done in
O( logU

log logn + log log n) = O( logU
log logn ) amortized time. A

decision query to an index of globalCountArray is ac-
complished by adding the value at that position with
the corresponding value from the tempCountArray in
constant worst-case time.

The aforementioned data structure can be de-
amortized by following ideas by Dietz [2] for the partial
sums problem. In a sequence of O( logU

log logn ) updates,
we do all the steps that were described in the previ-
ous paragraph, but we also update globalCountArray[i
mod logU

log logn ] in the ith update, by adding to it the value

in tempCountArray[i] in O(log logU) time per update.
It is easy to see that the words in the tempCountArray
do not exceed the word size. Therefore, we obtain
O( logU

log logn ) update time of globalCountArray in worst
case.

We conclude that, with the above data structure
we can answer the decision query for r ∈ {2i | 0 ≤
i ≤ logU} using O(n logU

log logn ) words, O(n logU
log logn +

n) = O(n logU
log logn ) preprocessing time, O( logU

log logn ) up-
date time, and constant query time.

2.3 Original version of the problem

With the current scheme we can maintain fully dynami-
cally the Hausdorff distance with an approximation fac-
tor of 2. We now show how to make the data structure
work with approximation factor of 1 + ε. Let k be a
constant parameter to be determined later. First create
k instances of the data structure described in section
2.2 for distances ri = 2

ki+j
k with each data structure

having a subscript j = 0, . . . , k− 1. The only twist that
needs to be done to the jth data structure is to rescale
the coordinates of points by a factor of 1

2j/k
.

To handle an update, we update the information to
each one of the k data structures, and since k is constant
(because it is dependent only on ε), and an update to
one data structure requires O( logU

log logn ) time, one update

takes O( logU
log logn ) time.
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To perform a distance query to compute an approxi-
mation of the Hausdorff distance, we collect from each
one of the k data structure the biggest distance that
has an answer “yes” to a decision query. Afterwards,
we return the the biggest of these distances. Both the
decision and the distance query can take place in con-
stant time.

It is clear that with the aforementioned scheme and
with k = b 1εc we can obtain an approximation factor of

2
1
k (1+O(ε)) = 2O(ε)(1+O(ε)) = (1+O(ε))(1+O(ε)) =

1 + O(ε), which can be made 1 + ε if we readjust ε.
Therefore, the original version of the problem can be
solved in O( logU

log logn ) expected update time.

3 Conclusion

Finding solutions with still better update time (e.g.
O(log logU)) or with linear space remains interesting
open problems.
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Local Doubling Dimension of Point Sets

Aruni Choudhary ∗ Michael Kerber†

Abstract

We introduce the notion of t-restricted doubling dimen-
sion of a point set in Euclidean space as the local intrinsic
dimension up to scale t. In many applications informa-
tion is only relevant for a fixed range of scales. We
present an algorithm to construct a hierarchical net-tree
up to scale t which we denote as the net-forest. We
present a method based on Locality Sensitive Hashing
to compute all near neighbors of points within a certain
distance. Our construction of the net-forest is proba-
bilistic, and we guarantee that with high probability,
the net-forest is supplemented with the correct neighbor-
ing information. We apply our net forest construction
to various applications including approximate Rips and
Čech complexes and pair decompositions.

1 Introduction

Motivation Often, one wants to perform tasks on
data which lives in high dimensional spaces. Typically,
algorithms for manipulating such high dimensional data
take exponential time with respect to the ambient di-
mension. This is frequently quoted as the “curse of
dimensionality”. In many cases, however, practical in-
put instances lie on low dimensional manifolds and a
natural question arises as to how do we exploit this
structural property to invent computationally feasible
algorithms.

A well-established approach is to define a special no-
tion of dimension on a point set to capture its intrinsic
dimension. The doubling dimension of a point set P is
the smallest integer ∆ such that every ball centered at
any p ∈ P of radius R is covered by at most 2∆ non-
empty balls of radius R/2 for any R. For instance, if P
is a sample of an affine subspace of dimension d, it holds
that ∆ = Θ(d), and often, ∆� d holds for more general
samples of d-manifolds. A common goal is therefore to
replace the exponential dependency on d by ∆ in the
complexity of geometric algorithms.

The concept of (hierarchical) net-trees can be visu-
alized as a generalization of quadtrees and allows for
the translation of quadtree-based algorithms (which are
exponential in d) to instances with small ∆. Technically,
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a net-tree provides a hierarchy of nets which summarize
the point set in terms of a clustering scheme at differ-
ent scales. For n points with doubling dimension ∆, a
net-tree can be constructed in expected 2O(∆)O(n log n)
time, matching the time for constructing a quadtree
except for replacing d with ∆ [10]. As an application of
particular importance, net-trees permit the efficient con-
struction of well-separated pair decomposition (WSPD)
which have various applications in geometric approxima-
tion, such as constructing spanners, finding approximate
nearest-neighbors, approximating the diameter and the
closest-pair distance.

In some applications, it is natural to investigate only
an interval of scales. Applications which use net-trees
can easily be adapted to ignore low scales by pruning
off the lower part of the tree up to the appropriate
scale. We instead concentrate on the more challenging
question of upper bounding the range of scales. In
such cases, the doubling dimension does not capture
the intrinsic complexity of the problem at hand, since
it may be defined by a ball that is beyond the range of
considered scales. Moreover, the net-tree construction
of [10] proceeds in a top-down fashion, considering the
high scales of the point set first. Therefore, it suffers
from potentially bad large-scale properties of the point
set, even when these properties are irrelevant for the
given application.

Contributions In this paper, we introduce the con-
cept of t-restricted doubling dimension ∆t, which is the
smallest integer such that any ball centered at any p ∈ P
of radius R ≤ t is covered by at most 2∆t non-empty balls
of radius R/2. In this paper, we restrict our attention to
the case of point sets in Euclidean space. We present an
algorithm to construct a net-forest, which contains the
relevant data of a net-tree up to scale t. The runtime of
the construction depends on ∆Ct, where C is a constant
independent of n and d and is defined later on. We hence
eliminate the dependence on the doubling dimension ∆.
The major geometric primitive of our algorithm is to
find all points which are at a distance at most Θ(t) from
a given p ∈ P . We propose an approach based on Local-
ity Sensitive Hashing (LSH) from [6]. The LSH based
construction of the net-forest yields an expected runtime
of O

(
dn1+ρ log n(log n+ (14/ρ)∆7t/ρ)

)
where ρ ∈ (0, 1)

is a parameter which can be chosen to be as small as
desired. Comparing this bound with the full net-tree con-
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struction, our approach makes sense if nρ log n� 2O(∆)

and ∆O(t) � ∆.
As a consequence of our result, we can construct the

part of the WSPD where all pairs are in distance at most
Θ(t), adapting the construction scheme of [10, Sec.5].
That means that any application of WSPD that restricts
its attention to low scales can profit from our approach.
Our approach also extends to the related concept of
semi-separated pair decomposition [1].

As a further application, we show how to approxi-
mate Rips and Čech complexes using net-forests. These
simplicial complexes are standard tools for capturing
topological properties of a point cloud. Such a complex
depends on a scale parameter; in particular, in the con-
text of persistent homology [7], filtrations are considered,
which encode complexes at various scales. In [13], an
approximate Rips filtration of size at most n( 2

ε )O(k·∆)

has been constructed using net-trees. “Approximate”
means that the exact and approximate filtrations are
interleaved in the sense of [4] and therefore yield similar
persistence diagrams, which summarize the topological
properties of the point set. On the other hand, it is
common to limit the construction of filtrations to an
upper threshold value t. In such a scenario, our results
yield a filtration of size n( 2

ε )O(k·∆O(t)), thus replacing
the exponential dependence on the doubling dimension
by the O(t)-restricted doubling dimension. We also show
how to approximate Čech complexes up to scale t, with
the same size bound as for Rips complexes, building
upon the framework of Choudhary et al. [5].

Organization of the paper Section 2 gives a brief
overview of doubling spaces and net-trees. We introduce
the concept of the restricted version of the doubling
dimension in Section 3. In Section 4 we present an
algorithm to construct the net-forest up to a desired
scale. Our algorithm uses the concept of LSH which we
detail in Section 5. In Section 6 we present applications
of the net-forest. We summarize our results and conclude
in Section 7.

2 Background

We fix P to be a finite point set consisting of n points
throughout. As mentioned before, we restrict our atten-
tion to the Euclidean case P ⊂ Rd, although some of
the presented concepts could be extended to arbitrary
metric spaces with some additional effort. In particular,
the distance between any two points can be computed
in O(d) time in the Euclidean case.

Doubling dimension A discrete ball centered at a
point p ∈ P with radius r is the set of points Q ⊆ P
which satisfy ‖p − q‖ ≤ r for all q ∈ Q. The doubling
constant [2, 14] is the smallest integer λ such that for

all p ∈ P and all r > 0, the discrete ball centered at p of
radius r is covered by at most λ discrete balls of radius
r/2. The doubling dimension ∆ of P is dlog2 λe. For ex-
ample, a point set that is sampled from a k-dimensional
subspace has a doubling dimension of Θ(k), independent
of the ambient dimension d. In contrast, the d boundary
points of the standard (d− 1)-simplex form a doubling
space of dimension dlog2 de. Even worse, we can con-
struct a subset of doubling dimension Θ(d) by placing
2Θ(d) points inside the unit ball in Rd such that any two
points have a distance of at least 3/2 (the existence of
such a point set follows by a simple volume argument).
It is NP-hard to calculate the doubling dimension of a
metric [9], but it can be approximated within a constant
factor [10, Sec.9].

Nets and Net-trees A subset Q ⊆ P is an (α, β)-
net, denoted by Nα,β , if all points in P are in distance at
most α from some point in Q and the distance between
any two points in Q is at least β. Usually, α and β are
coupled, that is, β = Θ(α), in which case we talk about
a net at scale α.

We can represent a nested sequence of nets for increas-
ing scales α using a rooted tree structure, called the
net-tree [10]. It has n leaves, each representing a point
of P , and each internal node has at least two children.
Every tree-node v represents the subsets of points given
by the sub-tree rooted at v; we denote this set by Pv.
Every v has a representative, repv ∈ Pv that equals the
representative of one of its children if v is not a leaf.
Moreover, v is associated with an integer `(v) called
the level of v which satisfies `(v) < `(parent(v)), where
parent(v) is the parent of v in the tree. Finally, each
node satisfies the following properties

• Covering : Pv ⊆ B(repv,
2τ
τ−1 · τ `(v))

• Packing : Pv ⊇ P
⋂

B(repv,
τ−5

2τ(τ−1) · τ `(parent(v)))

where B(p, r) denotes the ball centered at p with radius
r and τ = 11.

The covering and packing properties ensure that each
node v has at most λO(1) children where λ is the dou-
bling constant for P . Moreover, for any α, a net at
scale α can be accessed from the net-tree immediately;
see [10, Prop.2.2] for details. A net-tree can be con-
structed deterministically in time 2O(∆)O(dn log(n · Φ))
where Φ represents the spread of P , using the greedy
clustering scheme of Gonzalez [8] as a precursor to the
tree construction. The dependence on the spread can
be eliminated by constructing the tree in 2O(∆)dn log n
time in expectation (the additional factor of d compared
to [10] accounts for the fact that we work with the Eu-
clidean metric, and therefore take into account the cost of
computing distances in our computational model). The
net-tree construction is oblivious to knowing the value of
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∆. One can extract a net at scale ` [10, Pro.2.2] by col-
lecting the set of nodes from T satisfying the condition
N (`) = {repv|`(v) < ` ≤ `(parent(v)}. The net-tree can
be augmented to maintain, for each node u, a list of
close-by nodes with similar diameter. Specifically, for
each node u the data structure maintains the set

Rel(u) := {v ∈ T | `(v) ≤ `(u) < `(parent(v)) and

‖repu − repv‖ ≤ 14τ `(u)}.

Rel(.) is computed during the construction without
additional cost.

3 t-restricted doubling dimension

Definition 1 The t-restricted doubling constant of P
is the smallest positive integer λt such that all the points
in any discrete ball centered at p ∈ P of radius r with
r ≤ t are covered by at most λt non empty balls of radius
r/2. The corresponding t-restricted doubling dimension
∆t is dlog λte.

By definition, ∆t ≤ ∆ for any P . More precisely, ∆t is
zero for t smaller than the closest-pair distance of P , and
equals ∆ when t is the diameter of P . While ∆ for sam-
ples from an affine subspace of dimension k is bounded by
Θ(k), this is not generally true for samples of k-manifolds
where ∆ increases due to curvature. To sketch an ex-
treme example, consider an almost space-filling curve γ
in Rd which has distance at most ε to any point of the
unit ball, where ε is chosen small enough. We let P be
a sufficiently dense sample of γ. While ∆t = 1 for small
values of t, we claim that ∆t = Θ(d) for t = 1; indeed,
any sparser covering of the unit ball with balls of radius
1/2 would leave some portion of the ball uncovered, and
by construction, γ goes through that uncovered region,
so that some point in P is missed.

The “badness” of the previous example stems from the
difference between Euclidean and geodesic distance of
points lying on a lower-dimensional manifold. A common
technique for approximating the geodesic distance is
through the shortest-path metric: Let G = (P,E) denote
the graph whose edges are defined by the pairs of points
of Euclidean distance at most t; we call such a graph a
t-intersection graph. The distance of two points p and q
is then defined as the length of the shortest path from p
to q (we assume for simplicity that G is connected). The
concept of doubling dimensions extends to any metric
space and we let ∆′ denote the doubling dimension of P
equipped with the shortest path metric. While ∆t and
∆′ appear to be related, ∆′ can be much larger than
∆t: an example is shown in Figure 1. Moreover, using
the shortest-path metric raises the question of how to
compute shortest path distances efficiently, if the cost of
metric queries is taken into account.

Figure 1: Consider a regular k-gon in the plane with
all vertices on the unit circle. To each vertex, attach an
“arm” of length 4 in the direction outwards the origin.
We call the endpoint of such an arm a tip. Let M
denote the obtained shape (as depicted). Let P denote
a sufficiently dense point sample of M . Let G be the
t-intersection graph on P ; we choose t appropriately so
that the shortest path metric on G approximates the
distances on M very closely. Fixing an arbitrary vertex
of the k-gon, the furthest tip has a distance of at most
4 + π < 8 on M , so there is a ball of radius less than
8 containing all of P . However, any pair of tips has a
distance of more than 8, so no ball of radius less than
4 can contain two tips. It follows that any covering of
P with balls of radius less than 4 requires at least one
ball per tip. Therefore, the doubling dimension ∆′ of
this metric is at least dlog2 ke. On the other hand, for
the Euclidean metric on a plane, we can easily see that
the doubling dimension ∆ = O(1), and therefore, ∆t is
a constant as well.

4 Net-forests

We next define an appropriate data structure for point
sets of small t-restricted doubling dimension, where t is
a parameter of the construction. Informally, a net-forest
is the subset of a net-tree obtained by truncating all
nodes above scale t. More precisely, it is defined as a
collection of net-trees with roots v1, . . . , vk such that
the representatives repv1 , . . . , repvk form a (t, t)-net and
the point sets Pv1 , . . . , Pvk are disjoint and their union
covers P . We define Rel(u) for a node in the forest the
same way as for net-trees: it is the set of net-forest nodes
that are close to u and have similar diameter. As for
net-trees, we call a net-forest augmented if each node u
is equipped with Rel(u).

Construction Our algorithm for constructing a net-
forest is a simple adaptation of the net-tree algorithm:
we construct a (t, t)-net of P by clustering the point set
and assign each point in P to its closest net-point. Each
root in the net-forest represents one of the clusters. We
also compute Rel(u) for each root by finding the close-by
clusters to u. Having this information, we can simply
run the net-tree algorithm from [10] individually on
each cluster to construct the net-forest. For augmenting
it, we use the top-down traversal strategy as described
in [10, Sec.3.4], inferring the neighbors of a node from
the neighbors of its parent –since we have set up Rel(·)
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for the roots of the forest, this strategy is guaranteed to
detect neighboring nodes even if they belong to different
trees of the forest.

Both the initial net construction and the Rel(·)-
construction require the following primitive for a point
set Q, which we call a near-neighbor query : Given a
point q ∈ Q and a radius r, return a list of points in
Q containing exactly the points at distance r or smaller
from q). In the remainder of the section, we give more
details on how to compute the net and the associated
clusters, and how to find the neighbors for each such
cluster, assuming that we have a primitive which can
perform near-neighbor queries. In Section 5, we show
the implementation of such a primitive.

Net construction We construct the net using a
greedy scheme: For any input point, store a pointer
N(p) pointing to the net point assigned to point p. Ini-
tially, N(p) ← ∅ for all p. As long as there is a point
p with N(p) = ∅, we set N(p)← p and query the near-
neighbor primitive to get a list of points with distance
at most t from p. For any point q in the list we update
N(q) ← p if either N(q) = ∅ or ‖p− q‖ < ‖N(q)− q‖.
Then we pick the next point p with N(p) = ∅.

At the end, the set of points p with N(p) = p represents
the net at scale t and the points q satisfying N(q) = p
constitute p’s cluster. The net thus constructed is a
(t, t)-net. Moreover, we set `(v) = blogτ

(
τ−1
2τ t

)
c for each

root node v.

Computing the Rel(.) set for the roots After com-
puting the net-points and their respective clusters, we
need to augment the net-points with neighboring infor-
mation. Recall that Rel(u) contains nodes in distance at
most 14τ `(u) from repu. Since we have a (t, t)-net, the
level of any root node u satisfies 14τ `(u) ≤ 7t. Hence
we need to find neighbors of net-points within 7t, the
minimum distance between any two net-points being
more than t. By the doubling property, any root net-

node can have at most λ
log2

7t
t/2

7t such neighbors which
simplifies to 14∆7t . We use the near-neighbor primitive
to compute such neighbors.

5 Near-neighbors primitive

We describe the primitive used in the previous section
which performs near-neighbor queries. Our approach
follows the notion of locality-sensitive hashing (LSH)
introduced by [11] for the Hamming metric and extended
to Euclidean spaces in [6]. LSH is a popular approach
to find approximate near-neighbors in high dimensions
because of its near linear complexity in n and d.

Locality Sensitive Hashing LSH applies several
hash functions on a point set such that close points

are more likely to map to the same hash-buckets than
points which are sufficiently far apart. A typical appli-
cation of LSH is the (r, c)-nearest neighbor problem: If
there exists a point within distance r of the query point
q, report some point within distance cr of q, c > 1.

However, for our construction we wish to solve the
following problem: report all points within distance r of
the query point. We need the LSH oracle for two steps
in our construction: constructing the net at scale t and
computing the Rel(·) for the root-nodes. We show that
both these steps requires a runtime sub-quadratic in n
by a slight modification of the method presented in [6].
We repeat some of their definitions for clarity:

Definition 2 A family of hash functions H = {h : S →
U} is called (r1, r2, p1, p2)-sensitive if for all a, b ∈ S,
the following holds for p1 ≥ p2 and r1 ≤ r2:

• if ‖a− b‖ ≤ r1, Pr1 = P [h(a) = h(b)] ≥ p1

• if ‖a− b‖ ≥ r2, Pr2 = P [h(a) = h(b)] ≤ p2

We amplify the gap between Pr1 and Pr2 by con-
catenating k such hash functions, creating the fam-
ily of hash functions G = {g : S → Uk} such that
g(x) = (h1(x), h2(x), ..., hk(x)). For g(x), we have the
modified properties:

• if ‖a− b‖ ≤ r1, P [g(a) = g(b)] ≥ pk1
• if ‖a− b‖ ≥ r2, P [g(a) = g(b)] ≤ pk2

We describe our near-neighbor primitive next: The input
is a point set Q with n points and a distance r > 0. As a
pre-processing step, we choose l hash functions g1, · · · , gl
uniformly at random from G [6, Sec.3]. and hash each
p ∈ Q to the buckets gi(p)∀i ∈ [1, l]. Given a query
point q ∈ Q (we only consider near neighbor queries for
points within Q), we check for any point p in bucket
gi(q) whether the distance to q is at most r. We output
such points as the near-neighbors of q.

We need to specify the parameters of LSH in the above
description. Most importantly, we have to ensure that,
with high probability, the output contains all points in
distance r from q. Moreover, we want the buckets to be
of small size so that the primitive does not have to filter
out too many false positives.

The performance of the LSH scheme depends upon a
parameter ρ ∈ (0, 1) which appears as an exponent of n in
the runtime. We choose the parameters p1, p2, r1 and r2

of the hashing scheme such that ρ = log p1
log p2

≈ r1
r2

[6, Sec.4].
In the following parts of the section, we let ρ = r1

r2
.

Lemma 1 Let r1 := r and r2 := r/ρ, k := d− logp2 ne
and l := d2nρ ln n√

δ
e with an arbitrarily small constant δ.

The near-neighbor primitive has the following properties:

(i) With probability at least 1− δ, all points in distance
at most r are reported for all query points.
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(ii) For any query point q, the aggregate expected size of

all buckets g1(q), ..., gl(q) is at most l(C̃ + 1), where

C̃ is the number of points in Q with distance at
most r2 to q.

(iii) The pre-processing runtime is O(dnkl) and the ex-

pected query runtime for a point is O(dl(k + C̃)),

where C̃ is defined as in (ii).

We defer the proof to Appendix A.

Net-forest construction using LSH We analyze the
complexity of our net-forest construction from Section 4
with our near-neighbor primitive in Lemma 5 under
Appendix B. The primitive is used in the construction
of the (t, t)-net, where we find the near-neighbors in
distance at most t for a subset of points that form the
net in the end. That means, we initialize the primitive
with r ← t and Q← P .

The second appearance of the near-neighbor primitive
is in the construction of the Rel(.) sets for the roots of
the net forest. Recall that the roots are represented by
the net-points constructed before; let M denote the set
of net-points and |M |m.We simply have to find all pairs
of points of distance at most 7t among the net-points;
and to do so we call the near neighbor primitive with
r ← 7t and Q←M for all q ∈M (see Lemma 6).

Theorem 2 The expected time for constructing the net-
forest using LSH is

O

(
dn1+ρ log n

(
log n+

(
14

ρ

)∆7t/ρ

))
.

We defer the details of the proof to Appendix B.
We see how the choice of ρ affects the complexity

bound: For ρ very close to zero, we get a almost linear
complexity in n, to the price that we have to consider
larger balls in our algorithm and thus increase the re-
stricted doubling dimension.

6 Applications

Well-Separated Pair Decomposition A pair of net-
tree nodes (u, v) is ε-well-separated if it satisfies
max{diam(Pu),diam(Pv)} ≤ ε‖repu − repv‖, where
diam(Pu) denotes the diameter of the points stored in
u. Informally speaking, all pairs of points (p, q) with
p ∈ Pu, q ∈ Pv have a similar distance to each other if
(u, v) is well-separated. An ε-well-separated pair decom-
position (ε-WSPD) [3] is a collection of ε-well-separated
pairs such that for any pair (p, q) ∈ P × P , there exists
a well-separated pair (u, v) such that p ∈ Pu and q ∈ Pv;
we say that such a pair (p, q) is covered by (u, v).

An ε-WSPD of size nε−O(∆) can be computed in time
d
(
2O(∆)n log n+ n(1/ε)O(∆)

)
[10]. A WSPD considers

pairs over all scales of distance, because it has to cover
any pair of points. Our structure only requires that all
pairs of points in distance at most t are covered. We
call the resulting structure a t-restricted ε-WSPD.

We construct the t-restricted ε-WSPD as follows: We
start by constructing the corresponding augmented net
forest; let u1, . . . , um be its roots. Since we know the
Rel(·) set for any root, we can identify pairs (ui, uj)
such that ui is in Rel(uj) and vice versa (this also in-
cludes pairs where ui = uj). For any such pair, we call
genWSPD(ui, uj) from [10, Sec.5], which simply traverses
the sub-trees until it finds well-separated pairs. We
output the union of all pairs generated in this way.

Theorem 3 For 0 < ε < 1 and t > 0, our algorithm
computes a t-restricted ε-WSPD of size nε−O(∆7t) in
expected time NF + dnε−O(∆7t), where NF is the com-
plexity for computing the net-forest from Theorem 2.

We defer the proof to Appendix C.

Semi-Separated Pair Decomposition(SSPDs)
SSPDs [1] are a related concept to the WSSDs with
some advantages. We briefly describe them and present
our t-restricted version of SSPDs in Appendix D.

Approximating Simplicial Complexes For a point
set P , let rad(Q) denote the radius of the minimum en-
closing ball of Q ⊆ P . The Čech complex on P at scale
r is defined as: Čech(r) := {Q ⊆ P | rad(Q) ≤ r}.
The Rips complex is defined as: Rips(r) := {Q ⊆
P | diam(Q) ≤ 2r}. Rips and Čech complexes are
standard constructions for topological analysis of point
clouds; more precisely, one constructs a sequence of Rips
or Čech complexes for growing r (called a filtration) and
tracks the evolution of topological features in the pro-
cess. This gives rise to the persistence diagram [7], a
multi-scale summary of the topological properties of the
point cloud. However, a major computational drawback
of this approach is that both Rips and Čech complexes
become prohibitively large when P has high ambient
dimension. A common remedy is to bound the maximal
dimension k of the simplices constructed in the filtration
(bounding the filtration size to O(nk+1)) and/or bound
the maximal scale r which is considered.

Several recent works have come up with approximate
Rips (Čech) filtrations of significantly smaller size. In
this case, “approximate” means that the persistence dia-
gram of the exact and approximate filtrations are ε-close
in interleaving distance [4]. Sheehy [13] showed how to
compute an ( 1

1−2ε )-approximate Rips filtration of size

n( 2
ε )O(k·∆) in expected time d2O(∆)n log n + n( 2

ε )O(∆),
where k denotes the maximal dimension of the con-
structed approximation. His algorithm works by creating
simplicial complexes on a hierarchically sparsified point
set, obtained through the net-tree. In [5], Choudhary et
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al. gave an alternative algorithm for (1 + ε)-approximate
Čech filtrations with the same guarantees and running
time, building upon the framework from [12].

For the case that the highest scale in the construction
is bounded for t, our results imply that ∆ can be replaced
with ∆7t in the size bound above.

Theorem 4 An approximate filtration of size at most
n( 2

ε )O(k·∆7t) can be computed for both Rips and Čech
filtrations for the range [0, t].

Proof. For Rips-complexes, this follows directly by ap-
plying the algorithm of [13, Sec.10] on a net forest of
scale t. Since w = {u ∪ Rel(u)} captures all edges
of length at most 5t > t between a point p ∈ Pu
and q ∈ Pw, the algorithm is able to compute the
E(p) sets [13, Sec.10] successfully, thereby yielding a
filtration of size at most n( 2

ε )O(k·∆7t).

To prove the same for Čech complexes, we need to ap-
ply our net-forests to a generalization of WSPDs (called
well-separated simplicial decomposition) first; we post-
pone the details to Appendix E. �

Approximating the t-doubling dimension One can
approximate ∆t for any point set P up to a constant
factor by constructing a net-forest T of scale t over P .
Let x denote the maximum out-degree of any node in
T . Then log x is a constant-factor approximation of ∆t.
This follows directly from the arguments of [10, Sec.9].

7 Conclusion and future work

In this paper we presented an algorithm to construct a
hierarchical net-forest up to a certain scale and applied it
to the construction of WSPDs, SSPDs, and approximate
Rips and Čech complexes. Finding more applications
tailored for the t-restricted doubling dimension is an
appealing research direction we would like to look into.
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low and high dimensions. http://people.mpi-inf.
mpg.de/~achoudha/Files/Papers/AppCech.pdf.

[6] Mayur Datar, Nicole Immorlica, Piotr Indyk, and
Vahab S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Pro-
ceedings of the Twentieth Annual Symposium on
Computational Geometry, pages 253–262, 2004.

[7] Herbert Edelsbrunner and John Harer. Computa-
tional Topology. An Introduction. American Mathe-
matical Society, 2010.

[8] Teofilo F. Gonzalez. Clustering to minimize the
maximum intercluster distance. Theor. Comput.
Sci., 38:293–306, 1985.

[9] Lee-Ad Gottlieb and Robert Krauthgamer. Prox-
imity algorithms for nearly doubling spaces. SIAM
J. Discrete Math., 27(4):1759–1769, 2013.

[10] Sariel Har-Peled and Manor Mendel. Fast construc-
tion of nets in low dimensional metrics, and their
applications. In SIAM J. Comput, pages 150–158,
2005.

[11] Piotr Indyk and Rajeev Motwani. Approximate
nearest neighbors: Towards removing the curse of
dimensionality. In Proceedings of the Thirtieth An-
nual ACM Symposium on Theory of Computing,
STOC ’98, pages 604–613, 1998.

[12] Michael Kerber and R. Sharathkumar. Approxi-
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A Proof of Lemma 1

Proof. First we bound the expected aggregate size of
the buckets. A bucket contains “close” points which are
in distance at most r2 from q and “far” points which
are further away. However, since the probability of a far
point falling in the same bucket as q is at most pk2 , the

expected size of a single bucket is at most C̃+npk2 ≤ C̃+1
by our choice of k. Since there are l buckets, (ii) is
satisfied.

For (i), fix two points q1, q2 ∈ Q such that ‖q1− q2‖ ≤
r1. We have to ensure that gj(q1) = gj(q2) for some
j ∈ {1, . . . , l}; this implies that q1 will be reported for
query point q2, and vice versa for at least one of the
l buckets. The probability for gj(q1) = gj(q2) for a

fixed j is at least pk1 , which is p
− logp2 n

1 = n−ρ. Hence
the probability that gj(q1) 6= gj(q2) holds for all j ∈
{1, . . . , l} is at most (1 − n−ρ)l because we choose the
hash functions uniformly at random. There are at most
n2 point pairs within distance at most r1. By the union
bound, the probability that at least one such pair maps
into different buckets is at most n2(1− n−ρ)l. Now we
can bound

n2(1− n−ρ)l = n2(1− n−ρ)2nρ ln n√
δ

= n2(1− 1

nρ
)n
ρ ln n2

δ ≤ n2e− ln n2

δ = δ,

where we used the fact that (1− 1/x)x ≤ 1/e for all
x ≥ 1. It follows that the probability that all pairs of
points in distance at most r1 fall in at least one common
bucket is at least 1− δ. This implies (i).

It remains to show (iii): in the pre-processing step,
we have to compute k · l hash functions for n points.
Computing the hash value for a point p, hi(p) takes
O(d) time [6, Sec.3.2]. For a query, we have to identify
the buckets to consider in O(dkl) time and then iterate

through the (expected) l(C̃ + 1) candidates (using (ii)),
spending O(d) for each. �

B Proof of Theorem 2

To prove Theorem 2, we first need to prove two support-
ing Lemmas, which we do next.

Lemma 5 The expected time to construct the (t, t)-net
using LSH is

O

(
dn1+ρ log n

(
log n+

(
2

ρ

)∆t/ρ ))
.

Proof. We consider the time spent on all near-neighbor
queries: Let the resulting net consist of m ≤ n points.
This implies that the algorithm proceeds in m rounds
and queries the near-neighbors of m points. Let C̃i
denote the number of points in distance t/ρ from the

i-th query point. By Lemma 1, the total complexity for
all near-neighbor queries is:

O

(
ndkl +

m∑

i=1

dl(k + C̃i)

)
= O(ndkl + dl

m∑

i=1

C̃i)

We only need to bound the sum of the C̃i. For that, we fix
some q ∈ P and count in how many sets C̃i may it appear.
Let pi denote the net-point chosen in the i-th iteration.
We call such a net-point close to q if the distance to q is
at most t/ρ. By definition, the net-points close to q lie in
a ball of radius t/ρ centered at q. Since any pair of net-
points has a distance of more than t, any ball of radius
t/2 can contain at most one close net point. Following
the definition of the t-restricted doubling dimension, the

number of such net-points can be at most λ
log2

t/ρ
t/2

t/ρ which

simplifies to
(

2
ρ

)∆t/ρ . It follows that

m∑

i=1

C̃i ≤ n
(

2

ρ

)∆t/ρ

.

Hence, we get the claimed running time, observing that
k = O(log n) and l = O(nρ log n) by Lemma 1. All addi-
tional operations in the net construction besides the calls
of the primitive are dominated by that complexity. �

Lemma 6 Computing the Rel(.) sets using LSH takes
expected time

O

(
dn1+ρ log n

(
log n+

(
14

ρ

)∆7t/ρ

))
.

Proof. The proof is analogous to the proof of Lemma 5:
Let C̃i (for i = 1, . . . ,m) denote the number of net-
points in distance at most 7t

ρ to the i-th net point. The
same packing argument as in the previous Lemma shows
that any C̃i can be at most (14

ρ )∆7t/ρ , so that their sum

is bounded by m( 14
ρ )∆7t/ρ . Analogous to the proof of

Lemma 5, we can thus bound the runtime to be as
required, noting that m ≤ n. �

B.1 Proof of Lemma 2

Proof. Using Lemma 5 and Lemma 6, constructing the
net and its Rel(·) sets are within the complexity bound.
Constructing a single net-tree for a node containing
ni points takes time at most 214∆2tni log ni (the factor
of 14 in the exponent can be seen by a careful analy-
sis of [10, Sec.3.4]). Constructing individual net-trees
for the clusters takes time:

∑m
i=1 214∆2tdni log ni Since∑m

i=1 ni = n, the above runtime simplifies to be at most
214∆2tdn log n. Augmenting the net-forest takes time
dn214∆7t [10, Sec.3.4]. The runtimes for the latter steps
are dominated by the Rel(·) and net construction for
sufficiently large values of n. �
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C Proof of Theorem 3

Proof. For correctness, any pair of nodes generated is
ε-well-separated by definition. For the relaxed covering
property, consider a pair (p, q) of points in distance at
most t. There are roots u1, u2 in the net-forest with
p ∈ Pu1

and q ∈ Pu2
. Since the diameter of u1 and u2

is at most 2t, the distance of repu1
and repu2

is at most
5t < 7t. Therefore, u2 ∈ Rel(u1) (and vice versa), and
there will be a pair generated that covers (p, q).

For the size bound, we can use the same charging
argument as in [10, Sec.5]. We can additionally ensure
by our construction that in all doubling arguments, the
radius of the balls in question is at most 7t and therefore
replace the doubling dimension by ∆7t in the bound. The
running time follows because the number of recursive
calls of genWSPD is proportional to the output size, and
we spend O(d) time per recursion step. �

D Semi-Separated Pair Decomposition

A pair of net-tree nodes (u, v) is called ε-semi-separated
if min(diamu, diamv) ≤ ε‖repu − repv‖. An ε-semi-
separated pair decomposition (ε-SSPD) is a collection of
ε-semi-separated pairs such that for any pair of points
(p, q) ∈ P × P there exists a semi-separated pair (u, v)
such that p ∈ Pu and q ∈ Pv; we say that such a pair
(p, q) is covered by (u, v). This is a weaker notion than
the WSPD, because it only requires that the smaller
diameter of the participating sets be small compared
to the distance between them. The advantage of using
a SSPD over a WSPD is reduced weight: The weight
of a WSPD W is defined as w =

∑
(x,y)∈W (|x| + |y|).

The weight of any WSPD can be Ω(n2) in the worst
case [1]. In contrast, it is possible to construct a SSPD
with near linear weight, where the weight in question
is an analogous definition to the one used for WSPDs.
An ε-SSPD of expected weight O(ε−O(∆)n log n) can be
calculated in O(ε−O(∆)n log n) expected time [1].

We adapt the algorithm of [1, Sec.4] to compute a t-
restricted SSPD, which requires that only pairs of points
in distance at most t be covered. The construction is
as follows: first we construct the net-forest at scale t.
Let u1, · · · , um denote the root nodes of the net-forest.
We invoke the algorithm of [1, Sec.4] on each of the
sets {ui ∪ Rel(ui)}. We output the union of the pairs
generated by each invocation. The SSPD generated this
way also ensures coverage of points which are at most
5t apart and hence, covers all pairs of points at most t
apart. Moreover, the pairs involved in the SSPD have
the additional property that their diameter is at most
16t.

Theorem 7 For 0 < ε < 1, our algorithm com-
putes a t-restricted ε-SSPD of P of expected weight

( 2
ε )O(∆16t)O(n log n) in ( 2

ε )O(∆16t)O(n log n) expected
time, after computing the net forest at scale t.

Proof. To prove correctness, consider points p and
q such that ‖p − q‖ ≤ 5t. Let ui and uj be the
root nodes of the net-forest covering p and q respec-
tively. By a simple application of the triangle inequality,
‖repui−repuj‖ ≤ 7t. Hence, ui ∈ Rel(uj) and vice versa.
This ensures that the algorithm creates a semi-separated
pair which covers the pair (p, q). For the diameter, let
us say that we work with the set Pm = {u∪Rel(u)} and
wish to upper bound diam(Pm). For any ui, uj ∈ Rel(u)
covering points a and b respectively, it follows from the
triangle inequality that ‖a− b‖ ≤ 16t. Hence the claim
about the diameter is true.

Next we bound the weight of the SSPD. Consider
the individual invocations of the algorithm of [1] af-
ter constructing the net-forest. Let Ni denote the
number of points in ui ∪ Rel(ui). Then the total
weight of the SSPD is

∑m
i=1O(ε−O(∆16t)Ni logNi) ≤

O(ε−O(∆16t) log n)
∑m
i=1Ni. To bound the sum S =∑m

i=1Ni, consider any point p covered by ui. This point
participates in at most 2O(∆7t) invocations of the algo-
rithm, since that is precisely the maximum possible size
of the Rel(.) set. This implies that the contribution of
point p to S is at most 2O(∆7t). Hence the sum S is at
most 2O(∆7t)n, and bound follows. A similar argument
bounds the runtime as well. �

E Approximate Čech Complexes

Well Separated Simplicial Decomposition The con-
cept of well-separated simplicial decomposition (WSSDs)
of point sets, introduced by Kerber and Sharathku-
mar [12] and extended to doubling spaces by Choudhary
et al [5], generalizes the concept of WSPD to larger
tuples. A (k + 1)-tuple (v0, v1, . . . , vk) is called ε-well
separated if each vi is a node of the net-tree and for any
ball B which contains at least one point of each vi, it
holds that

v0 ∪ v1 ∪ .... ∪ vk ⊆ (1 + ε)B

where (1 + ε)B denotes a ball with same center as B and
radius multiplied by (1 + ε). An (ε, k)-WSSD is a set
of ε-well-separated tuples of length (k + 1) such that
any k-simplex is covered by some tuple. In [5], an (ε, k)-
WSSD of size n(2/ε)O(∆·k) is constructed in expected
time d

(
2O(∆)n log n+ n(2/ε)O(∆·k)

)
.

Similar as before, we define a t-restricted (ε, k)-WSSD
to be a collection of ε-well-separated tuples such that
each k-simplex that fits into a ball of radius t is covered
by a tuple. The statement is equivalent to the condi-
tion that the radius of the smallest minimum enclosing
ball containing points from each node of the tuple is
at most t.
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Construction of the t-restricted WSSD We de-
scribe the algorithm to construct the t-restricted (ε, k)-
WSSD and prove its correctness and runtime. In this ap-
pendix, we will heavily rely on the notations, algorithms,
and results presented in [5]. The algorithm proceeds
iteratively; for k = 1, we construct a (2t)-restricted ε/2-
WSPD using the algorithm from Section 6. To construct
Γk+1 from Γk, we iterate over the tuples γ ∈ Γk. We
use the scheme of [5, Sec.3], computing an approximate
meb of γ and then exploring ancestors of v0 and their
descendants at appropriate levels. The only complica-
tion arises when the algorithm requests for an ancestor
higher than root of the tree of v0. In such a case, our
algorithm uses the root as the ancestor. In the following
lemma, we will show that with this approach, we still
cover all simplices with meb radius of at most t.

Lemma 8 The algorithm computes a t-restricted (ε, k)-
WSSD.

Proof. We show by induction that with modified ances-
tor search, we still cover all simplices with meb radius
at most t. For k = 1, the correctness of the algorithm
follows from Theorem 3 in Section 6, Let Γk−1 cover
all (k − 1)-simplices γ which satisfy rad(γ) ≤ t. Con-
sider any k-simplex σ = (m0, . . . ,mk) with rad(σ) ≤ t.
From [5, Lem.9], there exists a point (say mk) such that
mk ∈ 2meb(σ′) where σ′ := σ \ {mk} and 2meb(σ′)
represents a ball with twice the radius and the same
center as meb(σ′). Since σ′ is a (k − 1)-simplex and
rad(σ′) ≤ rad(σ) ≤ t, it is covered by some k-tuple
γ = (v0, . . . , vk−1) ∈ Γk−1. To prove correctness, we
show that when our algorithm reaches tuple γ, it pro-
duces a (k + 1)-tuple (γ, x) such that mk ∈ Px which
implies that the simplex σ is covered by the (k+1)-tuple
(γ, x).

When handling γ, the algorithm searches for an ances-
tor of v0 at an appropriate scale. If this ancestor is found
within the tree of v0 in the net-forest, the arguments
from [5, Lem.12] carry over to ensure that a suitable x
is found. So let us assume that the algorithm chooses
the root of the tree of the net-forest that v0 lies in. Call
that root node a0. The algorithm considers all nodes in
Rel(a0) and creates new tuples with their descendants.
Moreover, the net-forest contains a leaf representing the
point mk; let a′ denote the root of its tree. It suffices to
show that a′ ∈ Rel(a0). Since rad(σ) ≤ t, the distance
of m0 and mk is at most 2t. Moreover, the distance of
m0 to repa0 is at most t, because the representatives of
the roots form a (t, t)-net. The same holds for mk and
a′. Using triangle inequality, the distance of repa0 and
repa′ is at most 4t. This implies that a′ ∈ Rel(a0). �
Lemma 9 The size of the computed t-restricted (ε, k)-
WSSD Γk is n( 2

ε )O(∆7t·k).

Proof. The proof of [5, Lem.13] carries over directly –
indeed, we can replace all occurrences of ∆ by ∆7t. This

comes from the fact that a node u has at most 14∆7t

nodes in Rel(u), and for any node in Rel(u) we reach
descendants of a level of at most O(log(2/ε)) smaller
then u (see the proof of [5, Lem.13] for details). Since
every node in the net-forest has at most 2O(∆t) children,
we create at most

14∆7t

(
2

ε

)O(∆t)

=

(
2

ε

)O(∆7t)

tuples in Γk from a tuple in Γk−1. With that, the bound
can be proved by induction. �

Lemma 10 Computing a t-restricted (ε)-WSSD takes
time nd(2/ε)O(∆7t·k) after computing the net forest at
scale t.

Proof. The proof is analogous to [5, Lem.14], plugging
in the running time for t-restricted ε-WSPD from Theo-
rem 11 and the size bound from Lemma 9. �

Computing the approximate Čech filtration We
use the scheme of [5, Sec.4] to construct the
(1 + ε)-approximate filtration on the t-restricted WSSD.
The original construction works without modifica-
tion. Using the notation from [5, Sec.4]., for any
WST σ = (v0, v1, . . . , vk) with `(vi) ≤ h, we add
σ′ = (vcell(v0, h), vcell(v1, h), . . . , vcell(vk, h)) to Aα if
rad(σ′) ≤ θ∆. The only potential problem with the
t-restricted case is that such a vcell() might be a node
higher than a root of the net-forest. This cannot happen,
however, since h is chosen such that

2τ

τ − 1
τh ≤ ε

7
α.

Since α ≤ t and ε ≤ 1, we have that

h < blogτ
τ − 1

2τ
tc = `(u)

for any root u in the net-forest.

Theorem 11 A t-restricted (ε, k)-WSSD of size
n( 2

ε )O(∆7t·k) can be computed in time

NF + nd

(
2

ε

)O(∆7t·k)

,

where NF is the complexity for computing the net-forest
from Theorem 2. Within the same time bound, we
can construct a sequence of approximation complexes
(Aα)α∈[0,t] of size n( 2

ε )O(∆7t·k) whose persistence mod-
ule is an (1 + ε)-approximation (in the sense that the
two modules are interleaved [4]) of the truncated Čech
filtration (Cα)α∈[0,t].

The claim follows directly from Lemmas 8, 9 and 10 and
the preceding construction.
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A Streaming Algorithm for 2-Center with Outliers in High Dimensions

Behnam Hatami∗ Hamid Zarrabi-Zadeh†

Abstract

We study the 2-center problem with outliers in high-
dimensional data streams. Given a stream of points in
arbitrary d dimensions, the goal is to find two congruent
balls of minimum radius covering all but z points. We
provide a (1.8 + ε)-approximation streaming algorithm
for the problem, improving upon the previous (4 + ε)-
approximation algorithm available for the problem. The
space complexity and update time of our algorithm is
poly(d, z, 1ε ), independent of the size of the stream.

1 Introduction

The k-center problem—covering a set of points using
k congruent balls of minimum radius—is a fundamen-
tal problem, arising in many applications such as data
mining, machine learning, statistics, and image process-
ing. In real-world applications, where input data is often
noisy, it is very important to consider outliers, as even
a small number of outliers can greatly affect the qual-
ity of the solution. The k-center problem is particularly
very sensitive to outliers, and even a constant number of
outliers can increase the radius of the k-center unbound-
edly. Therefore, it is natural to consider the following
generalization of the the k-center problem: given a set
P of n points in arbitrary d dimensions and a bound
z on the number of outliers, find k congruent balls of
minimum radius to cover at least n− z points of P . See
Figure 1 for an example.

In this paper, we focus on the data stream model of
computation where only a single pass over input is al-
lowed, and we have only a limited amount of working
space available. This model is in particular useful for
processing large data sets, as it does not require the
entire data set to be stored in memory.

The Euclidean k-center problem has been extensively
studied in the literature. If k is part of the input, the
problem in known to be NP-hard in two and more di-
mensions [10], and is even hard to approximate to within
a factor better than 1.82, unless P = NP [9]. Factor-2
approximation algorithms are available for the problem
in any dimension [11, 9]. For small k and d, better

∗Department of Computer Engineering, Sharif University of
Technology, Tehran, Iran. bhatami@ce.sharif.edu
†Department of Computer Engineering, Sharif University of

Technology, Tehran, Iran. zarrabi@sharif.edu

Figure 1: An example of 2-center with 6 outliers.

solutions are available. The 1-center problem in fixed
dimensions is known to be LP-type and can be solved
in O(n) time [7]. For 2-center in the plane, the current
best algorithm runs in O(n log2 n log2 log n) time [4].

For k-center with outliers, Charikar et al. [6] gave the
first algorithm with an approximation factor of 3, which
works in any dimension. Better results are known for
small k in the plane. The 1-center problem with z out-
liers in the plane can be solved in O(n log n+z3nε) time,
for any ε > 0, using Matoušek’s framework [14]. Agar-
wal [1] gave a randomized O(nz7 log3 z)-time algorithm
for 2-center with z outliers in the plane.

In the streaming model, McCutchen et al. [15] and
Guha [12] presented algorithms to maintain (2 + ε)-
approximation to the k-center problem in O(kdε log 1

ε )

space. For k = 1, a factor-((1 +
√

3)/2) approximation
was presented by Agarwal and Sharathkumar [2] in high
dimensions, using O(d) space. The approximation fac-
tor was later improved to 1.22 by Chan and Pathak [5].
For k = 2, Kim and Ahn [13] have recently obtained a
(1.8 + ε)-approximation using O(dε ) space and update
time.

For k-center with z outliers in the streaming model,
McCutchen et al. [15] gave a (4 + ε)-approximation al-
gorithm using O( zkε ) space. When dimension is fixed,
a (1 + ε)-approximation to 1-center with outliers can
be maintained in O(z/ε((d−1)/2)) space using the no-
tion of robust ε-kernels [3, 16]. For 1-center with out-
liers in high dimensions, Zarrabi-Zadeh and Mukhopad-
hyay [17] gave a (

√
2α)-approximation, where α is

the approximation factor of the underlying algorithm
for maintaining 1-center. Combined with the 1.22-
approximation algorithm of Chan and Pathak [5], it
yields an approximation factor of (

√
2 × 1.22) < 1.73

using O(d3z) space and poly(d, z) update time.

Our result In this paper, we study the 2-center prob-
lem with outliers in high dimensions. We present a
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Problem
Approximation Factor

Without Outliers With Outliers

1-Center 1.22 [5] 1.73 [17]

2-Center 1.8 + ε [13] 1.8 + ε [Here]

k-Center 2 + ε [12, 15] 4 + ε [15]

Table 1: Summary of the streaming algorithms for k-
center with and without outliers in high dimensions.

streaming algorithm for the problem that achieves an
approximation factor of 1.8 + ε, for any ε > 1, using
poly(d, z, 1ε ) space and update time. This improves the
current streaming algorithm available for the problem
which has an approximation factor of 4 + ε. The ap-
proximation factor of our algorithm matches that of the
best streaming algorithm for the 2-center problem with-
out outliers. This is somewhat surprising, considering
that the current best approximation factors for stream-
ing k-center with and without outliers differ by a mul-
tiplicative factor of

√
2 for k = 1, and by a factor of 2

for general k. See Table 1 for a comparison.
To obtain our result, we have used a combina-

tion of several ideas including parallelization, far/close
ball separation, centerpoint theorem, and keeping a
lower/upper bound on the radius and distance of the
optimal balls. We have also utilized ideas used in [13]
for the 2-center problem with no outliers. However, our
problem is much harder here, as we not only need to
find balls of minimum radius, but we also need to decide
which subset of points to cluster. This is in particular
more challenging in the streaming model, where we only
have a single pass over the input, and we must decide
on the fly which point is an outlier, and which one can
be safely ignored as a non-outlier point, to comply with
the working space restriction enforced by the model.

2 Preliminaries

Let B(c, r) denote a ball of radius r centered at c. We
use r(B) to denote the radius of a ball B. For two points
p and q, the distance between p and q is denoted by
‖pq‖. Given two balls B(c, r) and B′(c′, r′), we define
δ(B,B′) = max {0, ‖cc′‖ − r − r′} to be the distance
between B and B′. Two balls B1 and B2 are said to be
α-separated, if δ(B1, B2) > α ·max {r(B1), r(B2)}.

Given an n-point set P in d-dimensions, a point
c ∈ Rd is called a centerpoint of P , if any halfspace con-
taining c contains at least dn/(d+ 1)e points of P . It is
well-known that any finite set of points in d-dimensional
space has a centerpoint [8]. The following observation
is a corollary of this fact.

Observation 1 Given a set P of k(d + 1) points in
d-dimensional space, the centerpoint of P has the prop-

erty that any convex object not covering the centerpoint,
leaves at least k points of P uncovered.

Given a point set P , the k-furthest point from p ∈ P is
a point whose distance to p is the k-th largest among all
points in P . We assume the standard word-RAM model
of computation. Each coordinate value takes a unit of
space. Thus, a d-dimensional point takes O(d) space,
and basic operations on the points take O(d) time.

3 A Simple Algorithm for 1-Center with Outliers

To warm up, we present a simple 2-approximation
streaming algorithm for the 1-center problem with out-
liers. It utilized a parallelization technique that will be
used extensively in the rest of the paper. The pseu-
docode is provided in Algorithm 1. The algorithm re-
ceives as input a stream of points, P , and the number
of outliers, z. It assumes that the first point p1 of the
stream is non-outlier. We will show later how to re-
move this assumption. The algorithm returns a ball B
covering all but at most z points of P .

Algorithm 1 1-Center(P, z)

1: c← the first point in P
2: B ← B(c, 0)
3: Q← ∅
4: for each p in P do
5: if p /∈ B then
6: insert p into Q
7: if |Q| = z + 1 then
8: q ← closest point to c in Q
9: remove q from Q

10: B ← B(c, ‖cq‖)
11: return B

Theorem 1 Algorithm 1 computes a 2-approximation
to the 1-center problem with z outliers, assuming that
the first point of the stream is not outlier.

Proof. Let B∗(c∗, r∗) be the optimal solution, and c be
a non-outlier point in the optimal solution. Since c is
covered by B∗, for all points p ∈ B∗, we have ‖cp‖ 6
‖cc∗‖ + ‖c∗p‖ 6 2r∗. Among the z + 1 points furthest
from c, there is at least one point q which is not outlier,
and therefore, is contained in B∗ (see Figure 2). Thus,
‖cq‖ 6 2r∗, and hence, the ball B(c, ‖cq‖) returned by
Algorithm 1 is a 2-approximation. �

Algorithm 1 assumes that the first point of the stream
is not outlier. To remove this assumption, we run z + 1
instances of Algorithm 1 in parallel, each of which is
given as input one of the first z+1 points of the stream,
followed by the rest of the points. Clearly, there exists
a point among the first z+1 points of P which is not an
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c∗
c

q

B

B∗

Figure 2: Proof of Theorem 1

outlier in the optimal solution. Therefore, the smallest
ball among the z+1 balls computed in parallel is always
within factor 2 of the optimal solution. Since the space
complexity of Algorithm 1 for one instance is O(zd),
and its update time is O(zd log z), we get the following
result.

Theorem 2 Given a stream of points in d dimensions,
we can maintain a 2-approximation to the 1-center with
z outliers in O(z2d) space and O(z2d log z) update time.

4 The 2-Center Problem with Outliers

In this section, we provide a (1.8 + ε)-approximation
algorithm for the 2-center problem with outliers. In
all algorithms presented in this section, we assume that
the first point of the stream, p1, is non-outlier. This
assumption can be easily removed by considering z + 1
parallel instances of the algorithm, similar to what we
did in Section 3.

Let B∗1 and B∗2 be the balls in an optimal solution
to the 2-center problem with z outliers on a point set
P . We denote by r∗ the optimal radius, and by δ∗ the
distance between B∗1 and B∗2 . To prove our main result,
we distinguish between two cases. In Section 4.1, we
address the case where δ∗ > αr∗, for some constant α
to be fixed later. (It will turn out that α = 16 is a proper
choice.) We then present in Section 4.2 our algorithm
for the case of δ∗ 6 αr∗.

4.1 The Case δ∗ > αr∗

In this section, we present a 1.8-approximation algo-
rithm for the case where optimal balls are separated by
a distance greater than αr∗. We start by two useful
observations.

Observation 2 Let B1 and B2 be two congruent balls
of radius r, with distance δ > αr. For any two points

p ∈ B1 and q ∈ B2, we have 1 6 ‖pq‖δ < α+4
α .

Proof. The distance between p and q is at most δ+4r.

Hence, ‖pq‖δ 6 1 + 4r
δ < 1 + 4

α . �

Observation 3 Let B1 and B2 be two disjoint balls of
distance δ, and let B be an arbitrary ball of radius less
than δ

2 . Then B intersects at most one of B1 and B2.

We next prove some properties regarding the optimal
balls, B∗1 and B∗2 .

Lemma 3 Let B∗1 and B∗2 be α-separated, with α > 4.
If p is a point in B∗1 , and S is a (z + 1)-subset of P
furthest from p, then S ∩B∗2 is non-empty.

Proof. Suppose by way of contradiction that S ∩ B∗2
is empty. Since |S| = z + 1, there is at least one point
in S which is not outlier, and hence, it is in B∗1 . Let q
be a point in S ∩B∗1 furthest from p. Consider the ball
B(p, ‖pq‖). For any point s ∈ P \ S, we have ‖ps‖ 6
‖pq‖, because s 6∈ S and q ∈ S. Therefore, B covers
P \ S. Since p, q ∈ B∗1 , ‖pq‖ is at most 2r∗. Thus, by
Observation 3, B∗2 ∩B = ∅. Therefore, B∗2 ∩P = ∅, and
hence, B∗2 is empty, which contradicts the optimality of
the solution. �

Lemma 4 Let p be a point in B∗1 , and q be the (z+ 1)-
furthest point from p. Then, δ∗ > α

α+4‖pq‖.

Proof. By Lemma 3, there exists a point q′ ∈ B∗2 such

that ‖pq′‖ > ‖pq‖. Thus, by Observation 2, ‖pq‖δ∗ 6
‖pq′‖
δ∗ < α+4

α . �

Lemma 5 If p ∈ B∗1(c1, r
∗) and q ∈ B∗2(c2, r

∗), then
B∗1 ⊂ B(p, 2r∗) and B∗2 ⊂ B(q, 2r∗), and hence, at most
z points of P lie outside B(p, 2r∗) ∪B(q, 2r∗).

Proof. For an arbitrary point p′ ∈ B∗1 , ‖pp′‖ 6 ‖pc1‖+
‖p′c1‖ 6 2r∗, and as a result, B∗1 ⊂ B(p, 2r∗). Similarly,
we have B∗2 ⊂ B(q, 2r∗). Considering that at most z
points of P are outlier, the proof is complete. �

Lemma 6 Let S be a subset of P of size at least (d +
1)(z + 1), enclosed by a ball B of radius less than δ∗/2.
Then the centerpoint cp of S lies inside either B∗1 or
B∗2 .

Proof. Not all points in S can be outlier, because (d+
1)(z + 1) > z. Thus, by Observation 3, B intersects
exactly one of B∗1 and B∗2 . Assume, w.l.o.g., that B
intersect B∗1 . Now, by Observation 1, if cp is not in
B∗1 , then z + 1 points of S remain uncovered by B∗1 ,
contradicting the fact that there at most z outliers. �

The Algorithm We now describe our algorithm for
handling the case δ∗ > αr∗. At any time, our algorithm
maintains a partition of P into three disjoint subsets B1,
B2, and Buffer. The first point p1 is assumed, w.l.o.g,
to be in B∗1 . (We have already assumed that p1 is not
outlier.) The algorithm tries to partition points in such
a way that at the end, B1 contains the whole B∗1 , and B2

contains the whole B∗2 , with possibly some outliers be-
ing contained in B1 and B2. The algorithm sets c1 = p1
as the fixed center of B1, and picks c2 among the points
processed so far as a candidate for being the center of
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Algorithm 2 2-Center-Separated(P )

1: c1 ← p1, r ← 0, δ ← 0
2: for each p ∈ P do
3: if not (AddToB1(p) or AddToB2(p)) then
4: add p to Buffer
5: while |Buffer| > z do
6: if |B2| > (d+ 1)(z + 1) then
7: B1 ← B1 ∪B2, B2 ← ∅
8: else if c2 is set then
9: B1 ← B1 ∪ {c2}

10: T ← Buffer ∪B2 \ {c2}
11: B2 ← ∅
12: c2 ← (z+1)-furthest point from c1 in T
13: r ← 2

α‖c1c2‖
14: for p ∈ T do
15: AddToB2(p)
16: Buffer← T \B2

B2. Moreover, the algorithm maintains two values δ
and r, where at any time, δ is a lower bound of δ∗, and
r is an upper bound of 2r∗ (under a certain condition).

Our algorithm is presented in Algorithm 2. For each
input point p ∈ P , the algorithm first tries to add
p to either B1 or B2, using functions AddToB1 and
AddToB2, respectively. If none of them fits, the point
is added to Buffer. The function AddToB1 adds a
point p to B1 only if it is within distance δ of the center
c1. Similarly, AddToB2 adds a point p to B2 only if it
is within r-radius of c2. The two functions also update
the values of δ and r whenever necessary, to maintain
the invariants to be defined in Lemma 7.

Algorithm 3 AddToB1(p)

1: if at least z + 1 points have been processed then
2: q ← (z + 1)-furthest point from c1
3: else
4: q ← c1
5: δ ← α

α+4‖c1q‖
6: if p ∈ B(c1, δ) then
7: B1 = B1 ∪ {p}
8: return true
9: return false

Whenever the buffer overflows (in line 5 of Algo-
rithm 2), the algorithm takes one of the following ac-
tions depending on the size ofB2. If |B2| > (d+1)(z+1),
then the points of B2 are moved to B1, and B2 is reset.
Otherwise, the old c2 (if already set) is moved to B1,
and another point from T = B2 ∪Buffer \ {c2} is picked
as c2. The while loop iterates at most O(dz) times, be-
cause after the first iteration, we are sure that T has at
most (d + 1)(z + 1) + z points, from which one point
(i.e., c2) is removed at each subsequent iteration.

For the sake of analysis, we maintain a “central

Algorithm 4 AddToB2(p)

1: if c2 is set and p ∈ B(c2, r) then
2: B2 ← B2 ∪ {p}
3: if |B2| = (d+ 1)(z + 1) then
4: r ← (2 + 2

α )× r
5: for p in Buffer do
6: if p ∈ B(c2, r) then
7: B2 ← B2 ∪ {p}
8: remove p from Buffer
9: return true

10: return false

point”, denoted by cp, which is defined as follows: if
|B2| < (d+ 1)(z + 1), then cp = c2, otherwise, cp is the
centerpoint of the first (d + 1)(z + 1) points currently
in B2.

Lemma 7 The following invariants are maintained
during the execution of the algorithm:

(a) δ < δ∗

(b) r 6 δ/2

(c) B1 ∩B∗2 = ∅
(d) if cp ∈ B∗2 , then

1. 2r∗ 6 r
2. B2 ∩B∗1 = ∅
3. all points in Buffer are outlier

Proof. Invariant (a): At the beginning, δ = 0, which
clearly satisfies the invariant. After z + 1 points of the
stream is processed, function AddToB1 starts updating
δ to α

α+4‖c1q‖, where q is the (z+1)-furthest point from
c1 in the current stream. Now, since c1 ∈ B∗1 , Lemma 4
implies that δ < δ∗.

Invariant (b): When c2 is set by Algorithm 2, it is the
(z + 1)-furthest point from c1 in a set T ⊆ P , and r is
set to 2

α‖c1c2‖. Let q be the (z+ 1)-furthest point from
c1 in the stream at that moment. Then ‖c1c2‖ 6 ‖c1q‖.
Assuming α > 16, we have 2

α‖c1c2‖ 6 1
6
α‖c1q‖
(α+4) 6 δ/6,

and hence,

r 6 (2 +
2

α
)

2

α
‖c1c2‖ 6 3× 2

α
‖c1c2‖ 6 δ/2,

which means that the invariant holds, even after increas-
ing r by function AddToB2.

Invariant (c): The proof is provided in Appendix C.
Invariant (d1): By Observation 2, if c1 ∈ B∗1 and

cp ∈ B∗2 , then 1 6 ‖c1cp‖
δ∗ 6 ‖c1cp‖

αr∗ , and as a result,
2r∗ 6 2

α‖c1cp‖. If |B2| < (d+1)(z+1), then cp = c2, and
by Algorithm 2, r = 2

α‖c1c2‖, and therefore, 2r∗ 6 r. If
|B2| > (d+ 1)(z + 1), then similar to invariant (b),

2r∗ 6 2

α
‖c1cp‖ 6 (1+

2

α
)

2

α
‖c1c2‖ 6 (2+

2

α
)

2

α
‖c1c2‖ = r.

168



CCCG 2015, Kingston, Ontario, August 10–12, 2015

Invariant (d2): By invariant (d1), if cp ∈ B∗2 then
2r∗ 6 r 6 δ/2 and cp ∈ B2. Now, by invariant (a)
and Observation 3, B2 intersect only B∗2 , and hence,
B2 ∩B∗1 = ∅.

Invariant (d3): By invariants (c) and (d1), 2r∗ 6 r 6
δ/2 < δ∗/2. Therefore, by Lemma 5, all points outside
B1 ∪B2 are outlier. �

Theorem 8 If δ∗ > αr∗, a 1.8-approximation to the
2-center problem with z outliers can be maintained in
O(d3z2) space and poly(d, z) update/query time.

Proof. Our algorithm for answering queries is provided
in Appendix A. It uses the current partitionB1, B2, and
Buffer, to compute an optimal solution to 2-center with
z outliers. In the streaming model, we cannot afford
keeping all the points of B1 and B2. Therefore, we
maintain the sets B1 and B2 in a data structure that
supports adding points, and gives a β-approximation to
1-center with k outliers, for k = 0, . . . , z. Moreover, we
maintain a set Bu = B1∪B2 in a similar data structure.
Note that these data structures do not need to maintain
all the points. They only need to have a buffer of size
(d+ 1)(z + 1) to keep the most recently added points.

To maintain B1, B2, and Bu, we use the streaming
algorithm of [17, 5], which provides an approximation
factor of 1.22 ×

√
2 < 1.8. The algorithm uses O(d3z)

space and has poly(d, z) update time. Since we need to
run z+ 1 instances of Algorithm 2 in parallel, the space
and update time are multiplied by a factor of z. �

4.2 The Case δ∗ 6 αr∗

Our idea in this section is to carefully adopt the al-
gorithm of Kim and Ahn [13], originally designed for
maintaining an approximate 2-center. To avoid dupli-
cation, we just sketch the main steps of their algorithm,
and explain our modifications to it. Kim and Ahn’s al-
gorithm, which we refer to as the KA algorithm, has
9 different states, shown in Figure 3. Depending on
the points arrived so far, the algorithm is in one of the
states. In each state, the algorithm keeps at most two
balls as a candidate solution. A transition between the
states occurs whenever a point not covered by any of
the two balls arrive.

The algorithm starts at node 1, and proceed through
the transition graph as points arrive. In some states,
there is more than one state to follow, and the algo-
rithm has no prior information which one is the correct
choice. However, there are only three different paths
to follow in the transition graph. Hence, we can easily
run three instances of the algorithm in parallel, each of
which follows one of the paths deterministically, to make
sure that at any time, at least one of the instances is in
a correct state.

Our modification is on the transition part. Points
that are covered by the current solution can be safely

1

2a 2b 2c

3a

3b 3c

3d 3e

Figure 3: State diagram of the KA algorithm. Labels
are taken from [13].

Algorithm 5 2-Center-Close(P, z, r)

1: solutions ← {}
2: for each (n1, n2, n3, n4) such that

∑
ni = z do

3: for each π ∈ {1, 2, 3} do
4: counteri ← 0, for i = 1, . . . , 4
5: B1 ← B(p1, r), B2 ← ∅
6: j ← 1 B j represents current level
7: for each p ∈ P do
8: if p 6∈ B1 ∪B2 then
9: counterj ← counterj + 1

10: if counterj > nj then
11: j ← j + 1
12: (B1, B2)← KA.insert(p, π)
13: if j 6 4 then
14: add max {r(B1), r(B2)} to solutions
15: return min {solutions}

ignored, as they do not cause any change in the cur-
rent solution, and hence, they cause no transition. Only
those points that lie outside the current solution are can-
didates for being outliers. Since the number of outliers
in each state is unknown, we try all possible choices.
The observation here is that the transition graph is a
DAG of depth four. If ni (1 6 i 6 4) represents the
number of outliers in depth i, then it suffices to con-
sider all tuples (n1, . . . , n4) such that

∑4
i=1 ni = z, It is

easy to verify that there are O(z3) such tuples.

The pseudocode of our algorithm is presented in Al-
gorithm 5. For each possible choices of n1 to n4, and
each of the three paths in the transition graph, num-
bered from 1 to 3, the algorithm keeps a candidate so-
lution (B1, B2) to the 2-center of non-outlier points, a
parameter j representing the current level in the tran-
sition graph, and four counters to keep track of number
of outliers seen so far at each level.

The algorithm starts with B1 = B(p1, r) and B2 = ∅,
which corresponds to Case 1 of the KA algorithm. For
each new point p, we first check if it is contained in the
current solution. If so, then we are done. Otherwise,
if the number of outliers seen in the current level has
not yet reached nj , we consider p as an outlier and pro-
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ceed. Otherwise, we go to the next level, and update
the current candidate solution, (B1, B2), using the KA
algorithm. We give the transition path π along with the
point p to the KA algorithm to help it deterministically
decide which state to choose as the next one.

After all points in P are processed, if we are in one
of the four states in the current path, then the ob-
tained solution is added to the feasible solutions. Oth-
erwise, the solution is not feasible, and is abandoned
as in the KA algorithm. Finally, we return the best
solution among all computed feasible solutions. Kim
and Ahn [13] proved that in all feasible solutions com-
puted this way, the larger ball among B1 and B2 has
radius at most 3/2r, provided δ∗ 6 αr∗. (Their proof
is stated for α = 2, but can be extended to any α > 2.)
Assuming that we have a good estimate r satisfying
1.2r∗ 6 r < (1.2 + 2ε/3)r∗, we get the following.

Theorem 9 For 1.2r∗ 6 r < (1.2 + 2
3ε)r

∗ and δ∗ 6
αr∗, Algorithm 5 computes a (1.8+ε)-approximation to
the 2-center with z outliers in O(dz3) space and O(dz3)
update time, assuming that the first point of the stream
is not outlier.

As shown in Appendix B, a desired estimate for r can
be obtained by running O(1/ε) instances of Algorithm 5
in parallel. Adding another level of parallelization to
remove the assumption of p1 being a non-outlier, we get
the following.

Theorem 10 If δ∗ 6 αr∗, a (1.8+ε)-approximation to
the 2-center problem with z outliers can be maintained

in O(dz
4

ε ) space and O(dz
4

ε ) update/query time.

Theorems 8 and 10 together yield the following main
result of the paper.

Theorem 11 Given a stream of points in d dimen-
sions, we can maintain a (1.8 + ε)-approximation to the
2-center problem with z outliers using O(dz2(d2+z2/ε))
space and poly(d, z, 1ε ) update/query time.

5 Conclusions

In this paper, we presented a (1.8 + ε)-approximation
streaming algorithm for 2-center problem with outliers
in Euclidean space. It improves the previous (4 + ε)-
approximation algorithm available for the problem due
to McCutchen and Khuller [15]. Finding better approxi-
mation factor or space complexity is an interesting prob-
lem that remains open. It is also interesting to see if
the ideas in this paper can be extended to the k-center
problem with outliers in the data stream model, even
for small values of k > 3.
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A Answering Queries

In the following, we show how the information main-
tained by Algorithm 2 can be used to answer queries of
this kind: find two α-separated congruent balls of min-
imum radius to cover all but at most z points of the
stream processed so far.

Our query algorithm is presented in Algorithm 6. The
idea behind the algorithm is as follows. By our initial
assumption about p1 and by invariants (c) and (d), if
cp ∈ B∗2 , then we know that B1 completely contains B∗1 ,
and B2 completely contains B∗2 . However, it might be
the case that our assumption about cp was incorrect,
and therefore, B1 (resp., B2) may not completely con-
tain B∗1 (resp., B∗2). To overcome this issue, we try all
possible candidates for c2 (which in turn, determines
cp), and compute, for each resulting partition of P into
B1, B2, and Buffer, the best solution for 2-center with
z outliers using the MinCover function presented in
Algorithm 7.

Algorithm 6 Query

1: solutions ← {}
2: candidates ← B2 ∪ Buffer
3: if |B2| > (d+ 1)(z + 1) then
4: candidates ← {c2} ∪ Buffer
5: B1 ← B1 ∪B2

6: δ0 = δ
7: for c ∈ candidates do
8: r ← 2

α‖c1c‖
9: B′1 ← B1, δ ← max{δ0, r}

10: B′2 ← ∅, Buffer′ ← ∅
11: for p ∈ candidates do
12: if not (AddToB′1(p) or AddToB′2(p)) then
13: add p to Buffer′

14: add MinCover(B′1, B′2, Buffer′) to solutions
15: return min {solutions}

Algorithm 7 MinCover(B1, B2,Buffer)

1: solutions ← {}
2: for k ← 0, . . . , (z − |Buffer|) do
3: r1 ← 1-Center(B1, k)
4: r2 ← 1-Center(B2, z − |Buffer| − k)
5: add max {r1, r2} to solutions
6: return min {solutions}

Let C denote the set of candidates for c2. By in-
variant (c), we know that B1 ∩ B∗2 = ∅. Therefore,
there exists a point in (B2 ∪ Buffer) ∩ B∗2 , and hence,
C is (B2 ∪ Buffer) ∩ B∗2 in general. However, when
|B2| > (d + 1)(z + 1), we will show in the follow-
ing lemma that ({c2} ∪ Buffer) ∩ B∗2 6= ∅. Therefore,
if |B2| > (d + 1)(z + 1), we only need to consider
{c2} ∪ Buffer as candidates for C.

