Comparison and Evaluation of Model Transformation
Tools

Nafiseh Kahani and James R. Cordy

{Kahani, Cordy}@cs.queensu.ca

Technical Report 2015-627

School of Computing, Queen’s University
Kingston, Ontario

December, 2015

Abstract

An impressive number of model transformation languages and associated tools have been developed over the
last few years. These tools can be used to develop, transform, merge, exchange, compare and verify models
or meta-models. In this paper, we compare and evaluate the current model transformation tools based on
a qualitative framework. We begin with looking at the background areas of model transformation, and an
overall taxonomy of current tools. We then classify, compare and evaluate the tools based on a number of
facets, each one consisting of several attributes with the possibility of overlap.

Keywords: Model-driven engineering, model transformation tools, classification

1 Introduction

Model-driven engineering (MDE) is a rapidly expanding field that uses models as the fundamental ele-
ments in the entire process of software engineering. MDE techniques can simplify the design process, increase
productivity and compatibility between systems, and boost the efficiency of the development process. Be-
sides, MDE provides a comprehensive description of the system since various models can be used to describe
different viewpoints. In this context, a system can be anything, such as a program or a computer system.
A subset of MDE is model-driven development (MDD), a model-centric framework that uses models as the
primary artifacts in the software development process. MDD extends the level of abstraction, while reducing
the complexity of development. In MDD, abstract models are transformed into detailed models or code,
so model transformations are essential. Model transformations can be compared to compilers in traditional
programming languages.

A subset of MDD called Model-driven architecture (MDA) has been proposed by the Object Manage-
ment Group (OMG) [78]. MDA uses OMG standards in the systems development process. The OMG
have standardized the transformation definitions used in the MDA framework, by introducing the MOF
model to text transformation language (MOFM2T) specification [79] for model-to-text (M2T), and the
Query/Views/Transformation language (QVT) standard [80] for model-to-model (M2M) transformations.
QVT consists of three languages namely, QVT Relational (QVTr), QVT Core (QVTc) and QVT Opera-
tional (QVTo) languages. There is also Architecture-driven modernization (ADM) that produces standards
for model-based reverse engineering of legacy systems.

With MDD becoming more prevalent in software development, the number of model transformation tech-
niques/tools has increased rapidly. There have been a number of publications [81], [82] B3] 84 85, 86}, 87 [88]
classifying and comparing model transformation approaches and tools over different features. Some of these
works have chosen a number of tools and compared them based on a limited range of attributes, but to
our knowledge, there has not been a comprehensive comparison and evaluation of all of the current model
transformation tools. In this survey, we catalogue all of the currently available model transformation tools,
and compare them with respect to a range of attributes.

The remainder of this paper is organized as follows. Section[2] provides an overview of the research method
we used in our study. Section [3] presents a basic introduction to model-driven background and terminology.
Sections[d] and [5] classifies and compares tools based on a set of attributes. Section [6]evaluates tools according
to a number of factors. Sections [7] and [§] discusses the results of previous sections. Section [J] examines the
related work. In section we conclude the paper.

2 Research Method

Our study followed the principles of a systematic literature and used three different sources to gather tools
information. We began with the previously published MDD literature reviews, journal/workshop/conference
papers in the field, specially articles related to the Transformation Tool Contest (TTC) to make a list of
all of the existing model transformation tools. This step resulted in a list of 43 tools. Some of these have
no website or download page (e.g., ArcStyler, Yet Another Transformation Language (YATL), Codagen
Architect, OptimalJ, FUUT-je) or are still being developed, such as QVTd which is an implementation of

QVTc and QVTr [89], so we excluded them from the list.

To search further, we used web sites, such as Google Scholar, Sourceforge, and Github to find other tools
not included in the existing survey papers. To do this, we searched tools based on some search keywords,
such as "model transformation tools” and ”model-to-model and model-to-text tools”. We also attended the
Models Conference (2015)[90] held in Ottawa to contact professors and students in the field to assure of the
completeness of our work. In this paper, our focus is on the meta-model based modeling tools. However,
during our systematic search we faced with tools, such as WebRatio which are not meta-model based, however
fit very well in our taxonomy. Thus we consider them in our list as well. The final list includes 65 tools. We
organize the current tools into a taxonomy based on transformation languages. Similar to previous work on
clone detection tools [91] we perform a classification and overall comparison according to a number of facets,
each of which has a set of attributes with the possibility of overlap.

3 Background

We begin with a basic introduction to model-driven terminology. Rothenberg et al. [92] define a model as
follows: ” A model represents reality for the given purpose; the model is an abstraction of reality in the sense
that it cannot represent all aspects of reality. This allows us to deal with the world in a simplified manner,
avoiding the complexity, danger and irreversibility of reality”. Considering models as dynamic artifacts,
it is possible to perform different operations on them, such as merging to integrate models and produce a
new model, or re-factoring to improve the internal structure of the model without changing its behavior or
semantic.

Model transformation is a program used to transform a model from one representation to another. The
input model of transformation is called source model which conforms to a source meta-model, and its out-
put model so-called target model conforms to a target meta-model (in M2M transformations), or text (in
M2T transformations). A model transformation description/specification written in a model transformation
language, defines how one or more source model(s) are transformed to one or more target model(s). If the
language of a transformation description is rule-based, the transformation description will consist of a set of
transformation rules. The transformation engine/tool uses model transformation definition to produce the
target model from the source model. Meanwhile, the models must be valid and expressed in a well-defined
notation. Thus transformation specifications use the meta-model to define the appropriate and necessary
structure, and properties to which a model must conform. There are models that define meta-models so-called
meta-meta-models. This definition can continue recursively, so that meta-meta-models can be defined based
on themselves. While in theory, there is any arbitrary number of meta-modeling levels, the OMG defined
a four meta-modeling level architecture. In this standard, level M0 represents the real-world system, next
level, M1 represents the modeling level of the system that is an instance of the next level. Level M2 is the
meta-modeling level that describes the model in the level M1. The meta-meta-modeling in level M3 shows
that meta-model conforms to itself. The relation between a model and its meta-model, and the meta-model
with one of its models is shown with conformance and instantiation type respectively.

Modeling languages used to specify the models can be graphical, textual, or both. There are two classifi-
cations for modeling languages: domain-specific modeling languages (DSMLs) are dedicated to a particular
domain or context for modeling purposes; and general-purpose modeling languages (GPMLs), such as the
Unified Modeling Language (UML) [93], can be applied to any domain. DSMLs have relevant concepts to the
domain, and thus support higher-level abstractions than GPMLs, which makes them less complex and easier
to use. A modeling language is defined by its abstract syntax, its semantics, and its concrete syntax(es). The
abstract syntax describes the structure and elements of the model, properties and relations between the ele-
ments and validity constraints (i.e., the requirements for the model) of the model. Abstract syntax performs
like a grammar for textual languages. In MDD, the abstract syntax is modeled by a meta-model. A concrete
syntax can be textual to describe particular representations of models, graphical which uses graphical icons
(e.g., tree-like) to show the elements of the model and relations among them, or both of them. Tools, such as
Graphiti [94] and Xtext [95] can specify the graphical and textual concrete syntax respectively. It is possible
to have several different concrete syntaxes for one abstract syntax. In addition, concrete and abstract syntax
are separate, thus, it is possible to apply the same concrete syntax for different abstract syntaxes. However,
an abstract syntax does not define the notation or the meaning of the relationship among language concepts.
Thus, the semantics defined by denotational, operational, translational, and pragmatic approaches [96], is
needed to describe the meaning of the different modeling elements and the different ways of combining them.

4 Classification of Tools

Based on the type of the target, model transformations tools can be classified into three main categories
namely, model-to-model (M2M), model-to-text (M2T) and text-to-model (T2M) transformations. T2M
transformation tools, e.g., MoDisco [97], accept text strings as input and models as output parameters of
transformations. T2M tools are usually used for reverse engineering and need a parser generator, so we do
not consider them in our work. Tables|l|and [2| provide a high-level overview of the tools based on a taxonomy
of their transformation language. The third column in the table gives a sentence description of the tool, and
the forth column shows the language in which it is implemented. FR and LR columns show the first and
latest release of tools respectively. M2M and M2T transformation tools can be divided into the following
subcategories.

4.1 Model-to-Model (M2M) Tools

M2M tools convert one or more source(s) into one or more target(s). Transformation languages provide a
set of constructs or mechanisms to apply transformations. Relational, imperative, graph-based, others, and
hybrid are different types of approaches to implement M2M transformation tools.

4.1 Relational/Declarative Approaches

These approaches focus on what should be transformed into what, without specifying an explicit sequence
of execution order. Relational approaches are based on defining relationships between the elements in the
source and target models. These relations are defined in mathematical relations, which can be specified by
predicates and constraints. Relational approaches include functional programming, and logic programming.
A logic language has many features, such as search mechanism, constraint propagation, and backtracking
that make it appropriate to implement the relational approaches. In functional languages, a function similar
to a transformation can transform the input(s) into the output(s). Object-oriented (OO) languages seem to
be a straight approach for model transformations. However, functional language has the advantage that the
developer does not need to deal with non-trivial task of writing code for model traversing. Tools such as
UML-RSDS, Tefkat, JTL, PTL, ModTransf, PETE, and TXL are examples of relational approaches.

An example of the high-level relational model transformation approach is QVT Relation. In QVTr, e.g.,
Echo, MOMENT, QVTR-XSLT, ModelMorf, mediniQVT, a relation specifies by two or more domains with
a pair of when and where clauses. Each domain represents a model in the transformation. The when clause
determines the conditions under which the relationship needs to hold, and the where clause determines the
condition that must be met by all model elements in the relation. Patterns are used to define the domains,
which can be marked as check-only or enforced. In check-only mode, the consistency of the target model
elements is checked, then based on the transformation the result can be true or false. In the case of false
result, the rule is enforced by modifying the elements of target model, so that the target will be consistent.
QVTr has both textual and graphical concrete syntax styles. Echo and mediniQVT tools are based on QVTr
syntax, but using the semantics which is depart from the OMG standard.

QVT Core is a simple, low-level relational language based on pattern matching over a set of variables.
The language evaluates conditions over those variables according to a set of models. QVTr is defined on top
of QVTec, thus, a transformation in the Core language is defined as a set of mappings from QVTr to QVc
(act as the target of this mapping). QVTr is defined at a higher-level of abstraction, so it is more expressive
and supports more complex pattern matching than QVTc.

4.1 Imperative/Operational/Constructive Approaches

Imperative languages focus on how and when the transformation should be executed, without taking
into account the relations that must hold between source and target elements. The language specifies a
transformation as a sequential actions/rules. Procedural languages such as MetaEdit+ are imperative and
use procedures as abstraction mechanisms to wrap the sets of instructions. Imperative languages are similar
to classic programming languages, so they are easy for developers to work with them.

QVT Operational is an example of imperative language, which is comparable to conventional procedural
languages like C. In QVTo (e.g., QVTo-Eclipse, MagicDraw, OpenCanarias, SmartQVT, Together) transfor-
mations are defined using mappings. Each mapping can transform one or more element(s) of a source model
to the corresponding target element(s). QVTo mappings, similar to relations in QVTr, may contain when
and where clauses.

Table 1: Taxonomy of the M2M transformation tools

App. Tool Description Lang. FR LR
UML-RSDS [1] with verification support to construct software systems from UML spec. Java 2005 2015
Tefkat [2] a rule-, pattern- and template-based engine implementation of Tefkat language Java 2004 2008
JTL[3] specifically focuses on synchronization and change propagation models ASP 2006 2015

— PTL [] ATL-style rules are combined with logic rules to define transformations Java 2013 2013

g ModTransf [5] a tool which its rules are expressed in XML Java 2004 2005

= Echo [6] used for model repair and transformations based on the model finder Alloy Java 2013 2013

) MOMENT [7] a partial support and editor for the QVTr Java 2006 2007

= QVTR-XSLT [8] based on the graphical notation of QVTr and XSLT Java 2009 2009
ModelMorf [9] fully supports the QVTr language Java 2006 2006
mediniQVT [I0] uses QVTr language in the textual concrete syntax Java 2007 2011
PETE [12] a Prolog rule-based tool that supports the transformation of Ecore models Java 2009 2010
TXL [65] a grammar-based tool that can be used for model transformations Turing+ 1990 2015
ModelAnt [13] an extension of Apache ANT to support model transformations Apache Ant 2004 2014
Xtend[14] the succr. of Xpand is a statically-typed high-level programming tool for JVM Java 2013 2015
MetaEdit+ [11] a tool for domain-specific modeling and development MERL 1993 2014
QVTo-Eclipse[I5] an Eclipse implementation of Borland Together based on QVTo Java 2008 2015
Kermeta2[16] based on a model-oriented language optimized for meta-models and DSLs Java 2005 2012

o Modelio[I7] the succr. of Objecteering is based on UML and BPMN Java 2009 2014

E Umple[18] a programming language family to enable model-oriented programming Java 2008 2015

g MDWorkbench[I9] Eclipse-based IDE for code generation and model transformations Java 2005 2015

g Melange[20] the succr. of Kermeta2 supports the semantics of the modeling languages Java 2015 2015

= MagicDraw[21] a visual UML, SysML, BPMN, and UPDM modeling tool Java 1998 2015
JAMDA[22] creates Java code from a model of the business domain Java 2002 2003
Ente. Arch.[24] a UML design and business analysis tool C++ 2000 2015
OpenCanarias[26] a virtual machine implementation of the QVTo mappings Java 2008 2011
SmartQVT|[27] a partial implementation of the QVTo language Java 2006 2008
SiTra[70] a Java library for supporting a Java-based approach to implement M2M Java 2006 2012
WebRatio[71] an application development platform for BPMN, WEBML, and IFML Java 2001 2015
Mitra2[73] the succr. of Mitra optimized for semi-automated transformations Java 2010 2012
JQVT[74] based on a compiled QVT engine for Java Java 2012 2013
Merlin[75] based on EMF Java Emitter Templates (JET) templates and mapping model Java 2004 2005
Together[70] a set of Eclipse plugins which partially implements the QVTo language Java 2003 2015
MOFScript[77] the succr. of UMT which implements the OMG MOFM2T specification Java 2006 2011
GROOVE|29] a tool for model checking graph transformation systems Java 2003 2014
UMLX[30] based on a concrete graphical syntax to complement the QVT language Java 2005 2006
AToM3[31] a multi-paradigm modeling tool for visual languages Python 2004 2008
AToMPM [2§] the succr. of AToM3 generates domain-specific modeling web-based tools Python 2012 2015

= AGG[33] for the attributed graph grammar transf. which follows the algebraic approach Java 1997 2015

% BOTL[34] offers a protocol for the description of tool chains and model integration Java 2003 2008

2 GRoundTram|35] a graph round-trip framework to develop bi-directional model transformations OCaml 2009 2014

=, eMoflon[36] supports story-driven modeling and TGGs Java 2006 2015

g Henshin[37] the succr. of EMFTiger supports the visual modeling and transformations Java 2011 2015

© MoTE|38] provides bi-directionality,, model synchronization and model consistency Java 2010 2015
GReAT[40] based on a pattern specification, a graph transf., and a control-flow languages Visual C 2004 2014
TGGInterpreter[4I]its rules are modeled as TGG-rule diagrams to provide transformations Java 2006 2011
MOMoT[G69] based on MDE and search-based optimization techniques Java 2014 2015
EMorF[42] an incremental TGG tool which supports model synchronization Java 2012 2012
PROGRES[43] an integrated environment and high-level language C 1991 2004
MoTMoT[51] based on a UML implementation of story diagrams for graph rewriting Java 2004 2006

2 UMTI[44] based on UML/XMI which uses XSLT and Java for code generation Java 2002 2005

<

S
VIATRA45)] supports verif. to improve the quality of systems designed using the UML Java 2000 2015
Eclectic[46] a tool based on family of model transformation languages Java 2013 2013

] Epsilon[47] a family of languages and tools with migration capability Java 2006 2014

fi AGE[48] a tool based on the embedded DSLs, being Ruby the host language Ruby 2006 2010

o VMTS[49] a domain-specific meta-modeling and model processing framework .Net C# 2003 2014
ATLI[50] uses textual syntax and parts of the QVT specification to define transf. rules Java 2005 2015
Fujabal63] a story-driven modeling and graph transf. platform Java 1994 2015
GrGen.NET [67] a programming productivity tool for graph transformations Java 2003 2015
Rational|23] consists of a set of UML modeling tools for software design - 1994 -
Blu Age[25] a set of plugins namely Reverse, Forward, Data and Data Base, and Analyzer Java 2006 2015
MOLA [39] a graphical procedural transformation language Java 2005 2014

There is another approach called direct manipulation approach (e.g., JAMDA, SiTra) which is similar
to the imperative approach, but with lower-level constructs and language concepts to support model trans-
formations. In this approach, general-purpose programming languages, such as Java, and VB along with
the advanced capabilities, offered by Application Programming Interface (APIs) libraries, can be used to
implement the model transformations. APIs enable users to create, manipulate or access the internal struc-
ture of models and meta-model instances using Java programming language. This approach is simple and
developers do not need to learn a new language to write transformations. However, these languages were
not primarily designed for direct model manipulation, so users have to manually implement many required
features of model transformations, such as traceability. Furthermore, being dependent on particular APIs
impose some restrictions on the type of transformations that the approach can support. Examples of imper-
ative tools are ModelAnt, Xtend, Kermeta2, Modelio, Umple, MDWorkbench, Melange, Enterprise Architect
(EA), WebRatio, Mitra2, JQVT, Merlin, and MOFScript.

4.1 Graph-based Approaches

Graph-based languages are based on algebraic graph grammars, and represent the source and target
models using variations of typed, attributed, and labeled graphs. Graph transformation or graph rewriting
consists of a set of rewriting rules (also called graph transformation rules or production rules), and a host
graph to which the rules are applied to create a new graph. Each rule consists of left-hand side (LHS) graph,
and right-hand side (RHS) graph. The execution of a graph rewriting rule on a host graph involves all ele-
ments that only are in the LHS are deleted, all elements that that are in RHS but not appearing in LHS are
added, and all matched elements that exist in both sides remain unchanged. Optional negative application
condition (NAC) is used to prevent the existence of certain patterns in the host graph, for instance the ab-
sence of particular vertices and edges. Most graph transformation approaches, such as GROOVE and AGG,
allow specifying NAC for rules. Graph transformation rule containing a NAC is executed when a match for
the LHS is found, and the NAC is not fulfilled. The act of trying to match a sub-graph is called pattern
matching or evaluating a rule. The LHS and the NACs are the preconditions that must be satisfied prior to
the rule execution, while the RHS is the post-condition of the graph rewriting rule. Graph transformations
have solid theoretical foundation which allows to be used in formal verification of the transformations. The
major drawback of graphical notation is the complexity and verbosity of representing the graph transfor-
mation rules. Examples of tools in this category are, AToMPM, GROOVE, UMLX, AToM3, AGG, BOTL,
GRoundTram, GReAT, MOMoT, PROGRES, and MoTMoT.

Graph-based languages are suited to perform transformations between graph instances conforming to
the same graph, therefore, they suffer from traceability difficulty between input and output graph instance
elements. Triple Graph Grammars (TGG) [98] was proposed to overcome this disadvantage through using
correspondence graphs or meta-models that maintain N — to — N relation between source and target trans-
formed elements. Thus, they can be used to synchronize two different models and check whether they are
consistent. TGGs consist of three graphs, a source graph (left-hand), a target graph (right-hand), and a
correspondence graph. Taking modeling decisions by the developer and performing the manual changes on
the models, make this approach almost difficult. TGGs are similar to QVTr but with strong theoretical basis.
In QVTr the dependencies of transformation rules is explicitly formulated in the when and where clauses,
while the order of TGGs rules implicitly specify based on the satisfaction of some preconditions. Examples
of TGGs tools are eMoflon, Henshin, MoTE, TGG Interpreter, and EMorF.