Lemma 12 At any time, if |B2| > (d + 1)(z + 1) and
cp 6∈ B∗2 , then B2 ∩B∗2 = ∅.

Proof. By invariants (a) and (b), we know that r 6
δ/2 < δ∗/2. By Lemma 6, cp ∈ B∗1 ∩B∗2 . Since cp 6∈ B∗2 ,
we have cp ∈ B∗1 . On the other hand, by Observation 3,
B2 intersect at most one of B∗1 and B∗2 . Therefore, B2∩
B∗2 = ∅. �

Our query algorithm works as follows. For each
candidate point c ∈ C, Algorithm 6 constructs
B′1(c1,max{δ, 2

α‖c1c‖}) and B′2(c, 2
α‖c1c‖). If the can-

didate c equals the current c2, then we have B1 = B′1.
Since 2

α‖c1c2‖ 6 r 6 δ/2 by invariant (b), and B′2 ⊂ B2,
we do not need to construct any new set. For c 6= c2,
we know that B1 ⊂ B′1, and hence, we only need to
see which points in Buffer ∩ B2 are inside B′1. When
|B2| > (d + 1)(z + 1) and c 6= c2, then it means that
cp 6∈ B∗2 . Therefore, by Lemma 12, B2 can be added
to B′1 without violating invariant (c). So in this case,
we just need to see which points of Buffer must be
added to B′1. Algorithm 6 uses functions AddToB′1
and AddToB′2 for adding a point to B′1 and B′2 re-
spectively. These functions are the same as AddToB1

and AddToB2, with the only exception that they add
points to B′i instead of Bi, for i = 1, 2.

Since Algorithm 6 considers all valid candidates for
c, at least for one c∗ ∈ C, we have c∗ ∈ B∗2 . We
denote the corresponding B′1 and B′2 by B′′1 and B′′2 .

Since by Observation 2, 1 6 ‖c1c∗‖
α∗ < ‖c1c∗‖

αr∗ , we have
2r∗ 6 2

α‖c1c∗‖, and hence by Lemma 5, B∗1 ⊂ B′′1
and B∗2 ⊂ B′′2 . On the other hand, since the dis-
tance of the new points added to B′′1 is less than
‖c1p‖ 6 max{δ, 2

α‖c1c∗‖}, we have by invariant (c) that
B′′1∩B∗2 = ∅. As a result, B′′1 (resp., B′′2 ) completely cov-
ers B∗1 (resp., B∗2), and the points in Buffer are all out-
liers. The only unknown part is that Algorithm 6 does
not know how many outliers are in B′′1 and B′′2 . There-
fore, Algorithm 7 tries all possible cases and choose the
one with the minimum radius.

B Estimating r

In this section, we show how to obtain a value r, such
that 1.2r∗ 6 r < (1.2 + 2ε/3)r∗. The following lemma
provides the main ingredient.

Lemma 13 Given a point set P in Rd, an optimal so-
lution to the 1-center problem with z outliers on P gives
a (2 + α

2 )-approximation for the 2-center with z outliers
on P , provided that δ∗ 6 αr∗.

Proof. Let r∗1 and r∗ be the optimal radii for the 1-
center and 2-center problems with z outliers on P , re-
spectively. It is clear that r∗ 6 r∗1 , because any feasible
solution B∗ for 1-center with z outliers yields a feasi-
ble solution (B∗, B∗) for 2-center with z outliers. Now,
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δ∗

2 ≤ α
2 r
∗

r∗r∗

c∗1 c∗2

B∗2

c

B∗1

Figure 4: Proof of Lemma 13

suppose that B∗1(c∗1, r
∗) and B∗2(c∗2, r

∗) are the balls in
an optimal solution for the 2-center problem with z
outliers. Let c be the midpoint of the segment con-
necting c∗1 to c∗2 (see Figure 4). Clearly, B

(
c, δ2 + 2r∗

)

covers both B∗1 and B∗2 . Therefore, it is a feasible so-
lution for the 1-center problem with z outliers. Hence,
r∗1 6

(
2 + α

2

)
r∗. �

The following is a direct corollary of Lemma 13 and
Theorem 1.

Corollary 14 If δ∗ 6 αr∗, Algorithm 1 computes a
(4 + α)-approximation to r∗.

We use Algorithm 1 to find an estimate for r. Let ri
be the radius calculated by Algorithm 1 after receiving
the i-th point, pi. Clearly, the sequence of ri’s is in-
creasing. Let k be an integer such that 2k−1 6 ri 6 2k,
and set `i = 2k. (If ri = 0, we set `i = 0.) Obviously,
`i 6 2ri, and hence, by Corollary 14, `i is a (8 + 2α)-
approximation to r∗.

We divide the interval (0, 1.2`i] into m =
d1.2(3α+ 12)/εe equal segments, each of length ti =
1.2`i/m. Clearly, ti 6 (2ε/3)r∗. Therefore, in the set
Ri = {j × ti | j = 1, . . . ,m}, there is at least one value r
for which the inequality 1.2r∗ 6 r 6 (1.2 + 2ε

3 )r∗ holds.
We run m instances of Algorithm 5 for each value

r ∈ Ri in parallel. Whenever a new point pi is added, if
`i = `i−1, then Ri = Ri−1, and the new point is inserted
to all parallel instances. If `i > `i−1, then the set Ri
has two types of values. Those values in Ri which are
less than 1.2`i are also present in Li−1, because ti/ti−1
is a positive power of 2. For these values, we continue
executing the corresponding instance. If a value r ∈ Ri
is not present in Ri−1, then we have r > 1.2`i−1 > `i−1.
Since those points not lying in the candidate solution
are saved in the buffer of Algorithm 1 (which has size
at most z), all non-outlier points of this algorithm lie in
the candidate balls of Algorithm 5 which has center p1
and radius at most li−1. These outliers have been stored
in a buffer. Since Algorithm 5 maintains two balls with
radius at least r, one of which (say B1) is centered at p1,
then all non-outlier points of Algorithm 1 are in B1, and
hence, they do not make any transition in the states of

Algorithm 5. Therefore, for any new value r, it suffices
to execute Algorithm 5 with only the outlier points in
the buffer of Algorithm 1.

C Proof of Invariant (c)

Here, we provide a proof for Invariant (c). The following
technical claim will be used in our proof.

Claim 1 If c2 is set, then B(cp,
2
α‖c1cp‖) ⊆ B2(c2, r).

Proof. If |B2| < (d + 1)(z + 1), then cp = c2 and r =
2
α‖c1c2‖, and hence, B2 = B(cp,

2
α‖c1cp‖). When the

size of B2 reaches (d + 1)(z + 1), the central point cp
moves to the centerpoint of B2, and r is increased by
a factor of (2 + 2

α ). Because the centerpoint of B2 lies
in B2, then cp ∈ B(c2,

2
α‖c1c2‖). Thus, if |B2| > (d +

1)(z + 1) then ‖c2cp‖ 6 2
α‖c1c2‖, and therefore,

2

α
‖c1cp‖ 6

2(‖c1c2‖+ ‖c2cp‖)
α

6 2

α
‖c1c2‖(1 +

2

α
).

Hence, B(cp,
2
α‖c1cp‖) ⊆ B2(c2,

2
α‖c1c2‖(2 + 2

α )). �

Now, we prove Invariant (c), which states B1 ∩B∗2 = ∅.

Proof. A point p can be added to B1 in two cases.
The first case is in function AddToB1, where the point
is added to B1 only if it is within distance δ of the
center c1, which by invariant (a), guaranties ‖pc1‖ < δ∗.
Therefore, p 6∈ B∗2 in this case.

The second case is in Algorithm 2, when the buffer
overflows and B2 is non-empty. The algorithm takes one
of the following actions depending on the size of B2. If
|B2| < (d+1)(z+1), then c2 = cp. Algorithm 2 adds c2
to B1. Suppose by way of contradiction that cp ∈ B∗2 .
Then, by invariants (b) and (d1), 2r∗ 6 r 6 δ/2 < δ∗/2.
Therefore, by Lemma 5, there must be at most z points
outside B1 ∪ B2, which contradicts the overflow of the
buffer. If |B2| > (d+1)(z+1), then cp is the centerpoint
of the first (d+ 1)(z+ 1) points currently in B2. In this
case, we add all points of B2 to B1. By invariant (b),
r 6 δ/2 < δ∗/2. Therefore, By Lemma 6, cp ∈ B∗1 or
cp ∈ B∗2 . Suppose by way of contradiction that cp ∈
B∗2 . In this case, by invariant (d1) and Claim 1, B2

covers B(cp,
2
α‖c1cp‖) and 2r∗ 6 r. Therefore, Similar

to the previous part, it contradicts the overflow of the
buffer. �
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A Streaming Algorithm for the Convex Hull

Raimi A. Rufai∗† Dana S. Richards‡

Abstract

Consider a base station in a wireless sensor network that
receives incoming input points and must maintain a run-
ning convex hull within a memory constraint. We give
a new streaming algorithm that processes each point in
time O (log k) where k is the memory constraint, while
maintaining an optimal area error of O

(
1/k2

)
.

1 Introduction

A streaming algorithm is an on-line approximation al-
gorithm constrained to work within a memory budget.
When more memory than the allowed budget is de-
manded, we must make decisions on what is worth keep-
ing and what must be discarded. A streaming algorithm
has three parts: an initialization procedure, a process-
ing algorithm for each successive input, and a facility
for answering queries using the restricted memory.

2 Related Work

Preparata gave an exact online algorithm [5] but with
no memory constraints. The streaming algorithm pro-
posed by Hershberger and Suri [1, 3, 2] maintains ex-
treme points in k uniformly spaced directions and an-
other k extreme points in adaptively sampled directions.
Their algorithm has a distance error of O

(
1/k2

)
; no

area measure was reported.
Lopez and Reizner [4] proposed an algorithm for ap-

proximating an n-gon by a k-gon, k < n. Their algo-
rithm builds an inscribed k-gon by repeatedly removing
an ear of minimum area until only k vertices remain.
(An ear of a convex polygon is any triangle formed by
three consecutive vertices.) However their algorithm,
unlike ours, is not on-line, as all the vertices of the n-
gon are known ahead of time.

3 Streaming Algorithm

Let C = (p1, p2, ..., pn) be a sequence of vertices of a
convex polygon in counter-clockwise order. Each con-
∗Department of Computer Science, George Mason University,

rrufai@gmu.edu
†SAP Labs, Inc., 111 Rue Duke, Montreal, QC H3C 2M1,

Canada, raimi.rufai@sap.com
‡Department of Computer Science, George Mason University,

richards@gmu.edu

tiguous triple (p, q, r) in C defines a measure ∆q =
goodness(p, q, r), which is associated with the vertex
q. We will think of ∆q as measuring the goodness of q.
Note that ∆q is a local measure and depends only on
q and its two immediate neighbors in C. When a di-
rect neighbor is inserted or deleted, the goodness must
be recomputed. The function goodness can be defined
in various ways: as the area of the triangle 4pqr, as
its perimeter, as the length of the segment pr, as the
height of the triangle pqr relative to base pr, or even
as the angle ∠q in 4pqr. This yields different variants
of the same algorithm. In this section, we shall mainly
address the area variant.

3.1 Initialize

The procedure Initialize in Algorithm 1 initializes a
balanced binary search tree T and a priority queue H
to store the Node references using two different keys.
While points in T are ordered by their polar angles rel-
ative to a centroid, the points in H are keyed on their
goodness.

Algorithm 1: Initialize(P )
Input : P : The first 3 input points in a data

stream S.
Output: T : balanced BST with vertices of conv(P )

sorted by angles about centroid c;
H: min-heap of vertices of conv(P ) using
goodness as priority.

1 L← conv(P )
2 c← centroid(L)
3 (N,W,S,E)← directionalExtrema(L)
4 foreach p ∈ L do
5 Θ← polar(p, c)
6 if p ∈ (N,W,S,E) then
7 ∆←∞
8 else
9 ∆← goodness(L.pred(p), p, L. succ(p))

10 x← Node(p,∆p,Θp, false)
11 T. insert(Θp, x)
12 H. insert(∆p, x)

13 return (T,H, c, k)

The structure L in Step 1 is a cyclic array and
supports pred and succ operations. The func-
tion Node(p,∆p,Θp,deleted) creates a new node
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(a 4-tuple), whose attributes can be accessed using
the attribute names point, goodness, polar, and
deleted. Clearly initialization takes constant time.

3.2 Process

Algorithm 2: Process(T,H, c, k, p)

Input : T : balanced BST with ≤ k nodes;
H: min-heap of the nodes of T ;
p: new point; k: memory budget

Output: T : a balanced BST updated with p,
H: a min-heap updated with p.

1 x← Node(p, 0,polar(p, c), false)
2 (T,H)← updateHull(T,H, c, x)
3 if |T | > k then
4 (T,H)← shrinkHull(T,H)
5 return (T,H)

Procedure Process is invoked each time a new point
arrives. A new node x is created and used to update
the current hull by invoking procedure updateHull.
The call to updateHull(T,H, c, x) in line 2 of Proce-
dure Process updates the structures T and H with x.
If the point associated with x falls within the interior
of the current convex hull or on its boundary, it is dis-
carded. This test is done in Line 4 of updateHull.
Further, x’s goodness is computed and if it is smaller
than H.minimum, again x is discarded. Otherwise, the
chain of vertices that lie between the two new neigh-
bors of x on the hull are deleted from both T and H.
This deletion is done in Lines 8 to 16 of updateHull.
The goodness of x’s neighbors are then updated. The
directional extrema are also updated if required.

Whenever the number of nodes in T exceeds k, the
procedure shrinkHull is called to choose one vertex
for deletion. This is done by calling deleteMin() on
the min-heap structure H to obtain the node q that
should be deleted. The procedure then updates the
goodnesses of q’s neighbors and deletes q from T .

This algorithm is sensitive to the order in which the
points arrive in the stream. Consider the six points
A,B,C,D,E, F shown in Figure 1 and Figure 2 below.

3.3 Query

Algorithm Query is invoked to obtain the current hull
at any point in the streaming process. It simply tra-
verses T to return the hull vertices in a cyclic list, and
runs in linear time.

3.4 Complexity Analysis

Lemma 1 Procedure UpdateHull runs in O (log k)
amortized time on the input stream S.

Algorithm 3: UpdateHull(T,H, c, x)

Input : T : balanced BST with ≤ k of conv(S);
H: min-heap of ≤ k nodes;
x: new node.

Output: T : balanced BST updated with x;
H: min-heap updated with x.

1 T. insert(x)
2 y ← T.pred(x)
3 z ← T. succ(x)
4 if not contains(4ycz, x) then
5 (s, t)← tangents(T, x)
6 x.∆← goodness(s, x, t)
7 if x.∆ ≥ H.minimum() then
8 w ← T. succ(s)
9 while w 6= t do

10 w.deleted← true
11 H.changeKey(w,−∞)
12 T.deleteKey(w)
13 w ← T. succ(s)

14 q ← H.minimum()
15 while q.deleted do
16 q ← H.deleteMin()
17 H. insert(x)
18 H.changeKey(s,goodness(T.pred(s), s, x))
19 H.changeKey(t,goodness(x, t, T. succ(t)))

� Update extrema if needed �
20 (N,W,S,E)← updateExtrema(T, c, x)
21 foreach n ∈ (N,W,S,E) do

� To prevent the deletion of an extremum
�

22 H.changeKey(n,∞)

23 else
24 T.deleteKey(x)

25 else
26 T.deleteKey(x)
27 return (T,H)

Algorithm 4: ShrinkHull(T,H)
Input : T : BST with k + 1 vertices of conv(S);

H: min-heap of k + 1 vertices of conv(S).
Output: T : BST with k vertices of conv(S);

H: min-heap of k vertices of conv(S).
1 q ← H.deleteMin()
2 p← T.pred(q)
3 r ← T. succ(q)
4 T.deleteKey(q)
5 H.changeKey(p,goodness(T.pred(p), p, r))
6 H.changeKey(r,goodness(p, r, T. succ(r)))
7 return (T,H)

Proof. The initial steps take O (log k) time using stan-
dard BST techniques. Step 4 takes O (1) time. The
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Figure 1: k = 4, arrival sequence: A,B,C,D,E, F . D
is deleted after E arrives, and B after F .

C

D

A

B

E

F

Figure 2: k = 4 with arrival sequence: A,B,C,D, F,E.
B is deleted after F arrives. E is deleted since it is an
interior point.

call to tangents takes O (log k) time [5]. The rest of
the procedure — Steps 8 through 16 — deletes a vertex
chain that no longer belongs to the hull. Since these
vertices are only deleted once per point in S, the total
cost over all invocations of the procedure UpdateHull
is O (n log k), where n is the length of S. �

Lemma 2 Procedure ShrinkHull runs in time
O (log k).

Proof. Every step of Procedure ShrinkHull takes
O (log k). �

Lemma 3 Procedure Process runs in time O (log k)
time.

Proof. Each invocation of Process makes a single
call to UpdateHull and at most a single call to
ShrinkHull. Thus Process also runs in O (log k)
time. �

Lemma 4 Let Ti−1 be the convex hull computed before
invoking Algorithm UpdateHull, and let Ti be the re-
sulting hull after it returns. Then the following invari-
ant holds

|Ti−1| ≤ |Ti|. (3.1)

Proof. Consider the invocation of UpdateHull on an
arbitrary point pi. The fate of pi is one of the following
two cases.

Case 1 (pi lies in the interior of Ti−1.)
UpdateHull ignores pi, in which case the hull
does not grow and Ti = Ti−1.

Case 2 (pi lies in the exterior of Ti−1.)
UpdateHull expands Ti−1 by adding pi to the
hull and therefore Ti has a bigger area than Ti−1.

�

Lemma 5 When k ≥ | conv(S)| the algorithm com-
putes the exact convex hull of S.

Proof. The algorithm then is equivalent to that of
Preparata [5]. �

3.5 Error Analysis

We only discuss in this section the relative area error,
which is defined as

errarea(P, P ′) =
|area(P )− area(P ′)|

area(P )
(3.2)

where P denotes the vertex set of the true convex hull,
and P ′ that of the approximate convex hull.

Lemma 6 Each deletion from a convex (k + 1)-gon by
Algorithm shrinkHull introduces an error no worse
than O

(
1/k3

)
.

Proof. Letm = k+1. Let Q be a convexm-gon and let
e1, e2, ..., em be its ears. Let |ei| denote the area of ei.
Let Q′i = Q−ei denote the k-gon that would result if ei
were deleted. Therefore, the ratio |ei|/|Q| represents the
area error that would result from deleting ei. Further,
let Rm denote a regular m-gon with unit area, and let
R be the circumradius of Rm.

Renyi and Sulanke [6] proved that

1

|Q|m
m∏

i=1

|ei| ≤ |r|m, (3.3)

whenever r is an ear of Rm.
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By taking logarithms and invoking the mean-value
theorem, it is clear that there must exist at least one
ear ej in Q such that |ej ||Q| ≤ |r|. Since

|r| = 4R2 π
3

m3

[
1− π2

m2
+O

(
1

m4

)]
, (3.4)

it follows that

|ej |
|Q| < 4R2 π

3

m3
(3.5)

= O
(

1

k3

)
. (3.6)

�

Lemma 7 Let e1, e2, ..., em denote the sequence of ears
deleted by the streaming algorithm. Then

|ei| ≤ |ei+1| < H.minimum for all i = 1, 2, ...,m− 1.
(3.7)

Proof. Recall that Algorithm UpdateHull only in-
serts a new node if its goodness is greater than
H.minimum. By definition, H.minimum increases
with each deletion. Before the the ith deletion,
H.minimum = |ei|, but becomes |ei+1| afterwards. �

Note that the computed hull consists of four (x-y
monotone) chains: from W to N , from N to E, from
E to S, and from S to W . Our discussion will only be
for the chain from W to N . Suppose that chain is s1,
s2, . . . sl. Let s0 be a short vertical side below W and
sl+1 be a short horizontal side to the right of N . (The
reason for these two additional sides is to automatically
take into account the fact that all points seen will be in
a bounding box, as indicated by the next lemma. If we
do not maintain the bounding box, then our chains are
not monotone and the definitions below would be more
complex.) Let pi be the vertex common to si and si+1.

Lemma 8 After processing the points in S, the direc-
tional extrema (N,W,S,E), maintained by Algorithm
updateHull define an axis-parallel bounding box B
that contains conv(S).

Proof. Note that these directional extrema are extreme
over all of S in the four axis-parallel directions. Sup-
pose there were some point p in S not contained in B.
Further suppose, without loss of generality, that p lies
above B. Then p must be more extreme than N in the
positive y direction, a contradiction. �

The outer ear for side si is the triangle formed by si
and the extensions of the sides si−1 and si+1. The flap
for side si is a trapezoidal subset of its outer ear: it is
the region 2pipi+1q1q2 where q1q2 is parallel to si and

q1 and q2 are on the boundary of the outer ear. The
height of the flap, hi, perpendicular to si will be chosen
to be the minimum value that maintains an invariant.
The hi is used in the analysis and is not calculated by
the algorithm.

We will choose hi after each deletion that creates the
side si so that this invariant holds (if si was not created
by a deletion, then hi = 0).

Invariant 1 Each deleted point, not in the hull itself,
is from one of the flaps. Further, the area of the corre-
sponding ear is contained in the flap.

When pi is deleted and a new side s = pi−1pi+1 cre-
ated, the corresponding h is calculated: it is minimized
subject to the constraint that the new flap includes the
flaps from si−1 and si. Let h′ be the height of pi in
4pi−1pipi+1. Then h ≤ 2h′, by similar triangles. Recall
that h corresponds to a triangle (ear) chosen because it
had minimum area. Hence we get the following lemma.

Lemma 9 The area of any flap is ≤ 4H.minimum().

Proof. Suppose si is the side for a given flap. Let a =
H.minimum(). The height h satisfies

h ≤ 2h′ ≤ 2
2a

si
. (3.8)

Since the top of the trapezoid is less than its base, it fits
within a parallelogram M of base si and height h. �

The following theorem gives an upper bound on the
area error for processing n� k points.

Theorem 10 The total area error incurred in the
streaming process is bounded above by O

(
1/k2

)
.

Proof. A deleted point contributes to the error if it is
outside the computed hull. Some or all of its ears may
not be in the computed answer. We know that each such
ear is from some flap. A single flap may cover many such
(overlapping) ears, but the total missed area of all such
ears is bounded by the area of that flap. Hence the total
area error is bounded by the total area of all the flaps.

By Lemma 6, H.minimum is at most O
(
1/k3

)

and since there are k outer ears, the total error is
O
(
1/k2

)
. �

Note that, in general, not all deletions will have an
impact on the final k-gon returned after processing all
the points in the stream. However, when an adversary
could provide a stream of points that all lie on the con-
vex hull, such as the vertices of a regular n-gon, the
above error bound, being a worst-case bound, will still
apply.
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Theorem 11 (Lopez and Reisner [4]) Given an adver-
sarial input, the total area error accumulated by all the
deletions is at least

2π2

[
1

k2
− 1

n2

]
. (3.9)

Proof. This bound was obtained by [4], but in their
case, they had access to all the vertices offline, as men-
tioned earlier in Section 2. �

4 Empirical Results

A stream S of 10,000 random points lying on a common
circle was generated. We then fed 33 random shuffles of
S to the streaming algorithm and computed the mean
distance and area relative errors. These were then used
to compute the lower and upper bounds as defined in
Theorem 10 and Theorem 11. The empirical area er-
ror is neatly sandwiched between the two bounds, as
expected.

Figure 3: Empirical area error sandwiched between the
curves of the lower and upper bounds

The relative distance measure between the set P of
vertices of the true convex hull and the set P ′ of vertices
of the approximate hull is defined as

errδ,diam(P, P ′) = δ(P, P ′)/ diam(P ), (4.1)

where δ(·, ·) stands for the Hausdorff distance1.
Figure 4 and Figure 5 show the distance and area

relative errors using three goodness measures: the area
of an ear, the height of the ear, and the angle made
by the ear with the centroid. What is clear from these
results is that the measure of goodness based on the

1The Hausdorff distance between a finite point
set P and another Q is defined as δ(P,Q) =
max(maxp∈P minq∈Q ‖p− q‖ ,maxq∈Q minp∈P ‖q − p‖).

area and that based on the distance (height of the ears)
are both very effective. The results for the angle of
an ear were not as good, indicating that the relation
between the measure of goodness and the error measure
is important.

Figure 4: Distance Relative Errors

Figure 5: Area Relative Errors

5 A More General Approach

We propose a refinement of Algorithm 2, which uses
the idea from Lopez and Reisner [4]. The essential dif-
ference is that rather than invoke shrinkHull every
time the k-gon grows into a (k + 1)-gon, the algorithm
waits until the k-gon grows into an mk-gon for some
small constant m before invoking shrinkHull. The al-
gorithm Process2 shows the details. This only works,
of course, if the memory constraint allows the use of
(m − 1)k extra memory for processing. The main ben-
efit of this enhancement is that it reduces the effect of
the order of the point sequence (illustrated earlier in
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Figure 1 and Figure 2), while keeping the same over-
all asymptotic time bounds. We hope to analyze this
approach both analytically and empirically.

Algorithm 5: Process2(T,H, c, k, p)

Input : T : balanced BST with ≤ k of conv(S);
H: min-heap of ≤ k of conv(S);
p: new point; k: memory budget

Output: T : a height-balanced BST update with p
if on the hull, H: a binary min-heap
updated with p if on the hull.

1 x← Node(p, 0,polar(p, c), false)
2 (T,H)← updateHull(T,H, c, x)
3 if |T | > mk then
4 while |T | > k do
5 (T,H)← shrinkHull(T,H)

6 return (T,H)

6 Conclusion

We have presented a new streaming algorithm for the
convex hull and analyzed its runtime and error bounds.
We have proven that it is optimal for the area error
measure. We have empirically shown that it is robust
with respect to different goodness and error measures.
Further analytic results are being studied.

The generalization of this approach to three or higher
dimensions is conceptually straightforward. Each new
point that is outside the current hull subtends a volume
analogous to an ear, which can be given a goodness mea-
sure. Points which can be stored in memory are deleted
according to this measure. However, we have not ex-
plored the computational complexity of these steps.
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Approximation and Streaming Algorithms for Projective Clustering via
Random Projections

Michael Kerber∗ Sharath Raghvendra†

Abstract

Let P be a set of n points in Rd. In the projective
clustering problem, given k, q and norm ρ ∈ [1,∞], we
have to compute a set F of k q-dimensional flats such that
(
∑
p∈P d(p,F)ρ)1/ρ is minimized; here d(p,F) represents

the (Euclidean) distance of p to the closest flat in F .
We let fqk (P, ρ) denote the minimal value and interpret
fqk (P,∞) to be maxr∈P d(r,F). When ρ = 1, 2 and ∞
and q = 0, the problem corresponds to the k-median, k-
mean and the k-center clustering problems respectively.

For every 0 < ε < 1, S ⊂ P and ρ ≥ 1, we show that
the orthogonal projection of P onto a randomly chosen
flat of dimension O(((q + 1)2 log(1/ε)/ε3) log n) will ε-
approximate fq1 (S, ρ). This result combines the concepts
of geometric coresets and subspace embeddings based on
the Johnson-Lindenstrauss Lemma. As a consequence,
an orthogonal projection of P to an O(((q + 1)2 log((q +
1)/ε)/ε3) log n) dimensional randomly chosen subspace
ε-approximates projective clusterings for every k and ρ
simultaneously. Note that the dimension of this subspace
is independent of the number of clusters k.

Using this dimension reduction result, we obtain new
approximation and streaming algorithms for projective
clustering problems. For example, given a stream of
n points, we show how to compute an ε-approximate
projective clustering for every k and ρ simultaneously
using only O((n + d)((q + 1)2 log((q + 1)/ε))/ε3 log n)
space. Compared to standard streaming algorithms with
Ω(kd) space requirement, our approach is a significant
improvement when the number of input points and their
dimensions are of the same order of magnitude.

1 Introduction

Consider the projective clustering problem: For a set P
of n points in Rd, given integers k, q < n and an integer
norm ρ ≥ 1, compute a set F of k q-dimensional flats
(or q-flats) such that (

∑
p∈P d(p,F)ρ)1/ρ is minimized;

here d(p,F) represents the Euclidean distance of p to
its closest point on any flat in F . We define

fqk (P, ρ) := min
F

(
∑

p∈P
d(p,F)ρ)1/ρ

∗Max Planck Institute for Informatics, Saarbrücken, Germany,
mkerber@mpi-inf.mpg.de
†Virginia Tech, Blacksburg, USA, sharathr@vt.edu

and interpret fqk (P,∞) to be minF maxp∈P d(p,F). The
projective clustering problem is a generalization of sev-
eral well-known problems. For example, when ρ = ∞,
q = 0 this problem is the minimum enclosing ball (MEB)
problem (when k = 1) and the k-center clustering prob-
lem (for arbitrary k). When ρ =∞ and q = 1, we get the
minimum enclosing cylinder (MEC) (for k = 1) and the
k-cylinder clustering problem (for arbitrary k). When
q = 0, we get the k-median clustering problem (for ρ = 1)
and the k-means clustering problem (for ρ = 2). The pro-
jective clustering problem is NP -Hard [5] and, therefore,
most research has focused on the design of approxima-
tion algorithms. For an error parameter 0 < ε < 1, an
ε-approximate projective clustering is a set of q-flats F̃
such that (

∑
p∈P d(p, F̃)ρ)1/ρ ≤ (1 + ε)fqk (P, ρ).

Projective clustering is an important task arising in
unsupervised learning, data mining, computer vision and
bioinformatics; see [31] for a survey of some of these appli-
cations. Given its significance, clustering problems have
received much attention leading to new approximation
algorithms. The early algorithms for these problems had
exponential dependence on d [2, 4] and were well-suited
for low-dimensional inputs. However, for many practi-
cal problems, the number of input points n and their
dimension d are in the same order of magnitude [21].

Badoiu, Indyk and Har-Peled [8] made a breakthrough
in the design of high-dimensional clustering algorithms.
They designed a coreset-based algorithm that quickly
constructs a small “most-relevant” subset E of the input
points P with the property that an optimal clustering on
E is an approximate clustering for P , and use this coreset
to compute an approximate clustering. Based on this
idea, several coreset-based approximation algorithms for
projective clustering were developed, also for the design
of streaming algorithms for projective clustering1; see
for example [11, 20, 22]. In recent research, depending
on the problem, different definitions of coreset have been
used. These definitions vary from weak to strong notions
of when a subset is relevant, and therefore yield different
size bounds (see for instance [21] for a careful discussion).

Throughout this paper, we use the following definition:
a coreset (with respect to ε, q, ρ) is a subset E ⊆ P
such that the affine subspace spanned by E contains a

1In the streaming setting, algorithms are allowed to make one
or few passes over the data and compute an approximate solution
using a small workspace.
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q-flat F with (
∑
p∈P d(p, F )ρ)1/ρ ≤ (1 + ε)fq1 (P, ρ). We

let Cρ(q, ε) denote the worst-case size of such a coreset
for approximating fq1 (P, ρ). This is a comparably weak
version of coresets: we only require that the subspace
spanned by E contains some ε-approximate solution; we
do not require that the optimal solution for E is that
ε-approximation. For problems such as MEB, MEC,
1-mean, or 1-median, there are coresets whose size is
independent of the number of points and the ambient
dimension [7, 8, 23, 35].

Another useful tool for the design of high-
dimensional clustering algorithms is the random projec-
tion method [36]. At its heart is the following well-known
lemma [26] which says that an orthogonal projection of
any point set to a random O(log n/ε2)-dimensional flat
ε-approximates pairwise distance between all pairs of
points; see [16] for an elementary proof.

Theorem 1 (Johnson-Lindenstrauss) For 0 < ε <
1, a set P ⊂ Rd of n points, and m ≥ 36 ln(n)/ε2, there
is a map π̂ : Rd → Rm such that

(1− ε)‖u− v‖2 ≤ ‖π̂(u)− π̂(v)‖2 ≤ (1 + ε)‖u− v‖2

for any u, v ∈ P . Moreover, a randomly chosen map π̂ of
the form π̂(p) =

√
d/m · π(p) where π is the orthogonal

projection to a m-dimensional subspace of Rd, satisfies
that property with probability at least 1/2.

We abuse notations and refer to π̂ as above as a random
projection to an m-dimensional flat.

The Johnson-Lindenstrauss Lemma shows that ran-
dom projections approximate pairwise distances between
points. A natural question is what other geometric and
structural properties of high-dimensional point cloud
are preserved by random projections, and numerous
such properties have been identified [1, 12, 24, 28, 32].
Random projection techniques are widely used for clus-
tering problems: ongoing research focuses in particular
to the case of k-means clustering [9, 14, 15], although
it has also been used for certain projective clustering
problems [8, 30].

Our results. We establish a link between coresets
and the random projections for the projective cluster-
ing problem in Section 2. We show that, for every
0 < ε < 1, q ≥ 0, and ρ ≥ 1, a random projection to
a O(((q + 1)2 log((q + 1)/ε)/ε3 log n)-dimensional space
ε-approximates fq1 (S, ρ) for all S ⊆ P . The main ingre-
dient of our proof is to show that a random projection to
an O(Cρ(q, ε) log n/ε2)-dimensional subspace “preserves”
all flats defined by subsets of size Cρ(q, ε).Our argument
follows the standard proof technique for subspace embed-
dings (as sketched in [14, 29]) by approximately preserv-
ing the lengths of vectors taken from a sufficiently dense
ε-net. For a given q and any ρ ≥ 1, the existence of small-
sized coresets with Cρ(q, ε) = O((q+1)2/ε log((q+1)/ε))

is known [35]. This leads to the previously mentioned
bound on the dimension of the projected space.

As a consequence, we show that by projecting to
the same dimension, also fqk (P, ρ) is preserved for all k
and ρ ≥ 1. Note that the dimension of the subspace is
independent of k and ρ and is only logarithmic in n. Our
results imply that improved bounds on the size of the
coreset Cρ(q, ε) lead to better bounds on the dimension
of the random subspace. Interestingly, unlike previous
applications of coresets, we do not require a fast method
to compute Cρ(q, ε). Therefore, we can shoot for even
smaller-sized coresets without being restricted by its
computation time (Section 3).

Our results has the following applications (Section 4):
For a given q and a stream of n points, we give an algo-
rithm that can compute projective clustering of P for
every value of k and ρ using only O(((q + 1)2 log((q +
1)/ε)/ε3)(n+ d) log n) space. Almost all known (multi-
pass) streaming algorithms for projective clustering prob-
lems have a linear dependence on the product of k and d,
and therefore, they tend to require Ω(nd) space for when
k = Θ(n). As opposed to this, our algorithm requires
Õ(n+ d) space which is particularly useful when n and
d are of the same order of magnitude. Also, in many
practical scenarios, the number of clusters k and the
norm ρ are not known in advance. Our algorithm is
also useful in such cases since our dimension reduction
technique works for all values of k and ρ simultaneously.

We also generically improve approximation algorithms
for projective clustering problems. Again, we project P
onto a randomly chosen subspace and compute an ap-
proximate solution in the projected subspace. We obtain
a solution in the original d-dimensional space by “lifting”
each cluster from the projected space separately. For the
approximate k-cylinder problem, our approach yields
a bound of O(n log n2k log k/ε + dn logn

ε3 ) which improves

the previously known best O(nd2k log k/ε) [7]; note that
k and d are decoupled in our complexity bound.

Finally, since our results imply that, under random
projections, the radius of MEB is approximated for ev-
ery subset of the input, we immediately get an approx-
imation scheme for a d-dimensional Čech complex in
Euclidean space by a Čech complex in lower dimen-
sions. In particular, this result bounds the persistence of
high-dimensional homology classes of the original Čech
complex. Recently, these results have been proven inde-
pendently by Sheehy [34].

2 Generalized Johnson-Lindenstrauss Lemma

Recall the definition of fq1 (P, ρ) as the Lρ-distance of P
to the best fitting q-flat. We show that a random pro-
jection to appropriately large subspaces approximately
preserves fq1 (S, ρ) for any subset S ⊆ P . What dimen-
sion is appropriate for a projection depends on the cor-
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responding coreset size C := Cρ(q, ε); precisely, picking
a O(C log(n)/ε2)-dimensional subspace is enough.

We outline the proof of the statement before giving
the technical details in the remainder of the section. For
a set S ⊂ P , we let 〈S〉 denote the span of S, that is, the
subspace spanned by the points in S. We know that any
subset of P has a coreset of size C whose span contains
an approximately optimal q-flat F . If the distance of
F to any p ∈ P is preserved under the projection, we
can guarantee to preserve fq1 (S, ρ) approximately as well.
We ensure this preservation by the stronger property
in Lemma 3 that for any p ∈ P , the distance to any
q-flat in the span of any subset of P of cardinality C is
preserved. Note that the number of such subspaces is
bounded by nC and therefore polynomial in n.

Lemma 3 in turn follows easily from a generalization
of the Johnson-Lindenstrauss lemma that we prove first:
for an integer c > 0, we show that a random projection
to roughly c log(n)/ε2 dimensions preserves for all subset
S of c points the distance between any two points in
〈S〉. While the proof of this subspace embedding result
has been outlined in previous work [14, 29], we are not
aware of a formal proof of the statement.

Lemma 2 For 0 < ε < 1, a set P ⊂ Rd of n points,
an integer c ≥ 0, and m ≥ λ · c log(n)/ε2 for a suitable
constant λ, a random projection π̂ satisfies with high
probability that for any subset S ⊂ P of cardinality c
and for any u, v ∈ 〈S〉

(1− ε)‖u− v‖ ≤ ‖π̂(u)− π̂(v)‖ ≤ (1 + ε)‖u− v‖.
Proof. The proof of Theorem 2.1 in Dasgupta and
Gupta [16] implies the following statement: When pro-
jecting a unit vector in Rd to a fixed m = O(c log n/ε2)-
dimensional subspace, the probability that its squared
length does not lie in ((1−ε)m/d, (1+ε)m/d) is at most

2 exp(−mε
2

4
) ≤ 2 exp(−λc log n

4
) ≤ n−8c

for a suitable constant λ. As they argue, the same bound
applies for a fixed unit vector and a uniformly chosen
m-dimensional subspace.

A result by Feige and Ofek [19] (see also [6]), trans-
lated in geometric terms, says that by approximately
preserving the pairwise squared distances between a set
of at most exp(c ln 18) sample points belonging to an
c-dimensional subspace, we can approximately preserve
the squared length of all unit vectors in the subspace,
and thus all pairwise distances; see [32, Proof of Cor. 11]
for further explanations. Hence, for a fixed subspace, we
need to preserve exp(2c ln 18) ≤ exp(6c) distances. More-
over, we want to preserve distances in nc many subspaces,
yielding a total of exp(6c)nc ≤ n7c distances to be pre-
served. By the union bound, choosing a m-dimensional
subspace uniformly at random, the probability of success

is at least 1− n7c

n8c ≥ 1− 1/nc. �

The preservation of point-to-flat distances in low-
dimensional subspaces is a simple consequence:

Lemma 3 Let 0 < ε < 1, P ⊂ Rd a set of n points and
q < c positive integers. With high probability, a random
projection to an O(c log n/ε2)-dimensional flat satisfies
for all subsets S ⊂ P of cardinality c, all q-flats Q ⊂ 〈S〉,
and all p ∈ P that

(1− ε)d(p,Q) ≤ d(π̂(p), π̂(Q)) ≤ (1 + ε)d(p,Q).

Proof. For any p ∈ P and any Q ⊂ 〈S〉, there exists
a space with c + 1 points that contains both p and Q.
Let t ∈ Q be the point such that d(p,Q) = ‖p − t‖.
Applying Theorem 2 for c′ := c+ 1 immediately implies
that d(π̂(p), π̂(Q)) ≤ ‖π̂(p)− π̂(t)‖ ≤ (1+ε)d(p,Q). The
second inequality follows similarly, considering the point
t′ ∈ Q that realizes d(π̂(p), π̂(Q)). �

We show our main theorem that random projections
preserve fq1 (S, ρ) for any S ⊆ P .

Theorem 4 Let 0 < ε < 1, P ⊂ Rd consist of n points,
q ≥ 0 an integer and ρ ∈ Z≥1 ∪ {∞}. Then with high
probability, for m ≥ λ · Cρ(q, ε/2) log(n)/ε2 with a suit-
able constant λ, a random projection π̂ satisfies for all
subsets S ⊆ P

(1− ε)fq1 (S, ρ) ≤ fq1 (π̂(S), ρ) ≤ (1 + ε)fq1 (S, ρ).

Proof. Let S ⊆ P arbitrary. We start by showing the
second inequality: By the coreset property, there exists a
subset E ⊂ S of Cρ(q, ε/2) points such that 〈E〉 contains
a q-flat F that is an ε

2 -approximate solution. For ρ 6=∞,
applying Lemma 3 with ε′ = ε/3, we get that

fq1 (π̂(S), ρ) ≤


∑

p∈S
d(π̂(p), π̂(F ))ρ




1/ρ

≤


∑

p∈S
(1 + ε/3)ρd(p, F )ρ




1/ρ

≤ (1 + ε/3)(1 + ε/2)fq1 (S, ρ) ≤ (1 + ε)fq1 (S, ρ),

where we use (1 + ε/3)(1 + ε/2) < 1 + ε for 0 ≤ ε ≤ 1.
For ρ =∞, the proof for ρ = 1 directly carries over.

For the first inequality, we apply the coreset property
on the set π̂(S): let π̂(E′) be a coreset for π̂(S). Let
G denote the approximate solution in 〈π̂(E′)〉; it holds
that G = π̂(F ′) for some q-flat F ′ in 〈E′〉. Using again
Lemma 3, we have that

(1− ε)fq1 (S, ρ) ≤ (1− ε

2
)(1− ε

3
)


∑

p∈S
d(p, F ′)ρ




1/ρ

≤ (1− ε

2
)


∑

p∈S
d(π̂(p), G)ρ




1/ρ

≤ (1− ε

2
)(1 +

ε

2
)fq1 (π̂(S), ρ) ≤ fq1 (π̂(S), ρ).

181



27th Canadian Conference on Computational Geometry, 2015

Again, the case ρ =∞ is analogue to ρ = 1. �

Theorem 4 implies that fqk (P, ρ) is preserved for
any k ≥ 1.

Corollary 5 With the notations of Theorem 4 and k ≥
1, a random projection π̂ satisfies with high probability

(1− ε)fqk (P, ρ) ≤ fqk (π̂(P ), ρ) ≤ (1 + ε)fqk (P, ρ).

Proof. Let F = {F1, . . . , Fk} denote an optimal collec-
tion of q-flats, that is, for any p ∈ P , the closest flat in
F has distance at most fqk (P, ρ). Let Pi ⊆ P be the set
of points closest to Fi, for i = 1, . . . , k. Note that Fi
is the optimal q-flat for Pi, in other words, it realizes
fq1 (Pi, ρ).

2 Using Theorem 4 on the subsets Pi, we get
for ρ <∞ that

fqk (π̂(P ), ρ) ≤
k∑

i=0

fq1 (π̂(Pi), ρ)

≤
k∑

i=0

(1 + ε)fq1 (Pi, ρ) = (1 + ε)fqk (P, ρ),

proving the second inequality. The first part follows the
same way considering an optimal F for π̂(P ). The case
ρ =∞ is analogous, replacing all sums by max. �

3 Coresets for Projective Clustering

Recall that Cρ(q, ε) is defined as the coreset size for
approximating the Lρ-optimal q-flat, in the sense that
there exists a subset of Cρ(q, ε) input points whose span
contains an ε-approximate optimal q-flat. Because of
space restrictions, we omit the (simple) proofs of the
results in this section (see Appendix A).

The case of 0-flats For a point set P ⊂ Rd, we
consider the point that minimizes, for a fixed ρ ∈ [1,∞],

δ(q) :=


∑

p∈P
d(p, q)ρ




1/ρ

over all q ∈ Rd. We call the minimizer o in Rd the
optimal center and note that δ(o) = f01 (P, ρ). We call
o′ an ε-approximate center, if δ(o′) ≤ (1 + ε)δ(o). Since
Theorem 4 only requires a bound on the coreset and
no method to compute it, we can free ourselves from
algorithmic considerations and concentrate on existential
results.

A lower bound of Ω(1/ε) can be derived easily by
considering the standard simplex. This has been done
by Bădoiu and Clarkson [10] for the case ρ =∞.

2For ρ = ∞, this is not necessarily true for any optimal solution,
but we can replace every q-flat with the optimal one wlog

Theorem 6 There exists a point set such that no subset
of less than 1/(2ε) points contains an ε-approximate
center, i.e., Cρ(0, ε) = Ω(1/ε).

The following result gives an almost tight upper bound
for arbitrary ρ. It follows directly from the techniques
introduced by Shyamalkumar and Varadarajan [35] for
the case of lines through the origin.

Theorem 7 For any (finite) point set P ⊂ Rd, there
is a set S ⊂ P of O(1/ε log(1/ε)) points such that the
subspace spanned by S contains an ε-approximate center.
In other words, Cρ(0, ε) = O(1/ε log(1/ε)).

Smaller coresets exist for special cases: for ρ =∞, a
coreset of size O(1/ε) (in fact, of size d1/εe) exists [10].
It is also known that for ρ = 2, the squared distance
function d2(x, P ) is a quadratic function in x and can
therefore be tackled through sparse greedy optimization
in the Frank-Wolfe framework [13, 25].

Theorem 8 For ρ = 2, there is a set of O(1/ε) points
such that their subspace contains an ε-approximate cen-
ter, i.e., C2(0, ε) = O(1/ε).

The case of general q The best known bounds for
Cρ(q, ε) with q ≥ 0, are again due to Shyamalkumar and
Varadarajan. The aforementioned result for lines yields
that Cρ(1, ε) = O(1/ε log(1/ε)), the same bound as for
q = 0 [35, Lemma 3.2]. They use the line case in an
inductive argument to show [35, Lemma 3.3]:

Theorem 9 For q ≥ 1, Cρ(q, ε) = O(q2/ε log(q/ε)).

A natural question is to ask about the tightness of
the coreset bounds: for the point case q = 0, we conjec-
ture that coresets of size O(1/ε) exist for any norm ρ
(currently, this is only established for ρ ∈ {2,∞}). For
general q, an improved upper bound of O(q/ε) would
yield a target dimension linear in q in our dimension
reduction result.

4 Applications

Streaming algorithms for projective clustering We
consider the projective clustering problem in a streaming
context. In this setup, we do not return the cluster
centers (the q-flats) but only an ε-approximation of
fqk (P, ρ). We let S(n, d, q, k, ε, ρ) be the space complexity
for this problem. We assume that n, the size of the
stream, is known in advance.

Set m := O((q + 1)2/ε3 log n log((q + 1)/ε)). In the
simplest variant, our streaming initially chooses a d×m
projection matrix uniformly at random, projects every
point from the stream to Rm, and stores all points in a
set P ′. The algorithm, then uses an (offline)-algorithm
to approximate fqk (P ′, ρ). The total work space of this
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algorithm is O(dm + nm + S), where dm is the space
required to store the projection matrix, nm is the size
of P ′, and S is the space required to find approximate
clustering of P ′. Using any approximation algorithm
that computes using linear space, we obtain a streaming
algorithm to approximate fqk (P, ρ) with a space complex-
ity of O((q + 1)2(n+ d)/ε3 log n log((q + 1)/ε)). This is
much smaller than the input size of O(dn) and, for small
q, not too far from the lower bound of Ω(n) [3].

In a similar fashion, our results can be used to speed
up other streaming approaches: Again, we choose ini-
tially a d ×m projection matrix uniformly at random
which is stored throughout the algorithm. Further-
more, we maintain the workspace of a streaming al-
gorithm that computes an approximation of the con-
sidered projective clustering problem in m dimensions.
When a new point p ∈ Rd arrives, we compute its pro-
jection π̂(p) ∈ Rm and treat this as an input to the
m-dimensional streaming algorithm. We return the out-
put value of the m-dimensional streaming algorithm as
our result. The correctness of the approach (with high
probability) follows from Corollary 5. The space com-
plexity is O(dm + S), with S the space complexity of
the m-dimensional streaming algorithm.

Approximate Projective Clustering. Our technique
is also useful for the computation of approximate
cluster centers: For a set P of n points in Rd, let
T (n, d, q, k, ε, ρ) denote the time complexity to com-
pute k q-flats F that ε-approximate the optimal so-
lution, that is, (

∑
p∈P (d(p,F))ρ)1/ρ ≤ (1 + ε)fqk (P, ρ).

We design a new algorithm as follows: Set ε′ := ε/5.
First, we randomly project the input point set from d to
m := O(Cρ(q, ε

′) log n/ε′2) dimensions. Let P ′ be this
set of projected points. Then, we (ε′-approximately)
solve the same problem for P ′ in m dimensions, using
some algorithm for this problem as a black box. The
computed solution clusters P ′ in k subsets of points
that are closest to a particular q-flat in the solution.
We let P 1, . . . P k be the pre-image of these k clusters
and assume wlog that P i ∩ P j = ∅. For each P i, we
compute an ε′-approximation of the best fitting q-flat.
We return the collection of these k q-flats as solution.
Correctness of this approach follows from Theorem 4
and Corollary 5. As an example, we get the k-center
problem by setting ρ =∞ and q = 0. Using the bounds
C∞(0, ε) = 2/ε, T (n, d, 0, k, ε,∞) = O(nd2k log k/ε) and
T (n, d, 0, 1, ε,∞) = O(ndε2 + 1

ε5 ) from [7], we get a running
time of

O(n log n2k log k/ε +
dn log n

ε3
).

Approximating Čech complexes A standard tool in
capturing topological properties of point cloud data is

the Čech complex 3. It is usually defined to be the nerve
of balls of some fixed radius α centered at the points
from the sample P , and denoted as Cα(P ). An equivalent
definition is that a k-simplex {p0, . . . , pk} is in Cα(P ) if
and only if the radius of meb(p0, . . . , pk) is at most α.

The downside of Čech complexes is the size: Their d-
skeleton can consist of up to O(nd+1) simplices. Recent
work suggests to work instead with an approximation of
the Čech complex [27] (or of the closely related Vietoris-
Rips complex [33] [17]). “Approximation” in this context
means that the persistence diagrams of the modules
induced by the Čech filtration and by the approximate
filtration are close to each other. Theorem 4 for q = 0,
k = 1 and ρ = ∞ implies that the radius of MEBs is
preserved for any subset. That implies immediately that
Čech complexes can be approximated by Čech complexes
in lower dimensions.

Proposition 10 For 0 < ε ≤ c−1
c < 1 with c > 1

and arbitrary constant, a set P ⊂ Rd of n points, and
m = Θ(log(n)/ε3), a random projection π̂ : Rd → Rm
satisfies with high probability that

C(1−cε)α(P ) ⊆ Cα(π̂(P )) ⊆ C(1+cε)α(P ).

An interesting consequence of this statement is that a
Čech complex cannot have any significantly persistent
features in dimensions higher than m. Independently
from our work, Sheehy [34] recently showed a slightly
stronger result, projecting to Θ(log(n)/ε2) dimensions.
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complex in low and high dimensions. In 24th Inter-
national Symposium on Algorithms and Computation,
LNCS 8283, pages 666–676, 2013.

[28] A. Magen. Dimensionality reductions in `2 that pre-
serve volumes and distance to affine spaces. Discrete &
Computational Geometry, 38(1):139–153, 2007.

[29] J. Nelson and H. Nguyen. Lower bounds for oblivious
subspace embeddings. In Automata, Languages, and
Programming, volume 8572 of Lecture Notes in Com-
puter Science, pages 883–894. Springer Berlin Heidel-
berg, 2014.

[30] R. Ostrovsky and Y. Rabani. Polynomial time approxi-
mation schemes for geometric k-clustering. In Proceed-
ings of the 41st Annual Symposium on Foundations of
Computer Science, FOCS ’00, pages 349–, 2000.

[31] C. Procopiuc. Projective clustering. In C. Sammut and
G. Webb, editors, Encyclopedia of Machine Learning,
pages 806–811. Springer US, 2010.

[32] T. Sarlos. Improved approximation algorithms for large
matrices via random projections. In Foundations of
Computer Science, pages 143–152, 2006.

[33] D. Sheehy. Linear-size approximation to the Vietoris-
Rips filtration. In Proceedings of the 28th ACM Sympo-
sium on Computational Geometry, pages 239–248, 2012.

[34] D. Sheehy. The persistent homology of distance functions
under random projection. In Proceedings of the 30th
ACM Symposium on Computational Geometry, 2014.

[35] N. Shyamalkumar and K. Varadarajan. Efficient sub-
space approximation algorithms. Discrete & Computa-
tional Geometry, 47(1):44–63, 2012.

[36] S. Vempala. The random projection method, volume 65.
AMS Bookstore, 2004.

184



CCCG 2015, Kingston, Ontario, August 10–12, 2015

A Missing proofs of Section 3

Proof of Theorem 6 Consider the standard (n − 1)-
simplex spanned by n points in Rn, namely the points
e1, . . . , en. The optimal center for any ρ is the barycenter
o given by (1/n, . . . , 1/n), and we have that

δ(o) = n1/ρ
√
n− 1

n
.

Choose a subset of size c, w.l.o.g. e1, . . . , ec and let F
be the affine subspace spanned by these points. Let o′

denote the barycenter of the (c− 1)-simplex (e1, . . . , ec).
Now o′ is the point that minimizes δ(·) over F , since o′ is
the orthogonal projection on F of any ei with i > c. So,
assuming that F contains an ε-approximate center, o′

must be an approximate center. On the other hand, δ(o′)
is easily computed by noting that d(o′, ei) =

√
(n− 1)/n

for any i ≤ c and d(o′, ei) =
√

(n+ 1)/n for any i > c.
This yields

(
c

(√
c− 1

c

)ρ
+ (n− c)

(√
c+ 1

c

)ρ) 1
ρ

= δ(o′) ≤ (1 + ε)δ(o) = (1 + ε)n1/ρ
√
n− 1

n
.

Raising to the ρ-th power and dividing by n yields
that

c

n

(√
c− 1

c

)ρ
+
n− c
n

(√
c+ 1

c

)ρ
≤ (1+ε)ρ

(√
n− 1

n

)ρ
.

Because this bounds has to hold for every n, it must also
hold in the limit for n→∞. That results in

(√
c+ 1

c

)ρ
≤ (1 + ε)ρ,

and by solving for c yields that c ≥ 1/(2ε+ ε2) ≥ 1/(3ε)
for ε ≤ 1.

Proof of Theorem 7 We define an iterative procedure
which creates points c0, c1, . . . such that ci is in the sub-
space spanned by i input points. The initial point c0
is chosen to be point closest to the optimal center.4 If
some ci is an ε-approximate center, we are done. Oth-
erwise, we show that we can chose a point ci+1 that is
significantly closer to o. For that, let s be the point the
maximizes

d(ci, p)

d(o, p)

over all p ∈ P . By construction, d(ci, s) ≥ (1 + ε)d(o, s)
We choose ci+1 as the point on the line segment cis

4Again, since we only care about existence, we can conveniently
assume that the center is known to us.

that is closest to o. It follows easily [35, Lemma 2.1]
that d(ci+1, o) ≤ (1 − ε/2)d(ci, o). Combined with the
triangle inequality and the fact that c0 is the closest
point to o in P , this implies that for any p ∈ p:

d(ck, p) ≤ d(ck, o) + d(o, p)

≤ (1− ε/2)kd(c0, o) + d(o, p)

≤ (1 + (1− ε/2)k)d(o, p).

For k = O(1/ε log(1/ε)), this means that d(ck, p) ≤
(1 + ε)d(o, p) for all p ∈ P , which directly implies that
δ(ck) ≤ (1 + ε)δ(o).

Proof of Theoerem 8 Writing A for the matrix whose
columns are the points in P and ∆ for the standard sim-
plex with points e1, . . . , en, we can consider the function
g : ∆→ R defined by

g(x) =
n∑

i=1

‖Ax−Aei‖2

=
n∑

i=1

(x− ei)TATA(x− ei)

= xTMx+ xT b+ a

with M = nATA, b = −2
∑
ATAei, and a =∑

eTi A
TAei. Therefore, g is a quadratic function. We

apply the Frank-Wolfe optimization on the (convex) func-
tion g: this method starts in an arbitrary point x0 in P
and improves the approximation quality in every step
by moving towards the point in P which the steepest
descent. The obtained sequence of iterates x0, x1, . . .
converges to the (unique) minimum of g, and by con-
struction, the iterate xi lies in the span of i points of P .

A crucial quantity in the convergence behavior of
Frank-Wolfe is the quantity Cg: this is a scaled form of
the Bregman divergence of the function g, measuring
the difference between g(y) and the value at y of the
tangent plane of g at x, for all pairs x and y. Since
g is a quadratic function, [13, Sec. 4.3] asserts that
Cg ≤ diam(P )2. Writing r for the radius of the MEB of
P , this implies Cg ≤ 4r2.

Slightly abusing notation, we let o ∈ ∆ denote the
point that minimizes g. Using Theorem 2.3 from [13],
after running the Franke-Wolfe optimization for k :=
2d1/εe steps, we find an iterate xk on a k-simplex which
satisfies

g(xk)− g(o) ≤ 4εCf ≤ 16εr2 ≤ 16εg(o),

where the last inequality comes from the fact that with p
being the furthest point from o, it holds that g(o) ≥ ‖o−
p‖2 ≥ r2. Therefore, we have that g(xk) ≤ (1 + 16ε)g(o).
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Fun with Restricted Delaunay Triangulations

Jonathan Richard Shewchuk (University of California at Berkeley)

Abstract

The restricted Delaunay triangulation is a subcomplex of the three-dimensional Delaunay triangulation that
serves as a triangulation of a smooth surface embedded in three-dimensional space. It has proven itself as a math-
ematically powerful tool for surface meshing and surface reconstruction. I discuss two fascinating mathematical
twists on these structures. First, I address a question of Bruno Levy: can we constrain them to include specified
edges–that is, can we define mathematically well-behaved constrained Delaunay triangulations on smooth surfaces?
Second, the restricted Delaunay triangulation can be conceived as an operator that takes as input a smooth surface
and a set of points sampled from that surface, and produces as output a triangulation of the surface. What happens
if we feed that triangulation back into the operator, replacing the original surface, while retaining the same sample
points? Interestingly, the answer leads us to a method for reconstructing 2-manifolds embedded in high-dimensional
spaces.

(This work is done jointly with Marc Khoury, Bruno Levy, and Marc van Kreveld.)
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Algorithms for Minimizing the Movements of Spreading Points in Linear
Domains

Shimin Li∗ Haitao Wang†

Abstract

We study a problem on spreading points. Given a set
P of n points sorted on a line L and a distance value δ,
we wish to move the points of P along L such that the
distance of any two points of P is at least δ and the max-
imum movement of all points is minimized. We present
an O(n) time algorithm for this problem. Further, we
extend our algorithm to solve (in O(n) time) the cycle
version of the problem where all points of P are on a
cycle C. Previously, only weakly polynomial-time algo-
rithms were known for these problems based on linear
programming. In addition, we present a linear-time al-
gorithm for a similar facility-location moving problem,
which improves the previous work.

1 Introduction

We consider the following points-spreading problem.
Given a set P of n points sorted on a line L and a
distance value δ ≥ 0, we wish to move the points of P
along L such that the distance of any two points of P
is at least δ and the maximum movement of all points
of P is minimized. The above is the line version. We
also consider the cycle version of the problem, where
all points of P are given sorted cyclically on a cycle
(one may view C as a simple closed curve). We wish to
move the points of P on C such that the distance of any
two points of P along C is at least δ and the maximum
movement of all points of P along C is minimized. Note
that since C is a cycle, the distance of any two points
of C is defined to be the length of the shortest path on
C between the two points.

Both versions of the problem have been studied be-
fore. By modeling them as linear programming prob-
lems (with n variables and Θ(n) constraints), Du-
mitrescu and Jiang [4] gave the first-known polynomial-
time algorithms for both problems. Since there only
exist weakly polynomial-time algorithms for linear pro-
gramming [8, 9], it would be interesting to design
strongly polynomial-time algorithms for the points-
spreading problem. In this paper, we solve both versions

∗Department of Computer Science, Utah State University, Lo-
gan, UT 84322, USA. shiminli@aggiemail.usu.edu
†Department of Computer Science, Utah State University, Lo-

gan, UT 84322, USA. haitao.wang@usu.edu

of the problem not only in strongly polynomial time but
also in O(n) time (which is optimal). Our algorithms
are based on a greedy strategy.

In addition, we consider a somewhat related prob-
lem, called the facility-location movement problem, de-
fined as follows. Suppose we have a set of k “server”
points and another set of n “client” points sorted on
L. We wish to move all servers and all clients on L
such that each client co-locates with a server and the
maximum moving distance of all servers and clients is
minimized. Dumitrescu and Jiang [4] solved this prob-
lem in O((n+k) log(n+k)) time. We present an O(n+k)
time algorithm based on their approach.

1.1 Related Work

The points-spreading problem in 2D was proposed by
Demaine et al. [3] (called “movement to independence”
problem in [3, 4]). The problem in 2D is NP-hard and an
approximation algorithm was given in [3]; the algorithm
was improved later by Dumitrescu and Jiang [4].

The points-spreading problem is related to the points
dispersion problems which involve arranging a set of
points as far away from each other as possible subject to
certain constraints. For example, Fiala et al. in [6] stud-
ied such a problem in which one wants to place n given
points, each inside its own, prespecified disk, with the
objective of maximizing the distance between the closest
pair of these points. The problem was shown to be NP-
hard [6]. Approximation algorithms were proposed by
Cabello [1]. Dumitrescu and Jiang [5] gave improvement
on the approximation algorithms and also presented al-
gorithms for the problem in high-dimensional spaces. In
fact, Fiala et al. [6] studied the dispersion problems on a
more general problem settings. Another variation of the
dispersion problems is to select a subset of facilities from
a set of given facilities to maximize the minimum dis-
tance (or some other distance function) among all pairs
of selected facilities [10, 11]. The problem is generally
NP-hard (e.g., in 2D) but polynomial time algorithms
are available in the one-dimensional space [10, 11]. In
addition, Chandra and Halldórsson [2] studied disper-
sion problems on other problem settings.

The facility-location movement problem was first in-
troduced by Demaine et al. [3] in graphs, which was
proved to be NP-hard. A 2-approximation algorithm
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was presented in [3] for this problem in graphs, and later
it was shown that the 2-approximation ratio cannot be
improved unless P=NP [7]. Dumitrescu and Jiang [4]
studied the geometric version of this problem in the
plane, and they showed that the problem is NP-hard
to approximate within 1.8279. Fixed parameter algo-
rithms (with k as the parameter) were also given in [4].

1.2 Our Approaches

For solving the line version of the points-spreading prob-
lem, essentially we first solve a “one-direction” case of
the problem in which points are only allowed to move
rightwards, by using a simple greedy algorithm. Sup-
pose d is the maximum movement in the solution of the
above one-direction case. Then, we show that an opti-
mal solution to the original problem can be obtained by
shifting each point of P leftwards by the distance d/2.

For solving the cycle version of the problem, essen-
tially we also first solve a one-direction case in which
points are only allowed to move counterclockwise on
C. If d is the maximum movement in the solution of
the one-direction case, then we also show that an op-
timal solution to the original problem can be obtained
by shifting each point of P clockwise by d/2. How-
ever, unlike the line version, the one-direction case of
the problem becomes more difficult on the cycle. One
straightforward idea is to cut the cycle C at a point of P
(and extend C as a line) and then apply the algorithm
for the one-direction case of the line version. However,
the issue is that the last point may be too close to or
even “cross” the first point if we put all points back on
C. By observations, we show that if such a case hap-
pens, we can run the line-version algorithm for another
round and the second round is guaranteed to find an
optimal solution. Overall, the algorithm is still simple,
but it is challenging to show the correctness.

For solving the facility-location movement prob-
lem, Dumitrescu and Jiang [4] presented an O((m +
n) log(m+ n)) time algorithm using dynamic program-
ming. By discovering a monotonicity property on the
dynamic programming, we improve Dumitrescu and
Jiang’s algorithm to O(n+ k) time.

The rest of the paper is organized as follows. In Sec-
tion 2, we present our algorithm for the line version of
the points-spreading problem. The cycle version of the
problem is solved in Section 3. Section 4 discusses our
solution for the facility-location movement problem.

Due to the space limit, proofs of all lemmas and ob-
servations in Section 3 are in the appendix.

2 The Points-Spreading Problem on a Line

In the line version, the points of P are given sorted on
the line L. Without loss of generality, we assume L is
the x-axis and P = {p1, p2, . . . , pn} are sorted by their

x-coordinates from left to right. For each i ∈ [1, n], let
xi denote the location (or x-coordinate) of pi on L. For
any two locations x and x′ of L, denote by |xx′| the
distance between x and x′, i.e., |xx′| = |x− x′|.

Our goal is to move each point pi ∈ P to a new loca-
tion x′i on L such that the distance of any pair of two
points of P is at least δ and the maximum moving dis-
tance, i.e., max1≤i≤n |xix′i|, is minimized. For simplic-
ity of discussion, we make a general position assumption
that no two points of P are at the same location in the
input. The degenerate case can also be handled by our
techniques but the discussions would be more tedious.

We refer to a configuration as a specification of the
location of each point pi of P on L. For example, in the
input configuration each pi is at xi. Let F0 denote the
input configuration. A configuration is feasible if the
distance between any pair of points of P is at least δ.

Denote by dopt the maximum moving distance in any
optimal solution. If the input configuration F0 is feasi-
ble, then we do not need to move any point, implying
that dopt = 0. Since the points of P are sorted, we can
check whether F0 is feasible in O(n) time by checking
the distance between every adjacent pair of points of P .
Below, we assume F0 is not feasible, and thus dopt > 0.

We first present some observations, based on which
our algorithm will be developed.

2.1 Observations

For any two indices i < j in [1, n], define

w(i, j) = (j − i) · δ − |xixj |.

As discussed in [4], there exists an optimal solution
in which the order of all points of P is the same as that
in the input configuration F0. Based on this property,
we prove Lemma 1 regarding the value dopt.

Lemma 1 dopt ≥ max1≤i<j≤n
w(i,j)

2 .

Proof. Consider any optimal solution OPT in which
the order of all points of P is the same as that in F0.
For each 1 ≤ i ≤ n, let x∗i be the location of pi in OPT .

Consider any i and j with 1 ≤ i < j ≤ n. Our goal
is to prove dopt ≥ w(i, j)/2. Since the points of P in
OPT have the same order as in F0, for each k with i <
k ≤ j, we have |x∗k−1x∗k| ≥ δ because OPT is a feasible

solution. Hence, |x∗i x∗j | =
∑j

k=i+1 |x∗k−1x∗k| ≥ (j− i) · δ.
If |x∗i x∗j |− |xixj | ≤ 0, then |xixj | ≥ |x∗i x∗j | ≥ (j− i) ·δ

and w(i, j) ≤ 0. Since dopt > 0, dopt ≥ w(i, j)/2 holds.
If |x∗i x∗j | − |xixj | > 0, then the difference of |x∗i x∗j |

and |xixj | are due to the moving of pi and pj . It is
not difficult to see that max{|xix∗i |, |xjx∗j |} ≥ (|x∗i x∗j | −
|xixj |)/2 (the equality happens when pi moves leftwards
by distance (|x∗i x∗j |− |xixj |)/2 and pj moves rightwards
by the same distance). Since dopt ≥ max{|xix∗i |, |xjx∗j |},
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Figure 1: Illustrating our algorithm for computing the configuration F .

it holds that dopt ≥ (|x∗i x∗j |−|xixj |)/2. Due to |x∗i x∗j | ≥
(j − i) · δ, we obtain that dopt ≥ w(i, j)/2. �

Lemma 2 If there exist i and j with 1 ≤ i < j ≤ n
and a feasible configuration F ′ in which each point
pk ∈ P moves rightwards to x′k (i.e., xk ≤ x′k) such
that w(i, j) = max1≤k≤n |xkx′k|, then we can obtain an
optimal solution by shifting each point of P in F ′ left-
wards by distance w(i, j)/2.

Proof. Let F ′′ be the configuration obtained by shift-
ing each point of P in F ′ leftwards by distance w(i, j)/2.

Consider any point pk ∈ P . Let x′′k denote the loca-
tion of pk in F ′′, i.e., x′′k = x′k − w(i, j)/2. In order to
prove that F ′′ is an optimal solution, by Lemma 1, it is
sufficient to show that |xkx′′k | ≤ w(i, j)/2, as follows.

Indeed, since 0 ≤ x′k − xk ≤ w(i, j), i.e., x′k is to the
right of xk at most w(i, j), after pk is moved leftwards
by w(i, j)/2 to x′′k , x′′k must be within distance w(i, j)/2
from xk. Hence, |xkx′′k | ≤ w(i, j)/2. �

We call a feasible configuration that satisfies the con-
dition in Lemma 2 a canonical configuration (such as
F ′ in Lemma 2). Due to Lemma 2, to solve the prob-
lem in linear time, it is sufficient to find a canonical
configuration in linear time, which is our focus below.

2.2 Computing a Canonical Configuration

We present a linear-time algorithm for finding a canoni-
cal configuration. Comparing with the original problem,
now we only need to consider the rightward movements.

Initially, we set x′1 = x1. Then we consider the
points p2, p3, . . . , pn from left to right. For each i with
2 ≤ i ≤ n, suppose we have already moved pi−1 to x′i−1.
Then, we set x′i = max{xi, x′i−1 +δ}, and move pi to x′i.
Refer to Fig. 1 for an example. The algorithm finishes
after all points of P have been considered. Clearly, the
algorithm runs in O(n) time. Let F ′ denote the result-
ing configuration (i.e., each pi is at x′i).

Lemma 3 F ′ is a canonical configuration.

Proof. First of all, based on our way of setting x′i for
i = 1, 2, . . . , n, every two points of P in F ′ are at least
δ away from each other. Thus, F ′ is a feasible configu-
ration. Note that x′i ≥ xi for any i ∈ [1, n]. Next, we
show that there exist i and j with 1 ≤ i < j ≤ n such
that w(i, j) = dmax, where dmax = max1≤k≤n |xkx′k|.

Recall that dmax > 0. Suppose the moving distance
of pj is the maximum, i.e., dmax = |xjx′j |. Let i be the
largest index such that i < j and pi does not move in

the algorithm (i.e., xi = x′i). Note that such a point pi
must exist as x1 = x′1 and x′j > xj .

For any point pk ∈ P , if pk is moved (rightwards) in
F ′ (i.e., xk < x′k), then according to our way of setting
x′k, it must hold that x′k − x′k−1 = δ. By the definition
of i, for each point pk with k ∈ [i + 1, j], pk is moved
in F ′, and thus x′k − x′k−1 = δ. Therefore, we obtain
|x′ix′j | = x′j − x′i =

∑
i+1≤k≤j(x

′
k − x′k−1) = (j − i) · δ.

Since x′i = xi and xj < x′j , we have |xix′j | = |xixj |+
|xjx′j |. Hence, dmax = |xjx′j | = |xix′j | − |xixj | = (j −
i) · δ − |xixj | = w(i, j). This proves the lemma. �

Lemmas 2 and 3 together lead to Theorem 4.