4.1 Others Approaches

In this category, two approaches are mentioned by Czarnecki et al. [81], transformations implemented
using xtensible Style-sheet Language Transformation (XSLT) and the application of meta-programming.
Models can be represented and serialized as Extensible Markup Language (XML) using the XML Metadata
Interchange (XMI) [99]. XSLT is a standard language for transforming XML that can be applied to implement
model transformations. XSLT is a platform-independent, which uses the concept of patterns, and operates
on textual representation of models. This approach traverses the XML tree structure to locate the nodes of
the tree that match its pattern. In the case of pattern matching, XSLT applies a particular transformation
rule. However, XSLT has scalability limitations, and its transformations are complex and verbose. Thus,
maintenance of model transformations implemented in XSLT is almost difficult. In addition, XSLT can only
support tree structures and not arbitrarily shaped graphs. Meta-programming approach proposed by Tratt
[100] involves a domain-specific language (DSL) for model transformation embedded in a meta-programming
language.

Table 2: Taxonomy of the M2T Tools

App. Tool Description Lang. FR LR
5 Kermeta2* [52] based on a model-oriented language optimized for meta-models and DSLs Java 2005 2012
= Melange*[53] the succr. of Kermeta2 that supports the semantics of the modeling languages Java 2015 2015
= JAMDA*[22) creates Java code from a model of the business domain Java 2002 2003
ATOM3*[32] a multi-paradigm modeling tool for visual languages Python 2004 2008
ATOMPM* [28] the succr. of AToM3, generates domain-specific modeling web-based tools Python 2012 2015
ModelAnt* [13] an extension of Apache ANT to support model transformations Apache Ant 2004 2014
ModTransf*[54] a tool which its rules are expressed in XML Java 2004 2005
o Umple*[18] a programming language family to enable model-oriented programming Java 2008 2015
P Acceleo[55] a pragmatic implementation of the OMG MOFM2T standard Java 2006 2012
TEl MagicDraw*[2I] a visual UML, SysML, BPMN, and UPDM modeling tool Java 1998 2015
S AGE*[56] based on the embedded DSLs, being Ruby the host language Ruby 2006 2010
eMoflon*[57] supports story-driven modeling and TGGs Java 2006 2015
Henshin*[58] the succr. of EMFTiger supports the visual modeling and transformations Java 2011 2015
MDWorkbench*[19]a Eclipse-based IDE for code generation and model transformations Java 2005 2015
AndroMDA[59] models created on UML tools can be transformed into deployable components Java 2004 2014
Fujaba*[64] a story-driven modeling and graph transf. platform Java 1994 2015
TXL *[66] a grammar-based tool that can be used for model transformations Turing+ 1990 2015
WebRatio*[72] an application development platform for BPMN, WEBML, and IFML Java 2001 2015
Ente. Arch.*[24] a UML design and business analysis tool C++ 2000 2015
UMT*[44] a tool based on UML/XMI which uses XSLT and Java for generation Java 2002 2005
Merlin*[75] based on EMF Java Emitter Templates (JET) templates and mapping model Java 2004 2005
MOFScriptt*[77] the succr. of UMT implements the OMG MOFM2T specification Java 2006 2011
Rational*[23] consists of a set of UML modeling tools for software design - 1994 -
Xpand[61] is a the domain-specific M2T transformation framework for EMF models Java 2004 2015
Epsilon*[47] a family of languages and tools with migration capability Java 2006 2014
VIATRA*[45] supports verif. to improve the quality of systems designed using the UML Java 2000 2015
Actifsource[60] a domain-specific tool that generates running code from software specification Java 2010 2015
= MetaEdit+*[11] a tool for domain-specific modeling and development MERL 1993 2014
5 Blu Age*[25] a set of plugins namely Reverse, Forward, Data and Data Base, and Analyzer Java 2006 2015
m% VMTS*[62] a domain-specific meta-modeling and model processing framework .Net C# 2003 2014
Xtend*[14] the succr. of Xpand is a statically-typed high-level programming tool for JVM Java 2013 2015
GrGen.NET* [68] a programming productivity tool for graph transformation Java 2003 2015
Modelio*[17] the succr. of Objecteering is a modeling tool based on UML and BPMN Java 2009 2014

* (also M2M tool)

4.1 Hybrid Approaches

Each technique has its own strengths and weaknesses. In imperative approaches, a programmer has a
high-level of control over the transformation execution which results in an efficient implementation of trans-
formations, especially for complex ones. However, the explicit control can lead to writing more code that
makes this approach harder to read and understand. As define transformations at a higher-level of abstrac-
tion, and hide the details related to the transformation process, relational languages make the task of model
transformation development easier, concise and shorter. Being less expressive and providing less control
for the developer, makes relational languages like XSLT approach not suitable for complex transformation
tasks. Graph-based languages have also scalability problems to deal with large models. In this way, hybrid
approaches, which combine the strengths of more than one model transformation approach, can be used to
specify transformations. For instance, the developers can combine the graph-based approach with the imper-
ative features (e.g., MOLA, VMTS, Fujaba, GrGen.NET) to design an intuitive and flexible transformation
tool. VIATRA, Eclectic, Epsilon, AGE, ATL, Rational, and Blu Age are examples of hybrid transformation
tools.

4.2 Model-to-Text (M2T) Tools

M2T transformation tools transform one or several model(s) into a stream of characters in terms of source
code (e.g. C++, Java), or other textual forms, such as configuration files. Visitor-based, template-based,
and hybrid are different types of transformation approaches to implement M2T transformation tools [81].

4.2 Visitor-based Approaches

Visitor-based approaches are similar to direct manipulation approaches, in a way that they also traverse
a tree-based internal representation of a model to generate code for each model element. The generated code
is written in a text stream. The order of models to be traversed, and what code to generate are defined by
rules. However, the developer has to do some parts of the transformation, such as writing instructions in
order to sending the text to the output. Examples of tools in this category are Kermeta2, Melange, JAMDA,
ATOM3, and ATOMPM.

4.2 Template-based Approaches

Templates are the fundamental units of a template-based M2T language. A template defines the target
text structures for the static part shared by all artifacts, and variables as matching model elements that can
be replaced by values from the source model elements. There is a meta-program for the dynamic part, which
provides accessibility to the stored information in the models. An example of this approach is MOFM2T
that facilitates template compositions and module organization to handle complex M2T transformations.

As compare to visitor-based code generation, similarity of the structure of template to the generated
code, makes this approach more accurate and easier to comprehend. In addition, the re-usability feature of
templates makes the development process simpler. In programming language tools, such as GrGen.NET and
TXL, the users can write their own visitors and templates. Examples of template-based tools are ModelAnt,
ModTransf, Umple, Acceleo, MagicDraw, AGE, eMoflon, Henshin, MDWorkbench, AndroMDA, Fujaba,
WebRatio, Enterprise Architect (EA), UMT, Merlin, MOFScriptt, Rational, Xpand, VIATRA, and Epsilon.

4.2 Hybrid Approaches

While visitor-based approach seems to be easier, it is not suitable when the most part of code generation
consists of static text. Therefore, template-based languages can be combined with the visitor pattern to
design and implement M2T tools. Actifsource, MetaEdit+, Blu Age, VMTS, Xtend, GrGen.NET, and
Modelio are hybrid-based tools.

5 Comparison of Tools

In this section, we will describe the features of model transformation tools according to a systematic
classification. At first we outline our classification scheme, and then classify and compare the tools using
it. The properties are organized into facets, each of which may have different, but not necessarily separate
attribute values. Related facets are grouped into categories. Tables [3| to [§|list the facets pertinent to each
category. The second column in each table shows the full name of the facet, and the first column is the
mnemonic abbreviation we use to refer to it. The third column is related to the unique identifiers of the
facets attribute values. The last column provides short descriptions of the attribute values with the citations
of some corresponding tools. Tables [9] and [10] assess the tools based on the mentioned facets.

5.1 General Category

The General category gathers facets relevant to the general usage of a tool (Table (3.

Update Time (UP): This facet shows the importance of accessing to the latest changes, and stable
releases of the tool.

Operating Systems (0OS) Platform: The facet describes the OS platform for which the tool is avail-
able.

Technological Platform (TP): A platform in general is a set of technologies or subsystems necessary
to run the tool. The MDA guide [I01] classifies platforms into generic platform types (batch, object), vendor
specific platform types (Microsoft .NET, IBM WebSphere), and technology specific platform types (J2EE,
CORBA). Examples of the used technological platforms in the tools are: J2EE in Blu Age, Together, We-
bRatio, and JaMDA; .Net in Blu Age and GrGen.NET; and J2SE in MagicDraw.

Availability (A): The Availability facet is concerned with the type of license under which the tool is
accessible.

Available Resources (AR): The Awvailable Resources facet is related to the up-to-date documenta-
tions (e.g., UML-RSDS, GrGen.NET, TXL, Actifsource), complete examples (e.g., ATL, MDWorkbench,
GROOVE), forum (e.g., VIATRA, Umple, MetaEdit+), and so on that reflect the state of the tool. It is

Table 3: General facets

Abb. Facet Attr. Description
The tool is updated regularly; e.g., [1 [3, [65] [I5] 17, 18] 211, [71] [76] [33] [36], 38, [60]
Up Update time The tool is updated sometimes; e.g., [11}, 28] 29} [35] [41]

The tool is updated never; e.g., [2, B 9, 12| 22| [74], [75] [34]
Information not available; e.g., [26] [42]

0s Operating System

The tool has been run on Windows; e.g., [39, [49]
The tool has been run on Linux/Unix; e.g., [43]

The tool has been run on Mac; e.g., [6l, 12} 111, 177, 18, 28, [33] [34] 37 [19]
The tool has been run on Windows, Linux/Unix and Mac; e.g., [20} 21} [71] [76} [38], [60]
Information not available

TP Technological Platforms

Vendor specific platform types; e.g., [49, [67]

Technology specific platform types; e.g., [21], 22] [76]

Both vendor and technology specific platform types; e.g., [25]
No support

Information not available; e.g., [26] 28] [33]

A Availability

The tool is open source; e.g., |2} 6] 13} [15], [17], 18], 20 (73] [74} [75], [33], 134}, 38}, [46], 50,
The tool is freely available for research in binary form; e.g., |4 [65] 19, [39, 41 [60]
The tool is commercially available; e.g., [I11 [I'7} [19} 21|, 24) [76] (60,

There is a free evaluation license; e.g., [I1 [17] 19} 21}, [76] [60]

Information not available

AR Available Resources

The tool provides documents (tutorial/user guide); e.g., [19] 22} 28] [33] [36], 37}, [39]
The tool provides examples; e.g., [15] [19] 28] 33} [36] 37, [38], [39]
The tool has a wiki-page; e.g., |36} 37]

The tool has a forum/community; e.g., [15]

The tool has a website; e.g., [13] [19] [75] 28] B3], 36}, [37. [38] [39]
The tool has a download page; e.g., [13] 15, 19} [74],

All of the above; e.g., [65] 14} [16} [17, 18], 21] 36} 37,

EU Ease of Use

The tool is similar to script languages; e.g., [13]
The tool is mathematical-/algebraic-based; e.g.,
The tool is logic-based; e.g., [4] 12]

All of the above

Information not available

[75] 28, 133, 136,
60, 50, 67]
The tool is similar to programming languages; e.g., [65] 14} [15] 17, 18] 19, 20, [35] [69]
28, 133, [69]
134}, 35} 36, (38,

EM Execution Environment

The tool is a plug-in for Eclipse; e.g., |2} 3} 11}, 15 [16], 18] 19] 20} 211, 24} [73 [76], [37]
The tool is integrated/dependent in other IDE; e.g., [11 2T} [24] [49]

no IDE support; e.g., [9] 28] 33] 34} [35]

The tool has a standalone APP; e.g., [2] 9] [13] 11}, 16, 18] 21, 28] 29| 35] 38}, 49, [63]

DA Domain Application

The tool is a general tool; e.g., [65] [16, 19, [73] [36] 38|, 39} 46, 48] [49]
The tool can be used for web applications; e.g., [13] 28]

The tool can be used for management information systems; e.g., [17]
The tool can be used for real-time/embedded applications; e.g., [5] [17]
Others/Information not available; e.g., |26, [74], [76] [34]

E Extensibility

The tool supports extensibility; e.g., [3 1T}, [15] 16}, 17, 19, 28] [29] [36], 48], 49}, 63}, [67]
no extensibility support; e.g., [Tl 9] 65} [34] [38]
Information not available; e.g., [20, [77], [35]

ED External Dependencies

TOI0 T A0 TR0 T A0 TR PO A0 TR0 A0 T A0 TR0 A0 TR 0T

Possibly the tool has no external dependencies; e.g., [65] [1T], [33] [35] [63]
The tool seems to have external dependencies/to be a part of a larger tool set; e.g.,

[14} 15, 20, 74}, 28] (36, 138, 139, 67, [25]

Information not available

CS Compatibility with Standards

E o ER o a0 o ole

The tool supports XMI standard; e.g., [65] [16] 19l 2T} [76] [75], 29 [33 [37, [46], [48]
The tool supports CWM standard; e.g., |2} [16]

The tool is an implementation of QVTo; e.g., [15] 211 [26], [76], [49]
The tool is an implementation of QVTr; e.g., [6] 9] [49]

The tool is an implementation of QVTc; e.g., [76] [49]
The tool is an implementation of QVT-Like; e.g., [2}

The tool supports OCL expression; e.g., [3}, 9, [16] 18] 19| 21, [76] [75], 37, [48) [50]
The tool supports DD specification; e.g., [28], 33}, 37, 25]

The tool supports MOFM2T standard; e.g., [13}, [T, 25]

The tool supports HUTN standard; e.g., [28] 25]
The tool supports JMI standard; e.g., [5] [13] [22]
The tool supports CMI standard

Information not available; e.g., [40]

important that the tool provides enough and complete resources so that users can easily understand how the
tool works.

Ease of Use (EU): This facet specifies end user recognizability of the transformation syntax, and trans-
formation definition. Some transformation languages are similar to programming (e.g., Mitra2, Kermeta2
is an OO language, Xtend is based on functional programming and OO language, QVTo-Eclipse is similar
to procedural programming language), and scripting languages (e.g., Modelio, Tefkat has a syntax similar
to Structured Query Language (SQL), ModelAnt uses scripting over an OO domain/wrapper of the model)
which may have a smaller learning effort than graph-based (e.g., AToM3, graph query algebra UnCAL in
GRoundTram) or logic-based (e.g., Prolog-based in PTL and PETE) tools. In these transformation tools,
the beginners have to learn new material and development environments to work with the tool.

Ezxecution Environment (EM): The Ezecution Environment facet captures whether the tool is part of
an integrated development environment (IDE). Only a few tools support their own IDE, for instance, VMTS
has its own IDE called VMTS Studio, and GReAT uses Generic Modeling Environment (GME) IDE. Advan-
tages of the Eclipse platform, such as easily-extendable and being an unified platform makes it as a widely
used underlying platform for model transformation tools, e.g., Xtend, eMoflon, and Henshin. Tools such as
QVTR-XSLT that uses MagicDraw are dependent in other IDEs. Examples of tools that provide standalone
APP are UML-RSDS, AToMPM, GRoundTram, AGE, Acceleo, Kermeta2 which provides a maven way to
compile Kermeta programs to run as a plain Java APP, and GROOVE that runs standalone on the JVM.

Domain Application (DA): This facet shows the context to where the tool can be applied. MagicDraw
can be used in systems engineering, business processes, enterprise architecture, and defense architecture ar-
eas. WebRatio is suited for mobile applications (class-platform); whereas Modelio can be used for enterprise
architecture, software development, system architecture; and Actifsource is applicable for business-specific
domains.

Extensibility (E): The Extensibility facet states whether it is possible to add new features and function-
ality to the tool, e.g., JTL, MDWorkbench, TGGInterpreter, AGE, Eclectic, Fujaba, GROOVE, ModTransf,
Actifsource. MetaEdit+ has SOAP based API that allows the users to integrate other tools or develop their
own functionalities. GrGen.NET is internally extended through programming new features by the users, and
externally through using/calling libraries.

External Dependencies (ED): The facet indicates whether the tool requires additional other tools to
work. Some tools are standalone, such as a transformation IDE, but depend on other tools. Some of the
assessed tools have dependencies to other tools, such as Melange (used Xtext, and Kermeta 3 Action Lan-
guage (K3AL)), Xtend (used Google Guava), ATOMPM (used Python-igraph and Chrome), Mitra2 (used
Xtext), BOTL (used ArgoUML), eMoflon (used EA and ANTLR), MOTE (used MDELab Story Diagrams),
MOMoT (used MOEA framework and Henshin), Blu Age (used MagicDraw), MOLA (used METAclipse
tool), and VIATRA (used IncQuery and Xtend).

Compatibility with Standards (CS): In order to support the MDD approach in software development,
we need standards to manage and transform models. OMG has developed a set of relevant standards that
facilitate the use of MDA.

To improve interoperability between modeling tools, specific model interchange languages have been de-
fined. XMI is a model interchange language for serializing and exchanging of models between modeling tools,
and data repositories in a structured textual XML file. Different tool vendors adopt XMI with different
versions. To overcome this problem, Canonical XMI [103] a constrained subset of XMI was introduced to
minimize variability. Besides, eXtensible Graph Markup and Modeling Language (XGMML)[104] can be
used to support graphical information in interchange process by XMI. The concrete syntax of XMI is exces-
sively verbose and rather hardly readable by humans, thus OMG also issued Human usable textual notation
(HUTN) [105] standard supported in AToMPM, Epsilon, and Blu Age.

The Common Warehouse Meta-model (CWM) [I06] standard eases the interchange of warehouse and
business intelligence meta-data between warehouse tools, warehouse platforms and warehouse meta-data
repositories in distributed heterogeneous environments. CWM suffers from capability limitations, so it is not
very common in model transformation tools. Moreover, the Object Constraint Language (OCL) [108] with a
relational nature allows to write constraints on the meta-model, and validate queries on the model-level, e.g.,
used in PETE, TGGInterpreter, MoTE, ATL, and ModelMorf. ModelMorf uses OCL to specify templates,
and when and where conditions in relations. Other languages with the capability of querying a model (e.g.,
Python in AToM3, Javascript in ATOMPM, Java in Fujaba and AGG, xBase in JQVT) can be used to
define constraints. Constraints can define more precisely modeling languages, which leads to models with
higher quality. To make understanding of OCL easier, Visual OCL (VOCL) [102] was introduced as graphical

10

visualization of OCL.

Tools such as AToM3, AToMPM, Blu Age, Henshin, and AGG supports Diagram Definition (DD) specifi-
cation [I07], which facilitates the definition of the mappings between the model elements, and their graphical
notations. There is also MOFM2T standard (e.g., Acceleo, MOFScript) which considers language features,
abstract and concrete syntax to specify M2T transformations. It is based on template approaches and OCL
expressions.

Besides the OMG standards, the tools should be also able to provide support for legacy standards to
facilitate the tasks, such as interoperability, and migration. ModTransf, ModelAnt, JAMDA, and Acceleo
supports Java Meta-data Interface (JMI) [I09] standard, which allows different UML tools to interact with
each other through APIs.

There are other standards not mentioned in this category, such as Graph eXchange Language (GXL) [110]
(e.g., used in GROOVE, AGG, GrGen.Net) which is a XML-based standard exchange format for graphs;
Graph Transformation Exchange Language (GTXL) (e.g., used in AGG) that is an exchange format for
graph transformations; Scalable Vector Graphics (SVG) (e.g., used in MetaEdit+); Interaction Flow Mod-
eling Language (IFML) and Entity-Relationship model (ER) (e.g., used in WebRatio); DOT (e.g., used in
GROOVE); Abstract Syntax Tree Meta-model (ASTM) and Knowledge Discovery Meta-model (KDM) (e.g.,
used in Blu Age); and UnQL (e.g., used in GroundTram).

5.2 Model-level Category

The Model-level category deals with modeling features of the tool. Table [summarizes these facets and
their attribute values.

Modeling Languages (ML): Models need to be expressed in some modeling languages, which construct
the source and target models of a transformation graphically or textually. UML is an OO modeling language,
which consists of a set of different diagrams to visually describe the structure and/or behavior of a given
system. UML provides a high-level of abstraction of defining models, however UML models do not have a for-
mal semantics. Different tools can provide support for different UML diagrams, it depends on an application
needs and practices to choose the UML elements and diagrams. For example; UML-RSDS supports UML2.x
for class, use case, state machine, activity, sequence diagrams; Acceleo supports all UML2.x diagrams; Mag-
icDraw provides full support for UML2.x and before UML2.x; PTL supports UML2.x for class diagrams; EA
supports UML2.x for use case, activity, state, interaction overview, sequence, communication, package, class,
object, composite, component and deployment diagrams; Blu Age supports UML2.x for class, activity, use
case diagrams; ATOMPM, Umple, and Actifsource supports UML2.x for class and state diagrams; VMTS
supports UML2.x for class, activity, use case, sequence, component, and deployment diagrams; ModelAnt
supports before UML 2.x for class and state diagrams; Fujaba supports UML2.x for class, activity, and ob-
ject diagrams; and Together supports UML2.x and before UML 2.x for class, activity, component, composite
structure, deployment, state, use case, sequence, and communication diagrams. Moreover, some tools such
as Kermeta2, Modelio, MagicDraw, EA, VIATRA, VMTS, and Acceleo use the Systems Modeling Language
(SysML) [148] which is an example of UML profile. UML profile is an extension of the UML with additional
semantic that allows to adapt the UML language for a particular purpose and area, through constraint and
extension mechanisms. There is also the Executable UML (xUML) as a graphical specification language
(e.g., VIATRA).

Petri net [117] processed with tools such as AToM3, AToMPM, VIATRA, and TGGlInterpreter, is a graph-
ical formal modeling language. It consists of places, transitions, and arcs, where the places are connected to
transitions by input arcs and output arcs. In addition, programming languages such as OO programming
can be used (e.g., in TXL, VIATRA, VMTS) to describe the models in a textual notation. Business Process
Model and Notation (BPMN)[ITT] is also a graph-oriented standard for specifying business process modeling
in a Business Process Diagram (BPD).

Some tools, such as MOTE and Tefkat, can process any model as long as it conforms to their meta-
model. In addition, the assessed tools can process other modeling languages. For example, VMTS can
process relational languages, and live script (imperative script language) which both are domain indepen-
dent; GrGen.NET has its own model description language; and TXL supports Simulink. The supported
modeling languages in Modelio are TOGAF, UPDM, SOAML, UTP, whereas EA supports BPEL, UPDM,
TOGAF, SOAML, and SOMF.

Development Dimension (DD): This facet provides information about the abstract syntax, concrete
syntax(es) and semantics of the tool. The majority of tools do not support the semantic aspect, whereas a

11

Table 4: Model-Level facets

Abb.

Facet

Attr. Description

ML

Modeling Languages

UML 2. e, [[L7 05, 24 711 176, 25, 53, 57]
Before UML 2.x; e.g., |5l 13} 22, [76) [33]

xUML

BPMN; e.g., [17, 24} [71] [76]

Programming languages; e.g., [65] [76], [49] [25]
SysML; e.g., [16, [I7, 24} [49]

Petri nets; e.g., [28]

All of the above; e.g., [111 [38]

Information not available; e.g., [15] [77 [40]

DD

Development Dimension

T BEMmR 0O 0 T

73, 50]

c The tool has both graphical and textual concrete syntax; e.g., [3} 5l 18]

35, 136} [49]

d Its abstract syntax/meta-modeling language is EMOF; e.g., |2} [l [13]

34)

e Its abstract syntax/meta-modeling language is CMOF

o h

15}, (19, 20} 73], [4T]
Its abstract syntax/meta-modeling language is KM3; e.g., [35]

Other meta-modeling languages; e.g., [9} [65] 28] [39] [49]

Information not available; e.g., [22]

LA

Level of Abstraction

The tool supports dynamic models; e.g., [1]
The tool supports static models; e.g., [4} @ [75]

o T |Fe

33, 136]

Information not available; e.g., [22] [77]

(oW

EXM

Execution Mode

The tool is interpreter-based; e.g., [3l [4} [6] [15] 29 [33] [41]

T oo

20, 211, [74}, [76, 34 139, 46, [63]

o

69, 49, 67]

Information not available

MH

Model Handlers

The tool supports MDR; e.g., [B 13} 20} 2T]
The tool supports both EMF and MDR; e.g., [55]

The tool does not support model handlers; e.g., [74] 28] [33]
Others/Information not available; e.g., [9] 1T} 18] [39] [49]

MML

MDA Model-Levels

CIM; e.g., [1]

PIM; e.g., [AL 5, T8, [73} 72, [75, (34, (56)

PSM; e.g., [5, 118, 73, [75]

All of the above; e.g., [15] [16] 19} 2T, 24} 38 (411, [69, [63], 67, 25]
Information not available; e.g., [77, [40]

O 00 T o0 T

The tool has graphical concrete syntax; e.g., [21] 28] 29 [34] [38], [41]
The tool has textual concrete syntax; e.g., [4l [6, 9] 65 [15], [16, 19} 20}

The tool supports both EMOF and CMOF meta-modeling languages
Its abstract syntax/meta-modeling language is Ecore/EMF; e.g., [4, [6]

The tool support semantic of modeling language; e.g., [16], 20} 67]

The tool supports both static and dynamic models; e.g., [17), 18] 2T} [73]

The tool is compiler-based/code generator; e.g., [1I, 13| 14} 17, 18|, 19,

The tool is both interpreter-based and compiler-based; e.g., [28] [36], [38],

The tool supports EMF; e.g., [6, 12} 16}, 19 [73] [76] [75], 37, [38], 39}, (60, [46]

12

large number of tools have concrete syntax as textual, graphical, or both textual and graphical, e.g., UML-
RSDS, Umple, GRoundTram, eMoflon, and GROOVE. In GROOVE, parts of the production system must be
edited graphically (rules and graphs), others textually (control, LTL/CTL properties and Prolog predicates).
In Kermeta2, the semantic is defined by translational, and has an interpreted variant for validation purposes
as operational semantic. GrGen.NET supports semantic through graph morphisms, category theory, deno-
tational, operational, and pragmatic (a reference implementation) approaches.

There are several specific languages to define meta-models. For example, the Meta-Object Facility (MOF)
[112] defined by the OMG is a standard to describe meta-models. MOF is divided into essential MOF (eMOF)
and complete MOF (¢cMOF). eMOF is a simple framework based on a subset of UML class diagrams to de-
fine meta-models. ¢cMOF provides more sophisticated features and graphical notation to specify complex
modeling languages, such as UML. Ecore [I13] proposed by Eclipse Modeling Framework (EMF) is another
meta-model based on the eMOF specification. Kernel Meta-Meta-Model (KM3) [114] is a subset of Ecore to
write meta-models in a textual representation. Using MOF or Ecore meta-modeling languages can increase
the interoperability between MDD tools. Besides the mentioned meta-modeling languages, there are other
meta-modeling languages supported by MDD tools. Some of these meta-modeling languages are GOPPRR
(MetaEdit+), ArkM3 (ATOMPM), Genmodel (Henshin), MOLA MOF (MOLA), VPM (in previous version
of VIATRA- before June 2015), VMTS Root (VMTS), and Umple (Umple).

Level of Abstraction (LA): Models can be used to describe the structure and behavior of the sys-
tems. Static models deal with the static structure of the objects in a system e.g., ER diagram, and UML
class diagram. Dynamic models use the execution sequence of activities/tasks or information flows among
different objects of the system to show the dynamic behavior of the system e.g., Petri net, UML activity or
state diagrams.

Ezxecution Mode (EXM): In order to generate a running system from the models, they need to be
executable models. When the operational semantics of a model are completely defined, the model is complete
enough to be executable, or the model is executable [118]. Strategies to implement execution tools, and thus
make executable models execute are: code generation, like compiler, generates running code from a higher-
level model to create a running application; model interpretation, like programming language, interpreters,
parses and executes the model at run-time one statement at the time; and hybrid of both model interpre-
tation and code generation (e.g., MOMoT, eMoflon, MoTE). In MoTE, TGGs are transformed into models
of story diagrams, and then interpreted at run-time to perform the transformation. eMoflon is a hybrid
approach in a way that uni-directional transformations and TGG rules are compiler-based, whereas TGG
execution engine is interpreter-based. In general, GrGen.Net is compiler-oriented, but the rule application
language is interpreted (unless used in the embedded rules). In JQVT, Java code is generated from a QVTr
transformation. It does not need to re-interpret the transformation rule, thus JQVT can produce faster
transformations which can be embedded into a Java application more easily than traditional QVT scripts
could.

Model Handlers(MH): Models need to be stored and loaded to/from storages, such as files or repos-
itories. Repositories used to store large models usually provide a particular API to access or manipulate
the models. The EMF (e.g., used in JTL, PTL, PETE, MDWorkbench) is a Java modeling framework and
code generation facility that based on a structured data model builds tools and other applications. Three
fundamental pieces of EMF are, Core framework, EMF.Edit and EMF.Codegen. The Core includes the
Ecore meta-model. EMF.Edit includes generic reusable libraries classes to build editors for EMF models.
EMF.Codegen that provides code generation facility can generate everything needed to build a complete ed-
itor for an EMF model. In addition, some tools, e.g., Merlin, use an open source framework called Graphical
Editing Framework (GEF) [115] along with EMF meta-models to create graphical editor for the existing
application models on the Eclipse platform.

NetBeans Meta-data Repository (MDR) [116] as an example of JMI implementation is also a repository,
which implements MOF. Meta-models and models can be imported into/exported from MDR using XML.
The models are accessible through JMI API, or programmatically using the meta-model-specific. There are
other model repositories, such as MetaEdit+ repository (MetaEdit+), JGraLab (MOLA), METADEPTH
(Eclectic), VMTS repository (VMTS), GrGen.NET repository (GrGen.NET), MasterCraft (ModelMorf),
and Umple repository (Umple). In some tools, e.g., AGE, Eclectic, VMTS, the model repositories can be
extensible o other frameworks through an API.

MDA Model-Levels (MML): This facet notes three specific abstractions levels defined by the MDA
namely, Computation-Independent Model (CIM), Platform-Independent Model (PIM) and Platform-Specific
Model (PSM). CIM focuses on the domain, the specific requirements, and the purpose of the system, without

13

any binding to the details related to the targeted platform. PIM developed in accordance to the CIMs de-
scribes the system without the platform-specific details. PIM increases the level of abstraction via describing
the behavior and structure of the system, independent from a particular platform. PSM contains all specifi-
cations and the required information of a particular type of platform (e.g., CORBA, .NET) integrated with
the specifications in the PIM to determine how the system can use the platform.

5.3 Transformation Category

The Transformation category deals with the features of the transformation language the tool uses (Table
5.

Type (T): There is a distinction between endogenous and exogenous transformations based on the lan-
guage in which the source and target models of a transformation are expressed [82]. Endogenous/homogeneous/
rephrasing transformations take place between models conforming to the same meta-model. Optimization and
re-factoring of models are examples of endogenous transformations. Exogenous/heterogeneous/translation
transformations take place between models expressed using different meta-models. Examples of exogenous
transformations are refining models into more detailed models, such as code generation, reverse engineer-
ing, and migration of a model to a different platform. For instance, translation of UML model which is a
platform-independent model into Java model as a platform-specific model.

Level (L): Vertical transformation changes the abstraction level of the model, an example is code gener-
ation [82]. Refinement transformation can increase the abstraction level, while an abstraction transformation
reduces the amount of detail, so it decreases the abstraction level. Horizontal transformation just changes
the representation of the model, whereas the source and target models remains at the same abstraction level.
Re-factoring is as an example of horizontal transformation, so the abstraction level remains unchanged. An-
other example is language migration, where software model written in one programming language transform
to another one, for instance, translating a UML class diagram to a ER diagram.

Direction (D): This facet shows that transformations can be uni-directional or bi/multi-directional. In
uni-directional, transformations can only be executed from one particular source model to another particular
target model. QVTo tools, e.g., QVTo-Eclipse, are an example that develop the model transformations in a
way. In bi/multi-directional, usually relational tools, e.g., JTL, Echo, mediniQVT, ModelMorf, UML-RSDS,
transformations can also be run in reverse or in multiple directions. Bi-directional transformations can be
determined by dividing transformation mode into forward (source-to-target) and backward (target-to-source)
transformation specified by two uni-directional transformations. It is also possible to use a transformation
language that supports definitions of bi-directional transformations where every program describes both a
forward and a backward transformation simultaneously. The advantage of using the bi-directional transfor-
mation is to check the consistency between models when changes on the target model are allowed. Bi/multi-
directional transformations can also be used for reverse and round-trip engineering, software evolution, and
synchronization to keep two or more models consistent, through reflecting the changes from one model to the
other one(s). TGGs tools, e.g., eMoflon, TGGInterpreter, MoTE, EMorF, are also well-known examples of
bi-directional model transformations. Other tools such as BOTL, and GRoundTram support bi-directional
transformations, where based on the rules, it can be ensured for valid source models valid target models are
generated.

Scope (S): This facet indicates that a set of mappings/transformations between different MDA model
types (PIM, PSM, and CIM) should be supported by the tools. PIM-to-PSM is an example of a vertical
transformation which allows to drive many PSMs from a single PIM. Some of the assessed tools, e.g., MOLA,
TXL, Kermeta2, Modelio, Melange, AGG, ATL, Fujaba, can be used for any transformations between such
models. In fact, the MDA classification is ignored as long as all relevant models are correctly specified by
their meta-models. It is also possible to generate CIM-to-Code (e.g., Acceleo, MetaEdit+), PIM-to-Code
(e.g., ModelAnt, MetaEdit+, Acceleo), or Code-to-PIM (e.g., MetaEdit+, Acceleo). These transformations
do not explicitly model any platform-specific features, conventions, or requirements. In ModelAnt, the mod-
els can be annotated with tagged values to drive the platform-specific code generation. Most domain-specific
language generators are best characterized as CIM-to-Code or PIM-to-Code.

Cardinality (C): The Cardinality facet classifies model transformations based on the number of input
and output models. In ModelMorf, relations among N models can be specified, but at a time the user can
only transform one model to enforce the specified relations. MOLA can process only one input model in the
chosen repository to create one target model (i.e., 1-to-1). However, the physical model can contain many
logical models. The target model similar to meta-model can be split into logical fragments using packages.

14

Table 5: Transformation facets

Abb. Facet Attr. Description
a Exogenous transformations; e.g., [6] [74] [75] [60] [55]
T Type b Endogenous transformations; e.g., [29] 33] [34]
c Both exogenous and endogenous transformations; e.g., [Il, [15] 24} [73], 48] [49, (0] [67]
d Information not available
a Vertical transformations; e.g., [11} 60} 55]
L Level b Horizontal transformations; e.g., [74) 29, [34] [38] [39]
c Both vertical and horizontal transformations; e.g., [5, 14} [T}, [16], 18] 19} 2T, 48] [49]
d Information not available; e.g., [40]
a Multi-directional transformations
b Bi-directional transformation; e.g., [1I, 3] [6, [35] [36], [38]
D Direction c Uni-directional transformation; e.g., [2] [6], 65, 19, 20} 21| 24], 26] 33}, 35}, [36] [38, [50]
d All of the above; e.g., [9, [41]
e Information not available
a CIM-CIM (computational independent models can be refine); e.g., [15]
b CIM-PIM (computational independent models are transformed into platform-
independent models); e.g., [15]
C PIM-PIM (abstract or refine models without binding to any platform-specific infor-
S Scope mation); e.g., HZLEILDEEBLEBLEEL[ZQLBEBEH . . o
d PIM-PSM (a platform-independent model, with enough transformation definitions
can be transformed to a platform-specific model); e.g., [[4, [9] [15] 18] [73], 35} [36]
e PSM-PIM (use for reverse engineering and are rather difficult to drive); e.g., [3} 18 [36]
f PSM-PSM (abstract or refine platform-specific models during the component realiza-
tion and deployment); e.g., [9} [15], 18] [73, [74), [75] [35] [36]
g PSM-Code (PSMs are translated into software artifacts); e.g., [I8] [75] [36] 53]
h Code-PSM (used for reverse engineering); e.g., [18] 36 [55]
i All of the above; e.g., [111 [16], 19} 33} 38 [49] [63]
j Information not available
a 1-to-1 (there is one source model and one target model); e.g., [6] 28] 29] [34] [35] [38]
b 1-to-N (can produce several target models e.g., model merging); e.g., [18] [74] [55] 49]
C Cardinality c N-to-1 (several source models are combined into a single model)
d N-to-N (one or more input model(s) is transformed into one or more target model(s));

e.g., [5 18]
All of the above; e.g., [1}, 2, 3, 14} 1T}, 15} [16} 1’7 (19} [76], 33, 36, 41, [46), [50]

Information not available

RS Rule Scheduling

Its form is sequential /explicitly; e.g., [15] 19} [20L [73] [74), [75] 28], B3] [36] 39} [49]
Its form is not-sequential/implicitly; e.g., [2} [71], 33} 34} [38] 48]
The tool supports both implicit and explicit forms; e.g., [65], 46]
Its rule selection is explicit condition; e.g., [4l 15 19, 20} [71] [73]
Its rule selection is non-determinism; e.g., [28] [33], 34}, 38 [41]
Its rule selection is conflict resolution; e.g., [18] [71] [63]
Its rule selection is Interactive; e.g., [73) 28] [33]
All the above rule selection mechanisms; e.g., [36]

16,

Its rule iteration is recursion-oriented; e.g., [2] [4] [9] (20, [74} [75]
Its rule iteration is looping-oriented; e.g., [14 [16}, (19, 20} 28] [36], 39 [41]
Its rule iteration is fix-point-oriented; e.g., [9} 33} [34] [36] [38]

All the above rule iteration; e.g., [49]
The tool supports phasing; e.g., [15]
All of the above; e.g., [29] 25]

No support; e.g., [17]
Information not available; e.g., [76]

RO Rule Organization

The tool supports modularity; e.g., [1I, [3| [16] 20, [71}, [73] 136} 139
Its reuse technique is inheritance; e.g., [1l, 9}, [16, [18) [19] 74} [33]
Its reuse technique is logical composition; e.g., 9 651 133 35 [38], Egﬂ
All of the above; e.g., [14} [15], [46] [63], [25]

No support; e.g., [17) 28]
Information not available; e.g., [76]

RAC Rule Application Control

| =0 Q0 oo a0 U‘Q”UOSB’_'W“""'U‘OQ o Q0 T oo

Its rule application control is deterministic; e.g., [I} [2 [4} 16}, 18] 19} 20 7T} (73] [74]
Its rule application control is non-deterministic/concurrent; e.g., [28) 34} 39] [63]

Its rule application control is non-deterministic/one-point; e.g., [33] 4], [69] 63]
Its rule application control is interactive; e.g., [71}, [73] 28] [33] [49]

All of the above; e.g., [29, [36], [67] 25]

No support; e.g., [17]

Information not available; e.g., [76]

15

Rule Scheduling (RS): A large number of currently model transformation tools are based on trans-
formation rules. Each rule describes how the source model to target model transformation is specified, in
particular with respect to implementation of transformation rules. Common examples of transformation rules
are rewrite rules with a LHS and a RHS. Transformation rules can be implemented by general programming
languages, such as Java, or graph transformation languages, such as TGGs approaches.