Theorem 4 The line version of the points-spreading
problem is solvable in O(n) time.

Remark: One may verify that our algorithm for com-
puting the canonical configuration F ′ essentially solves
a one-direction case of the line version problem: Move
the points of P rightwards such that any pair of points
of P are at least δ away from each other and the maxi-
mum moving distance of all points of P is minimized.

3 The Points-Spreading Problem on a Cycle

In the cycle version, the points of P = {p1, . . . , pn} are
on a cycle C sorted cyclically, say, in the counterclock-
wise order. We use |C| to denote the length of C. For
any two locations x and x′ on C, the distance between
x and x′, denoted by |xx′|, is the length of the shortest
path between x and x′ on C. Clearly, |xx′| ≤ |C|/2. For
each i ∈ [1, n], we use xi denote the location of pi on
C in the input. Our goal is to move each point pi ∈ P
to a new location x′i such that the distance of any pair
of two points of P on C is at least δ and the maximum
moving distance, i.e., max1≤i≤n |xix′i|, is minimized.

We assume |C| ≥ δ · n since otherwise there would
be no solution. Again, for simplicity of discussion, we
make a general position assumption that no two points
of P are at the same location on C in the input.

As before, we refer to a configuration as a specification
of the location of each point of P on C. A configuration
is feasible if the distance between any pair of points of
P is at least δ. Let F0 denote the input configuration.

Denote by dopt the maximum moving distance in any
optimal solution. If F0 is feasible, then dopt = 0. We can
also check whether F0 is feasible in O(n) time. Below,
we assume F0 is not feasible, and thus dopt > 0.

To solve the problem, we extend our algorithm (and
observations) for the line version in Section 2. Namely,
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we first move all points of P on C counterclockwise to
obtain a “canonical configuration”, and then shift all
points clockwise. However, as will be seen later, the
problem becomes much more difficult on the cycle.

Consider any two locations x and x′ on C. We define
C(x, x′) as the portion of C from x to x′ counterclock-
wise. We use |C(x, x′)| to denote the length of C(x, x′).
Note that |xx′| = min{|C(x, x′)|, |C(x′, x)|}.

As in the line version, we first give some observations,
based on which our algorithms will be developed.

3.1 Observations

For any two indices i 6= j in [1, n], define

w(i, j) =
[
(n+ j − i) mod n

]
· δ − |C(xi, xj)|.

In words, if i < j, then w(i, j) = (j−i)·δ−|C(xi, xj)|;
otherwise, w(i, j) = (n + j − i) · δ − |C(xi, xj)|. Since
|C| ≥ δ · n, it can be verified that w(i, j) ≤ |C|.

As discussed in [4], there exists an optimal solution
in which the order of all points of P is the same as that
in the input configuration F0. Using this property, we
can prove Lemma 5, which is analogous to Lemma 2.

Lemma 5 dopt ≥ max1≤i,j≤n
w(i,j)

2 .

Based on Lemma 5, we obtain the following lemma,
which is analogous to Lemma 3 for the line version.

Lemma 6 If there exist i 6= j in [1, n] and a feasible
configuration F ′ in which each point pk ∈ P is at loca-
tion x′k such that w(i, j) = max1≤k≤n |C(xk, x

′
k)|, then

we can obtain an optimal solution by shifting every point
of P in F ′ clockwise by distance w(i, j)/2.

We call a feasible configuration that satisfies the con-
dition in Lemma 6 a canonical configuration. In light of
Lemma 6, to solve the problem in linear time, it is suf-
ficient to find a canonical configuration in linear time,
which is our focus below.

3.2 Computing a Canonical Configuration

We present a linear-time algorithm for finding a canon-
ical configuration. Now we only need to consider the
counterclockwise movements.

Recall that the points p1, p2, . . . , pn are ordered on
C counterclockwise in the input configuration F0. For
convenience of discussion, we define coordinates for lo-
cations on C in the following way. Define x1 as the ori-
gin with coordinate zero. For any other location x ∈ C,
the coordinate of x is defined to be |C(x1, x)|. Hence
each location of C has a coordinate no greater than |C|.

Our algorithm has two rounds. In the first round, we
will use the same approach as for the line version of the
problem, and let F1 denote the resulting configuration.

However, the issue is that in F1 the new location of pn
may be too close to p1 or pn may even “cross” p1, which
might make F1 not feasible. If pn does not cross p1 and
pn is at least δ away from p1 in F1, then we will show
that F1 is a canonical configuration. Otherwise, we will
proceed on the second round, which is to consider all
points again from p1 and use the same strategy to set
the new locations of the points. We will show that the
configuration F2 obtained after the second round is a
canonical configuration. The details are given below.

3.2.1 The first round

In the first round, we will move each point pi ∈ P from
xi along C counterclockwise to a new location x′i. The
way we set x′i here is similar to that in the line version
and the difference is that we have to take care of the
cycle situation. Specifically, x′1 = x1, i.e., p1 does not
move. For each i ∈ [2, n], suppose we have already
moved pi−1 to x′i−1, then we define x′i as follows:

x′i =

{
xi if xi ≥ x′i−1 + δ

(x′i−1 + δ) mod |C| if xi < x′i−1 + δ.
(1)

This finishes the first round of our algorithm. Denote
by F1 the resulting configuration.

Note that if x′i−1 + δ > |C|, then since xi ≤ |C|,
by Equation (1), x′i = (x′i−1 + δ) mod |C|, which is
equal to x′i−1 + δ − |C|; in this case, we say that the
counterclockwise movement of pi crosses the origin x1.

Lemma 7 If pn does not cross x1 (= x′1) in the first
round of the algorithm and |C(x′n, x

′
1)| ≥ δ, then F1 is

a canonical configuration.

By Lemma 7, if pn does not cross x1 = x′1 in the first
round and |C(x′n, x

′
1)| ≥ δ in F1, then we have found a

canonical configuration and our algorithm stops. Oth-
erwise, we proceed on the second round, as follows.

3.2.2 The second round

In the second round, we will move each pi ∈ P from x′i
counterclockwise to a new location x′′i , as follows.

We first define x′′1 . Recall that we proceed on the
second round because either pn crosses x1 = x′1 in the
first round or |C(x′n, x

′
1)| < δ. In either case we define

x′′1 = (x′n + δ) mod |C|. (2)

Hence, |C(x′n, x
′′
1)| = δ.

For each i = 2, 3, . . . , n, suppose pi−1 has been moved
to x′′i−1; then we move pi from x′i counterclockwise to
x′′i , with

x′′i = max{x′i, (x′′i−1 + δ) mod |C|} (3)

This finishes the second round of our algorithm. Let
F2 be the resulting configuration. In the sequel we show
that F2 is a canonical configuration.
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Observation 1 There must be a point pi with i ∈ [2, n]
such that pi does not move in the first round of the al-
gorithm (i.e., xi = x′i).

Observation 2 If a point pi does not move in the sec-
ond round, then for each point pj with j ∈ [i, n], pj does
not move in the second round either.

Lemma 8 Suppose k is the largest index such that pk
does not move in the first round of the algorithm; then
pk does not move in the second round of the algorithm
either, i.e., xk = x′k = x′′k.

Based on the proof of Lemma 8, we have the following
two corollaries.

Corollary 9 The configuration F2 is feasible.

Corollary 10 The total counterclockwise moving dis-
tance of each point of P in the two rounds of the algo-
rithm is at most |C|−δ, which implies that |C(xi, x

′′
i )| ≤

|C| − δ for each 1 ≤ i ≤ n.

With the previous observations, Lemma 11 finally
shows that F2 is a canonical configuration.

Lemma 11 F2 is a canonical configuration.

Clearly, both rounds of our algorithm run in O(n)
time. Combining Lemmas 6, 7, and 11, we have the
following result.

Theorem 12 The cycle version of the points-spreading
problem is solvable in O(n) time.

Remark: One may verify that our algorithm for com-
puting the canonical configuration F2 essentially solves
the following one-direction case of the cycle version
problem: Move the points of P counterclockwise such
that any pair of points of P are at least δ away from
each other and the maximum counterclockwise moving
distance of all points of P is minimized.

4 The Facility-Location Movement Problem

In this section, we present our linear-time algorithm for
the facility-location movement problem. In this prob-
lem, we are given a set S of k “server” points and a
set Q of n “client” points sorted on a line L, and the
goal is to move all servers and clients on L such that
each client co-locates with a server and the maximum
moving distance of all servers and clients is minimized.

As shown by Dumitrescu and Jiang [4], the problem
is equivalent to finding k intervals (i.e., line segments)
on L such that each interval contains at least one server,
each client is covered by at least one interval, and the
maximum length of these intervals is minimized. In the

following, we will solve this interval coverage problem
(also called constrained k-center problem in [4]).

Dumitrescu and Jiang [4] presented an O((n +
k) log(n + k)) time algorithm using dynamic program-
ming. We discover a monotonicity property on their dy-
namic programming scheme, and consequently improve
their algorithm to O(n+k) time. Below, we first review
the algorithm in [4] and then show our improvement.

4.1 Preliminaries

Without loss of generality, we assume L is the x-axis.
For any two points p and q on L with p to the left of q, we
use [p, q] to denote the interval on L with left endpoint
at p and right endpoint at q. An easy observation is that
there exists an optimal solution consisting of k intervals
in {[p, q] | p, q ∈ S ∪ P}. For any two points p and q on
L, let d(p, q) denote the distance between them.

Let S = {s1, s2, . . . , sk} be the set of servers sorted
on L from left to right. Let Q = {q1, q2, . . . , qn} be the
set of clients sorted on L from left to right. For ease of
exposition, we assume no two points in S ∪Q are at the
same location.

The servers of S partition the clients of Q into k + 1
subsets, defined as follows. For each i ∈ [1, k − 1], let
Qi be the subset of the clients of Q between si and
si+1 on L. In addition, we let Q0 be the subset of the
clients of Q to the left of s1, and let Qk be the subset
of the clients of Q to the right of sk. Since both S and
Q are already given sorted, we can obtain the subsets
Q0, Q2, . . . , Qk in O(n + k) time. In the following, for
simplicity of discussion, we assume Qi is not empty for
each i ∈ [0, k]. This implies that the rightmost client
qn is to the right of the rightmost server sk and the
leftmost client q1 is to the left of the leftmost server s1.
For each i ∈ [1, k], let Q′i = {si} ∪Qi.

4.2 A Dynamic Programming Algorithm [4]

Consider any Q′i with 1 ≤ i ≤ k. Let q be any point in
Q′i. Consider the subproblem at q: Finding i intervals
on L such that each interval contains at least one server
of {s1, s2, . . . , si}, each client to the left of q (including
q if q 6= si) must be covered by at least one interval, and
the maximum length of these i intervals is minimized.
Define α(q) as the maximum length of the intervals in
an optimal solution of the above subproblem at q. Our
goal for the interval coverage problem is to solve the
subproblem at qn and compute the value α(qn).

For any point q ∈ S ∪Q, we use r(q) to denote right
neighboring point of q on L in S ∪ Q (i.e., the closest
point of S ∪ Q to q strictly to the right of q). Note
that after merging S and Q into one sorted list, we can
obtain r(q) for each q ∈ S ∪Q in constant time.

Initially, for each q ∈ Q′1, α(q) = d(q1, q) (recall that
q1 is to the left of s1). In general, consider any q ∈ Q′i
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for any 2 ≤ i ≤ k. It holds that

α(q) = min
q′∈Q′i−1

max{α(q′), d(r(q′), q)}.

In words, in order to solve the subproblem at q, we
use the i − 1 intervals for the subproblem at q′ along
with an additional interval [r(q′), q]. To compute α(q),
Dumitrescu and Jiang [4] used the following observa-
tion: As we consider the points q′ of Q′i−1 from left to
right, α(q′) is monotonically increasing and d(r(q′), q)
is monotonically decreasing. Hence, if α(q′) for all q′ ∈
Q′i−1 are known, α(q) can be computed in O(log |Q′i−1|)
time by binary search.

In this way, α(qn) can be computed in O((n +
k) log(n+k)) time (more precisely, O((n+k) log n) time)
and an optimal solution can be found correspondingly.

4.3 An Improved Implementation

We give an O(n+k) time implementation for the above
dynamic programming scheme. To this end, we find a
new monotonicity property in Lemma 13.

Consider any point q ∈ Q′i such that r(q) is
still in Q′i. For any point q′ ∈ Q′i−1, define
f(q′) = max{α(q′), d(r(q′), q)}. Hence, α(q) =
minq′∈Q′i−1

f(q′). Let g(q) be the point in Q′i−1 such

that α(q) = f(g(q)) (if there is more than one such
point, we let g(q) refer to the rightmost one).

Lemma 13 Either g(r(q)) = g(q) or g(r(q)) is strictly
to the right of g(q).

Proof. We only give an “intuitive” proof. Recall that
as we consider the points q′ of Q′i−1 from left to
right, α(q′) is monotonically increasing and d(r(q′), q)
is monotonically decreasing. Intuitively, g(q) corre-
sponds to the intersection of the two functions α(q′) and
d(r(q′), q) for q′ ∈ Q′i−1 (e.g., see Figure 2). Similarly,
for the point r(q), which is still in Q′i, g(r(q)) corre-
sponds to the intersection of the two functions α(q′)
and d(r(q′), r(q)) for q′ ∈ Q′i−1. An observation is
that we can obtain the function d(r(q′), r(q)) by shift-
ing d(r(q′), q) upwards by the value d(q, r(q)) (e.g., see
Fig. 2). This implies that g(r(q)) cannot be strictly to
the left of g(q). The lemma thus follows. �

Lemma 13 essentially says that if we consider all
points q ∈ Q′i from left to right, then g(q) in Q′i−1
are also sorted on L from left to right. Due to this
monotonicity property on g(q), we can compute g(q)
and α(q) for all q ∈ Q′i in a total of O(|Q′i−1| + |Q′i|)
time by scanning the points of Q′i−1 from left to right.
More specifically, suppose we have computed g(q) and
α(q) for some q ∈ Q′i; then if r(q) is still in Q′i, we can
compute g(r(q)) and α(r(q)) by scanning the points of
Q′i−1 starting from g(q) to the right.

q′

α(q′)

g(q) g(r(q))

d(r(q′), r(q))

d(r(q′), q)

Figure 2: Illustrating the three functions α(q′), d(r(q′), q), and
d(r(q′), r(q)) for q′ ∈ Q′i−1.

In this way, the value α(qn) can be computed in
O(n + k) time, and an optimal solution can be found
correspondingly. Hence, we have the following theorem.

Theorem 14 The facility-location movement problem
can be solved in O(n+ k) time.
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Maximizing the Minimum Angle with the Insertion of Steiner Vertices

Shankar P. Sastry∗

Abstract

We consider the problem of inserting a vertex inside
a star-shaped input polygon at the location that max-
imizes the minimum angle in the resulting triangula-
tion. An existing polynomial-time algorithm solves for
the intersection of three polynomial surfaces (a prior pa-
per indicates that these are eighth-degree polynomials)
and computes the maxima of the curve of intersection of
two such surfaces to solve the problem. We developed
a similar technique through the geometric insight that
at least two angles (typically, three) of the triangula-
tion have to be identical at the optimal location. We
combinatorially process the angles to compute the opti-
mal location in each case. The worst-case complexity of
the algorithm remains O(n3 log n), but it is much eas-
ier to implement partly because our algorithm requires
the solutions of an (at most) eighth-degree, univariate
polynomial for each combination of the angles. We also
modified the algorithm to lower the expected running
time to O(n2) using a recursive, randomized algorithm
for LP-type problems. We extend the algorithm by im-
posing constraints on the location of the Steiner vertex
and solving the constrained optimization problem in a
similar manner. We also extend the algorithm to simul-
taneously insert two vertices by considering all possible
topologies and ensuring that the necessary conditions
for local maxima are satisfied.

1 Introduction

We consider the problem of positioning a Steiner ver-
tex that is connected to all the vertices of a star-shaped
input polygon such that it maximizes the minimum an-
gle in the resulting triangulation. The point has to be
inside a convex feasible region so that no triangle lies
outside the polygon [6, 7]. The algorithm that solves
the problem may be used in Delaunay mesh refinment
algorithms to insert addition vertices into a mesh at an
optimal location or to carry out smoothing of the mesh
vertices to improve the mesh quality.

In the context of mesh smoothing, Freitag and
Plassman [6] developed a quadratic programming-based
active-set approach to maximize the minimum angle by
observing that it is a convex optimization problem with

∗Scientific Computing and Imaging Institute, University of
Utah, sastry@sci.utah.edu

a nondifferentiable objective function. Recent research
by Aronov et al. [2] has yielded polynomial-time algo-
rithms to maximize the minimum angle. Their recent
attempt [3] solves an LP-type problem by a comput-
ing the lower envelope of bivariate functions after solv-
ing eighth-degree polynomial equations. Their latest
attempt [4] solves for the intersection of three bivari-
ate polynomial surfaces or computes the maxima of the
curve of intersection of two such surfaces. The surface
intersection represents locations at which two or three
angles of the triangulation are equal. These algorithms
are described in Section 2. The active-set approach is
easy to implement, but it is numerical in nature. The
LP-type approach solves the problem exactly, but com-
puting the lower envelope of bivariate functions is not
easy. To obtain a maximum of the curve of intersec-
tion of two surfaces or a point of intersection of three
surfaces is also hard in comparison with solving a uni-
variate polynomial equation.

We use concepts from nondifferentiable optimization
to develop our algorithm. We infer that the minimum
angle is shared by two or more angles because it is al-
ways possible to improve the minimum angle (at the
cost of the “better” angles) by appropriately moving
the vertex. A brief background on this topic is pre-
sented in Section 3. Our approach is combinatorial and
is similar to [4]. We take all combinations of pos-
sible locations of the minimum angles and return the
“best” location of the Steiner vertex. Our algorithm is
described in detail in Section 4. We observe that the
number of possible combinations is O(n3), where n is
the number of segments in the polygonal cavity, and
we determine the optimal location by considering only
those points where the gradients are suitably directed.
We improve the expected running time to O(n2) using
a recursive, randomized technique adapted from Clark-
son’s algorithm [5]. We also provide an algorithm for a
generalized constrained optimization problem. We also
extend the algorithm for the insertion of two vertices.
These extensions are discussed in Section 5.

Our work has also provided some insight into local
mesh quality improvement by vertex movement. Sec-
tion 6 includes a discussion about improvements to our
algorithm and future work.
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2 Related Work

In this section, we discuss two of the most relevant algo-
rithms in the evolution of our algorithm. The first algo-
rithm is by Aronov and Yagnatinsky [4]. Although we
developed our algorithm independently, their algorithm
is similar to ours. The main difference is the geomet-
ric intuition; we believe ours is simpler to comprehend,
and, therefore, easier to extend to tougher cases, as we
shall see in Section 5. The second algorithm is the active
set-based technique for mesh quality improvement [6].
We use concepts from this algorithm to accelerate our
algorithm for realistic cases.

2.1 The Bivariate Surface Algorithm

Aronov and Yagnatinsky [4] begin by defining a feasible
region in the domain where it is possible to construct
a triangulation whose minimum angle is some z. The
feasible region is bounded by circular arcs (that circum-
scribe an edge so that the angle subtended at the cir-
cumference is z) and line segments (that emanate at an
angle z from the edges). The feasible region may be
empty. For each value of z, we have arcs and lines on
the domain. When they are lifted in the third dimen-
sion for all values of z, they form surfaces. In a prior
paper [3], they have used eighth-degree, bivariate poly-
nomials to define similar surfaces. They then claim that
the optimal point is at a location where three surfaces
intersect at a point or the maxima of curve formed by
the intersection of two surfaces. The feasible maximum
over the points returns the optimal triangulation. We
use the gradients of the objective function to prove the
claim in the language of nondifferentiable optimization
and compute those points on the 2D plane. Our func-
tions are eighth-degree, univariate polynomials.

2.2 The Active Set Method

Freitag and Plassman [6] solve the problem through ver-
tex movement dictated by a numerical optimization al-
gorithm. At a given location, they define the active set
as the set of angle(s) with the minimum value. They
use the gradient of the function defining the angle(s) to
compute the direction in which the vertex should move
in order to optimize it. The descent direction is com-
puted by considering all convex combinations of active
set gradients and choosing the one that minimizes the
magnitude. If the active set changes during the ver-
tex movement, the gradients and descent direction are
recomputed. Similarly, we consider only those combi-
nations of angles in which all the current active-set an-
gle(s) are present.

3 Background

Since our objective function is nondifferentiable, we pro-
vide a background on necessary conditions1 for the con-
strained optimization of such functions [8], which will
also help us extend the algorithm for more complicated
cases. In the subsequent sections, we will provide a ge-
ometric intuition behind the material presented here.

We assume that our objective function, f(x), is de-
fined as a minimum over a set of functions fi(x), 1 ≤
i ≤ n. We define an active set at a location x as the
maximum subset of functions whose value is equal to
f(x). A vector, ~g is defined as a subgradient of f at x
if ∃ an ε neighborhood such that f(x+ ε)− f(x) ≥ ~gT ε.
If only one function is present in the active set, the gra-
dient of that function is the subgradient of f at x. If
multiple functions are present, any convex combination
of the gradients of the functions is also the subgradi-
ent of f at x. The set of all subgradients is called the
subdifferential, ∂f(x), of f at x.

For the unconstrained case, the necessary condition
for x∗ to be a local optimum is 0 ∈ ∂f(x∗). In
other words, some convex combination of gradients of
the functions in the active set should vanish, i.e., if
d < n + 1 functions are present in the active set in
an n−dimensional space, the gradients should lie on
some d−dimensional hyperplane and span both sides
of all other d−dimensional hyperplanes at the origin. If
d ≤ n + 1, the origin should lie inside the convex hull
of the gradient vectors, which is easy to verify for any
dimension.

For the constrained case, where hi(x) ≤ 0, i ∈ [1, k],
are the set of inequality constraints, a local optimum
should satisfy the Karush-Kuhn-Tucker (KKT) con-
ditions for nondifferentiable functions, i.e., hi(x

∗) ≤
0, λ∗i ≥ 0, λ∗i hi(x

∗) = 0, and 0 ∈ ∂f(x∗) −∑(k−1)
i=0 λi∂hi(x

∗). These conditions imply that some
convex combination of the gradients of the function(s)
of the active set and the gradients of all the active con-
straint(s) should vanish.

It can also be shown that if some convex combination
of m n−dimensional vectors vanishes (where m ≥ n+1),
there exists a set of n+ 1 vectors (from the original set
of m vectors) for which some convex combination also
vanishes. Thus, it is sufficient to consider all possible
combinations of n + 1 vectors rather than considering
all combinations of m > n+ 1 vectors.

4 Algorithm

Based on the theory presented in the last section, we
need to compute all possible locations where a set of an-
gles are equal and some convex combination of their gra-
dients vanishes. Since this is a 2D problem, we need to

1They hold true for a maximum, minimum, and saddle points.
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Figure 1: All possible ways in which a local maximum can occur. The thick edges are the input edges, and the
dashed edges are the edges in the final triangulation. The circles (and some dashed edges) are potential locations of
the Steiner vertex that result in an angle θ at some vertex. The arrows indicate the gradient for each angle. Notice
how their convex combination can result in a zero vector.

only consider all possible sets of (no greater than) three
angles in order to determine all possible local maxima.
We also know that it is a convex optimization problem,
so there exists only one local maximum, which is also
the global maximum. Our algorithm considers all cases
combinatorially and computes the global maximum.

In Fig. 1, we present all possible ways in which a set
of three angles in the triangulation can be equal. If the
input polygon has n sides, there are 2n angles on the
edges and n angles at the Steiner vertex. The sets of
two and three angles can be composed of either type of
angles. All seven (eight, if the last two cases involving
two angles on the edges are considered different) ways
in which we can achieve equiangular configurations are
shown in Fig. 1 along with the gradients for each of the
angles.

In the top row of Fig. 1, we consider cases where
three angles are equal. Consider the locus of points that
results in an angle being θ. For angles at the Steiner
vertex, the locus is a circle, and for angles at the edge,
the locus is a straight line. The values of θ for which
the three curves are concurrent need to be computed.
In the bottom row, we consider cases where two angles
are equal, where their gradients must be anti-parallel,
i.e., the curves must be intersect tangentially.

We will now describe how a univariate polynomial
function can be constructed with λ = cot θ as the only
variable. This is also called a rational univariate rep-
resentation. The solution of the equation gives us the
θ values at which a maximum can occur. The actual
polynomial, however, is tedious to write down, but it is
straightforward, so we leave that as an algebra exercise.
First, we need to compute the circle that subtends an
angle θ at the chord formed by an edge. The center of
the circle should be at a distance λl from the mid point

of the edge, where 2l is its length (see Fig. 2). The
line that is at an angle θ can also easily be computed
as shown in the figure. Second, as we now have the
equations of the circles and/or lines (as functions of x,
y, and λ), we compute their points of intersection in a
pairwise manner. The point of intersection of two lines
(as a function of λ) can be computed as a function of
second-degree polynomials. The points of intersection
of a line and a circle can be similarly computed. For two
circles, however, we compute the equation of the line on
which the two circles intersect.

We will consider each case in Fig. 1 separately, going
from left to right (top row first). For the three an-
gles at the Steiner vertex, we have the equations for
three lines. We compute their points of intersection in
a pairwise manner and equate one of their coordinates
to get an eight-degree polynomial in λ. For two angles
at the Steiner vertex and one at an edge, we have two
lines whose point of intersection can be computed as a
function of λ. We solve for the λ at which the angle
subtended by one of the edges is θ. For an angle at the
vertex and two at the edges, we are given a point. We
again solve for λ at which the angle subtended by the
edge is θ. When the angles are on three edges, we have
three pairwise points of intersection. We equate the co-
ordinates of the points of intersection to get an equation
in λ. For the first two cases in the bottom row, the value
of λ can be computed by ensuring that the roots of the
resulting quadratic equation are equal because they in-
tersect tangentially. The last two cases, however, are
degenerate, and therefore, are not considered here; they
are considered when three angles are considered.

To determine the maximum, we consider all sets of
two and three angles and look for points at which their
values are equal and some convex combination of their
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Figure 2: For a given λ = cot θ, the locus of points is
either a circle or a line.

Figure 3: Preprocessing: determine the feasible
region [7], and decompose the region into trian-
gles/trapezoids in O(n) time. For each point, determine
the potential triangle/trapezoid using the binary search
technique in O(log n) time, and determine if the point
is inside or outside the triangle/trapezoid.

gradients vanish, which takes O(n3) time. Points that
are outside the convex feasible region of the star-shaped
polygon need to be discarded. It is possible to deter-
mine if a point is inside or outside the feasible region
in O(log n) time after a line sweeping-based preprocess-
ing algorithm (see Fig. 3) that is carried out at the be-
ginning. Our global maximum has to occur at one of
these locations that has not been discarded. The ob-
jective function is convex inside the feasible region [6].
At the points corresponding to smaller λ values (larger
θ values), at least one of the angles associated with the
largest λ value will be of less than the optimal value.
Thus, the largest λ (smallest θ) corresponds to the
global maximum. If not, it results in a contradiction.
The worst-case complexity is, therefore, O(n3 log n).

To improve the expected time, we adapt Clarkson’s
recursive algorithm [5] for our problem in which our
O(n3) algorithm is a subroutine that terminates the re-
cursion when n is small. In this algorithm, a subset of
angles (the size of the subset is proportional to O(

√
n))

is randomly chosen, and the optimal vertex location for
those angles is recursively found. If the number of angles
is small, our algorithm is used to carry out the optimiza-
tion. For the optimal location found, if the minimum
angle among the chosen subset also the minimum angle
when all other angles are considered, we are done. If
not, O(

√
n) more angles are randomly chosen from the

set of angles that are smaller than the optimal angle for
the chosen subset, and the algorithm is repeated. Al-
though Clarkson’s algorithm takes linear time for linear
programming problems, as shown by Amenta et al. [1],

θ θ θ θ

Figure 4: Three possible locations of a local maximum
in a constrained problem. The vertex is constrained to
be in the gray region. The gradients of the constraint(s)
and the angle(s) are also shown.

the expected running time for our problem is quadratic
because computing the minimum angle itself takes lin-
ear time.

5 Extensions

5.1 Constrained Optimization

The motivation for solving the constrained optimization
problem is to gurantee termination of Delaunay refine-
ment algorithm. Delaunay refinement terminates only if
the newly inserted vertex is at least at a certain distance
from other vertices in the domain. Thus, our inserted
vertex must be sufficiently distant from the edges and
vertices of the input polygon. Here, we consider a set
of more general geometric constraints. Based on the
theory of constrained optimization of nondifferentiable
functions, we need to compute the locations where some
convex combination of the gradients of the angle(s) and
the constraint(s) vanishes. The three ways in which this
can happen are depicted in Fig. 4. If the locus of points
that results in a constant angle is tangential to a curve
representing a constraint, the point of intersection is of
interest. Similarly, when two constraint curves intersect
and the gradient of an angle is suitably directed, a local
maximum is present at the point of intersection. Also,
the locus of points where two angles of the resulting
triangulation are equal may meet a constraint. If the
gradients are suitably directed, we have a local maxi-
mum. If there are O(n) angles and O(m) constraints, it
takes O(n2m + nm2) time to consider all cases. These
cases are in addition to the cases for the unconstrained
problem. For each case, it takes O(m) time to deter-
mine if the location is within the constraints and O(n)
time to compute the minimum angle. This can be ac-
celerated using the techniques described in the previous
section. If the constraints are nonconvex or disjoint, we
have to consider all combinations. We may also cache
the sorted order of the angles in previous combinations
to quickly discard a potential solution.
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Figure 5: Three of the possible O(n2) topologies for
insertion of two Steiner vertices.
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Figure 6: The possible choice of angles for a given
topology; (left) underdetermined system of equations;
(middle) zero-dimensional system of equations; (right)
overdetermined system of equations.

5.2 Insertion of Two Vertices

In the case of inserting just one vertex, the topology of
the resulting triangulation (connectivity of the vertices)
is fixed, i.e., the Steiner vertex is connected to all the
vertices of the input polygon. If two Steiner vertices are
to be inserted, we have to consider multiple topologies
as shown in Fig. 5. The two Steiner vertices may or
may not be connected to each other, and each Steiner
vertex is connected to a subset of polygon vertices. Ex-
actly two vertices are present in both subsets (to avoid
overlapping trianglesr). The common vertices divide the
polygon into two sides, and each Steiner vertex is con-
nected to all polygon vertices on its side. There are
O(n2) such topologies to consider.

For the insertion of just one vertex, we actually solve
a system of trivariate polynomials in x, y, and λ that
we managed to reduce to a single variable. The system
consists of three equations when three angles are being
equated. When two angles are being equated, we still
have three equations: two from the angles and an ad-
ditional equation constraining the gradients to be anti-
parallel. In the new case, we have a system of equations
with five variables (x1, y1, x2, y2, and λ). Thus, five
polynomial equations are needed to solve the problem.
We also know that three equations need to be associated
with the angles of triangles at each of the two Steiner
vertices at the local maxima. Our choice of the angles
should respect these conditions.

Consider the case where the Steiner vertices are not
connected, which reduces to two instances of the single
vertex insertion problem for each such topology. Thus,
the optimal locations can be computed in O(n5 log n) in
the worst case.

Let us now consider the more interesting case where

the Steiner vertices are connected. In this case, we need
to choose two or three angles in the triangles associated
with each of the Steiner vertices. Fig. 6 shows three pos-
sible ways this can be achieved. On the left, two of the
angles chosen are common to both Steiner vertices, and
only four angles have been chosen in total, which results
in an underdetermined system of polynomial equations,
which have an infinite number of solutions. As a result,
the optimal value of λ will come at the cost of some
other triangle. In the middle, only one angle is common
to the Steiner vertices, and five angles have been chosen
altogether. Thus, we have five equations with five vari-
ables, which is called a zero-dimensional system because
it has a finite number of solutions. We have to consider
all such cases in our algorithm. On the right, we have
chosen six angles with each Steiner vertex being asso-
ciated with three of them. This is an overdetermined
system if we insist that the value of θ be the same for
all angles. If they are different (as in the figure), we are
solving a problem that is similar to the case where the
two Steiner vertices are not connected. Note that the
discussion above also holds when only two angle are cho-
sen for a vertex because we have an additional equation
in the form of their gradients being anti-parallel.

In order to determine the computational complexity,
we have to analyze the number of ways in which these
angles can be chosen. Let the degree of the vertices be
d1 and d2, d1 +d2 = n+ 2. We do not consider the case
on the left in Fig. 6 because it results in an underde-
termined system. For the case in the middle, there are
only six ways in which the common angle can be chosen.
There are O(d21) and O(d22) ways in which the other two
angles can be chosen. The number of combinations is
O(n4). The overall complexity of the number of possi-
ble cases for a given topology is O(n4) The number of
possible topologies is O(n2). Thus, we consider O(n6)
cases in total. Since feasible regions are hard to find in
the fourth dimension, we carry out a linear search for
each case to determine the smallest angle and, subse-
quently, the global maximum in O(n7) time. For the
case on the right, the angles in the common triangles
are not being considered. Therefore, they are two inde-
pendent subproblems as in the case where the vertices
are not connected. If the minimum angle is part of the
common triangles, it will be handled in one of our ear-
lier cases. If not, it can be handled in the case where
the two vertices are not connected. Therefore, we do
not consider this case in our analysis here.

In order to improve the expected running time, we
may use a method similar to Clarkson’s algorithm that
we used for the single vertex insertion case. Note that it
has to be used for every possible topology to obtain the
most optimal location. We can extend this algorithm to
get a “near-optimal” solution by considering changes in
the topology (flip edges) only if it improves an existing
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triangulation, but we cannot guarantee anything about
the approximation of the solution obtained.

It is also possible to construct a univariate polyno-
mial that is equivalent to the system of five pentavariate
polynomials described earlier in this section. Consider
the two angles of a vertex that do not belong to the
common triangles. The locus of points that results in
equal angles at the two corners can be described as a
parametric equation in λ for both vertices, which fixes
the location of the two vertices as a function of λ. We
get a polynomial equation by enforcing the condition
that the angle in the common triangle is also cot−1 λ.
In the case where only two angles are equated at a ver-
tex, we need an additional parameter, say, t, to fix the
location of one of the vertices. It is possible to com-
pute the location of the other vertex as a function of
λ and t and impose the angle condition as well as the
gradient condition to obtain a system of two bivariate
polynomials in λ and t.

6 Conclusion and Future Work

We used the theory of nondifferentiable optimization to
develop our algorithm and extend it to tougher prob-
lems. Due to the firm theoretical ground, this research
can be extended to investigate the complexity of the op-
timization of angles when an arbitrary number of ver-
tices are inserted in 2D as well as 3D meshes. It can
easily be seen that there is a combinatorial explosion of
possible mesh topologies as the number of vertices in-
creases, and they require solutions of larger systems of
multivariate polynomials. A practical algorithm should
account for this and prune the search space appropri-
ately. We think that the prior research in mesh quality
improvement [9] will help us in analyzing these prob-
lems. Mesh quality improvement techniques typically
optimize one vertex at a time. Since we now know that
two or three angles in 2D meshes (two, three, or four
angles in 3D meshes) are identical in an optimal patch,
reordering of vertices over which the optimization is car-
ried out will bring about greater improvement in mesh
quality. Prior research [9] has not taken advantage of
this property. Our next research will look in this direc-
tion.

As mentioned in Section 4, the expected running time
of our algorithm is improved by choosing a random sub-
set of angles from the given angles in each subroutine.
It is likely that the minimum angle occurs at the angle
opposite to the shortest input edge or the smallest angle
in the input polygon. Perhaps, assigning a higher prob-
ablity for such angles may yield faster results. Also,
given an optimal Steiner vertex location for a subset
of angles, we may choose additional angles by assign-
ing a higher probablity to those angles (in the original
set) that are smaller. A theoretical or emperical anal-

ysis of the improvement in the expected running time
due to such modifications is also an interesting topic of
research.
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An Output-Sensitive Algorithm for Computing the s-Kernel∗

Leonidas Palios

†

Abstract

Two points p, q of an orthogonal polygon P are s-visible
from one another if there exists a stairase path (i.e., an

x- and y-monotone hain of horizontal and vertial line

segments) from p to q that lies in P . The s-kernel of P
is the (possibly empty) set of points of P from whih all

points of P are s-visible.
We are interested in the problem of omputing the

s-kernel of a given orthogonal polygon (on n verties)

possibly with holes. The problem has been onsidered

by Gewali [1℄ who desribed an O(n)-time algorithm

for orthogonal polygons without holes and an O(n2)-
time algorithm for orthogonal polygons with holes. The

problem is a speial ase of the problem onsidered by

Shuierer and Wood [5℄, whose work implies an O(n)-
time algorithm for orthogonal polygons without holes

and an O(n log n + h2)-time algorithm for orthogonal

polygons with h ≥ 1 holes.

In this paper, we give a simple output-sensitive al-

gorithm for the problem. For an n-vertex orthogo-

nal polygon P that has h holes, our algorithm runs in

O(n+h log h+k) time where k = O(1+h2) is the num-

ber of onneted omponents of the s-kernel of P . Ad-
ditionally, a modi�ed version of our algorithm enables

us to ompute the number k of onneted omponents

of the s-kernel in O(n+ h log h) time.

Keywords: s-kernel, visibility, orthogonal polygon,

output-sensitive algorithm.

1 Introduction

A polygon is orthogonal if its edges are either horizon-

tal or vertial; an edge e of suh a polygon is a N-edge

(S-edge, E-edge, and W-edge, resp.) if the outward-

pointing normal vetor to e is direted towards the

North (South, East, and West, resp.); see Figure 1(a).

Of partiular importane are the dents, i.e., edges whose

endpoints are reex verties of the polygon, harater-

ized as N-dents, S-dents, E-dents, and W-dents (see Fig-
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Figure 1: (a) Illustration of the main de�nitions (the

portions of the polygon not s-visible from p are shown

dark); (b) the s-visibility polygon of p, whih is an s-
star, with its s-kernel shown darker.

ure 1(a)); the dents are a measure of non-onvexity of

an orthogonal polygon.

A set of points is x-monotone (y-monotone, resp.) if

its intersetion with any line perpendiular to the x-axis
(y-axis, resp.) is a onneted set. A stairase path is a

hain of horizontal and vertial segments that is both

x- and y-monotone.

Then, two points p, q of an orthogonal polygon P are

s-visible from one another if there exists a stairase path

from p to q that lies in P (Figure 1(a) shows two suh

points p and q). The set of points that are s-visible
from a point p form the s-visibility polygon of p. The

s-kernel of P is the (possibly empty) set of points of P
whose s-visibility polygon is equal to P , i.e., the set of
points from whih all points of P are s-visible (the s-
kernel of the orthogonal polygon in Figure 1(b) is shown

darker); note that the s-kernel may be disonneted. An

orthogonal polygon is an s-star if it has non-empty s-
kernel. The orthogonal polygon in Figure 1(b) is an

s-star; as an be seen in the �gure, an s-star may have

holes.

Visibility problems are losely related to reahability

and to overing problems. The s-kernel of a polygon

is the set of points from whih all other points of the

polygon an be reahed by means of x- and y-monotone

paths. So, if a robot restrited to move parallel to the

oordinate axes is onsidered to \guard" a point p in

an orthogonal polygon provided that it an get to p a-

long a monotone path, then the polygons that an be

\guarded" are those with non-empty s-kernel. Addi-

tionally, beause the s-stars may be highly non-onvex
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Figure 2: An orthogonal polygon with Θ(n) holes whose
s-kernel (shown darker) has Θ(n2) size.

(see Figure 1(b)), a minimum over of an orthogonal

polygon using s-stars (see [3℄ for an algorithm) is ex-

peted to involve a smaller number of piees ompared

to other minimum overs. (Note also that in the usual

sense of visibility, the kernel of a polygon with holes is

empty and that the kernel of an n-vertex polygon an

be omputed in O(n) time [2℄.)

Gewali [1℄ has onsidered the problem of omputing

the s-kernel of an orthogonal polygon; he desribed an

O(n)-time algorithm for an orthogonal polygon without

holes and an O(n2)-time algorithm for orthogonal poly-

gons with holes where n is the number of verties of

the polygon. He also showed that the latter algorithm

is worst-ase optimal sine the s-kernel of an orthogo-

nal polygon with holes may be of Θ(n2) size; Figure 2

shows an orthogonal polygon with Θ(n) holes whose s-
kernel has Θ(n2) size [1℄. Gewali used this result to give

an O(n log n)-time algorithm for reognizing whether an

orthogonal polygon with holes is an s-star.

Shuierer and Wood [5℄ studied the notion of O-vi-

sibility, that is, visibility along a set O of orientations

and gave an O(n log |O|)-time algorithm for the ompu-

tation of the O-kernel of an orthogonal polygon without

holes and an O(n(log |O|+ log n) + h(|O|+ h))-time al-

gorithm for polygons with h holes, respetively. Their

algorithms imply O(n)-time and O(n logn + h2)-time

algorithms for the s-kernel of orthogonal polygons with-
out holes and of orthogonal polygons with h ≥ 1 holes,

respetively.

In this paper, we present a simple output-sensitive

O(n + h log h + k)-time and O(n)-spae algorithm for

omputing the s-kernel of an orthogonal polygon having
n verties, h ≥ 0 holes, and an s-kernel onsisting of k
onneted omponents; as we will see k = O(1 + h2).
The algorithm also enables us to ount the number k of

onneted omponents of the s-kernel of suh a polygon

in O(n + h logh) time using O(n) spae (i.e., without

omputing the s-kernel), and thus we an determine if

an orthogonal polygon is an s-star in the same time and

spae omplexity.
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Figure 3: (a) An orthogonal polygon A that is orthogo-

nally onvex; (b) some of the quadrants whose union is

equal to the omplement of A.

2 Theoretical Framework

For an edge e of an orthogonal polygon P , let De be

a small enough disk entered at the midpoint of e; we
de�ne the in-halfplane of e as the losed halfplane that is

de�ned by the line supporting e and ontains the portion
of De that lies in P .

An orthogonal polygon is orthogonally onvex if it is

both x-monotone and y-monotone. For simpliity and

sine we deal with orthogonal polygons, in the follow-

ing, an orthogonally onvex orthogonal polygon will be

referred to as \orthogonally onvex polygon." Clearly,

an orthogonally onvex polygon annot have dents. The

reverse also works, and we have:

Observation 1 An orthogonal polygon is orthogonally

onvex if and only if it has no dents.

Therefore, the boundary of an orthogonally onvex

polygon onsists of x- and y- monotone hains onnet-

ing the leftmost edge of the polygon, to the uppermost

edge, to the rightmost edge, to the bottommost edge,

and bak to the leftmost edge (see Figure 3(a)); any

one of these hains may degenerate to a single point.

Moreover, it is important to observe that the following

lemma holds.

Lemma 1 Let A be an orthogonally onvex polygon

having n verties. Then, the omplement of A an be

expressed as the union of Θ(n) open quadrants.

The lemma follows from the fat that the omplement

of an orthogonally onvex polygon is equal to the union

of as many open quadrants as the polygon's reex ver-

ties (for a reex vertex, the orresponding quadrant is

the omplement of the union of the in-halfplanes of the

edges inident on the reex vertex) plus 4 more (one for

eah of the leftmost, topmost, rightmost, bottommost

edge); Figure 3(b) shows the quadrants belonging to the

omplement of an orthogonally onvex polygon that are

assoiated with the boundary hain from the leftmost
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Figure 4: Illustration of BBox(H), S=(H), S||(H),
QNW (H), QNE(H), QSE(H), and QSW (H) for a

hole H .

to the topmost edge (the remaining three hains on-

tribute additional quadrants in a similar fashion). As a

result, the total number of quadrants is nearly half the

number of verties of the polygon.

2.1 The s-kernel of orthogonal polygons without
holes

The algorithm of Gewali [1℄ omputes the s-kernel of
an orthogonal polygon P without holes by interseting

P with the in-halfplanes of the lowermost N-dent, the

rightmost W-dent, the topmost S-dent, and the leftmost

E-dent. This implies the following result.

Lemma 2 Let P be an orthogonal polygon without

holes that has n verties. The s-kernel of P is an or-

thogonally onvex polygon of O(n) size.

2.2 Notation for orthogonal polygons with holes

Let D be an orthogonal polygon or a hole in an orthog-

onal polygon. Then, we de�ne:

ϑD : the boundary of D;

BBox(D) : the smallest axes-aligned retangle ontain-

ing D.

Additionally, for a hole H , we have:

S=(H) : the smallest open horizontal strip ontain-

ing the interior of H ;

S||(H) : the smallest open vertial strip ontaining

the interior of H ;

QNW (H) : the losed axes-aligned quadrant that is the

omplement of the union of the interiors of the in-

halfplanes of the top and left edges of the retan-

gle BBox(H) (see Figure 4) | similarly, we de�ne

QNE(H), QSW (H), and QSE(H);
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Figure 5: Illustration of the boundary subhain nota-

tion for a hole H (the subhain ϑHNE is point q; no
ϑHWW , ϑHSS exist).

ϑHNW : the part of the boundary of H in ounter-

lokwise diretion from the leftmost among the

points of H with maximum y-oordinate to the

topmost among the points of H with minimum x-
oordinate (see Figure 5) | similarly, we de�ne

ϑHNE , ϑHSW , and ϑHSE ;

ϑHNN : let p, q be the leftmost and rightmost, re-

sp., verties of H with maximum y-oordinate; if
p, q are adjaent in H then no ϑHNN exists; oth-

erwise, if p′ (q′, resp.) is the other endpoint of the

horizontal edge inident on p (q, resp.), ϑHNN is

the part of the boundary of H onneting p′ and q′

after the edges pp′ and qq′ have been removed (see

Figure 5) | similarly, we de�ne ϑHWW , ϑHSS ,

and ϑHEE .

The following lemma provides important properties

of the s-kernel of orthogonal polygons with holes.

Lemma 3 Let H be a hole of an orthogonal polygon P .

Then:

(i) No point of the strips S=(H) and S||(H) belongs to
the s-kernel of P .

(ii) If ϑHNW is not a single point, then no point of

the quadrant QSE(H) belongs to the s-kernel of P .

Moreover:

if ϑHNW ontains a S-dent or an W-dent, then no

point of the quadrant QSW (H) belongs to the s-
kernel of P (see Figures 6 and 7);

if ϑHNW ontains a N-dent or an E-dent, then no

point of the quadrant QNE(H) belongs to the s-
kernel of P ;

if ϑHNW ontains a N-dent or an W-dent, then

no point of the quadrant QNW (H) belongs to the

s-kernel of P .

Similar results hold for the boundary subhains

ϑHNE, ϑHSW , and ϑHSE.

(iii) If the boundary of H ontains a subhain ϑHNN ,

then no point of the quadrants QSW (H)∪QSE(H)
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Figure 6: If ϑHNW ontains a S-dent, then no point of

the quadrant QSW (H) belongs to the s-kernel.

belongs to the s-kernel of P . Moreover:

if ϑHNN ontains a N-dent or an E-dent, then no

point of the quadrant QNE(H) belongs to the s-
kernel of P ;

if ϑHNN ontains a N-dent or an W-dent, then no

point of the quadrant QNW (H) belongs to the s-
kernel of P .

Similar results hold for the boundary subhains

ϑHWW , ϑHSS, and ϑHEE.

The fat that if ϑHNW ontains a S-dent, then no point

of the quadrant QSW (H) belongs to the s-kernel of P
(statement (ii) of Lemma 3) follows from the fat that

there annot exist x- and y-monotone paths from any

point p of QSW (H) to both points q, q′ on either side

of the S-dent; see Figure 6. Figure 7 shows examples of

subhains ϑHNW ontaining a S-dent but no W-dents

(at left) and an W-dent but no S-dents (at right).

Lemma 3 implies that for a hole H of the given or-

thogonal polygon P , points of the s-kernel of P belong

to all, some, or none of the four quadrants QNW (H),
QNE(H), QSW (H), and QSE(H).

3 Computing the s-Kernel

Let P be an orthogonal polygon. In [5℄, the s-kernel
of an orthogonal polygon P with h holes is omputed

as the intersetion of the s-kernel A of P after having

ignored the holes in P with the external s-kernels of

all of P 's holes. However, as the external s-kernel of
eah hole ontains a horizontal and a vertial strip, the

intersetion of the external s-kernels may result to om-

puting a partial s-kernel of quadrati (in h) size, most

of whih may be lipped in the end. So, in order to get a

faster algorithm, we need to avoid this. Hene, we pro-

ess the horizontal strips S=( ) of the holes separately,
omputing the horizontal \in"-strips, i.e., the horizon-

tal strips that form the omplement of the strips S=( );
these strips thus ontain the entire s-kernel of P (see

Lemma 3(i)). We work similarly for the vertial strips

S||( ). Next, we lip the omplement of the union UQ of

all the quadrants not ontaining points of the s-kernel
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Figure 7: No point of the quadrant QSW (H) belongs to
the s-kernel if ϑHNW ontains: (left) a S-dent or (right)

an W-dent.

(resulting from the holes as desribed in Lemma 3(ii)

and (iii)) about the polygon A. Finally, we interse-

t the lipped omplement of UQ with the vertial and

horizontal \in"-strips. A detailed desription of the al-

gorithm is given in Algorithm s-Kernel below.

Algorithm s-Kernel(P )
Input : an orthogonal polygon P possibly with holes

Output : the s-kernel of P

1. ompute the s-kernel A of the orthogonal polygon

bounded only by P 's outer boundary omponent;

if P has no holes

then return A as the s-kernel of P ;
exit;

let xmin, xmax, ymin, ymax be the extreme values

of x- and y-oordinates of the bounding retangle

BBox(A) of A;

2. proess the holes of P to determine the (open)

strips and (losed) quadrants that do not ontain

points of the s-kernel of P (see Lemma 3);

if all 4 quadrants QNW (H), QNE(H), QSW (H),
QSE(H) of a hole H do not ontain points of

the s-kernel of P
then print(\The s-kernel of P is empty.");

exit;

let C= (C||, CQ, resp.) be the set of horizontal strip-
s (vertial strips, quadrants, resp.) not ontaining

points of the s-kernel of P ;

3. {proess the strips in C= and C||}
ompute the union of the horizontal strips in C=,
lip it about the range [ymin, ymax], and store it in

a y-ordered array M= of alternating losed \in"-

strips (ontaining points of the s-kernel) and open

\out"-strips (not ontaining points of the s-kernel);
work similarly for the vertial strips in C|| using
the range [xmin, xmax], produing an x-ordered ar-

ray M||;

4. {proess the quadrants in CQ}
ompute the union UQ of all the quadrants in CQ,
and lip its omplement about the boundary of the
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polygon A omputed in Step 1;

if the lipped omplement of the union UQ of

the quadrants in CQ is empty

then print(\The s-kernel of P is empty.");

exit;

5. for eah polygon Bj in the lipped omplement of

UQ in y-order do
for eah horizontal \in"-strip I interseting

Bj in y-order do
ompute the boundary ϑBj(I) = ϑBj ∩ I;
loate a leftmost point of ϑBj(I) in the

vertial strips array M||;
walk on ϑBj(I) and in M|| until a right-

most point of ϑBj(I) is found, printing
eah polygon (if any) ontributed by

Bj ∩ I and eah \in"-strip of M||;

(Note that the lipped omplement of the union UQ

at the ompletion of Step 4 does not ontain its en-

tire boundary; it ontains the edges that resulted from

the lipping about A but it does not ontain the edges

that resulted from the quadrants in CQ.)
The orretness of Algorithm s-Kernel follows from

Lemma 3 and the fat that the s-kernel of P indeed is

the intersetion of polygon A (see Step 1) with the om-

plement of the union of the olleted strips and quad-

rants from the holes of P .

Time and Spae Complexity. Let n and h be

the number of verties and holes of the input orthogo-

nal polygon P . In the following lemma, we show that

the omplement of the union of axes-aligned quadrants

has some very interesting properties; two polygons are

horizontally (vertially, resp.) separated if no horizontal

(vertial, resp.) line intersets both them.

Lemma 4 (i) Eah haline bounding a quadrant in

CQ ontributes at most one edge to the polygons

forming the omplement of the union UQ of all the

quadrants in CQ.

(ii) The omplement of UQ onsists of O(h) orthogonal-
ly onvex polygons that are horizontally and verti-

ally separated and have O(h) total size.

(iii) The lipped omplement of UQ omputed upon om-

pletion of Step 4 of Algorithm s-Kernel onsists of

O(h) horizontally and vertially separated orthogo-

nally onvex polygons of O(n) total size.

Lemma 4(iii) and the fat that the intersetion of

O(h) horizontal strips with O(h) vertial strips onsist-
s of O(h2) onneted omponents of O(h2) total size

imply the following orollary.

Corollary 5 The s-kernel of an n-vertex orthogonal

polygon that has h holes onsists of O(1 + h2) orthogo-
nally onvex polygons of O(n+ h2) total size.

The number of orthogonally onvex polygons and the

size of a s-kernel given in Corollary 5 are tight; a lower

bound an be obtained by a generalization of the poly-

gon in Figure 2.

The omputation of the s-kernel in Step 1 takes O(n)
time [1℄ and so does the entire Step 1. Step 2 takes O(n)
time as well by traversing the boundary of eah hole H
of P , omputing the subhains ϑHNW , ϑHNW , ϑHNE ,

ϑHSW , ϑHSE , ϑHNN , ϑHWW , ϑHSS , and ϑHEE , de-

termining whether they ontain dents, and applying

Lemma 3. The proessing of the h horizontal strips

in C= in Step 3 an be ompleted in O(h log h) time by

sorting them by non-dereasing bottom side and then

proessing them from bottom to top; similarly, the pro-

essing of the vertial strips in C|| takes O(h log h) time.

In Step 4, we sort the quadrants in y-order in O(h log h)
time and ompute the right-bounding line of the union

of quadrants QNW (Hi) and QSW (Hi′ ) in CQ and the

left-bounding line of the union of quadrants QNE(Hi)
and QSE(Hi′ ) in O(h) time. The omplement of these

unions is lipped about polygon A and by traversing

their boundaries from top to bottom we ompute the

lipped omplement of UQ in O(n) time. In total, Step 4

takes O(n+h log h) time. For Step 5, let tj be the num-

ber of horizontal \in"-strips interseting polygon Bj .

Beause the polygons in the lipped omplement of UQ

are horizontally separated (Lemma 4(iii)), then any oth-

er polygon may be interseted only by the topmost or

bottommost of these tj \in"-strips. Then, the num-

ber of pairs of polygons and \in"-strips onsidered is∑
j tj =

∑
j 2+

∑
j(tj − 2) = O(h) sine the total num-

ber of polygons Bj (see Lemma 4(iii)) and the total

number of \in"-strips are both O(h). Thus, if the s-
kernel of P has k onneted omponents, Step 5 takes

O(n + h log h + k) time by using binary searh in the

x-sorted array M|| for loating leftmost points. There-

fore:

Theorem 6 Let P be an orthogonal polygon having n
verties and h = O(n) holes. Algorithm s-Kernel om-

putes the s-kernel of P in O(n+ h log h+ k) time using

O(n) spae where k is the number of onneted ompo-

nents of the s-kernel of P .

4 Computing the Number of Components of the s-
Kernel

Algorithm s-Kernel an be modi�ed to help us om-

pute the number k of onneted omponents of the s-
kernel of a given orthogonal polygon P ; it suÆes to

modify Step 1 so that if P has no holes it returns 0 if

A is empty and 1 otherwise, Steps 2 and 4 to return
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0 if the s-kernel is found empty, and Step 5 as follows:

for eah polygon Bj and eah horizontal \in"-strip I
interseting Bj , we ompute a leftmost point a and a

rightmost point z of the boundary of Bj in I, and lo-

ate them in the vertial strips array M|| using binary

searh; then, depending on the indies of the strips to

whih a, z belong and whether they are \in"- or \out"-

strips, we ompute the number κ(Bj , I) of \in"-strips

(if any) between (and inluding) the strips of a and of

z. The total number of omponents of the s-kernel of P
is the sum of all the omputed κ(Bj , I).
The orretness of the modi�ed algorithm follows

immediately from the fat that for eah polygon Bj

and eah horizontal \in"-strip I, eah\in"-strip between
(and inluding) the strips ontaining a and z ontributes
a separate omponent to the s-kernel of P . The om-

plexity analysis of Step 5 of Algorithm s-Kernel and

the fat that κ(Bj , I) an be omputed in onstant time

after the strips ontaining a and z have been determined

imply that the modi�ed Step 5 takesO(n+h log h) time.

Reall that the number k of onneted omponents of

the s-kernel may be as large as Θ(1 + h2); see Corol-

lary 5.

Therefore, we have:

Theorem 7 Let P be an orthogonal polygon having n
verties and h = O(n) holes. The desribed modi�ed al-

gorithm omputes the number of onneted omponents

of the s-kernel of P in O(n + h log h) time using O(n)
spae.

5 Recognizing s-Stars

The modi�ed algorithm of Setion 4 to reognize

whether a polygon P is an s-star (i.e., its s-kernel on-
sists of at least 1 omponent) or not. A simpler version

that does not ompute the number k of omponents sim-

ply heks in Step 5 whether a and z fall in the same

vertial \out"-strip of M||; if they don't, then there ex-

ists a point in Bj ∩ I belonging to the s-kernel of P and

hene P is an s-star (the algorithm an be augmented

to return suh a point as a erti�ate of its deision). If

the above ondition for a, z does not hold for all poly-

gons Bj and \in"-strips I, then learly the s-kernel of
P is empty, and hene P is not an s-star.

Theorem 8 Let P be an orthogonal polygon having n
verties and h = O(n) holes. It an be deided whether

P is an s-star in O(n+ h log h) time using O(n) spae.

6 Concluding Remarks

In this paper, we presented a simple output-sensitive

algorithm for omputing the s-kernel of an orthogonal

polygon possibly with holes. The algorithm runs in

O(n+ h logh+ k)-time using O(n) spae, where n and

h are the numbers of verties and holes, respetively,

of the input polygon, and k is the number of onnet-

ed omponents of the omputed s-kernel. Modi�ations

of our algorithm enable us to ompute the number k of

onneted omponents and to reognize if an orthogonal

polygon is an s-star in O(n + h log h) time using O(n)
spae.

Shuierer and Wood [5℄ mention that Rawlins in his

PhD thesis [4℄ showed that the omputation of the ker-

nel of a multiply onneted polygon under restrited

orientation visibility has a lower bound of Ω(n logn).
This may imply that our s-kernel algorithm is optimal.

It is interesting to investigate the omplexity status

of the s-star reognition problem, i.e., an there be an

algorithm running in o(n + h logh) time or is there an

Ω(n + h logh) lower bound? Additionally, it would be

interesting to study extensions of the problem to 3-

dimensional spae.
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On the Inverse Beacon Attraction Region of a Point

Bahram Kouhestani David Rappaport Kai Salomaa∗

Abstract

Motivated by routing in sensor networks, Biro et al. [2]
introduced the notion of beacon attraction and inverse
attraction as a new variant of visibility in a simple poly-
gon. A beacon b is a point inside a polygon P that can
induce an attraction that moves a target point p greedily
towards it in a trajectory that always reduces distance
from p to b. The trajectory of p may require sliding p
along the boundary of an obstacle. The attraction re-
gion of b is the set of all points that eventually reach b.
The inverse attraction region of p is the set of points that
can attract p. We present algorithms to efficiently com-
pute the inverse attraction region of a point for simple,
monotone, and terrain polygons with respective time
complexities O(n3), O(n log n) and O(n).

1 Introduction

Biro et al. [2] introduced a novel variation of the art
gallery problem motivated by geographical greedy rout-
ing in sensor networks. A guard is a fixed point, called
a beacon, that induces a force of attraction within the
environment. The attraction of a beacon moves objects
(represented by points) greedily towards the beacon. A
point is attracted (covered) by a beacon if it eventually
reaches the beacon. It is a common practice in sensor
networks that message sending is performed by greedy
routing where a node sends or passes the message to its
neighbour that is closest to the destination. Depending
on the geometry of the network and the location
of the sender and receiver, greedy routing may fail.
This introduces the interesting problem to determine
whether messages can be exchanged between sender
and receiver using greedy routing.

Biro et al. [2] studied the combinatorics of guarding a
polygon with beacons and showed that

⌊
n
2

⌋
−1 beacons

are sometimes necessary and always sufficient to route
between any pair of points in a simple polygon. They
also proved that it is NP-hard to find a minimum
cardinality set of beacons to cover a simple polygon.
In 2013, Biro et al. [3] presented a polynomial time
algorithm for routing between two fixed points using a
discrete set of candidate beacons in a simple polygon

∗School of Computing, Queen’s University, Kingston, Ontario,
Canada. {kouhesta,daver,ksalomaa}@cs.queensu.ca

and a 2-approximation algorithm where the beacons
are placed with no restrictions. For polygons with
holes, Biro et al. [4] showed that

⌊
n
2

⌋
− h − 1 beacons

are sometimes necessary and
⌊
n
2

⌋
+ h − 1 beacons are

always sufficient to guard a polygon with h holes. For
other results on beacons see [1].

In this paper we present algorithms to compute the
inverse attraction region of a point inside an n-gon. We
show that the inverse attraction region of a point can
be computed in O(n3) time in a simple polygon. For
monotone polygons we present a simple O(n log n) time
algorithm to compute the inverse attraction region, and
for terrain polygons we can further reduce the complex-
ity to O(n) time.

2 Preliminaries

Let P be simple polygon in the plane with the vertices
v1, v2, ..., vn in counter-clockwise order. P is monotone
with respect to the line L if every line orthogonal to
L intersects P in at most one connected component.
Throughout this paper, without loss of generality,
we assume that L is the x-axis. Let u and v be the
first and last vertices of the monotone polygon M in
lexicographic order. The upper (lower) chain of M
is the ordered set of edges from u to v in clockwise
(counter-clockwise) order. We define a terrain polygon1

as a monotone polygon with one of its chains consisting
of a single line segment.

Let p and q be two points inside P . The Euclidean
shortest path (geodesic path) between p and q, SP (p, q)
is a path inside P that connects p and q and among
all such paths it has the smallest length. The union
of Euclidean shortest paths from p to all vertices of P
is called the shortest path tree of p and is denoted by
SPT (p). Guibas et al. presented a linear time algo-
rithm to compute SPT (p) [6]. It is worth mentioning
that SP (p, q) turns only at reflex vertices of P and the
angle facing the exterior of P at a turn is convex (the
outward convex property of the shortest path). The
parent of a node u 6= p in SPT (p) is the last reflex
vertex on SP (p, u) which is not u. For proofs and
details on shortest paths, see [7, Ch. 3].

1A terrain polygon is sometimes called a “monotone moun-
tain”.
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A beacon is a stationary point inside a simple poly-
gon P that can induce a force of attraction within P .
When beacon b is activated, points in P move greedily
towards b and monotonically decrease their Euclidean
distance to b. Furthermore, points are allowed to slide
on the boundary of the environment in order to get
closer to b, thus, the movement of a point alternates
between moving straight towards b and sliding on
the boundary of P (Fig. 1). Let e be an edge of P
and let L be the supporting line of e. Let h be the
orthogonal projection of b on L (Fig. 2a). As h is the
point with the shortest distance to b among all points
on L, sliding on e is always towards h. If h is located
on e a point sliding on e will reach h and remain on
h. Otherwise, it slides all the way to an endpoint of
e. Then the point will move straight towards b if that
is possible. Otherwise, depending on the location of
the orthogonal projection of b on the supporting line
of the adjacent edge, the point either slides on the
new edge or remains stationary on the endpoint (Fig. 2).

Eventually a moving point either reaches b or be-
comes stuck on a boundary point of P . The path from
the original position of a point p to its final position
is called the attraction trajectory of p. A point in
P is attracted by b if its Euclidean distance to b is
eventually decreased to 0. The attraction region of
a beacon b is the set of all points in P that b can
attract and can be computed in linear time [1]. In the
case that the point does not reach b, its final location
is called a dead point. The dead region relative to
a dead point d is the set of all points that end up
on d. The boundary between the attraction region
and a dead region or two dead regions is called a
split edge. We denote a split edge that separates the
attraction region of the beacon from a dead region as a
separation edge. In contrast to conventional visibility,
beacon attraction is not symmetric. For example in
Fig. 1 a beacon located on p cannot attract a point
on b. The inverse attraction region of a point q is
defined as the set of beacon locations in P that attract q.

Figure 1: The movement of a point alternates between
moving straight towards the beacon and sliding on the
boundary.

Figure 2: Three cases when a point slides to an endpoint
of e. (a) It moves straight towards b. (b) It slides on the
adjacent edge. (c) It get stuck on the endpoint. Here h′

is the orthogonal projection of b on the supporting line
of the adjacent edge of e.

Let r be a reflex vertex incident to edges e1 and e2.
Let H1 and H2 be half-planes perpendicular to e1 and
e2 emanating from r which include the outside of P
in a small neighbourhood of r. The dead wedge of r
is defined as the intersection of H1 and H2 (Fig 3).
Let b be a beacon inside the dead wedge of r and to
the left of r. Consider h, the orthogonal projection of
b on the supporting line of e2. Note that a point on
e2 close to r will slide away from r. Let Γ be the ray

from r and in the direction of
−→
br and let s be the line

segment between r and the first intersection of Γ with
the boundary of P . The attraction of b to a point just
to the right of s moves the point to e2 and slides it
towards h, while a point just to the left of s avoids e2
and passes r. In other words the final destination of
those two points will be different and therefore s is a
split edge of b and we have the following lemma.

Lemma 1 A reflex vertex r introduces a split edge for
the beacon b if and only if b is inside the dead wedge of
r.

Figure 3: The dead wedge of a reflex vertex r is the
intersection of half planes H1 and H2 designated by the
red arc.

Next we address the problem of computing the inverse
attraction region, that is:
Given a simple polygon P and a point q inside P , find
the set of all beacon locations in P that attract q.
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3 Inverse attraction region in simple polygons

Biro presented an algorithm for computing the inverse
attraction region of a point in a simple polygon [1].
Unfortunately his O(n2) time and space algorithm
has a flaw. The algorithm begins by constructing an
arrangement AP of lines to partition P with the idea
that for any two points inside a particular region, either
both or none attract q.

The arrangement AP contains three types of lines:
1) lines through edges of P , 2) lines through a reflex
vertex and perpendicular to one of the edges incident
to this reflex vertex (i.e lines supporting edges of the
dead wedge of reflex vertices), and 3) lines through q
and each reflex vertex of P .

As far as we know Biro’s proof [1] of the following
property for AP , is correct.

Property 1: If b1 and b2 belong to the same region
of AP and the reflex vertex r is a split vertex relative
to b1 (i.e. r introduces a split edge for b1) then r is also
a split vertex relative to b2 [1].

Biro used Property 1 to conclude that all points in
a particular region behave the same with respect to q
(all or none attract q). The example in Fig. 4 illustrates
that property 1 is not sufficient to guarantee that points
in the same region have the same attraction behaviour
with respect to q. Consider the line L going through the
reflex vertices r1 and r2 and let s and t be two points
close to and on opposite sides of L. Even though r2
introduces a split edge for both s and t, it is easy to
see that s cannot attract q while t can. This example
suggests that additional lines need to be added to the
arrangement.

Figure 4: An example where the arrangement in [1] does
not work. Point s cannot attract q while t can. Also
observe that point s′ can attract q while t′ cannot.

The example in Fig. 4 implies that it is necessary
to add some of the lines going through pairs of reflex
vertices of P to the arrangement. As a polygon may
have O(n) reflex vertices, this adds an additional O(n2)
lines with an arrangement of O(n4) regions.

We construct a new arrangement of O(n2) complexity
which correctly groups together points in P .

The arrangement AP uses three types of lines:
1) Lines through edges of SPT (q).
2) Lines through the edges of the dead wedge of a reflex
vertex of p.
3) Lines through edges of the polygon.

Note that lines of the third type are added to AP to
distinguish points that are inside or outside of P .

Lemma 2 If b1 and b2 belong to the same region of AP

then either both or neither attract q.

Proof. For the sake of contradiction and without loss
of generality assume b1 attracts q while b2 does not
attract q. Let r be the split vertex that separates q
from the attraction region of b2 (i.e. r introduces a
split edge for b2 that separates q from the attraction
region of b2). Without loss of generality let us assume
that q is to the left of this split edge, s2 (Fig. 5). As b1
and b2 are in the same region of Ap, b1 is also in the
dead wedge of r and r introduces a split edge for b1.
As b1 attracts q, q lies to the right of this split edge s1.

We have two cases:
1) Both s1 and s2 have an (upper) endpoint on a com-
mon edge e (Fig. 5a). In this case q lies in the triangle
formed by s1, s2 and e. This triangle is contained in P ,
and therefore q sees r and the line segment connecting r
and q is in SPT (q). Therefore, the line qr forces b1 and
b2 to be in two different regions of AP , a contradiction.
2) Edges s1 and s2 have (upper) endpoints on different
edges of P (Fig. 5b). Let the endpoint of s1 lie on e
and the endpoint of s2 lie on e′. Notice that the left
endpoint of e′ is located between s1 and s2. Now con-
sider the shortest path between q and r. If q and r see
each other directly then the supporting line of the line
segment qr belongs to AP and similar to the previous
case we have a contradiction. If q and r cannot see
each other directly then there exists a reflex vertex r′

between s1 and s2 such that the shortest path between
q and r passes through r′. Now by the construction the
line rr′ is in AP which forces b1 and b2 to be located in
two different regions, a contradiction. �

Theorem 3 The inverse attraction region of a point in
a simple polygon can be computed in O(n3) time and
O(n2) space.
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Figure 5: Split edges of b1 and b2.

Proof. There are O(n) lines in the arrangement.
Therefore the number of regions in the arrangement is
O(n2) and for each region we can check whether a can-
didate point can attract q in linear time, resulting in
the O(n3) time complexity. �

4 Inverse attraction region in a monotone polygon

In the previous section we showed that lines passing
through edges of SPT(q) and through edges of dead
wedges form the boundaries between regions that at-
tract q and those that don’t. For the case of monotone
polygons we show that a much smaller subset of these
boundary edges suffice.

Let M be a monotone polygon and let q be a point
in M . We begin by studying the effect of a single reflex
vertex on the inverse attraction region of q. Let v be
a reflex vertex of M with el and er the left and right
adjacent edges of v, respectively. Let q ∈M be a point
to the right of v. Our goal is to distinguish all beacon
placements to the left of v that do not attract q because
they are blocked by an edge incident to v. To do so,
first we assume that there are no reflex vertices between
q and v (i.e no reflex vertex exists simultaneously to
the left of q and to the right of v) and find points to
the left of v that cannot move q past a vertical line
through v.

We show that a ray passing through v can be used
to bound a subpolygon of M so that any beacon placed
within that subpolygon cannot attract the point q. This
ray can be defined in one of two ways yielding what we
call a blocking ray. The two cases of blocking rays are
described as follows:

Case 1 blocking ray: q1 ∈M is a point to the right
of the reflex vertex v and below the line L1 orthogonal
to er at v. Observe that L1 passes through the left
edge of the dead wedge of v. According to attraction
properties (Fig. 2), a beacon in M below L1 and to the
left of v cannot attract q1 past the vertical line through
v, and therefore it does not attract q1. Thus we can
express the effect of v by a ray Γ1 emanating from v

Figure 6: The effect of a single reflex vertex on the
inverse attraction region of a point. Case 1 blocking
ray: q1 lies below L1: beacons below Γ1 cannot attract
q1. Case 2 blocking ray: q2 lies above L1 and and below
L2: beacons below Γ2 cannot attract q2.

extending to the left along L1. No point below Γ1 can
attract q1. We call Γ1 the blocking ray of v relative to q1.