The form of scheduling mechanisms determine the way in which individual rules are applied and can vary
in four main areas namely, form, rule selection, rule iteration, and phasing [81]. The form can be expressed
implicitly or explicitly. In implicit, the transformation engine selects the execution order based on implicit
relations among the rules. This mechanism is common in relational model transformation tools, e.g.,Tefkat,
JTL, PTL, PETE, other examples are binding-based in ATL, and pre/post-conditions in QVTr. The exe-
cution orders of rules can be changed by the patterns and connections between the rules designed by the
developer. In explicit style, the user has direct control over selecting the execution of rules using some dedi-
cated features of the transformation language, such as loops and conditionals. This style is usually found in
imperative tools, e.g., Xtend, QVTo-Eclipse, Umple, MDWorkbench, Melange, JAMDA, WebRatio, JQVT,
Merlin, ModelAnt, Kermeta2, MagicDraw, and hybrid model transformation tools, e.g., Fujaba, VMTS,
which control flow is typically user-defined. There are different ways to control a structure, for example
using story diagrams based on UML activity diagrams in VMTS, abstract state machines (ASMs) language
in VIATRA, state-charts and activity diagrams in Fujaba, rule priorities in ATOM3, and transformation
units in Henshin. Although this form provides full control over the transformation execution, in complex
scenarios, the developer has to do the most of the work. On the other hand, in a relational transformation,
the developer does not have control on the most tasks of a model transformation that makes these approaches
obscure and hard to comprehend. Therefore, the transformation language with both implicit and explicit
rule scheduling are more comprehensible and flexible as in ATL, Mitra2, GROOVE, Epsilon, Eclectic, UML-
RSDS, TXL, Xpand.

Rule selection can be deterministic, non-deterministic, conflict resolution, or interactive [§I]. In deter-
ministic, an algorithm control the order of application of rules. It is possible that exists more than one
applicable rule to the same part of the source model. In this case, the order of application of rules may be
non-deterministic, for different executions of the same transformation on the same source model. In addition,
different transformation executions could lead to different results, so there is a probability of conflicts and
infinite recursion, In the case of rule conflict, conflict resolution strategies like explicit priorities or layers can
be used. Rules or sets of rules organized into layers are executed in a certain order, so that rules in a layer
do not cause conflicts with rules in the other layers. In explicit priorities, the rule with the highest/lowest
priority is evaluated first. Only when rules with a higher priority fail to match, rules with a lower priority
can be evaluated. In interactive, the user can be involved in deciding how different transformation rules can
be scheduled. Interactive selection are supported in AToMPM, Xtend, AToM3, Mitra2, and GrGen.NET.

Rule iteration mechanisms include recursion, looping, fix-point iteration (i.e., repeated application until
no changes detected), and a combination of them [81]. In MOMoT, rule scheduling is derived based on quality
of models, similar to fix-point based on the quality of output models. Phasing, e.g., found in QVTo-Eclipse,
AGE, PETE, ModelMorf, Tefkat, also means that the process of transformation can be organized into a
sequence of phases, where each phase has a specific purpose and each phase has its own set of specific rules.

Rule Organization (RO): This facet determines the organization of transformation rules [81]. Modu-
larity mechanisms group rules into modules (e.g., JTL, Acceleo, VIATRA), while reuse mechanisms allow to
define a rule based on one or more existing rule(s), such as using inheritance between rules, or composition
of transformation rules to avoid code duplication and consequently maintenance problems. Tools such as
AGG, Blu Age, Fujaba, Eclectic, Xtend, QVTo-Eclipse, and ModelMorf that provide language composition
and inheritance features can ease the process of model transformation. QVTo-Eclipse supports logical com-
position in terms of disjucting and merging mappings. In ModelMorf a rule can be composed from other
rules, through invoking them in its where clause.

Rule Application Contro (RAC): This facet is related to the mechanisms that determine the rule
application location(s) within a given source scope. The strategy can be deterministic, non-deterministic
or interactive [8I]. The non-deterministic strategies are divided in concurrent, and one-point. If a rule is
possible to be applied at several matched locations concurrently, non-deterministic strategy with concurrent
application can be used. If the transformation is non-deterministic, it may result in more than one way
to keep models consistent. In one-point application a rule is applied to one non-deterministically selected
location. In interactive strategy, the user decides the location to where a rule to apply.

16

Table 6: Capability facets

Delete transformations; e.g., [74] (48]
All of the above; e.g., [0} [65] [T6] 19|

Information not available; e.g., [42]

MP

Meta-Programming

A meta-programming tool; e.g.,

No support; e.g., [12} 15} 18] [75,

Information not available

RE

Reverse Engineering

No support; e.g., [12] [14] [15] 20,

Information not available

RT

Round-trip Engineering

A round-trip engineering tool; e.g.,

20, 24, [71), 73] [76,
[11L [16], 20} 28] 13T}, [49]
135, (36}, (38, 53]
A reverse engineering tool; e.g., [I3, [T}, (17, 18], 19} 24]
[75], 28, [35], 136}, 38}, [39,
[17, 24} [76), 135}, [38,
No support; e.g., [12] 15} 16, 18| 20, 71} 28, B3} [36} 39,

Abb. Facet Attr. Description
a Correctness for syntactic and semantic (the correct models of source language result
in the correct models of target language); e.g., [1} [3] 29] B33} 34} [36] [38], [41] [49]
b Termination (a transformation always stops executing after a finite number of steps
and leads to a result); e.g., [1], 29] 33 [34] [38] [49]
v Verification ¢ Consistency (models are consistent with each other); e.g., [3,[6] 9] 18], 33} 34} 36}, [38] [41]
d Completeness (A forward transformation is called complete if each element of the
source model can be transformed to an element of the target model, and vice versa);
e.g., [1 34, [38]
e Determinism/Uniqueness/Confluence (different executions of the transformation al-
ways produce the same result); e.g., [T, 29} 33} [34] [38]
f Comprehensibility (the developed model is comprehensible by the user(s)); e.g., [67]
g Robustness (the ability to manage invalid models); e.g., [6l 18] [7T], 29] [33]
h Definedness (the transformation can be applied to every model of the source lan-
guage); e.g., [1} 6, [38]
i All of the above
j No support; e.g., [65] [15], 24 [74] [75] 28]
k Information not available
a The tool provides a testing environment; e.g., [16, [17] [19] [60] 25]
s b The tool provides a simulation environment; e.g., (331 [34],
VA Validation c Both simulation and testing environments; e.g., [E],mm 24] m@]
d No support; e.g., [12] 65}, 13} [15] [75, [55]
e Information not available
a User-defined models (created manually by the user(s)); e.g., [18] [19] [73] [75] 28] [38]
I Input b Derived models (created automatically by the program(s))
c Both user-defined and derived models; e.g., [25]
d Information not available
a In-place; e.g., [1} (15} [16} [17, 18] (19} 20} 24} [73] [75], 28} 29} 33} (35} 36} (37, [39]
b Out-place; e.g., [1} 16, (LT, 15, 16} (17, 18} 19, 20, 24, 73] 74} [75] 33} 35, 36} 37, 39, [46]
c Textual artifacts; e.g., [11], 16}, 17, 18] 19} 20} 36], 69}, 60, 53]
0 Output d Source code; e.g., [13] [T} [I7, 18] 24} [75], 37 [60, (5]
e Database artifacts; e.g., [I7} [19]
f Query; e.g., [13, 28, [35, [55, [50]
g All of the above; e.g., [14} 25]
h Information not available; e.g., [27) [40]
a Access transformations; e.g., [74] [48]
b Add transformations; e.g., [74] [48]
ET Editing Tasks 3 Update transformations
e
f
a
b
c
a
b
c
a
b
c

Information not available

17

5.4 Capability Category

The Capability category groups facets that characterize the kinds of engineering features the tool is able
to provide (Table [6)).

Verification (V): Verification and validation are the process of determining whether a system satisfies
desirable properties, such as termination or determinism. Formal methods and testing approaches are two
options to validate the behavior of the model transformations. Formal verification can be applied to validate
the transformation based on a complete input space or just a subset of input models. The second approach
may not be complete and precise but it is more efficient for large transformations.

MDD has a teamwork nature so models may be developed by independent teams of designers. In this
way, models can be inconsistent with the meta-models or other coexisting models. Thus, consistency between
multiple related models are a crucial issue. Consistency can be check by bi-directional or incremental model
transformations, model synchronization, or the constraint languages such as OCL. Tools, such as Echo can be
able to find and repair inconsistencies. In ModelMorf when a transformation is executed in check-only mode,
the models specified by the relations are checked for the mutual consistency. Another important property
is completeness which is usually related to both individual rules and the entire transformation [IT9]. Notice
here that some tools just focus on the well-formedenees property. However, well-formedenees is usually just
considered for a single model, thus does not guarantee the correctness of a model or consistency between
several complementary models.

Termination guarantees the existence of target model(s) through avoiding constructs that can be applied
indefinitely to the target models. Model transformation approaches are usually Turing-complete while termi-
nation refers to Turings halting problem which is known to be un-decidable. There are approaches to define
sufficient termination conditions for model transformation systems [120} 12T, [122].

In the case of small models, simplicity and readability of models can help the user(s) to verify the models
themselves. Mohagheghi et al. [I123] show that understandability by intended users can be improved by well-
organized models. Furthermore, it is so important that the transformation can continue its execution in the
case of occurring errors during the execution, or work with every model of the source language. The majority
of MDD tools do not provide built-in verification and validation functions. In tools, such as Kermeta2 and
MetaEdit+, users can manipulate invalid models and make them valid, or build a checker that makes sure
only valid models will be handled.

Validation (VA): Testing executes a model transformation on input test models and checks and val-
idates its behavior. Passing a test alone cannot fully verify that the system’s implementation behaves as
expected under all conditions. Nevertheless, a test case with the adequate test inputs can be an easy and fea-
sible strategy for validation of large and complex model transformations. There are three main approaches in
testing namely, white-bozx, black-box and grey-box. In white-box test, a test suite is designed based on the full
implementation of the transformation. In black-box, the implementation of the transformation is not avail-
able, while in grey-box the implementation of the transformation is partially available. The main drawback
of testing is that the exhaustive testing is time-consuming and not always possible. Tools such as Kermeta2,
Modelio, Actifsource, VIATRA, PTL, MDWorkbench, and Fujaba provide a testing environment. For exam-
ple, Fujaba uses graph-transformation-based JUnit tests. Simulation of the system also allows designers to
model and simulate behavior of the model. The formal verification and validation of model transformations
has increasingly been a topic of research in recent years [126] 127, 128 [129] 130} 13T}, 143}, [149].

M2M transformations are executed between models, therefore any reference to the updated model ele-
ments or elements that do not exist anymore makes a problem. Furthermore, M2M transformations defined
at the meta-model level are dependent to changes or evolution of meta-models. In this case, model migration
is needed to keep a model conform to its corresponding meta-model evolution. Tools, such as Edapt [124] and
Epsilon Flock [125] can support model migration. Technology is constantly changing, so platform evolution
also impacts M2T transformations. Therefore, any change must be reflected in the model transformation.

Input (I): The Input facet captures the type of input as user-defined or derived models supported by a
particular tool.

Output (0): The Output facet indicates the kind of output supported by a particular tool. In-
place/destructive transformations take only one model, where the source and target model are the same.
In this case, the target model is created by directly recreating, deleting, and updating elements of an existing
source model. Model refinements, model re-factoring, optimizations are examples of in-place transformations,
where the elements of the model that remain unchanged by the transformation are not necessary to be copied
in the target. Meanwhile, It is possible to emulate in-place transformations by copying the source model to
the target model and modifying it. In-place transformations are suitable for endogenous transformations,

18

and normally implemented using graph-based approaches as in GROOVE, AToMPM, GRoundTram, and
MOMOoT. To ensure termination property in approaches with the non-deterministic selection and fix-point
iteration scheduling, in-place update may be limited.

There is also out-place/conservative transformations which generate a new target model from the scratch.
Out-place transformations are suitable for exogenous transformations. It is also possible to emulate the out-
place transformations, e.g., in AGG, because the user can model two different languages in one integrated
model.

Query as another type of output, is performed on the source models to request specific contents or a
selection of the model elements. A relational query describes the relations between variables/entities, inde-
pendent of the details implementation. While an imperative query binds with the manipulation. If a query
only return elements from the queried model, it is called selective, otherwise constructive.

Database and textual artifacts are other types of transformation output. TXL has been used to transform
models in XMI form to Prolog facts and SQL tables. MagicDraw can produce textual artifacts as template
files, such as plain text, RTF, HTML, XML template, and database structure without data. Umple can
produce documentations in HTML and JavaDoc formats, and analysis reports. Source code is also another
type of output, for example, MetaEdit+, Xtend, ModelAnt, VMTS and Actifsource can generate any source
code. Acceleo generates JavaFEE, C#, Python, Zope, PHP; Modelio generates Java, C++, C#, SQL; EA
generates C++, C#, Java, Delphi, VB, SQL; VIATRA generates Java, C++; AGE, Henshin, Fujaba, Merlin,
ModTransf, and WebRatio generate Java; MagicDraw generates Java, C#, C++ ; Blu Age generates JEE,
.Net, JavaScript; Umple generates Java, C++, Ruby, PHP; and TXL generates C programming language.

Editing Tasks (ET): This facet is related to creating new transformations or modifying the existing
ones by applying editing operations, such as accessing models elements/properties, adding/removing model
elements, or updating elements values. Some tools are not able to update the values of model elements from
an existing model. For example, AGE is not able to modify model elements in in-place transformations. The
user can create a copy of the model and then update/remove its elements while copying.

Meta-Programming (MP): This facet indicates whether the tool is intended for meta-modeling, such
as Melange, MetaEdit+, Kermeta2, AToM3, AToMPM, VIATRA, and VMTS.

Reverse Engineering (RE): Some tools, e.g., MDWorkbench, ModelAnt, MetaEdit+, Modelio, Umple,
EA,Blu Age, Fujaba, WebRatio, can extract higher-level specifications from lower-level ones, in terms of gen-
erating models from the code. In bi-directional transformations, unlike reverse engineering, the same model
transformation language applies for both forward and backward transformations.

Round-trip Engineering (RT): This facet indicates that the tool can create models from source code
and vice versa. Tools should support both creating source code from platform-specific models, and platform-
specific models from source code.

5.5 Implementation Category

The Implementation category relates to the usability of the tool (Table . The richer this features, the
further processing the tool can provide.

Editor (EDI): This facet describes whether the tool is visual or command-line/textual. Some tools,
e.g., Umple, ATOMPM, provide the access to the tool through a web APP.

Workspace and Project Management (WPM): This facet indicates, whether the tool provides
workspace to make the easy management of the resources, such as projects, or individual files.

Teamwork Support (TS): This facet indicates, whether the tool supports team and collaboration
activities. In modeling, team members need to discuss on models or collaborate on the shared models simul-
taneously. Nowadays, there is a trend of using cloud computing to handle models distributed among different
machines [145].

Syntax Editor (SE): This facet supports the facilities such as syntax highlighting, auto formatting,
code completion, code navigation, and code folding that allow users to work easily with the tool. Some tools
use editing features proposed by other tools, for example Echo inherited these features from QVTs Eclipse
editor, and editing features in Mitra2 supported by Xtext.

Semantic Editor (SYE): This facet provides appropriate support for the user to determine and fix the
origin of failure(s). Features related to this facet are, re-factoring, error and warning detection, quick fixes,
debugger, reference resolution, build systems, and profiler.

Re-usability Technique (RUT): Reusing tested sequences/rules/functions/procedures/patterns/ trans-
formations can boost the scalability, efficiency, and quality of the transformation tools. Composition, or-
chestration, decomposition, generic, and higher order transformations (HOTSs) are examples of re-usability

19

Table 7: Implementation facets

Abb.

Facet Attr.

Description

EDI

o

Editor

Graphical; e.g., |4, 13} 15} 16l 17, (73] [74] (76 [75] [39)
Command-line; e.g., [65] 46]

Both graphical and command-line; e.g., [6] 111, [I8] 29} [33] 35} [36]

Information not available; e.g., [42]

WPM

o0 T

Workspace and Proj. Mngmt

The tool has workspace and project management; e.g., [2 [16] (17, [I8] 24} [75]

[36], 39} [50]
No support; e.g., [69]
Information not available

TS

o T o6 T

Teamwork Support

The tools is multi-users; e.g., [36]

The tool is multi-projects; e.g., [I5] [49]

The tool is both multi-users and multi-projects; e.g., [14} 17, 18, 19} 28] [60,
46, 438, 23]

No explicit teamwork support; e.g., [Bl [74] [76] [75] 291 38| [39] [41]

Information not available; e.g., [20]

SYE

Syntax Editor

The tool has syntax highlighting; e.g., [18, [74] [36]

The tool has auto formatting

The tool has code completion; e.g., [74} [36]

The tool has code navigation; e.g., [2] [15]

The tool has code folding; e.g., [15] 18]

All of the above; e.g., [14} 15l 17 19} 20} [76], 69 [60, (5, 25]
No support; e.g., [4 13} 28] [38] [41]

Information not available; e.g., [42]

SE

To|I50M0m 0 0 O |0 A

Semantic Editor

The tool has re-factoring; e.g., |16, [39)]

The tool has error and warning detection; e.g., [15] [16], 18, 19, [74], 28] 29, [35]
(38, [8]

The tool has quick fixes; e.g., [74] [55]

The tool has debugger; e.g., [3 4 [15] 16, 18, 19, 28] 29| 35]
The tool has reference resolution; e.g., [15] [46]

The tool has build systems; e.g., |2} [16], [46], 48]

The tool has profiler; e.g., [15] 53]

All of the above; e.g., [14} 17 [60L 25]

No support

Information not available; e.g., [27]

RUT

®|— = 50 0 A o

lon

Re-usability Technique

o

[l

Composition (compose the existing parts/transformations to construct a new
or more complex transformation(s)); e.g., [1}, 19, 12, [65] 18] 20 [73] 28], 39} [69, [46]
Orchestration (use the whole transformation at once); e.g., [14] 28 [69], [46]
Decomposition (split a complex transformation into appropriate and separate
small components); e.g., [12 [65, 20, [46]

Generic; e.g., [14] [20]

HOT (takes as input a transformation model and generates a transformation
model as output); e.g., [37, 39]

All of the above

No support; e.g., |6} [74} [75] [36], [41]

Information not available; e.g., [27] [40]

10

©|50R

Incremental Updates

o o

The tool supports incremental updates; e.g., [11, B [6], 18] [24] [76] 75}, 28, [38], [41],
60, 55]

No support; e.g., [9, [74, 29} 33, [35] 39, 69} 48]

Information not available; e.g., |20} [51]

20

techniques. Considering everything is a model, allows to reuse transformations as HOTs. Henshin, MOLA,
VIATRA, and Kermeta2 support HOTs transformations. For example a Kermeta program that write the
Kermeta code for a model merge optimized for a given meta-model. ModelAnt provides an OO wrapper
around the model, which provides reuse of the methods, while changing only the templates for a specific
generation.

Incremental/Persistent Updates (IU): This facet refers to the way in which the model is updated,
based on propagating the changes in the source model to the target model and vice versa. This feature
increases the efficiency of transformations with large models, so that instead of regenerating a complete
model, only the changed parts are recomputed to maintain consistency. On the contrary, there is non-
incremental /statefull transitions, where the complete model must be regenerated. In-place transformations
support incremental updates, TGGs also allow to specify incremental updates. Tools such as JTL, ModelAnt,
Modelio, Umple, Actifsource, Acceleo, Fujaba, VMTS, EMorF, AToMPM, and MoTE are incremental, so
that only the elements that need to be changed for consistency are updated. In Tefkat, if the trace and/or
target models are partially populated, it can support incremental transformations. In Xpand, there is no
possibility to transfer the model incremental [I52]. In fact, it transfers a model from an abstract syntax
graph to a textual representation, and the rules defined for an abstract syntax graph cannot be applied to
text fragments.

5.6 Quality Category

This category is related to the quality aspects of the tool (Table .

Maturity of Tool (MT): This facet refers to using the existing tools exclusively in academic, industry
or both of them.

Maintenance Support (MS): This facet refers to the life-cycle maintenance and support phase, in-
cluding forums (e.g., TXL), mailing lists (e.g., Tefkat), bug tracker (e.g., GrGen.NET), or so on. Users would
appreciate it if they know that their problems will be solved.

Concurrent Transformations (CT): The Concurrent Transformations facet concerns running two or
more separate transformations by the same user at the same time. It is an useful feature for high performance
transformations in large scale projects. Notice here that some features, such as orchestration can prevent
to write on the same model elements at the same time, if the transformations share the same model in the
memory. This facet supports in Xtend, MetaEdit+, Umple, MDWorkbench, MagicDraw, Together, AGG,
BOTL, Henshin, and Blu Age. Previous version of VIATRA supports concurrent transformations, but its
new version is single threaded due to Eclipse restrictions.

Live/active Transformations (LT): This facet indicates running model transformations in the back-
ground as daemons triggered by changes in the underlying models [146].

Model Comparison (MC): This facet shows that the tool supports model comparison in terms of com-
paring and detecting any similarities or differences between model elements. The output of model comparison
can be used for human understanding, evolution management, or model versioning. Comparison tools can
use heuristics, identity-based or signature-based approaches [I33]. ModelAnt provides models comparison,
and expresses the model differences in UML terms, such as added classes, and removed attributes. EA also
presents the results of comparisons in a branch tree form. GroundTram supports simple node/edge level
comparison and binary bi-similarity comparison. Some tools, such as MOMoT and VIATRA do not provide
built-in model comparison, and use standard Eclipse plugins (e.g., EMF-compare) to provide Ecore model
comparisons.

When/Where to Apply Transformations (WA): This facet indicates that tools can offer mech-
anisms for determining which model transformations can be appropriately applied in a given context [82].
Generally, it depends on the developer to decide where is the most effective place to implement one or another
transformation. However, some beginners and non-expert users may find learning a model transformation
language/tool a difficult task, so this feature can help them to work with the tool easily.

Level of Automation (LA): Considering the entire process of model transformation from a speci-
fication document down to an analysis model or code generation. These steps can be either completely
automated, done manually, or use a certain amount of user intervention (semi-automated).

Traceability (TR): To have access to trace information in a model transformation, a record of links
between the source and the target model elements is created. Traceability can be useful in traceing back
to the origin of errors, performing impact analysis of the created/modified elements, determining which rule
produced what, determining the source/target of a transformation in models synchronization, or checking
the consistency of the models upon changes applied to any of them. Tools such as Tefkat, JTL, Modelio,

21

Table 8: Quality facets

Abb. Facet Attr. Description
a The tool has been used in academic; e.g., [4} 12} 20} 22} [75] [35] [46]
. b The tool has been used in industry; e.g., [I3] 25]
MT Maturity of Tool c The tool has been used in both academic and industrial world; e.g., [65], 24 [71], [33]

36, 137, 160, 48, [50]

Information not available; e.g., [40]

The tool provides complete support; e.g., [14] 111 17, 18], 19} 24} [T}, [76], [36] 60} 55, [25]
The tool provides limited-support; e.g., [L6] 20} 291 67]

d
a
MS Maintenance Support b
c No support; e.g., [15} 22 [73], [74] [4T]
d Information not available; e.g., [40, [69]
a The tool provides concurrent transformations; e.g., |14} [15] [19} [76] 28] [33] 25]
CT Concurrent Transformations b No support; e.g., [6 65, 17, 20, [73] [74] [38], 4T}, 49]
C Information not available
a The tool provides live/active Transformations; e.g., [76]
LT Live/active Transformations b No support; e.g., [6} 15}, [17, [I8] 22| [7T, [75] 36} 39, [60]
¢ Information not available; e.g., [40]
a The tool compares homogeneous models; e.g., [13] 18] [25]
b The tool compares heterogeneous models
c Results are in visual/model forms (e.g., UML); e.g., [13] 24l 25]
MC Model Comparison d Results are in textual forms; e.g., [I§]
e All of the above
f Nosupport; e.g., [9 T2 [T5, [T6) 17, 20} [7T} [72) 75, 228, (33, (36, (39, 60, 67
g Information not available
a The tool supports; e.g., [33} 69]
WA When/where to Apply Transf. b No support; e.g., |5 65}, 111, [73, [76, [75] 28], 351 B38|, 41, [67]
¢ Information not available
a Manually
. b Semi-automatic; e.g., [9, [16, T8, 20}, [73] 75 [37,
LA Level of Automation c Automatic; e.g., [IT} [El%]: 17, B35, 136, [25] 39
d Information not available
a Automatic (the transformation engine implicitly establishes the traceability informa-
tion); e.g., [T} 15, [T8} 19} 173, 135, 136, 53]
TR Traceability b User-defined (the user has to define the tracing links); e.g., [1} 12} [14] [16] 20} [7T], 29
37, 39] 41, (60, 67]
¢ Both automatic and user-defined traceability (traces are automatically generated if
the user does not create any); e.g., [2, 17, [38]
d No support; e.g., [6] 65, [74]
e Information not available; e.g., [69]
a VCS (to control concurrent development of the source code by multiple developers)
IN Interoperability b The tool provides with automatic import/export mechanisms for meta-
models/models developed with other tools; e.g., [T} Bl [75] 35}, [37] [46]
[Both VCS and import/export mechanisms; e.g., [14} 16} 17, 18] [19] 24} [7T] [33], [69] [60]
d No support; e.g., [4]
e Information not available
a The tool generates report/documentation; e.g., [13, 111 [16] [17) [18] 19} 24} [7T], 60} 55]
AR Automatic Report [49] 25]
b No support; e.g., |5, 6, 75, 28, 35, 36, 38, 169, 18]
¢ Information not available
a Obfuscate (to delete sensitive information from a confidential model); e.g., [11} [71]
b Read-only/Locked models; e.g., [6, 15, 17 [60} 491 50]
. c Code blocks; e.g.,
SEC Security d All of the above; ngZ[:,L Bﬂ%ﬂ
e Nosupport; e.g., |5, 9 T3, (12, [75, 28, (33, 138, 139 46, 7]
f Information not available; e.g., [76}, [69]

Table 9: Model transformation tools attributes

22

Col.1 Col.2 (Table 3) Col.3 (Table 4) Col.4 (Table 5)
=
B = g
5 3 o
O S 2
= @
_ =
3 = >
S B8 &< i 2 E 5 A 23 g 8 3 % g é ERA @ o Z 2 <
UML-RSDS a ab e a abef ¢ cd a b ¢ ag a ¢cd ¢ b d bc c b bed e cm ab a
Tefkat c d e a g bd ad a b b abf h bd d a a d a c¢c ¢ abedef e bkm ac ¢
JTL a d d a bef d a a a a afg h cg b a a d ¢ ¢ be cdef e bde a b
PTL b d d b bef d ad a b b afg a bg b a a b ¢ ¢ ¢ «cd e bdi a a
ModTransf c d e a abef a ad d a b agk b bd d a b bc b ¢ ¢ dg ad cdijm ab a
Echo b d e a abef ¢ ad a b b adg a bgj b a a b a ¢ bc cf a e e b
MOMENT d e e e abe ¢ a a ¢ b adg a bg d b a e dde j f P f g
QVTR-XSLT d d e b bef c b a ¢ b adg a cd d be e ddc j a p f a
ModelMorf ¢ d e bc abf ¢ cd a b b adg a bi b a e d ¢ ¢ d cdef ad cikm d a
mediniQVT d d e bec g ¢ ad a ¢ b adg a bg d a a e d d be j f p f g
PETE ¢ d b b bef d a a b b ag ab bd ¢ a a d b b bc cde a bdim a a
TXL a d d b g a ad a b a a ae bi b ad d ¢ ¢ ¢ i e cdik c a
ModelAnt b d ¢ a abef b d a a b aik b d ¢ b b bc c ¢ ¢ degh ab a f a
Xtend a d b a g a abd a a b m a bg ¢ b e ab ¢ ¢ ¢ cdfg e adgij d a
MetaEdit+ b d e cd g a abd a a a a h ai ¢ b e d ¢ ¢ ¢ i e ah f e
QVTo-Eclipse a d b a bedf a a a a b cg i bg ¢ a a d ¢ ¢ ¢ abedef e adm d a
Kermeta2 ¢ d b a g a ad a a b abg af bgj ¢ b a d ¢ ¢ ¢ i e aij ab a
Modelio a d b acd g ab abd cd a a ag adf g ¢ b a d ¢ ¢ ¢ i e o e f
Umple a d b a g a ad a a a ag a i ¢ b e bec ¢ ¢ d cdefgh abd af b a
MDWorkbench b d b bed abef a a a a b ag i bg ¢ b a d ¢ ¢ ¢ i e adj b a
Melange a d b a abef a a a ¢ b ag h bgj ¢ b a d ¢ ¢ ¢ i e adij a a
MagicDraw a d b ecd g a abd a a a acg abdf ad ¢ b a d ¢ ¢ ¢ i e ad f a
JAMDA ¢ d b a abef a cd b a b agk b k dbe e ac c j ad ad ab a
Ente. Arch. a d d bc acdef ab ab a a b ag adf g ¢ b a d ¢ ¢ ¢ cdefgh abd p f g
OpenCanarias d d e e aef a a e ¢ b acg a cg d b a e ddc j f p f g
SmartQVT c d e a cdf a a a a b acg a bg d b a e ddc j f aim ab a
SiTra d d e a aef a ab e ¢ b m i bg d d a e dd c j f cdj f ad
WebRatio a d b bed abdef f a be a b ag ad a ¢ b a d d a ¢ bedfg ab adf a ad
Mitra2 b d e a ef a a a b b ag a bg ¢ a a bc ¢ ¢ ¢ cdf e cdgj a ad
JQVT c d d a f a a e b b f a g b bd b abc cf ab adi b a
Together a d b cd abed ab a e a b aceg abde bd ¢ b a d ¢ d ¢ i e p f g
Merlin c d e a abef a a a a b afg a cg b b a bc a ¢ ¢ cdig abd adi e a
MOFScript c d e a ade ab ad e ¢ b agi i bg d b a e dc¢ ¢ j f adj f a
GROOVE b d b a abef ¢ cd a a a a i cg a a d b b b c ¢ a n ac e
UMLX d d e e ae f a e ¢ b afg i cg d de e ddc j f p f g
AToM3 ¢c d e a abef ¢ cd a ¢ b gh ag ai d d e e ddc j a befgk f bd
AToMPM b d e a abef b cd a a b ghj ag ai ¢ ¢ d d ¢ ¢ ¢ i a aegj e bd
AGG a d e a abef ¢ cd a a a ah ab ai ¢ a d b b c c i e begk be od
BOTL c d e a ae c cd e b b af a ad b b d b b b becd a bek e b
GRoundTram b d e a abef ac c¢d a ¢ a g a ch d a d b b ¢ bec cdf a adi c b
eMoflon a a e a abcef ¢ a a a b a a cg ¢ ¢ ae b ¢ ¢ be cdefgh e ahjk ab e
Henshin a d e a abcef ¢ a a a b agh a ag ¢ ¢ a b ¢ ¢ ¢ cdig e adejk a bd
MoTE a d b a abef ¢ ad a b b ag h ag ¢ ¢ a d ¢ b be i a bek c a
GReAT b a e b abcef ¢ b e a b m i aij d d e e d d ¢ j f adeik ac b
TGGInterpreter d d e b abef ¢ a a a b ag h ag ¢ a a d a ¢ d abcedef e bej ab ¢
MOMoT b d ¢ a bef ab a a ¢ b a i cg d ¢ a d ¢ ¢ ¢ abedef a be ac ¢
EMorF d d e a abef ac a e a b ag i ag d a a e ¢ d becj a p f g
PROGRES d b e b acef ¢ cd a ¢ ¢ m i k dc e e ddc j a aeij f be
MoTMoT d d e a abef ¢ d e a b agk i ai d b b e ddc j f adj b a
UMT c d e a abef a cd e ¢ ¢ m i b dbe e ddc j a p f g
VIATRA b d e a g ¢ a a a b ag acdefg bg ¢ ¢ a d ¢ ¢ ¢ i e cdefl ac bed
Eclectic b d e a bef ab a a a ¢ a a bg d b ae d ¢ ¢ ¢ abcedefg e cd d a
Epsilon b d b a g ab ad a a c agj i bg ¢ d c e ¢ c e j f cij ab d
AGE c d e a abef a ad a a c ag a bg d a a d ¢ ¢ ¢ abedefg e bdim ab a
VMTS b a a b abef abc bd a a b cdeg aef i ¢ c e d ¢ ¢ ¢ i b adgl ab ad
ATL b d e a g a a a a c¢ afg a bg d b c¢c d ¢ ¢ ¢ i e ceim ab a
Fujaba b d e a abef ac ad a a a a a ad ¢ b e d ¢ ¢ ¢ i a adfij d abc
GrGen.NET b d a a g ac ¢cd a a b a i bgi d ¢ e d ¢ ¢ c¢ abedefg a aefglm ac e
Rational d d e e g a abd e ¢ ¢ m i k ¢ de e dc e j f p f g
Blu Age a a ¢ ¢ abce abc a a a b afghij ae cg ¢ b a d ¢ ¢ d i e n d e
MOLA b a d b abef ¢ a a b b ag ad ai ¢ b ae b ¢ b ¢ i a adj ac ab
Acceleo b d b a g ab abd a a ¢ agik abdfg bg ¢ b ¢ b a a ¢ degh ab adj ab a
AndroMDA b d ¢ a g a ad e a b agk i bd ¢ d ¢ e d d ¢ j f p f ad
Xpand ¢ d b a g a a e a b ag i bg d a a e d d ¢ j a cdgijm d a
Actifsource a d e bed g a a e a b a a cg ¢ b a bc a a c dg e ad f ad

23
Col.4 (Table 8)

Table 10: Model Transformation Tools attributes2
Col.3 (Table 7)

Col.2 (Table 6)

Col.1

Ayrendy

yuoweduuy

Ayqqedep

ods
uv
NI
L
V1
VM

OIN
I1
LD
SIN
LN
nI

LNy

as

HAS
SL

INAM|| <

1ad
Id
gy
dIN

LA

VA

[00L,

ac
e
e
e
e
ab
b
b
a

c b b
d b b
d b b
a b b
a b b
b
a
b b b
c a
b b
a
b b
b b b
e b
a b
b b
b
b b a
b
¢ b
b

b
a
b
b b
b
b
a
b b b
a
b
a
b b
b
b

b

b
b
¢
b b b b b d
b
b b d b b
b b
b
b
c
b

b
b b d b b

b b b b b
b b d b b
b b b b b

b b d b
b

b

abd b
b b b

b
b
b
b
b
b
b
b
b
b
b
b
b b b
b

ac
f
f
f
f
acd
f
f
f
f
f

b b
b b
b b b b
¢c a a b
a b b b
a b b
a b b b
a ¢ b b
d d b b
a b b
b b
a
b b
a b b
b b
a b b b
a b b
d d
a d b b
a b b
a
a b b
C
b
b b b

a
a
b
c
c
a
b
c
b
a
a

b
abcd b

h
abed

ac
abc
h

h

ac

ac

h
abed
ab

f

acd
acd
g

h

a

a
abed
g

h

ab

a

ae
ab

h

h

f

abc
h

ac
abed
ae

bdf
bd
bd
bd
bed
abed bdg
abd
bdeg
abdf
bd
bd
abcdef
abd
bede
bdf
bede
be
bed
bd
bd
abd
bd
bed
abd
bd
abce
bedfg
bef
bf
bd
abed bedefg
bdg
abd

acde

f
acde

ad
acd
abd
ae

f

h

f

ac
acd
ac
ac
h

h

f

f
abed
abce
abc
a

c

T

a d
d
b d g
d
d
e
a d
a
b
c
a e
b d
c
¢ d
a d
a d
d
a
d
e
a d
d
¢ d
a ¢
a ¢
a ¢
b b b b b d

b b b a
abd b b b a
abd b b b
abd b b b d
b b b a
b b b a
abd b b b b
b b b
e b b b b b d
e
b b b a
e a b b a
b b
e
a b b a
e
abd b b b b
e :
b b b d
abd b b b d
abd b b b a
b b b a
e b b d
abd b b b d
a b b d
e b
b b
b b b a
e b b b ¢
b b b d
b b b
e b b b a
abd b b b d
b
abd b b b ¢
e
e b b
e
e
b b

ab

ab

b

ad
abf
ab
acdef
bed
ab
abcf
abcde e
abcde e
abce
abc
abedf
bd
abde
b

abd
abed
h

abf
ab
abc

b

abc

h

h

g

bd
abedf
abf
abd
abcf
ab

h

a
a
a
C
C
a
a
a
a
C
a
a
a
a
a
a
a
a
a
a
C

d
b
d
d
b
a
c
a
c
c
d
e
b
b
b
b
a
d
a
b
d
c
c

abdeh
ac

ag
acgh

j

¢

j

acg

j

acd

j

abeg
k
abceg
abcde
bce

ac

abc
abcdeh
ac

k
abcdgh
ab

acf

¢

TGGInterpreter

GRoundTram
MOMoT
EMorF

OpenCanarias
eMoflon

SmartQVT

MDWorkbench
SiTra

QVTo-Eclipse
Kermeta2
Modelio
Melange
MagicDraw
JAMDA
Ente. Arch.
MOFScript
GROOVE
UMLX
AToMPM
AGG
PROGRES
MoTMoT
UMT
VIATRA
Eclectic
Epsilon
AGE
GrGen. NET
Rational
Blu Age
MOLA

Umple

UML-RSDS

Tefkat

JTL
QVTR-XSLT

ModelMorf

mediniQVT

PETE

MOMENT
TXL

ModTransf
MetaEdit+

Echo
ModelAnt

Xtend
‘WebRatio

PTL
Mitra2
JQVT
Together
Merlin
AToM3
BOTL
Henshin
MoTE
GReAT
VMTS
ATL
Fujaba

b

a

abcdeg a

—

Acceleo

b b b ¢ b
b b b

b

f

d d b b
b d b b b

g

h

C
a

b b b d
a

b b b

e

k

AndroMDA

Xpand
Actifsource

Table 11: Evaluation of model transformation tools

24

Tool Large and Complex Transformation Performance

Handling Quality Memory Usage Time Disk Usage
UML-RSDS Medium Medium - ~1s ~60MB
Tefkat Medium Low ~512MB ~>2s -
JTL Low Low ~512MB ~>2s ~7T0MB
PTL Low Medium ~512MB ~>3s -
ModTransf Low Low ~-512MB ~>3s ~70MB
Echo Low Low ~-512MB ~>2s 70MB
MOMENT Low Low ~-512MB - -
QVTR-XSLT Low Low - - -
ModelMorf Low Low ~100MB ~>3s ~50MB
mediniQVT Medium Low ~512MB - -
PETE Low Low - ~>3s -
TXL Medium High 1G ~>3s 50MB
ModelAnt Medium High 512MB ~2s 100MB
Xtend High High 512MB ~1s ~100MB
MetaEdit+ High High ~512MB ~1s ~-90MB
QVTo-Eclipse Medium Medium ~-512MB ~>2s -
Kermeta2 Medium Medium ~-512MB <~2s -
Modelio High Medium 1GB ~<3s 90MB
Umple Medium Medium ~1GB ~1s 20MB
MDWorkbench Medium High 512MB ~1s 30MB
Melange Low Low 512MB ~2s 100MB
MagicDraw High High 1GB ~1s -
JAMDA Low Low 256MB ~2s 100MB
Ente. Arch. High High 256 MB <~1s 50MB
OpenCanarias Medium Low ~-512MB <- -
SmartQVT Medium Low ~512MB ~2s -
SiTra Low Low ~512MB - -
WebRatio Medium High ~512MB <- -
Mitra2 Medium Medium ~-512MB > _2s ~-50MB
JQVT Low Low ~512MB ~2s ~50MB
Together High Medium ~1G 1< .1s ~50MB
Merlin Medium Low ~-512MB ~2s ~70MB
MOFScript Low Low ~512MB - -
GROOVE Medium Medium ~256MB ~2 30MB
UMLX Low Low ~-512MB >- -
AToM3 Low Low 2GB >- 250MB
AToMPM Low Low 2GB ~2s 250MB
AGG Medium Low - ~>2s -
BOTL Medium Low - ~2s -
GRoundTram Medium Low - ~2s -
eMoflon Medium Medium ~512MB <-.1s ~7T0MB
Henshin Medium High ~200MB ~1s ~60MB
MoTE Medium Medium ~512MB ~2s ~100MB
GReAT Medium - -
TGGInterpreter Medium Low ~512MB ~>2s ~70MB
MOMoT Low Low ~512MB ~2s ~70MB
EMorF Medium Low ~512MB - -
PROGRES Low Low - - -
MoTMoT Low Low - - -
UuMT Low Low - >- -
VIATRA2 High High ~-512MB ~1s ~50MB
Eclectic Medium Medium ~-512MB ~2s -
Epsilon High Medium ~-512MB >- -
AGE Medium Low ~-512MB ~>2s -
VMTS Medium Medium 512MB ~1s 65MB
ATL High Medium ~512MB <~1s ~50MB
Fujaba Medium High ~512MB ~1s
GrGen.NET Medium High 1GB ~1s 60MB
Rational - - - - -
Blu Age High Medium 2GB ~1s 100MB
MOLA Medium Medium ~-512MB <-1s ~-50MB
Acceleo Medium Medium 256MB ~1s ~64MB
AndroMDA Medium Medium 256MB - -
Xpand Low Medium ~512MB ~>2s ~70MB
Actifsource High Medium 2GB ~1s 64MB

25

MoTE, and VIATRA support both automatic and user-defined traceability. MoTE automatically create and
maintain a traceability model between the transformed models. It is used by the tool to check/maintain
the consistency of the two models upon changes applied to any of them. Graph-based tools are suitable for
performing in-place transformations, hence, they cannot be used to record traceability links between source
and target graph model elements. Winkler et al. [I44] survey several aspects of traceability research both in
the requirements engineering and the modeling area.