Case 2 blocking ray: q2 ∈M is a point to the right
of v and above L1. Let Γ2 be the ray emanating from v
extending to the left along the line q2v. Note that Γ2 is
in the dead wedge of v. Consider a beacon b to the left
of v. If b is to the right of Γ2 then the attraction path
of q2 will intersect er and by considering the orthogonal
projection of b on the supporting line of er, we see that
b cannot pass q2 over v. Now assume b is to the left
of Γ2. Here the line segment q2b will not intersect er
and therefore b can move q past over v. Here Γ2 is the
blocking ray of v relative to q2.

We define the blocking region of a reflex vertex
v relative to q as points of M which are below the
blocking ray of v relative to q. Informally, the blocking
region of v is the set of beacon locations that cannot
attract q due to v. Note that a point in the blocking
region of v (in both cases) is in the dead wedge of v.

We can now present an algorithm to compute the
inverse attraction region of a point in a monotone
polygon.

Algorithm InverseAttractionRegion
Input. Monotone polygon M and a point q ∈M .
Output. Inverse attraction region of q, that is, beacon
locations in P that attract q.

1: Compute SPT (q), the shortest path tree from q to
each vertex of M .

2: for each reflex vertex r that sees q do
3: Discard points in the blocking region of r relative

to q
4: end for
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5: for each pair of consecutive reflex vertices v, v′ in
SPT (q) (v = parent(v′)) do

6: Discard points in the blocking region of v′ relative
to v.

7: end for
8: return The remaining polygon

Theorem 4 Algorithm InverseAttractionRegion cor-
rectly computes the inverse attraction region of an input
point q in a monotone polygon.

Proof. Suppose p is discarded by the algorithm due
to the edge s = vv′, where v = parent(v′) in SPT(q).
We claim that p cannot attract any point on s (see ap-
pendix). We show that p cannot attract q as well. We
consider two cases:

1) v and v′ lie on different chains of M . Here, s
partitions M into two sub-polygons and p and q are in
different sub-polygons. Let π be the attraction trajec-
tory of q to p. As p and q are on different sides of s,
π crosses s. Let x be the intersection of π and s. As p
cannot attract x, we conclude that it cannot attract q.

2) v and v′ are on the same monotone chains (Fig. 8).

Let w be the first intersection point of the ray
−→
v′v

with M to the right of v. Note that as the shortest
path is outward convex, the parent of v in SPT (q)
lies in the sub-polygon to the right of the line segment
vw. Therefore, vw partitions M into two sub-polygons
where p and q are in different sub-polygons. As p
cannot attract v, we can show that it cannot attract
any point on vw (see appendix). If p attracts q then
the attraction trajectory must intersect vw which is a
contradiction.

Now suppose p is a point that cannot attract q. Let t
be the separation edge of the attraction region of p such
that p and q are in different sides of t. Let v′ be the re-
flex vertex that introduces t and M1 be the sub-polygon
that contains q (Fig. 7). Observe that v = parent(v′) in
SPT(q) is in M1 because the shortest path is outward
convex. Therefore, p does not attract v and p lies in the
blocking region of v′ relative to v. With our construc-
tion when the pair (v, v′) ∈ SPT (q) is processed, p will
be discarded. �

We use a result of Hershberger [5] that computes the
upper envelope of a set S of n non-vertical line segments
in O(n log n) time. The upper envelope of S is defined as
the portion of the segments in S visible from y = +∞.
The lower envelope is defined symmetrically.

Lemma 5 The time complexity of the Algorithm In-
verseAttractionRegion is O(n log n).

Proof. In order to achieve an O(n log n) time complex-
ity, we first collect all blocking rays and then discard

Figure 7: Attraction trajectory of v. Here, p cannot
attract v.

Figure 8: No point on vw can be attracted by p. There-
fore p cannot attract q.

points in blocking regions. Let B be an axis aligned
bounding box of M . By intersecting the blocking rays
with B (and adding the top and bottom edges of B)
we have a collection of blocking line segments. If the
blocking line segment originated from a reflex vertex of
the lower (upper) chain, then we need to discard points
of M that are vertically below (above) this line seg-
ment. Using Hershberger’s algorithm [5], we construct
the upper (lower) envelope of blocking line segments of
vertices of the lower (upper) chain in O(n log n) time
and obtain two monotone polygons. The intersection of
these two polygons with M is the set of points below
all upper chain blocking rays and above all lower chain
blocking rays. As the intersection of monotone polygons
can be computed in linear time, the total complexity is
O(n log n). �

5 Inverse attraction in a terrain polygon

Let M be a terrain polygon and let L be a vertical line
through q. L partitions M into two terrain polygons.
We consider each of these polygons separately and
discard points that cannot attract q in each polygon.
Here we explain how this is done for M1, the polygon
to the left of L. Let R1 be all rays of R that extend
from left to right. We present a linear time algorithm
to discard points below the rays in R1. The algorithm
starts by traversing M1 from right to left. Events are
reflex vertices with a blocking ray that extends to the
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left. The algorithm preserves the invariant that at
each event point the computed polygon to the right
is the set of points in M1 vertically above all current
blocking rays Γ1,Γ2, ...,Γi. Furthermore, the algorithm
stores and updates a convex set C which is the upper
envelope of current rays intersected by a bounding box
of the polygon.

Algorithm DiscardingBelowRays
Input. A terrain polygon M1. A set R = Γ1,Γ2, ...,Γm

of blocking rays all extending to the left.
Output. A polygon P obtained by discarding points in
M1 vertically below the rays in R.

1: Order R such that Γi is the blocking ray of the reflex
vertex ri and ri is to the left of ri+1 for all i =
1, 2, ...,m− 1.

2: Let C be an axis aligned bounding box of M1.
3: Let Vi be the vertical line through ri and Hi be the

half-plane to the left of Vi.
4: Let polygon P be the subset of M1 between V1 and

a vertical line through q.
5: for i = 1 to m do
6: C = C ∩Hi

7: if ri is in C then
8: Intersect C with the half-plane above the sup-

porting line of Γi by traversing the lower edges
of C and finding the first edge of C that inter-
sects Γi.

9: Add to P all points of M1 between Vi and Vi+1

that are also in C
10: end if
11: end for
12: return P

The algorithm computes the upper envelope of rays
Γ1,Γ2, ...,Γi between Vi and Vi+1 and intersects the re-
sult with the portion ofM1 between Vi and Vi+1 (Fig. 9).
Therefore, the output are points of M above all block-
ing rays. Before we analyze the time complexity of the
algorithm, we show that it is safe to ignore rays of reflex
vertices that start below some current blocking regions
(step 6).

Lemma 6 If ri /∈ C then Γi does not contribute to P .

Proof. See appendix. �

Lemma 7 Algorithm DiscardingBelowRays runs in
O(n) time.

Proof. We use a sequential search in both step 7 in-
tersecting C ∩ Hi and in step 9 intersecting the upper
envelope of Γi with C. In each case once we step over
an edge we eliminate it forever. Thus the overall com-
plexity of the algorithm is O(n). �

Figure 9: Discarding points below rays.

6 Conclusion

In this paper, we presented algorithms to efficiently
compute the inverse attraction region of a point for sim-
ple, monotone, and terrain polygons. Currently we are
developing a more efficient algorithm for simple poly-
gons using the ideas of chapter 4. We believe that we
can design an O(n log n) time algorithm which can be
shown to be optimal.
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Appendix

Although our goal is to compute the inverse attraction
region of a fixed point, it is useful to compare the block-
ing regions of two points relative to a particular reflex
vertex.

Lemma 8 Let v be a reflex vertex of M . Let q and
q′ be two points of M such that q′ is on the open line
segment qv. If there are no reflex vertices between v and
q, then the blocking regions of q and q′ (relative to v)
are equal.

Proof. Consider the cases in Fig. 6. It is easy to verify
that when q′ lies on the (open) line segment qv, the
blocking rays of q and q′ are the same. Therefore, their
blocking regions are equal. �

Lemma 9 Let q be a point close to the left edge of v.
Consider the clockwise rotation of q around v to a ver-
tical position. During the rotation, the blocking region
of v relative to q never increases.

Proof. During the rotation, as long as q is below L1

(see Fig. 6), the blocking region of q remains the same.
While q is rotated from L1 to a vertical position, the
blocking ray of v relative to q will rotate clockwise from
L1 to a vertical downward ray. During this time the
blocking region of q (i.e. points in M below the block-
ing ray) monotonically gets smaller until it is empty.
Therefore, during the rotation the blocking region of q
is non increasing. �

Next we consider the effect of two reflex vertices on
the inverse attraction region of a point. Let v and v′ be
the only two reflex vertices of M . If a point q ∈ M is
located between v and v′ then any attraction trajectory
of q can at most have one of v and v′ on its path
and therefore the effect of v and v′ can be considered
separately. Therefore we focus on the inverse attrac-
tion region of the point q which lies to the right of
both reflex vertices. Without loss of generality assume
v is on the lower chain and v′ is on the upper chain of M .

Case 1) If q is visible to both v and v′, we claim that
any attraction trajectory of q can at most pass through
one of these reflex vertices. The attraction trajectory of
q to a beacon b passes through v only if b is below the ray
−→qv and passes through v′ only if b is above the ray

−→
qv′

(Fig. 10). As q sees both v and v′ there does not exist a

beacon both below −→qv and above
−→
qv′. Therefore at most

one reflex vertex can affect the attraction trajectory and
in the computation of the inverse attraction v and v′ are
considered separately. We conclude that a point inside
the blocking regions of v or v′ cannot attract q.

Figure 10: If q sees both v and v′, no attraction trajec-
tory of q can intersect both v and v′ and in the com-
putation of the inverse attraction region, v and v′ are
considered separately. Here points that cannot attract
q are shaded.

Case 2) Otherwise, without loss of generality assume
that q can see v but not v′ (Fig. 11). We classify the
points to the left of v′ into two groups: i) points above
the ray −→qv and ii) points below −→qv. Let p be a point
in group i. Consider π the attraction trajectory of q in
the attraction of p. As p is located above −→qv, π does
not intersect the adjacent edges of v. We conclude that
p can attract q if and only if p is not in the blocking
region of v′ (relative to q). Now assume that p is a
point in group ii. In this case π will intersect v or the
right edge of v. Therefore, p attracts q if and only if
p can move q from its initial position to v (i.e. p is
above the blocking ray of v relative to q) and p can at-
tract v (i.e p is below the blocking ray of v′ relative to v).

Next we show how to combine the two groups of case
2.

Lemma 10 If q sees v but not v′ then points in the
blocking region of v relative to q and points in the block-
ing region of v′ relative to v are the only points that
cannot attract q.

Proof. It is obvious that a point in the blocking region
of v relative to q does not attract q, because it cannot
move q past over v. So we only need to argue about
points to the left of v′. Let p be a point in group ii (i.e.
p is a point to left of v′ and below −→qv). By the previous
argument p attracts q if and only if p can move q from
its initial position to v and p can attract v. Therefore,
p cannot lie in the blocking region of v (relative to q)
and it cannot lie in the blocking region of v′ relative to
v and so the lemma follows.

Now let p be a point in group i (i.e. p is to the left of v′

and above −→pv). Note that as q does not see v′, p also lies
above the line vv′ (see Fig. 11). Recall our case analysis
in Fig. 6. If the relative position of v with respect to
v′ lies in case 1 (which is the case in Fig. 11), then the
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blocking region of v′ relative to v is all points in the left
side of the dead wedge of v′. The attraction trajectory
of q in the attraction of a point in group i intersects the
right edge of v′. Therefore a point in group i can attract
q if it is not located on the left side of the dead wedge
of v′. This is precisely the blocking region of v′ relative
to v.

Now assume that the relative position of v to v′ lies
in case 2 of Fig. 6. Recall that the blocking ray of v′

relative to v is the ray from v′ in the direction of the

vector
−→
vv′. As points above the qv are also above vv′,

all points of group i reside in the blocking region of v′

relative to v and lemma follows. �

Figure 11: Points that cannot attract q are shaded.

Theorem 4 The algorithm InverseAttractionRegion
correctly computes the inverse attraction region of a
given point in a monotone polygon.

Proof. We use proof by contradiction. First that
assume p is a point that can attract q and is discarded
by the algorithm. Without loss of generality we assume
p is to the left of q. If p is discarded in step 3 of the
algorithm then let v be the rightmost reflex vertex
responsible for discarding p. Note that q and v see each
other, and p is in the blocking region of v therefore it
is also in the dead wedge of v. As p is also to the left
of v, p cannot attract any points on the right adjacent
edge of v. Since p attracts q, the attraction trajectory
of q to p must pass above v. Here in order for q to
pass above v, there must exist an edge e between v
and q such that q slides on e and moves above the line
pv. This implies that e blocks the visibility of v and q,
which is a contradiction.

Assume p is discarded in step 6 due to s, where s is
the directed open edge of SPT(q) from v to v′. Note
that due to the monotonicity of M both v and v′ are
to the right of p and to the left of q. Consider πpv the
attraction trajectory of v to p (Fig. 7). As p is discarded
when the pair (vv′) is processed, in the absence of other
reflex vertices p cannot attract v. Since v and v′ are
visible, no attraction trajectory (towards p) can slide
through s. By lemma 8 the blocking region of all points
on s are equal and by lemma 9 no points below s can

have a blocking region smaller than the blocking region
of v. Therefore (even in the presence of other reflex
vertices) no points on πpv can be attracted by p and
thus p does not attract v. Now we show that p cannot
attract q as well. We consider two cases:

1) v and v′ lie on different chains of M . Here, s
partitions M into two sub-polygons and p and q are
in different sub-polygons. Note that by lemma 8 the
blocking region of v relative to any point on s is precisely
the blocking region of v relative to v′. This implies that
p cannot attract any point on s. Let π be the attraction
trajectory of q to p. As p and q are on different sides of
s, π crosses s. Let x be the intersection of π and s. As
p cannot attract x, we conclude that it cannot attract
q.

2) v and v′ are on the same monotone chains. Let w

be the first intersection point of the ray
−→
vv′ with M to

the right of v (Fig. 8). Note that as the shortest path is
outward convex, the parent of v in SPT (q) lies in the
sub-polygon to the right of the line segment vw. There-
fore, vw partitions M into two sub-polygons where p
and q are in different sub-polygons. By lemma 8 the
relative blocking region of v′ relative to any point on
vw is exactly the blocking region of v′ relative to v.
As p cannot attract v, it cannot attract any point on
vw. If p attracts q then the attraction trajectory must
intersect uw which is a contradiction.

Now suppose p is a point that cannot attract q and is
not discarded by the algorithm. Let t be the separation
edge of the attraction region of p such that p and q are
in different sides of t. Let v′ be the reflex vertex that
introduces t and M1 be the sub-polygon that contains q
(Fig. 7). Observe that v = parent(v′) in SPT(q) is in M1

because the shortest path is outward convex. Therefore,
p does not attract v and p lies in the blocking region of
v′ relative to v. With our construction when the pair
(v, v′) ∈ SPT (q) is processed, p will be discarded. �

Lemma 6 If ri /∈ C then Γi does not contribute to
P .

Proof. Let Γi be the blocking ray of ri and ri /∈ C. Let
Γj (j < i) be the leftmost ray above ri. Consider the
parent of ri in SPT (q). If rj is the parent of ri then
the blocking ray of ri relative to rj will be on or under
the ray rjri, therefore all points in the blocking region
of ri are also in the blocking region of rj . Now assume
w 6= rj is the parent of ri and therefore w lies above
the ray rirj . Consider the blocking ray of ri relative to
w. It lies on or below the line riw and so below the line
rirj . Therefore in both cases the blocking region of ri
can be ignored. �
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A Combinatorial Bound for Beacon-based Routing in Orthogonal Polygons

Thomas C. Shermer∗

Abstract

Beacon attraction is a movement system whereby a
robot (modeled as a point in 2D) moves in a free space
so as to always locally minimize its Euclidean distance
to an activated beacon (also a point). This results in
the robot moving directly towards the beacon when it
can, and otherwise sliding along the edge of an obsta-
cle. When a robot can reach the activated beacon by
this method, we say that the beacon attracts the robot.
A beacon routing from p to q is a sequence b1, b2, . . . , bk
of beacons such that activating the beacons in order will
attract a robot from p to b1 to b2 . . . to bk, and where
a beacon placed at q will attract bk. A routing set of
beacons is a set B of beacons such that any two points
p, q in the free space have a beacon routing with the in-
termediate beacons b1, b2, . . . bk all chosen from B. Here
we address the question of “how large must such a B
be?” in orthogonal polygons, and show that the answer
is “sometimes as large as

⌊
n−4

3

⌋
, but never larger.”

1 Background

Beacon attraction has come to the attention of the com-
munity recently as a model of greedy geographical rout-
ing in dense sensor networks. In this application, each
node of the network has a location, and each commu-
nication packet knows the location of its destination.
Nodes having a packet to deliver forward the packet to
their neighbor that is the closest (using Euclidean dis-
tance) to the packet’s destination [5, 7].

In the abstract geometric setting, the destination
point is called a beacon, and the message is considered
to be a point (or robot) that greedily moves towards
the beacon. The robot, under this motion, may or may
not reach the beacon—if it does reach the beacon, we
say that the beacon attracts the robot’s starting point.
The attraction relation between points has the flavor of
a visibility-type relation, with the interesting twist that
it is asymmetric: if point p attracts point q, then it does
not follow that point q attracts p. In a series of pub-
lications, Biro, Gao, Iwerks, Kostitsyna, and Mitchell
have studied various visibility-type questions for beacon
attraction, such as computing attraction (and inverse-
attraction) regions for points, computing attraction ker-
nels, guarding, and routing [4, 3, 2]. Bae, Shin, and

∗School of Computing Science, Simon Fraser University,
shermer@sfu.ca

Vigneron addressed beacon-attraction guarding in or-
thogonal polygons [1].

In beacon-based routing, the goal is to route from a
source p to a destination q through a series of inteme-
diate points b1, b2, . . . bk where b1 attracts q, b2 attracts
b1, b3 attracts b2, etc., and finally q attracts bk. The
idea is that we activate the beacons b1, b2, . . . bk indi-
vidually in turn, and then activate a beacon at q, and
we will have attracted p all of the way to q. In the ap-
plication setting, this corresponds to using greedy ge-
ographical routing for each hop in a multi-hop routing
for the packet; beacons correspond to landmark or back-
bone nodes of the network [8]. Ad-hoc networks (and
to some extent, sensor networks) expect to see messages
from many different p’s to many different q’s. Thus it is
natural to ask whether we can find some set B of back-
bone nodes (beacons) such that one can route from any
p to any q using only backbone nodes chosen from B.

We call such a set B a routing set of beacons.
Biro et al.[3] studied the problem of finding minimum-
cardinality routing beacon sets in simple polygons.
They established that it is NP-hard to find such a
minimum-cardinality B, and that such a B can be as
large as, but never exceed,

⌊
n−2

2

⌋
. Biro [2] also conjec-

tured that, in orthogonal polygons, such a B could be as
large as, but never exceed,

⌊
n−4

4

⌋
. In this paper, we dis-

prove this conjecture, pinning this maximum minimum
size at

⌊
n−4

3

⌋
instead.

In this paper, we omit many details, lemmas, and
proofs due to size constraints. Full details are available
in the arXiv preprint [9].

2 Preliminaries

2.1 Routing segments

If p and q are points in a polygon with a beacon rout-
ing from p to q, then by a routing segment we mean
any maximal section of the beacon-routing path during
which a point travelling the path is attracted by a single
beacon (or by the destination point q). If the beacon
routing from p to q starts at p, proceeds to beacon b1,
then to beacon b2, then to q, then the routing segments
are the part from p to b1, the part from b1 to b2, and
the part from b2 to q.
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2.2 Decomposition and neighboring rectangles

Let P be an orthogonal polygon of n vertices in gen-
eral position; handle special-position instances with the
usual perturbation technique. Construct the vertical de-
composition (or trapezoidation [6]) of P by creating a
vertical chord from every reflex vertex (see Figure 1).

Because of our restriction to general position, there
are n−4

2 verticals, decomposing the polygon into n−2
2

axis-aligned rectangles. Each such rectangle has be-
tween one and four neighboring rectangles. If we form a
graph of the neighbor relation on the rectangles, then we
have the dual tree (or weak dual) of the decomposition,
as shown in Figure 1.

Figure 1: The vertical decomposition of a polygon, with
its dual tree.

We classify the different types of neighbors of a rect-
angle R in 3 primary ways: left vs. right, depending on
the side of R they are on; top vs. bottom, depending
on whether the neighbor and R have the same polygon
edge as their top or bottom; and short vs. tall, depend-
ing on whether the neighbor is shorter or taller than R.
We combine these classifications: for instance, in Figure
1, A is a short bottom left neighbor of B, and D is a
tall top right neighbor of C.

Observation 1 If a rectangle R is a tall left (or right)
neighbor of S, then it is the only left (or right, respec-
tively) neighbor of S.

Observation 2 If a rectangle R is a short left (or
right) neighbor of S, then it is either the only left (or
right, respectively) neighbor of S (which we call a solo
neighbor), or there is one other short left (or right, re-
spectively) neighbor of S (in which case we call R a
paired neighbor of S).

We generally divide the different cases of a neigh-
boring rectangle’s type into into tall, solo, and paired.
Figure 2 shows these three types of neighbors.

Figure 2: The three types of top right neighbor R of a
rectangle S: (a) tall, (b) solo, (c) paired.

2.3 Beacon coverage

If a point p in a polygon attracts a point q, and q attracts
p, then we say that p covers q. If p covers every point
in some region C, then we say that p covers C. And if
there is a set of points B in the polygon such that for
every point q in C, there is a b in B that attracts q, and
a b′ in B that q attracts, then we say that B covers C.
Typically, the point set B will be our set of beacons,
and C will be the entire polygon, or a small region of it.

To build a set of beacons we need to know which
regions an individual beacon will cover. Fortunately,
for our purposes it will mainly suffice to know which
rectangles of the decomposition a beacon covers.

First, a beacon b will cover any rectangle of the de-
composition it is in. (If b is on a vertical then it will
be in two such rectangles.) The lemmas in this section
establish some beacon placements that cover rectangles
other than their containing rectangles. To save space,
in this paper we ignore details about issues of closure
that affect the analysis only at reflex vertices. Also, in
this section we will omit the proofs of the lemmas but
leave the corresponding figures to illustrate definitions
and to give the reader a hint at the proofs.

Lemma 1 If rectangle S is a solo neighbor of rectangle
R in the decomposition of a polygon, then any point of
R covers S, and any point of S covers R.

See Figure 3.

Figure 3: S is a solo neighbor of R. (a) p is attracted
into the left wall of R. (b) q is attracted into the bottom
wall of S.
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Next we look at a rectangle with paired neighbors.
Let R have paired neighbors on the left; we define

the left center of R as the closed rectangle that is the
full width of R and has the vertical span of the polygon
edge on the left of R (as illustrated in Figure 4a).

We similarly define the right center if R has paired
neighbors on the right. See Figure 4.

Figure 4: (a) the left center of R is shown shaded. (b)
If p is attracted to the left side of R at or above r1, it
proceeds into S1 (and directly to q). If p is attracted to
the left wall of R between r2 and r1, it is pulled up the
wall and at r1 will enter S1 and then will reach q. If p
is attracted to the left wall at the point r2, the behavior
is indeterminate. If p is attracted to the left side below
r2, it proceeds into S2 and does not reach q.

Lemma 2 If rectangles S1 and S2 are paired left (right)
neighbors of rectangle R in the decomposition, then any
point in the left (right, respectively) center of R covers
S1 and S2.

We will mostly be applying Lemma 2 with the point
in the center of R being either r1 + εx̂ or r2 + εx̂, where
x̂ is the unit vector in the x-direction.

3 Trapping and repair

3.1 Locality

We will call a routing segment local if there are (at most)
three rectangles of the vertical decomposition whose
union contains the segment. We will similarly call a
routing path local if all of its segments are local, and
a routing beacon set local if it supports a local routing
path between every pair of points in the polygon. The
routing beacon sets that we construct will all be local.

We let the local attraction relation be the attraction
relation restricted to those ordered pairs of points (p, q)
where p attracts q via a local routing segment.

3.2 Trapped paths

In the inductive step of our proof, we will be removing
a few rectangles from the polygon Pk by cutting the

polygon along a vertical V of the decomposition. Let C
denote the (closed) region that is removed; it will consist
of a few rectangles. The (closed) polygon remaining is
denoted Pk+1. In Pk+1, the vertical V is part of the
polygon boundary, but in Pk it is not.

To form a beacon set Bk for Pk, we would like to take
the beacon set Bk+1 for Pk+1 (which inductively exists)
and add a few beacons to it. We could use Bk+1 for
routing between pairs of points in Pk+1 (as a subset of
Pk), and then just worry about routing the points of C
(to each other, and into and out of Pk). However, this
simple strategy does not work, because in Pk, the bea-
cons Bk+1 may not be a routing set for the region Pk+1.
This happens because the points of V have changed sta-
tus from boundary to non-boundary.

We will call the rectangle of C that contains the ver-
tical V the detachment rectangle, and the rectangle of
Pk+1 containing V the base rectangle. By consider-
ing whether the detachment rectangle is a tall, solo,
or paired neighbor of the base (analysis omitted in this
paper), we find the only problematic case is when it is
paired.

In this case, the beacon routing of Pk+1 may have
segments dependent on V being boundary: a routing
path segment may encounter the wall of Pk+1 at a point
on V , and then be pulled along that wall containing V
until it reaches the reflex vertex (and then leaves the
wall; see Figure 5a). In Pk, the corresponding attraction
path, upon encountering V , would continue into C and
become trapped, not reaching the beacon, as shown in
Figure 5b.

Figure 5: A trapped path. (a) a path segment from r
to s hits a wall in Pk+1. (b) the attraction path from
r towards s continues into C in Pk. (c) repairing a
segment from bi to bi−1 with r′.

3.3 Repair of trapped paths

To fix the problem of trapped paths, we will have to
devote a new beacon to repair such trapped path seg-
ments, as suggested in Figure 5c.

Lemma 3 Let Bk+1 be a local routing set of beacons in
Pk+1. If a left (or right) paired neighbor Q has been cut
from rectangle R in Pk to form Pk+1, we can add the
point r + εx̂ (or r − εx̂) to Bk+1 to obtain a beacon set
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that supports local routing between any pair of points in
the subpolygon Pk+1 of Pk, where r is the reflex vertex
of Pk common to Q and R.

The proof of this lemma, lengthy and omitted here,
relies crucially on the locality of path segments. If a
segment is trapped, then locality allows us to contain
that segment in the union of S and R (as in Figure 5),
and one other rectangle. The other rectangle must be
some sort of neighbor of S or R, and we treat each such
possibility in a case analysis.

We use the term repair position to refer to the place-
ment of the new beacon (point) in the previous lemma.

4 Upper bound

We will prove the theorem by induction on the size of
the dual tree of the vertical decomposition. We first root
the dual tree at an arbitrary leaf. At each step, we will
examine the structure of the vertical decomposition at
and around a deepest node in the rooted tree. We will
place some beacons and remove some rectangles/dual
tree nodes; we will place at most two beacons per three
rectangles removed. We stop and consider basis cases
when the depth of the dual tree reaches 0, 1, or 2.

We start with a tree T0 that is the entire dual tree
of the polygon P (which we also denote by P0). After
step k, we will have a tree Tk which is a subgraph of T0,
with the rectangles corresponding to its vertices forming
a single polygon Pk which is a subpolygon of P . We call
each induction step from Tk and Pk to Tk+1 and Pk+1

a reduction.
Since the case analysis that will follow gets tedious,

we first establish easily-verified sufficient (but not nec-
essary) conditions to form an beacon routing set by in-
ductively cutting off a region C from Pk to yield Pk+1.
We use these conditions for most but not all of our cases.

Lemma 4 If the following conditions hold, then Bk =
Bk+1 ∪B′ is a routing beacon set for Pk.

1. The beacons given (B′) cover the region C = Pk \
Pk+1, using local paths.

2. B′ induces a strongly connected graph in the graph
of the local attraction relation.

3. At least one element b′ of B′ is in Pk+1.

4. If the base rectangle is taller than the detachment
rectangle, then b′ is in repair position.

Assume we are after step k, having tree Tk and poly-
gon Pk remaining. If Tk is of height 1 or 2, we stop.
Otherwise, let L be a deepest node in the dual tree, let
A1 be its direct ancestor (parent), and in general let
Aj be the direct ancestor of Aj−1. The grandparent A2

of L exists. In general, we will try to reduce the size

of Tk by removing the dual tree nodes of A1’s subtree,
cutting the polygon between A1 and A2. In some cases,
we must consider alternatives to this cutting location.

The figures used in the case analysis obey the fol-
lowing visual conventions: Parts of the figure boundary
known to be boundary of Pk are shown with thick black
lines. Parts without may or may not be boundary of
Pk. Beacon placements are shown as green dots, and
rectangles removed in the reduction are shaded.

We assume without loss of generality (by symmetry)
that A2 is an upper right neighbor of A1. With respect
to A1, the neighbor A2 is either tall, solo, or paired. We
first examine the case when A2 is taller than A1.

In this paper, we will only outline this case, giving
just one proof; we will furthermore completely omit the
three sections for the other cases.

4.1 Case 1: A2 is a tall neighbor of A1

In this case, A1 must have at least one child (the deepest
leaf L) and can have at most two children. All of A1’s
children are left children.

Lemma 5 If A2 is a tall upper right neighbor of A1,
and A1 has two children, then Pk can be reduced by 3
rectangles at a cost of 2 beacons.

Figure 6: A2 is a tall neighbor of A1. (a) A1 has two
children L1 and L2. (b) A1 has a solo lower-left child.
(c) A1 has a tall lower-left child.

Proof. The two children L1 and L2 must be left paired
children, as shown in Figure 6a.

In this situation, we remove 3 rectangles (L1, L2, and
A1) at a cost of placing 2 beacons (b1 and b2). Now
we show that, if Pk+1 has a set Bk+1 of beacons that
allows a routing, then Pk has a set of beacons Bk =
Bk+1 ∪ {b1, b2} that allows a routing.

Let C = Pk \ Pk+1, i.e. C is the union of the rect-
angles L1, L2, and A1. Also let B = {b1, b2}. Now
the conditions of Lemma 4 are seen to be satisfied: b1

covers the cut-off rectangles L1, L2, and A1 (by Lemma
2); b1 and b2 are visible, so B′ is strongly connected
in the attraction graph, and b2 is in repair position in
Pk+1. �
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Lemma 6 If A2 is a tall upper right neighbor of A1,
and A1 has one lower-left child, then Pk can be reduced
by 2 rectangles at a cost of 1 beacon (see Figure 6b and
6c).

Lemma 7 If A2 is a tall upper right neighbor of A1,
and A1 has one short upper-left child, then Pk can be
reduced by 2 rectangles at a cost of 1 beacon (see Figure
7a).

Figure 7: A2 is a tall neighbor of A1. (a) A1 has a short
upper-left child L1. (b) A1 has a tall upper-left child
L1; the point b1 is not attracted by the point in L1.

Figure 7b shows the situation when L1 is a tall upper-
left child of A1. Here a beacon at b1 would not suffice,
as any point of L1 below b1 would not attract b1. The
technique we use to handle this case involves analyzing
A2 and all of its descendants.

4.2 The induction basis

The basis cases are when there are only one to three
levels in the dual tree. If it is one level, the polygon is
a rectangle. If it is two levels, the polygon is a 6-vertex
“L” shape. In both of these cases, every point in the
polygon attracts every other point in the polygon (see
Lemma 1). Thus, there are no intermediate beacons
required and the smallest beacon routing set is of size
0. We omit the analysis for a three-level dual tree.

4.3 The result

Theorem 8 Any orthogonal polygon of n vertices has
a local beacon routing set of at most

⌊
n−4

3

⌋
beacons.

Proof. Let r be the number of rectangles in the vertical
decomposition of the polygon. Since n = 2r+2, the floor

in the theorem is equivalent to
⌊

(2r+2)−4
3

⌋
=
⌊

2r−2
3

⌋
.

We proceed to prove that there is a beacon set no larger
than this, by induction on r.

Our basis has r = 1 to 6, with each case having a local
beacon routing set of 0, 1, or 2 beacons, as discussed
above. The number of beacons in each of the cases
satisfies b ≤

⌊
2r−2

3

⌋
.

For our inductive step, assume r ≥ 3 and we have
rooted the dual tree at a leaf, so the depth of the dual

tree is at least 2. One of the lemmas from the case
analysis will apply, giving a reduction of 2 rectangles
for 1 beacon, 3 rectangles for 2 beacons, 4 rectangles
for 2 beacons, or 5 rectangles for 3 beacons. In each of
these cases, we show that the local beacon routing set
has at most

⌊
n−4

3

⌋
beacons.

Take the first case: here we reduce P by 2 rectan-
gles to construct a P ′ with r′ = r − 2 rectangles. By
induction P ′ has a local beacon routing set of at most⌊

2r′−2
3

⌋
=
⌊

2(r−2)−2
3

⌋
=
⌊

2r−6
3

⌋
beacons. To construct

the beacon set for P , we add 1 beacon to that, and so we
have at most

⌊
2r−6

3

⌋
+ 1 =

⌊
2r−3

3

⌋
≤
⌊

2r−2
3

⌋
beacons.

The other cases proceed in an identical fashion, and
the theorem follows. �

5 Lower bound

Here we establish that, for infinitely many n, there are

orthogonal polygons that require at least
⌊

(n−4)
3

⌋
bea-

cons in any routing set. The examples are geometri-
cally simple: each is an orthogonal spiral polygon with a
“corridor width” of 1. Bae, Shin, and Vigneron have in-
dependently developed similar orthogonal lower-bound
examples for the beacon-based art gallery problem [1].

Our polygons will spiral outwards clockwise as one
moves through the reflex chain when walking counter-
clockwise around the polygon (i.e. left hand on interior).
Call the reflex vertices of the polygon r1, r2, . . . r(n−2)/2

in this counterclockwise order, and let r0 and rn/2 de-
note the convex vertices adjacent to r1 and r(n−2)/2,
respectively. Let ck be the convex vertex just outside
of (and closest to) rk (refer to Figure 8). Let ek be the
edge from rk to rk + 1, and lk be the length of ek.

Now let Ck be the “corner” 1 by 1 square in P with
vertices rk and ck, and Hk be the “hallway” rectangle
(with dimensions 1 by lk) between Ck−1 and Ck.

If min
k is the midpoint of rk−1 and rk, and mout

k is the
midpoint of ck−1 and ck, we can partition the “hallway”
Hk into two halves H+

k and H−k by splitting with its

bisector min
k mout

k . Let H+
k be the half adjoining Ck,

and let that half (and not H−k ) contain the points on

the segment min
k mout

k .

Figure 8: Notation for an orthogonal spiral.
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We will construct polygons for n = 6r+ 4 for some r;
these polygons are specified simply by giving the lengths
l1, l2, . . . l3r+1 of the 3r + 1 “hallway” rectangles. Pro-
vided we have lj > lj−2 + 2 for all 3 ≤ j ≤ 3r, the
polygon will spiral outward and not self-intersect.

We specify r sections S1, S2, . . . Sr of the
polygon, by letting Si be the union of
H+

3i−2, C3i−2, H3i−1, C3i−1, H3i, C3i, and H−3i+1 (see
Figure 9). Note that no point of P is contained in more
than one section, and there are points at either end of
the spiral (in H−1 and H+

3r+1) that are in no section.
Now consider a set of beacons B that can route in such

a polygon P . We claim that |B| ≥ 2r. If this were not
the case, then by the pigeonhole principle some section
Si would contain fewer than two beacons.

Figure 9: A section of an orthogonal spiral.

In the full paper, we proceed to show that if Si con-
tains only one beacon, then this beacon must lie in
C3i−1. In order to route from points “before” the sec-
tion to points “after” it, and vice-versa, the beacon must
lie in the shaded region in Figure 10, above the line
r3i−1m

out
3i+1 and below the line r3i−1m

out
3i−2 (directions

relative to the figure). By making l3i (the vertical corri-
dor on the right) long enough, we can cross these lines,
leaving the reflex vertex r3i−1 as the only possibility for
the beacon location.

Showing that this reflex vertex cannot properly be
attracted to points both before and after section Si is
a purely definitional problem. A robot on a reflex ver-
tex is a peculiar thing. There are many possible ways to
define what happens when one pulls it towards the exte-
rior: the robot path is indeterminate, the robot follows
the wall to the left when it faces the direction of pull,
the robot follows the horizontal wall, etc. The model of
attraction must address this question somehow.

However, for reasonable, simple models, including
those above, such a point r3i−1 cannot be success-
fully attracted both to points before and points after
Si. Thus, in these models, we have a contradiction;

Figure 10: The beacon in Si must lie in the shaded area.

each section must contain at least two beacons. Hence
|B| ≥ 2r. Since n = 6r + 4, 2r = n−4

3 , and we have:

Theorem 9 For all n ≡ 4 (mod 6), there are orthog-
onal spiral polygons requiring at least n−4

3 beacons in a
routing beacon set.

The constraint on the length of the spiral corridors in
Section 5 works out to:

l3i+1 >
4l3i(l3i−1 + 1)

l3i−2
,

whose solution is lk ∈ 2Θ(k2). This growth rate is quite
high, leaving us unable to provide figures illustrating
these polygons. It would be interesting to try to develop
alternative examples that do not have exponentially-
growing coordinates.
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Guarding Orthogonal Terrains

Stephane Durocher∗ Pak Ching Li∗ Saeed Mehrabi∗

Abstract

A 1.5-dimensional terrain T with n vertices is an x-
monotone polygonal chain in the plane. A point guard
p on T guards a point q of T if the line segment connect-
ing p to q lies on or above T ; p is a vertex guard if it is
a vertex of T . In the Optimal Terrain Guarding (OTG)
problem on T , the objective is to guard the vertices of
T by the minimum number of vertex guards. King and
Krohn [9] showed that the OTG problem is NP-hard on
arbitrary terrains, and Gibson et al. [6] gave a PTAS for
this problem. In this paper, we introduce directed visi-
bility in which the visibility is directed only at adjacent
vertices. We give an O(n)-time algorithm that solves
the OTG problem exactly on orthogonal terrains under
directed visibility.

1 Introduction

A 1.5-dimensional terrain T is an x-monotone polyg-
onal chain in the plane, where V (T ) = {v1, . . . , vn} is
the set of vertices of T ordered from left to right, and
E(T ) = {e1 = (v1, v2), . . . , en−1 = (vn−1, vn)} is the set
of edges of T induced by the vertex set V (T ). Terrain
T is called an orthogonal terrain if each edge e ∈ E(T )
is either horizontal or vertical. Let p be a point guard
on T ; p is called a vertex guard if p ∈ V (T ). A point q
on T is seen/guarded by p (or, p sees/guards q) if and
only if every point of the line segment pq lies either on
or above T .

Given a (not necessarily orthogonal) terrain T , two
common types of guarding problems are defined on
T . In the continuous terrain guarding problem, the
objective is to find a minimum-cardinality set S of
points on T that guards T ; that is, for every point
p ∈ T , either p is in S or p is guarded by at least one
point in S. In the discrete terrain guarding problem,
on the other hand, two sets P and G of points on T are
given along the terrain T as input and the objective is
to find a subset G′ ⊆ G of minimum cardinality such
that G′ guards the points in P .

Related Work. The terrain guarding problem belongs
to the well-known family of art gallery problems. The

∗Department of Computer Science, University of
Manitoba. Winnipeg, Canada. {durocher, ben.li,

mehrabi}@cs.umanitoba.ca

objective of the art gallery problem is to guard the in-
terior of a polygon using the minimum number of point
guards. The problem was first introduced by Klee in
1973 [12] and Chvátal [2] was the first to answer Klee’s
art gallery question by giving an upper bound proving
that bn/3c point guards are always sufficient and some-
times necessary to guard a simple polygon with n ver-
tices. The orthogonal art gallery problem was first stud-
ied by Kahn et al. [7] who proved that bn/4c guards are
always sufficient and sometimes necessary to guard the
interior of a simple orthogonal polygon with n vertices.
In terms of the complexity of the art gallery problem,
Lee and Lin [11] showed that the art gallery problem is
NP-hard on simple polygons. Moreover, the problem is
also NP-hard on simple orthogonal polygons [13] and it
remains NP-hard even for monotone polygons [10]. Ei-
denbenz et al. [3] proved that the art gallery problem is
APX-hard on simple polygons. They also showed that
if the input polygon is allowed to have holes, then the
problem cannot be approximated by a polynomial-time
algorithm with factor ((1 − ε)/12) lnn for any ε > 0,
where n is the number of the vertices of the polygon.

Ben-Moshe et al. [1] gave the first constant-factor
approximation algorithm for the terrain guarding
problem and left the complexity of the problem open.
King and Krohn [9] showed that both continuous and
discrete versions of the terrain guarding problem are
NP-hard on arbitrary terrains. A 4-approximation
algorithm for the terrain guarding problem was given
by Elbassioni et al. [4], and Katz and Roisman [8]
gave a 2-approximation algorithm for the OTG prob-
lem on orthogonal terrains. Gibson et al. [6] gave a
polynomial-time approximation scheme (PTAS) for the
discrete version of the terrain guarding problem, and
a PTAS for the continuous version of the problem was
recently given by Friedrichs et al. [5]. To the best of
our knowledge, however, the complexity of the OTG
problem on orthogonal terrains remains open. We note
that the hardness result of King and Krohn [9] does not
apply to the OTG problem on orthogonal terrains due
to a number of essential differences between arbitrary
and orthogonal terrains (e.g., see Lemma 4).

Problem Definition and Our Result. In this paper,
we consider the discrete terrain guarding problem on an
orthogonal terrain T under directed visibility such that
P = G = V (T ); let n = |V (T )|. Directed visibility is
defined as follows.
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p
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Figure 1: An orthogonal terrain T ; throughout the pa-
per, we assume that the leftmost and rightmost edges
of T are two horizontal rays starting from v1 and vn,
respectively. (a) An illustration of directed visibility:
neither vertex y nor z can see vertex x under directed
visibility, but they can see each other. The vertex x can
see vertex y, but it cannot see vertex z because the line
segment xz is horizontal. (b) The vertices q and r are
reflex while the vertices p and s are convex. Moreover,
q and r are both right reflex, p is left convex and s is
right convex; vertex y is a left reflex vertex.

Definition 1 (Directed Visibility). Let u be a vertex
of T . If u is a reflex vertex, then u sees a vertex v of T if
and only if every point in the interior of the line segment
uv lies strictly above T . If u is a convex vertex, then u
sees a vertex v of T if and only if uv is a non-horizontal
line segment that lies on or above T .

It is possible, under directed visibility, that a vertex u
of T sees a vertex v, but vertex v cannot see u; see
Figure 1(a) for an example. Therefore, we consider the
following problem:

Definition 2 (The Directed Terrain Guarding
(DTG) Problem on Orthogonal Terrains). Given
an orthogonal terrain T , compute a subset S ⊆ V (T ) of
minimum cardinality that guards the vertices of T under
directed visibility. That is, for every vertex u ∈ V (T ),
either u ∈ S or u is guarded by at least one other vertex
in S under directed visibility.

We give an O(n)-time algorithm for the DTG problem
on orthogonal terrains under directed visibility. To this
end, we first reduce the DTG problem to two subprob-
lems such that an exact solution for the DTG problem
reduces to the union of exact solutions of the two sub-
problems. We then give an O(n)-time greedy algorithm
for solving each of the subproblems. To the best of our
knowledge, this is the first exact algorithm for a non-
trivial instance of the art gallery problem on terrains
and partially answers a question posed by Ben-Moshe
et al. [1] for orthogonal terrains.

1.1 Paper Organization

The paper is organized as follows. Section 2 presents
preliminaries and some definitions. In Section 3, we
give a characterization for an exact solution of the DTG

problem: we define two subproblems and show that
an exact solution for the DTG problem reduces to the
union of the exact solutions of the subproblems. In Sec-
tion 4, we show how to solve each subproblem in O(n)
time by a simple greedy algorithm. We conclude the
paper in Section 5.

2 Preliminaries and Definitions

We denote the x- and y-coordinates of a point p on
an orthogonal terrain T by x(p) and y(p), respectively.
We use terms “terrain” and “guard” to refer to an or-
thogonal terrain and a vertex guard, respectively, unless
otherwise stated. Moreover, we simply use “guarding”
to mean “guarding under directed visibility” unless oth-
erwise stated.

A vertex u of T is convex if the angle formed by the
edges incident to u above T is π/2 degrees, otherwise u is
reflex. We partition the vertices of T into 4 equivalences
classes right or left endpoints of a horizontal edge of
T , and whether the vertex is reflex or convex. We use
VLC(T ), VRC(T ), VLR(T ) and VRR(T ) to respectively
denote the left convex, right convex, left reflex, and right
reflex subsets of the vertices of T . See Figure 1(b) for
an example of these definitions.

For consistency, we assume that the leftmost and
rightmost edges of T are two horizontal rays starting
from v1 and vn, respectively; see Figure 1 for an illus-
tration. For a reflex vertex u of T , we denote the convex
vertex directly below u by B(u). We say that a subset
M of vertices of T guards a subset M ′ of vertices of T ,
where M ∩M ′ = ∅, if every vertex in M ′ is guarded
by at least one vertex in M . We first describe some
properties of orthogonal terrains.

Observation 1 Let u and v be two reflex vertices of
T . If vertex u sees B(v), then u must also see v; see
Figure 2 for an illustration.

Let u and v be two convex vertices of T . If y(u) =
y(v), then clearly u and v cannot see each other un-
der directed visibility because the line segment uv is
horizontal. If y(u) 6= y(v), then depending on the x-
coordinates of u and v the line segment uv will pass
through the region below the horizontal edge incident
to either u or v and, therefore, u and v cannot see each
other. This leads to the following lemma.

Lemma 1 No two convex vertices of T can see each
other under directed visibility.

Observation 2 Let u be a reflex vertex of a terrain T .
If u is right reflex and sees a right convex vertex v of
T , then x(u) < x(v) and y(u) > y(v). Similarly, if u
is left reflex and sees a left convex vertex v of T , then
x(u) > x(v) and y(u) > y(v).
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u

B(v)

v

Figure 2: If a reflex vertex u sees B(v), for some reflex
vertex v, then u must also see vertex v itself.

Since directed visibility imposes a constraint relative
to the standard visibility, the visibility graph of the ver-
tices of T under directed visibility is a subgraph of that
of the vertices of T under standard visibility. Therefore,
the following property, called the order claim, still holds
under directed visibility:

Lemma 2 (Ben-Moshe et al. [1]) Let p, q, r and s
be four vertices of a terrain T such that x(p) < x(q) <
x(r) < x(s). If p sees r and q sees s, then p sees s.

Lemma 3 Let u be a reflex vertex of a terrain T . If u
is right reflex (resp., left reflex), then u cannot see any
left convex (resp., right convex) vertex of T .

Proof. We prove the lemma for when u is right reflex;
the other case is proved by a symmetric argument. Let
v be a left convex vertex of T . If x(v) = x(u), then
v = B(u) and, therefore, u cannot see v under directed
visibility. If x(v) 6= x(u), then there are three cases.

• If y(v) = y(u), then v is the adjacent vertex to
the left of u and so u cannot see v under directed
visibility.

• If y(v) > y(u), then the line segment uv passes
through the region below the horizontal edge inci-
dent to v and, therefore, vertex u cannot see v.

• If y(v) < y(u), then there are two cases: (i) if
x(v) < x(u), then the line segment uv passes
through the region below the horizontal edge in-
cident to u and, therefore, vertex u cannot see v.
(ii) If x(v) > x(u), then the line segment uv passes
through the region to the left of the vertical edge
incident to v and, therefore, vertex u cannot see v.

The three cases above complete the proof of the
lemma. �

In an arbitrary terrain, it is possible that a reflex
vertex can guard both a left and a right convex vertex.
For orthogonal terrains, however, this is not the case.
This property is stated in the following lemma.

Lemma 4 Let u be a right convex vertex and v be a
left convex vertex of a terrain T . Then, there is no
reflex vertex of T that sees both u and v under directed
visibility.

Proof. By Lemma 3, (i) no left reflex vertex of T can
see u, and (ii) no right reflex vertex of T can see v.
Therefore, no reflex vertex of T can see both u and v.
This completes the proof of the lemma. �

3 An Exact Algorithm for the DTG Problem

In this section, we present our exact O(n)-time algo-
rithm for the DTG problem on orthogonal terrains. Let
T be an orthogonal terrain with n vertices. To solve
the DTG problem on T , we first show that the DTG
problem on T can be reduced to two subproblems such
that an exact solution for the DTG problem is equiv-
alent to the union of the exact solutions for the two
subproblems. The subproblems are defined as follows.

Definition 3 (The Left-Convex Guarding
(LCG(M)) Problem). Given a set M ⊆ VLC(T ),
the objective of the LCG(M) problem is to compute
a minimum-cardinality set M ′ ⊆ V (T ) such that for
every vertex u ∈ M , either u ∈ M ′ or u is guarded by
at least one vertex in M ′.

Definition 4 (The Right-Convex Guarding
(RCG(M)) Problem). Given a set M ⊆ VRC(T ),
the objective of the RCG(M) is to compute a minimum-
cardinality set M ′ ⊆ V (T ) such that for every vertex
u ∈ M , either u ∈ M ′ or u is guarded by at least one
vertex in M ′.

To compute an exact solution for the DTG problem
on T , we first show that we can restrict our attention to
solutions that are in standard form. A feasible solution
S to the DTG problem on T is in standard form if and
only if every reflex vertex in S sees at least one convex
vertex of T .

Lemma 5 For any orthogonal terrain T , there exists
an exact solution S for the DTG problem on T that is
in standard form.

Proof. Take any exact solution S0 for the DTG prob-
lem on T . We construct a feasible solution S from S0

such that |S| ≤ |S0| and S is in standard form. To
this end, for each reflex vertex u ∈ S0 that does not see
any convex vertex of T , replace u with B(u) (i.e., the
convex vertex directly below u). Let S be the result-
ing set. Clearly, |S| ≤ |S0| and every reflex vertex in
S sees at least one convex vertex of T . We now show
that S is a feasible solution for the DTG problem on
T . Consider a reflex vertex u ∈ S0 that was replaced
by B(u) in S and let V is(u) be the set of vertices of
T that are seen by u. We next prove that every vertex
in V is(u) is still guarded by at least one vertex in S.
First, note that every vertex in V is(u) is a reflex vertex.
Let v ∈ V is(u) and consider B(v). If B(v) ∈ S, then v
is guarded by at least one vertex in S (i.e., the vertex
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B(v)). If B(v) /∈ S, then there must be a reflex vertex
w ∈ S0 that guards B(v) because no two convex vertices
of T can guard each other by Lemma 1. We note that
w ∈ S because w sees at least one convex vertex of T
and so we have not replaced it with B(w) in S. By Ob-
servation 1, vertex w ∈ S guards v and, therefore, S is a
feasible solution. Since |S| ≤ |S0|, the set S is an exact
solution for the DTG problem on T that is in standard
form. This completes the proof of the lemma. �

The following lemma, whose proof is given in Ap-
pendix A due to space constraints, states a necessary
and sufficient condition for solving the DTG problem
on T .

Lemma 6 Let S be a feasible solution for the DTG
problem on T . The set S is an exact solution if and
only if there exists a partition {SL, SR} of S such that
(i) the set SL is an exact solution for the LCG(VLC(T ))
problem on T , and (ii) the set SR is an exact solution
for the RCG(VRC(T )) problem on T .

By Lemma 6, we have the following theorem.

Theorem 7 To solve the DTG problem on T , it
is sufficient to solve the LCG(VLC(T )) and the
RCG(VRC(T )) problems on T .

4 Solving the LCG(VLC(T )) Problem

In this section, we present an O(n)-time exact algorithm
for the LCG(VLC(T )) problem on T ; an exact algorithm
for the RCG(VRC(T )) problem can be derived analo-
gously. First, by Lemma 1 (no convex vertex of T can
see one other convex vertex of T ) and Lemma 3 (no left
reflex vertex of T can see a right convex vertex of T ),
we have the following result.

Lemma 8 If M is a feasible solution for the
LCG(VLC(T )) problem on T , then M ⊆ {VLC(T ) ∪
VLR(T )}.

Next, we show that we can restrict our attention to
solutions that are in a standard form. A feasible solution
M for the LCG(VLC(T )) problem on T is in standard
form if and only if a left convex vertex u is in M if and
only if no reflex vertex of T can see u.

Lemma 9 For any orthogonal terrain T , there exists
an exact solution M for the LCG(VLC(T )) problem on
T that is in standard form.

Proof. Take any exact solution M0 for the
LCG(VLC(T )) problem on T . We construct a fea-
sible solution M from M0 such that |M | ≤ |M0| and
M is in standard form. For every left convex vertex
u ∈ M0 that is seen by at least one left reflex vertex
v of T , replace u with v; let M be the resulting set.

Clearly, |M | ≤ |M0|. Moreover, M is a feasible solution
for the LCG(VLC(T )) problem on T because (i) the
vertex u is now guarded by v, and (ii) the vertex u,
which is left convex, cannot see any other left convex
vertex of T . Therefore, every left convex vertex of T
is still guarded by at least one vertex in M . Since
|M | ≤ |M0| and no left convex vertex of T that is in M
is seen by a left reflex vertex of T , we conclude that M
is an exact solution for the LCG(VLC(T )) problem on
T that is in standard form. �

4.1 A Characterization

To solve the LCG(VLC(T )) problem on T , we
give a characterization for an exact solution of the
LCG(VLC(T )) problem on T . The following lemma,
whose proof is given in Appendix B due to space con-
straints, is similar to the one given in Lemma 6 for the
DTG problem.

Lemma 10 Let M be a feasible solution for the
LCG(VLC(T )) problem on T . The set M is an exact so-
lution if and only if there exists a partition {A,B} of M
such that (i) u ∈ A if and only if u is a left convex vertex
and no reflex vertex of T can see u, and (ii) B = M \A
is a minimum-cardinality subset of VLR(T ) that guards
VLC(T ) \A.

A similar result can be derived for an exact solution
of the RCG(VRC(T )) problem analogously.

Lemma 11 Let M be a feasible solution for the
RCG(VRC(T )) problem on T . The set M is an exact
solution if and only if there exists a partition {P,Q}
of M such that (i) u ∈ P if and only if u is a right
convex vertex and no reflex vertex of T can see u, and
(ii) Q = M \ P is a minimum-cardinality subset of
VRR(T ) that guards VRC(T ) \ P .

By Lemma 10 and Lemma 11, we have the following
theorem.

Theorem 12 To solve the LCG(VLC(T )) problem on
T , it is sufficient to first find the subset A of VLC(T ),
where u ∈ A if and only if no reflex vertex of T can see
u, and then compute a minimum-cardinality subset B
of VLR(T ) that guards VLC(T ) \ A. Similarly, to solve
the RCG(VRC(T )) problem on T , it is sufficient to first
find the subset P of VRC(T ), where u ∈ P if and only
if no reflex vertex of T can see u, and then compute
a minimum-cardinality subset Q of VRR(T ) that guards
VRC(T ) \ P .

4.2 A Greedy Algorithm

In this section, we show how to compute an exact so-
lution for the LCG(VLC(T )) problem on T ; an exact
solution for the RCG(VRC(T )) problem on T can be
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Figure 3: An illustration in support for the proof of
Lemma 13.

computed analogously. By Theorem 12, we first com-
pute the set A, where u ∈ A if and only if u is a left
convex vertex and it is not seen by any reflex vertex
of T . In Section 4.3, we give a linear-time algorithm
for computing R(u) for all the left convex vertices of u,
where R(u) is the rightmost left reflex vertex of T that
sees u (see Lemma 14). Therefore, we can use that al-
gorithm to determine whether a left convex vertex u of
T is seen by any reflex vertex of T at all and, therefore,
the set A can be computed in O(n) time overall. Now,
let C = VLC(T ) \A. In the following, we give an O(n)-
time greedy algorithm for the problem of guarding C
with the minimum-cardinality subset B of VLR(T ).

For each left convex vertex u ∈ C, let R(u) be the
righmost left reflex vertex of T (i.e., the rightmost ver-
tex in VLR(T )) that sees u. Consider the left convex
vertices of C from right to left: for each left convex ver-
tex u in order, if u is not yet guarded by a reflex vertex
in B, then we add R(u) into B. Clearly, the set B is a
feasible solution for guarding the vertices in C. Let B′

be the set of convex vertices that force the algorithm to
add a new guard into B. Clearly, |B′| = |B|. We now
show that no left reflex vertex of T can see two vertices
in B′, which proves that the set B is an exact solution.
Suppose for a contradiction that there exists a left reflex
vertex v that sees two vertices wi and wj in B′. Without
loss of generality, assume that x(wi) > x(wj); that is,
vertex wi is guarded before vertex wj in the ordering.
Since v sees wi, we must have that x(R(wi)) ≥ x(v).
Note that x(R(wi)) 6= x(v) because otherwise we would
have not added a new guard for wj . Therefore, we have
the ordering x(wj) < x(wi) < x(v) < x(R(wi)) such
that wj sees v and wi sees R(wi). But, by Lemma 2,
this means that wj is seen by R(wi) which is a contra-
diction. This proves that no left reflex vertex of T can
see two convex vertices in B′ and so the set B is an
exact solution for guarding the vertices in C.

4.3 Algorithmic Details

In this section, we show how to implement the algo-
rithm in time linear in n, the number of vertices of T .
Our implementation of the algorithm uses the following
result.

Lemma 13 Let u and v be two left convex vertices of T

such that x(v) < x(u). Then, the line segments uR(u)
and vR(v) do not intersect at an interior point.

Proof. Suppose for a contradiction that the line seg-
ments uR(u) and vR(v) intersect at an interior point
p. Since x(v) < x(u), we must have that x(R(v)) <
x(R(u)). Therefore, we have the ordering x(v) < x(u) <
x(R(v)) < x(R(u)); see Figure 3 for an example. By
Lemma 2, the vertex v must see vertex R(u), which is a
contradiction to the fact that R(v) is the righmost left
reflex vertex of T that sees v. This completes the proof
of the lemma. �

Consider the left convex vertices of T from right to
left and let u and v be two left convex vertices such
that x(v) < x(u). By Lemma 13, vertex R(v) cannot lie
between the vertices u and R(u); that is, vertex R(v)
is either R(u) or a vertex to the right of R(u), or it is
a vertex to the left of vertex u. This property leads
us to a linear-time algorithm for computing R(u) for
all the left convex vertices u in C as follows. Consider
the vertices in {C ∪VLR(T )} from right to left in order.
Note that the first vertex must be a left reflex vertex
r. Moreover, we assume that the second vertex is also
left reflex; otherwise, we set R(u) to r for every visited
left convex vertex until we reach to a left reflex vertex
s; we push r and s into a stack S in the order they
have been visited. In the following, let s and r be the
vertices on top of the stack S. Moreover, let t be the
next visited vertex and let α be the angle formed by the
line segments ts and sr that faces above T :

• if t is left reflex, then we pop the two vertices s
and r from S. If α > π, then we push the three
vertices r, s and t into the stack S; otherwise, we
ignore vertex s and push only vertex r into S. Now,
we repeat the same procedure with the current two
top vertices s′ and r′ of S until α becomes greater
than π in which case we push the three vertices r′,
s′ and t into S.

• if t is left convex, then we pop the two vertices s and
r from S. If α > π, then we set R(t) to s and push
vertices r and s back into the stack S; otherwise, we
ignore vertex s and push only vertex r into S. Now,
we repeat the same procedure with the current two
top vertices s′ and r′ of S until α becomes greater
than π in which case we set R(t) to s′ and push r′

and s′ into the stack S.

See Figure 4 for an example of the algorithm. Let u
be a left reflex vertex of T . If α > π, then we process
u in O(1) time and move to the next vertex. If α ≤ π,
then one vertex is removed from the stack S and we then
repeat the same procedure which may consist of remov-
ing further vertices from S. Therefore, at each left reflex
vertex u, either we perform an O(1)-time operation or
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Figure 4: An example illustrating the computation of
R(v), R(w) and R(x). After processing vertex u, the
status of the stack S from top to bottom is: [u, s, r].
When processing vertex v, vertex u is removed from S

since α < π for the line segments vu and us; then R(v)
is set to s. Vertex R(w) is also set to s because α > π
for the line segments ws and sr. Finally, vertex s is
removed from S and R(x) is set to r. The final status
of S is: [r].

we remove a set Su of vertices from S permanently. Note
that by Lemma 13, the vertices in Su will not be pushed
back into S in the future. We can show using an anal-
ogous argument that at each left convex vertex, either
we perform an O(1)-time operation or we remove a set
of vertices from S permanently.

Although this procedure was described for computing
R(u) for all the left convex vertices in C, in fact it can
be used to compute R(u) for all the left convex vertices
of T in O(n) time. This leads us to the following lemma:

Lemma 14 Given an orthogonal terrain T , the over-
all procedure of computing R(u) for all the left convex
vertices u of T can be completed in O(n) time, where
|V (T )|.

By Lemma 14, we have the following theorem.

Theorem 15 The LCG(VLC(T )) problem on T can be
solved exactly in O(n) time, where n = |V (T )|.

We note that the RCG(VRC(T )) problem on T can
be solved analogously in O(n) time. Let S1 and S2

be the exact solutions for the LCG(VLC(T )) and the
RCG(VRC(T )) problems on T , respectively. By Theo-
rem 7, the set S = {S1 ∪ S2} is an exact solution for
the DTG problem on T . Therefore, by Theorem 15, we
have the main result of this paper.

Theorem 16 There exists an O(n)-time exact algo-
rithm for the DTG problem on any orthogonal terrain
T with n vertices.

5 Conclusion

In this paper, we considered the problem of guarding the
vertices of an orthogonal terrain T with the minimum
number of vertex guards under directed visibility (i.e.,
the DTG problem). We showed that the DTG problem

on T is linear-time tractable by first reducing the prob-
lem to two subproblems (i.e., the LCG(VLC(T )) and
RCG(VRC(T )) problems) and then solving each sub-
problem by a greedy algorithm that runs in O(n) time,
where n is the number of the vertices of T . Our al-
gorithm assumes the directed visibility and it does not
apply to the DTG problem under standard visibility.
The complexity of the problem remains open without
the directed visibility constraint.
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Appendix A: Proof of Lemma 6

Proof. (⇒) Let S be an exact solution for the DTG problem
on T ; by Lemma 5, we assume that S is in standard form.
Let SL ⊆ S such that u ∈ SL if and only if u is either a left
convex vertex or it is a left reflex vertex of T . Similarly, let
SR ⊆ S such that v ∈ SR if and only if v either is a right
convex vertex or it is a right reflex vertex of T that sees at
least one right convex vertex. Since S is in standard form,
{SL, SR} is a partition of S.

We first prove that SL is a feasible solution for the
LCG(VLC(T )) problem on T . Let a be a left convex ver-
tex of T . If a ∈ S, then a ∈ SL. If a /∈ S, then by Lemma 3
and the fact that no convex vertex can see another convex
vertex (see Lemma 1), we conclude that there must be a left
reflex vertex b ∈ S that guards a and, therefore, b ∈ SL.
This means that for every left convex vertex a of T , we have
either a ∈ SL or a is guarded by at least one vertex in SL.
Therefore, SL is a feasible solution for the LCG(VLC(T ))
problem on T . By an analogous argument, we can show
that SR is a feasible solution for the RCG(VRC(T )) problem
on T .

We next prove that SL is an exact solution for the
LCG(VLC(T )) problem on T . Suppose for a contradiction
that there exists a feasible solution S′L for the LCG(VLC(T ))
problem on T such that |S′L| < |SL|. In the following, we
prove that the set {S′L ∪ SR} is a feasible solution for the
DTG problem on T , which is a contradiction to the fact that
S is an exact solution for the DTG problem on T because
|S′L∪SR| ≤ |S′L|+ |SR| < |SL|+ |SR| = |S| (the last equality
follows from the fact that {SL, SR} is a partition of S). Let
u be a vertex of T . If u is left convex, then u is either in
S′L or it is guarded by a left reflex vertex in S′L because S′L
is a feasible solution for the LCG(VLC(T )) problem on T .
Similarly, if u is a right convex vertex, then u is either in SR

or it is guarded by a right reflex vertex in SR because SR

is a feasible solution for the RCG(VRC(T )) problem on T .
Now, suppose that u is a reflex vertex that is not in S′L∪SR.
Then, consider the vertex B(u). If B(u) ∈ {S′L∪SR}, then u
is guarded by at least one vertex in S′L ∪SR (i.e., the vertex
B(u)). If B(u) /∈ {S′L ∪ SR}, then it must be guarded by a
reflex vertex w ∈ {S′L ∪ SR} because no two convex vertices
of T can see each other by Lemma 1. By Observation 1,
vertex w must also guard the vertex u. This proves that
every vertex of T that is not in S′L ∪ SR is guarded by at
least one vertex in S′L ∪ SR and, therefore, S′L ∪ SR is a fea-
sible solution for the DTG problem on T . By an analogous
argument, we can show that SR is an exact solution for the
RCG(VRC(T )) problem on T .

(⇐) Suppose that there exists a partition {SL, SR} of S
such that SL is an exact solution for the LCG(VLC(T )) prob-
lem on T and SR is an exact solution for the RCG(VRC(T ))
problem on T . We now prove that S = {SL ∪ SR} is an
exact solution for the DTG problem on T . Suppose for a
contradiction that there exists a feasible solution S′ for the
DTG problem on T such that |S′| < |S|; by Lemma 5, we
assume that S′ is in standard form. Let X be a subset of
S′ such that u ∈ X if and only if u is either a left convex
vertex or it is a left reflex vertex of T . Similarly, let Y be
a subset of S′ such that v ∈ Y if and only if v is either a
right convex vertex or it is a right reflex vertex of T . Since

S′ is in standard form, {X,Y } is a partition of S′. Since
|S′| < |S|, we must have |X| < |SL| or |Y | < |SR|. Without
loss of generality, assume that |X| < |SL|. In the following,
we show that X is a feasible solution for the LCG(VLC(T ))
problem on T , which is a contradiction to the fact that SL

is an exact solution for the LCG(VLC(T )) problem on T . To
show the feasibility of X, let x be a left convex vertex of
T . If x ∈ S′, then x ∈ X. If x /∈ S′, then we conclude by
Lemma 3 that there must be a left reflex vertex y ∈ S′ that
guards x. Since y guards at least one left convex vertex of
T , we have y ∈ X. This means that every left convex vertex
of T is either in X or it is guarded by at least one left reflex
vertex in X. Therefore, the set X is a feasible solution for
the LCG(VLC(T )) problem on T .

We have proved that it is not possible that |S′| < |S| and,
therefore, the set S is an exact solution for the DTG problem
on T . This completes the proof of the lemma. �

Appendix B: Proof of Lemma 10

Proof. (⇒) Suppose that M is an exact solution for the
LCG(VLC(T )) problem on T ; by Lemma 9, we assume that
M is in standard form. Let A be the subset of M such
that u ∈ A if and only if u is a left convex vertex of T ,
and let B = M \ A. Clearly, {A,B} is a partition of M .
Also, no reflex vertex of T can see a vertex in A because M
is in standard form and, by Lemma 8, we have that B ⊆
VLR(T ). Moreover, since M is a feasible solution for the
LCG(VLC(T )) problem, every left convex vertex of T that
is not in A is guarded by at least one left reflex vertex in
B. Therefore, it only remains to show that B has minimum
cardinality among all subsets of VLR(T ) that guard VLC(T )\
A. Suppose for a contradiction that B′ ⊆ VLR(T ) guards
VLC(T ) \ A such that |B′| < |B|. Then, {A ∪ B′} is a
feasible solution for the LCG(VLC(T )) problem on T , but
|A ∪ B′| ≤ |A| + |B′| < |A| + |B| = |M | (the last equality
is due to the fact that {A,B} is a partition of M); this is a
contradiction to the fact that M is an exact solution for the
LCG(VLC(T )) problem on T .

(⇐) Suppose that there exists a partition {A,B} of M
such that (i) u ∈ A if and only if u is a left convex vertex
and no reflex vertex of T can see u, and (ii) B = M \ A
is a minimum-cardinality subset of VLR(T ) that guards
VLC(T ) \ A. We now show that M = {A ∪ B} is an ex-
act solution for the LCG(VLC(T )) problem on T . Suppose
for a contradiction that there exists a feasible solution M ′ for
the LCG(VLC(T )) problem on T such that |M ′| < |M |. By
Lemma 8, we have that M ′ ⊆ {VLC(T )∪VLR(T )}. Partition
M ′ into two sets X and Y such that x ∈ X if and only if x is
a left convex vertex that is not seen by any left reflex vertex
of T , and let Y = M ′ \X. We can assume that Y ⊆ VLR(T )
because otherwise we can replace every left convex vertex y
in Y with a left reflex vertex of T that sees y.1 Recall that
if x ∈ X, then no left reflex vertex of T can see x and, by
Lemma 3, no right reflex vertex of T can see x. Therefore,
x ∈ A because no reflex vertex of T can see x and M is a
feasible solution for the LCG(VLC(T )) problem on T . By
an analogous argument, we can show that if x ∈ A, then

1Note that at least one such left reflex vertex of T exists be-
cause otherwise we would have added y into X.
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x ∈ X. Therefore, X = A. This means that Y is a subset of
VLR(T ) that guards VLC(T )\X = VLC(T )\A. Since X = A
and |M ′| < |M |, we must have that |Y | < |B|, which is a
contradiction to the fact that B is a minimum-cardinality
subset of VLR(T ) that guards VLC(T ) \ A. This completes
the proof of the lemma. �
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Open Problems from CCCG 2014

Sue Whitesides ∗

Abstract

This report provides the problems posed by the partici-
pants at the open problem session of the 26th Canadian
Conference on Computational Geometry.

This well-attended session was held Tuesday, August
12, 2014, as a scheduled session of the conference. Six
participants presented a total of seven problems. All
presenters kindly agreed to provide written versions of
their problems, including references and attributions.
The problems appear in the sections below. The ref-
erences appear at the end. The text is essentially the
same, modulo minor editing, as the text provided by
the presenters. This material is not refereed.

1 Guarding Orthogonal Terrains

presented by: Giovanni Viglietta1

Partition the plane into finitely many (possibly un-
bounded) orthogonal polygons, and extrude them in 3D,
obtaining a set of “orthogonal skyscrapers” of different
heights. Let n be the total number of vertices of the or-
thogonal polygons. We ask to find the minimum number
(as a function of n) of vertex guards for the terrain in-
duced by the skyscrapers. In other words, we seek to
select a minimum number of “guards” among the ver-
tices of the skyscrapers such that each point in 3-space
lying “above” some skyscraper is visible to some guard,
where lines of sight must not intersect a skyscraper’s
top face or a side face.

The best known lower bound is given by a row of k
equal cuboidal skyscrapers, where n = 8k. In this case
k + 1 vertex guards are needed, which yields a lower
bound of (n/8) + 1 vertex guards. We conjecture n/8 +
O(1) guards to be sufficient for all orthogonal terrains
on n vertices (observe that an L-shaped skyscraper on
12 vertices needs three guards). To our knowledge, the
problem is open even in the case of a single “tower”
made of nested orthogonal prisms of increasing height,
or a single “well”.

For background, see [1].