Interoperability (IN): Generally, a MDD tool does not support all the required tasks of model trans-
formation process, thus different tools must be able to work with each other. The Interoperability facet
shows the ability of the tool to integrate with other tools to exchange models/information, and to use the
exchanged models/information. Efficient importers/exporters make able the tool to cooperate with any ex-
ternal systems. Some tools do not provide built-in exporters in standard formats for other tools, for example,
in ATOMPM models are saved in a tool-dependent JSON format, then user can export them.

It is necessary to detect conflicting modifications, overlapping between concurrently modified versions of
a software artifact, or merging of modifications. Version control systems (VCSs), e.g., MDWorkbench, EA,
WebRatio, Together, can help to detect, and resolve these conflicts in order to obtain an uniformed version.
In addition, using VCSs can result in the re-usability of the stored meta-models/models. Team members
working on transformations, usually need standard VCSs for their transformations. VCSs technologies are
based on lock-modify-unlock and copy-modify-merge approaches [I34]. In the MDD-context, VCSs should
provide both textual versioning and graphical representation.

Automatic Report/Documentation (AR): The Automatic Report facet indicates that the tool has
a built-in reporting and documentation feature. For example, Kermeta2 can create a JavaDoc like documen-
tation, and simple class diagram for the Kermeta program, or ModelAnt generates documentations in RTF
and WIKI formats

Security (SEC): This facet can be used to limit user access to the models, or prevent some acciden-
tal changes/updates of the referenced models. Besides the obfuscation, read-only/locked models, and code
blocks, there are other types of security, such as role-based (e.g., Modelio) that uses user rights to control the
access to different parts of transformation, such as meta-model. It is also important that access to reposito-
ries or running a generator can be secured by passwords. In MetaEdit+, the generated code is obfuscated,
and variables and function names are generally produced from the model text with a user-defined translator.

I

[Relational [Imperative [Graph-based [Others [Hybrid
(a) Number of M2M tools

-_
[Vvisitor [Template [Hybrid
(b) Number of M2T tools

Figure 1: Number of model transformation tools

6 Evaluation of Tools

We estimate how well the various MDD tools may perform to handle large and complex transformations
based on the feedback from the developers who contributed to these tools and users who frequently used
these projects, the published papers, and online documentations. Thus, this is not an actual evaluation, it
just provides an overall picture of the potential of each tool to work with large and complex models.

An optimal functionality of a transformation tool includes producing complete and correct results. There-
fore, we also estimate the quality that can be achieved during transforming of large and complex models

26

e \ A

UML Modeling Tool TGGs Tool [XSLT-based Tool | [er-based Tool } [Meta-programming Tool]

Rational

avr
'

QVTR-XSLT

Enterprise Architect] TGG Interpreter]

o

VTc

-
&
2
=
]

s]
o 2
x
®

43l
!;5

°
=
=1

RIBIE
g H
%

]
o
=
=l

@
=
=
@
®

Figure 2: Categorizing the tools

without sacrificing validity, correctness, and performance. To measure the complexity of a transformation,
metrics such as the number of the expressions, transformation rules (e.g., 80) and elements (e.g., few million
for example 107), the number of calls, and the number of recursive calls can be considered. In Table low
means the capability of tool to handle complexity is not very efficient in comparison to medium. On the
contrary, high shows the maximum capability to handle the complex models.

In the following, we take into consideration the appropriate requirements of a transformation tool to cope
with the development of complex and large transformations:

e Type of deployment environment, in terms of using an IDE or being a standalone application. For
instance, Eclipse-based tools are engaged with some unrelated tasks that result in slowing down the
process of transformation,

e Having external dependencies to other tools may also increase the transformation time,
e Type of execution mode, as compiler or interpreter-based can affect the performance,
e Using the model repositories for handling large models,

e Using control-flow structures to control the execution order of rules,

27

G.Concrete.Syntax T.Concrete.Syntax EMOF Ecore Other.Metamodeling Interpreter.based Compiler.based

a
1

©»

8

'_

4510-

o

(o)

o

E

" I I I II I I I I

o II [[=il un | lumn nlin Ill - -II
R R R T R R R T A R R R R A R R R R A R R L R R R R N L R L R LR
BESS5T2S PEESS5TSS PSS 25T85 BEE25CESS PESS558S BEN2 58S PEEE5ESS
S=5ESS808 B55E£S808 B=5FL£S8008 B==5L£S008 8=55£808 8==5£200 8=58£820
QLo 3O0OBES 9450 cO0FTES 940 30RES 9L sO0OTBES 94583808 ES 9400 RES 950580 ES
-3 o 2 -3 2 o E 2 o s o 2 o s o o 2 T s o o 2 -3 ° 2
SS8E ot a8 E ofF eS8 E ofF aS88E ofF aS88E ofF aS88E ofF S S2E ofF
© > - © > - © > - © > - o > - © > - © > -
e = e e = e = =T T o= e ==
S S S (5] (5] (5] 5]
Approach

Figure 3: Comparison of the tools based on the Model-level facets

e Having the property of bi/multi-directionality can decrease the complexity of transformations through
requiring to fewer transformation rules,

e Using re-usability and modularization techniques can increase the scalability of a transformation tool

e Supporting incremental feature that avoids the need to regenerate complete models when only some of
the elements of source models are changed,

e Textual or graphical representations is another important factor to deal with large and complex mod-
els. In large and complex transformation scenarios, textual representation can be hard to read and
maintain, meanwhile the visual representation can also be so complicated for complex transformation
rules. Therefore, a hybrid of both textual or graphical approach can be an appropriate option,

e Supporting concurrent transformations,

e Completely automated tools are faster than semi-automatic and manually ones.

Generally, relational tools do not perform very well in transformation scenarios including, complex mappings,
significant and sequential processing. When models grow in size and number, the performance of this ap-
proach drops obviously. Some of the relational-based tools, e.g., ModelMorf, can handle very large models
using model repositories. However, tools executed by an interpreter, may not cope with large models very
well.

Imperative tools operate at a low-level of abstraction, so are capable of addressing different large and
complex transformations scenarios. In Figure [3| the number of tools that are compiler-based outnumber
the tools in others approach. Being interpreter-based can increase the overall execution time. Some au-
thors/companies provide a benchmark to show the performance of their tools. For example, the developers
of MetaEdit+ showed the scalability of the tool with a model repository of 5G and models of over 1 million
model elements. Tefkat was tested with models of a few million objects, and up to 40 rules.

Graph-based tools can perform differently in handling large and complex transformations. In Henshin,
modularity and nested rules can be used to specify complex transformations. PROGRES supports incre-
mental update, but operates interactively, which causes the problems in handling large models. Some of
graph-based tools also have scability limitations. In GROOVE, control and application strategy features can
help to handle very complex transformations very well. However, large models (e.g., models with 10° nodes)
do not affect validity and correctness, but slow down the tool. Expressing of very complex transformations
with the TGGs formalism is almost difficult. Hence, handling of complex languages in most TGGs-based
tools can be challenging [I51].

Hybrid languages usually combine a relational rule-based execution scheme with imperative features, thus
they perform very well in handling complex transformation scenarios. A combining of the graph-pattern-
matching with imperative, and OO languages increase the performance of hybrid tools. For example, Gr-
Gen.NET and VIATRA. Fujaba, can scale up for transforming very large models using the control-flow

28

Endogenous Vertical Horizontal Multi.directional Bi.directional

Exogenous

(a) Transformation features

I - oL

- dojsIA
| _ajejdwa)
R - revonerey
IET)
I -ennesadw
[- lew-puafy
I - Wew-puaky
[- peseq-ydein
_ loysIA
B _ajejdwa)
[l - Ieuoneey
BIET)
B - _ aAjjesadw
[- lew-puafy
I - Wew-puaky
[-paseq-ydein

-

_ajejdwa)
- [euonjejay
- s13y10
—anpesadw)

B - Lawpual
B WP
B - poseq-udeio

- o

Appro

- |euonejoy
T}

I - oreisdu)

B - Lon-PuakH
I - WT-PUGAH
M - Peseq-udeso

[- fousip
P - eeidwal
[- reuonerey
-s1ay10
I - annesaduw)
P - Lew-puady
- - Wen-puaAH
[- peseq-ydelo

- ousiA
P - sy
S - euonerey

_slayl0

P - e

[- Lew-puaky
P - Wew-puakH
P - peseq-ydero
1
o [T}

$/00] JO JoqunN

Implicitly Explicit. Condition Non.determinism Conflict.Resolution Interactive

Explicitly

. _ IoySIA
e _ aedwa)
- [euonejdy
I o)
| _ anjesadwy
[- Lew-puaky
0 - wew-puakH
[- peseg-ydei
[-Jopsip
I _ aedwa)
- [euonejdy
- S19Y10
e _ anjesadwy
[- Lew-puafy
I - wew-puafy
[- paseq-ydesn

[- ousiA
] _ aedwa)
[- leuoney
- s1BYI0
[l - aanesaduy
I - Lew-PuakH
[- wew-puafi o
I - Pesea-ydeing

B - ‘ousiA
I - ociduL
I - reuonejey
- siayl0
I - oo
B - Lew-puaky
I - wew-puaky
[] - paseq-ydel
I -JousiA
P - eeidway
B - fevoneray
- siayl0
B - annesadw)
- LZw-puaiy
I - WeW-puafy
] _ paseq-ydeln

- ousin
- owedway
[- leuoneiey

~S13Y10

Appro

P - onesadu

[- Lew-praky
PO - Wen-puaky
R - peseq-ydeio

I

1 1
o (o} o

$/00] JO JOQUINN

(b) Rule scheduling features

Non.deterministic.concurrent Non.deterministic.one.point Interactive

Deterministic

. - JoNsIA

I _ajejdwa)

- [euone|oy

_sIoyi0

I _ annesadwy
I - 1ZN-PuakH
[-nen-puaky

I - paseq-ydes

- JoysIp
. _ajejdwa)
[l - tevonepey
-sIayl0
- _ annesadu

. - 1ZN-Puaky

I - W~ u_s\f

$/00] JO JoquinN

. T
. _ajedway
B - revonepey

-sI13yl0
- _ annesadwy
I - tow-puakn
- WZW-PuaAH
- paseq-ydesn

Approa

- I0JISIA
_ajejdwa)

- |euoneay
-s1Yl0

_ anjjesadw)

- L2N-puaky
- NZW-PLaAH
- paseq-ydery

(c) Rule application control features

Figure 4: Comparison of the tools based on the Transformation facets

constructs such as sequence and loop, and an local-search based graph pattern matching algorithm. Incre-
mentality feature in graph-based tools, e.g., MoTE, TGGInterpreter, can help to handle large models more
efficiently, through avoiding regenerating the complete models. Another example is the hybrid nature of ATL

that makes it able to express complex transformations.

29

Template-based tools perform better in coping with large and complex transformations than visitor-
based ones. Hybrid tools, e.g., Actifsource, MetaEdit+, combine different concepts and features of visitor
and template-based approaches, perform very well in handling complex transformations.

The performance of transformation is another important factor that need to take into account. Table
shows the performance result of a small transformation (e.g., 10®) in terms of ezecution time, memory and
disk usage on a standard PC workstation. Tools based on a compiler or run in a virtual machine (e.g., ATL)
execute faster than other ones. On the other hand, compiler-based tools generate intermediate object code
which needs more memory.

7 Discussion of Tool Facets

We now give an overview of the study results based on the assessing of 65 tools. Figure [I| shows the
number of the tools in each category. It seems that imperative approaches are more attractive because of
particular services such as traceability management and the explicit control over the transformation execu-
tion. Visual notation of graphs also makes it a popular approach for model transformations. The figure also
shows that the majority of the M2T tools, 21, support template-based approach having a structure similar
to the code to be generated.

Some of the assessed tools are not mainly designed for model transformations. Therefore, they may not
support some of the features, whereas provide others not mentioned in this paper. For instance, Melange is
not a transformation language, and transformations are expressed in a plain Xtend code. Melange is able
to write generic model transformations that can be applied on models conforming to the different modeling
languages, based on the model typing. GROOVE is mainly used for editing graphs and graph transforma-
tion rules, exploring and model checking the state spaces of graph grammars, so supports transformation
as a complementary task. Henshin can also support state space analysis, and distributed/large-scale graph
transformations via Apache Giraph. Modelio supports features, such as requirement analysis integrated in
the model, world-wide modeling which means federated models interconnected through network (e.g. WEB),
and impact analysis management. Eclectic supports native handling of Java objects [147]. VIATRA sup-
ports model transformation workflows and chains, and model synchronization through change-driven model
transformations, which rely upon the history of model changes [132].

Figure [2] categorize the tools based on being a UML modeling, TGGs-based, XSLT-based, QVT-based,

Verification Validaion Reverse.Eng. Round.trip.Eng.

10.0 -

© 7.5-

s

(=4

kS

. 5.0-

D

o

S

>

- I II II

0.04 l l [l
(R T [B L S T B B L T B B (R e T (R I
T =S 9 9 F L 5 B =S E 9 0 F L 5 T =S E O 0 F L 5 TS E O 0 g 5
2S99 2235 8852 g5 =382 g2 282852 g8z 3 L8 2
s = § 8 £ 22 8% 8§ =58 £ 88 28 8 =58 £ 2 28 g =56 £ 2 22
2 45 v ¢« O E > 9 45 v g O®8 £E > 9 45 v g O &8 E> 9 4 - g O E =
4 =2 = o < @ e =2 = o > D 4 =2 = = > O 4 2 £ = > O
S 8 2 E xc = s 8 2 E c = s S 2 E c s 8 2 E c F
© > - o > - c > - o > -
"II ;_II h:: "II
S S S S

Approach

Figure 5: Comparison of the tools based on the Capability facets

or meta-programming tool. EA and Modelio are examples of UML modeling tools; TGG Interpreter and

eMoflon are TGG-based; UMLX uses XSLT; Echo and ModelMorf are QVTr; MagicDraw and QVTo-Eclipse

are QVTo-based; Together is QVTc, previous version of VMTS was QVT-based; Merlin, JQVT, JTL, PTL,

ATL, BOTL are QVT-like; and Kermeta2, VIATRA, ATOMPM and Melange are meta-programming tools.
Figure [3| provides information related to the number of tools in each approach, which provide graphi-

cal/textual concrete syntax, employ EMOF /Ecore/other meta-modeling languages, and are compiler/ interpreter-

based. Among M2M and M2T tools, the number of graph-based, 15, and template-based, 8, tools which

30

Re.usabiity Incremental Concurrent.Transf. Model.Comparison Traceability

(%]

810—

|_

=

o

=

(3

o

g 5-

>

0 I = Bl = 0N .I
L T T LA T L A R A R A A N R AL A R R A L R S A R A T R I A A R N AL

[.1 3 [-1 3 [.1 = [-1 = [-1 =
TESES5E8S BESSS5E8S 3ES25E8s BES L 58S 858888
S=E=TBTE£S8o0d S=EFTTELcl 8=SBTE£LS8od S=E5TFBTE£Lcl 8==SCBTES8oo
505308 ES Lo sO0OBES 94503308 ES 955308 ES L5 s0s®ES
£E 52 w9 £S5 2 w8 £E 52 w8 £E 52 w8 £ £S5 2 o9
s o 2 E c S o 2 E c & S o 2 E c = S o 2 E c & s S 2 E c =
o > - c > - o > - o > - o > -
R == = T I = T I = T I = T I
[C] S [C] S S
Approach

Figure 6: Comparison of the tools based on the Implementation and Quality facets

provide graphical concrete syntax outnumber the tools of the other approaches. 13, 12, and 13 tools of im-
perative, relational, and template-based can define textual concrete syntax respectively. Ecore is the popular
meta-modeling language particularly among imperative tools, and the tools that use other meta-modeling are
more than the tools based on the MOF. The figure also provides information on the number of tools in each
approach that are based on the compiler or interpreter. The compilation-based is mostly used in imperative
(18), and template-based (14) tools, whereas 11 of graph-based and 9 of relational tools are interpretation-
based.

Figure [{ta compares the tools based on the Transformation facets. Considering the exogenous and en-
dogenous transformations, a large number of imperative tools support the exogenous than endogenous trans-
formations, while most graph-based tools support endogenous transformations than exogenous ones. The
main observation is that vertical and horizontal are by far the most popular transformations in imperative
and template-based tools. The figure also shows that 14 of tools support bi/multi-directional transforma-
tions. QVTr and QVTc can support multi-directional rules, while they are uni-directional in the Operational
Mappings. Multi-directional rules can facilitate the traceability management. QVTr specification defines the
conditions under which a transformation can be bi-directional, thus not all transformations are automati-
cally bi-directional. QVTr-based Tools, e.g., ModelMorf, can support both uni-directional and bi-directional
model transformations.

Figure [@}b gives information on the features of transformation rules used in the tools. 39 of tools support
explicit form of rule scheduling in comparison to 22 tools which support implicit form. In this way, the form of
rule scheduling in 17 of imperative, 11 of template-based, and 7 of graph-based tools is explicit. 32, and 17 of
the tools support explicit condition and non-determinism rule scheduling respectively. In graph-based tools,
graph constructs can randomize rule scheduling, so default strategy for selection rule is non-deterministic. In
non-determinism, conflict rules can happen which causes unexpected results. AGG and Henshin uses a so-
called critical pair analysis (CPA) technique [I35] to detect conflicts between rules and show the termination
criteria of graph transformations. Critical pairs reefers to rules with a common LHS which delete an element
to be used by the other rules. If all critical pairs will be confluent, the complete transformation system is
considered to be terminated. Furthermore, different rule execution sequences in non-determinism strategy
can result in different results. However, there are graph-based tools, e.g., Henshin and GRoundTram, which
support a determinism scheduling mechanism. Template approaches usually offer user-defined scheduling in
the internal form of calling a template from within another one. In Acceleo, rules (or individual templates)
are explicitly called by the name from another template, at the exception of those that start the generation.
For a given name, several templates might apply, some with guard predicates or some applicable to more
specific type, In that case, the engine performs the dispatch, through checking the hierarchy to find the most
specific template which a guard evaluates to be true.

Figure [4}c also shows information related to the number of tools in each approach that support rule
application control with different mechanisms, such as deterministic or interactive. The majority of impera-
tive, 17, template-based, 14, and hybrid, 8, tools support deterministic application control, in comparison to
graph-based, 15, tools with non-deterministic control. GROOVE provides a combination of rule application

31

control strategies to find all locations to which a rule can be applied. Based on an exploration strategy,
it is possible to explore some of the rules (constructs the target graph/model). In that way, the user can
choose to explore all, one deterministically (i.e., the same one every time the same transformation is run),
one randomly, or one manually.

Figure [5] compares the tools based on the Capability facets. A MDD tool should support not only

12-

Number of Tools

' 0 | ' ! ' | | ' ' ' ' ' ' 0 ' ! | '
1993 1994 1997 1998 2000 2001 2002 2003 2004 2005 2008 2007 2008 2009 2010 2011 2012 2013 2014
Year

Figure 7: Number of new tools per year

I N

[Europe [Asia [North America [Australia

(a) Number of tools based on the location

I I N

[Regularly [Somtimes M Never [No Information
(b) Update time of tools

Figure 8: Model transformation tools

model transformation/code generation, but also verification and validation tasks. According to the figure,
the majority of the tools, 39, do not include verification and validation functions. It has been mentioned
that the models are first-class citizens, and model transformations are the heart and soul of MDE. There-
fore, the quality and reliability of software development process depends on the quality of the models and
model transformations. Mathematical basis of graph transformation tools can be used in formal verification
tasks, such as the correctness of transformations. However, non-deterministic selection, fix-point iteration
scheduling with concurrent application makes transformations not to be always confluent and terminate.
Some tools can not guarantee the correctness or completeness properties, but support some static checks to
validate and verify models. Tefkat supports the existence of the referred to meta-model elements, the basic
well-formedness checking in the parser, and some editing supports to warn issues, such as variables only can
be used once.

Considering reverse and round-trip engineering, non of the relational and visitor-based tools support these
features, whereas some of imperative, 9, template-based, 10, and hybrid, 3, tools support reverse engineering.

Tool’'s Name

Merlin
MoTMoT
Eclectic
EMorF
MOMoT
TGGinterpreter
UMLX
JQvT
Mitra2
SmartQVT
JAMDA
Melange
PETE
ModelMorf
QVTR-XSLT
MOMENT
Echo
ModTransf
PTL
Actifsource
OpenCanarias
MOFScript
AGE
UMT
MoTE
Henshin
GRoundTram
BOTL
AToM3
AToMPM
Modelio
mediniQVT
Tefkat

Acceleo
AndroMDA

Blu Age

ATL

Epsilon

GReAT
MOLA

eMoflon
Sitra

MDWorkbench

Umple

Kermeta2

QVTo-Eclipse
ModelAnt

JTL

UML-RSDS

Xpand

Together
PROGRES
GrGen.NET

Fujaba
VMTS

VIATRA

AGG
Ente. Arch.

GROOVE

Rational
WebRatio

MagicDraw
TXL

MetaEdit+
Xtend

1990
1995
2000
2005

Year

Figure 9: Survival lifetime of the tools

2010

2015

32

Lifetime

<=10

<=5

<=2

>10

33

Figure [6] shows the data derived for Implementation and Quality facets such as tractability. As the
traceability is one of the important features of MDD tools, the number of imperative tools which support
built-in traceability outnumber the tools of the other approaches. Relations and operational mappings
languages support automatic traceability, while traceability links must be handled manually in the QVTc.
In graph-based tools there is no need to a distinguished separation between source and target models, so
they are suited for in-place transformations. This feature makes it is hard to track traceability links between
source and transformed elements to the target. Re-usability, incremental updates, concurrent transformation,
and model comparison are useful when working with large and complex models. In that way, imperative,
template-base and hybrid tools provide these features more than other tools.

8 Discussion of Maturity of Model-driven Development

In Figure [7}, we map the graph gained based on the number of new tools in each year, with the graph
of the diffusion of innovations proposed by Rogers [I50]. The diffusion of innovations shows with successive
groups of adopters of a new technology, its usage will eventually reach the saturation level. Figure [7] also
demonstrates the same trend, so that there has been a clear increase in the number of new developed tools
over the years of 2003 to 2007. However this trend has been declined and remained relatively stable since
2009. The questions that can arise are, what can it mean? Does it demonstrate the end of model-driven
lifetime? This interpretation can be justified by this fact that MDD can make extra cost and efforts in terms
of training new skills, and defining new roles. In addition to requiring to the knowledgeable employees, the
task of designing and analyzing models may cause the overhead for software development process. We also
looked at the number of tools developed in each continent. According to the Figure au7 79% of tools have
been developed in European countries in comparison to 12% tools in North America and 6% tools in Asia.
It seems the model-driven engineering dose not receive enough support from different places over the world.
Thus, MDD has not been accepted as a universal solution in the software development process. It is also
possible to look at Figure |7] from another aspect that MDD area reaches to a stable phase. Considering
Figure [B}b it may be a good idea to examine why some tools, such as ArcStyler, YATL, Codagen Architect,
OptimalJ, and FUUT-je, along with 15 of the assessed tools (we do not have information about the update
time of 11 of the tools which probably most of them will not have a new release) have not maintained no
longer. For example, ModTransf has been developed before QVT standard for embedded systems. Its authors
has stopped development with the availability of QVT-based tools. In addition, Figure 0]shows that 19 tools
with the survival time <= 5 years, their last release were before 2013. Among the tools with survival time
=> 5, the last release of four tools are before 2013. TXL, and Metaedit+ have the longest survival time,
and the shortest one is related to Melange. Based on these examinations, the reasons of success of long-time
tools or the hidden issues can be found and analyzed.

9 Related Work

To best of our knowledge, there has not been a complete property-based comparison of the tools similar
to this study. There are several surveys and frameworks to assess the abilities of some of the MDD tools.
For example, there is a feature-based framework for the classification of model transformation approaches
proposed by Czarnecki et al. [81]. They surveyed and classified model transformation techniques and tools
into model-to-text (M2T) approaches, and model-to-model (M2M) approaches. Although their work is
an excellent overview of the hierarchical classification of model transformation approaches, they have a
heavier focus on transformation rules, which is just one aspect of model transformations. Mens et al. [82]
have proposed a classification of model transformations tools that consider several factors, such as quality
requirements for a transformation tool, verifying and guaranteeing correctness of the transformations in a
multi-dimensional approach. Another interesting study has been conducted by Jakumeit et al. [84] which
provides a detailed picture of 13 model and graph transformation tools participated at the T7TC 2011. They
compare the tools based on different factors, such as suitability (what is the tool suited for?), and data (which
data is to be transformed).

Jilani et al. [I36] use some analysis parameters, such as direction and understandability to survey some
M2M transformation techniques. Another taxonomy proposed by Eramo et al. [I37] focus on a set of relevant
properties pertaining to bi-directional transformations. Similarly Hidaka et al. [I38] propose a feature-based
approach to compare different bi-directional model transformation approaches. Hildebrandt et al. [I39)

34

propose a survey and a comparative study of TGGs tools. They emphasize on the necessity of correctness
and the completeness for certain classes of the TGGs. There are other related works, such as [142] 140, [141]
that focus on reviewing model transformation approaches/tools.

10 Conclusion

We have conducted a systematic literature review of classification and comparison of 65 tools based on
the features which would contribute to effective usability of a tool. The features consist of six tables related
to different aspects of the tool’s features including, model-level, transformation language, capability, imple-
mentation and quality. Based on the gathered information, we analyzed different properties of the tools from
different categories. We also evaluated how well the various MDD tools may perform to manage large and
complex transformations.

The realm of model tools consists of different types, which means some features can only apply to certain
kinds of tools, while are not applicable to others. However, we have shown that it is possible to consider
important criteria of different aspects of a modeling tool, which can help the user(s) to select the best model
transformation tool based on the their needs.

Acknowledgments
The authors would like to thank the authors who assisted in verifying the information on their tool’s features.
We also thank the anonymous reviewers for their valuable comments and suggestions in improving this report.

References

[1] Lano, K., and Kolahdouz-Rahimi, S. (2010, January). Specification and verification of model transforma-
tions using UML-RSDS. In Integrated Formal Methods (pp. 199-214). URL: http://www.dcs.kcl.ac.
uk/staff/kcl/uml2web. Developed by: King’s College London.

[2] Lawley, M., and Steel, J. (2006, January). Practical declarative model transformation with Tefkat. In
Satellite Events at the MoDELS 2005 Conference (pp. 139-150). URL: http://tefkat.sourceforge.
net. Developed by: CRC for Enterprise Distributed Systems (DSTC).

[3] Cicchetti, A., Di Ruscio, D., Eramo, R., and Pierantonio, A. (2011). JTL: a bidirectional and change
propagating transformation language. In Software Language Engineering (pp. 183-202). URL: http:
//jtl.di.univaq.it/index.phpl Developed by: University of L’Aquila.

[4] Almendros-Jiménez, J. M., Iribarne, L., Lépez-Ferndndez, J., and Mora-Segura, A. (2015). PTL: A
model transformation language based on logic programming. Journal of Logical and Algebraic Methods
in Programming. URL: http://indalog.ual.es/mdd/ptl2. Developed by: University of Almeria and
University of Madrid.

[5] Bonde, L., Dumoulin, C., and Dekeyser, J. L. (2005). Metamodels and MDA transformations for embed-
ded systems. In Advances in design and specification languages for SoCs (pp. 89-105).

[6] Macedo, N. and Cunha, A. (2013). Implementing QVT-R bidirectional model transformations using
alloy. In the proceedings of the 16th International Conference on Fundamental Approaches to Software
Engineering

[7] Boronat, A. (2007). MOMENT: a formal framework for MOdel manageMENT. PhD Thesis in Computer
Science. URL: http://moment.dsic.upv.es/content/view/34/75. Developed by: Polytechnic Univer-
sity of Valencia.

[8] Li, D., Li, X., and Stolz, V. (January 2011). QVT-based model transformation using XSLT. SIGSOFT
Software Engineering Notes 36:18. URL: http://rcos.mydreamy.net/rcos-old/index.php?option=
com_content&view=article&id=91:qvtr-xslt&catid=46:qvt-xslt&Itemid=104. Developed by: Uni-
versity of Macau.

[9] Reddy, S., Venkatesh, R., and Ansari, Z. (2006). A relational approach to model transformation us-
ing QVT Relations. TATA Research Development and Design Centre. URL: http://121.241.184.234/
trddc_website/ModelMorf/ModelMorf . htm.

http://www.dcs.kcl.ac.uk/staff/kcl/uml2web
http://www.dcs.kcl.ac.uk/staff/kcl/uml2web
http://tefkat.sourceforge.net
http://tefkat.sourceforge.net
http://jtl.di.univaq.it/index.php
http://jtl.di.univaq.it/index.php
http://indalog.ual.es/mdd/ptl2
http://moment.dsic.upv.es/content/view/34/75
http://rcos.mydreamy.net/rcos-old/index.php?option=com_content&view=article&id=91:qvtr-xslt&catid=46:qvt-xslt&Itemid=104
http://rcos.mydreamy.net/rcos-old/index.php?option=com_content&view=article&id=91:qvtr-xslt&catid=46:qvt-xslt&Itemid=104
http://121.241.184.234/trddc_website/ModelMorf/ModelMorf.htm
http://121.241.184.234/trddc_website/ModelMorf/ModelMorf.htm

35

[10] medini QVT. URL: http://projects.ikv.de/qvt/wiki. Developed by: ikv++

[11] Kelly, S., Lyytinen, K., and Rossi, M. (1996, January). Metaedit+ a fully configurable multi-user and
multi-tool case and came environment. In Advanced Information Systems Engineering (pp. 1-21). Springer
Berlin Heidelberg. URL: http://www.metacase.com, Janne Luoma. Developed by: MetaCase Consulting
and University of Jyvdskyld, 2015.

[12] Schétz, B. (2009). Formalization and rule-based transformation of EMF Ecore-based models. In Software
Language Engineering (pp. 227-244). URL: http://www4.informatik.tu-muenchen.de/~schaetz/
PETE/PETEFrame.html. Developed by: Technical university of Munchen.

[13] Popov, R. (2015). ModelAnt. URL: http://mdatools.net/blog/modelant.

[14] Efftinge, S., (2015). Xtend. URL: https://eclipse.org/xtend/index.html. Developed by:
openArchitecture Ware- Eclipse M2T

[15] Gerking, C., and Heinzemann, C. (2014). Solving the Movie Database Case with QVTo. TTC. URL:
URL:http://wiki.eclipse.org/QVTo. Developed by: Eclipse Model-to-Model Transformation (MMT)
project.

[16] Drey, Z., Faucher, C., Fleurey, F., Mahé, V., and Vojtisek, D. (2009). Kermeta language reference
manual. URL: http://www.kermeta.org. Developed by: University of Rennes, and Triskell Team

[17] Desfray, P. (2015). Modelio/Objecteering. Modeliosoft. URL: http://www.modeliosoft . com. Developed
by: Modeliosoft.

[18] Forward, A., Lethbridge, T. C., and Brestovansky, D. (2009, May). Improving program comprehension
by enhancing program constructs: An analysis of the Umple language. In ICPC. (pp. 311-312). URL:
http://www.umple.org. Developed by: University of Ottawa.

[19] Capelle, T. (2015). MDWorkbench. URL: http://sodius.com/products-overview/mdworkbench. De-
veloped by: Sodius SAS.

[20] Degueule, T., Combemale, B., Blouin, A., Barais, O., and Jézéquel, J. M. (2015, October). Melange: A
Meta-language for Modular and Reusable Development of DSLs. In 8th International Conference on Soft-
ware Language Engineering (SLE). URL: http://melange-lang.org. Developed by: DiverSE research
team-INRIA Triskell team.

[21] Mazeika, D. (2015). MagicDraw. URL: http://www.nomagic.com. Developed by: No Magic, Inc..

[22] Boocock, P. (2003). Jamda: the Java Model Driven Architecture. URL: http://jamda.sourceforge.
net/#documentation

[23] IBM Rational Rose Family. URL: http://www-03.ibm.com/software/products/en/ratirosefami.
Developed by: International Business Machines (IBM) Corporation.

[24] OBryan, D. (2015). Enterprise Architect. URL: http://www.sparxsystems.com. Developed by: Sparz
Systems

[25] Blu Age. URL: http://www.bluage.com/en/en_home.html. Developed by: Netfective Technology

[26] Sénchez-Barbudo, A., Sdnchez, E. V., Roldan, V., Estévez, A., and Roda, J. L. (2008). Providing an
open virtual-machine-based QVT implementation. In Proceedings of the V. Workshop on Model-Driven
Software Development. URL: http://www.modelset.es/atc/atcdownload.html. Developed by: Open
Canarias.

[27] Dupe, G., Belaunde, M., Perruchon, R., Besnard, H., Guillard, F., and Oliveres, V. SmartQVT. URL:
https://sourceforge.net/projects/smartqvt. Developed by: France Telecom RED

[28] Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., and Ergin, H. (2013).
AToMPM: A Web-based Modeling Environment. In Demos/Posters/Student Research MoDELS (pp.
21-25). URL: http://www-ens.iro.umontreal.ca/~syriani/atompm/atompm.htm. Developed by: Uni-
versity of McGill, University of Montreal, and University of Antwerp.

http://projects.ikv.de/qvt/wiki
http://www.metacase.com
http://www4.informatik.tu-muenchen.de/~schaetz/PETE/PETEFrame.html
http://www4.informatik.tu-muenchen.de/~schaetz/PETE/PETEFrame.html
http://mdatools.net/blog/modelant
https://eclipse.org/xtend/index.html
URL: http://wiki.eclipse.org/QVTo
http://www.kermeta.org
http://www.modeliosoft.com
http://www.umple.org
http://sodius.com/products-overview/mdworkbench
http://melange-lang.org
 http://www.nomagic.com
http://jamda.sourceforge.net/#documentation
http://jamda.sourceforge.net/#documentation
http://www-03.ibm.com/software/products/en/ratirosefami
http://www.sparxsystems.com
http://www.bluage.com/en/en_home.html
http://www.modelset.es/atc/atcdownload.html
https://sourceforge.net/projects/smartqvt
http://www-ens.iro.umontreal.ca/~syriani/atompm/atompm.htm

36

[29] Rensink, A. (2004). The GROOVE simulator: A tool for state space generation. In Applications of
Graph Transformations with Industrial Relevance (pp. 479-485). URL: http://groove.cs.utwente.nl/
downloads/groove. Developed by: University of Twente.

[30] Willink, E. D. (2003, June). UMLX: A graphical transformation language for MDA. In Proceedings of
the Workshop on Model Driven Architecture: Foundations and Applications (pp. 13-24). URL: https:
//www.eclipse.org/gmt/umlx/-http://wuw.eclipse.org/projects/archives.php

[31] De Lara, J., and Vangheluwe, H. (2002, April). AToM3: A tool for multi-formalism and meta-modelling.
In FASE (Vol. 2, pp. 174-188). URL: http://atom3.cs.mcgill.ca. Developed by: University of McGill

[32] De Lara, J., Vangheluwe, H., and Alfonseca, M. (2004). Meta-modelling and graph grammars for multi-
paradigm modelling in AToM3. Software and Systems Modeling (pp.194-209).

[33] Ermel, C., Rudolf, M., and Taentzer, G. (1999). The AGG approach: Language and environment.
Handbook of graph grammars and computing by graph transformation (pp. 551-603). URL: http://www.
tfs.tu-berlin.de/agg. Developed by: Technical University of Berlin

[34] Braun, P., and Marschall, F. (2003). Transforming object oriented models with BOTL. Electronic Notes
in Theoretical Computer Science (pp. 103-117). URL: http://botl.sourceforge.net!

[35] Hidaka, S., Hu, Z., Inaba, K., Kato, H., and Nakano, K. (2011, November). GRoundTram: An in-
tegrated framework for developing well-behaved bidirectional model transformations. 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE) (pp. 480-483). URL: http://www.
biglab.org. Developed by: BiG team of the National Institute of Informatics

[36] Lauder, M., Anjorin, A., Varrd, G., and Schiirr, A. (2012). Bidirectional model transformation with
precedence triple graph grammars. In Modelling Foundations and Applications (pp. 287-302). URL: http:
//www.moflon.org/emoflon. Developed by: Technical University of Darmstadt.

[37] Arendt, T., Biermann, E., Jurack, S., Krause, C., and Taentzer, G. (2010). Henshin: advanced concepts
and tools for in-place EMF model transformations. In Model Driven Engineering Languages and Systems
(pp. 121-135). URL: https://www.eclipse.org/henshin. Developed by: Philipps University Marburyg,
Technical University of Berlin and CWI Amsterdam

[38] Giese, H., Hildebrandt, S., and Lambers, L. (2014). Bridging the gap between formal semantics and
implementation of triple graph grammars. Software and Systems Modeling (pp. 273-299). URL: www.
mdelab.de/motel Developed by: Hasso-Plattner Institute, and University of Potsdam

[39] Kalnins, A., Barzdins, J., and Celms, E. (2005). Model transformation language MOLA. In Model Driven
Architecture (pp. 62-76). URL: http://mola.mii.lu.lv. Developed by: University of Latvia.