∗Professor, Department of Computer Science, U. of Victoria,
Canada; email: sue@uvic.ca

1Postdoctoral Fellow, U. of Ottawa and School of Computer
Science, Carleton U., Canada; email: viglietta@gmail.com

2 Flows on Terrains

presented by: Jack Snoeyink2

What local actions can make a general difference for
flow of water, nutrients, and pollutants in a terrain?
This is more of an open application area for computa-
tional geometry techniques than an open problem.

Consider a real-world terrain with patches having dif-
ferent soil types (e.g., different absorbency properties)
together with a network of streams, house gutters, park-
ing lot drains, and underground sewers. There are rain
gauges reporting rainfall in cm/hr at some points and
flow meters reporting liters/min profiles on some water-
ways. (These are increasingly common in the “internet
of things.”)

If we model a rainfall, do we see the measured flows?
If not, can we suggest where our information about the
flow network is incomplete or inaccurate? If we don’t
like, say, the surge of flow in the sewers from a rainfall,
can we suggest where rain gardens could most effectively
delay the flow? At what scale should these questions be
asked based on the sensors we have?

There are many simulations that are used [2, 3], but
the ideas of computational geometry (like continuous
Dijkstra for paths in weighted regions [4], or partition-
ing terrain into catchments and capturing flow in equi-
librium [5]) can be used to preprocess the terrain for
more efficient exploration of modifications that would
produce the observed or desired flow profiles.

2Professor, Dept. of Computer Science, U. North Carolina;
email: snoeyink@cs.unc.edu
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Figure 1: H ' K5 and its finite planar emulator H.

3 Finding a Shared Delaunay Triangle in Linear
Time

presented by: Michael Biro3

Let P = {p1, p2, . . . , pn} be a set of n points in the
plane and s, t be two query points. The problem is to
determine, in linear time, whether or not s and t lie in
the same face of the Delaunary triangulation of P . The
problem was posed by Joseph S. B. Mitchell in personal
correspondence.

The problem can be solved trivially in time O(n log n)
by constructing the Delaunay triangulation and per-
forming point location queries. However, constructing
the full Delaunay triangulation has a lower bound of
Ω(n log n) so this approach cannot be used to deter-
mine the answer in linear time. Thus the question is
asking, in essence, if we can quickly find local informa-
tion about a Delaunay triangulation without first having
to construct the entire triangulation.

One reason to expect the answer to be affirmative is
that the dual question of determining if s and t lie in
the same face of the Voronoi diagram of P is trivial to
answer in time O(n): simply find the nearest neighbors
of s and t, respectively. The two points s and t share
nearest neighbors if and only if they are in the same face
of the Voronoi diagram of P .

Jack Snoeyink proposed a linear-time solution by lift-
ing the set P to a paraboloid in 3D and locating the
lifted points s and t on faces of the convex hull.

4 Finite Planar Emulators

presented by: Martin Derka4

A graph G has a finite planar emulator H if H is a
planar graph and there is a graph homomorphism ϕ :
V (H) → V (G) where ϕ is locally surjective, i.e. for
every vertex v ∈ V (H), the neighbours of v in H are
mapped surjectively onto the neighbours of ϕ(v) in G.
We also say that such a G is planar-emulable. If we
insist on ϕ being locally bijective, we get H a planar
cover.

3Visiting Asst. Professor, Mathematics and Statistics, Swarth-
more College PA; email: michael.j.biro@gmail.com

4Ph.D. Student, U. Waterloo; email: mderka@uwaterloo.ca

K4,4-e

Figure 2: K4,4 − e, one of the minor-minimal obstruc-
tions for the projective plane, where the existence of a
finite planar emulator is open.

The concept of planar emulators was proposed in 1985
by M. Fellows [11], and it tightly relates (although it is
of independent origin) to the better known planar cover
conjecture of Negami [12]. Fellows also raised the main
question: What is the class of graphs with finite planar
emulators?

Soon thereafter, he conjectured that the class of
planar-emulable graphs coincides with the class of
graphs with finite planar covers (conjectured to be the
class of projective graphs by Negami [12]—still open at
present). This was later restated as follows:

Conjecture 1 [M. Fellows, falsified in 2008] A con-
nected graph has a finite planar emulator if and only if
it embeds in the projective plane.

It is known that if a graph embedds in the projec-
tive plane, it has a finite planar emulator (which takes
form of its finite planar cover). The conjecture fails
in the converse. Rieck and Yamashita [13], and Chi-
mani et al. [6] constructed finite planar emulators of
all the minor minimal obstructions for the projective
plane with the exception of those that have been shown
non-planar-emulable already by Fellows (the K3,5 and
“two disjoint k-graphs” cases), and with the exception
of K4,4 − e. The graph K4,4 − e is the only forbidden
minor for the projective plane where the existence of a
finite planar emulator remains open. For more exam-
ples of planar emulators and for some graphs that are
not planar-emulable, see [6].

5 Colored Radial Orderings

presented by: Ruy Fabila-Monroy5

Let S be a set of n points in general position in the
plane. Let p be a point not in S such that S ∪ {p}
is in general position; we call p an observation point.
A radial ordering of S with respect to p is a clockwise
circular ordering of the points in S by their angle around
p. If every point in S is assigned one of two colors,
say red and blue, then a colored radial ordering of S
with respect to p is a circular clockwise ordering of the
colors of the points in S by their angle around p. Let

5Professor, Dept. of Mathematics, Cinvestav-IPN, Mexico;
email: ruyfabila@math.cinvestav.edu.mx
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ρ(S) be the number of distinct radial orderings of S
with respect to every observation point in the plane.
Likewise, let col ρ(S) be the number of distinct colored
radial orderings of S with respect to every observation
point in the plane. Define the following functions:

g(n) := min{ρ(S) : S is a set of n points}
gcol(n) := min{ρcol(S) : S is a set of m red and

m blue points, and n = 2m}

Open Problems

1. Give a tight asymptotic bound for g(n).

2. Give a tight asymptotic bound for gcol(n).

In [14] it is shown that g(n) ≥ Ω(n3) and it is con-
jectured that g(n) = Θ(n4). For the colored case in the
same paper they showed that gcol(n) = Ω(n) and gave
an example of a set of n red and n blue points with
O(n2) colored radial orderings.

6 Finite Simplicial Complexes

two problems presented by: Tamal Dey6

Problem 1: Let K := K(P ) be a finite simplicial com-
plex linearly embedded in Rd with vertex set P . Denote
by fkd (K,P ) the number of k-simplices in K. Consider
the following quantity:

fkd (n) = max
K,|P |=n

fkd (K,P ).

What is the correct bound on fkd (n) in terms of n, k, d?
We know that f12 (n) = Θ(n) because planar graphs have
at most 3n edges and clearly there are planar graphs
with Ω(n) edges. Next question is: what is f23 , that is,
how many triangles with a total of n vertices can be
linearly embedded in R3? It was proved in [15] that
f23 = O(n2) and a tight lower bound of Ω(n2) exists
because cyclic polytopes with n vertices in R3 have a
triangulation with Ω(n2) triangles. Actually, the lower
bound generalizes, that is,

fkd (n) = Ω(nmin{k+1,d d2 e})

because of the known lower bounds for triangulations of
cyclic polytopes in Rd. For example, in R4, of course
there could be all possible n(n − 1)/2 = Θ(n2) edges,
but all possible

(
n
3

)
= Θ(n3) triangles cannot be linearly

embedded. In fact, the following bound is known [16]

f34 (n) = O(n3−
1
3 ).

6Professor, Dept. of Computer Science and Engineering, The
Ohio State U.; email: tamaldey@cse.ohio-state.edu

conjecture: fkd (n) = Θ(nmin{k+1,d d2 e})

Problem 2: Let K be a finite simplicial complex lin-
early emedded in R3. Let C be any given 1-cycle in
K. We are interested in detecting if C is trivial in the
first homology group, that is, if there is a set of trian-
gles in K whose boundaries when summed over Z2 give
C. This problem can be solved in O(M(n)) time by
first reducing the boundary matrix of K (triangle-edge
matrix) to Echelon form and then reducing a column
corresponding to C to see if it becomes an empty col-
umn or not. Here M(n) is the matrix multiplication
time whose current best bound is O(n2.37..).

conjecture: Let K be a finite simplicial complex linearly
embedded in R3 with a total of n simplices. Given a 1-
cycle C in K, one can detect if C is trivial in the first
homology group (with Z2 coefficient) in O(n2) time.

If K is a 2-manifold, the detection can be performed
in O(n) time by a simple depth-first walk in K. If K
is a 3-manifold, the algorithm in [17] can be modified
to accomplish the task in O(n2) time. The question re-
mains open for general simplicial complexes. Although
the conjecture is posed here for K embedded in R3 and
for a 1-cycle C, it can be posed for a finite simplicial
complex embedded linearly in Rd and a given p-cycle C
in it.
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One of Ferran Hurtado’s favorite topics - Flips

Prosenjit Bose (Carleton University)

Abstract

Reconfiguring graphs via small local changes was one of Ferran Hurtado’s favorite research topics. In fact, he
had a web page dedicated to his results in the area which he called ”The flips corner”. In this talk, we will give an
overview of the results in the area and highlight some of the impact Ferran has had. Along the way, we will also
point out some of the techniques used to prove the main results and mention a few of the challenges remaining in
this area.
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Abstract

The minimum backward Fréchet distance (MBFD)
problem is a natural optimization problem for the weak
Fréchet distance, a variant of the well-known Fréchet
distance. In this problem, a threshold ε and two polyg-
onal curves, T1 and T2, are given. The objective is to
find a pair of walks on T1 and T2, which minimizes the
union of the portions of backward movements while the
distance between the moving entities, at any time, is at
most ε. In this paper, we generalize this model to cap-
ture scenarios when the cost of backtracking on the in-
put polygonal curves is not homogeneous. More specif-
ically, each edge of T1 and T2 has an associated non-
negative weight. The cost of backtracking on an edge
is the Euclidean length of backward movement on that
edge multiplied by the corresponding weight. The ob-
jective is to find a pair of walks that minimizes the sum
of the costs on the edges of the curves, while guaran-
teeing that the curves remain at weak Fréchet distance
ε. We propose an exact algorithm whose run time and
space complexity is O(n3), where n is the maximum
number of the edges of T1 and T2.

1 Introduction

Measures for similarity between two polygonal curves
have been studied in areas such as computational ge-
ometry, Geographical Information Systems (GIS), pat-
tern recognition, shape matching, and robotics. Finding
measures that capture the requirements of a particular
domain remains challenging, both in practice and the-
ory. One of the widely used measures for similarity be-
tween curves is the Fréchet distance which takes into
account global features of the curves [1]. In some ap-
plications (such as map matching) a global approach as
taken e.g., by the Fréchet distance, achieves a better
result than a local approach [2].

The Fréchet distance is typically illustrated via the
person-dog metaphor. Assume that a person wants to

∗Research supported by High Performance Computing Virtual
Laboratory and SUN Microsystems of Canada
†Research supported by Natural Sciences and Engineering Re-

search Council of Canada

walk along one curve and his/her dog on another. Each
curve has a starting and an ending point. The per-
son and the dog walk, from the starting point to the
ending point, along their respective curves. The stan-
dard Fréchet distance is the minimum leash length re-
quired for the person to walk the dog without back-
tracking. A variant of the standard Fréchet distance is
the weak Fréchet distance, also known as non-monotone
Fréchet distance [1]. In this variant, backtracking is al-
lowed during the walks. In [1], Alt and Godau pro-
posed algorithms to compute the weak Fréchet distance
in O(n2 log n) time, where n is the maximum number of
segments in the input polygonal curves. The time com-
plexity is improved by Har-Peled and Raichel [6]. They
proposed an algorithm with quadratic time complexity
for computing a generalization of the weak Fréchet dis-
tance. In some applications, the weak Fréchet distance
is preferable to the standard Fréchet distance (see [2]).

In [4], Gheibi et al. introduced and solved an opti-
mization problem on the weak Fréchet distance, called
the minimum backward Fréchet distance (MBFD) prob-
lem. Their problem is to determine the minimum total
length of backward movements on both input polygonal
curves, required for the walks to achieve the given leash
length. In that paper, it is assumed that the cost (i.e.,
weight) of backward movement is uniform and depends
only on the Euclidean distance traveled on each of the
input polygonal curves. They proposed an algorithm
with time complexity O(n2 log n) and space complexity
O(n2), to solve MBFD exactly. Here, in this paper, we
generalize this model to capture scenarios when the cost
of backtracking on the input polygonal curves is not ho-
mogeneous. These weights could represent, for example,
the cost of moving against a flow, or the cost for a mov-
ing entity (e.g., a human) to move backwards because of
the entity’s physiology [3]. Thus, in the new model, each
edge of the input polygonal curves has an associated
non-negative weight for backward movement. Then, the
cost of backtracking on an edge is the Euclidean length
of backward movement on that edge multiplied by the
corresponding weight. The objective is to design an al-
gorithm that a) finds a pair of walks that minimizes
the sum of the costs on the edges of the curves, while
guaranteeing that the leash length is at most ε, b) halts
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ε

T1

T2
Starting Points

a1b1

a3b3

a2 b2

w1 = 10

w2 = 5

w3 = 1

Figure 1: Moving backwards from a3 to b3 allows to walk on
T1 and T2 and keeping the distance between moving entities
at most ε during the walks while the cost is minimized.

with the answer of no feasible solution if such a pair of
walks does not exist for the given leash length. We call
this problem, the weighted minimum backward Fréchet
distance (WMBFD) problem. Note that if the standard
Fréchet distance between the input curves is already at
most ε, then no backtracking is necessary and the opti-
mal solution is identical to a pair of walks that realizes
the Fréchet distance.

Figure 1 shows an example. In this figure, two polyg-
onal curves, T1 and T2, and a length ε are drawn. The
person walks on T1 and the dog walks on T2. The
weights, wi, i = 1, 2, 3, for segments of T1 are given.
For this illustration, we let the cost of backtracking on
all segments of T2 be 1. In this example, it is impossible
to walk from the starting point to the end and maintain
the leash length at most ε, without moving backwards.
Six points, a1, b1, a2, b2, a3, and b3 are specified on T1.
If the person moves backwards, either from a1 to b1,
or from a2 to b2, or from a3 to b3, then the curves are
at weak Fréchet distance ε. In this example, the Eu-
clidean length of a1b1 is less than the Euclidean length
of a3b3. However, the weight of moving backwards on
the first segment is 10, while that on the third one is 1.
Therefore, the pair of walks that minimizes the cost is as
follows: the dog and the person move forwards together
from the starting point, until the dog reaches the end
of the third segment of T2 and the person reaches the
point a3 on T1. Then, the dog keeps moving forwards
until the end of the fourth segment of T2, while the per-
son moves backwards from a3 to b3. Finally, they move
forwards again together until the end of the respective
curves. The cost of this pair of walks is the Euclidean
length of a3b3 multiplied by 1.

This paper is organized as follows. In Section 2, we
discuss preliminaries and define the problem formally.
In Section 3, we propose a polynomial time algorithm to
solve the problem exactly. Then, in Section 4, we design
an algorithm with improved time and space complexity.
At the end, we conclude the paper.

2 Preliminaries and Problem Definition

In this section, first, preliminary concepts are discussed.
Then, the WMBFD problem is defined formally. A ge-
ometric path in R2 is a sequence of points in the Eu-

clidean space, R2. A discrete geometric path, or a polyg-
onal curve, is a geometric path, sampled by a finite se-
quence of points (i.e., vertices), which are connected by
line segments (i.e., edges) in order. Let T1 : [0, n]→ R2

and T2 : [0,m] → R2 be two polygonal curves of com-
plexity (number of segments) n and m, respectively.
W.l.o.g., assume that m ≤ n. A vertex of T1 (resp.
T2) is denoted by T1(i) (resp. T2(j)), i = 0, . . . , n
(resp. j = 0, . . . ,m). An edge of T1 (resp. T2) be-
tween two vertices T1(i − 1) and T1(i) (resp. T2(j − 1)
and T2(j)) is denoted by ei (resp. ej), i = 1, . . . , n
(resp. j = 1, . . . ,m). Furthermore, each edge, ei (resp.
ej), i = 1, . . . , n (resp. j = 1, . . . ,m), of T1 (resp. T2)
has an associated non-negative weight (or cost) wi ∈ R
(resp. wj ∈ R). A parameterization of a polygo-
nal curve, T1 : [0, n] → R2, is a continuous function
f : [0, 1] → [0, n], where f(0) = 0 and f(1) = n ([0, 1]
is a time interval). If f is non-decreasing, then the pa-
rameterization is monotone. The weak Fréchet distance,
δw(T1, T2), is defined as Formula 1, where d(., .) is the
Euclidean distance and f and g are two parameteriza-
tion of [0, n] and [0,m], respectively. Note that f and
g are not necessarily monotone. However, for the stan-
dard Fréchet distance, they must be monotone.

δw(T1, T2) = inf
f,g

max
t∈[0,1]

d(T1(f(t)), T2(g(t))) (1)

Weighted Quality. For a parameterization, f , of a
polygonal curve, T1, let Bf,i ⊆ [0, 1] be the closure of
the set of times in which f(t) is decreasing (i.e., the
movement is backward), and f(t) ∈ [i− 1 i) (it is on
edge ei of T1). Bg,j ⊆ [0, 1] is defined analogously for a
parameterization, g, of T2. For a pair of parameteriza-
tions, f and g, of two polygonal curves, T1 and T2, we
define the weighted quality by Formula 2, where ‖.‖ is
the Euclidean length.

WQf,g(T1, T2) :=

n∑

i=1

||T1 (f (t)) ||t∈Bf,i
· wi

+

m∑

j=1

||T2 (g (t)) ||t∈Bg,j · wj
(2)

Problem Definition. We formally define the
WMBFD problem as follows. For a pair of weighted
polygonal curves, T1 and T2, and a given leash length,
ε, we are looking for a pair of optimal parameteriza-
tions, (f, g), as defined in Formula 3. We consider only
pairs of parameterizations that guarantee to maintain
the leash length at most ε, during the walks.

WQε(T1, T2) = inf
f,g
WQf,g(T1, T2) (3)

Weighted Deformed free-space diagram. A use-
ful structure to decide whether the Fréchet distance
between two polygonal curves is upper bounded by a
given ε, is the free-space diagram [1]. For two polygo-
nal curves, T1 with n vertices and T2 with m vertices,
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and two corresponding parameterizations, f and g, the
free-space is defined formally by Formula 4.

W = {(t1, t2) ∈ [0, 1]2 | d(T1(f(t1)), T2(g(t2))) ≤ ε}
(4)

The free-space diagram is the rectangle [0, 1]×[0, 1], par-
titioned into n columns and m rows. It consists of nm
parameter cells Ci,j , for i = 1, ..., n and j = 1, ...,m,
whose interiors do not intersect with each other. The
cell Ci,j represents the multiplication of two subranges
of [0, 1] that are mapped to the edge between ver-
tices T1(i− 1) and T1(i) and the edge between vertices
T2(j− 1) and T2(j). For each parameter cell Ci,j , there
exists an ellipse such that the intersection of the area
bounded by this ellipse with Ci,j is equal to the free-
space region of that cell. The boundary of this ellipse
and the boundary of the cell, Ci,j , intersect at most
eight times (i.e., at most two intersections per side of
Ci,j). These intersection points form at most four in-
tervals on the boundary of Ci,j . These intervals could
be empty or contains only one point. In addition, two
adjacent cells have the same interval on the shared side
between the cells. The union of all cells’ free-space
builds the free-space (or white-space) of the diagram
and is denoted by W . The complement of W is the
forbidden-space (or black-space) of the diagram and is
denoted by B. In this paper, we stretch and compress
the columns and rows of the free-space diagram, such
that their widths and heights are equal to the lengths of
the corresponding segments of T1 and T2, respectively.
Also, each cell, Ci,j , has two associated weights, wix and
wjy. The weight wix is the weight of the edge between

vertices T1(i − 1) and T1(i) and the weight wjy is the
weight of the edge between vertices T2(j−1) and T2(j).
The resulting diagram is called the weighted deformed
free-space diagram and is denoted by F . The bottom
left corner of F represents the starting points of T1 and
T2 and is denoted by s . The top right corner of F rep-
resents the ending points of T1 and T2 and is denoted
by t . For the given polygonal curves and ε in Figure
1, the corresponding weighted deformed free-space dia-
gram is shown in Figure 2. As the diagram illustrates,
to be able to walk on T1 and T2 with a leash length
at most ε, there must be a backward movement on the
polygonal curves (since there is no xy-monotone path
from s to t in W ). However, the possible walks are not
unique. We are looking for a pair of walks that has the
minimum backward movement cost, as we discussed in
Section 1. In Figure 2, the red solid polygonal chain,
called Π′, is a path in W that realizes an optimal pair
of walks on T1 and T2.

3 Algorithm

In this section, we propose a polynomial time algo-
rithm, by transforming the WMBFD problem to a

s

t

a1b1 a2b2 a3b3

w1
x = 10 w2

x = 5 w3
x = 1

w1
y = 1

w2
y = 1

w3
y = 1

w4
y = 1

w5
y = 1

ΠΠ′
Π′′

Figure 2: The corresponding weighted deformed free-space
diagram of the given polygonal curves in Figure 1 is drawn.
Π (the black dashed path) is an arbitrary path in W . Π′ ⊂ Gw
(the red solid path) is a path in W that realizes a pair
of parameterizations which gives an optimal solution for
WMBFD. Π′′ (the blue dashed path) is a path in W that
realizes the optimal solution for MBFD.

shortest path problem on a weighted directed graph,
Gw = 〈V,E〉, defined as follows.

Let F be the weighted deformed free-space diagram
and W (resp. B) be the corresponding free-space (resp.
forbidden-space) of F . The vertices of W are the end
points of the intervals on the boundary of the cells in F
(i.e., at most 4 intervals per cell). The set of vertices,
V , of Gw, is the set of all vertices of W . Each vertex,
v, has a x-coordinate (resp. y-coordinate), denoted by
vx (resp. vy). Also, V contains s and t . We say two
points are visible if it is possible to link them by a line
segment in W . Every two visible vertices, v1 and v2, are
linked by two directed edges in E, from v1 to v2, 〈v1, v2〉,
and vice versa, 〈v2, v1〉. The weight of a directed edge
e = 〈v1, v2〉 ∈ E is a function of its direction, the x- and
y-coordinates of v1 and v2, and the associated weights of
the cells that e intersects. The weight function is defined
as follows: suppose e intersects a sequence of k cells,
〈Cσ(1),σ′(1), Cσ(2),σ

′(2), . . . , Cσ(k),σ
′(k)〉, of F , where σ

(resp. σ′) is a function that maps the set {1, 2, . . . , k}
to a sub-sequence (or a reversed sub-sequence) of the
index sequence 〈1, 2, . . . , n〉 (resp. 〈1, 2, . . . ,m〉). The
line segment e enters a cell, Cσ(i),σ

′(i), i = 1, . . . , k, at
point aσ(i),σ

′(i) and exits that cell at point bσ(i),σ
′(i).
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Note that aσ(1),σ
′(1) (resp. bσ(k),σ

′(k)) is identical to v1
(resp. v2). The x-coordinate (resp. y-coordinate) of a
point, a, is denoted by ax (resp. ay). Note that each

cell, Cσ(i),σ
′(i), has two associated weights, w

σ(i)
x and

w
σ′(i)
y .

Let |e|wx =
∑k
i=1 |a

σ(i),σ′(i)
x − b

σ(i),σ′(i)
x | · wσ(i)x and

|e|wy =
∑k
i=1 |a

σ(i),σ′(i)
y − bσ(i),σ

′(i)
y | ·wσ

′(i)
y . The weight

of e, |e|w, is calculated by the following function.

• If e is xy-increasing (i.e., it is non-decreasing from
v1 to v2 in both x and y axes), then |e|w = 0.

• If e is only x-increasing (resp. y-increasing), then
|e|w = |e|wy (resp. |e|w = |e|wx).

• Otherwise, |e|w = |e|wx + |e|wy.

Finding an Optimal Solution. By construction of
Gw, both s and t are vertices in V . If either s or t is not
in W , or there is no path from s to t in Gw, then there
is no solution for the given leash length. Otherwise, we
prove that a shortest path from s to t , in Gw, gives an
optimal solution. Note that a vertex of the graph also
corresponds to a point in F . Therefore, the geometric
embedding of a path in Gw is constructed by connecting
the consecutive vertices of the path by line segments.

Observation 1 Let Π : [0, 1]→ [0, n]× [0,m] be a path
in the free-space W , from s to t . Π is equivalent to
a pair of parameterizations, f : [0, 1] → [0 : n] and
g : [0, 1] → [0 : m], of the two polygonal curves, that
maintains the leash length at most ε, for all t ∈ [0, 1].

In this paper, we use norms in two spaces: (1) the
Euclidean space of the input polygonal curves, called
the input space, (2) the weighted deformed free-space
diagram, called the configuration space. In the input
space, we use the Euclidean length of a polygonal curve
T and denote it by ||T ||. In the configuration space, a
path from s to t in W , is denoted by its vertices, Π :
〈s = p1, p2, . . . , pk = t〉. All segments in Π are directed,−−−−→pipi+1, i = 1, . . . , k−1. The weighted length (or simply
length), |.|w, of each segment of Π is calculated by the
weight function that we explained earlier in this section,
for computing the weight of a directed edge in the graph.
The weighted length (or simply length) of a path, |Π|w,
is the sum of the length of its segments. In addition, the
notation Πi is used to denote the sub-path of Π from p1
to pi.
Correctness. Lemma 3 is at the heart of the correct-
ness proof. In order to prove that lemma, we need Lem-
mas 1 and 2. Their proofs are provided in the Appendix.
This section is concluded by a corollary to Lemma 3 and
Observation 1, that is, in order to find an optimal pair
of parameterizations in our problem setting, it suffices
to find a shortest path from s to t in Gw.

b c

a

q2

q1

pi

pi+1p′z

q2
q1

a b

Figure 3: a) The visibility chain from a to c (the blue solid
polygonal chain), CCc

a = 〈a, q1, q2, c〉. b) The visibility chain
from p′z to pi+1, CC

pi+1

p′z
(see Algorithm 1).

Definition 1 A path Π ∈ W is x-monotone (resp. y-
monotone), if and only if, any vertical (resp. horizontal)
line intersects it at most once. Π is xy-monotone, if and
only if, it is both x- and y-monotone.

Observation 2 Let a and b be two points in W such
that ax 6= bx and ay 6= by. Suppose Π is a xy-monotone
path from a to b. In addition, let R(a, b) be the axes-
aligned rectangle uniquely determined by a and b as cor-
ners. Π lies inside R(a, b).

Lemma 1 Let Π1 and Π2 be two xy-monotone paths in
W , from a to b, where a, b ∈ W . Then, |Π1|w = |Π2|w.
Furthermore, if Π3 is an arbitrary path in W from a to
b, then |Π1|w ≤ |Π3|w.

Definition 2 Let a, b, and c be three distinct non-

collinear points in W such that
−→
ab ∈ W ,

−→
bc ∈ W and−→ac 6∈ W . We define the visibility chain from a to c,

denoted by CCca, as follows (see Figure 3a). Let Babc
denote the portion of B (the black-space) inside the tri-
angle 4abc. Let CH be the convex hull of Babc and the
points a and c. Then, CCca is defined to be the chain
comprising the boundary of CH from a to c that lies
inside 4abc. The visibility chain is directed from a to
c, CCca = 〈a, q1, . . . , qlast, c〉.

Lemma 2 Let a, b, c ∈ W be three distinct non-

collinear points that
−→
ab,
−→
bc ∈ W and −→ac 6∈ W . If

4abc lies in R(a, c), then CCca is xy-monotone and

|CCca|w = |−→ab|w + |−→bc|w (Figure 3a).

Lemma 3 For any path Π : 〈s = p1, p2, . . . , pk1 = t〉 in
W , there is a path Π′ : 〈s = p′1, p

′
2, . . . , p

′
k2

= t〉 in W
such that Π′ ⊂ Gw and |Π′|w ≤ |Π|w.

Proof. We prove this lemma by designing an algorithm
that constructs the path Π′ ⊂ Gw, through a transfor-
mation of path Π. Initially, Π′ contains only s = p′1 = p1
and p′z = s . In this algorithm, p′z is the latest vertex
appended to the tail of Π′. Π′ is constructed as follows.
When considering the i-th vertex of Π, pi, the algorithm

tests if
−−−−→
p′zpi+1 ∈W . If so, pi is skipped and Π′ remains

unchanged. Otherwise, the visibility chain from p′z to
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pi+1 is constructed (Figure 3b) and its vertices from q1
to qc are appended to the tail of Π′. The algorithm for
constructing Π′ is stated in Algorithm 1. The correct-
ness of this algorithm is given in the Appendix, Lemma
5. The output, Π′, of this algorithm is a path from s to
t , such that Π′ ⊂ Gw and |Π′|w ≤ |Π|w. �
Algorithm 1 Constructing Π′ ∈ Gw
Input: The free-space W , A path Π = 〈p1, p2, . . . , pk1〉,
where s = p1 and pk1 = t .
Output: A path Π′ = 〈p′1, p′2, . . . , p′k2〉, where s = p′1
and p′k2 = t , such that Π′ ⊂ Gw and |Π′|w ≤ |Π|w.

1: Π′ := 〈s〉;
2: p′z = s ;
3: for i=2 to k1 − 1 do

4: if
−−−−→
p′zpi+1 6∈W then

5: Compute the visibility chain from p′z to pi+1,
CC

pi+1

p′z
= 〈p′z, q1, . . . , qc, pi+1〉, in 4p′zpipi+1;

6: Append qj , j = 1, ..., c, to Π′;
7: p′z = qc;

8: Append t to Π′;
9: return Π′;

Corollary 1 There is a path from s to t in Gw with
minimum weighted length in the free-space W .

Proof. Assume Π is a path from s to t with minimum
weighted length in the free-space W . If Π is not a subset
of Gw, then, by Lemma 3 there is a path from s to t , Π′

in W such that Π′ ⊂ Gw and |Π′|w ≤ |Π|w. Since Π has
minimum weighted length, |Π′|w = |Π|w. �

Theorem 1 Let T1 and T2 be two polygonal curves and
ε be a given leash length. Each segment of T1 and T2
has an associated weight, corresponding to the backward
movement on that segment. A pair of parameterizations
of T1 and T2 that minimizes the weighted sum of the
backward movements during the walks can be found in
polynomial time and space.

Proof. It follows from Observation 1 and Corollary 1
that a shortest path in Gw yields an optimal pair of
parameterizations for the WMBFD problem. Since F
has a complexity of O(n2), the number of edges of Gw is
O(n4). We construct the topology of the graph in O(n4)
time by the method in [5]. Since the weight of each edge
of Gw is computed based on the projections onto x and y
axes, it is possible to compute it in constant time using
prefix sums [7]. We find a shortest path in the graph
in O(n4) time by Dijkstra’s algorithm. Therefore, the
total time complexity is O(n4). �

4 Improved Algorithm

In Section 3, we showed that the weighted graph Gw =
〈V,E〉 contains a path that yields an optimal pair of

parameterizations for the WMBFD problem. In this
section, we will discuss that it is sufficient to compute
only a subgraph of Gw to obtain an optimal solution. Let
Gw′ = 〈V,E′〉 be a sub-graph of Gw such that E′ = {e′ ∈
E | e′ lies completely within a row or within a column
of F}, where F is the weighted free-space diagram.

Lemma 4 There is a path in Gw′ that realizes an opti-
mal pair of parameterizations for our problem setting.

Proof. We will show that, for any directed edge e =
〈u1, u2〉 ∈ E that is not in E′, we can construct a xy-
monotone path from u1 to u2, πu1,u2

, in Gw′ (see Figure
4). Then, by Lemma 1, |πu1,u2

|w = |e|w. By Theorem
1, a shortest path, Π′ in Gw yields an optimal solution.
Therefore, if for any directed edge, e = 〈u1, u2〉, of Π′,
πu1,u2

exists in Gw′, then there is a path in Gw′ that
realizes an optimal pair of parameterizations.

Now, we prove that πu1,u2
exists in Gw′, for any

directed edge e = 〈u1, u2〉 ∈ E. If e stays com-
pletely within a row or a column of F , then πu1,u2

=
e. Otherwise, e crosses several rows and columns.
There are four cases, depending on the orientation of e:
a) xy-increasing b) x-increasing and y-decreasing c) y-
increasing and x-decreasing d) xy-decreasing. We prove
this lemma for the last case. The proofs for the other 3
cases are analogous. Assume that e is xy-decreasing.
The edge e intersects a sequence of intervals on the
boundary of the cells of F . We partition e into sub-
edges so that each sub-edge is contained within a row
or within a column of F , as follows (Figure 4).

We traverse e from u1 to u2. The point p1 ∈ e is
the point where we exit the row and the column that
contain u1. Therefore, any point after p1 on e during the
traversal is not in the row or the column that contains
u1. We continue the traversal from p1 to u2. The point
p2 ∈ e is defined analogously. It is the point where we
exit the row and the column that contain p1. We define
pi, i = 3, . . . , z, analogously with respect to pi−1. Then,
the sequence of sub-edges of e is 〈−−→u1p1,−−→p1p2, . . . ,−−→pzu2〉.

Denote the interval that contains pi, i = 1, . . . , z, by
Ii. Let u1 = p0 ∈ I0 and u2 = pz+1 ∈ Iz+1. Note that
Ii and Ii+1, i = 0, . . . , z, are on the boundary of a row
or a column. We say a point q = (qx, qy) dominates a
point p = (px, py), if px ≤ qx and py ≤ qy. In this proof,
the endpoint of Ii that dominates pi is denoted by qi.
We construct πu1,u2

, in two phases. In the first phase,
we construct a xy-monotone path, π′u1,u2

, from u1 to u2
(the green dashed polygonal chain in Figure 4). Then,
in the second phase, we transform it to a path, πu1,u2

,
in Gw′ (the blue dotted polygonal chain in Figure 4).

In the first phase, we start from p0 = u1. For each
sub-edge of e, −−−−→pipi+1, i = 0, . . . , z, if we construct a
xy-monotone path, π′pi,qi+1

, from pi to qi+1, then the

concatenation of π′pi,qi+1
and −−−−−→qi+1pi+1 is a xy-monotone

path from pi to pi+1, π′pi,pi+1
, because qi+1 dominates
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p2

q1

q2

p′1
p′2

u1

u2
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b

π′u1,u2πu1,u2

Figure 4: Illustration of proof of Lemma 4.

pi+1. Then, the concatenation of π′pi,pi+1
, i = 0, . . . , z

is a xy-monotone path, π′u1,u2
, from u1 to u2. Now,

we explain how to construct π′pi,qi+1
. If −−−→piqi+1 ∈ W ,

then π′pi,qi+1
= −−−→piqi+1. It is obviously xy-monotone.

If −−−→piqi+1 6∈ W , then π′pi,qi+1
is the visibility chain,

CC
qi+1
pi , from pi to qi+1, in 4pip′i+1qi+1, where p′i+1

is a point, defined as follows. Let I ′i+1 be the last in-
terval that −−−−→pipi+1 intersects before intersecting Ii+1 and
p′i+1 be the intersection point of I ′i+1 and −−−−→pipi+1. The
point p′i+1 dominates qi+1. Therefore, 4pip′i+1qi+1 lies
in R(pi, qi+1), the axes-aligned rectangle that is deter-
mined by pi and qi+1 as opposite corners. Thus, by
Lemma 2, CC

qi+1
pi is xy-monotone.

In the second phase, we transform π′u1,u2
to a xy-

monotone path, πu1,u2
, in Gw′. This transformation

is done by replacing the edges in π′u1,u2
that are not

in E′. These edges are −−→qipi and
−−−−→
piS(pi), i = 1, . . . , z,

where S(.) is the successor operation and S(pi) is the
vertex after pi in π′u1,u2

. These are the edges that con-
nect pi, i = 1, . . . , z, to the previous and next vertex
of pi in π′u1,u2

. Note that S(pi) is a vertex in V and

could be identical to qi+1. If
−−−−→
qiS(pi) ∈W , then the two

edges, −−→qipi and
−−−−→
piS(pi), are replaced by

−−−−→
qiS(pi) ∈ E′.

It is obviously xy-monotone. If
−−−−→
qiS(pi) 6∈ W , then the

two edges, −−→qipi and
−−−−→
piS(pi), are replaced by the visi-

bility chain, CC
S(pi)
qi , from qi to S(pi), in 4qipiS(pi).

Since π′u1,u2
is a xy-monotone path, the concatenation

of −−→qipi and
−−−−→
piS(pi) is also a xy-monotone path. There-

fore, 4qipiS(pi) lies in R(qi,S(pi)). Thus, by Lemma

2, CC
S(pi)
qi is xy-monotone. Also, CC

S(pi)
qi ⊂ Gw′ since

the vertices of this visibility chain belong to one column
or one row of F . By repeating this process for every pi,
i = 1, . . . , z, the resulting path, denoted by πu1,u2 , is
in Gw′. Since all sub-paths of πu1,u2 are xy-monotone,
πu1,u2

is also xy-monotone. �

Theorem 2 Assume we are given two polygonal
curves, T1 and T2, and a leash length, ε. Each seg-
ment of T1 and T2 has an associated weight, correspond-
ing to the backward movement on that segment. A pair
of parameterizations of T1 and T2 that minimizes the
weighted sum of the backward movements during the

walks can be found in O(n3) time and space, where n is
the number of segments in the input polygonal curves.

Proof. The correctness follows from Lemma 4. F has
O(n2) cells and each vertex of Gw′ on the boundary of a
cell is connected to at most O(n) vertices of Gw′ that are
in the same row or column. Therefore, the number of
edges of Gw′ is O(n3). It is possible to find all the edges
of Gw′ that lie in a column or row of F in O(n2) time by
the method proposed in [5]. In addition, to compute the
weight of the edges that are in one row or column, O(n2)
time and O(n) space suffice (by using prefix sums, see
[7]). Using Dijkstra’s algorithm, we find a shortest path
in Gw′ in O(n3) time. Therefore, both time and space
complexities of our algorithm are O(n3). Note that if
the representing nodes for s and t in Gw′ are not in a
connected component of Gw′, then there is no feasible
walk with the leash length of ε. �

5 Conclusion

In this paper, we generalized the MBFD problem by
capturing weighted scenarios. We established that this
problem setting is dual to a weighted shortest path prob-
lem in a weighted deformed free-space diagram, F . We
proposed an exact algorithm to solve the problem in
O(n3) time and space. We are currently working on
improving the time complexity.
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6 Appendix

Lemma 1 Let Π1 and Π2 be two xy-monotone paths in
W , from a to b, where a, b ∈ W . Then, |Π1|w = |Π2|w.
Furthermore, if Π3 is an arbitrary path in W from a to
b, then |Π1|w ≤ |Π3|w.

Proof. If ax = bx or ay = by, then Π1 and Π2 are
identical and the proof is trivial. Otherwise, by Obser-
vation 2, Π1 and Π2 lie in R(a, b). Since Π1 (also Π2)
is xy-monotone, its orthogonal projections onto x and
y axes are not overlapping and equal to the width and
height of R(a, b), respectively. Because Π1 and Π2 have
identical projections onto x and y axes and the weighted
length of a path is defined based on its projection, then
|Π1|w = |Π2|w. Also, any xy-monotone path from a to
b has minimum weighted length among all paths from
a to b, because its orthogonal projections onto x- and
y-axis are non-overlapping. �

Lemma 2 Let a, b, c ∈ W be three distinct non-

collinear points that
−→
ab,
−→
bc ∈ W and −→ac 6∈ W . If

4abc lies in R(a, c), then CCca is xy-monotone and

|CCca|w = |−→ab|w + |−→bc|w (Figure 3a).

Proof. Since4abc lies in R(a, c), the path that consists

of
−→
ab and

−→
bc is a xy-monotone path from a to c. If we

show that CCca is also a xy-monotone path from a to c,

then by Lemma 1, |CCca|w = |−→ab|w + |−→bc|w.
To prove this, we need to define the angle of a vector.

Suppose a directed segment in the free-space is a vec-
tor from the origin of the Cartesian coordinate system.
The angle of a vector is defined as the angle between
that vector and the positive direction of x-axis. Let α

(resp. β) be the angle of
−→
ab (resp.

−→
bc). Since 4abc lies

in R(a, c), |α − β| = π/2. In addition, since R(a, c) is
axes-aligned, precisely one of the four following cases is
true: 0 ≤ α, β ≤ π/2, π/2 ≤ α, β ≤ π, π ≤ α, β ≤ 3π/2,
3π/2 ≤ α, β ≤ 2π. We denote the angles of segments,−→aq1,−−→q1q2, . . . ,−−−→qlastc, of CCca = 〈a, q1, . . . , qlast, c〉 by θµ,
µ = 1, . . . , last + 1. Since CCca is a convex chain, the
sequence of θµ, µ = 1, . . . , last + 1, is in a sorted or-
der (either increasing or decreasing), between α and β.
Therefore, all θµ, µ = 1, . . . , last + 1, are in one of the
four mentioned quadrants. Thus CCca is xy-monotone.
This proves the lemma. �

Lemma 5 Algorithm 1 is correct.

Proof. We show that prior to the execution of the i-th
iteration, i = 2, . . . , k1−1, of the for-loop in Algorithm
1 the following invariant holds:

I1.
−−→
p′zpi ∈W

I2. Π′z ⊂ Gw and

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

x

y

Figure 5: There are 16 cases for the combination of two
directed segments.

I3. |Π′z|w + |−−→p′zpi|w ≤ |Πi|w.

We prove this by induction on i, the index of the vertices
of Π (and index of the for-loop in Algorithm 1). The
base case is i = 2. In this case, p′z is equal to p′1 = s .

Clearly,
−−→
p′1p2 ∈ W , Π′1 ⊂ Gw and |Π′1|w + |−−→p′1p2|w =

|Π2|w, because
−−→
p′1p2 = −−→p1p2. The induction hypothesis

is that the invariant holds for all loop iterations before
the i-th iteration of the for-loop. In the following, it is
proved that it also holds before (i + 1)-th iteration of
the for-loop.

In each iteration of the for-loop in Algorithm 1, we

distinguish between the two cases: a)
−−−−→
p′zpi+1 ∈ W ,

b)
−−−−→
p′zpi+1 6∈W .

Case a) In Case a, pi is skipped and Π′ thus remains
unchanged. Therefore, I1 and I2 hold, due to the in-

duction hypothesis. In addition, since
−−−−→
p′zpi+1 is a seg-

ment in W and thus trivially xy-monotone, by Lemma

1, |−−−−→p′zpi+1|w ≤ |
−−→
p′zpi|w + |−−−−→pipi+1|w. By induction hy-

pothesis, we have |Π′z|w + |−−→p′zpi|w ≤ |Πi|w. By adding
|−−−−→pipi+1|w to the both sides of the inequality, we obtain

|Π′z|w+ |−−−−→p′zpi+1|w ≤ |Πi|w+ |−−−−→pipi+1|w = |Πi+1|w. There-
fore, I3 remains true after i-th iteration (i.e., before
(i+ 1)-th iteration).
Case b) In Case b, the then part of the if statement
of the algorithm is entered and the visibility chain from
p′z to pi+1 is constructed. It is denoted by CC

pi+1

p′z
:

〈p′z, q1, . . . , qc, pi+1〉 ∈ W , where qj ∈ V , j = 1, . . . , c.
Then, the qj , from j = 1 to j = c, is appended to the
tail of Π′. Finally, p′z is updated to qc. In the remaining,
it is proved that the invariant holds.

Since CC
pi+1

p′z
is the visibility chain, it is easy to see

that all qi, i = 1, . . . , last, are represented by a node in
the graph, Gw, because they are vertices of W . There-
fore, I1 and I2 hold. In order to check if I3 holds, we
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need to analyze different cases. Each directed segment
in W is of one of the following types: 1. xy-increasing
2. x-increasing and y-decreasing 3. y-increasing and x-
decreasing 4. xy-decreasing. Therefore, there are 16

cases for the combination of two segments,
−−→
p′zpi and−−−−→pipi+1 (Figure 5). In all 16 cases, the orthogonal pro-

jection of CC
pi+1

p′z
onto the x-axis (resp. y-axis) is not

longer than the sum of the orthogonal projections of−−→
p′zpi and −−−−→pipi+1 onto the x-axis (resp. y-axis). There-

fore, |CCpi+1

p′z
|w ≤ |

−−→
p′zpi|w + |−−−−→pipi+1|w. Here we only

show the proofs for two cases of Figure 5 as the proofs
for the other cases are analogous.

Consider the case when both
−−→
p′zpi and −−−−→pipi+1 are y-

increasing and x-decreasing (see Case 6 in Figure 5). In
this case, since 4p′zpipi+1 lies in R(p′z, pi+1), by Lemma

2, |CCpi+1

p′z
|w = |−−→p′zpi|w + |−−−−→pipi+1|w. By inductive hy-

pothesis we have |Π′z|w + |−−→p′zpi|w ≤ |Πi|w. Add now
|−−−−→pipi+1|w to both sides of the inequality. We obtain
|Π′z|w + |CCpi+1

p′z
|w ≤ |Πi|w + |−−−−→pipi+1|w. It follows that

|Π′z+c|w + |−−−−→qcpi+1|w ≤ |Πi+1|w, where qc is the latest in-
serted vertex to the tail of Π′ and Π′z+c is the sub-path
of Π′ from index 1 to index z + c. Therefore, I3 holds.
The proofs for cases 1,11 and 16 are similar.

Now consider Case 9, when
−−→
p′zpi is xy-increasing and−−−−→pipi+1 decreases in both x and y axes (illustrated in Fig-

ure 6). In this case, |−−→p′zpi|w + |−−−−→pipi+1|w = 0 + |−−−−→pipi+1|w.

The vertical line that passes through pi+1 is denoted
by L⊥x . The horizontal line that passes through pi+1

is denoted by L⊥y . Suppose these lines are directed to-
ward +∞. The following two properties hold. First,
any directed segment of CC

pi+1

p′z
that lies on the left of

L⊥x is increasing in x. Therefore, they have a weighted
length zero in the x-dimension. Second, any directed
segment of CC

pi+1

p′z
that lies below L⊥y is increasing in

y. Therefore, they have a weighted length of zero in
the y-dimension. By these two properties, any directed
segment of CC

pi+1

p′z
: 〈p′z, q1, . . . , qc, pi+1〉 that lies on the

left of L⊥x and below L⊥y is xy-increasing and has the
weighted length zero.

Suppose −−−−→qrqr+1 is the first line segment in CC
pi+1

p′z
on

the right side of L⊥x that is x-decreasing. Since CC
pi+1

p′z
is a convex chain and is inside the triangle 4p′zpipi+1,
the sub-chain 〈qr, . . . , qc, pi+1〉 is x-monotone and its
weighted length in x-dimension is less than or equal to
the weighted length of−−−−→pipi+1 in x-dimension. Therefore,
the weighted length of CC

pi+1

p′z
in x-dimension is less

than or equal to the weighted length of −−−−→pipi+1 in x-
dimension.

It is analogous for the y-dimension. Suppose −−−−→ququ+1

is the first line segment in CC
pi+1

p′z
above L⊥y that is y-

decreasing. Since CC
pi+1

p′z
is a convex chain and is inside

the triangle 4p′zpipi+1, the sub-chain 〈qu, . . . , qc, pi+1〉

pi

pi+1

p′z
L⊥x

L⊥y
qr

qu

Figure 6: The segment from qr to qr+1 is the first line seg-
ment in CC

pi+1

p′z
on the right side of L⊥x that is x-decreasing.

The segment from qu to qu+1 is the first line segment in
CC

pi+1

p′z
above of L⊥y that is y-decreasing.

is y-monotone and its weighted length in y-dimension is
less than or equal to the weighted length of −−−−→pipi+1 in y-
dimension. Therefore, the weighted length of CC

pi+1

p′z
in

y-dimension is less than or equal to the weighted length
of −−−−→pipi+1 in y-dimension.

To conclude, the weighted length of CC
pi+1

p′z
, which is

the sum of the weighted length of CC
pi+1

p′z
in x- and y-

dimensions, is less than or equal to the weighted length
of −−−−→pipi+1, which is the sum of the weighted length of−−−−→pipi+1 in x- and y-dimensions. Thus, |CCpi+1

p′z
|w ≤

|−−−−→pipi+1|w = |−−→p′zpi|w + |−−−−→pipi+1|w. By inductive hypoth-

esis, |Π′z|w + |−−→p′zpi|w ≤ |Πi|w. By adding |−−−−→pipi+1|w to
the both sides of the inequality, we conclude |Π′z|w +

|CCpi+1

p′z
|w ≤ |Π′z|w + |−−→p′zpi|w + |−−−−→pipi+1|w ≤ |Πi|w +

|−−−−→pipi+1|w. It follows that |Π′z+c|w+ |−−−−→qcpi+1|w ≤ |Πi+1|w.
Therefore, I3 also holds for this case. The proofs for the
other remaining cases are similar. �
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Squeeze-Free Hamiltonian Paths in Grid Graphs

Alexandru Damian∗ Robin Flatland†

Abstract

Motivated by multi-robot construction systems, we in-
troduce the problem of finding squeeze-free Hamiltonian
paths in grid graphs. A Hamiltonian path is squeeze-free
if it does not pass between two previously visited ver-
tices lying on opposite sides. We determine necessary
and sufficient conditions for the existence of squeeze-free
Hamiltonian paths in staircase grid graphs. Our proofs
are constructive and lead to linear time algorithms for
determining such paths, provided that they exist.

1 Introduction

We introduce a problem motivated by collective con-
struction systems in which a large number of simple,
autonomous robots build complex structures using mod-
ular building blocks. Such systems are inspired by the
decentralized construction methods of termites and bees
in which global structure emerges from the efforts of
individual insects following seemingly simple rules and
using environmental cues. They are robust to failure be-
cause damaged robots are easily replaced, making them
suitable in uncertain and inhospitable environments.

In the TERMES collective construction system intro-
duced in [6], the modular building blocks are cubes that
are placed on a regular grid to form lattice-based struc-
tures. Robots move from cell to cell on the grid while
carrying a block, which they can attach to the struc-
ture at an adjacent cell. Physical limitations restrict
the class of structures that the robots can build and the
order in which they can attach the blocks. For example,
it is impossible for a robot to carry blocks down a corri-
dor one block wide, or to place a block directly between
two others. Inappropriate intermediate configurations
that can no longer be traversed by the robots should
therefore be avoided by proper robot coordination.

Coordination in the TERMES system is achieved by
precomputing a path that all robots follow while adding
blocks to the structure. The path starts at a grid cell on
the boundary of the final structure, visits each grid cell
of the final structure exactly once, and satisfies the re-
striction that the path may not “squeeze” into a cell that
has two previously visited cells adjacent to it on opposite
sides. We call such a path a squeeze-free Hamiltonian

∗Department of Computing Sciences, Villanova University, Vil-
lanova, PA, USA. adamian@villanova.edu
†Department of Computer Science, Siena College, Loudonville,

NY, USA. flatland@siena.edu

path. The problem thus reduces to finding a squeeze-
free Hamiltonian path in a grid graph. See Figure 1.

(b)(a)

Figure 1: (a) A squeeze-free path, and (b) a path in
which the last three vertices are squeezed between two
previously visited vertices on opposite sides.

To our knowledge we are the first to study the algo-
rithmic complexity of the squeeze-free Hamiltonian path
problem. In [6], their main focus is on engineering the
robots rather than algorithms, so they use an exponen-
tial time backtracking algorithm to compute the paths.
Computing Hamiltonian cycles in general grid graphs
is known to be NP-Complete [4], although the problem
can be solved in polynomial time for specialized classes
of grid graphs [5], [2]. See [1] for a survey and new re-
sults on Hamiltonicity of square, triangular, and hexag-
onal grid graphs. In other related work, [3] presents
an O(n2) algorithm for computing a partial ordering on
the placement of blocks subject to the squeeze-free con-
straint for 2D structures with holes. Here we take a first
step to understanding the complexity of the squeeze-free
Hamiltonian path problem by providing an O(t) algo-
rithm that determines for any staircase grid graph G
with t steps, if G has a squeeze-free Hamiltonian path
that starts at a boundary vertex located on a step of G.

2 Notation and Definitions

A grid graph is a graph induced by a finite subset of the
vertices of a square tiling of the plane. In this paper
we consider staircase grid graphs which consist of the
edges and vertices bounding a set of tiles whose union
forms the shape of a staircase extending rightwards and
upwards from the bottom leftmost vertex.

For a staircase grid graph G, let ∂G denote the por-
tion of the staircase boundary that extends clockwise
from the bottom leftmost vertex to the top rightmost
vertex of G. Refer to Figure 2. For any pair of ver-
tices a, b ∈ ∂G, let ∂G[a, b] denote the portion of ∂G
extending from a to b. For any vertex x, let xs, xw, xn
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Gne[x]

Gsw[x] Gse[x]

Gnw[x]

z1 z2 . . . zk

z1s z2s . . . zks

∂G

x
c

Γbot

Γtop

Γ[c]

h(x,Γbot)

v(x,Γbot)

Figure 2: Staircase grid graph. Only some of the inte-
rior grid vertices and edges are illustrated.

and xe refer to the vertices adjacent to x that lie south,
west, north and east of x, respectively (if such a vertex
exists). We sometimes double the subscript to refer,
for instance, to the vertex south of xe as xes. At each
vertex x ∈ G, the coordinate axes with origin x parti-
tion the plane into four quadrants. Let Gne[x], Gnw[x],
Gsw[x] and Gse[x] denote the subgraph of G that lies
entirely in the first, second, third and fourth quadrant,
respectively. We assume that each quadrant is closed,
so it includes the points on the bounding axes. Define
Gn[x] = Gne[x]∪Gnw[x], and similarly for Gs[x], Ge[x]
and Gw[x]. Let H be a (directed) Hamiltonian path in
G. For any two vertices a, b ∈ G, such that a is visited
by H before b, let H[a, b] denote the directed subpath
of H from a to b. A vertex v ∈ H is squeezed if ve and
vw are both visited before v, or if vn and vs are both
visited before v.

A corner is a boundary vertex on G with interior
angle π/2 (if convex) or 3π/2 (if reflex). For any con-
vex corner c ∈ ∂G, let Γ[c] denote the closed rectan-
gle bounded by the two line segments extending from c
to the next and previous corners located clockwise and
counterclockwise (respectively) from c. We refer to Γ[c]
as the step with corner c. The height of Γ[c] is the height
of the corresponding rectangle. The case where G con-
sists of a single step is trivial, so we assume that G has
at least two steps. We refer to the highest step of G as
Γtop and the lowest step as Γbot.

For any two vertices a, b ∈ G, let h(a, b) denote the
horizontal extent of the line segment ab, and let v(a, b)
denote the vertical extent of ab. For any vertex x ∈ G
and any staircase step Γ of G, let h(x,Γ) denote the
horizontal distance from x to the left side of Γ, and let
v(x,Γ) denote the vertical distance from x to the top
side of Γ. The following definition (depicted in Figure 2
for j = s) will play an important role in our discussion.

Definition 1 Let Z be a sequence of consecutive grid
points z1, . . . , zk lying on a horizontal (vertical) grid
segment. For a fixed j ∈ {s, n} (j ∈ {e, w}), we say

z z

yyw

ysw

(a) (b)

Figure 3: (a) pattern1 and (b) pattern2.

that the grid segments z1zk and z1jzkj form a zigzag
sequence in H if, for each i = 1, . . . , k, −−→zizij ∈ H if i is
odd, and −−→zijzi ∈ H if i is even.

We call a zigzag sequence separating if it extends be-
tween two boundary edges.

2.1 Hamiltonian Patterns

Let G′ ⊆ G be an arbitrary staircase subgraph of G. We
define two distinct Hamiltonian path patterns H1 and
H2 on G′, which will later be used in stitching a Hamil-
tonian path H for G. Each of these patterns is defined
for a fixed orientation for the first edge – say east – and
grows in a particular direction – say south – with the
understanding that the pattern can undergo rotations
and reflections as necessary to construct H. Each of H1

and H2 begins at a vertex on ∂G′. The first pattern
H1, which we refer to as pattern1, includes straight hor-
izontal path segments with orientations alternating east
and west on each row, and extending between boundary
points of G′. See Figure 3a. The second pattern H2,
which we refer to as pattern2, is identical to the first
pattern, with the only difference that, for each reflex
corner y, the straight horizontal subsegment extending
west from ysw is replaced by a subpath of unit height
that includes the zigzag sequence starting with −−−→yswyw
and extending west. See Figure 3b. Observe that both
patterns are squeeze-free.

3 Preliminaries

Here we prove some properties of squeeze-free Hamilto-
nian paths in G, if it has any. Therefore, throughout
this section, assume there exists a squeeze-free Hamil-
tonian path in G, and H is one such path.

Lemma 1 At any time during the traversal of H, there
can be no unvisited vertices between any two vertices a
and b on a grid line that have already been visited.

Proof. If there were unvisited vertices along the line
segment ab, then the vertex last visited among these
vertices would cause a squeeze. �
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Let p be a directed, simple path in G from a boundary
point x to a boundary point y. A vertex v ∈ G is said
to be left (right) of p if v 6∈ p and v is on or to the
left (right) of the oriented closed curve consisting of p
followed by the path counterclockwise (clockwise) along
the boundary of G from y to x.

Lemma 2 Let x be any boundary vertex of G, and let
y be a vertex of ∂G such that y ∈ Gne[x] and H visits
x before y. At the time y is visited, all vertices that
are left of H[x, y] and also in Ge[x] are visited, with the
possible exception of those vertices to the left of y on its
horizontal grid line.

Proof. For contradiction, suppose there is an unvisited
vertex z to the left of H[x, y] and in Ge[x] that is not
left of y on y’s horizontal grid line. E.g., in Figure 4a, z
may be any vertex in the shaded regions. Let d be the
intersection of an upward ray from x and a leftward ray
from y. (Note that d need not be in G, as illustrated in
Figure 4a.) To reach z from y, H must eventually either
traverse an edge −→vvs with v on dy, or it must traverse an
edge−→vve with ve on dx. (These edges, which are the only
edges taking H into the shaded regions containing z, are
depicted in Figure 4a.) In the first case, there must be
a previously visited vertex of H[x, y], call it u, located
below vs on its vertical grid line. Thus there is a time
during the traversal of H in which vs is unvisited and
between visited vertices v and u in the same vertical grid
line, which contradicts Lemma 1. In the second case
there is a previously visited vertex of H[x, y] located to
the right of ve on its horizontal grid line, which similarly
contradicts Lemma 1. �

Lemma 3 The end point e of H is one of the following
vertices: (i) a top corner of Γtop, (ii) a left corner of
Γbot, or (iii) the lowest rightmost corner of G.

Proof. Clearly e must be a convex corner, or else it is
squeezed between previously visited vertices. Suppose
for contradiction that e is a convex corner of a step that
is not Γtop or Γbot. Then the top left vertex x of Γbot

and the top left vertex y of Γtop are both visited before
e. Without loss of generality, assume x is visited before
y. (If y is visited before x, just rotate the staircase by
90o and reflect it across the vertical, thus reversing the
roles of x and y.) By Lemma 2, e must be visited before
y, a contradiction. �

Lemma 4 Let x ∈ G be the first vertex visited by H in
Gne[x] and let −−→xxn ∈ H. Then −−−→xnexe ∈ H and xne is
the first vertex visited by H in Gse[xne].

Proof. Because x is the first vertex visited in Gne[x],
H traverses −−→xxn before visiting xe. Therefore H cannot
enter xe from the east (because xe would be squeezed

x

y

H [x, y]

d v

vs

u

x

xn

c
Γ[c]

h(x,Γ[c]) = 3
y

yneyn

(a) (b)

Figure 4: (a) Lemma 2 (b) Lemma 7.

between vertices x and xee which would both be visited
before it) or the west (because −−→xxn ∈ H). It also can-
not enter it from the south via −−−→xsexe because H, which
begins on the boundary of G in a quadrant other than
Gne[x], would have to circle clockwise from xn around
to xse. In doing so, it crosses xe’s vertical grid line L
at a vertex above xe before reaching xse below it, thus
leaving xe unvisited between two visited vertices on L.
This contradicts Lemma 1. Therefore, −−−→xnexe ∈ H.

By Lemma 1, at the time −−−→xnexe is traversed, no vertex
south of xne on its vertical grid line is visited. Also by
Lemma 1, at the time xne is visited, no vertex east
of it on its horizontal grid line is visited (because xn
is already visited). Therefore, xne is the first vertex
visited by H in Gse[xne]. �

Lemma 5 Let i ∈ {n, s} and j ∈ {e, w}. Let x ∈ G
be the first vertex visited by H in Gij [x] and −−→xxj ∈ H
(−→xxi ∈ H). Then the two parallel grid lines containing
x and xj (xi) in Gij [x] form a zigzag sequence in H.

Proof. The case (i = n, j = e, −−→xxn ∈ H) follows im-
mediately from Lemma 4, by induction on the number
of vertices to the right of x. The other cases are similar
by symmetry of rotations and reflections. �

Lemma 6 If −→vw is the first edge visited in a zigzag se-
quence σ, the zigzag edges to each side of −→vw are visited
in sequential order starting with −→vw. (E.g., the edge ad-
jacent to (furthest from) −→vw on a side is visited first
(last) among all the edges on that side). If σ is sepa-
rating, then (i) if the last visited edge in σ points north
(west), then H ends in Γtop (Γbot), and (ii) if the last
visited edge in σ points south (east) then H does not
end in Γtop (Γbot).

Proof. The first claim of this lemma follows immedi-
ately from Lemma 1. By Lemma 3, H must end in either
a top corner vertex of Γtop, a left corner vertex of Γbot,
or the rightmost bottom corner of G. If the last visited
edge in σ points north, there is no way for H to return
to any of these end points other than the ones in Γtop.
The other claims follow from similar arguments. �

Due to space considerations, the proof of the following
lemma can be found in Appendix 7.
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Lemma 7 Let x be a vertex (interior or boundary) of
G. If x is first visited by H, from among all vertices of
Gne[x], then the following properties hold:

(1) If −−→xxn ∈ H, then for each step Γ[c] ⊂ Gne[x] of
odd height, either h(x,Γ[c]) is even, or c is the end
point of H.

(2) If −−→xxs ∈ H, then for each step Γ[c] ⊂ Gne[x] of odd
height, either h(x,Γ[c]) is odd, or c is the end point
of H.

The following lemma follows immediately from
Lemma 7 (by symmetry of rotations and reflections).

Lemma 8 Let x be a vertex (interior or boundary) of
G. If x is first visited by H, from among all vertices of
Gsw[x], then the following properties hold:

(1) If −−→xxw ∈ H, then for each step Γ[c] ⊂ Gsw[x] of
odd width, either v(x,Γ[c]) is even, or c is the end
point of H.

(2) If −−→xxe ∈ H, then for each step Γ[c] ⊂ Gsw[x] of odd
width, either v(x,Γ[c]) is odd, or c is the end point
of H.

4 Existence of a Squeeze-Free Hamiltonian Path

An algorithm we call VisitWest(G) constitutes a key
ingredient in our Hamiltonian path algorithm. It can
be applied on any staircase subgraph G that satisfies
the condition that, if x is the top right corner of G,
then v(x,Γ) is even for any step Γ of G of odd width.
It constructs a squeeze-free Hamiltonian path H that
starts at x and moves in the direction −−→xxw. From xw
H follows pattern1 until it reaches a step of G at odd
vertical distance from x, then it follows pattern2 until it
reaches a step of G at even vertical distance from x, then
repeats. See Figure 5a for an example and Appendix 8
for more details.

In building a Hamiltonian path for an arbitrary stair-
case graph G, we will use three other variations of
the VisitWest algorithm on various subgraphs of G
– namely VisitEast, VisitNorth and VisitSouth.
The algorithm VisitEast is similar to VisitWest,
with the only difference that the starting point is at
the top left corner and H begins by moving east. One
may view the path produced by VisitWest(Gsw[x]) as
composed of the subpath extending from x to the hori-
zontally opposite corner y (see Figure 5a), the edge −→yys,
and the path produced by VisitEast(Gsw[xs]). The
precondition for VisitEast(G) is that v(x,Γ) is odd
for each step Γ of G of odd width.

The algorithm VisitNorth is identical to Vis-
itWest, when operating on copy of G rotated clock-
wise by 90◦ and then reflected vertically. In this case,
the first edge in H is −−→xxn, where x is the lower left cor-
ner of G. The precondition for VisitNorth(G) is that

h(x,Γ) is even for each step Γ of G of odd height. The
algorithm VisitSouth is similar to VisitNorth, with
the only difference that the starting point is at the top
left corner of the lowest stair and H begins by mov-
ing south. The precondition for VisitSouth(G) is that
h(x,Γ) is odd for each step Γ of G of odd height. Thus
we have the following lemma.

Lemma 9 Let G be a staircase graph that satisfies
the preconditions of the VisitWest(East, North,
South) algorithm. The path H produced by running
VisitWest(East, North, South) on G is a squeeze-
free Hamiltonian path for G.

We now prove our main result in Theorems 10, 11,
and 12. The proofs of Theorems 11 and 12 are similar
to Theorem 10, so we leave their details for Appendix 9.

Theorem 10 Let x be a vertex on a horizontal segment
of ∂G that is not the top left corner of a step. There is
a squeeze-free Hamiltonian path H that starts at x and
includes −−→xxw if and only if the following three conditions
hold:

(1) For each step Γe of odd height lying east of x,
h(x,Γe) is odd. If the width of Gse[x] is odd, then
Γtop is exempt from this condition.

(2) For each step Γw of odd width lying west of x,
v(x,Γw) is even. If the height of Gse[x] is even,
then Γbot is exempt from this condition.

(3) If the height of Gse[x] is even, then the width of
Gse[x] is also even.

Proof. For the if direction, assume that the three con-
ditions hold. Our goal is to find a squeeze-free Hamil-
tonian path H in G.

If-Case 1. Consider first the case where the height of
Gse[x] is odd. (See Figure 5b.) By condition (2), any
step Γw of odd width lying west of x (including Γbot) sat-
isfies the restriction that v(x,Γw) is even. This implies
that Gsw[x] satisfies the precondition of the VisitWest
algorithm, so we begin with H =VisitWest(Gsw[x]).
(See Figure 5c). By Lemma 9 all vertices of Gsw[x] have
been visited by this method.

Let z be the vertex at the intersection between the
bottom boundary segment of G and the vertical line
through x. Because the height of Gse[x] is odd, H
points east into z. We let H take another step east (so−→zze ∈ H), then proceed depending on the parity of the
width of Gse[x]. If the width of Gse[x] is even, by con-
dition (1) each step Γe lying east of ze (including Γtop)
satisfies the restriction that h(ze,Γe) is even (because
h(z,Γe) is odd). This implies that Gne[ze] satisfies the
precondition of the VisitNorth algorithm, so we ap-
pend to H the path produced by VisitNorth(Gne[ze]).

The case where x is a reflex corner needs special at-
tention, because in this case the left side xy of the step
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Figure 5: (a) VisitWest(Gsw[x]). (b) Theorem 10: Gse[x] has odd height and width. (c) Hamiltonian path.

Γ[y] with lower left corner x is not in Gne[ze]. In this
case h(x,Γ[y]) = 0 is even, and by condition (1) the
height of Γ[y] is even. This allows us to replace the
vertical segment in H running alongside xy by a zigzag
subpath of unit width that includes all vertices on the
segment xy (similar to the pattern2 procedure). This
along with Lemma 9 guarantees that, at the end of this
procedure, all vertices of G have been visited.

If the width of Gse[x] is odd (as in Figure 5c), condi-
tion (1) allows h(x,Γtop) to be even and Γtop to be of odd
height. In this case h(ze,Γtop) is odd and Gne[ze] does
not satisfy the precondition imposed by VisitNorth.
We handle this situation by restricting our attention to
the subgraph G′ne[ze] obtained from Gne[ze] after elim-
inating Γtop, with the exception of the lowest row of
vertices in Γtop. (The subgraph G′ne[ze] is shaded in Fig-
ure 5c.) Note that G′ne[ze] satisfies the precondition of
VisitNorth, so we append to H the path produced by
VisitNorth(G′ne[ze]). By Lemma 9, at the end of this
procedure all vertices of G′ne[ze] have been visited. If x
is a reflex corner, H absorbs the vertices along the ver-
tical boundary segment sitting on x as described above.
At this point, H is a squeeze-free Hamiltonian path for
Gsw[u], where u is the lower right corner u of Γtop.

Because the width of Gse[x] is odd, at the end of Vis-
itNorthH points north into u. We add −−→uun and −−−→unune
to H, then let H follow pattern1 (reflected vertically)
across Γtop until all vertices of G have been visited. The
result is a squeeze-free Hamiltonian path for G.

If-Case 2. The case when Gse[x] has even height is
similar and omitted for space considerations. See Ap-
pendix 9.

For the only-if direction, assume that there is a
squeeze-free Hamiltonian path H in G. We next show
that the three theorem conditions hold. We begin with
the following two observations. Refer to Figure 5b.

(a) Because x is the start point of H and −−→xxw ∈ H (by

the theorem statement), by Lemma 5 the two right-
most columns in Gsw[x] form a separating zigzag
sequence σx.

(b) By Lemma 1, −−−→xeexe 6∈ H. In addition, −−−→xnexe /∈ H,
because such an edge could only exist in H if x
or xe were a reflex corner, and in either case it
would require that H[x, xne] intersect a vertical line
L through xe both above and below xe, which con-
tradicts Lemma 1. Therefore −−−→xsexe ∈ H. We claim
that none of the vertices in Gne[xse] has been vis-
ited at the time xse is visited. Otherwise, if there
were such a vertex y ∈ Gne[xse] already visited at
the time xse is visited, then H[x, y] would have to
intersect the horizontal line L passing through xse
in two vertices on either side of xse, leaving xse
unvisited between two visited vertices on L. This
contradicts Lemma 1. Thus we are in the context
of Lemma 5, with xse being first visited among all
vertices of Gne[xse] and −−−→xsexe ∈ H, therefore the
two bottom rows of Gne[xse] form a zigzag sequence
σe.

Condition (1). By observation (b) above, xse is the
first visited by H among all vertices of Gne[xse], and−−−→xsexe ∈ H. Thus we can use the result of Lemma 7 on
Gne[xse] to show that, for each step Γe of odd height
other than Γtop, h(xse,Γe) is even and h(x,Γe) = 1 +
h(xse,Γe) is odd. If the width of Gse[x] is even, then
the rightmost edge in σe points south. By Lemma 6,
the end point of H lies outside of Γtop. Thus Lemma 7
applies to show that, if the height of Γtop is odd, then
h(x,Γtop) is odd. Thus condition (1) holds.

Condition (2). Because x is the start point of H and−−→xxw ∈ H, we can use the result of Lemma 8 on Gsw[x]
to show that, for each step Γw of odd width other than
Γbot, v(x,Γw) is even. If the height of Gse[x] is odd
(see Figure 5b), then the lowest edge in σx points east.
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By Lemma 6, the end point of H is not in Γbot. Thus
Lemma 7 applies to show that, if the width of Γbot is
odd, then v(x,Γbot) is even. Thus condition (2) holds.

Condition (3). Assume that the height of Gse[x] is
even. Because it is even, the lowest edge in σx points
west. By Lemma 6, the end point of H lies in Γbot. This
implies that the rightmost edge in σe points south (oth-
erwise H would end in Γtop). Because −−−→xsexe ∈ σe points
north (see observation (b)), this is possible only if σe has
odd length. This implies that Gse[x] has even width, so
condition (3) holds. This completes the proof. �

Theorem 11 Let x ∈ ∂G be a vertex on a horizontal
segment of a step Γ[c] of G, such that removing xxs does
not disconnect G. Let Γ[c1] be the first odd width step
that lies west of x (if one exists). There is a squeeze-free
Hamiltonian path H that starts at x and includes −−→xxs
if and only if the following conditions hold:

(1) For each step Γe of odd height lying east of x,
h(x,Γe) is odd. If the width of Gse[x] is odd, then
Γtop is exempt from this restriction.

(2) If c1 exists, then for each step Γw of odd width ly-
ing west of Γ[c1], v(c1,Γw) is even. If the height
of Gse[c1] is even, then Γbot is exempt from this
restriction.

(3) If c1 exists and the height of Gse[c1] is even, then
the width of Gse[x] is also even.

(4) If x does not lie on Γbot, then |xc| is even.
(5) If |xc| is odd, then the width of Gse[x] is even.

Theorem 12 Let x ∈ ∂G be a vertex on a horizontal
segment of a step Γ[c] of G, such that removing xxe does
not disconnect G. Let Γ[c2] be the first odd height step
that lies east of x (if one exists). There is a squeeze-free
Hamiltonian path H that starts at x and includes −−→xxe
if and only if the following conditions hold:

(1) For each step Γw of odd width lying west of x,
v(x,Γw) is odd. If the height of Gse[x] is odd, then
Γbot is exempt from this restriction.

(2) If c2 exists, then for each step Γe of odd height ly-
ing east of Γ[c2], h(c2,Γe) is even. If the width of
Gse[c2] is even, then Γtop is exempt from this re-
striction.

(3) If c2 exists and the width of Gse[c2] is even, then
the height of Gse[x] is also even.

(4) If x does not lie on Γbot, then |xc| is even.
(5) If |xc| is odd, then the height of Gse[x] is odd.
(6) If c2 exists and h(x, c2) = 0, then Γ[c2] = Γtop, |xc|

is even, and the height of Gse[x] is even.

The case where the first edge in H is −−→xxn is symmetric
to the case where the first edge in H is −−→xxw (subject
to a 90◦ clockwise rotation and a vertical reflection).
Similarly, the case where the start point x of H is on
a vertical staircase segment is symmetric to the case
where x is on a horizontal staircase segment.

5 Complexity of the Decision Problem

Using a sweep line algorithm described in Appendix 10,
we have the following result.

Theorem 13 Given a staircase grid graph G repre-
sented as a sequence of t pairs of numbers indicating
the height and width of each step in order from left to
right, there is an O(t) algorithm that decides whether G
admits a squeeze-free Hamiltonian path starting from a
vertex on ∂G.

6 Conclusions

In this paper we give an O(t) algorithm for deciding
if a staircase grid graph with t steps has a squeeze-
free Hamiltonian path starting at a boundary vertex
on a step. Although not included here, we can use the
same proof techniques to determine similar necessary
and sufficient conditions for the existence of such paths
starting from the bottom or right side of the staircase.
We conjecture though that if there exists a squeeze-free
Hamiltonian path starting at the bottom or right side,
then there also exists a squeeze-free Hamiltonian path
starting from a vertex on a step.
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Appendix

7 Proof of Lemma 7 from Section 3

This section contains the proof of Lemma 7 that was omitted
from the body of the paper due to space considerations. We
begin with Lemma 14 which is referenced in Lemma 7.
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Figure 6: (a) Lemma 14. (b) Lemma 7

Lemma 14 Let x be the start point of H. For any reflex
corner vertex r ∈ Gne[x] (r ∈ Gsw[x]), r is first visited
among all vertices in Gne[r] (Gsw[r]).

Proof. Let r ∈ Gne[x] be an arbitrary reflex corner vertex,
and let Γ[c] be the step with top right corner vertex r. Be-
cause r is a reflex corner, rn and rw exist. No vertex y ∈ ∂G
above r can be visited before r by Lemma 2. Therefore rn
is visited after r. So assume for contradiction that there is
some other vertex y ∈ Gne[r] that is visited by H prior to
r. See Figure 6a. Then there is a vertex r′ to the right of
r, at the intersection between the horizontal through r and
H[x, y]. By Lemma 1, rw is not visited at the time r is vis-
ited (because r′ is already visited). But H[x, r], which links
two boundary vertices, splits G into two pieces, and H can-
not visit both unvisited vertices rn (to the right of H[x, r])
and rw (to the left of H[x, r]) without crossing itself. The
arguments for the case r ∈ Gsw[x] are symmetric. �

Lemma 7 Let x be a vertex (interior or boundary) of G.
If x is first visited by H, from among all vertices of Gne[x],
then the following properties hold:

(1) If −−→xxn ∈ H, then for each step Γ[c] ⊂ Gne[x] of odd
height, either h(x,Γ[c]) is even, or c is the end point of
H.

(2) If −−→xxs ∈ H, then for each step Γ[c] ⊂ Gne[x] of odd
height, either h(x,Γ[c]) is odd, or c is the end point of
H.

Proof. For (1), assume for contradiction that there exists a
step Γ[c] ⊂ Gne[x] of odd height such that h(x,Γ[c]) is odd
and c is not the end point of H. Refer to Figure 4b. Let y
be the left bottom corner of Γ[c]. Consider the three pos-
sible directions from which H might visit yn. Observe that
−−−→ynnyn /∈ H, because if it were then subpath H[x, ynn] would
have to intersect the vertical line L passing through yn in
two vertices on either side of yn, leaving yn unvisited be-
tween two visited vertices on L. This contradicts Lemma 1.
So consider the case when −−−→yneyn ∈ H. Then yne is the first

vertex visited in Gnw[yne] (otherwise, if there were a ver-
tex y′ ∈ Gnw[yne] visited prior to yne, then the subpath
H[x, y′] would cross the vertical through yne at two vertices
on either side of yne, contradicting Lemma 1). Thus we can
apply Lemma 5 to show that −−−→yneyn is the start of a zigzag
sequence in Gnw[yne], and because |yc| is odd, the last edge
in the zigzag is directed into corner c, thus H ends at c. This
contradicts our assumption that H does not end at c, and
thus −−−→yneyn 6∈ H.

Before completing the proof of property (1), first observe
that by Lemma 5, the bottom two rows of Gne[x] form a
zigzag sequence. Refer to Figure 6b. Because h(x,Γ[c]) is
odd and the zigzag starts with the upward directed edge−−→xxn,
the zigzag edge in c’s vertical grid line points downward.
Label this edge −→zzs. Now consider the last case for property
(1) which is when −−→yyn ∈ H. By Lemma 14, y is first visited
among all vertices in Gne[y]. By Lemma 5, −−−→yneye ∈ H, which
points in a direction opposite to that of −−−→zseze, contradicting
Lemma 1.

For property (2), note that because −−→xxs ∈ H, no vertex
below x on its vertical line is visited before x. This com-
bined with the fact that x is the first vertex visited in Gne[x]
shows that x is also the first vertex visited in Gse[x]. Thus
by Lemma 5, the upper two rows of Gse[x] form a zigzag
sequence, with the first edge, −−→xxs, pointing downward. The
rest of the proof is analogous to the proof of property (1). �

8 Additional Details For VisitWest from Section 4

Algorithm 1 details the VisitWest algorithm. See Figure 5a
for an example.

Algorithm 1: VisitWest(staircase G)

Precondition: Let t be the upper right corner of
G. For each step Γ of G of odd width, v(t,Γ) is
even.

Initialize x← t and H ← {−−→xxw}. Let b be the
lower left corner of G.
repeat

Let y1 be the reflex corner west of x closest to
x, such that v(x, y1) is odd.
If no such vertex exists, then y1 ← b.
Let y2 be the reflex corner west of y1 closest to
y1, such that v(y1, y2) is odd.
If no such vertex exists, then y2 ← b.
From x, let H follow pattern1 south-west until
it meets y1.
From y1, let H follow pattern2 south-west until
it meets y2.
Reset x← y2.

until all vertices of G have been visited ;
Output H.
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Figure 7: (a) Theorem 10: Gse[x] has even height and even width. (b) Hamiltonian path.

9 Proofs of Theorems 10,11, and 12 from Section 4

We begin by supplying the portion of the proof of Theo-
rem 10 that was omitted in the body of the text.

Omitted Portion of Theorem 10 proof: If-Case 2.
Consider now the case where the height of Gse[x] is even,
as depicted in Figure 7a. By condition (3), the width of
Gse[x] is also even. Let G′ be the graph obtained from G af-
ter eliminating all vertices on the lowest boundary segment
of G, along with all vertices in Γbot, with the exception of
those lying on the right boundary segment of Γbot. (G′ is
shown shaded in Figure 7b.) Thus G′se[x] is of odd height
and even width. We trace H across G′se[x] using the same
procedure as described above for the case where Gse[x] was
of odd height and even width. It can be verified that, at
the end of this procedure, H points south into the lower
right corner of G′. At this point H takes a unit step south,
then continues west along the bottom boundary segment of
G up to the vertex pw, where p is the lower right corner
of Γbot. From pw H follows pattern1 (rotated counterclock-
wise by 90◦ and reflected vertically) until all vertices of Γbot

have been visited. At that point, all vertices of G have been
visited, and H is a squeeze-free Hamiltonian path for G.

We now provide complete proofs of Theorems 11 and 12.

Theorem 11 Let x ∈ ∂G be a vertex on a horizontal seg-
ment of a step Γ[c] of G, such that removing xxs does not
disconnect G. Let Γ[c1] be the step of odd width closest to
x that lies west of x (if one exists). There is a squeeze-free
Hamiltonian path H that starts at x and includes −−→xxs if and
only if the following five conditions hold:

(1) For each step Γe of odd height lying east of x, the hor-
izontal distance h(x,Γe) is odd. If the width of Gse[x]
is odd, then Γtop is exempt from this restriction.

(2) If c1 exists, then for each step Γw of odd width lying
west of Γ[c1], the vertical distance v(c1,Γw) is even. If
the height of Gse[c1] is even, then Γbot is exempt from
this restriction.

(3) If c1 exists and the height of Gse[c1] is even, then the
width of Gse[x] is also even.

(4) If x does not lie on Γbot, then |xc| is even.

(5) If |xc| is odd, then the width of Gse[x] is even.

Proof. We consider each of the two directions (if, and only
if) in turn.

If direction. For the if direction, assume that the five con-
ditions hold. Our goal is to find a squeeze-free Hamiltonian
path H in G. Let b be the lower left corner of Γbot.

If-Case 1. Consider first the case where either of the fol-
lowing is true: (i) c1 does not exist and |xc| is even, and (ii)
c1 exists and the height of Gse[c1] is odd. In the latter case
x may not lie on Γbot (due to the existence of c1), and by
condition (4) |xc| is even.

Define d = c1 if c1 exists (see Figure 8), and d = bn
otherwise (see Figure 9a). Let y be the intersection point
between the vertical through x and the horizontal through
d. In either case, ys exists. (Note that in case (i) when x is
the top left corner of Γ[bot], Gnw[y] degenerates to a vertical
line segment.) Otherwise, by the definition of c1 and the fact
that |xc| is even, every step in Gnw[y] has even width. In
either case pattern1 (starting with −−→xxs) can be used to visit
all vertices of Gnw[y] (regardless of the existence of c1). We
let H follow this path until it reaches the lower left corner d1

of Gnw[y], coming from north (so
−−−→
d1nd1 ∈ H). If d1w exists,

H continues west as far as it can go (up to c1 in Figure 8b).
Next H takes a step south.

Let z be the intersection point between the vertical
through x and the bottom boundary segment of G. If c1
does not exist, z = ys and H continues east up to ze (see Fig-
ure 9a). If c1 exists, H visits all vertices of Gsw[ys] on its
way to ze as follows. By condition (2), any step Γw of odd
width lying west of c1 (including Γbot) satisfies the restriction
that v(c1,Γw) is even. This implies that v(c1s,Γw) is odd,
so the precondition of VisitEast restricted to the subgraph
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Figure 8: Theorem 11: (a) Gse[c1] has odd height (b) Hamiltonian path H.
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Figure 9: Theorem 11, x ∈ Γbot (a) |xc| even (b) |xc| odd.

Gsw[ys] (see left shaded subgraph in Figure 8b) is satisfied.
We append to H the path produced by VisitEast(Gsw[ys]).
Using the result of Lemma 9, it can be verified that at this
point H is a squeeze-free Hamiltonian path in Gnw[z]. Let
H take another step −→zze.

If the width of Gse[x] is even, or if Γtop has even height,
then by condition (1) h(x,Γe) is odd for every step Γe of odd
height lying east of x. Then h(ze,Γe) is even and therefore
the precondition of VisitNorth is satisfied when restricted
to Gne[ze] (see right shaded subgraph in Figure 8b). We
append to H the path produced by VisitNorth(Gne[ze]).

The case where x is a reflex corner needs special attention,
because in this case the left side xy of the step Γ[y] with lower
left corner x is not in Gne[ze]. In this case h(x,Γ[y]) = 0 is
even, and by condition (1) the height of Γ[y] is even. Then we
can replace the vertical segment in H running alongside xy
by a zigzag subpath of unit width that includes all vertices
on the segment xy (similar to the pattern2 procedure). This
along with Lemma 9 guarantees that, at the end of this
procedure, all vertices of G have been visited.

Finally, consider the situation where the width of Gse[x]
is odd and Γtop has odd height. Let G′ be the subgraph

of G obtained by removing the top row of vertices in Γtop.
Then the top step in G′ has even height. This along with
condition (1) shows that G′ne[ze] satisfies the precondition
of VisitNorth, so we let H follow the path produced by
VisitNorth(G′ne[ze]). If x is a reflex corner of G, we ad-
just H as described above so that it visits all vertices on the
vertical boundary segment incident on x. This along with
Lemma 9 guarantees that H is a squeeze-free Hamiltonian
path for G′. Because Gse[x] has odd width, H ends up point-
ing north into top right corner of G′. Let H take another
step north, then west all the way to the top left corner of
Γtop. The resulting path is a squeeze-free Hamiltonian path
for G.

If-Case 2. Consider now the case where either of the fol-
lowing is true: (i) c1 does not exist and |xc| is odd, and (ii)
c1 exists and the height of Gse[c1] is even. In either case,
conditions (3) and (5) guarantee that the width of Gse[x] is
even. If |xc| is odd, by condition (4) x lies on Γbot.

Define d = c1 if c1 exists (see Figure 10), otherwise d = b
(see Figure 9b). Let y be the intersection point between
the vertical through x and the horizontal through d. By
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Figure 10: Theorem 11: (a) Gse[c1] has even height (b) Hamiltonian path H.

condition (1), for any step Γe of odd height lying east of
x (including Γtop), h(x,Γe) is odd. Thus the precondition
of VisitSouth restricted to the subgraph Gne[yn] (see top
shaded subgraph in Figures 10b and 9b) is satisfied. Let H
follow the path produced by VisitSouth(Gne[yn]). By The-
orem 9, H is a squeeze-free Hamiltonian path for Gne[yn].
Because the width of Gse[x] is even, H ends up pointing
south into the lower right corner of Gne[yn]. Let H take
another step south, then west all the way to yw. As in the
previous case, from yw the path H follows pattern1 (start-
ing with −−−−→ywynw) restricted to Gnw[yw]. If x lies on Γbot,
pattern1 completes a squeeze-free Hamiltonian path for G
(see Figure 9b).

If x does not lie on Γbot, the width of Gnw[yw] is even
and therefore H arrives at the top right corner d1 of Γ[c1]
coming from north. Refer to Figure 10b. At this point H
is a squeeze-free Hamiltonian path of Gne[d1]. From d1 H
continues west until it reaches c1, then takes a step south.
If Γ[c1] is identical to Γbot, then VisitEast(Gse[c1s]) com-
pletes a squeeze-free Hamiltonian path for G.

Assume now that Γ[c1] is not identical to Γbot. Let G′

be the subgraph of G obtained by removing the vertices in
Γbot, with the exception of the rightmost vertex column in
Γbot. Let z be the intersection point between the horizontal
through c1s and the right boundary segment of G. From c1s,
H follows the path produced by VisitEast(G′sw[z]), up to
the lower right corner p of Γbot. Condition (2) guarantees
that the precondition of VisitEast is satisfied, so at this
point H is a squeeze-free Hamiltonian path of Gne[p] (by
Lemma 9). Because the height of G′sw[z] is odd, H arrives
at p from east, so −→pep ∈ H. We let H take another step east,
then trace pattern1 (rotated counterclockwise by 90◦ and
reflected vertically) across Γbot to complete a squeeze-free
Hamiltonian path for G.

Only if direction. For the only-if direction, assume that
there is a squeeze-free Hamiltonian path H in G. We next
show that the five lemma conditions hold. We begin with
two observations:

(a) Because x is the starting point of H and −−→xxs ∈ H (by
the theorem statement), we can use Lemma 5 to show

that the top two rows in Gs[x] form a separating zigzag
sequence σx (see Figure 11).

(b) Assuming that c1 exists, let d be the top right corner of
Γ[c1]. By Lemma 14 d is first visited among all vertices

in Gsw[d]. If
−−→
ddw ∈ H, by Lemma 5 the rightmost two

columns of Gsw[d] form a separating zigzag sequence σd

(see Figure 11a).

If
−−→
ddw 6∈ H, then

−−−−→
dswdw ∈ H (as the only way to reach

dw). Also note that dsw is first visited among all ver-
tices in Gnw[dsw]. Otherwise, if there were a vertex
y ∈ Gnw[dsw] already visited at the time dsw is visited,
then H[x, y] would have to intersect the horizontal line
L passing through dsw in two vertices on either side
of dsw, leaving dsw unvisited between two visited ver-
tices on L. This contradicts Lemma 1. By Lemma 5,
the two rows of Gnw[dsw] form a zigzag sequence σw

(see Figure 11b). Because the width of Γ[c1] is odd (by
definition), the leftmost edge in σw is −−−→c1sc1, therefore
c1 is the end point of H.

Condition (1). Let Γe = Γ[ce] be an arbitrary step of odd
height lying east of x (if no such step exists, there is nothing
to prove). By Lemma 7, either h(x,Γe) is odd or ce is the
end point of H. If Γe 6= Γtop, then by Lemma 3 ce cannot
be the end point of H, so condition (1) holds. Assume now
that Γe = Γtop and the width of Gse[x] is even. In this case
the rightmost edge in σx points south, and by Lemma 6 H
many not end in Γtop. Thus Lemma 7 applies again to show
that h(x,Γe) is odd, so condition (1) holds.

Condition (2). Assume that c1 exists and let Γw = Γ[cw]
be an arbitrary step of odd width lying west of c1 (if no such
step exists, there is nothing to prove). Note that Γ[c1] 6=
Γtop because of the existence of Γ[c], and there is nothing to
prove if Γ[c1] = Γbot. By Lemma 3, H may not end at c1.

This along with observation (b) above implies that
−−→
ddw ∈ H

(otherwise H would end at c1). By Lemma 8 either v(c1,Γw)
is even or cw is the end point of H. If Γw 6= Γbot, then by
Lemma 3 cw cannot be the endpoint of H, so condition (2)
holds. Assume now that Γw = Γbot and that the height of
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Figure 11: Theorem 11, only-if direction (a)
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Gse[c1] is odd. In this case the lowest edge in σx points east,
and by Lemma 6 H cannot end in Γbot. This implies that
cw is not the endpoint of H, so condition (2) holds.

Condition (3). Assume that c1 exists and the height of
Gse[c1] is even. Note that Γ[c1] 6= Γtop due to the existence
of Γ[c]. We prove by contradiction that the width of Gse[x] is
even. Assume to the contrary that the width ofGse[x] is odd.
Then the rightmost edge in σx points north (see Figure 11a),
and by Theorem 6 H must end in Γtop. This along with

observation (b) above implies that
−−→
ddw ∈ H (otherwise H

would end at c1). Because
−−→
ddw ∈ H and the height of Gse[c1]

is even, the lowest edge in σd points west. By Lemma 6 H
must end in Γbot, a contradiction. We conclude that the
width of Gse[x] is even.
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Figure 12: Theorem 11, only-if direction, x ∈ Γtop (a)
qw exists (b) qw does not exist.

Condition (4). Assume that x 6∈ Γbot. We prove by con-
tradiction that |xc| is even. Assume to the contrary that |xc|
is odd. In this case −→csc ∈ H is the leftmost edge in σx, so H
ends at c. Because Γ[c] 6= Γbot, Lemma 3 implies that c is
the top left corner of Γtop.

Let q ∈ G be such that qc is the longest vertical subpath of
H that ends at c. Refer to Figure 12. Then either −−→qwq ∈ H
or −→qeq ∈ H (as the only way to reach q). Note that −−→qwq
would create a squeeze at q, because H must have visited

qe prior to q. Thus −−→qwq 6∈ H and therefore −→qeq ∈ H. This
implies that qw does not exist (otherwise H would create
a squeeze at q). Because G has at least two steps (by our
problem statement) we conclude that q lies above the lower
left corner of Γtop, and qse exists. Note that all three vertices
qse, qne and qee must have been visited prior to qe, so any
of −−−→qseqe, −−−→qneqe and −−−→qeeqe would create a squeeze of qe. This
means that H has no way of reaching qe, contradicting the
fact that H is Hamiltonian. We conclude that |xc| is even.

Condition (5). Assume that |xc| is odd. By condition (4),
x ∈ Γbot. In this case −→csc ∈ σx, so H ends at c. If the width
of Gse[x] is odd, then the rightmost edge in σx points north,
and by Lemma 6 H ends in Γtop, a contradiction. Thus
the width of Gse[x] is even and condition (5) holds. This
completes the proof. �

Theorem 12 Let x ∈ ∂G be a vertex on a horizontal seg-
ment of a step Γ[c] of G, such that removing xxe does not
disconnect G. Let Γ[c2] be the step of odd height closest to
x that lies east of x (if one exists). There is a squeeze-free
Hamiltonian path H that starts at x and includes −−→xxe if and
only if the following six conditions hold:

(1) For each step Γw of odd width lying west of x, the ver-
tical distance v(x,Γw) is odd. If the height of Gse[x] is
odd, then Γbot is exempt from this restriction.

(2) If c2 exists, then for each step Γe of odd height lying
east of Γ[c2], the horizontal distance h(c2,Γe) is even.
If the width of Gse[c2] is even, then Γtop is exempt from
this restriction.

(3) If c2 exists and the width of Gse[c2] is even, then the
height of Gse[x] is also even.

(4) If x does not lie on Γbot, then |xc| is even.

(5) If |xc| is odd, then the height of Gse[x] is odd.

(6) If c2 exists and h(x, c2) = 0, then Γ[c2] = Γtop, |xc| is
even, and the height of Gse[x] is even.

Proof. We consider each of the two directions (if, and only
if) in turn.
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If direction. For the if direction, assume that the five con-
ditions hold. Our goal is to find a squeeze-free Hamiltonian
path H in G. Let z be the intersection point between the

xc zw

c2 (end)

z

zsw

zn
xw

x1 = xc
y

td = tw

a

d1

zs

z

(end)

(a) (b)

Figure 13: Theorem 12 (a) h(x, c2) = 0 (b) c2 does not
exist and x ∈ Γbot.

horizontal through x and the right boundary segment of G.

If-Case 1. We begin with the simplest case where c2 exists
and h(x, c2) = 0. Refer to Figure 13a. By condition (6) |xc|
is even and the height of Gse[x] is even. In this case H
proceeds east until it reaches zw, then takes one step south.
By condition (1) v(x,Γw) is odd for every step Γw of odd
width lying west of x. Thus v(zsw,Γw) is even and therefore
the precondition of VisitEast is satisfied when restricted to
Gsw[zsw] (see shaded subgraph in Figure 13a). We append to
H the path produced by VisitEast(Gsw[zsw]). If xw exists,
we replace the segment in H running along xwc by a zigzag
subpath of unit height (starting with −−−−→xswxw) that includes
all vertices on xwc. Because |xc| is even, this subpath ends
with−→ccs and attaches seamlessly to the subpath ofH starting
at cs. This along with Lemma 9 guarantees that, at this
point, all vertices of Gsw[zw] have been visited. Because the
height of Gse[x] is even, H ends pointing east into the lower
right corner of Gsw[zw]. We let H take another step west to
meet the the right boundary segment of G, then north up to
zn. Because h(x, c2) = 0, by condition (6) Γ[c2] = Γtop, so
we let H follow pattern1 (starting with −−−→znznw) to complete
a squeeze-free Hamiltonian path for G.

If-Case 2. Consider now the case where either c2 does
not exist, or c2 exists and h(x, c2) > 0. Define the follow-
ing points: b be the lower left corner of G; t is the upper
right corner of G; d = d1 = tw if c2 does not exist (see Fig-
ure 13b), else d = c2 and d1 is the lower reflex corner of Γ[c2]
(see Figure 14a); and y is the intersection point between the
horizontal through x and the vertical through d.

If x is not a reflex corner, H proceeds east from x until
it reaches the first reflex vertex a. By the definition of c2,
every step in Gnw[y] has even height See the top left shaded
subgraph Gnw[y] in Figure 14a for an example. This implies
that pattern1 (starting with −→aae) can be used to visit all
vertices of Gnw[y] (regardless of the existence of c2). We let
H follow this path until it reaches d1 coming from the west

(so
−−−→
d1wd1 ∈ H). If d1n exists, H continues north as far as it

can go (up to d). Next H takes a step east, then continues
south all the way down to ye. From here the path taken by
H depends on the parity of the width of Gse[c2].

If-Case 2a. Assume first that the width of Gse[c2] is odd.
Note that if c2 does not exist, ye coincides with z and H
points south into z (see Figure 13b). Otherwise, if ye does
not coincide with z, then yee exists and is not on the bound-
ary of G, because the width of Gse[c2] is odd. In this case
H visits all vertices of Gne[yee] on its way to z as follows.
By condition (2), any step Γe of odd height lying east of c2
(including Γtop) satisfies the restriction that h(c2Γe) is even.
This implies that h(yee,Γe) is also even, so the precondition
of VisitNorth restricted to the subgraph Gne[yee] (see top
right shaded subgraph in Figure 14a) is satisfied. We append
to H the path produced by VisitNorth(Gne[yee]). Using
the result of Lemma 9, it can be verified that at this point H
is a squeeze-free Hamiltonian path in Gnw[z]. Because the
width of Gse[c2] is odd (by our assumption), H arrives at z
from north, so −→znz ∈ H. Let H take another step −→zzs.

If the height of Gse[x] is even, H continues along the path
produced by VisitEast(Gsw[zs]). Arguments similar to the
ones used in the first case show that at the end of this visit,
H is a squeeze-free Hamiltonian path for G.

Assume now that the height of Gse[x] is odd, as depicted
in Figure 14a. Let x1 = x if x is on Γbot (see Figure 13b),
otherwise x1 is the top right corner of Γbot (see Figure 14a).
Let G′ be the subgraph obtained by removing from G all
vertices left of the vertical through x1. Condition (1) guar-
antees that, for each step Γw of odd width lying west of
x, v(x,Γw) is odd. This implies that G′sw[zs] satisfies the
precondition of VisitEast, so we let H follow the path pro-
duced by VisitEast(G′sw[zs]). If x is not on Γbot, by condi-
tion (4) |xc| is even. In this case we adjust H to incorporate
all vertices on the horizontal boundary segment xwc (if such
vertices exist), as in the first case discussed above. At this
point H is a squeeze-free Hamiltonian path for G′. Because
Gse[x] has odd height, H ends up pointing west into the
lower left corner of G′. Let H take another step west, then
follow pattern1 across the vertices in G \G′. The resulting
path H is a squeeze-free Hamiltonian path for G.

If-Case 2b. Assume now that the width of Gse[c2] is even.
Refer to Figure 14b. By condition (3) the height of Gse[x]
is also even. By condition (5) |xc| is even. By condition
(1), for each step Γw of odd width lying west of x (includ-
ing Γbot), v(x,Γw) is odd. This implies that v(yse,Γw) is
even, so the precondition of VisitWest restricted to the
subgraph Gsw[yse] (see lower left shaded subgraph in Fig-
ure 14b) is satisfied. Let H follow the path produced by
VisitWest(Gsw[yse]). If |xc| > 0, we adjust H to incor-
porate all vertices on the horizontal boundary segment xwc,
as discussed above. Because |xc| is even, this adjustment is
possible. Because the height of Gse[x] is even, H ends up
pointing east into the lower right corner u of Gsw[ye]. At
this point H is a squeeze-free Hamiltonian path for Gnw[u].
Let H take another step east, so −−→uue ∈ H.

Let G′ be the graph obtained by removing from G all ver-
tices above the bottom row in Γtop. By condition (2), for
each step Γe of odd height in G′ lying east of c2, h(c2,Γe) is
even. Then h(ue,Γe) is also even. This implies that the pre-
condition of VisitNorth restricted to the subgraph G′ne[ue]
(see right shaded subgraph in Figure 14b) is satisfied. Let
H follow the path produced by VisitNorth(G′ne[ue]). Be-
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Figure 14: Path H from Theorem 12; the width of Gse[c2] is (a) odd (b) even.

cause the width of Gse[c2] is even, the width of G′ne[ue] is
also even, therefore H ends up pointing north into the lower
right corner of Γtop. Let H take another step north, then
follow pattern1 across the vertices in G \G′. The resulting
path H is a squeeze-free Hamiltonian path for G.

Only if direction. For the only-if direction, assume that
there is a squeeze-free Hamiltonian path H in G. We next
show that the six theorem conditions hold. We begin with
three observations:

(a) Because x is the starting point of H and −−→xxe ∈ H (by
the theorem statement), we can use Lemma 5 to show
that the two leftmost columns in Ge[x] form a separat-
ing zigzag sequence σx. Refer to Figure 15.

(b) If xw exists, then −−−−→xswxw ∈ H. This is because −−→xxe ∈ H
(by the theorem statement), and by Lemma 1 H cannot
arrive at xw from the left, therefore it must reach it
coming from south. Also note that xsw is first visited
among all vertices in Gnw[xsw]. Otherwise, if there
were a vertex y ∈ Gnw[xsw] already visited at the time
xsw is visited, then H[x, y] would have to intersect the
horizontal line L passing through xsw in two vertices
on either side of xsw, leaving xsw unvisited between
two visited vertices on L. This contradicts Lemma 1.
By Lemma 5 the two rows in Gnw[xsw] form a zigzag
sequence σw (provided that xw exists).

(c) If c2 exists, let d be the lower left corner of Γ[c2]. By
Lemma 14 d is first visited among all vertices in Gne[d].

If
−−→
ddn ∈ H, by Lemma 5 the bottom two rows of Gne[d]

form a separating zigzag sequence σd (see Figure 15a).

If
−−→
ddn 6∈ H, then

−−−→
dnedn ∈ H (as the only way to reach

dn). Arguments similar to the ones used in observa-
tion (b) above show that dne is first visited among all
vertices in Gnw[dne]. By Lemma 5, the two columns of
Gnw[dne] form a zigzag sequence σn (see Figure 15b).
Because Γ[c2] is of odd height (by definition), the top-

most edge in σn is −−−→c2ec2, therefore c2 is the end point
of H.

Condition (1). Because −−→xxe ∈ H and x is the start point
of H, we can use the result of Lemma 8 to show that, for
each step Γw of odd width other than Γbot lying west of x,
v(x,Γw) is odd. If the height of Gse[x] is even, then the
lowest edge in σx points east. By Lemma 6, H does not end
in Γbot. Thus Lemma 8 applies to show that, if the height
of Gse[x] is even, then v(x,Γbot) is odd.

Condition (2). Assume that c2 exists and let Γe = Γ[ce]
be an arbitrary step of odd height lying east of c2 (if no such
step exists, there is nothing to prove). Note that Γ[c2] 6=
Γbot because of the existence of Γ[c], and there is nothing to
prove if Γ[c2] = Γtop. By Lemma 3, H may not end at c2.

This along with observation (c) above implies that
−−→
ddn ∈ H

(otherwise H would end at c2). Lemma 7 applied on Gne[d]
tells us that either h(d,Γe) = h(c2,Γe) is even, or ce is the
end point of H. If Γe 6= Γtop, then by Lemma 3 ce cannot be
the endpoint of H, so condition (2) holds. Assume now that
Γe = Γtop and that the width of Gse[c2] is odd. In this case
the rightmost edge in σd points south, and by Lemma 6 H
cannot end in Γtop. This implies that ce is not the endpoint
of H, so condition (2) holds.

Condition (3). Assume that c2 exists and the width of
Gse[c2] is even. Note that Γ[c2] 6= Γbot due to the existence
of Γ[c]. We prove by contradiction that the height of Gse[x]
is also even. Assume to the contrary that the height ofGse[x]
is odd. In this case the lowest edge in σx points west, and
by Lemma 6 the end point of H lies in Γbot. This along

with observation (c) above implies that
−−→
ddn ∈ H (otherwise

H would end at c2). Because
−−→
ddn ∈ H and the width of

Gse[c2] is even (by the case statement), the rightmost edge
in σd points north (see Figure 15a). By Lemma 6 the end
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Figure 15: Theorem 12, only-if direction (a)
−−→
ddn exists (b)

−−→
ddn does not exist.

point of H lies in Γtop, contradicting the fact (established
above) that H ends in Γbot.

Condition (4). This proof that |xc| is odd is identical to
the proof for condition (4) in Theorem 11.

Condition (5). Assume that |xc| is odd. By condition
(4), Γ[c] = Γbot. Because |xc| is odd, −→csc ∈ σw, so H ends
at c. If the height of Gse[x] is even, then the lowest edge in
σx points east, and by Lemma 6 H does not end in Γbot, a
contradiction. It follows that Gse[x] has odd height.

Condition (6). Assume that c2 exists and h(x, c2) = 0,
meaning that x is the lower left corner of Γ[c2]. Because
the height of Γ[c2] is odd, the highest edge in σx is −−−→c2ec2, so
H ends at c2. If the lowest edge in σx points west, then by
Lemma 6 H ends in Γbot, a contradiction. So the lowest edge
in σx points east, which by the definition of a zigzag sequence
is possible only if the height of Gse[x] is even. So condition
(6) of the theorem holds. This completes the proof. �

10 Running Time Details from Section 5

We show that there is an O(t) time algorithm for decid-
ing whether a staircase grid graph G with t steps contains
a squeeze-free Hamiltonian path that starts at a boundary
vertex of ∂G. We assume G is represented as a sequence
of pairs of numbers indicating the height and width of each
step in order from left to right.

Theorems 10 through 12 list the conditions necessary and
sufficient for the existence of a squeeze-free Hamiltonian
path H that starts at a given vertex x on a horizontal stair-
case segment, and begins in the west, east or south direction.
The cases with H beginning north from x, or with x on a
vertical staircase segment, are symmetric. Therefore it suf-
fices to show that we can determine in O(t) time whether or
not the conditions listed by Theorems 10 through 12 hold
for at least one vertex x located on a horizontal staircase
segment.

We begin by introducing two decision variables that will
play a critical role in our decision procedure. For a fixed

vertex x ∈ ∂G, define

v(x) =





0 if v(x,Γw) is even for each step Γw 6= Γbot

of odd width lying west of x

1 if v(x,Γw) is odd for each step Γw 6= Γbot

of odd width lying west of x

−1 otherwise

Similarly, define

h(x) =





0 if h(x,Γe) is even for each step Γe 6= Γtop

of odd height lying east of x

1 if h(x,Γe) is odd for each step Γe 6= Γtop

of odd height lying east of x

−1 otherwise

Observe that Theorems 10 through 12 are concerned with
the parity of distances, not with the actual distances. We
will keep track of these parities by taking all distances mod-
ulo 2 (with 0 representing even and 1 representing odd). In
addition to the two variables defined above for all vertices
x (including the special corner vertices c1 from Theorem 11
and c2 from Theorem 12), Theorems 10 through 12 employ
the following decision variables: h(x,Γtop); v(x,Γbot); parity
of width and height of Gse[x]; x ∈ Γbot; parity of |xc|; exis-
tence and location of c1 and c2; height of Gse[c1]; width of
Gse[c2]; and Γ[c2] = Γtop.

We begin by determining the values of these decision vari-
ables for the top left corner vertex of each step and then
show that this is sufficient to determine if any vertex on a
horizontal staircase segment satisfies the conditions of The-
orems 10 through 12. Our method of computing these vari-
ables consists of two stages: a preprocessing stage, and an
incremental update stage. The preprocessing stage initial-
izes all variables corresponding to the top left corner of Γbot.
In addition, it sets up some helper variables that will be
used in the incremental update stage. In the incremental
update stage, the top left corners of the steps are processed
from left to right, and the variable values for the current cor-
ner are determined from the values of the previous corner in
constant time.
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Preprocessing

Let Γ[x1] = Γbot,Γ[x2], . . . ,Γ[xt] = Γtop be the steps in
order from left to right. Imagine a vertical line sweeping
left-to-right across the steps, stopping at each corner vertex
x1, x2, . . . , xt. Let o1 be the top right corner of the first step
of odd width encountered after Γbot. At each step Γ[xi] of
odd width north of o1, check the vertical distance from xi to
the previously visited step of odd width. If even, continue;
if odd, let p1 = xi and halt the sweeping process. Note that,
for any vertex x at or above p1, v(x) = −1; and for any
vertex x above o1 and strictly below p1, v(x) is either 0 or
1. For vertex o1 and all vertices west of it, v(x) is undefined
because there is no step of odd width lying west of these
vertices (except possibly Γbot).

Similarly, imagine a vertical line sweeping right-to-left
across the steps. Let o2 be the bottom left corner of the
first step of odd height encountered after Γtop. At each step
Γ[xi] of odd height south of o2, check the horizontal distance
from xi to the previously visited step of odd height. If even,
continue; if odd, let p2 = xi and halt the sweeping process.
Note that, for any vertex x left of p2, h(x) = −1; and for
any vertex x at or to the right of p2, h(x) is either 0 or 1.

We create a list of all steps of odd height, to be used
in determining the existence and position of c2. We also
determine the values for all decision variables corresponding
to x1. Note that every part of this preprocessing stage can
be easily implemented in O(t) time.

Incremental Update

Imagine a vertical line starting at x2 and sweeping left-to-
right across the steps, stopping at each top left corner vertex
and initializing its decision variables. Let width(Γ[xi]) and
height(Γ[xi]) be the width and height of step Γ[xi]. At each
corner xi encountered by the sweep line, we initialize a se-
lection of its decision variables as follows:

• h(xi): If o2 does not exist, or if the sweep line has
already passed o2, this variable is undefined (since there
are no steps of odd height east of xi). If xi is left of
p2, then h(xi) = −1. If xi = p2, initialize h(xi) = 1
(since the horizontal distance from p2 to the closest step
of odd height lying east of p2 is odd, by the definition
of p2). If xi is strictly right of p2, update h(xi) =
(h(xi−1) + width(Γ[xi−1])) mod 2.

• v(xi): If o1 does not exist, or if the sweep line has not
yet reached o1, this variable is undefined (since there
are no steps of odd width west of x). If the sweep
line is at o1, initialize v(xi) = height(xi) mod 2. If
the sweep line has passed pi, v(xi) = −1; otherwise,
update v(xi) = (v(xi−1) + height(Γ[xi])) mod 2.

• h(xi,Γtop) and width of Gse[xi]: set to the value of the
variable for xi−1 incremented by width(xi−1) (modulo
2).

• v(xi,Γbot) and height of Gse[xi]: set to the value of the
variable for for xi−1 incremented by height(xi) (modulo
2).

Next we restart the sweeping process to update the remain-
ing decision variables in O(1) time (per step). Note that

testing if Γ[xi] = Γbot and Γ[c2] = Γtop can be easily de-
termined in constant time, and |xic| is zero for all top left
corner step vertices. The only decision variables left concern
the existence and location of c1 and c2, which are initialized
for each xi in O(1) time as follows:

• existence of c1: true if o1 exists and the sweep line has
passed it, false otherwise. If xi is the corner vertex of
a step of odd width, update a temporary copy c1 =
xi, to become permanent once a new corner vertex is
encountered.

• existence of c2: true if o2 exists and the sweep line
has not reached it yet, false otherwise. We maintain a
pointer to the step Γ[c2] (and the associated width of
Gse[c2]) in the list of steps of odd height. If xi coincides
with c2, advance the pointer.

Having determined c1 and c2, we can access in constant time
the values v(c1), v(c1,Γbot), height of Gse[c1], h(c2), h(Γtop),
and the width of Gse[c2], computed in the previous sweep
stage.

Running Time

The preprocessing stage and incremental update stage for
computing the values of the decision variables for each step’s
top left corner run in O(t) time. Observe that for each deci-
sion variable, its value is either the same for all the vertices
on a stair’s horizontal top segment or its value alternates
between 0 and 1 (as the distance of the vertex from the top
left corner of the step alternates between even and odd).
Therefore, for any step Γ[c], the values of the decision vari-
ables for c are the same as the values for cee, and the values
for ce are the same as the values for ceee, and so on... This
means it is only necessary to check the conditions listed by
Theorem 10 for vertices ce and cee, because the variable val-
ues for all the other vertices on the step will be the same as
for one of these two vertices. For Theorems 11 and 12, it is
only necessary to check the conditions for vertices c and ce.
After computing the values of the variables for c using the
algorithm described, the variable values for ce, cee can easily
be determined in constant time because, depending on the
variable, they are either the same or the opposite value as
that for c.

Thus, once the variable values are calculated for each
step’s top left corner, we can determine in constant time
per step if there is any vertex on its top horizontal segment
that satisfies the conditions of Theorems 10- 12. This gives
us the result in Theorem 13 from Section 5.
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Strongly Connected Spanning Subgraph for Almost Symmetric Networks

A. Karim Abu-Affash∗ Paz Carmi† Anat Parush Tzur‡

Abstract

In the strongly connected spanning subgraph (SCSS)
problem, the goal is to find a minimum weight span-
ning subgraph of a strongly connected directed graph
that maintains the strong connectivity. In this paper,
we consider the SCSS problem for two families of geo-
metric directed graphs; t-spanners and symmetric disk
graphs. Given a constant t ≥ 1, a directed graph G is a
t-spanner of a set of points V if, for every two points u
and v in V , there exists a directed path from u to v in
G of length at most t · |uv|, where |uv| is the Euclidean
distance between u and v. Given a set V of points in
the plane such that each point u ∈ V has a radius ru,
the symmetric disk graph of V is a directed graph G =
(V,E), such that E = {(u, v) : |uv| ≤ ru and |uv| ≤ rv}.
Thus, if there exists a directed edge (u, v), then (v, u)
exists as well.

We present 3
4 (t+ 1) and 3

2 approximation algorithms
for the SCSS problem for t-spanners and for symmet-
ric disk graphs, respectively. Actually, our approach
achieves a 3

4 (t + 1)-approximation algorithm for all di-
rected graphs satisfying the property that, for every two
nodes u and v, the ratio between the shortest paths,
from u to v and from v to u in the graph, is at most t.

1 Introduction

A directed graph is said to be strongly connected if it
contains a directed path from every node to any other

node. Given a directed graph
→
G, a spanning subgraph

of
→
G is a subgraph of

→
G that contains all nodes of

→
G.

In the strongly connected spanning subgraph (SCSS)
problem, one has to find a minimum weight spanning
subgraph of a strongly connected directed graph that
maintains the strong connectivity. The SCSS problem
is a basic network design problem [6] and is known to
be NP-hard [4,8]. The NP-hardness can be shown by a
simple reduction from the Hamiltonian cycle problem.
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For unweighted directed graphs (i.e., all edges have
weight 1), Khuller et al. [10,11] proposed a polynomial-
time 1.61-approximation algorithm for the SCSS prob-
lem. Later, Vetta [16] presented a polynomial-time
approximation algorithm achieving an approximation
ratio of 3/2. Zhao et al. [17] gave a linear-time
5/3-approximation algorithm. For weighted directed
graphs, Frederickson and JáJá [6] studied the SCSS
problem and presented a linear-time algorithm achiev-
ing an approximation ratio of 2.

Given a set V of points in the plane such that each
point u ∈ V has a radius ru, the symmetric disk

graph of V is a directed graph
→
G= (V,

→
E), such that

→
E= {(u, v) : |uv| ≤ ru and |uv| ≤ rv}, where |uv| is the
Euclidean distance between u and v. The weight of an

edge (u, v) ∈
→
E (denoted by wt(u, v)) is some polyno-

mial function on |uv|. This weight function is typically
used in wireless networks, where wt(u, v) = |uv|α, for
1 ≤ α ≤ 5.

Given a set V of points in the plane and a constant

t ≥ 1, a directed graph
→
G is a (geometric) t-spanner of

V if, for every two points u and v in V , there exists a

directed path from u to v in
→
G of length at most t · |uv|.

In this paper, we focus on the SCSS problem for
symmetric disk graphs and t-spanners. We present a
3
2 -approximation algorithm for the SCSS problem for
symmetric disk graphs. Then, we extend this algorithm
to obtain a 3

4 (t + 1)-approximation algorithm for the
SCSS problem for t-spanners. Our approximation al-
gorithms are based on Christofides’ algorithm for the
traveling salesman (TSP) problem.

Actually, our approach provides a 3
4 (t + 1)-

approximation algorithm for the SCSS problem for
an extended family of directed graphs, which is called

t-symmetric. For a weighted directed graph
→
G, let

δ→
G

(u, v) denote a minimum weight path from u to v in
→
G. A weighted directed graph

→
G is called a t-symmetric

directed graph, for a given constant t ≥ 1, if, for each

pair of nodes u and v in
→
G, the weight of δ→

G
(u, v) is at

most t times the weight of δ→
G

(v, u). Given a t-symmetric

directed graph
→
G that is strongly connected, the goal is

to find a minimum weight strongly connected spanning

subgraph of
→
G.

The TSP is defined as follows. Given a weighted com-
plete graph on n nodes, the goal is to find a tour, i.e., a
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simple cycle spanning all the nodes, of minimum weight.
Shani and Gonzalez [14] proved that the TSP problem
is NP-Complete. In the metric TSP, the weight function
of the edge set forms a metric, i.e., the weight function
satisfies the triangle inequality; despite this restriction
the problem remains NP-hard. A 2-approximation algo-
rithm based on utilizing a minimum spanning tree was
proposed in [13]. Christofides [1] improved the algo-
rithm by also utilizing a minimum weight perfect match-
ing, and achieved a 3/2-approximation algorithm.

A connected graph G = (V,E) is called k-edge-
connected if, for each subset E′ ⊆ E of size at most
k − 1, the graph G′ = (V,E \ E′) is also connected.
In the k-edge-connectivity problem, the goal is to find
a minimum weight spanning subgraph of G that is k-
edge-connected. The k-edge-connectivity problem has
applications in network reliability (besides its theoreti-
cal interest), since it ensures that even when k− 1 links
fail , the network remains connected.

The 2-edge-connectivity problem is known to be
MAX-SNP-hard [2, 5], as is the unweighted version in
which the objective is to minimize the number of edges
of the subset. For unweighted graphs, Vempala and
Vetta [15] presented a 4/3-approximation algorithm for
the 2-edge-connectivity problem. Jothi et al. [9] im-
proved this result by describing a 5/4-approximation
algorithm for the 2-edge-connectivity problem. The
3-approximation algorithm for the 2-edge-connectivity
problem in weighted graphs that follows from the ap-
proximation algorithm of Frederickson and JáJá [6] for
the bridge augmenting connectivity problem, was af-
terwards improved to 2 by Khuller and Vishkin [12].
For weighted complete graphs whose cost function sat-
isfies the triangle inequality, Frederickson and JáJá [7]
presented 3/2-approximation algorithm for the 2-edge-
connectivity problem. For complete Euclidean graphs
in Rd this problem admits a PTAS [3].

At first glance, the SCSS problem in symmetric disk
graphs looks equivalent to the 2-edge-connectivity prob-
lem in undirected graphs, since any solution for the
2-edge-connectivity problem is also a solution for the
SCSS problem. However, the weight of an optimal solu-
tion for the 2-edge-connectivity problem can be Ω(nα−1)
times the weight of an optimal solution for the SCSS
problem, where the weight of an edge (u, v) is |uv|α and
α ≥ 1., as illustrated in Figure 1.

The rest of this paper is organized as follows. In
Section 2, we give a 3

2 -approximation algorithm for the
SCSS problem in symmetric disk graphs. Then, in Sec-
tion 3, we extend this algorithm to obtain a 3

4 (t + 1)-
approximation algorithm for the SCSS problem in t-
spanners.

a

b

c

d

Figure 1: Top, a symmetric disk graph H of n nodes,
where all nodes have radius 1 except nodes a, b, c and d
that have radius (n− 2)/2. Middle, an optimal solution
for the SCSS problem in H of weight n + 2. Bottom,
the unique solution to the 2-edge-connectivity problem
for the undirected version of H, of weight n+ 2(n−2

2 )α,
where wt(u, v) = |uv|α.

2 The SCSS problem in symmetric disk graphs

Given a strongly connected symmetric disk graph
→
G=

(V,
→
E), in the SCSS problem, the goal is to find a min-

imum weight set R∗ ⊆
→
E, such that GR∗ = (V,R∗) is

strongly connected. Let OPT denote the weight of R∗,
i.e., the total weight of the edges in R∗. In this section,

we present an algorithm that computes a set R ⊆
→
E,

such that the graph GR = (V,R) is strongly connected
and the weight of R is at most 3

2 ·OPT .
A pair of nodes u and v in a strongly connected graph

→
G is called a cut pair if the edges (u, v) and (v, u) are

in G and their removal separates
→
G into two subgraphs.

Thus, if
→
G contains a cut pair, then this pair separates

the SCSS problem into two independent SCSS sub-
problems that can be approximated by the proposed
algorithm. Moreover, cut pairs must be in any feasi-
ble solution for the SCSS problem, and, in particular,
in any optimal solution. Therefore, from now on, we

assume that no cut pairs exist in
→
G.

Let δ→
G

(u, v) denote a minimum weight path from u

to v in
→
G, and let wt(δ→

G
(u, v)) denote the weight of

δ→
G

(u, v). The Shortest Paths Graph of
→
G (denoted

by SPG(
→
G)), is an undirected complete graph over

V , where the weight of an edge {u, v} is wt(δ→
G

(u, v)).

Notice that, since
→
G is a symmetric disk graph,

wt(δ→
G

(u, v)) = wt(δ→
G

(v, u)), and therefore, the weight

function of the SPG(
→
G) is well defined, and it forms a

metric.
Our algorithm applies the well known Christofides’

algorithm (for the TSP problem) on SPG(
→
G).
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Christofides’ algorithm finds two edge sets, a minimum

spanning tree of SPG(
→
G) and a minimum weight per-

fect matching in the complete graph over the nodes of
odd degree in the minimum spanning tree. The graph
that consists of these two edge sets is connected and
all its nodes are of even degree, therefore, it contains
an Eulerian cycle. Due to the triangle inequality, the
Eulerian cycle can be relaxed into a Hamiltonian cycle
(by “shortcutting” whenever a node is revisited) with-
out increasing its weight. It has been shown that the
approximation ratio of this algorithm is 3/2 [1].

Given a strongly connected symmetric disk graph
→
G=

(V,
→
E), in Algorithm 1, we describe how to compute a set

R ⊆
→
E, such that GR = (V,R) is strongly connected.

Then, in Section 2.1 we bound the weight of R with
respect to OPT .

Algorithm 1

1: construct SPG(
→
G)

2: compute a solution T for the TSP in SPG(
→
G) using

Christofides’ algorithm
3: direct T arbitrarily and denote this directed tour by
→
T

4: R← ∅
5: for each edge (u, v) ∈

→
T do

6: R← R ∪ δ→
G

(u, v)

7: return R

It is not hard to see that the running time of Algo-
rithm 1 is polynomial (O(n3)), and the resulting graph
GR = (V,R) is strongly connected.

2.1 Approximation ratio

Let R∗ be an optimal solution for the SCSS problem

in
→
G= (V,

→
E), let OPT denote the weight of R∗, and

let R be the set obtained by Algorithm 1. In this sec-
tion, we prove that the weight of R (i.e., wt(R)) is at
most 3

2 · OPT . Let GR∗ be the undirected graph of

GR∗ = (V,R∗), that is, GR∗ contains an undirected
edge between nodes u and v if either (u, v) ∈ R∗ or
(v, u) ∈ R∗.

Lemma 1 If all the nodes in GR∗ are of even degree,
then wt(R) ≤ 3

2 ·OPT .

Proof. Each edge (u, v) in
→
T (the directed tour that

is constructed during Algorithm 1) contributes to R a
set δ→

G
(u, v) of edges that compose a minimum weight

path from u to v in
→
G. The weight of δ→

G
(u, v) is equal

to the weight of the edge (u, v) in
→
T . Notice that we

might add to R edges that are already in R. As a re-

sult, wt(R) ≤ wt(
→
T ). Let T ∗ denote an optimal so-

lution for the TSP in SPG(
→
G). Then, by the bound

of Christofides’ algorithm, wt(
→
T ) ≤ 3

2 · wt(T ∗). Fi-

nally, GR∗ contains an Eulerian cycle C (since all nodes
are of even degree) that yields a solution for the TSP

in SPG(
→
G). Therefore, OPT is an upper bound on

the weight of the edge set of T ∗, i.e., wt(T ∗) ≤ OPT .
Therefore, we have

wt(R) ≤ wt(
→
T ) ≤ 3

2 · wt(T ∗) ≤ 3
2 ·OPT . �

In general, the inequality wt(T ∗) ≤ OPT does not
hold without the restriction of even degree on the nodes
in GR∗ . To see this, consider the example in Figure 2.
The weight of any optimal solution T ∗ for the TSP in

SPG(
→
G) is of weight (4 ·OPT −10)/3. Thus, wt(T ∗) ≥

(4/3− ε)OPT , for any ε > 0.

Figure 2: Left, a symmetric disk graph
→
G on n nodes, in

which the weight of each edge is 1. Middle, an optimal

solution for the SCSS problem in
→
G of weight n + 1.

Right, an optimal solution T ∗ for the TSP in SPG(
→
G)

of weight 4
3n− 2.

Lemma 2 Let G∆≤3 = (V,E) be a 2-edge-connected
undirected graph whose maximum degree is 3. Then,
G∆≤3 contains a path composed of edges Ep =
{(v1, v2), (v2, v3), . . . , (vk−1, vk)}, such that v1 6= vk, v1

and vk are of degree 3, each node in Vp = {v2, . . . , vk−1}
is of degree 2, and (V \ Vp, E \Ep) is 2-edge-connected.
We call such a path a chord.

Proof. We show the existence of such a chord using a
constructive method. In each iteration i, we maintain
a 2-edge-connected component Ci and extend Ci via an
unexplored node v∗ ∈ Ci of degree 3. Initially, i = 0, Ci
is a cycle, and v∗ ∈ Ci is a node of degree 3. Let Pi be a
path connecting v∗ to a node u ∈ Ci that is edge disjoint
from Ci (such a path exists since otherwise G∆≤3 is not
2-edge-connected). If the inner nodes of Pi are of degree
2 then Pi is a chord, and we are done. Otherwise, Pi
contains a node w of degree 3. Let Ci+1 = Ci ∪ Pi and
set v∗ to be w. Repeat this procedure until a chord is
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found. This procedure halts, since in each iteration a
new node v∗ of degree 3 is explored. �

Lemma 3 Let P be a simple path composed of
vertices Vp = {v1, v2, . . . , vk} and edges Ep =
{(v1, v2), (v2, v3), . . . , (vk−1, vk)}. There exists a per-
fect matching Mp in P of the nodes in Vp except for
at most the two end-vertices v1 and vk, i.e., Vp \ W ,
where W ⊆ {v1, vk}, such that the weight of Mp is at
most half of the weight of P .

Proof. The correctness follows from the pigeonhole
principle for both cases of the parity of k.

• If k is odd, then one of the two match-
ings {(v1, v2), (v3, v4), . . . , (vk−2, vk−1)} or
{(v2, v3), (v4, v5), . . . , (vk−1, vk)} is at most
half of the weight of P .

• If k is even, then one of the two match-
ings {(v1, v2), (v3, v4), . . . , (vk−1, vk)} or
{(v2, v3), (v4, v5), . . . , (vk−2, vk−1)} is at most
half of the weight of P . �

Lemma 3 yields the following corollary.

Corollary 4 Let P , Ep, and Vp be as in Lemma 3, and
let V ′p ⊆ Vp. There exists a perfect matching M ′p of the
nodes in V ′p ∪ {v1, vk} \W , where W ⊆ {v1, vk}, such
that the weight of M ′p is at most half of the weight of P ,
where the weight of an edge {vi, vj} in M ′p is the weight
of the subpath between vi and vj in P .

Let T be the minimum spanning tree of SPG(
→
G) that

is found during Christofides’ algorithm. Let Vodd be the
set of nodes of odd degree in T , let Godd = (Vodd, Eodd)

be the (complete) subgraph of SPG(
→
G) induced by Vodd

(Eodd is the set of all edges of SPG(
→
G) having both end-

vertices in Vodd), and let M denote a minimum weight
perfect matching of Godd. Recall that R∗ is an optimal

solution for the SCSS problem in
→
G of weight OPT . In

the following, we bound the weights of T and M with
respect to OPT .

Lemma 5 wt(T ) ≤ OPT .

Proof. Since the graph GR∗ = (V,R∗) is a spanning

subgraph of
→
G that is strongly connected, the undirected

graph GR∗ of GR∗ contains a spanning tree T of weight
at most OPT . Let {u, v} be an edge in T such that,
w.l.o.g., it is the undirected edge of (u, v) in GR∗ . Since

SPG(
→
G) is a complete graph over V , it also contains T ,

and the weight of the edge {u, v} in SPG(
→
G) is equal

to the weight of a minimum weight path from u to v in
→
G. Thus, the weight of {u, v} in SPG(

→
G) is equal to

the weight of (u, v) in GR∗ . Therefore,
wt(T ) ≤ wt(T ) ≤ OPT. �

Lemma 6 wt(M) ≤ OPT/2.
Proof. Let G′ = (V ′, R′), where V ′ ⊆ V and R′ ⊆ R∗,
be the minimum weight subgraph of GR∗ = (V,R∗), in
which the nodes of Vodd are strongly connected. Clearly,
wt(R′) ≤ OPT . We first show that G′ can be converted
to a graph G′∆≤3 (i.e., a 2-edge connected undirected
graph with degree at most 3) whose weight is equal to
wt(G′), and thus, wt(G′∆≤3) ≤ OPT . Then, we show
that there exists a perfect matching M ′ of Vodd in G′∆≤3,

such that wt(M ′) ≤ 1
2 · wt(G′∆≤3).

Let G′ be the undirected graph of G′, such that
G′ contains an undirected edge {u, v} between nodes
u and v if either (u, v) ∈ R′ or (v, u) ∈ R′, and
wt({u, v}) = wt(u, v). If both (u, v) and (v, u) are in
R′, then G′ contains two undirected edges {u, v} and
{u, v}′ between u and v, each of weight wt(u, v). No-
tice that G′ is a 2-edge connected undirected graph with
the same weight as G′, and the minimum degree of each
node in G′ is 2. Moreover, if G′ contains two edges
{u, v} and {u, v}′, then the nodes u and v are a cut
pair in G′. We show how to convert G′ to G′∆≤3. First,
while there exists a node u of degree greater than 3 in
G′ that is incident to two edges {u, v}, {u, v}′, select an
adjacent node w 6= v of u in G′. Add the edge {v, w} of
weight wt({u, v}) + wt({u,w}) to G′, and remove the
edge {u,w} and {u, v}′ from G′. At this stage, G′ does
not contain any cut pairs, i.e., if the number of vertices
in G′ is greater than two, then there is no node u in G′

that is incident to two edges {u, v}, {u, v}′.
Next, while there exists a node u of degree greater

than 3 in G′, select an adjacent node w of u in G′.
Since G′ is 2-edge connected undirected graph, there is
a path Pwu = (w, . . . , w′, u) in G′ from w to u which is
different from the edge {w, u}. Notice that w′ is the last
node before u in this path Pwu, and let v /∈ {w′, w} be a
node that is adjacent to u in G′. Add the edge {v, w} of
weight wt({u, v}) + wt({u,w}) to G′, and remove the
edges {u, v}, {u,w} from G′.

The obtained graph is 2-edge connected undirected
graph. Since, in each iteration, the degree of one node
is reduced (by two), and the degree of the other nodes
remains the same, this routine ends. Moreover, for each
edge that is added to the graph, two edges with equal
total weight are removed and, thus, the weight of the
graph G′ is preserved. At the end of this routine, set
G′∆≤3 to be G′.

We now show that there exists a perfect matching M ′

of Vodd in G′∆≤3, such that (i) each edge in M ′ corre-
sponds to a path in G′∆≤3; (ii) the weight of each edge
e ∈M ′ is equal to the weight of the corresponding path
of e in G′∆≤3; and (iii) wt(M ′) ≤ 1

2 · wt(G′∆≤3).
The existence of such a matching M ′ is shown in Pro-

cedure 2. In each iteration (Lines 2–19), the number of
nodes of degree 3 in Gtemp is reduced by 2, thus, this
while loop ends, and at Line 20 the resulting graph is
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Procedure 2 Constructing a matching M ′

1: M ′ ← ∅, Gtemp ← G′∆≤3

2: while there is a node v in Gtemp of degree 3 do
3: let P = (VP , EP ) be a chord in Gtemp

/* Such P exists by Lemma 2 */

4: let U be the set of the two endvertices of P
5: let V ′P ← Vodd ∩ VP
6: let Mchord be a perfect matching in P of the

nodes in V ′P ∪ U \W , where W ⊆ U , such that
wt(Mchord) ≤ 1

2wt(P )
/* Such Mchord exists by Corollary 4 */

7: M ′ ←M ′ ∪ {{vi, vj}|vi, vj ∈ V ′P }
8: Gtemp ← Gtemp \ (P \ U)

/* Remove all inner nodes of P and their incident edges

from Gtemp */

9: for each v ∈ U such that {vi, v} ∈Mchord do
10: let p and q be the two nodes adjacent to v that

are not in P
11: if v ∈ V ′P then
12: add the edge {p, q} to Gtemp
13: set wt({p, q}) to be wt({p, v}) + wt({v, q})
14: remove v and its incident edges from Gtemp
15: else
16: let Pvi,v be the path from vi to v in P that

corresponds to the edge {vi, v}
17: replace v by vi in Gtemp,
18: set wt({p, vi}) to be wt({p, v})
19: set wt({q, vi}) to be wt({q, v})
20: let Mc be a perfect matching in Gtemp of the nodes

in V ′P , such that wt(Mc) ≤ 1
2wt(Gtemp)

/* At this stage, Gtemp is a cycle */

21: M ′ ←M ′ ∪Mc

22: return M ′

a 2-edge-connected graph with nodes of degree 2, i.e.,
a cycle C. The number of nodes in Vodd is even, and
while removing a chord from Gtemp, an even number of
nodes from Vodd are removed. Therefore, C contains an
even number of nodes from Vodd.

In the following we bound the weight of M ′ obtained
by Procedure 2. The weight of the matching found at
Line 6 is at most 1

2 · wt(P ). Thus, at Line 7, we add
to M ′ at most half of the weight of the path P . Then,
at Line 8, the edges of P are removed from Gtemp, and
these edges are not charged again. Clearly, the same
bound holds for the matching that is found at Line 20.
Thus, the weight of M ′ is bounded by half of the weight
of the edge set of G′∆≤3, i.e., wt(M ′) ≤ 1

2 · wt(G′∆≤3).
Consider a node v /∈ Vodd such that {vi, v} ∈ Mchord

in some iteration j of the while loop. Notice that
the weight wt({vi, v}) is charged in this iteration, even
though the edge {vi, v} is not added to M ′. This is
done to compensate that later, in some iteration j′ > j,
the node vi is matched to some node vl ∈ Vodd, and the
weight wt({vi, vl}) corresponds to the weight wt({v, vl})

(see Lines 18 or 19). Therefore, the weight wt({vi, vl})
might not include the weight wt({vi, v}). However, as
mentioned, this does not affect the bound on the weight
of the matching M ′, since the weight wt({vi, v}) has
already been charged in the iteration j.

In order to prove the lemma, we generate a perfect
matching M∗ in Godd based on M ′. For each edge
{vi, vj} ∈ M ′, we add to M∗ the edge {vi, vj} of Godd.
Each edge {vi, vj} has a corresponding path from vi to
vj in G∆≤3, i.e., an equivalent (in weight) path from

vi to vj in
→
G, and, therefore, the weight of the edge

{vi, vj} in M ′ is an upper bound on the weight of the
edge {vi, vj} in Godd, so, wt(M∗) ≤ wt(M ′). Recall
that wt(G′∆≤3) ≤ OPT . To sum up, we found a perfect
matching in Godd of weight at most half of the weight of
R∗. Clearly, the weight of the perfect matching found
is an upper bound on the weight of a minimum one,
M. Thus, we have wt(M) ≤ wt(M∗) ≤ wt(M ′) ≤
1
2 · wt(G′∆≤3) ≤ 1

2 ·OPT. �

Theorem 7 Algorithm 1 is a 3
2 -approximation algo-

rithm for the SCSS problem in symmetric disk graphs.

Proof. wt(R) ≤ wt(
→
T ) ≤ wt(T )+wt(M) ≤ 3

2 ·OPT ,
where the first inequality is already noted in the proof
of Lemma 1, the second inequality follows immediately
from the description of Christofides’ algorithm, and the
last inequality holds due to Lemma 5 and Lemma 6. �

3 The SCSS problem in t-spanners

Given a set V of points in the plane and a constant

t ≥ 1, a directed graph
→
G is a t-spanner of V if, for

every two points u and v in V , there exists a directed

path from u to v in
→
G of length at most t · |uv|. In

this section, we generalize Theorem 7 for t-spanners.

The Shortest Paths Graph of a t-spanner
→
G of V

(denoted by SPG(
→
G)), is an undirected complete graph

over V , in which the weight of an edge {u, v} equals
to min{wt(δ→

G
(u, v)), wt(δ→

G
(v, u))}, where δ→

G
(u, v) is a

minimum weight path from u to v in
→
G.

Theorem 8 Algorithm 3 is a 3
4 · (t+ 1)-approximation

algorithm for the SCSS problem in t-spanners.

Proof. Let Et be the tour computed during Algo-
rithm 3. Consider an edge {u, v} ∈ Et of weight
min{wt(δ→

G
(u, v)), wt(δ→

G
(v, u))}, and assume, w.l.o.g.,

that wt({u, v}) = δ→
G

(u, v). Since the graph
→
G is t-

spanner,

wt(δ→
G

(u, v)) + wt(δ→
G

(v, u)) ≤wt(δ→
G

(u, v)) + t · |uv|
≤wt(δ→

G
(u, v)) + t · wt(δ→

G
(u, v))

=(t+ 1) · wt(δ→
G

(u, v))

=(t+ 1) · wt({u, v}).
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Algorithm 3

1: construct SPG(
→
G) of

→
G

2: compute an Eulerian tour Et using Christofides’ al-
gorithm (the tour before the shortcuts)

3: let
→
Et be a directed tour obtained by traversing the

Eulerian tour Et arbitrary

4: let
←
Et denote the opposite directed tour of

→
Et

5:
→
R← ∅,

←
R← ∅

6: traverse the edges of
→
Et, (resp.

←
Et) and, for each

edge (u, v) visited during the traversal, add the set

of directed edges δ→
G

(u, v) to
→
R (resp.

←
R)

7: if wt(
→
R) ≤ wt(

←
R) then

8: return
→
R

9: else
10: return

←
R

We now bound the the output of Algorithm 3.

min{wt(
→
R),wt(

←
R)}

≤ 1

2
·
(
wt(
→
R) + wt(

←
R)
)

≤ 1

2
·
∑

{u,v}∈Et

(
wt(δ→

G
(u, v)) + wt(δ→

G
(v, u))

)

≤ 1

2
·
∑

{u,v}∈Et

(t+ 1) · wt({u, v})

=
1

2
· (t+ 1) · wt(Et)

≤ 3

4
· (t+ 1) ·OPT,

where the later inequality follows from Theorem 7. �

Corollary 9 Algorithm 3 is a 3
4 · (t+ 1)-approximation

algorithm for the SCSS problem in any graph
→
G, where

the weight of δ→
G

(u, v) is at most t times the weight of

δ→
G

(v, u), for each pair of nodes u and v in
→
G.
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A Faster 4-Approximation Algorithm for the Unit Disk Cover Problem

Ahmad Biniaz∗ Paul Liu† Anil Maheshwari∗ Michiel Smid∗

Abstract

Given a set P of n points in the plane, we consider
the problem of covering P with a minimum number
of unit disks. This problem is known to be NP-hard.
We present a simple 4-approximation algorithm for
this problem which runs in O(n log n)-time and uses
the plane-sweep technique. Previous algorithms that
achieve the same approximation ratio have a higher time
complexity. We also show how to extend this algorithm
to other metrics, and to three dimensions.

1 Introduction

In this paper we consider the unit disk cover (UDC)
problem. Given a set P of n points in the plane, the
UDC problem asks for the minimum number of disks of
prescribed radius r (or simply unit disks of radius 1),
which cover all points of P . Unless otherwise specified,
we assume that the disks are in the L2-norm. This
problem is motivated by VLSI design, facility location,
and motion planning.

The UDC problem is known to be NP-hard in the
L1, L2, and L∞ norms [7]. For points in Rd and any
integer l ≥ 1, it is possible to approximate the UDC

problem in the L2-norm within a factor of
(
1 + 1

l

)d
with

running time (dl)O(d)nO((dl)d) [11] and within a factor of

2
(
1 + 1

l

)d-1
with running time (dl)O(d)nO(dd) [10]. For

points under the L1 and L∞ norms, similar ideas lead to

a
(
1 + 1

l

)d
approximation algorithm with running time

ldn2l
d+1 [11] and a

(
1 + 1

l

)d-1
approximation algorithm

with running time dlO(d-1)nO(dld-1) [10]. However, these
algorithms are mainly of theoretical interest, and are
impractical for large data sets.

Gonzalez [10] presented a 2-approximation algorithm
for the UDC problem in the L1 and L∞ norms and an
8-approximation in the L2-norm. These algorithms run
in O(n logS)-time, where S ≤ n is the number of disks
in an optimal solution. A constant approximation algo-
rithm running in O(n3 log n)-time is also presented in
[4]. The algorithm uses the fact that the UDC problem
is equivalent to a set cover in a range space of finite

∗School of Computer Science, Carleton University, Ottawa,
Canada. Research supported by NSERC.
†Department of Computer Science, University of British

Columbia.

VC dimension. However, no efforts were made to op-
timize or determine the exact value of the approxima-
tion factor. By constraining the disk centers to lie on a
grid, Franceschetti et al. [8] developed, for any l ≥ 1,
an O(Kn) time algorithm with approximation factor
3(1 + 1

l )2, where K is a function of l and the size of the
approximation grid. A 2.8334-approximation algorithm
which runs in O(n(log n log log n)2)-time is presented in
[9]. We note that this algorithm is quite difficult to
implement, and has a high constant factor in the run-
ning time. Using a different approach of dividing the
input into vertical strips, Liu and Lu [12] presented a
25
6 -approximation algorithm for this problem running in
O(n log n) time. A listing of all the algorithms as well
as their approximation factors is given in Table 1.

Reference Approximation Running Time
[10] 2

(
1 + 1

l

)
O(l2n7)

[10] 8 O(n logS)
[4] O(1) O(n3 log n)

[8] 3
(
1 + 1

l

)2
O(Kn)

[9] 2.8334 O(n(log n log log n)2)
[12] 25/6 O(n log n)

This paper 4 O(n log n)

Table 1: A history of approximation algorithms for the
unit disk cover problem in L2.

There are numerous variants of the UDC problem. If
the disk centers are constrained to an arbitrary point
set Q, the UDC problem becomes the discrete unit disk
cover problem (DUDC), which is also NP-hard. Many
approximation algorithms are proposed for the DUDC
problem, where the best known approximation factor is
9 + ε for any 0 < ε ≤ 6 [2]. An instance of the UDC
problem can be reduced to an instance of the DUDC
problem as follows. Any solution for the UDC problem
can be transformed so that each unit disk D has at
least 2 input points on its boundary or an input point
on its center; in the former case the center of D can be
computed easily. Since each disk has unit radius, any
pair of input points defines at most two possible centers
for disks in our cover. Hence by choosing Q to be the
union of P and these O(n2) centers, an instance of the
DUDC problem is obtained. Thus, any approximation
algorithm for the DUDC problem gives a solution for
the UDC problem with the same approximation factor.

In the L∞-norm, the UDC problem further reduces to
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the minimum clique cover problem [6]. The reduction
uses the Lt unit disk graph on P . Each point in P
corresponds to a vertex in the graph, and every edge
(u, v) in the graph corresponds to intersecting Lt unit
discs centered at u and v. Any family F of unit squares
(L∞ unit disks) satisfies Helly’s property: if each pair
of squares in F has a non-empty intersection, then the
intersection of all squares in F is non-empty. Hence
any clique in the L∞ unit disc graph can be covered
by a single L∞ unit disc. Unfortunately, this reduction
does not hold in the L2-norm. The minimum clique
problem on both the L∞ and L2 unit disk graphs has a
large body of work, see [6] and the references contained
therein.

We present an O(n log n)-time constant-ratio approx-
imation algorithm for the UDC problem in Lt-norms. In
Section 2, we present a 4-approximation algorithm for
this problem in the Euclidean norm (L2-norm). By us-
ing the plane sweep technique, we show in Section 3 that
this algorithm can be implemented to run in O(n log n)
time. We emphasize that this algorithm is usable in
practical settings and simple to implement. The most
costly step is sorting of the points with respect to some
dimension. In Section 4, we extend this algorithm to
other Lt-norms. It is a 2-approximation for t ∈ {1,∞},
a 6-approximation for t > 2, and a 5-approximation for
1 < t < 2. Concluding remarks and extension to three
dimensions are presented in Section 5.

2 A 4-Approximation Algorithm in L2

In this section we consider the UDC problem in the
Euclidean norm. Given a point set P in the plane, let
Copt be an optimal unit disk cover for P . Recall that
the unit disks have radius 1. The unit disk intersection
graph, UDIG(P ), is defined to have the points of P as
its vertices and has a straight-line edge between two
points p, q ∈ P if and only if |pq| ≤ 2, where |pq| is the
Euclidean distance between p and q. We begin with the
following observation:

Observation 1 For two points p, q ∈ P , if (p, q) /∈
UDIG(P ), then p and q cannot be covered by a unit
disk.

An independent set in UDIG(P ) is a subset I of P
such that there is no edge between any pair of points in
I. I is said to be a maximal independent set if for all
p ∈ P \I, I∪{p} is not an independent set in UDIG(P ).
A maximal independent set in UDIG(P ) can easily be
found by a greedy algorithm.

Assume I is a maximal independent set in UDIG(P ).
By Observation 1, the size of any independent set in
UDIG(P ) is a lower bound for the number of disks
needed to cover P . Therefore,

|I| ≤ |Copt|. (1)

It is known that to cover a disk of radius 2, seven
unit disks of radius 1 are necessary and sufficient; see
Figure 1. Moreover, to cover a ball of radius 2 in three
dimension, 21 unit balls are necessary and sufficient [1].
Based on that, a 7-approximation algorithm for the
UDC problem is obtained as follows. Let I be any max-
imal independent set in UDIG(P ). For a point p ∈ I,
let D(p, 2) be the disk of radius 2 which is centered at
p. Let d(p) be a disk in any unit disk cover which cov-
ers p. By Observation 1, none of the points of P which
are at distance greater than 2 from p can be covered
by d(p). Therefore, all points of P which are not in
D(p, 2) must be covered by disks different from d(p).
Moreover, all points of P which are covered by d(p) are
in D(p, 2). Therefore, by covering D(p, 2) with seven
unit disks (Figure 1), for all p ∈ I, a 7-approximation
algorithm is obtained. Note that UDIG(P ) may have
up to O(n2) edges, and hence the time complexity of
computing UDIG(P ) is quadratic in the worst case.

p 2

1

D(p, 2)

Figure 1: D(p, 2) can be covered by 7 unit disks.

Now we show how to reduce the approximation ratio
to 4. Let p be the leftmost point in P . In case of degen-
eracy, we consider the leftmost point with the smallest
y-coordinate. Let ` be the vertical line passing through
p. Let R(p) be the intersection of D(p, 2) with the half-
plane to the right of `, i.e., R(p) is the right half-disk of
D(p, 2) (see Figure 2(a)). As discussed earlier, all points
of P which are covered by d(p) are in D(p, 2) and con-
sequently in R(p). As shown in Figure 2(a), R(p) can
be covered by 4 unit disks. Figure 2(b) shows a config-
uration of seven points in R(p) such that at least four
unit disks are needed to cover all these seven points: in
any unit disk cover, the disk which covers p can cover at
most one of the points on the boundary. The remaining
five points need at least three unit disks to be covered.

For a point p and a given point set I, the distance,
d(p, I), between p and I is defined as the minimum
Euclidean distance between p and any point in I, i.e.,
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p 2

1

p

(a) (b)

Figure 2: (a) Any half-disk of radius 2 can be covered
by four unit disks. (b) Seven points in a half-disk of
radius 2 which cannot be covered by less than four unit
disks.

d(p, I) = min{|pq| : q ∈ I}. If I = ∅, then d(p, I) = ∞.
Our 4-approximation algorithm is given in Algorithm 1.
The output of this algorithm is a set C of unit disks that
cover P . The algorithm starts by creating a sorted list of
points from left to right. Then it repeatedly selects and
deletes the first element in the list, say p. If d(p, I) ≤ 2,
then p is already covered by some disk in C. Otherwise,
i.e., if d(p, I) > 2, the algorithm covers R(p) by four
unit disks, and adds them to C. Finally it returns the
set C of unit disks.

Algorithm 1 UnitDiskCover(P )

Input: A point set P in the plane.
Output: A set C of unit disks that cover P .

1: C ← ∅
2: I ← ∅
3: L← list of points in P sorted from left to right
4: while L is not empty do
5: p← first element of L
6: if d(p, I) > 2 then
7: Cover R(p) by four unit disks c1, c2, c3, c4
8: C ← C ∪ {c1, c2, c3, c4}
9: I ← I ∪ {p}

10: L← L− {p}
11: return C

In each iteration, Algorithm 1, adds p to I if and only
if d(p, I) > 2. Thus, in UDIG(P ), p is not connected
to any point in I. Therefore, I is an independent set
in UDIG(P ). In addition, the while loop iterates over
all points. Thus, after Algorithm 1 terminates, I is a
maximal independent set in UDIG(P ).

Theorem 1 Algorithm 1 is a 4-approximation for the
unit disk cover problem.

Proof. Consider the set I of points and the set C of
unit disks after the termination of Algorithm 1. Since I
is a maximal independent set in UDIG(P ), by Inequal-
ity (1) we have |I| ≤ |Copt|. Each point q ∈ P is in a
half-disk R(p), for some p ∈ I (possibly q = p). Since
for each p ∈ I, we cover R(p) with four unit disks, C
covers P . Moreover, |C| ≤ 4|I| ≤ 4|Copt|. This proves
the statement of the theorem. �

The running time of Algorithm 1, can be expressed as
O(n log n+n·t(d)), where t(d) is the time for computing
d(p, I). Any nearest-neighbor data structure is sufficient
here, and only insertions and queries are needed. As
the nearest-neighbor problem is a decomposable search
problem, the general techniques of Bentley and Saxe [3]
gives an O(log2 n)-amortized time bound for both inser-
tions and queries, and uses only O(n)-space. Using this
data structure, d(p, I) can be computed in O(log2 n)-
amortized time, and hence Algorithm 1 can be imple-
mented to run in O(n log2 n)-time.

3 Improving the Time Complexity

Instead of computing d(p, I) dynamically, we can speed
up Algorithm 1 by taking advantage of the fact that we
only need to check if d(p, I) is greater than 2. Every
time we add a new point p to I in Algorithm 1, we are
essentially removing every point in P lying in R(p). We
can do this in O(n log n)-time with a simple sweep-line
algorithm.

We sweep a vertical line from left to right and main-
tain a binary search tree (BST) storing the centers of
all the half-disks intersecting the sweep line. The points
in BST are sorted in non-decreasing order of their y-
coordinates. In case of ties, we sort them in increasing
order of their x-coordinates. Since all half-disks have ra-
dius 2, they are uniquely defined by their centers which
are stored in BST. Initially BST is empty.

We also keep an event queue that stores two types
of events: site events and deletion events. A site event
is a point of P . Each deletion event is associated with
a site event; for each point p ∈ P its deletion event is
the rightmost point of R(p). Thus, for every point p =
(px, py) in P , we have a deletion event p′ = (px + 2, py).
The event queue is kept as a priority queue sorted by
the x-coordinates of the events. Initially we add to the
event queue each point p ∈ P as a site event and p′ as a
deletion event. At each step of the sweep algorithm, we
pop the event with the smallest x-coordinate from the
queue, and “move” the sweep-line to that point.

Deletion events are straight-forward to handle, as we
remove the center of the half-disk—which corresponds
to this event—from BST.

264



27th Canadian Conference on Computational Geometry, 2015

Now we describe how to handle site events. Let p
be the current site event which is encountered by the
sweep-line SL. If p is covered by a half-disk in BST,
then we proceed to the next event. If p is not covered
by any half-disk in BST, then we insert a new half-disk
(its center) into BST. Since the half-disks in BST have
radius 2, we have the following observation:

Observation 2 The distance between any two points
in BST is more than 2.

Note that the half-disks corresponding to the points
to the left of SL which are not in BST do not intersect
SL. Therefore, these points have distance bigger than
2 from SL, and p cannot be covered by their half-disks.

In order to check if p is covered by any half-disk inter-
secting the sweep-line we do the following. We search
for p in BST by its y-coordinate. Let p− and p+ be the
predecessor and the successor of p in BST, respectively.
In other words, p− is the point in BST with the largest
y-coordinate and p+ is the point in BST with the small-
est y-coordinate such that p−y < py < p+y . If |pp−| ≤ 2
(or |pp+| ≤ 2), then p is covered by R(p−) (or R(p+)).
However, this may not be the only case to decide if p is
covered by a half-disk in BST. As shown in Figure 3(a),
p is covered by a half-disk which is neither R(p−) nor
R(p+).

p

p+

p−

p++

SL

p

p+
p++

SL

q

`

D(p, 2)

D(q, 2)

p′

q′
q′′

c

(a) (b)

Figure 3: (a) p is covered by a half-disk other than
R(p−) and R(p+). (b) Proof of Lemma 2

Let p−− be the predecessor of p− and p++ be the
successor of p+ in BST.

Lemma 2 If p is covered by any half-disk intersecting
the sweep line, then p ∈ R(p−−) ∪ R(p−) ∪ R(p+) ∪
R(p++).

Proof. The proof is by contradiction. Assume p is cov-
ered by a half-disk R(q) which is centered at a point q
in BST while p /∈ R(p−−) ∪ R(p−) ∪ R(p+) ∪ R(p++).
Without loss of generality assume qy ≥ py. Since p+

is the successor of p and p++ is the successor of p+ in
BST, we have qy ≥ p++

y . Let l be the vertical line which
is at distance 2 from p and to the left of the sweep line
SL; see Figure 3(b). All points in BST (including p+,
p++, and q) lie between (or on) l and SL.

Let p′ be the intersection point of l and the horizon-
tal line passing through p. Let q′ (resp. q′′) be the
intersection point of l (resp. SL) and the horizontal
line passing through q. See Figure 3(b). Let R be the
rectangle having its corners on p, p′, q′ and q′′. Observe
that the maximum side length for R is 2.

Since py ≤ p+y ≤ p++
y ≤ qy, p+ and p++ lie in R.

Consider D(p, 2) and D(q, 2). Since p ∈ R(q), |pq| ≤ 2;
this implies that p, q ∈ D(p, 2) ∩ D(q, 2). By Observa-
tion 2, both p+ and p++ are outside D(q, 2). In ad-
dition, p is to the right of p+ and to the right of p++

and p /∈ R(p+) ∪ R(p++), which implies that both p+

and p++ are outside D(p, 2). Therefore p+ and p++ lie
in region Q = R − (D(p, 2) ∪ D(q, 2)); the blue region
in Figure 3(b). Let c be the intersection point of the
two diagonals of R. The triangle 4pq′q′′ is a subset of
D(q, 2) and the triangle 4pp′q′′ is a subset of D(p, 2).
Thus, Q is a subset of the triangle 4cp′q′. 4cp′q′ has
diameter at most 2. Thus, the distance between any
two points in Q is at most 2. Therefore, |p+p++| ≤ 2;
which contradicts Observation 2. �

Given a site event p, in O(log n)-time we can find p−−,
p−, p+, and p++ in BST. In order to check if p is in the
coverage of any point in BST, by Lemma 2, it is enough
to check if the distance of p to p−−, p−, p+, or p++ is
at most 2. Therefore, each site event can be handled
in O(log n)-time; each deletion event can be handled
in O(log n)-time as well. Since we have 2n events, we
conclude that Algorithm 1 can be implemented to run
in O(n log n)-time and O(n)-space.

4 Extensions to Other Metrics

In this section we consider the unit disk cover problem
for a point set P in the Lt-norm, for t ≥ 1. We show how
to extend Algorithm 1 to a constant-approximation al-
gorithm. In the Lt-norm, a unit circle which is centered
at the origin is expressed by the equation

|x|t + |y|t = 1.

Figure 4 shows the unit circles in different Lt-norms.
We refer to the union of a unit circle in the Lt-norm
and its interior as an Lt-unit disk.

Observation 3 For any t and t′, with 1 ≤ t < t′ ≤
∞, the Lt-unit disk which is centered at the origin is
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1
t = 1

t = 2

t =∞
2 < t <∞

1 < t < 2

Figure 4: Illustration of unit circles in different Lt-
norms.

contained in the Lt′-unit disk which is centered at the
origin.

Let Dt(p, 2) be the Lt-unit disk which is centered
at point p and scaled by a factor of 2. Observe that
any Lt-unit disk which covers p, does not cover any
point outside Dt(p, 2). Let Rt(p) be the right half-disk
of Dt(p, 2). By Observation 3, Rt(p) is contained in
R∞(p).

4.1 Lt for t ≥ 2

Assume t ≥ 2. As shown in Figure 5(a), R∞(p) can be
covered by six L2-unit disks. Since Rt(p) ⊆ R∞(p),
Rt(p) can also be covered by six L2-unit disks. By
Observation 3, any L2-unit disk is contained in an Lt-
unit disk. Thus, Rt(p) also can be covered by six
Lt-unit disks. Therefore, a modified version of Algo-
rithm 1 gives an Lt-unit disk cover C for P such that
|C| ≤ 6|Copt|.

p 2 p

2

(a) (b)

Figure 5: (a) R∞(p) which is covered by six L2-unit
disks. (b) R2(p) which is covered by five L1-unit-disks.

Since an Lt-unit disk contains an L2-unit disk,
Lemma 2 can be extended to the Lt-norm:

Lemma 3 If p is covered by any Lt-half disk intersect-
ing the sweep line, then p ∈ Rt(p

−−)∪Rt(p
−)∪Rt(p

+)∪
Rt(p

++).

Therefore, an O(n log n)-time 6-approximation algo-
rithm for the UDC problem in the Lt-norm is obtained.

4.2 Lt for 1 ≤ t ≤ 2

Assume 1 ≤ t ≤ 2. As shown in Figure 5(b), R2(p)
can be covered by five L1-unit disks. By Observation 3,
Rt(p) is contained in R2(p). In addition, an L1-unit disk
is contained in an Lt-unit disk. Thus, Rt(p) can also
be covered by five Lt-unit disks. Therefore, a modified
version of Algorithm 1 gives an Lt-unit disk cover C for
P such that |C| ≤ 5|Copt|. Lemma 2 can be extended
to the L1-norm as follows.

Lemma 4 In L1-norm, if p is covered by any half-disk
intersecting the sweep line, then p ∈ R1(p−−)∪R1(p−)∪
R1(p+) ∪R1(p++).

Proof. The proof is by contradiction; and similar to
the proof of Lemma 2. We skip the details. Consider
D1(p, 2) and D1(q, 2). Note that both p+ and p++ are
outside D1(p, 2) ∪D1(q, 2). See Figure 6(a). Therefore
p+ and p++ lie in region Q = R− (D1(p, 2)∪D1(q, 2)),
where R is a unit square which has its bottom-right cor-
ner on p. As shown in Figure 6(a), Q (the blue region)
can be covered by the L1-unit disk S. Therefore, the
L1-distance between p+ and p++ is at most 2; which
contradicts Observation 2. �

Since an Lt-unit disk contains an L1-unit disk,
Lemma 4 can be extended to the Lt-norm. Therefore,
an O(n log n)-time 5-approximation algorithm for the
UDC problem in the Lt-norm is obtained.

p
p+

p++

SL

q

`

D1(p, 2)

D1(q, 2)

S

p

2

1

(a) (b)

Figure 6: (a) Illustration of Lemma 4. (b) R∞(p) which
is covered by two L∞-unit-disks.
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4.3 L∞ and L1

Assume t = ∞. An L∞-unit disk is an axis-aligned
square of side length 2. As shown in Figure 6(b), R∞(p)
can be covered by two L∞-unit disks. Therefore, a mod-
ified version of Algorithm 1 gives an L∞-unit disk cover
C for points in P such that |C| ≤ 2|Copt|. In addition,
we have the following Lemma, which is stronger than
Lemma 2.

Lemma 5 If p is covered by any L∞-half disk inter-
secting the sweep line, then p ∈ R∞(p−) ∪R∞(p+).

Therefore, a simple O(n log n)-time 2-approximation
algorithm for the UDC problem in the L∞-norm is ob-
tained. Gonzalez [10] presented a faster O(n logS)-time
2-approximation algorithm for this problem, where S is
the size of an optimal solution.

The UDC problem in the L1-norm can easily be re-
duced to a UDC problem in the L∞-norm by simply
rotating the x and y axes by 45◦ around the origin,
followed by scaling with

√
2/2. Therefore, a simple

O(n log n)-time 2-approximation algorithm for the UDC
problem in L1 is obtained.

5 Conclusion

We considered the NP-hard problem of covering n
given points in the plane with the minimum number
of unit disks. We presented an easily implementable 4-
approximation algorithm which runs in O(n log n)-time
and O(n)-space. The presented algorithm is faster than
previous algorithms having a similar approximation ra-
tio. It is interesting that the most time consuming step
of the algorithm is sorting and maintaining a BST.

We extended the algorithm to other Lt-norms. As
a result we obtained O(n log n)-time algorithms; a 2-
approximation for t ∈ {1,∞}, a 6-approximation for
t > 2, and a 5-approximation for 1 < t < 2.

The natural problem is to reduce the approximation
ratio, while not increasing the running time.

Another open problem is to extend this algorithm to
higher dimensions. In three dimensions, a ball of radius
2 can be covered by 21 unit-balls [1]. Therefore, Algo-
rithm 1 is a 21-approximation for the UDC problem in
R3. In order to check if d(p, I) > 2, it is sufficient to
check if the ball of radius 2 which is centered at p does
not contain any point of I. A ball emptiness query in
R3 can be transformed to a half-space emptiness query
in R4 by projecting the points of P to the paraboloid
x4 = x21 + x22 + x23. Chan [5] presented a linear-size
data structure which can be constructed in O(n log n)-
time that answers half-space emptiness queries in R4 in
O(
√
n)-time. Based on the techniques of Bentley and

Saxe [3], this gives an insertion-only dynamic data struc-
ture which supports insertions and half-space emptiness

queries in R4 in O(
√
n log n)-amortized time. Therefore,

an O(n
√
n log n)-time 21-approximation algorithm for

the UDC problem in R3 is obtained.
However, we believe that a half-ball of radius 2 can

be covered by 14 unit-balls; which would imply an ap-
proximation ratio of 14.
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Bounds on Mutual Visibility Algorithms∗
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Abstract

We consider the fundamental Mutual Visibility
problem for a set of n identical autonomous point robots
(n is not known to the robots) that operate following
Look-Compute-Move cycles starting from arbitrary dis-
tinct positions in the Euclidean plane under obstructed
visibility – a robot ri can see robot rj , rj 6= ri, if and
only if there is no other robot in the line segment joining
their positions. The objective is to determine a schedule
to reposition these robots without collisions such that
they reach in finite time a configuration where they all
see each other. In the recently proposed so-called robots
with lights model, Di Luna et al. [15] gave two deter-
ministic algorithms Contain and Shrink for this prob-
lem; however, no runtime bounds were given except the
proof that they terminate in finite time. In this paper,
we first study the runtime bounds of these algorithms
in the fully synchronous setting showing that Contain
is tight (Θ(n) rounds) and Shrink needs Ω(n2) rounds
in the worst-case. We then present a new deterministic
algorithm, called Modified Shrink, for fully synchronous
setting that solves this problem in O(n log n) rounds,
improving significantly over Shrink. We also show that
Modified Shrink has the lower bound of Ω(n) rounds.

1 Introduction

Consider a set of n autonomous point robots (n is not
known to the robots) in the distinct positions in the Eu-
clidean plane R2 which are anonymous, indistinguish-
able, and without any direct means of communication.
Each robot is equipped with a local coordinate system
and sensor capabilities (i.e., vision) to determine the po-
sitions of other robots. The local coordinate system of
a robot may be different with that of other robots. The
robots execute the same algorithm. They operate in
Look-Compute-Move cycles, i.e., when a robot becomes
active, it uses its vision to get a snapshot of its surround-
ings (Look), computes a destination point based on the

∗The project is supported by Army Research Office (ARO)
under Grant #W911-NF1010495. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
the ARO or the United States Government.
†School of Electrical Engineering and Computer Sci-

ence, Louisiana State University, {gokarna, busch,

supratik}@csc.lsu.edu.

snapshot (Compute), and finally moves towards the des-
tination (Move), if any. Most of the literature assumes
that the robots are oblivious - each robot has no memory
of its past Look-Compute-Move actions - and visibility
is unobstructed - three collinear robots are assumed to
be mutually visible to each other [2, 8, 9, 12, 19, 22].

In this paper, we consider obstructed visibility [4,
3, 10, 1, 5, 6] under which a robot ri can see robot
rj , ri 6= rj , if and only if there is no other robot in
the line segment joining their positions. We study the
following fundamental Mutual Visibility problem:
Starting from the arbitrary distinct positions in the Eu-
clidean plane R2, determine a schedule to reposition the
robots without collisions such that they reach within fi-
nite time a configuration where they all see each other.
Note that robots moves do not follow grid coordinates
of the plane R2, i.e., we do not assume the existence
of some underlying universal grid in R2. Although ob-
structed visibility is considered before in the classical
oblivious robots model for the Spreading problem [4]
and in the so-called fat robots model [1, 6, 12, 17], the
technique of [4] cannot be generalized for Mutual Vis-
ibility, since it works only in the one-dimensional space
R1, and the techniques of [1, 6, 12, 17] are also not suit-
able, since collisions are allowed and used as an explicit
communication tool.

Di Luna et al. [16] were the first to study Mutual
Visibility problem. They studied Mutual Visibil-
ity in the robots with lights model initially suggested
by Peleg [18], where each robot has an externally visible
persistent light that can assume colors from a fixed set of
colors and the color set is identical to all the robots. The
robots communicate with other robots using these col-
ored lights [12, 7, 11, 13, 21, 18]; the reason for consider-
ing robots with lights model is that there is no Mutual
Visibility algorithm in the classical oblivious robots
model when n is not known. The lights are not erased
at the end of each cycle in this model and the robots are
oblivious, except the direct communication capability
provided by lights. Moreover, this model corresponds
to the classical oblivious robots model when the num-
ber of colors c = 1 in the color set, since a light with
only one possible color acts as no light. Di Luna et al.
[16] gave a deterministic algorithm that solves Mutual
Visibility with c = 6 colors in the semi-synchronous
setting and with c = 10 colors in the asynchronous set-
ting. Later, Di Luna et al. [15] gave two deterministic
algorithms Contain and Shrink with c = 3 and c = 2
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colors, respectively, in the semi-synchronous setting.
Di Luna et al. [15] proved the correctness of both

algorithms Contain and Shrink. However, no runtime
bounds were given except the proof that they terminate
in finite time. Recently, Vaidyanathan et al. [20] gave
an algorithm similar to Contain for Mutual Visibil-
ity in the fully synchronous setting and proved that it
has running time of O(log n) rounds. However, their
algorithm assumes chirality [1, 6] and does not avoid
robot collisions due to the crossing of paths during robot
movements.

In this paper, we consider the fully synchronous set-
ting (where all robots are activated in a round and
robots perform their cycles in a perfectly synchronous
setting) and study the runtime bounds of Mutual Vis-
ibility algorithms. In particular, we have made follow-
ing three contributions.

• We show that Contain [15] has the tight bound of
Θ(n) rounds on running time.

• We show that there exists an initial configuration
of n robots in which Shrink [15] needs Ω(n2) rounds.

• We present a new deterministic algorithm, called
Modified Shrink, for fully synchronous setting that
uses c = 3 colors and needs only O(n log n) rounds
to solve Mutual Visibility starting from any ini-
tial configuration of n robots. This is a signifi-
cant improvement over the runtime bound of Shrink
which is at least Ω(n2) rounds. We also prove that
Modified Shrink has a lower bound of Ω(n) rounds.

Paper Organization: We proceed as follows. We
present model in Section 2. We prove bounds for Con-
tain in Section 3. We then prove a lower bound for
Shrink in Section 4. In Section 5, we present and ana-
lyze Modified Shrink. Many proofs are omitted due to
space constraints.

2 Model

We consider a set of n anonymous robots R =
{r1, r2, . . . , rn} operating in the Euclidean plane R2; n
is not assumed to be known. We denote by pi(k) ∈ R2

the position occupied by robot ri ∈ R at time k. A
robot ri sees robot rj , rj 6= ri, at time k if and only if

the line segment pi(k)pj(k) does not contain any other
robot at time k. Two robots ri and rj are said to col-
lide at time k if pi(k) = pj(k). If no ambiguity arises,
we omit k from ri(k) and pi(k), and use ri to denote
both the robot ri and its position pi. Each robot ri
has its own coordinate system centered in itself and it
knows its position with respect to its coordinate system.
Moreover, robots have their own unit of distance which
may not agree on the unit of measure of other robots.

The robots do not agree on the orientation of their co-
ordinate system, i.e., there is no common notion of the
clockwise direction.

Each robot ri is equipped with an externally visible
persistent light which can assume any color from a fixed
finite set of colors C. The colors in C are the same for all
robots in R. We use variable ri.light to denote the light
of a robot ri. The color of the light of a robot r at time
k can be seen by all robots that are visible to r at time
k. Robots are oblivious − do not remember decisions
performed in previous cycle − and a robot’s decision at
any cycle is only based on the positions of the robots
visible to it at that cycle. Robots are autonomous (i.e.,
without any external control), indistinguishable (i.e., do
not have external markings), and do not have any direct
means of communication (except the lights). Moreover,
they are anonymous (i.e., do not have internal identi-
fiers). Each robot executes the same algorithm locally
every time it is activated.

A configuration C is a set of n tuples in C×R2 which
defines the position and color of a robot. Let Ck de-
notes the configuration at time k. Let Ck(ri) denotes
the configuration Ck for robot ri. A configuration C is
obstruction-free if ∀ri ∈ R, we have that |C(ri)| = n
(i.e., all robots can see each other). Let Hk denotes
the convex hull formed by Ck which can be easily com-
puted using Graham’s convex hull algorithm [14]. Let
∂Hk = Vk ∪ Ek denotes the robots in the boundary of
Hk, where Vk ⊆ R are the set of robots lying at the
vertices of Hk and Ek ⊆ R are the set of robots lying
at the sides (or edges) of Hk. The robots in the set Vk
are called vertex robots and in the set Ek are called edge
robots. The robots in Vk∪Ek are called boundary robots.
The robots in the set Hk\∂Hk are called internal robots.
Given a robot ri ∈ R, we denote by Hk(ri) the convex
hull of Ck(ri). Given two points a, b ∈ R2, we denote

by
←→
ab the line that contains them.

We assume that the execution starts at time 0. There-
fore, at time t = 0, the robots start in an arbitrary
configuration C0 occupying distinct positions in R2

and the color of the light of each robot is set to Off.
The Mutual Visibility problem is defined as follows:
Given any C0, reach in finite time an obstruction-free
configuration without collisions. An algorithm is said
to solve Mutual Visibility if it always achieves an
obstruction-free configuration regardless of the choices
of the adversary and from any arbitrary C0.

We assume that, when active, each robot ri ∈ R per-
forms a sequence of Look-Compute-Move (LCM) oper-
ations: a robot takes the snapshot of the positions of
the robots visible to it in its own coordinate system
(Look); executes its algorithm using the snapshot which
returns a destination point x ∈ R2 and a color c ∈ C
(Compute); and sets its own light to color c and moves
towards the computed destination x ∈ R2 (if x is differ-
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Figure 1: An illustration of T , T1, and T2 of a vertex
robot ri in H(ri), where a and b, respectively, are the
neighbor robots of ri in H(ri) in its counterclockwise
and clockwise direction, x, y, and m are the midpoints
of line segments ria, rib, and ab, respectively, and m′ is
the intersection point of rim and xy.

ent than its current position), if any (Move). We assume
the rigid moves throughout the paper in the sense that
the movement of robots are not controlled by an adver-
sary and every robot reaches its destination at all times
when it moves from a current position to its computed
destination. Moreover, we consider a fully synchronous
scheduler for the activation of the robots in R. In the
fully synchronous scheduler, the time is discrete and at
each time instant k all the robots of R are activated and
perform their LCM operations instantaneously, ending
at time k+1. Therefore, we use round k instead of time
k from now on. Finally, we measure the quality of the
algorithm by counting the number of rounds until the
robots have reached the mutual visibility configuration
(all robots are the vertices of H).

As shown in Fig. 1, let ri be a vertex of H and a and
b are its counterclockwise and clockwise neighbors in H.
Moreover, let x and y be the midpoints of line segments
ria and rib, respectively, and m be the midpoint of line
segment ab. We have that, according to construction,
xy is parallel to ab. For each vertex robot ri, we denote
by T the triangular area riab, by T1 the triangular area
rixy, and by T2 the trapezoidal area xyba (i.e., T2 :=
T\T1). When we say that a robot w is closest to ri then
we mean that there is no other robot in the area of H(ri)
between ri and a line parallel to ab (or xy) that passes
through w’s position.

3 Tight Bounds for Contain Algorithm

Contain [15] has two phases: an interior depletion phase
and a vertex adjustment phase. The second phase is exe-
cuted only after the first phase is finished. In the interior
depletion phase, the robots in the interior of H move to-
wards the boundary of H and in the vertex adjustment
phase the robots in the vertices of H move towards the
interior of H to reach a strictly convex configuration
with all the robots being in the vertices of H. Three
colors are used, namely C = {Off ,External ,Adjusting}.

We prove the following lemma for the lower bound.

Lemma 1 There is an initial configuration C0 of the
robots in which Contain takes Ω(n) rounds to solve Mu-
tual Visibility in the fully synchronous setting.

We prove the following lemma for the upper bound.

Lemma 2 Starting from any initial configuration of a
set of n robots, Contain needs O(n) rounds to solve Mu-
tual Visibility in the fully synchronous setting.

Combining the lower and upper bounds of Lemmas 1
and 2, we obtain the following theorem.

Theorem 3 The round complexity of Contain for Mu-
tual Visibility is Θ(n) in the worst-case in the fully
synchronous setting.

4 Lower Bound for Shrink Algorithm

Shrink works as follows. The vertex robots set their light
to Vertex. Let ri be a vertex robot of H(ri) and a and
b be ri’s counterclockwise and clockwise neighbors both
in the boundary of H(ri). Let x and y be the midpoints
of line segments ria and rib, respectively, and m be the
midpoint of ab. If there is an interior robot, say r′, in
T1, then ri moves to some point in T1 in the line seg-
ment that is parallel to xy and passes through r. If
there are more than one robot in T1, then some point
in the line segment parallel to xy passing through the
closest robot is chosen. However, if there is no robot
inside T1 (i.e. all interior robots are outside T1), then
ri moves to the point m′ in xy, irrespective of the po-
sitions of the interior robots, where m′ is the point in
which the line segment rim intersects xy (see Fig. 1).
If there is only one robot in the interior of H(ri), then
that interior robot moves to the midpoint of some edge
in the boundary of H(ri). Two colors are used, namely
C = {Off ,Vertex}. We prove the following theorem for
the lower bound.

Theorem 4 There is an initial configuration C0 of the
n robots in which Shrink takes Ω(n2) rounds to solve
Mutual Visibility in the fully synchronous setting.

5 The Modified Shrink Algorithm

We present Modified Shrink which improves significantly
over the runtime of Shrink in the fully synchronous set-
ting. The pseudocode of Modified Shrink is given in Al-
gorithms 1. Algorithm 1 uses Algorithms 2–4 as sub-
routines to accomplish the mutual visibility of robots
starting from any arbitrary initial configuration C0.

Modified Shrink uses three colors in the set C of col-
ors, namely C = {Off ,Vertex ,Edge}. The colors in the
set C are used by robots to detect whether Mutual
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Algorithm 1: Modified Shrink algorithm for any round k > 0

1 // Look-Compute-Move cycle for each robot ri ∈ R
2 Ck(ri)← configuration Ck for robot ri (including ri);
3 Hk(ri)← convex hull of the positions of the robots in Ck(ri);
4 if |Ck(ri)| = 3 ∧ Hk(ri) is a line segment then
5 Move orthogonal to (the line segment) Hk(ri) by any non-zero distance;
6 else
7 if ri is in vertex of Hk(ri) then Corner(ri,Ck(ri),Hk(ri));
8 else if ri is in edge of Hk(ri) then Side(ri,Ck(ri),Hk(ri));
9 else if ∀r ∈ Ck(ri)\{ri}, r.light ∈ {Vertex ,Edge} ∧ ri is in interior of Hk(ri) then Interior(ri,Hk(ri));

Algorithm 2: Corner(ri,Ck(ri),Hk(ri))

1 if ri.light = Off then ri.light← Vertex;
2 if ∀r ∈ Ck(ri), r.light = Vertex then Terminate;
3 else if |Ck(ri)| > 2 then
4 a← counterclockwise neighbor on the boundary of Hk(ri);
5 b← clockwise neighbor on the boundary of Hk(ri);
6 x← midpoint of the line segment ria;

7 y ← midpoint of the line segment rib;
8 if there exists at least a robot in Ck(ri)\{ri} with light Off then

9 r′ ← robot in Ck(ri)\{ri} with light Off that is closest to ri w.r.t. the line parallel to the line segment ab
(if more than one robot satisfies this criteria, choose as r′ the robot that is closer to b);

10 if r′ is not in the triangular area riab then

11 Move to the midpoint of the line segment rir′;
12 else if r′ is in the triangular area riab ∧ r′ is not in the triangular area rixy then

13 Move to the intersection point of the line segments rir′ and xy;
14 else if r′ is in the triangular area rixy then

15 L← line parallel to ab that passes through r′;
16 z ← intersection point of L and rib;

17 Move to the midpoint of the line segment r′z;
18 else if there exists at least a robot in Ck(ri)\{ri} with light Edge then
19 Move to the midpoint of the line segment xy;

Visibility is solved and correctly terminate their com-
putation. The lights of all robots in R are set to Off in
the initial configuration C0. When a robot after acti-
vation in some round k > 0 realizes that it is a vertex
of H, it sets its light to Vertex (Line 7 of Algorithm 1,
Line 1 of Algorithm 2). This task is easy since, if a
robot ri with light Off after activation in some round
k > 0 sees that Ck(ri) contains a region of plane that is
free of robots and wider than 180◦, then ri knows it is a
vertex of H. If a robot realizes after activation in some
round k > 0 that it is on an edge of H, it sets its light
to Edge (Line 8 of Algorithm 1, Line 1 of Algorithm 3).
Similar to the realization of vertex robots, if a robot ri
with light Off after activation in some round k sees that
Ck(ri) contains a region of plane that is free of robots
and wide exactly 180◦, then ri knows it is on an edge
of H. When the lights of all the robots that are seen by
a robot are set to Vertex, the robot knows that it can
see all the robots in R and hence it terminates (without

the knowledge of n, the total number of robots).
Since our algorithm uses the convex hull shrinking

process, the vertex and edge robots move inside. We
now describe how vertex robots move and give the de-
tails on how edge robots move in the next paragraph. If
there is an interior robot (i.e., a robot with light Off),
say r′, in T1, then the vertex robot ri moves somewhere
in the line parallel to the line segment ab that passes
through r′, where a and b are the neighbor robots of
ri in Hk(ri) in its counterclockwise and clockwise direc-
tion, respectively. If there is more than one robot in T1,
the closest one from ri (w.r.t. a line parallel to ab) is cho-
sen as the robot r′ (Lines 14-17 of Algorithm 2). In case
all the interior robots are outside T1 then if there are
robots in T2, ri moves to the point in the line segment
xy that intersects the line segment rir′, where r′ is the
robot in T2 that is closest to ri again w.r.t. a line paral-
lel to ab, and x and y, respectively, are the midpoints of
the line segments ria and rib (Lines 12,13 of Algorithm
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Algorithm 3: Side(ri,Ck(ri),Hk(ri))

1 if ri.light = Off then ri.light← Edge;
2 if there exists at least a robot in Ck(ri)\{ri} with light Off then
3 a← counterclockwise neighbor on the boundary of Hk(ri);
4 b← clockwise neighbor on the boundary of Hk(ri);

5 rj ← closest robot to ri in Ck(ri)\{ri} with light Off w.r.t. a line parallel to line segment ab;
6 Move to the midpoint of the line segment rirj ;

Algorithm 4: Interior(ri,Hk(ri))

1 if ri is not in the triangular area formed by any three consecutive robots of Hk(ri) then
2 x← midpoint of any edge between two consecutive robots of Hk(ri);
3 Move to the midpoint of the line segment rix;
4 else
5 e← the closest among two edges of the triangular area that are in Hk(ri);
6 Move to the midpoint of the edge e;

2). When all the interior robots are outside T , ri moves
halfway to the line segment overlinerir

′ connecting ri
with the robot r′ that is closest to it (Lines 10,11 of Al-
gorithm 2). Note that if more than one robot is closest
to the vertex robot ri according to our criteria (w.r.t.
a line parallel to ab), then the robot that is closer to
b among the closest robots is chosen as r′ (Line 9 of
Algorithm 2).

On the other hand, a robot, rj , on the edge of H
(which is not a vertex of H) moves halfway to an internal
robot that is closest to rj w.r.t. a line parallel to ab (ab
in this case is in fact a straight line segment that passes
through rj) (Lines 2–5 of Algorithm 3).

Moreover, there can be a situation in our algorithm
that there is no robot in the interior of H but there are
still some robots on the edges of H. The robots in the
edges do not move since there should not be any robot
with light Off in the system for this situation to hap-
pen. On the other hand, the vertex robots recognize this
situation and start moving to the midpoint of the line
segment xy (Lines 18,19 of Algorithm 2). These moves
of vertex robots are sufficient since we can show that
eventually all edge robots become vertices even under
these moves.

We now have two special cases in our algorithm. The
first special case is when there is only one internal robot.
In this case, we can show that if the internal robot
does not move, Mutual Visibility cannot be achieved
without collisions since, all the robots in R converge to
the position of the only internal robot. However, our
algorithm resolves this situation as follows. When there
is only one robot, say w, in the interior of Hk(w), then
the robot w recognizes this situation and moves towards
the boundary of Hk(w). This recognition is easy as all
the robots w sees have lights either Vertex or Edge (Line
9 of Algorithm 1). If w is inside the triangular area riab

of some vertex robot ri, it chooses the closest edge be-
tween ria and rib and moves to the midpoint of that
edge (Lines 1, 5, 6 of Algorithm 4). Otherwise, it moves
halfway from its location to the line segment connecting
it with the midpoint of any edge between two consec-
utive robots of Hk(w) (Lines 2,3 of Algorithm 4). The
second special case is when a robot ri ∈ R sees only
two other robots (Lines 4,5 of Algorithm 1). In this
case, Hk(ri) must be a line segment. The robot ri then
moves orthogonal to Hk(ri) by any non-zero distance.
These movements translate line segment Hk(ri) into a
polygonal Hk(ri) which remains as polygonal Hk(ri) in
future rounds.

5.1 Analysis of the Modified Shrink Algorithm

We here analyze Modified Shrink for both correctness
and running time. We first show that the paths that
robots follow when they move inside do not cross which
is essential to show that Modified Shrink avoids collisions
due to hitting each other while relocating. We have the
following lemma.

Lemma 5 The paths of robots do not cross during the
execution of Modified Shrink.

We now show that two robots do not land up to the
same position during the execution of Modified Shrink
which is essential to prove that there is no collision due
to position sharing. Note that in C0, robots do not
share their positions since it is assumed that they start
from the distinct positions (otherwise no collision re-
quirement can not be achieved).

Lemma 6 Two robots do not land up to the same po-
sition during the execution of Modified Shrink.
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Figure 2: An illustration of robot movements in
Modified Shrink: (left) the closest robot to ri, r, is in
T1; (right) the closest robot to ri, r, is in T2.

Combining Lemmas 5 and 6, we obtain the fol-
lowing theorem on collision avoidance property of
Modified Shrink.

Theorem 7 Starting from any configuration of n
robots, Modified Shrink avoids robot collisions.

We now show that vertex robots remain vertex which
is essential to prove the convergence property of our al-
gorithm and guarantee progress towards a mutual visi-
bility configuration.

Lemma 8 No vertex robot of H becomes internal or
edge robot during the execution of Modified Shrink.

Proof. When there is no interior robot in the triangular
area T of the vertex robots, the external (vertex and
edge) robots converge to the same limit, i.e., in every
round, all the robots in the boundary of H move exactly
half distance to their closest robots in the line segment
connecting them to their closest internal robots in H.
It can be easily seen that this process guarantees that
the vertices of H remain as vertices of H in every future
round. Therefore, we focus on the scenario where some
vertex robots have internal robots in their triangular
areas T and others do not have internal robots in their
triangular areas.

We will show that the moves of some vertex robots
to the positions inside T1 and the moves of other vertex
robots to the positions outside T1 still guarantee that
vertex robots remain as vertices of H. One example
configuration for such scenario is given in Fig. 2. Let
ri be a vertex robot in H and a and b are its neighbors
in H with a being in its counterclockwise direction and
b being in its clockwise direction. Let r be the robot
that is inside the triangular area T of ri. Assume that
r is also the closest robot in the interior of H from the
vertex robots a and b and it is not inside the triangular
area T of both a and b. According to Algorithm 1,
if r is inside the triangular area T1 of ri, ri moves as
shown in the left of Fig. 2 in the line, say L, that is

parallel to the line segment xy that passes through the
position of r. The exact point where ri moves is the
midpoint of the line segment rz of the line L, where x is
the intersection point of the line L and the line segment
rib. The robots a and b move halfway to r since r is
outside the triangular area T of both a and b.

We now show that the convexity of H is maintained
in this situation. We first consider robot b and then
the argue for robot a. We have that line segments br
and rib intersect at b before b and ri move inside which
is also the vertex of H. After they move inside, the
line segment rib (bold dotted line in the left of Fig. 2)
connecting the new positions of ri and b is parallel to the
line segment rib connecting their old positions because
their new positions are the midpoints of two sides rb and
rz of the triangle rbz. Now since r is also the closest
robot to a the move of a makes the line segment ar (from
a’s new position to r) parallel to the line segment ari
(from a’s old position to ri) if ri moves to the midpoint
of the line segment rz′ (the argument here is similar to
the one used for robot b), otherwise ar remains as the
segment of line ←→ar that intersects ←→ria at a. Therefore,
under any movements of ri, a, and b, ri does not become
internal or edge robot because neither a nor b crosses the
line segment zz′ to reach some point in the triangular
area rizz

′ of ri. Note that r actually becomes vertex
after the moves of ri, a, and b. Since this process is
applied by all the vertex robots of H, it is clear that
the convexity of H is maintained and no vertex robot
becomes an internal or edge robot.

Consider now the scenario where r is inside the trape-
zoidal area T2 of ri (the right of Fig. 2). In this case,
ri moves to the point where line segments xy and rir
intersect. As the distance from ri to its new position
(after move) is at least half of rir, the line segments
connecting the new positions of a, ri, and ri, b become
parallel to the current edges of H, ap and pb, when r
is at some position in the line segment ab. Therefore,
under any movements of ri, a, and b, ri does not become
internal or edge robot because neither a nor b crosses
the line segment xy to reach some point in the triangu-
lar area T1 of ri. Hence, combining the above claims,
the lemma follows. �

We are now ready to analyze the runtime bound of
Modified Shrink.

Theorem 9 Modified Shrink solves Mutual Visibil-
ity in O(n log n) rounds using lights with 3 colors in
the fully synchronous setting.

Proof. When H is a line in C0 it becomes a polygo-
nal H in one round due to the fully synchronous setting
and it is easy to see that once line H is transitioned to
polygonal H, it does not become line H again in future.
Starting from polygonal H, according to Algorithm 1,
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when there exists a robot in T1, then it becomes ver-
tex in one round. When there is a robot in T2, then
the robot reaches at least halfway close to it in next
round. Therefore, the worst-case number of rounds of
Algorithm 1 is when all the interior robots are not inside
any T of vertex robots. However, we have from Algo-
rithm 1 that external robots reach halfway to those in-
terior robots (even if they are not inside T of any vertex
robots) in every round. As vertex robots remain vertex
(Lemma 8) and external robots move halfway to the
interior robots in each round, after at most O(log n)
rounds, at least one internal robot becomes an exter-
nal robot (vertex or edge). This is because the distance
between a vertex robot and its closest internal robot de-
creases by half in every round and the closest internal
robot for a vertex robot remains as closest until it even-
tually becomes an external robot. Therefore, as there
are n robots in R, they become external in at most
O(n log n) rounds. Moreover, we need at most O(n)
rounds to make robots in edges the vertex robots after
all internal robots reach the boundary of H (Lines 18,19
of Algorithm 2). Therefore, Algorithm 1 needs at most
O(n log n) +O(n) = O(n log n) rounds. �

We have the following theorem for the lower bound
of Modified Shrink which shows the inherent difficulty in
obtaining faster algorithms for the Mutual Visibility
problem.

Theorem 10 There exists an initial configuration C0

of the robots in which Modified Shrink takes Ω(n) rounds
to solve Mutual Visibility in the fully synchronous
setting.
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Buttons&Scissors is NP-Complete

Harrison Gregg ∗ Jody Leonard † Aaron Santiago‡ §Aaron Williams

Abstract

Buttons & Scissors is a popular single-player puzzle. A
level is played on an n-by-n grid, where each position
is empty or has a single coloured button sewn onto it.
The player’s goal is to remove all of the buttons using
a sequence of horizontal, vertical, and diagonal scissor
cuts. Each cut removes all buttons between two distinct
buttons of the same colour, and is not valid if there is
an intermediate button of a different colour. We prove
that deciding whether a given level can be completed
is NP-complete. In fact, NP-completeness holds when
only horizontal and vertical cuts are allowed, and each
colour is used by at most 7 buttons. Our framework was
also used in an NP-completeness proof when each colour
is used by at most 4 buttons, which is best possible.

Keywords: NP-completeness, pencil-and-paper puzzle.

1 Introduction

Buttons & Scissors is a single-player puzzle by KyWorks
that is available as a free iOS and Android app. The
goal is to remove all buttons from an n×n grid using a
series of scissor cuts that have the following properties:

• a cut is a straight-line segment whose endpoints are
centers of distinct buttons and which is horizontal,
vertical, or diagonal at a 45◦ or −45◦ angle;
• a cut’s line segment touches at least two buttons of

the same color, and no buttons of another color;
• a cut removes all buttons on its line segment.

Figure 1 illustrates a sample level and solution.

3 1 4 4
2 1 2 8 6
5 5 8 3

7 6 7 3
8 9 9 9

(a) (b)

Figure 1: (a) Level 7 in Buttons & Scissors, and (b) a
solution using nine cuts.

∗hgregg11@simons-rock.edu
†jleonard11@simons-rock.edu
‡asantiago11@simons-rock.edu
§haron@uvic.ca

Buttons & Scissors is reminiscent of many grid-based
pencil-and-paper puzzles that have been popularized by
the Japanese company Nikoli. To analyze the computa-
tional complexity of an individual puzzle, it is necessary
to generalize certain aspects of the puzzle, including its
grid size. For example, the generalized version of Su-
doku involves an n2-by-n2 grid with blocks of size n
and integers from 1 to n2 (with the standard version
having n = 3). The book Games, Puzzles, and Com-
putation by Hearn and Demaine [2] provides hardness
results for many generalized grid games. We consider
the following decision problem.

Decision Problem 1 B&S(B)
Input: An n-by-n board B.
Output: True if B has a solution, and False otherwise.

We also consider a cut-constrained version of Buttons
& Scissors in which diagonal cuts are not allowed.

Decision Problem 2 B&S+(B)
Input: An n-by-n board B.
Output: True if B has a solution using only horizontal
and vertical cuts, and False otherwise.

Notice B&S(B) is True and B&S+(B) is False for the
board in Figure 1. In general, B&S+(B) ⇒ B&S(B).
However, a priori, there is no relationship between the
difficulty of deciding B&S and B&S+. In this article
we prove that both problems are NP-complete. In fact,
we achieve slightly stronger results that also constrain
the number of times each distinct colour can be used.

Theorem 1 B&S and B&S+ are both NP-complete.
Furthermore, both problems are NP-complete when each
colour is used by at most F = 7 buttons.

Section 2 describes our Buttons & Scissors gadgets,
and Section 3 formalizes the version of 3-SAT that we
use for Theorem 1. Section 4 provides our reduction
and Section 5 proves that it is correct. Open problems
and further results appear in Section 6, including an im-
provement of Theorem 1 to F = 4 for the B&S puzzle.

2 Linear Gadgets

Our strategy is to prove the hardness of B&S and
B&S+ simultaneously using a single 3-SAT reduction.
We do this by mapping instances of 3-SAT to Buttons
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& Scissor boards in which no diagonal cuts are possible.
More specifically, if two buttons have the same colour,
then they will not lie on any common diagonal line. To-
wards this goal we construct gadgets whose buttons can
fit on a single row or column. Linear gadgets for OR
and AND are given in Sections 2.1 and 2.2, respectively.

2.1 OR Gadget

The following gadget has three Boolean inputs. Each
input determines whether a given button has been re-
moved from the board.

Definition 1 Let OR(X1,X2,X3) be the following But-
tons & Scissors board,

1 2 3 4 5 6 7 8 9 10 11 12 13

where buttons in positions 1, 2, 6 are one colour, those in
positions 3, 4, 7, 10, 11 are a second distinct colour, and
those in positions 8, 12, 13 are a third distinct colour.
The buttons in positions 6, 7, 8 are absent if X1 = T,
X2 = T, X3 = T, respectively.

For example, when X1 = X2 = X3 = F, the buttons
in positions 6, 7, 8 are present, as shown below.

1 2 3 4 5 6 7 8 9 10 11 12 13

Notice that it is impossible to remove the button in
position 7 from this board using any sequence of cuts.
As another example, consider X1 = X2 = F and X3 =
T, in which the button in position 8 is not present.

1 2 3 4 5 6 7 8 9 10 11 12 13

This board can be solved by successively cutting posi-
tions 3-4, then 1-6, then 7-11, then finally 12-13. For a
third example, consider X1 = F, X2 = T, X3 = F, in
which only the button in position 7 is removed.

1 2 3 4 5 6 7 8 9 10 11 12 13

This board can be solved by successively cutting posi-
tions 3-4, then 1-6, then 10-11, then finally 8-13.

More generally, this board can be solved if and only
if at least one input is true.

Lemma 2 B&S(OR(X1,X2,X3)) ⇐⇒ X1 ∨X2 ∨X3.

Proof. The following table provides a sequence of cuts
to solve the board whenever X1 ∨X2 ∨X3 = T.

X1 X2 X3 Cut Sequence
T T T 1-2, 3-11, 12-13
T T F 1-2, 3-4, 10-11, 8-13
T F T 1-2, 3-11, 12-13
T F F 1-2, 3-7, 10-11, 8-13
F T T 3-4, 1-6, 10-11, 12-13
F T F 3-4, 1-6, 10-11, 8-13
F F T 3-4, 1-6, 7-11, 12-13

When X1 = X2 = X3 = F it is impossible to remove
the button in position 6. �

2.2 AND Gadget

The following gadget has k Boolean inputs.

Definition 2 Let AND(X1,X2, . . . ,Xk) be the following
Buttons & Scissors board,

· · ·

0 1 2 3 4 · · · k k+1

where buttons in positions 1, 2, . . . , k have unique
colours, and these colours are distinct from the com-
mon colour used by the button in position 0 and k+1.
The button in position i is absent if Xi = T for each
i = 1, 2, . . . , k.

Lemma 3 B&S(AND(X1,X2, . . . ,Xk)) ⇐⇒ X1∧X2∧
· · · ∧Xk.

Proof. If X1 ∧ X2 ∧ . . . ∧ Xk is true, then the only
buttons in AND(X1,X2, . . . ,Xk) are those in positions 0
and k+1. These buttons have the same colour and can
be removed with one cut, 0-k+1. If X1 ∧X2 ∧ . . . ∧Xk

is false, then AND(X1,X2, . . . ,Xk) contains at least one
button with a unique colour that cannot be cut. �

3 Conventions

This section describes the version of 3-SAT that we uti-
lize in our reduction, and our conventions for describing
Buttons & Scissors boards.

3.1 3-SAT

Let S denote the set of 3-SAT instances that have dis-
tinct clauses and exactly three literals of distinct vari-
ables in each clause. It is easy to see that this version
of 3-SAT is NP-complete, even though it varies from
Karp’s original formulation [3].
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An arbitrary 3-SAT instance S ∈ S has variables
V1, V2, . . . , Vn and clauses C1, C2, . . . , Cm. We write an
arbitrary clause Cx and its literals as

Li,x ∨ Lj,x ∨ Lk,x where i < j < k and Li,x ∈ {Vi,¬Vi}
Lj,x ∈ {Vj ,¬Vj}
Lk,x ∈ {Vk,¬Vk}.

In other words, La,b is the literal of variable Va that
appears in clause Cb. We refer to each La,b as a literal
instance. For example, if S is the following,

(V1 ∨ V2 ∨ V3)∧(V1 ∨ ¬V2 ∨ ¬V3)∧(¬V1 ∨ ¬V3 ∨ ¬V4),

then C1 = (V1 ∨ V2 ∨ V3) and so L2,1 = V2. Similarly,
C3 = (¬V1 ∨ ¬V3 ∨ ¬V4) and so L4,3 = ¬V4.

3.2 Buttons & Scissors Boards

Let B denote the set of Buttons & Scissors boards. We
will use different shapes for buttons that play different
roles in each B ∈ B that we construct:
• Clause buttons are circular (Section 4.1);

• AND buttons are octagonal (Section 4.1).
• Variable buttons are trapezial (Section 4.2);
• Literal instance buttons are rectangular (Section

4.3);
Each button will be uniquely identifiable by (a) its
shape, (b) its label in the shape, and (c) its subscript.
Our convention is that buttons have the same colour if
and only if they have (a) the same shape, and (b) the
same label in the shape. For example, 3 L and 3 R are
the same colour. Similarly, 1,2

L
and 1,2

R
are the same

colour. However, 3 L and 4 L are different colours.

4 Reduction

This section describes our reduction r : S → B that
maps an instance of 3-SAT S ∈ S to a Buttons & Scis-
sors board B = r(S) ∈ B. Sections 4.1–4.3 describe but-
tons in B resulting from clauses, variables, and literal
instances, respectively. The layout of the entire board
is then discussed in Section 4.4, and various properties
of the constructed board are given in Section 4.5.

Figure 2 contains both a high-level view of our reduc-
tion, as well as a specific example.

4.1 Clauses

Each clause in the 3-SAT instance is translated into its
own row of buttons in the board B (see Figure 2). In
particular, Cx = Li,x ∨ Lj,x ∨ Lk,x with i < j < k
contains the following OR gadget

i L1
i L2

j
L1

j
L2

i M j
M

k M j
R1

j
R2

k R1
k R2

Each of these rectangular literal buttons has the addi-
tional label ,x which is not shown for space reasons.

Also, buttons corresponding to negative literals have an
overline which is not indicated above (see Figure 2). No-
tice that there are three distinct button colours above
and they follow the OR gadget pattern. The subscripts
for each literal instance colour are Left (twice for i and
j), Middle (once each), and Right (twice for j and k).
The horizontal positioning of the middle buttons is be-
low its respective variable positive/negative column as
discussed in Section 4.2. An additional pair of Cleanup
buttons for each colour are placed above each middle
button.

The row of buttons for clause Cx contains one addi-
tional pair of clause buttons as bookends.

x L i L1
i L2

· · · k R1
k R2

x R

The subscripts for these clause buttons are Left and
Right. These are the only two buttons of this colour on
the entire board B. Therefore, by Lemma 2 we have the
following remark.

Remark 1 The clause buttons x L and x R can only
be removed after all of the buttons in the OR gadget for
clause Cx are removed.

We place all of the Left clause buttons within an AND
gadget as follows

1 1 L 2 L 3 L · · · m L 2

which appears as a single vertical column in B (see Fig-
ure 2). The AND buttons 1 and 2 are the only such
pair on B, and they share a unique colour. Therefore,
the previous remark and Lemma 3 imply the following.

Remark 2 The AND buttons 1 and 2 can only be
removed after all of the clause buttons are removed.

4.2 Variables

The following row of buttons appears in B

n
C ··· 2 C 1 C 1 1 P 1 D 1 N 2 P 2 D 2 N ··· n

P
n

D
n

N .

There are four buttons for each variable, with subscripts
for Positive, Decision, Negative, and Consistency. Each
quartet has its own distinct colour that is not used by
any other buttons on B, and the consistency button is
separated from the others by the first AND button.

As we will see in Section 5, this configuration en-
sures that a variable’s decision button will either be cut
with its positive button, or its negative button, and this
choice will correspond to setting the variable equal to T
or F, respectively. (If all four buttons are cut simulta-
neously, then the variable is ‘free’ and can be assigned
either way in a satisfying assignment.)
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...

OR gadgets
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...
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buttons
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Figure 2: Top: An overview of our reduction. The gray squares contain buttons whose colours are not specified
in the figure, and the gray rectangles contain blank spaces and buttons whose colours are not specified. Bottom:
(V1 ∨ V2 ∨ V3) ∧ (V1 ∨ ¬V2 ∨ ¬V3) ∧ (¬V1 ∨ ¬V3 ∨ ¬V4) ∧ (¬V2 ∨ ¬V3 ∨ V4). The zig-zags denote a series of empty
rows.

278



CCCG 2015, Kingston, Ontario, August 10–12, 2015

4.3 Literal Instances

For each variable Vi, pairs of Cleanup buttons for each
of its positive and negative literal instances are stacked
vertically above its positive button i P and negative
button i N , respectively, as follows

...
...

i P i D i N .

More precisely, if Vi appears as a positive literal in
clauses Cp1 , Cp2 , . . . , Cpx for p1 < p2 < · · · < px, then
the buttons above the variable’s positive button appear
as follows (with left-to-right being bottom-to-top)

i P i,p1 C1
i,p1 C2

i,p2 C1
i,p2 C2

· · · i,px C1
i,px C2

where i P is at the bottom of this vertical stack. Sim-
ilarly, if Vi appears as a negative literal in clauses
Cn1

, Cn2
, . . . , Cnx

for n1 < n2 < · · · < nx, then the but-
tons above the variable’s negative button appear from
left-to-right as follows

i N i,n1 C1
i,n1 C2

i,n2 C1
i,n2 C2

· · · i,nx C1
i,nx C2

where i N is at the bottom of this vertical stack.
These cleanup pairs appear in the same column and

in opposite order as the literal instance buttons in their
respective clauses (see Figure 2). Therefore, we have
the following remark.

Remark 3 If variable Vi’s positive button i P is re-
moved from B, then all buttons in Vi’s positive column
can be removed. Similarly, if i N is removed, then all
buttons in Vi’s negative column can be removed.

4.4 Layout

In our construction, the only button colours that appear
on more than one single row or column are the literal in-
stance buttons i,j . More specifically, a button of colour

i,j appears both on clause Cj ’s row and in variable vi’s
positive or negative literal column. To avoid possible di-
agonal cuts between these buttons, we include a series
of blank rows between the clause rows and the variable
row. By our construction, a total of 4n + 6 blank rows
ensures this property since the leftmost literal instance
button in clause C1’s row is strictly below the bottom
literal instance button in variable Vn’s negative literal
column, with respect to a 45◦ diagonal line.

4.5 Properties

We conclude this section by summarizing a number of
simple properties of our reduction.

Remark 4 If two buttons in B have the same colour,
then they do not lie on the same diagonal line.

Remark 5 If S ∈ S has n variables and m clauses,
then the board B = r(S) is an O(n + m)-by-O(n) grid.

Remark 6 Each colour is used by at most 7 buttons.
In particular, variable buttons i appear 4 times, clause
buttons j appear twice, AND buttons appear twice,

and instance literals buttons i,j appear 5 or 7 times.

5 NP-Completeness

In this section we prove Theorem 1. That is, B&S and
B&S+ are both NP-complete. First we demonstrate
that the problems are in NP.

Lemma 4 B&S and B&S+ are in NP.

Proof. Suppose B ∈ B is an n-by-n board. In both
versions of the puzzle, a cut can be specified by two
grid co-ordinates, and at most O(n2) cuts are necessary
to clear B. Therefore, a sequence of cuts that solves
B can be specified in polynomial-size with respect to
B. It is also clear that we can verify if a sequence of
cuts clears a board in polynomial-time. Therefore, a se-
quence of cuts provides a polynomial-size certificate that
can be verified in polynomial-time when B&S(B) = T
or B&S+(B) = T. �

Our reduction creates a polynomial-size board by Re-
mark 5. Therefore, to complete the proof of Theorem 1
we need to prove that if S ∈ S and B = r(S) then

S is satisfiable ⇐⇒ B&S(B) and

B&S(B) ⇐⇒ B&S+(B).

By Remark 4 there are no diagonal cuts in B, so
B&S(B) ⇐⇒ B&S+(B) has been established. We
prove the first ⇐⇒ in the following two subsections.

5.1 Clearing the board

In this subsection we provide a solution for the Buttons
& Scissors board given a satisfying assignment to the
3-SAT problem.

Lemma 5 Suppose S ∈ S and B = r(S). If S is satis-
fiable, then B&S(B) = T.

Proof. Consider a fixed satisfying assignment for S.
We now provide a sequence of cuts that clears B.

1. Perform the following for each i = 1, 2, . . . , n:

• If Vi = T in the satisfying assignment, then
cut i P and i D. Then cut all buttons in vari-
able Vi’s positive literal column by Remark 3.
• Otherwise, cut i N and i D. Then cut all

buttons in variable Vi’s negative column.

2. Perform the following for each j = 1, 2, . . . ,m:
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• Remove every button in the OR gadget on
clause Cj ’s row.

• Remove the clause buttons j L and j R.

The first step is possible by Lemma 2 and the fact
that we stared with a satisfying assignment. The
second step is possible by Remark 1 .

3. Cut the AND buttons 1 and 2 by Remark 2.

4. Perform the following for i = 1, 2, . . . , n in order:

• If Vi = T in the assignment, then cut i C and
i N . Then cut all buttons in variable Vi’s

negative literal column by Remark 3.
• Otherwise, cut i C and i P . Then cut all

buttons in variable Vi’s positive literal column
by Remark 3.

The cuts remove all buttons, so B&S(B) = T. �

5.2 Satisfying the formula

Now we provide a satisfying assignment to the 3-SAT
problem given that its equivalant board is solvable.
Lemma will allow us to map a solution to the Buttons
& Scissors board to a 3-SAT variable assignment.

Lemma 6 Consider a sequence of cuts that clears board
B = r(S). For each variable Vi, the variable buttons for
Vi are cut in one of three ways:

1. First i P and i D are cut. Then i C and i N are
cut after the two AND buttons are cut.

2. First i D and i N are cut. Then i C and i P are
cut after the two AND buttons are cut.

3. All four buttons — i C , i P , i D and i N — are
cut together after the two AND buttons are cut.

Proof. The relative order of these buttons is

i C 1 i P i D i N .

Thus, the three cases follow immediately. �

We now complete our proof of Theorem 1.

Lemma 7 Suppose S ∈ S and B = r(S). If
B&S(B) = T, then S is satisfiable.

Proof. Let c1, c2, . . . , ck be a sequence of cuts that
clears B. By Lemma 6, we can create a variable as-
signment for S as follows:
• If the first case occurs, then set Vi = T.
• If the second case occurs, then set Vi = F.
• Otherwise, the choice is arbitrary and set Vi = T.

We will prove that this assignment is satisfying.
Consider the cut ca that removes the AND buttons

1 and 2. Prior to ca, all clause buttons must have
been removed by Remark 2. Therefore, by Remark 1 all
of the OR gadget buttons must have been removed prior

to ca. Therefore, by Lemma 2 and the construction of B,
at least one of the central buttons in each OR gadget
must have been removed prior to ca by some vertical
cut. Therefore, we have the following prior to ca for
each clause Cj : There exists a variable Vi such that
Vi = T and the literal Vi is in Cj and its button i,j

M
was removed, or Vi = F and the literal ¬Vi is in Cj and
its button i,j

M
was removed. Therefore, the variable

assignment satisfies S. �

6 Additional Results and Open Problems

Buttons & Scissors has a number of natural variations
including the following colour-constrained versions:

1. There are at most C distinct colours of buttons.
2. Each colour can be used by at most F buttons.

We proved B&S and B&S+ are NP-complete for F = 7
in Theorem 1. We also conjectured NP-completeness
for F = 4 in our initial submission. This was recently
verified by a second research group for the B&S puzzle.

Theorem 8 ([1]) B&S is NP-complete when each
colour is used by at most F = 4 buttons.

The proof of Theorem 8 uses our reduction with a
new OR gadget (see Figure 2 in [1]). The new gad-
get uses colours less frequently but requires all four cut
directions. Thus, the hardness of B&S+ with F = 4
is still open. The F = 4 cases are particularly inter-
esting because B&S and B&S+ are polytime solvable
when F = 3. To see this, notice that all buttons of
a given colour must be removed by a single cut when
F = 3. Furthermore, removing all buttons of a given
colour cannot turn a solvable board into an unsolvable
board. Thus, a simple greedy algorithm suffices.

Our initial submission also conjectured hardness
when C = 2, and this was also recently verified in [1]. A
full journal article with the authors of [1] is also planned.

An implementation of our reduction is available:
http://jabdownsmash.com/button3sat/index.html.
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Computational complexity of numberless Shakashaka

Aviv Adler∗ Michael Biro† Erik Demaine∗ Mikhail Rudoy ‡ Christiane Schmidt§

Abstract

Shakashaka, like Sudoku, is a pencil-and-paper puzzle.
In this paper we show that Shakashaka is NP-complete
in the case of numberless black squares.

1 Introduction

Shakashaka is a pencil-and-paper puzzle, proposed by
Guten in 2008 and popularized by the Japanese pub-
lisher Nikoli [1].

An instance of Shakashaka consists of an m× n rect-
angle of unit squares. Initially, each square is colored
either black or white, and black squares may also con-
tain an integer between 0 and 4, inclusive. The solver
proceeds by filling in the initially white squares with
squares consisting of a black and a white triangle in one
of four orientations: . We denote these col-
lectively as b/w squares. The white squares may also
be left blank. In addition, the numbers written in black
squares constrain the solver by specifying the number of
b/w squares that must neighbor the given square (in its
four vertically and horizontally neighboring squares).

An instance is considered solved if every maximal con-
nected white region on the board is a rectangle (axis-
aligned or rotated by 45◦) and each numbered black
square has exactly as many b/w square neighbors as is
specified by its number. For an example and its (unique)
solution, refer to Figure 1.

Demaine et al. [3] proved that Shakashaka is NP-
complete. They used a reduction from planar 3-SAT,
and the black squares in the reduction either contained
the number 1 or remained blank. In addition, they
showed that Shakashaka can be formulated as a 0-1-
integer program and gave experiments using IP-solvers
(namely SCIP 3.0.0) to solve instances of sizes up to
20×36. Two questions remained in the concluding re-
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(a) (b)

Figure 1: (a) An instance of Shakashaka and (b) its unique
solution.

marks of this paper, one concerned settling the compu-
tational complexity of Shakashaka without numbers in
the black squares.

In this paper we answer this question and show that
Shakashaka without numbers in the black squares is
NP-complete by a reduction from POSITIVE PLANAR
1-IN-3 SAT, a variant of the well known PLANAR 3-
SAT problem, shown to be NP-complete by Mulzer and
Rote [5]. The reduction is parsimonious, and, hence,
also shows #P-completeness. We also include an easier,
but non-parsimonious, reduction from PLANAR 3-SAT,
which is well-known to be NP-complete.

2 NP-completeness of numberless Shakashaka

Definition 1 An instance F of the POSITIVE PLA-
NAR 1-IN-3 SAT problem is a Boolean formula in 3-
CNF: it consists of a set C = {C1, C2, . . . , Cm} of m
clauses over n variables V = {x1, x2, . . . , xn}, where
each clause Ci consists of three variables (“POSITIVE”
indicates that no negated variables appear in the Ci’s).
Moreover, the variable-clause incidence graph G = (C ∪
V, E) is planar, where {Ci, xj} ∈ E ⇔ xj is in Ci. It
is sufficient to consider formulae where G has a recti-
linear embedding, see Knuth and Raghunathan [4]. The
POSITIVE PLANAR 1-IN-3 SAT problem is to decide
whether there exists a truth assignment to the variables
such that exactly one variable in each clause is true.

Theorem 1 Shakashaka without numbers in the black
squares is NP-complete.

Proof. [via Positive Planar 1-in-3 SAT]

The proof is by reduction from POSITIVE PLANAR
1-IN-3 SAT, which was shown to be NP-complete by
Mulzer and Rote [5]. Let F be an instance of the POS-
ITIVE PLANAR 1-IN-3 SAT problem. We turn the
rectilinear embedding of G into a Shakashaka board:
we present the variables, clauses and edges by pieces of
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(a) (b) (c) (d)

Figure 2: (a) The variable gadget, (b) with enforced white pixels and (c),(d) the two possible feasible solutions. We associate
the “kite” in blue with a truth setting of “false” and the “kite” in red with a truth setting of “true”.

(a) (b) (c)

Figure 3: (a) The NOT gadget. (b),(c) The wires connected by the NOT gadget always satisfy opposite truth assignments.
In (b) the gadget is entered with a truth assignment corresponding to “true” and left with a truth assignment corresponding
to “false”. Those roles are reversed in (c). Some enforced triangles are shown in green to facilitate understanding.

the board that need to be filled in. We will give the
details of the gadgets in the following.

The variable gadget is shown in Figure 2(a). The
empty circles in Figure 2(b) indicate (by the construc-
tion) enforced white pixels. There exist exactly two
feasible solutions for the variable gadget, shown in blue
and red in Figures 2(c) and (d) and corresponding to a
truth setting of “false” and “true”, respectively. In both
cases we use a “kite”, a sloped structure, occupying 7
out of the pixels of a 3×3-square. For the blue solution,
the kite is oriented from top left to bottom right, for
the red solution it is oriented from top right to bottom
left (both indicated by a line in the rectangle’s center).

The initial truth value is propagated by a wire gad-
get as indicated in Figure 2.

Parity. Note that, by construction, the kites propa-
gating through the wires (and all other gadgets below)
do so at regular intervals of three squares in both the
up/down and left/right directions; i.e., the kites that
propagate the truth assignments each fit inside a 3× 3-
square. In fact, the gadgets of our construction force
these kites to be placed inside the tiles of a single 3× 3-
tiling of the plane. This ensures that the gadgets can be
constructed and the kites will align without any shifting.

The NOT gadget, shown in Figure 3, enables us to
reverse the truth assignment in a variable wire. The
NOT gadget will be used in the bend gadget and split
gadget as a black box, and is only used there.

The bend gadget, shown in Figure 4, enables us to
bend a wire to match bends in the rectilinear embedding
of G while enforcing that the same truth assignments
continue to propagate along the wire.

The split gadget, shown in Figure 5, enables us to
increase the number of wires propagating the truth as-
signment of a variable gadget.

The at-most gadget, shown in Figure 6, enables us
to enforce that at most one of a pair of truth assign-
ments is true. It admits a feasible Shakashaka board in
all cases except for two true inputs, in which case an
infeasible Shakashaka board is obtained.

The related at-least gadget, shown in Figure 7, en-
ables us to enforce that at least one of a pair of truth
assignments is true. It admits a feasible Shakashaka
board in all cases except for two false inputs, in which
case an infeasible Shakashaka board is obtained.

The “XOR” gadget, shown in Figure 8, takes two

Figure 9: The clause gadget. The gray components ensure
that the reduction is parsimonious.
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(a) (b) (c)

Figure 4: (a) The bend gadget. (b),(c) The wires connected by the bend always satisfy the same truth assignment.

(a) (b) (c)

Figure 5: (a) A split of the corridor. (b),(c) The wires connected by the split always satisfy the same truth assignment.

wires as input and outputs:

false/false → false

false/true → true or false possible

true/false → true or false possible

true/true → infeasible.

Finally, the clause gadget, shown in Figure 9, en-
forces that exactly one of the three variables included
in the clause is set to true. Three variables, rep-
resented by A, B and C in Figure 9, are pairwise
combined by the at-most gadget. This combination
can only be solved if there is at most one true vari-
able among A, B, and C (i.e. the possibilities are
false/false/false, true/false/false, false/true/false, and
false/false/true). Consequently, we only need to ex-
clude the false/false/false case. We combine each of two
pairs of variables with an “XOR” gadget (“XOR”1 and
“XOR”2) and combine the results in the at-least gadget.
Note that the “XOR” gadgets would yield an infeasible
Shakashaka board for two true inputs, but this case has
already been excluded.

If all variables are set to false, both “XOR” gad-
gets must output false. The subsequent combination
of the two “XOR” outputs with an at-least gadget re-
sults in an infeasible Shakashaka board. If one variable
is set to true, at least one “XOR” gadget can output
true. Therefore, the subsequent combination of the two
“XOR” outputs with an at-least gadget is possible and
does not render the board infeasible.

Thus, the resulting Shakashaka has a solution if and
only if exactly one variable per clause is set to true,
that is, if and only if the original POSITIVE PLA-
NAR 1-IN-3 SAT formula F is satisfiable. It is easy to

see, that this reduction is possible in polynomial time.
Moreover, given a filled in board it is easy to check
whether it constitutes a feasible Shakashaka solution,
hence, Shakashaka is in the class NP. Consequently,
Shakashaka without numbers in the black squares is
NP-complete. So, this gadget, i.e., everything except
the gray part in Figure 9, yields the Theorem’s state-
ment. But, we want to obtain a parsimonious reduction:
once we fix an assignment of F , the filling pattern of the
resulting Shakashaka instance is uniquely determined.

Given that the only possible combinations are
the possibilities are false/false/false, true/false/false,
false/true/false, and false/false/true, one of the “XOR”i
has input false/false, hence, it has to output false.
The other two “XOR”j , “XOR”k (i 6= j 6= k, i, j, k ∈
{1, 2, 3}) have input true/false or false/true, i.e., they
output either true or false. But then we combine
all pairs of “XOR” outputs with an at-least gadget:
“XOR”i outputs false, thus, each of “XOR”j and
“XOR”k must output true to obtain a feasible board.
Hence, we have a one-to-one correspondence between
solutions to F and the resulting Shakashaka instance,
i.e., the reduction is parsimonious. �

Because the counting version of POSITIVE PLANAR
1-IN-3 SAT is #P-complete [2], we have:

Corollary 1 The counting version of Shakashaka is
#P-complete.

Definition 2 An instance F of the PLANAR 3-SAT
problem is a Boolean formula in 3-CNF consisting of a
set C = {C1, C2, . . . , Cm} of m clauses over n variables
V = {x1, x2, . . . , xn}. Clauses in F contain variables
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(a) (b) (c) (d) (e)

Figure 6: (a) The “at most” gadget. (b) with two false inputs, (c)/(d) with one true and one false input, (e) with two true
inputs the board cannot be completed.

(a) (b) (c) (d) (e)

Figure 7: (a) The “at least” gadget: (b) with two false inputs the board cannot be completed, (c)/(d) with one true and one
false input, (e) with two true inputs.

and negated variables, denoted as literals (e.g. ‘x1’ or
‘¬x7’). A clause is satisfied if and only if it contains
at least one true literal, and the formula F is true if
and only if all its clauses are satisfied. The variable-
clause incidence graph G is planar and it is sufficient to
consider formulae where G has a rectilinear embedding.

We now present the alternate reduction.

Proof. [via Planar 3-SAT]
In this proof, we give a reduction from PLANAR 3-

SAT. We turn the rectilinear embedding of G into a
Shakashaka board, much along the lines of the previous
proof. We will first discuss the basic representation of
variables in this reduction, and then show how this can
be used to build wires (which are very easy to split and
negate) and clauses.

The basic variable gadget is a 2× 3 rectangle, which
can be filled in 3 ways, as shown in Figure 10; by looping
it as shown in Figure 11, we can eliminate the trivial
solution of Fig. 10(a), giving the two solutions shown
in Fig. 10(b),(c) (the orientations of the 2 × 2 groups
in each 2× 3 block must match because otherwise there
will be an ‘L’-shaped white tetromino). We can set a
given loop of this kind to represent each variable xi; the
variable is set to true if the 2 × 2 half-filled group is

(a) (b) (c)

Figure 10: Basic variable gadget with possible solutions.

in the clockwise direction, and false if the 2 × 2 half-
filled group is in the counterclockwise direction. There
cannot be any other solutions because the edge shared
between any pair of 2×3 blocks is only 1 wide, and hence
no diagonally-oriented white rectangles can fit through
(otherwise they would need to have a width of less than
1 which is impossible in Shakashaka). As long as our
attachments are only 1 tile wide, this will prevent white
rectangles from bridging two adjacent blocks and ensure
that the only solutions possible are those described here.

There are 3 different patterns of loops, as shown in
Figure 12, so as to allow maximum flexibility in our wire
construction (shown in Figure 13); these all satisfy the
property of having exactly two solutions, which differ
in the orientation of the 2 × 2 groups. Wires are built
by attaching loops together to form chains; each chain
consists of a series of loops, each adjacent pair of which
shares a 2 × 3 block; in each chain is a special ‘vari-
able’ loop, which is where the variable setting is read.
We note that these loops alternate between having the
2×2 group in the clockwise direction and in the counter-
clockwise direction; we refer to a loop as being ‘synced’

(a) (b)

Figure 11: Variable loop with a truth setting of (a) true
(red) and (b) false (blue).
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(a) (b) (c)

(d) (e) (f)

Figure 8: (a) The “XOR” gadget. (b)/(c) two false inputs cannot be completed for a true output (infeasible Shakashaka
board indicated in purple), but may be completed for a false output. (d)/(e) both true/false false/true combinations allow a
true output, (f) two inputs of true result in an infeasible Shakashaka board. Enforced triangles are shown in green.

if it shares its orientation with the variable loop (i.e. if
it is an even distance away in the chain); otherwise it
is ‘de-synced’ and has the opposite orientation. Thus,
once the ‘variable’ loop contained in the chain is set,
every other loop within the chain is forced into a par-
ticular orientation depending on whether it is synced
with the variable loop, as sketched in Figure 13.

We also note that it is very easy to bend a chain (by
attaching the next loop to one of the 2×3 blocks to the
side rather than to the one opposite to the previously-
shared 2 × 3 block) and to split a chain (by simply at-
taching two loops to one in a T-junction). As before,
the parity of the distance of each loop in the chain from
the variable loop determines whether it is synced or de-
synced.

The clause gadget is as shown in Figure 14(a); each
of the three 2×3 “input” blocks (denoted a, b, and c) is
attached to a corresponding variable chain. The attach-

(a) (b)
(c)

Figure 12: The different patterns for variable loops.

ment occurs at a synced loop if the literal represented is
not negated, and at a de-synced loop if the literal rep-
resented is negated (i.e. to represent ‘xi’ we attach to a
synced loop, and to represent ‘¬xi’ we attach at a de-
synced loop). Because of the multiple loop patterns, by
increasing the scale of the board by a constant factor we
can allow space for the chains to correct the offset and
allow the correct parity loop to be in the given spot. If
the literal is attached to any of the three ‘input’ blocks
is false, the attached loop will be in the false state,
thus forcing the 2×2 group in the 2×3 ‘input’ block to
be placed away from the main body of the clause gad-
get; if the literal is true then there is a choice of where

Figure 13: The variable loop is shaded yellow. Synced loops
are indicated in green, de-synced loops in pink. Chain con-
tinuations are shown in turquoise; note that by using the
different attachment points to a loop, bends and splits can
be achieved (as shown).
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(a)
(b) (c) (d) (e)

Figure 14: (a) The clause gadget. The input blocks (a, b, c) are indicated in pink, the chains feeding those blocks in orange.
Note that the clause still works if input block a is rotated to be vertical (so in panel (e), the disallowed pink region would be
a rotated ‘L’); this allows extra flexibility in connecting the clauses up to the chains. (b)-(d) The board for one true (red) and
two false (blue) literals. (e) For three false literals (blue) the board cannot be completed.

the 2× 2 group can be (either towards or away).
To get the clause gadgets to conform to the format

given by Knuth and Raghunathan [4], we can wind the
chain connecting at the top of the gadget over the right
side of the clause’s main body (with two 90◦ bends),
such that the three chains come in from the bottom.

We now need to show the following:

1. If at least one of the three literals is true, the clause
can be satisfied (there is a solution in the gadget).

2. If all of the three literals are false then there is
no solution within the clause (thus preventing the
whole Shakashaka instance from being solved).

This would mean that the Shakashaka board generated
has a solution if and only if the formula F is satisfiable.

We note that since a true literal can be made to
mimic a false literal (by allowing placement of the 2×2
group away from the body of the clause), we only need
to show that the clause is satisfiable if exactly one of
the three literals is true; this is because if more than
one is true, we can have one of the satisfied literals act
as true and the others mimic false. This allows us to
handle (1) by Figure 14(b)-(d).

The second result is then shown by the following, as
depicted in Figure 14(e). Since each literal is false in
this case, we are forced to put all three 2×2 groups away
from the main body of the clause. The tiles highlighted
in green (t1 and t2) are forced to be filled in the given
way. This is because if t2 is left blank, then t1 cannot
be left blank as it would create a non-rectangular white
shape; but t1 in this case cannot be filled either, as
each of the four orientations of fill result in a non-right
angle, again violating the rectangular shape constraint.
We then consider the tiles adjacent to the three ‘input’
blocks; we refer to them as a∗, b∗, and c∗ (which are
next to inputs a, b, and c respectively). None of these
can be left blank (or else there is 270◦ angle, which is
not allowed). However, b∗ and c∗ can only be filled in
the manner shown, as any other orientation of fill will
also result in a non-right angle. This forces the white

rectangle formed (in part) by tiles t1, t2, b∗, and c∗ to
be closed as shown. But this means that a∗ cannot be
filled, thus proving that no solution is possible.

Hence, a clause gadget can be solved in Shakashaka
if and only if the clause in F that it represents is satisfi-
able. Thus, we can conclude that the Shakashaka board
generated from F via this reduction (which can easily
be seen to be polynomial-time) is solvable if and only
if all clauses in F can be simultaneously satisfied, i.e.
if and only if F is satisfiable. This completes the re-
duction, showing that Shakashaka is NP-hard (and by
virtue of polynomial-time verification, as discussed in
the previous proof, it is therefore NP-complete). �

3 Conclusion

In this paper we showed that Shakashaka without num-
bers in the black squares is NP-complete.

In the future, we like to address the second question
from the paper by Demaine et al. [3]: given an m × n
board, what is the minimum number k of black squares
that is necessary to obtain a board with a unique solu-
tion? Another natural question asks for this number if
the black squares contain numbers.
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The Inapproximability of Illuminating Polygons by α-Floodlights
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Abstract

We consider variants of the art gallery problem where
guard visibility is limited to a certain angular aperture
α. We show that the problem is NP-hard even when
guards can be located in the interior of the polygon.
We then proceed to prove that both this problem and
its vertex variant, where guard placement is restricted
to the vertices of the polygon, are APX-hard.

We observe that earlier constructions for such results
in art gallery problems with 360◦ guards, usually re-
quired them to cover few specific elements. We exploit
this by carefully updating the construction to replace
360◦ guards with α-floodlights. Similar transformations
may be applicable to other constructions in traditional
art gallery theorems, which is of independent interest.

1 Introduction

The study of art gallery problems is a rich area in geom-
etry with a variety of combinatorial bounds, algorithms
and hardness results [20, 21, 24]. While we are only con-
cerned with floodlight illumination, we build upon the
construction of Lee and Lin [18] through the work of
Eidenbenz, Stamm and Widmayer [11]. This construc-
tion was used in [18] to show that deciding the minimum
number of guards in a polygon without holes is NP-hard.
The construction was refined in [11] to further show that
there exists a constant ε > 0, such that no polynomial
time algorithm can guarantee an approximation ratio of
1 + ε unless P = NP . In other words, the problem is
APX-hard, as was obtained independently in [5]. Exact
[10], approximate [17, 4] and heuristic [1] solutions have
been developed.

Most of the aforementioned work focused on omnidi-
rectional guards, i.e., guards with 360◦ range of vision.
However, many recent applications in sensor networks
and smart surveillance are more concerned with sensors
that have limited sensing ranges. This leads us to study
the α-floodlight illumination variant of the art gallery
problem.
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The first documented floodlight illumination prob-
lem is perhaps the stage illumination problem (SIP),
presented in 1992 by Urrutia [7, 3]. Given a line seg-
ment, i.e., the stage, together with a set of floodlights,
of known origins and angles, decide whether the flood-
lights may be rotated to illuminate the stage. The orig-
inal SIP remained unsolved for more than ten years [7]
and was later shown to be NP-complete [16], even under
two different restrictions. Variants of the SIP and other
problems related to floodlights include [23, 22, 6, 13, 9].

Estivill-Castro and Urrutia [14] asked whether com-
puting the minimum set of covering α-floodlights is NP-
hard. Indeed, Bagga, Gewali and Glasser [2] showed
that the vertex Floodlight Illumination Problem (FIP)
is NP-hard, for 0 < α ≤ 360◦. The status of the point
variant, where floodlights can be placed anywhere inside
the polygon, remains open.

The renewed interest in this classical problem is mo-
tivated by several coverage problems in visual and di-
rectional sensor networks. α-floodlights, which restrict
visibility to a certain angular aperture α, are partic-
ularly appealing as a better model for sensors with a
limited sensing range, e.g., cameras.

We define α-floodlights and the two polygon illumi-
nation problems at hand. We also define distinguished
arrows [11], which will be used in some of our arguments.

Definition 1 An α-floodlight at point p, with orienta-
tion θ, is the infinite wedge W (p, α, θ) bounded between
the two rays −→vl and −→vr starting at p with angles θ ± α

2 .
In a polygon P , a point q belongs to the α-floodlight if
pq lies entirely in both P and W (p, α, θ).

Definition 2 A distinguished arrow (DA) is an in-
finitesimal ray along an edge of the polygon such that
any α-floodlight that covers it must be placed in a pre-
specified region, i.e., the interior of a gadget or a cone.

Definition 3 The Vertex Floodlight Illumination Prob-
lem (FIP) [2] Given a simple polygon P with n sides, a
positive integer m and angular aperture α, determine if
P can be illuminated by at most m α-floodlights placed
only on the vertices of P with at most one α-floodlight
per vertex.

Definition 4 The Point Floodlight Illumination Prob-
lem (PFIP) Given a simple polygon P with n sides, a
positive integer m and angular aperture α, determine if
P can be illuminated by at most m α-floodlights placed
in the interior of P .
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In both FIP and PFIP, floodlights can be oriented in
any direction as long as P is illuminated. However, to
verify a given solution in polynomial time, we cannot
deal with arbitrary orientations. To remedy this, [2]
introduced a flushing restriction which brings FIP into
NP. As our main result uses a gap-preserving reduc-
tion from 5-OCCURRENCE-MAX-3-SAT (FOM-3SAT), which
we define below, a similar restriction will be necessary.
When the restriction is in effect, we prefix the problem
name with the letter R. We define flushing as follows:

Definition 5 An α-floodlight is flush with the vertices
of the polygon P if at least one of −→vl or −→vr passes through
some vertex of P , different from p, such that θ is deter-
mined implicitly.

Definition 6 (FOM-3SAT) Given a boolean formula Φ
in conjunctive normal form, with m clauses and n vari-
ables, 3 literals at most per clause, and 5 literals at most
per variable, find an assignment of the variables that
satisfies as many clauses as possible.

We develop a construction for point α-floodlights and
outline how to adapt it for vertex α-floodlights. This
allows us to obtain the following.

Theorem 7 PFIP is NP-hard.

Theorem 8 RPFIP is NP-complete.

Theorem 9 RFIP is APX-hard.

Theorem 10 RPFIP is APX-hard.

The construction in [2] utilizes beam machine gadgets
[8] to control the visibility of the α-floodlight guards in
FIP. In Section 2, we develop beam machines for point
α-floodlights in addition to the Point α-Floodlight Gad-
get (PFG) to have corresponding tools in PFIP. This
immediately yields Theorems 7 and 8 by plugging the
new gadgets in the construction from [2].

In Section 3, we start by examining the construction
of [11] and describe how 360◦ guards can be replaced
with α-floodlights without changing the essence of the
construction. The main observation is that while guards
can see in all directions, the construction only requires
them to guard few specific elements or regions. We ex-
ploit this to carry over the construction of [11] from the
360◦ guard setting to the α-floodlight setting, and carry
along the result obtained in the former to get Theorems
9 and 10.

2 Point α-floodlights

We develop the Point α-Floodlight Gadget (PFG) and
use it to create a Point α-Floodlight Beam Machine
(BM). Then, we discuss the extension of [2] using the
new BM to obtain the first proof of Theorem 7.

(a) Trapezoid, vertex -PFG, PFG. (b) ABM.

Figure 1: PFGs and Abstract Beam Machine (ABM).

2.1 PFG

The building block of our construction is the Point
Floodlight Gadget (PFG) in Figure 1a. The PFG is at-
tached to the polygon through its mouth and extrudes
outside forming a cavity. The cavity is the union of
two overlapping wedges. Both wedges share the same
axis with one outward wedge looking into the cavity
and one inward wedge extending into the interior of the
polygon. The extrusion includes two ears which require
an α-floodlight guard at the apex of the outward wedge
to cover their pockets. Depending on how the PFG
is used in a larger gadget, the PFG can be configured
such that a second α-floodlight at the apex of the in-
ward wedge is either optional or obligatory. Note that
both α-floodlights would satisfy the flushing condition.

When using vertex α-floodlights, a PFG equivalent is
just an ear vertex. We refer to both as PFGs and use
a trapezoidal symbol in our schematic diagrams as a
placeholder for the appropriate PFG. Figure 1a demon-
strates the correspondence.

2.2 Beam Machines

Beam machine gadgets were introduced in [8] which
showed the hardness of finding a minimum convex cover
for a given polygon. The beam machine (BM) is a
butterfly shaped extrusion that attaches to the poly-
gon through a mouth. The internal design of the BM
requires 4 convex polygons to cover the BM itself and
allows one of two slim polygons, i.e., beams, to shoot
into the interior of the polygon in two different direc-
tions. The construction needed such shooting beams to
cover other parts of the polygon, i.e., dents, which cor-
responds to the satisfaction of boolean clauses by the
assignment of their literals. This enabled a reduction
from 3SAT to show the problem is NP-hard.

BMs were reused in [2] to force the inclusion of one
of two vertex α-floodlights in a construction similar to
the one in [8]. The BMs in [2] required 3 vertex α-
floodlights to cover their interior and could shoot light
beams to illuminate their dents. Again, this enabled a
reduction from 3SAT to show that FIP is NP-hard.
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A BM can be stretched and skewed to control the
beams, which need not be symmetric. We abstract
BMs as an extrusion with two potential points for α-
floodlight placement, as in Figure 1b. We identify True

and False with the red and blue colors, respectively.
We can now develop a BM for point α-floodlights.

The BM is basically one big PFG to create the two
wings of the butterfly plus one PFG on each side to
extrude two cavities on the upper sides of the wings.
All 3 PFGs require 2 floodlights each, e.g. the big PFG
needs one guard for the edge denoted Z and another for
Z ′ as in Figure 2. The mouth is designed to require one
α-floodlight at one of the two cavities denoted B and
B′, which results in the two BM configurations. We
identify the red and blue points of the ABM with B
and B′, respectively. The BM requires 7 α-floodlights
which all satisfy the flushing condition by construction.

2.3 Updating the reduction by Bagga et al. [2]

Using the point α-floodlight BM and PFG, it is straight-
forward exercise to update the construction in [2]. The
Background of Variable Generator requires 4 PFGs at
vertices {v4, v11, v13, v20} where the inward wedge of the
PFGs at either v4 or v20 is used to specify an assign-
ment for the variable, for a total of 7 point α-floodlights.
Each literal is represented by a BM and the final poly-
gon requires a single PFG contributing 2 additional α-
floodlights. Given a 3SAT instance with m clauses and
n variables, the PFIP instance output by the reduction
can be covered using 21m+7n+2 point α-floodlights iff
the 3SAT instance is satisfiable. This yields Theorem 7.
As all our gadgets satisfy the flushing condition, Theo-
rem 8 follows as well. These two theorems also follow
from the construction presented in the next section.

3 Reusing the construction of Eidenbenz et al. [11]

[18] showed that determining the minimum number of
guards to cover an art gallery is NP-hard. They pre-
sented a construction for vertex guards and showed how
it can be modified to yield similar results for the edge
and point variants. [11] followed the lines of the reduc-
tion in [18] to describe a gap-preserving reduction from
the MAXSNP-complete FOM-3SAT, which shows these
problems are APX-hard. In doing so, [11] gives a de-
tailed construction for all gadgets to guarantee certain
properties necessary for the gap-preserving reduction.
A similar approach was applied to the construction in
[8] for the problem of finding a minimum convex cover
to show it is APX-hard as well [12]. Later on, [15] as-
signed weights to the edges of the construction of [11]
to show that maximizing the guarded boundary of an
art gallery is APX-hard. For that problem, a constant-
factor approximation was developed earlier [19], so the
problem is actually APX-complete.

A

X

A`

B B`

D D`

E`E

Z Z`

C C`

(a) α ≤ 90◦.

C

X

C`

A`A D D`

E`E

Z`Z

B B`

V`V

(b) α > 90◦.

Figure 2: BMs for different values of α.

We briefly recall the construction of [11] before we list
our observations and the modifications we apply.

3.1 Recalling the gadgets of [11]

Literal pattern for literal l is a triangular extrusion
with a spike that requires one literal guard at one of
two locations called T lit(l) and F lit(l).

Clause pattern for clause ci uses 3 literal patterns
lj(ci) such that it can be covered iff at least one literal
is assigned a guard at its T lit(lj(ci)).

Variable pattern for variable xk has two quadrilat-
eral extrusions called legs and a tail that requires one
variable guard at one of two locations called T var(xk)
and F var(xk).

Ear pattern is a cavity at the top-left corner of the
final polygon which hosts one ear guard w that covers
the ear itself plus the background quadrilateral support-
ing the gadgets which define the polygon and all left and
right legs of the variable patterns.

Spike pattern for a literal is a tiny extrusion in the
legs of its variable pattern to ensure consistent truth
assignments. The spike pattern is a cone that, in a
canonical solution, must be covered by either the vari-
able guard of the leg containing it or the literal guard
tied to it. Positive and negative literal guards are tied
to their variable by a spike in the appropriate leg.
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3.2 Observations and modifications

Spike patterns are only a subset of the guard’s
visibility polygon. A guard can typically see a much
larger area containing the spike pattern. When using
α-floodlights, located in a BM, it is only necessary that
the spike extrusion is covered by the beam the floodlight
shoots through the BM’s mouth.

T lit and F lit. The only functions these two locations
may serve are: (1) Cover the interior of the literal gad-
get. (2) Cover the corresponding spikes in the variable
gadget. (3) Satisfy the clause. When using BMs, (1)
will be taken care of by the design of the BM. (2) and
(3) turn out to be difficult to achieve using a single α-
floodlight. To remedy this, we use two coupled BMs per
literal to collectively support two configurations corre-
sponding to the assignment of the literal’s variable. Fig-
ure 3 illustrates the coupling technique. Basically, we
copy the TRUE signal communicated through the spike
in the variable pattern by introducing a dent. A literal
can satisfy the clause iff the BM at the top is allowed to
shoot its left beam. This would only work if the dent is
covered by the BM to the right which only happens iff
this BM is allowed to shoot its TRUE beam. In addition,
we ensure that no single floodlight can cover two such
dents.

This allows us to redesign the clause pattern as in
Figure 4. Satisfying a clause corresponds to illuminating
the dent containing the DA denoted by 2. This dent
is adjusted such that it may not be illuminated by a
floodlight in any of the spike patterns of the 3 literals of
that clause. A single PFG at the top left corner covers
the background quadrilateral of the clause pattern and
DA-1, which only leaves uncovered the interiors of the
BMs, their dents and DA-2.

Figure 3: Coupled BMs. Dent must be covered.

Locating T lit and F lit. These two vertices of the
literal pattern are at a distance controlled by two arbi-
trary constants [11]: (1) Distance between T lit and s6.
(2) Distance between s6 and the vertical line v′. They
can be made arbitrarily close as required by the BM
to enable shooting the beams to illuminate the corre-

sponding spikes. Finally, we move these locations along
the lines defined by the spike patterns to place the BMs
on an oblique edge in the clause pattern to give it more
flexibility to adjust all BMs and beams to cover their as-
signed targets. Note that we only generate a restricted
class of the spike patterns constructed by the algorithm
in [11], but otherwise we do not move them. This pre-
serves the property that no 3 spike patterns of 3 different
legs intersect in a common point per Lemma 1 in [11].

Switching T lit and F lit. The roles played by either
of these two locations is determined by the spikes they
are tied to, which depends on the literal being positive
or negative. In addition, T lit can satisfy the clause while
F lit cannot. To avoid changing the construction in [11]
by much, we effectively exchange the roles of the guards
at T lit and F lit such that F lit is the location that can
satisfy the clause. While this would not work for the
literal pattern in [11], we will be replacing it anyway
with a BM.

Moving F lit. Due to the modifications we apply to
the variable pattern, we identify F lit with s4 instead
of s5. We then move it along to find its location in
the BM attached to the oblique edge. Again, while this
does not make sense in the construction of [11], we are
only interested in the coordinates produced for these
vertices. In particular, we only need to make sure the
spike patterns in the construction of [11] include the
locations of the α-floodlights inside their literal BMs.

Limiting the required aperture T var and F var.
Each of these two vertex guards is required to cover the
variable pattern’s tail in addition to the literal spikes
in its leg. This implies the effective range of vision is
bounded by the variable tail and the lowest spike in
the leg. To make sure a single α-floodlight can cover
both the variable tail and all the spikes in its leg, we
require that literal patterns are far enough to the right
from all variable patterns such that the lowest spike
in any leg does not require an aperture larger than α.
Adjusting the variable tail accordingly can be achieved
by stretching the variable pattern as shown in Figure 5.

T var and F var for vertex α-floodlights. As we
only assign one guard to either of these two locations,
the cavity of the unassigned vertex-PFG, as in Figure 5,
will need to be covered. This can be achieved by cutting
off the left supporting edge of the vertex-PFG such that
the cavity is covered by the ear guard. Note that the
right supporting edge is still sufficient for the variable
guards to satisfy the flushing condition.

The ear pattern and the final polygon. We re-
place the ear pattern with a PFG and stretch the poly-
gon to include the background quadrilateral and the legs
of all variable patterns in the PFG’s inward wedge.
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1

2

Figure 4: Clause Gadget. Circles highlight the neighborhoods of T lit(lj(ci)) computed in [11].

Figure 5: Variable Gadget. The spike to the left and the lowest spike in each leg must fit in the wedges of the PFGs.

Figure 6: Rough sketch of the final construction.

4 Inapproximability results

Using this construction for PFIP, we get that the PFIP

instance can be covered by 44m + 3n + 2 point α-
floodlights iff the FOM-3SAT instance is satisfiable. For
FIP, the number is 19m + n + 1. This provides an al-
ternative proof that both problems are NP-hard. The if
part is a straightforward mapping from Lemma 2 in [11],
observing the number of α-floodlights required for each
gadget. The only if part is obtained by observing that
all variable patterns will have exactly one α-floodlight
in such solutions, which yields a satisfying assignment.

Updating the construction of [11], per 3.2, preserves
all its relevant properties. In particular, at most two
spike patterns belonging to two different legs intersect.

Now, we may find an ε-approximate solution S to a
given FOM-3SAT instance I by reducing it to an RFIP

instance I ′, computing an ε′-approximate solution S′

of I ′ and then transforming S′ into S. We develop
a transformation process similar to the one described
in [11], which we could not fit here due to space con-
straints. This amounts to a gap-preserving reduction
from FOM-3SAT to RFIP. Since the former is MAXSNP-
complete, this shows RFIP is APX-hard.

As we managed to stay close to the construction in
[11], we carry over a close equivalent of their Lemma
3 and Theorem 1. With that, unless P = NP , no
polynomial time approximation algorithm for RPFIP can
achieve an approximation ratio of

44m+ 3n+ 2 + εm

44m+ 3n+ 2
= 1 +

εm

44m+ 3n+ 2
≥ 1 +

ε

54
.

This yields Theorem 10. As pointed out in [11], since
there will be no floodlights added in the transformation
of a given solution of RFIP, we would get a slightly big-
ger constant for the inapproximability of RFIP than the
constant of RPFIP and Theorem 9 follows.
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5 Conclusion

In this paper, we resolved the hardness and inapprox-
imability of two classical α-floodlight illumination prob-
lems for both vertex and point floodlights. We observed
that many earlier constructions for 360◦ guards, only re-
quired guards to cover specific regions in the construc-
tion. We exploit this to present a structured update
of such constructs to work for guards with limited an-
gle of view. We gave two examples of this process by
presenting APX-hardness proofs for vertex and point
α-floodlight polygon illumination problems for simple
polygons. A flushing restriction is introduced to avoid
dealing with arbitrary orientations of floodlights and
allow polynomial-time verification and gap-preserving
reduction. We believe that similar approaches can be
used to carry over more results for 360◦ guards to α-
floodlights which can greatly help the ongoing work in
sensor networks and smart surveillance.
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Appendix A: Additional Figures

We include additional figures to aid our description of the
gadgets we created.

Figure 7: Demonstration of the flexibility of the BM.

Figure 8: The BVG of [2] updated with PFGs.

Appendix B: α-Floodlights with α ≥ π

(Subsection 3.2) To motivate the intuition for the modifica-
tions we applied to the construction of [11], we informally
discuss the case when α ≥ π.

Define RFIP≥π and RPFIP≥π to be the restriction of these
α-floodlight illumination problems with α ≥ π. We can eas-
ily extend the construction in [11] to show similar inapprox-
imability results for these two problems. The key idea is to
ensure that all elements required to be covered by a given
guard location lies in a half-plane defined by a line passing
through this location.

We can ensure the ear guard only looks down by attaching
its ear to the left edge, instead of the top one. For T lit,
we smooth out the right pockets of the clause pattern and
introduce a second ear at the bottom side of the polygon,
right below the first ear, that looks up so it can cover the
right side of all clause patterns. F lit can be moved to the
same edge of the literal pattern as T lit by introducing a little
bend to it to create a new convex vertex, such that F lit can
still cover the entire literal pattern and its spike, but not
satisfy the clause. Finally, T var and F var need only cover
the half-plane below the line connecting them to the point
w, which requires no change.

Appendix C: How we computed the numbers

The construction we created in Section 3, by modifying the
one given in [11] uses the following gadgets:

1. Ear gadget: 1 PFG.

2. Literal gadget: 2 BMs.

3. Clause: 3 literal gadgets + 1 PFG = 6 BMs + 1 PFG.

4. Variable gadget: 2 PFGs.

Note that the PFGs in the variable gadget need not be ac-
tivated, i.e., receive a floodlight at their inward wedge is op-
tional. All other PFGs must be activated. For FIP, we use
3 vertex α-floodlights per BM and 1 α-floodlight for PFGs.
The number of vertex α-floodlights required to operate the
gadgets is

1 + (6× 3 + 1)m+ 1× n = 19m+ n+ 1. (1)

For PFIP, we use 7 α-floodlights per BM, 2 α-floodlights
per active PFG and 1 α-floodlight per inactive PFG. The
number of α-floodlights required to operate the gadgets is

2 + (6× 7 + 2)m+ 3× n = 44m+ 3n+ 2. (2)

Appendix D: Transformation of a feasible solution

Following the lines of the transformation process in [11] we
move α-floodlights in such a way that the set of DAs that a
floodlight sees changes in only one of two ways: either more
arrows are included or it is ensured that another floodlight,
possibly added to the solution, covers any arrows removed
from this set.

With that, the α-floodlights in a given solution S′ com-
puted for the RFIP instance I ′ are moved as follows:

1. Determine the, at least, 2 floodlights that cover the ear
PFG and move them to the standard PFG configura-
tion. In addition to the PFG itself, this also ensures
that the legs of all variable patterns are covered.

2. For each clause pattern, determine the, at least, 2 flood-
lights that cover its PFG and move them to the stan-
dard PFG configuration. In addition to the PFG itself,
this also ensures that the clause pattern, except for the
dent denoted by arrow 2 in Figure 4, is entirely covered.

3. For each BM, there will be at least 7 floodlights inside
it. We start with the, at least 6, floodlights that do
not illuminate any part of the mouth. We move these
6 to illuminate the interior of the BM, except for the
mouth, by the configurations shown in Figure 2. Any
remaining floodlights that do not illuminate any part of
the mouth are moved to the red configuration, i.e., such
that they illuminate the entire mouth, the associated
dent and spike, if one is associated with the BM at
hand, corresponding to setting the literal to TRUE. For
floodlights that illuminate parts of the mouth, there
will be three cases:

(a) If the floodlight also illuminates the DA associ-
ated with a FALSE assignment, we move it to the
blue configuration, i.e., such that it illuminates
the entire mouth and spike corresponding to set-
ting the literal to FALSE.
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(b) If the floodlight also illuminates the DA associ-
ated with a TRUE assignment, we move it to the
red configuration.

(c) If the floodlight does not illuminate any DAs, we
move it to the red configuration.

4. If a BM has more than one floodlight in either the red
or blue configurations, we leave only one and move the
extra floodlights to the configuration of the same color
in the variable pattern of its variable.

5. If a BM has floodlights in both the red and blue con-
figurations, switch all BMs of its variable to the red
configuration and move the, at least one, extra flood-
lights to the red configuration in its variable pattern. If
there is already a floodlight there, move the extra flood-
lights to the blue configuration instead. This ensures
that all dents and spikes associated with this variable
are illuminated. In addition, any clause dents that were
illuminated in the input solution by floodlights in any
gadget of this variable are still illuminated.

6. For floodlights inside a clause pattern but outside any
BM or PFG, we have a number of cases. As shown in
Figure 9, we need to consider floodlight configurations
within the intersection of cones belonging to different
dents. Observe the following: (a) The literal dents are
set up such that no two can be illuminated by a single
floodlight. (b) The design of the BM and the steps thus
far outlined in the transformation process ensure that
all BMs will have a floodlight in at least one of the red
or blue configurations. (c) The PFG illuminates the
entire clause pattern except for the dents and DA-2. .

• Cases 1 and 4: Even if the floodlight can illumi-
nate the DAs of both the literal dent and clause
dent, the BM above associated with the dent in
question must also be able to illuminate at least
one of the two DAs. As such, it suffices to move
the floodlight to the unoccupied configuration in
this BM, if any.

• Cases 2 and 3: Similar to the previous case, even if
the floodlight can illuminate the DAs of both the
literal dent and the spike, the BM must be able
to illuminate at least one. Likewise, the floodlight
is moved to the unoccupied configuration of the
BM, if any.

• Cases 5 and 6: Since the floodlight may be able
to illuminate the DAs of both a literal dent and a
spike belonging to a different literal, we will need
to add a floodlight and move one to illuminate the
spike from its corresponding configuration in the
BM and move the other to illuminate the literal
dent from the red configuration of its BM.

• Cases 7, 8 and 9: Such floodlights may illuminate
the DA of the clause dent or the spikes of some
literal. By moving these floodlights to the corre-
sponding configuration in the BM associated with
the DA, we can still illuminate it.

7. For each variable pattern, move the floodlight that sees
the DA of the variable pattern to the red configuration,

1

2

3

4

5

6

d1

d2

d3

BM21

BM22

7

8

9

Figure 9: Additional cases for floodlight placement.

if it also lies in a spike pattern containing the red point.
Otherwise, move it to the blue configuration.

8. Move all floodlights that cover a single spike to the red
or blue point of the spike pattern of that spike.

9. If a floodlight illuminates DAs of two spike pattens that
connect literals to two different legs of variable patterns,
add a floodlight and move one floodlight each to the two
red or blue points of the variable patterns of these two
spikes.

This is the only case where we add an α-floodlight and
increase the cost of the solution. Note that because of
Lemma 1 [11], no floodlight can see the DAs of three
spike patterns that belong to three different legs.

10. Any floodlights that can be removed without leaving
any DA uncovered are moved, and fixed, to any red or
blue point of any variable pattern, if there is no flood-
light there already.

We iterate this process until the locations of all floodlights
are fixed. One can verify that the transformed solution of
S′′ is still a feasible solution of I ′ as any element which was
covered in S′ remains covered in S′′. To obtain the solution
S of the FOM-3SAT instance I using S′′, we set the truth
values of the variables as follows. For variable xk, if the
corresponding variable pattern only has floodlights at the
blue point, we set it to False. If it has only floodlights at
the red point, we set it to True. If it has floodlights at both
points, we assign xk in such a way that makes the majority
of its, at most 5, literals True.
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Appendix E: Omitted theorems and proofs

We fill in the omitted steps following the analysis in [11].

5.1 Satisfiable(I) =⇒ MinFloodlightCost(I ′)

The proofs below also provide the if part needed for the
NP-hardness results we obtained in Section 4. Note that for
the only if part, we assign True to all variables having the
α-floodlight at the red points of their variable patterns and
False otherwise. In particular, these two proofs work for
FIP and PFIP as well and show both the two problems and
their restricted variants are NP-hard.

Lemma 11 If an instance of FOM-3SAT, with n variables
and m ≤ 5

3
n clauses, is satisfiable, then there exists a feasible

solution of the corresponding instance of RFIP with 19m +
n+ 1 α-floodlights.

Proof. Given a satisfying assignment of the n variables in
the FOM-3SAT instance, we add α-floodlights to a solution of
RFIP as follows. We start by placing 1 at the ear PFG, 1 for
the PFG in all m clauses, and 2 in each of the 2 BMs for
all 3m literal couples. Next, for each variable xk, we do the
following:

1. If xk is true, place 1 α-floodlight at the red point in its
variable pattern, 1 α-floodlight in the red point of each
of its positive literals and 1 α-floodlight in blue point
of its negative literals.

2. If xk is true, place 1 α-floodlight at the blue point in its
variable pattern, 1 α-floodlight in the blue point of each
of its positive literals and 1 α-floodlight in red point of
its negative literals.

For each positive literal, we place 1 α-floodlight in the red
point of its coupled BM. For each false literal, we place 1 α-
floodlight in the blue point of its coupled BM. This solution
is feasible and costs 1 + m + (2 × 2)3m + n + (1 + 1)3m =
19m+ n+ 1. �

Lemma 12 If an instance of FOM-3SAT, with n variables
and m ≤ 5

3
n clauses, is satisfiable, then there exists a feasible

solution of the corresponding instance of RPFIP with 44m+
3n+ 2 α-floodlights.

Proof. Given a satisfying assignment of the n variables in
the FOM-3SAT instance, we add α-floodlights to a solution of
RPFIP as follows. We start by placing 2 at the ear PFG,
2 for the outward wedges of the 2 PFGs in all n variable
patterns, 2 for the PFG in all m clauses, and 6 in each
of the 2 BMs for all 3m literal couples. We proceed as in
the proof of Lemma 11. This solution is feasible and costs
2+2n+2m+(6×2)3m+n+(1+1)3m = 44m+3n+2. �

5.2 ε′-APPROX(I ′) =⇒ ε-APPROX(I)

Given a feasible ε-approximate solution S′ to I ′ of the α-
floodlight illumination problem, we apply the transforma-
tion process described in Appendix D. The transformed so-
lution S′′ is still feasible, i.e., illuminates the entire polygon.
However, due to the possibility of having α-floodlights at
the intersection of two spike patterns, we resolved to adding

α-floodlights and ended up having variable patterns with α-
floodlights at both the red and blue points. Such variables
were then assigned in a manner that satisfies the majority of
their clauses, but we will not be able to guarantee satisfying
all clauses.

Lemma 13 If there exists an ε > 0 and a feasible solution
of the RPFIP instance I ′ with at most 44m+ 3n+ 2 + εm α-
floodlights, then there exists an assignment of the variables
of the corresponding FOM-3SAT instance I that satisfies at
least m(1− 4ε) clauses.

Proof. Any feasible solution S′ can be transformed into a
canonical solution S′′ that only illuminates the polygon us-
ing the gadgets the way we designed them. In such a canon-
ical solution, we know the minimum number of α-floodlights
required by the gadgets themselves. Clearly, the algorithm
for the illumination problem could not illuminate the entire
polygon using that minimum number, possibly because it
was created using an unsatisfiable boolean formula. In both
cases, we know the algorithm incurred at most an additional
εm cost to ensure the entire polygon is covered. In the worst
case, all these additional εm α-floodlights were placed in the
intersections of two spike patterns. This means that when
the transformation process terminates, at most 2εm variable
patterns will have received an additional α-floodlight that
results, in the worst case, in all the 2εm variable patterns
having two α-floodlights at both their red and blue points.
This leaves at least n− 2εm variable patterns with only one
α-floodlight. For all variables in the second group, they can
be assigned a truth value unambiguously. For the variables
in the first group, however, we assign truth values to satisfy
the majority of their clauses. In the worst case, each such
variable will satisfy only 3 out of its 5 clauses. In the worst
case, all the 2 clauses left out by each of the variables in the
second group will not be satisfied by any other literal. This
means we may not be able to satisfy at most 2×2εm = 4εm
clauses. The number of satisfied clauses can then be lower
bounded by m− 4εm = m(1− 4ε). �

5.3 Don’t make a promise that is hard to keep

Using Lemma 12 and the contraposition of Lemma 13, we
obtain the following.

Theorem 14 Let I be an instance of the promise problem
of FOM-3SAT, with n variables in I, m ≤ 5

3
n clauses. Let

OPT (I) denote the maximum number of clauses that can
be satisfied using any assignment of the n variables. Fur-
thermore, let I ′ be the corresponding instance of RPFIP and
let OPT (I ′) denote the minimum number of α-floodlights
needed to illuminate the polygon in I ′. Then the following
hold:

• If OPT (I) = m, then OPT (I ′) ≤ 44m+ 3n+ 2.

• If OPT (I) ≤ m(1 − 4ε), then OPT (I ′) ≥ 44m + 3n +
2 + εm.

Theorem 14 shows that the reduction is indeed gap-
preserving and that the promise problem of RPFIP with pa-
rameters 44m+ 3n+ 2 and 44m+ 3n+ 2 + εm is NP-hard.
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Tradeoffs between Bends and Displacement in Anchored Graph Drawing

Martin Fink∗ † Subhash Suri∗

Abstract

Many graph drawing applications entail geographical
constraints on positions of vertices; these constraints can
be at odds with aesthetic requirements such as the use of
straight-line edges or the number of crossings. Without
positional constraints on vertices, of course, every planar
graph can be drawn crossing-free with straight-line edges.
On the other hand, inflexible and precise specification
of all vertex positions essentially leaves no room for
presenting the graph in an aesthetically pleasing drawing.
However, small deviations from precise vertex positions
can often be tolerated, and so a natural middle ground
is to impose soft positional constraints on vertices and
then optimize for an appropriate aesthetic criterion.

We explore one such trade-off: the amount of vertex
position displacement vs. the number of bends in planar
polyline drawings. In particular, let G = (V,E) be a
planar graph, where each vertex v has a specified (target)
position α(v). We wish to draw G so that no vertex is
placed at distance more than δ from its target position
and no edge has more than b bends. Given a bound
on b, what is the smallest value of δ achievable for all
n-vertex planar graphs? Our main result establishes
that δ = Θ(n) is both necessary and sufficient if b is
constant. We also derive trade-offs between δ and b.

1 Introduction

Visual representations of graphs face multiple, often con-
flicting, constraints. This paper explores one such trade-
off: the tension between aesthetic aspects of a graph
drawing and its informational distortion. Specifically,
we have a planar graph G = (V,E) on n = |V | vertices,
where each vertex v has a specified (target) position α(v)
in the plane. Such positional constraints naturally arise
in many geo-spatial datasets, such as positions of cities
or municipalities in country maps. Positional constraints
also arise when the graph is visualized in a larger context:
for instance, if the graph is to be overlaid on another
graph with a common or overlapping set of entities, then
a close correspondence of vertices is highly desirable; the
same holds if both graphs are shown next to each other
or one after the other. In all these scenarios, placing

∗Department of Computer Science, University of California,
Santa Barbara, {fink|suri}@cs.ucsb.edu
†M. Fink was supported by a fellowship within the Postdoc-

Program of the German Academic Exchange Service (DAAD).

vertices far away from their intended position can create
loss of information and readability since it distorts the
user’s knowledge of positions (the mental map).

Unfortunately, such positional constraints on vertices
can be at odds with other aspects of the drawing, such
as aesthetics and readability. For instance, every planar
graph can be drawn with straight-line edges and no edge
crossings [4], but doing so requires the freedom to move
vertices in the drawing space. On the other hand, fixing
each vertex’s position precisely does not leave much room
for an informative drawing: indeed, the vertex positions
fix the straight-line drawing and also the number of
edge crossings. A natural middle ground, therefore, is to
treat the vertex position constraints as soft constraints,
allowing the flexibility to place the vertices close to their
ideal position while improving the quality of the drawing.

Our paper is an exploration of one such trade-off. We
ask how much better can the drawing be made if each
vertex v is allowed to be displaced by some distance
δ from its target position α(v). All the edges must be
drawn as polylines with no crossings, and no polyline has
more than b bends, which we call the curve complexity
of the drawing. (The curve complexity of a straight-line
drawing is b = 0.) Our trade-off explores how much
benefit in terms of the curve complexity one can ex-
pect by increasing the displacement as a function δ(n);
more precisely, given a maximum displacement δ, what
is the smallest curve complexity b(δ, n) achievable for
all n-vertex planar graphs? Similarly, for a given curve
complexity b, we want to know the smallest displace-
ment δ(b, n) that is sufficient for all n-vertex graphs. We
call our problem the anchored graph drawing problem
because each vertex has an ideal (anchor) position.

Previous Work. Our research touches two important
topics in graph drawing: positional constraints on ver-
tices and bend-minimization in polyline drawings. If each
vertex has a disk-shaped region within which it must
be placed, then it is NP-hard to decide if a straight-line
planar drawing exists, as Godau showed [5]. In a fol-
lowup work, Angelini et al. showed that the problem
remains NP-hard even if the disk regions of all vertices
have the same radius [1]. Extending these hardness re-
sults, Löffler [9] showed that it is NP-hard to decide
if a straight-line embedding exists for regions that are
vertical line segments, even if the graph is only a cycle.

When the displacement shrinks to δ = 0 vertex move-
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ments are disallowed; this yields the classic point-set
embeddability problem with fixed vertex-point mapping.
In contrast to the version without given mapping, the
straight-line problem is trivial since there is only one
straight-line drawing which either is or is not planar.
However, there are several results for polyline edges.

Pach and Wenger [10] showed that, in polynomial
time, every planar graph can be embedded with fixed
vertex positions and O(n) bends per edge. Furthermore,
they proved that if the points are in convex position, for
every planar graph, the probability is high that a linear
number of edges will need a linear number of bends.
For non-convex position, Badent et al. [2] constructed
a family of instances in which a linear number of edges
must have a linear number of bends. In a recent arxiv
submission, Gordon [6] shows that for every set of vertex
positions, a planar graph that is sampled uniformly at
random (with fixed vertex-point mapping) will require
Ω(n2) bends in total with high probability.

Point-set embeddability has also been considered with-
out prescribed vertex-point mapping. In this setting,
a set of n points is prescribed and for each vertex one
of the input points must be chosen as the vertex po-
sition. Gritzmann et al. [7] introduced this problem
class and showed that a planar straight-line embedding
can be constructed for every outerplanar graph. How-
ever, for general planar graphs, it is NP-hard to decide
whether a planar straight-line embedding exists, as Ca-
bello proved [3]. Kaufmann and Wiese [8] showed that
for every planar graph a vertex-point mapping can be
found such that the graph can be embedded with only
two bends per edge (one bend for four-connected graphs).

Our Results. Our work differs from these earlier lines
of research in that we explore the trade-off between
positional displacement δ and maximum number b of
bends per edge (the curve complexity) for which a feasible
planar drawing exists. More specifically, given a curve
complexity b, we ask for the smallest displacement δ such
that a feasible anchored drawing exists. (b and δ may
be constants or functions of n.) When δ = 0, we get the
classic point-set embeddability problem. In our problem,
however, vertices can be displaced within the distance
bound δ, and we wish to explore the effect of δ on the
curve complexity b that is necessary for a plane drawing.
Since we must relate the value of δ to the area of the
drawing and the distance between vertices, we usually
assume that the target vertex positions are points of the
integer n×n grid, so that the smallest distance between
vertices is 1. However, we do not demand that in the final
drawing vertices and bends have integer coordinates.

We will see that even with a positive (but small) value
of δ, there are graphs and target positions for which a
linear number of edges require a linear number of bends
in every feasible drawing. If we allow displacement

δ = O(n), then an easy construction can achieve b =
0, namely, a straight-line embedding, for any n-vertex
planar graph. With some more effort and care, we can
show that curve complexity b = 2 is always possible for
δ > (n− 1)/2.

Our main result is to show that, surprisingly, this lin-
ear displacement is necessary for any constant number of
bends. More specifically, we show that for any constant b,
there are planar graphs that require a minimum vertex
displacement of Ω(n) to realize a polyline drawing with
at most b bends. In fact, if the vertex displacement is
o(n), then at least Ω(n) edges require more than b bends.
We also show that for curve complexity b = Θ( 3

√
n), a

displacement of Ω( 3
√
n) is necessary, and that for any

constant displacement, there are instances that force a
curve complexity of Ω(

√
n).

2 Preliminaries

We call our problem the Anchored Graph Drawing
Problem (AGD), following Angelini et al. [1]. In addi-
tion to planar input graph and target vertex positions,
the problem takes two parameters: the maximum dis-
placement δ of vertices from their target position and
the curve complexity b. Since we are interested in the
relation between δ and b, we call the problem δ-b-AGD.

Problem (δ-b-AGD) Given a planar graph G = (V,E)
with n = |V |, a function α : V → N× N that assigns to
each vertex v a position α(v) on the n×n grid, a number
δ ∈ R+, and a number b ∈ N find a planar polyline
drawing E of G such that every vertex v is placed within
distance δ of α(v) and no edge has more than b bends.

We call a feasible embedding for such an instance
a δ-b-AGD embedding. We will sometimes speak of
moving a vertex v to mean that the vertex is placed
within distance δ of its target position α(v). Similarly,
a δ-movement of the vertices allows to place each vertex
at a position up to δ from its target position.

Depending on instance and parameters, it is not clear
whether a δ-b-AGD embedding exists. Hence, the ques-
tion is how the parameters relate to each other and to n.
For given b and n, we would like to know how big δ must
be so that every instance of n vertices has a δ-b-AGD
embedding. To this end, we define two values.

Definition 1 Let G = (V,E) be a planar graph with
n = |V | and let α : V → N × N define target positions
for the vertices on the n×n grid. Let b ≥ 0 be the curve
complexity. We define δ(b,G, α) to be the minimum
value δ such that a δ-b-AGD embedding of G exists.

Now, we consider the relation between b, n, and δ.

Definition 2 (δ(b, n)) Let b, n ≥ 0 be integer val-
ues. We define δ(b, n) to be the maximum value
δ(b,G, α) over all instances of a planar graph
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G with n vertices and target positions α, i.e.,
δ(b, n) = max {δ(b,G, α) | G = (V,E) planar, |V | = n,
α : V → N× N}.

In the following sections, we will find upper and lower
bounds for δ(b, n). Since it turns out that for every
constant b the lower bound for δ(b, n) is linear in n, it
makes sense to also consider values for b that depend on
the size of the graph; then, b can be a function of n.

Analogously, we can define values corresponding to
the minimum number of bends for which a δ-b-AGD
embedding with given δ exists.

Definition 3 Let G = (V,E) be a planar graph on n
vertices and let a function α : V → N× N define target
positions for the vertices of G on the n × n grid. Let
δ ≥ 0 be the maximum vertex displacement. We define
b(δ,G, α) to be the minimum curve complexity b ≥ 0
such that a δ-b-AGD embedding of G exists.

Definition 4 (b(δ, n)) Let n ≥ 0 be an integer value
and let δ ≥ 0. We define b(δ, n) to be the maxi-
mum value b(δ,G, α) over all instances of a planar
graph G with n vertices and target positions α, i.e.,
b(δ, n) = max {b(δ,G, α) | G = (V,E) planar, |V | = n,
α : V → N× N}.

3 Upper Bounds

We recall that even without displacement of the vertices
(i.e. with fixed vertex positions), every planar graph
can be embedded with curve complexity O(n) using
the algorithm of Pach and Wenger [10]. Thus, there is
always a δ-O(n)-AGD embedding, no matter how small
δ is. Our lower bound result will later (cf. Theorem 8)
establish that a linear curve complexity is necessary even
if we allow positive displacement of vertices. We begin
with our upper bounds for δ(b, n).

By choosing δ =
√

2(n− 1), any vertex can be placed
freely in the area spanned by the n × n grid, thus ef-
fectively removing the restriction of the δ-movement
and allowing to use any algorithm for creating a planar
straight-line embedding. Since the final vertex positions
after the movement do not have to lie on the grid, any
value δ >

√
2(n− 1)/2 = (n− 1)/

√
2 is sufficient; such

a value allows all vertices to be moved to and within a
small area around the center of the n× n grid.

Observation 1 For any ε > 0, δ(0, n) ≤ (n−1)/
√

2+ε,
that is, for δ = (n − 1)/

√
2 + ε, there is a δ-0-AGD

embedding for every planar graph whose target positions
lie on the n× n grid.

If we allow two bends per edge, a smaller bound on δ
can be shown, using the following result of Kaufmann
and Wiese [8]. (This is not explicitly stated in their
paper, but follows from their point-set embeddability
construction without prescribed vertex-point mapping.)

Lemma 1 ([8]) For every planar graph G = (V,E)
there is an ordering V = {v1, . . . , vn} of the vertices,
such that for any assignment of coordinates that follows
the left-to-right order x(v1) < x(v2) < . . . < x(vn) a
planar 2-bend embedding can be found.

Using this lemma, we can prove the following result.

Theorem 2 For any ε > 0, δ(2, n) ≤ (n−1)/2+ε, that
is, for every planar graph G = (V,E) with n vertices
whose target positions α : V → N × N lie on the n × n
grid there is a δ-2-AGD embedding with δ = (n−1)/2+ε.

Proof. Let V = {v1, . . . , vn} be the order of vertices
achieved by Lemma 1. If we can find a δ-movement
that orders v1, . . . , vn from left to right, then a 2-bend
embedding follows. We achieve the ordering as follows.

By moving all vertices horizontally by at most (n−1)/2
we can put them on a vertical line through the middle of
the n× n grid. With the remaining movement of ε, we
create the correct left-to-right order. With these vertex
positions, the 2-bend embedding can be created. �

Since b bends are also feasible if higher curve com-
plexity would be allowed, we also get bounds for other
complexities. Summarizing, we get the following result.

Theorem 3 For any ε > 0, it holds δ(1, n) ≤ δ(0, n) ≤
(n− 1)/

√
2 + ε and δ(b, n) ≤ (n− 1)/2 + ε for b ≥ 2.

Our upper bound for δ does not improve with larger
values of b. Finding a construction for general b is an
interesting open problem.

We now present the main result of our paper, which is a
family of lower bounds for δ(b, n). Somewhat surprisingly
it turns out that the O(n) vertex displacement, so easily
achieved by our upper bound above, cannot be improved,
namely, δ(b, n) = Ω(n) for any constant value of b.

4 Lower bounds

We will construct negative examples that show that even
for relatively large values of δ, depending on b, no feasible
δ-b-AGD embeddings exist. More precisely, for every
number b (from constant to Θ(n)), we find a family of
planar graphs and point sets with according δ, such that
in every feasible embedding with a δ-movement of the
vertices, a linear number of edges will have more than b
bends. Our proof is constructive and draws inspiration
from the bad instances of point-set embeddability used
by Badent et al. [2].

Theorem 4 Let b ≥ 0. Then, for n ≥ 4
√

2(4b+5)/π2 +
1 it holds that δ(b, n) ≥ (n− 1)π2/(16(4b+ 5)2), that is,
δ(b, n) = Ω(n/b2). More precisely, for any such n there
is an example in which a linear number of edges must
have more than b bends if the vertices are moved by at
most (n− 1)π2/(16(4b+ 5)2).
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Figure 1: Schematic visualization of the graph used in
our constructions for lower bounds. Except for the choice
of the outer face, this is the only possible embedding.

Proof. The main idea is to have many 4-cycles such that,
in every planar embedding, every 4-cycle has to separate
two sets of red and blue vertices of equal size into vertices
inside and outside of the cycle. By carefully placing
the target positions of these red and blue vertices and
choosing the right value δ, we achieve that even after a δ-
movement of the vertices every 4-cycle separating the red
and blue vertices must be realized as a complex polygon,
having at least one edge with 1/4 of the necessary bends.

Our graph is constructed as follows; see Fig. 1. Let n′

be a multiple of 4, and let k ≥ 1. The graph consists of
a set of n′ black vertices V0 = {w0, w1, . . . , wn′−1}, a set
of k red vertices V1 = {u0, u1, . . . , uk−1}, and a set of
k blue vertices V2 = v0, v1, . . . , vk−1}. The set of edges
consists of five subsets, i.e., E = E0 ∪E1 ∪E2 ∪E3 ∪E4,
which are defined as follows.

E0 = {(w0, u0), (u0, u1), . . . , (uk−2, uk−1), (uk−1, w2)}
E1 = {(wn′−3, v0), (v0, v1), . . . , (vk−1, wn′−1)}
E2 = {(wi, wi+1), (wi+1, wi+2), (wi+2, wi+3), (wi+3, wi)

| 0 ≤ i < n′, i mod 4 = 0}
E3 = {(wi+4, wi+1), (wi+1, wi+6), (wi+6, wi+3), (wi+3, wi+4)

| 0 ≤ i < n′ − 4, i mod 4 = 0}
E4 = {(wi, wi+4) | 0 ≤ i < n′ − 4}

The edges in E0 form a path from w0 to w2 contain-
ing all red vertices and the edges in E1 form a path
from wn′−3 to wn′−1 containing all blue vertices. The
edges of E2 and E3 form n′/4 and n′/4 − 1 indepen-
dent 4-cycles, respectively. If we replace the paths
(w0, u0, . . . , uk−1, w2) and (wn′−3, v0, . . . , vk−1, wn′−1)
both by a single edge, the graph is triangulated; hence,
up to the choice of the outer face, there is only one
combinatorial embedding, the one in Fig. 1. Therefore,

c

r̃

r′

π
k

u

v

w

r



























}

Figure 2: Angles and distances in the regular 2k-gon.

each of the 2n′/4 − 1 edge-disjoint 4-cycles defined by
E2 and E3 must separate the red vertices from the blue
vertices outside in any planar embedding.

In our target positions, the red and blue vertices will
form a bi-colored sequence (u0, v0, u1, v1, . . . , uk−1, vk−1).
Since every pair of consecutive vertices in the sequence
has different colors, each 4-cycle must cross the straight-
line segment connecting the vertices in order to separate
them. Badent et al. [2] arranged the bi-colored sequence
as consecutive points on a straight-line. However, if
δ′ > 0, a δ′-movement that moves all red vertices down
and all blue vertices up, easily allows the points to be
separated by a single straight-line segment. Hence, we
need a different construction in order to ensure that even
after a δ-movement the vertices are hard to separate.

We do so by putting the points of the bi-colored se-
quence at the corners of a regular 2k-gon with circum-
radius r = (n − 1)/2 centered in the center c of the
n × n grid. We want that after a δ′-movement of the
vertices the 2k-gon must still be convex, no matter how
the vertices are moved. To this end, consider the relative
positions of three consecutive vertices u, v, and w in
the bi-colored sequence; see Fig. 2. As long as v stays
on the same side of the line uw, the angle at v remains
convex. Since we can move both this line (by moving u
and w) and v, we therefore require that δ′ ≤ r′/2. We
have cos(π/k) = r̃/r. Hence,

δ′ ≤ r′

2
=
r − r̃

2
=
r − r cos(π/k)

2
=
r · (1− cos(π/k)

2
.

The Taylor series definition of the cosine function yields
cos(π/k) ≥ 1 − (π/k)2/2 = 1 − π2/(2k2). Hence, δ′ ≤
(rπ2)/(4k2). For any such δ′ any δ′-movement of the
vertices of the bi-colored sequence results in a convex
polygon defined by the sequence in the input order.

We now modify the construction for the bi-colored
sequence so that all target positions lie on points of the
n×n grid. We assume that n is sufficiently large so that
we can feasibly set rπ2/4k2 ≥ δ′ ≥

√
2/2. Let δ = δ′/2.

We move each vertex of the 2k-gon to the nearest grid
point, which is at most

√
2/2 away. In any feasible

solution, the distance of a vertex to its position on the
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curve complexity b Θ(1) Θ( 3
√
n) Θ(

√
n)

δ(b, n) Ω(n) Ω( 3
√
n) Ω(1)

Table 1: Lower bounds for the displacement δ depending
on the curve complexity b from Theorem 4.

2k-gon—resulting both from moving the vertex and from
placing it on a grid point—is at most δ +

√
2/2 ≤ δ′.

Hence, the bi-colored sequence forms a convex polygon.
After placing the target positions for the bi-colored

sequence, we place the target positions of the remaining
vertices on unused points of the n× n grid.

The intersection of a straight line with a convex poly-
gon is a straight-line segment, and, hence, each edge
segment crosses the polygon’s boundary at most twice.

Property A polyline that crosses the boundary of a convex
polygon b times has at least db/2e − 1 bends.

On the other hand, each 4-cycle must separate the
two sets of the bi-colored sequence and especially every
pair of consecutive vertices; hence, every 4-cycle must
cross each of the 2k edges of the corresponding convex
polygon. Therefore, at least one of the edges of such a
4-cycle must have at least d2k/4e = dk/2e crossings with
the boundary of the convex polygon. This edge must,
hence, have at least d(dk/2e)/2e − 1 = dk/4e − 1 bends.

Recall that δ ≤ rπ2/(8k2) = (n− 1)π2/(16k2). Since
we want to create an instance where each 4-cycle has
an edge with at least b + 1 bends, we must have k ≥
4b + 5; we choose k = 4b + 5. Hence, we can set δ =
(n − 1)π2/(16 · (4b + 5)2) = Θ(n/b2). Recall that we
required that rπ2/4k2 ≥

√
2/2. This is the case if n ≥

4
√

2(4b+ 5)2/π2 + 1. Furthermore, since there is a total
of 2k = 8b+ 10 red and blue vertices, there is a linear
number n′ = n− 2k of remaining vertices forming the
4-cycles. Hence, in any planar drawing with just a δ-
movement of the vertices, there will be a linear number
of edges with more than b bends. �

The general form of the theorem allows to choose the
curve complexity b, as long as n ≥ 4

√
2(4b+ 5)2/π2 + 1.

This yields some interesting bounds; see also Table 1.
We first consider constant curve complexity. It is not

surprising, that there are examples in which no constant
curve complexity is sufficient. However, this is even the
case with δ = Θ(n), i.e., a linear size of δ may still be
not enough freedom for constant curve complexity.

Corollary 5 For every constant number b ≥ 0 of bends
and every number n ≥ 4

√
2(4b+ 5)2/π2 + 1 it holds that

δ(b, n) = Ω(n). Furthermore, for every such n, there is
an instance with δ = Θ(n) such that in every feasible
embedding Θ(n) edges must have more than b bends.

Our construction also works for a curve complexity of
b = Θ(

√
n), and yields a constant δ-value.

Corollary 6 Let b = Θ(
√
n). For n ≥ 4

√
2(4b(n) +

5)2/π2 + 1 it holds that δ(b, n) = Ω(1).

Finally, both δ and b can be of Θ( 3
√
n); especially,

both values are sublinear but not constant.

Corollary 7 Let b = Θ( 3
√
n). For n ≥ 4

√
2(4b(n) +

5)2/π2 + 1 it holds that δ(b, n) = Ω( 3
√
n).

Note that Theorem 4 does not yield a bound for lin-
ear b. However, this restriction stems only from requiring
that the target positions must lie on the grid. If we drop
this requirement, we can place the bi-colored sequence
on the corners of the regular 2k-gon and get an example
with a small—but positive—δ, for which a linear number
of edges needs a linear number of bends. Note that,
although the target positions do not lie on grid points,
we still have the property that between every pair of
vertices there is a larger distance, i.e., points do not come
too close; in this case, the distance is at least constant.

Corollary 8 Let b be a function linear in n. For every
n with n ≥ 4b(n) + 9, there is a planar graph with target
positions (not lying on the n×n grid) and a value δ > 0
such that every AGD embedding will have an edge with
at least b(n) bends.

If n − 4b = Θ(n), these instances will even have a
linear number of edges with a linear number of bends.

5 Bounds for b(δ, n)

We now assume that δ is prescribed and derive bounds
for the minimum b(δ, n) that is sufficient for all instances
on n vertices. We reuse the constructions for δ(b, n).
However, we must be careful with the modified analysis.

Upper Bounds. The constructions in Section 3 can be
used directly for obtaining upper bounds on b(δ, n).

Theorem 9 For δ > (n− 1)/2 it holds that b(δ, n) ≤ 2
and for δ > (n− 1)/

√
2 it holds that b(δ, n) = 0.

Lower Bounds. Using the examples of Section 4, we
can also derive lower bounds on b(δ, n).

Theorem 10 Let δ ≥
√

2/4. Then, for every n ≥ 1
it holds that b(δ, n) ≥

√
(n− 1)/δ · π/16 − 1, that is,

b(δ, n) = Ω(
√
n/δ).

More precisely, there is always an example in which a
linear number of edges must have at least

√
(n− 1)/δ ·

π/16− 1 bends if the vertices are moved by at most δ.

Proof. We can use the same construction as in Theo-
rem 4. However, now the displacement δ is prescribed
and we want to maximize k such that the resulting 2k-
gon will stay convex after any δ-movement of the vertices.
We require δ ≥

√
2/4 since otherwise moving the vertices
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maximum displacement δ Θ(1) Θ( 3
√
n) Θ(n)

b(δ, n) Ω(
√
n) Ω( 3

√
n) Ω(1)

Table 2: Lower bounds for the curve complexity b de-
pending on the displacement δ from Theorem 10.

from the corners of the regular 2k-gon to the closest grid
points can have more influence than the δ-movement.

Recall that we required δ ≤ (n− 1)π2/(16k2). Hence,
we can set k = d

√
(n− 1)/δ · π/4e. Since every 4-cycle

must have an edge with at least dk/4e − 1 bends, we
know that every feasible planar embedding with only a
δ-movement of the vertices must have curve complexity
at least d

√
(n− 1)/δ · π/16e − 1. Therefore, b(δ, n) ≥

d
√

(n− 1)/δ · π/16e − 1.
Since in the example we have 2k = O(

√
n) vertices

in the bi-colored sequence, there will still be a linear
number of 4-cycles and, hence, a linear number of edges
that need at least

√
(n− 1)/δ · π/16− 1 bends. �

As a consequence, for every constant δ we get b(δ, n) =
Ω(
√
n). Especially, no constant curve complexity can be

guaranteed with a constant displacement.

Corollary 11 For every constant displacement δ ≥ 0
and n ≥ 1 it holds that b(δ, n) = Ω(

√
n).

Furthermore, for every n, there is an instance with b =
Θ(
√
n) such that in every feasible δ-b-AGD embedding

Θ(n) edges must have at least b bends.

Again, we can also make δ depend on n. We get
essentially the same relation between δ and b(δ, n) as we
did for b and δ(b, n); see Table 2.

Corollary 12 For δ = Θ(n), b(δ, n) = Ω(1).

Again, there are examples in which both δ and b are
of Θ( 3

√
n), that is, both are sublinear but not constant.

Corollary 13 For δ = Θ( 3
√
n), b(δ, n) = Ω( 3

√
n).

6 Conclusion and Open Problems

We explored the interplay between flexibility in moving
vertices away from their target position with the number
of bends in planar drawings. We proved upper and
lower bounds for the value δ(b, n) that describes the
displacement that has to be allowed in order to be able
to draw all planar instances with only b bends per edge.
Most importantly, we have seen that for every constant
curve complexity b, δ(b, n) is still linear. Furthermore,
even Θ( 3

√
n) curve complexity is not achievable with

constant displacement, but requires Ω( 3
√
n) displacement.

On the other hand, we have also shown that any constant
maximum displacement δ still requires b(δ, n) = Ω(

√
n).

There are still several interesting open questions. For
instance, for higher constant values of b, the gap in terms
of the constants for the upper and lower bounds is quite
large. Is there an algorithm that finds a drawing with
constant curve complexity b and relatively small linear
displacement? Furthermore, we know that for curve
complexity Θ(

√
n) a constant displacement is necessary.

Is such a displacement also sufficient, i.e., is there a
constant δ such that we can draw every planar graph
with displacement just δ and curve complexity O(

√
n)?
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