[40] GReAT. URL: http://www.isis.vanderbilt.edu/tools/great. Developed by: University of Vander-
bilt.

[41] Greenyer, J., and Kindler, E. (2007). Reconciling TGGs with QVT. In Model Driven Engineering Lan-
guages and Systems (pp. 16-30). URL: http://www.cs.uni-paderborn.de/index.php?id=12842&L.=1.
Developed by: University of Paderborn

[42] Klassen, L., and Wagner, R. (2012). EMorF-A tool for model transformations. Electronic Communica-
tions of the EASST 54. URL: http://www.emorf.org/overview.htmll Developed by: Solunar GmbH.

[43] Schiirr, A., Winter, A. J., and Ziindorf, A. (1999). The PROGRES approach: Language and en-
vironment. URL: http://www-i3.informatik.rwth-aachen.de/tikiwiki/tiki-index.php/%3Fpage=
Research:+Progres.html. Developed by: University of Technology Aachen.

[44] Oldevik, J. UMT-UML URL: http://umt-qvt.sourceforge.net/.

[45] Varrd, D., and Balogh, A. (2007). The model transformation language of the VIATRA2 framework.
Science of Computer Programming (pp. 214-234). URL: http://eclipse.org/viatra. Developed by:
Budapest University of Technology and Economics (BUTE) and IncQuery Labs Ltd..

http://groove.cs.utwente.nl/downloads/groove
http://groove.cs.utwente.nl/downloads/groove
https://www.eclipse.org/gmt/umlx/- http://www.eclipse.org/projects/archives.php
https://www.eclipse.org/gmt/umlx/- http://www.eclipse.org/projects/archives.php
http://atom3.cs.mcgill.ca
http://www.tfs.tu-berlin.de/agg
http://www.tfs.tu-berlin.de/agg
http://botl.sourceforge.net
http://www.biglab.org
http://www.biglab.org
http://www.moflon.org/emoflon
http://www.moflon.org/emoflon
https://www.eclipse.org/henshin
www.mdelab.de/mote
www.mdelab.de/mote
 http://mola.mii.lu.lv
http://www.isis.vanderbilt.edu/tools/great
http://www.cs.uni-paderborn.de/index.php?id=12842&L=1
http://www.emorf.org/overview.html
http://www-i3.informatik.rwth-aachen.de/tikiwiki/tiki-index.php%3Fpage=Research:+Progres.html
http://www-i3.informatik.rwth-aachen.de/tikiwiki/tiki-index.php%3Fpage=Research:+Progres.html
http://umt-qvt.sourceforge.net/
http://eclipse.org/viatra

37

[46] Cuadrado, J. S. (2012). Towards a family of model transformation languages.In Theory and Practice of
Model Transformations (pp. 176-191). URL: http://sanchezcuadrado.es/projects/eclectic/.

[47] Kolovos, D. S., Paige, R. F., and Polack, F. A. (2008). The epsilon transformation language. In Theory
and practice of model transformations (pp. 46-60). URL: http://www.eclipse.org/epsilon/. Developed
by: University of York.

[48] Cuadrado, J. S., Molina, J. G., and Tortosa, M. M. (2006, January). Rubytl: A practical, extensible
transformation language. In Model Driven ArchitectureFoundations and Applications (pp. 158-172). URL:
http://gts.inf.um.es/trac/age. Developed by: miso research group

[49] Levendovszky, T., Lengyel, L., Mezei, G., and Charaf, H. (2005). A systematic approach to metamodeling
environments and model transformation systems in VMTS. Electronic Notes in Theoretical Computer
Science (pp. 65-75). URL: https://www.aut.bme.hu/Pages/Research/VMTS/Introduction, Developed
by: Budapest University of Technology and Economics

[50] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008). ATL: A model transformation tool. Science
of computer programming (pp. 31-39). URL: http://www.eclipse.org/atl/. Developed by: OBEO and
INRIA, LINA research group

[51] Van Gorp, G., (2008). Model-driven Development of Model Transformations. PhD Thesis, University of
Antwerp. URL: http://www.fots.ua.ac.be/motmot/index.phpl Developed by: University of Antwerp.

[52] Barais, O., Baudry, B., Blouin, A., Combemale, B., Jézéquel, J. M., and Vojtisek, D. (2013, April). A
Demonstration for Building Modular and Efficient DSLs: The Kermeta v2 Experience. In Conference of
IngénieriE du Logiciel (CIEL).

[53] Degueule, T., Combemale, B., Blouin, A., and Barais, O. (2015, October). Reusing Legacy DSLs with
Melange. In 15th Workshop on Domain-Specific Modeling.

[54] Dumoulin, C. (2004). ModTransf: a model to model transformation engine. URL: http://www.1ifl.
fr/west/modtransf/.

[55] Brun, C., and Pierantonio, A. (2008). Model differences in the eclipse modeling framework. The Furopean
Journal for the Informatics Professional (pp. 29-34). URL: www.acceleo.org. Developed by: Obeo.

[56] Cuadrado, J. S., and Molina, J. G. (2007). Building domain-specific languages for model-driven devel-
opment. Software, IEEE (pp. 48-55).

[57] Anjorin, A., Lauder, M., Patzina, S., and Schiirr, A. (2011). eMoflon: Leveraging EMF and Professional
CASE Tools. Informatik.

[58] Ermel, C., Biermann, E., Schmidt, J., and Warning, A. (2011). Visual modeling of controlled emf model
transformation using Henshin. FElectronic Communications of the EASST.

[59] Bohlen, M., and Brandon, C. (2007). AndroMDA. URL: http://www.andromda.org. Developed by:
AndroMDA.

[60] Carrara, R. (2015). URL: http://www.actifsource.com. Developed by: actifsource GmbH.

[61] Xpand. URL: https://eclipse.org/modeling/m2t/7project=xpand. Developed by: openArchitec-
ture Ware and Eclipse M2T.

[62] Lengyel, L., Levendovszky, T., Mezei, G., and Charaf, H. (2006). Model transformation with a visual
control flow language. International Journal of Computer Science (IJCS) (pp. 45-53).

[63] Nickel, U., Niere, J., and Ztundorf, A. (2000, June). The FUJABA environment. In Proceedings of the
22nd International Conference on Software Engineering (pp. 742-745). URL: http://wuw.fujaba.de.
Developed by: University of Paderborn.

[64] Niere, J., and Ziindorf, A. (2000). Testing and simulating production control systems using the Fujaba
environment. In Applications of Graph Transformations with Industrial Relevance (pp. 449-456).

http://sanchezcuadrado.es/projects/eclectic/
http://www.eclipse.org/epsilon/
http://gts.inf.um.es/trac/age
https://www.aut.bme.hu/Pages/Research/VMTS/Introduction
http://www.eclipse.org/atl/
http://www.fots.ua.ac.be/motmot/index.php
http://www.lifl.fr/west/modtransf/
http://www.lifl.fr/west/modtransf/
www.acceleo.org
http://www. andromda. org
http://www.actifsource.com
https://eclipse.org/modeling/m2t/?project=xpand
http://www.fujaba.de

38

[65] Paige, R., and Radjenovic, A. (2003). Towards model transformation with TXL. Metamodelling for
MDA. URL: http://www.tx1.ca. Developed by: University of Queen’s.

[66] Cordy, J. R. (2006). The TXL source transformation language. Science of Computer Programming (pp.
190-210).

[67] Jakumeit, E., Buchwald, S., and Kroll, M. (2010). Grgen.net: the expressive, convenient and fast graph
rewrite system. International Journal on Software Tools for Technology Transfer (pp. 263-271).

[68] Jakumeit, E., Blomer, J., and Gei, R. (2015). The GrGen.NET User Manual. URL: http://www.
grgen.net. Developed by: University of Karlsruhe.

[69] Fleck, M., Troya, J., and Wimmer, M. Marrying Search-based Optimization and Model Transformation
Technology. In Proceedings of the First North American Search Based Software Engineering Symposium
(pp. 1-16). Elsevier. URL: http://martin-fleck.github.io/momot/.

[70] SiTra. URL: http://baserg.github.io/sitra. Developed by: University of Kent.

[71] Acerbis, R., Bongio, A., Brambilla, M., and Butti, S. (2007). Webratio 5: An eclipse-based case tool for
engineering web applications. In Web Engineering (pp. 501-505). Springer Berlin Heidelberg. URL: http:
//www.webratio.com/site/content/en/home. Developed by: WebRatio Srl and Polytechnic University
of Milan.

[72] Acerbis, R., Bongio, A., Butti, S., Ceri, S., Ciapessoni, F., Conserva, C., Fraternali, P., and Carughi,
G. T. (2004). Webratio, an innovative technology for web application development. In Web Engineering
(pp. 613-614).

[73] Pilgrim, V. J. (2011). Computerunterstiitzte Modelltransformationen. PhD Thesis in Computer Science.
URL: http://jpilgrim.github.io/mitra2/.

[74] Song, H., and Kiegeland, J. (2013). JQVT. URL: http://sourceforge.net/p/jqvt/wiki/Home/.

[75] Cheuoua, J. (2015). Merlin. URL: https://sourceforge.net/projects/merlingenerator/?source=
navbar.

[76] Reeves, G. (2015). Together. URL:|:http://www.borland.com/Products/Requirements-Management/
Together. Developed by: Borland.

[77) MOFScript. URL: https://wuw.eclipse.org/gmt/mofscript. Developed by: SINTEF ICT .
[78] Object Management Group. URL: http://www.omg.org.

[79] MOF Model to Text Transformation Language. URL: http://www.omg.org/spec/MOFM2T.
[80] Query/Views/Transformation Language (QVT). URL: http://www.omg.org/spec/QVT.

[81] Czarnecki, K., and Helsen, S. (2006). Feature-based survey of model transformation approaches.IBM
Systems Journal (pp. 621-645).

[82] Mens, T., and Van Gorp, P. (2006). A taxonomy of model transformation. Electronic Notes in Theoretical
Computer Science (pp. 125-142).

[83] Salem, R. B., Grangel, R., and Bourey, J. P. (2008). A comparison of model transformation tools:
Application for Transforming GRAI Extended Actigrams into UML Activity Diagrams. Computers in
Industry (pp. 682-693).

[84] Jakumeit, E., Buchwald, S., Wagelaar, D., Dan, L., Hegediis, ., Herrmannsdorfer, M., Horn, T., Kalnina,
E., Krause, Ch., Lano, K., Lepper, M., Rensink, A., Rose, L., Witzoldt, S., and Mazanek, S. (2014).
A survey and comparison of transformation tools based on the transformation tool contest. Science of
computer programming (pp. 41-99).

[85] , Taentzer G., Ehrig, K., Guerra, E., De Lara, J., Lengyel, L., Levendovszky, T., Prange, U., Varro, D.,
and Varré-Gyapay, S. (2005,). Model transformation by graph transformation: A comparative study. In
Proceedings Workshop Model Transformation in Practice, Montego Bay, Jamaica.

http://www.txl.ca
http://www.grgen.net
http://www.grgen.net
http://martin-fleck.github.io/momot/
http://baserg.github.io/sitra
http://www.webratio.com/site/content/en/home
http://www.webratio.com/site/content/en/home
http://jpilgrim.github.io/mitra2/
http://sourceforge.net/p/jqvt/wiki/Home/
https://sourceforge.net/projects/merlingenerator/?source=navbar
https://sourceforge.net/projects/merlingenerator/?source=navbar
: http://www.borland.com/Products/Requirements-Management/Together
: http://www.borland.com/Products/Requirements-Management/Together
https://www.eclipse.org/gmt/mofscript
http://www.omg.org
http://www.omg.org/spec/MOFM2T
http://www.omg.org/spec/QVT

39

[86] Hidaka, S., Tisi, M., Cabot, J., and Hu, Z. (2015). Feature-based classification of bidirectional transfor-
mation approaches. Software and Systems Modeling (pp. 1-22).

[87] Gomes, C., Barroca, B., and Amaral, V. (2014). Classification of model transformation tools: Pattern
matching techniques. In Model-Driven Engineering Languages and Systems (pp. 619-635).

[88] Biehl, M. (2010). Literature study on model transformations. Royal Institute of Technology.
[89] QVTd. URL: https://projects.eclipse.org/projects/modeling.mmt.qvtd.
[90] Models Conference (2015). URL: http://cruise.eecs.uottawa.ca/models2015

[91] Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach. Science of Computer Programming (pp. 470-495).

[92] Rothenberg, J., Widman, L. E., Loparo, K. A., and Nielsen, N. R. (1989). The nature of modeling.
Rand.

[93] Unified Modeling Language (UML). URL: http://www.uml.org

[94] Aers, K. (2011). Graphiti and GMF compared: Revisiting the graph editor. EclipseCon 2011, Santa
Clara, California.

[95] Efftinge, S., and Volter, M. (2006, October). oAW xText: A framework for textual DSLs. In Workshop
on Modeling Symposium at Eclipse Summit.

[96] Kleppe, A. G., (2007). A language description is more than a metamodel.

[97] Bruneliere, H., Cabot, J., Jouault, F., and Madiot, F. (2010, September). MoDisco: a generic and
extensible framework for model driven reverse engineering. In Proceedings of the IEEE/ACM international
conference on Automated software engineering (pp. 173-174). URL: https://eclipse.org/MoDiscol

[98] Schiirr, A. (1995, January). Specification of graph translators with triple graph grammars. In Graph-
Theoretic Concepts in Computer Science (pp. 151-163).

[99] XML Metadata Interchange (XMI). URL: http://www.omg.org/spec/XMI

[100] Tratt, L. (2005). Model transformations and tool integration. Software and Systems Modeling (pp.
112-122).

[101] Miller, J., and Mukerji, J. (2003). MDA Guide Version 1.0. 1, Object Management Group.

[102] Bottoni, P., Koch, M., Parisi-Presicce, F., and Taentzer, G. (2001). A visualization of OCL using
collaborations. In the Unified Modeling Language. Modeling Languages, Concepts, and Tools (pp. 257-
271).

[103] Canonical XMI. URL: http://www.omg.org/spec/XMI/2.5.1

[104] eXtensible Graph Markup and Modeling Language. URL: http://cgi7.cs.rpi.edu/research/
groups/pb/punin/publichtml/XGMML

[105] Human Usable Textual Notation (HUTN). URL: http://www.omg.org/spec/HUTN

[106] Common Warehouse Meta-model (CWM). URL: http://www.omg. org/spec/CWM

[107] Diagram Definition Specification (DD). URL: http://www.omg.org/spec/DD

[108] Object Constraint Language. URL: http://www.omg.org/spec/0CL

[109] Java Meta-data Interface (JMI). URL: http://www.oracle.com/technetwork/java/index.html
[110] Graph eXchange Language (GXL). URL: http://www.gupro.de/GXL

[111] Business Process Model and Notation (BPMN). URL: http://www.bpmn.org

https://projects.eclipse.org/projects/modeling.mmt.qvtd
http://cruise.eecs.uottawa.ca/models2015
http://www.uml.org
https://eclipse.org/MoDisco
http://www.omg.org/spec/XMI
http://www.omg.org/spec/XMI/2.5.1
http://cgi7.cs.rpi.edu/research/groups/pb/punin/public html/XGMML
http://cgi7.cs.rpi.edu/research/groups/pb/punin/public html/XGMML
http://www.omg.org/spec/HUTN
http://www.omg.org/spec/CWM
http://www.omg.org/spec/DD
http://www.omg.org/spec/OCL
http://www.oracle.com/technetwork/java/index.html
 http://www.gupro.de/GXL
 http://www.bpmn.org

40

[112] Meta-Object Facility (MOF). URL: http://www.omg.org/mof

[113] Eclipse Modeling Framework (EMF). URL: https://eclipse.org/modeling/emf
[114] Kernel Meta Meta Model (KM3). URL: https://wiki.eclipse.org/KM3

[115] Graphical Editing Framework (GEF). URL: https://eclipse.org/gef

[116] NetBeans Meta-data Repository (MDR). URL: https://netbeans.org

[117] Peterson, J. L. (1981). Petri net theory and the modeling of systems.

[118] Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-driven software engineering in practice.
Synthesis Lectures on Software Engineering (pp. 1-182).

[119] Lano, K., Kolahdouz-Rahimi, S., and Poernomo, I. (2012). Comparative evaluation of model transfor-
mation specification approaches. International Journal of Software and Informatics (pp. 233-269).

[120] Assmann, U. (2000). Graph rewrite systems for program optimization. ACM Transactions on program-
ming Languages and Systems (TOPLAS) (pp. 583-637).

[121] Varrd, D., Varré-Gyapay, S., Ehrig, H., Prange, U., and Taentzer, G. (2006). Termination analysis of
model transformations by petri nets. In Graph Transformations (pp. 260-274).

[122] Ehrig, H., Ehrig, K., De Lara, J., Taentzer, G., Varrd, D., and Varré-Gyapay, S. (2005). Termination
criteria for model transformation (pp. 49-63).

[123] Mohagheghi, P., Dehlen, V., and Neple, T. (2008). Towards a tool-supported quality model for model-
driven engineering. In Proceeding 3rd Workshop on Quality in Modelling at MODELS.

[124] Edapt. URL: https://www.eclipse.org/edapt/documentation.phpl

[125] Rose, L. M., Kolovos, D. S., Paige, R. F., and Polack, F. A. (2010). Model migration with epsilon flock.
In Theory and Practice of Model Transformations (pp. 184-198).

[126] Amrani, M., Lucio, L., Selim, G., Combemale, B., Dingel, J., Vangheluwe, H., Traon, Y. L., and
Cordy, J. R. (2012, April). A tridimensional approach for studying the formal verification of model
transformations. IEEE Fifth International Conference on Software Testing, Verification and Validation
(pp. 921-928).

[127] Rensink, A., Schmidt, A., and Varré, D. (2004, January). Model checking graph transformations: A
comparison of two approaches. In ICGT pp. 226-241.

[128] Varré, D., and Pataricza, A. (2003). Automated formal verification of model transformations. CSDUML
(pp. 63-78).

[129] Kastenberg, H., and Rensink, A. (2006). Model checking dynamic states in GROOVE. In Model Check-
ing Software (pp. 299-305).

[130] Fleurey, F., Steel, J., and Baudry, B. (2004, November). Validation in model-driven engineering: testing
model transformations. First International Workshop on Model, Design and Validation (pp. 29-40).

[131] Auzi, A., Brzdi, J., Bievskis, J., erns, K., and Kalni, A. (1991). Automatic construction of test sets:
Theoretical approach. In Baltic Computer Science (pp. 286-359).

[132] Rath, I., Varrd, G., and Varrd, D. (2009). Change-driven model transformations. IIn Model Driven
Engineering Languages and Systems(pp. 342-356).

[133] Stephan, M., and Cordy, J. R. (2013, February). A Survey of Model Comparison Approaches and
Applications. In Modelsward (pp. 265-277).

[134] Louridas, P. (2006). Version control. Software. IEEE (pp.104-107).

[135] Taentzer, G. (2003) AGG: A graph transformation environment for modeling and validation of software.
In Lecture Notes in Computer Science (pp. 446453).

http://www.omg.org/mof
https://eclipse.org/modeling/emf
 https://wiki.eclipse.org/KM3
https://eclipse.org/gef
https://netbeans.org
https://www.eclipse.org/edapt/documentation.php

41

[136] Jilani, A. A. A., Usman, M., and Halim, Z. (2010). Model Transformations in Model Driven Architec-
ture. IUniversal Journal of Computer Science and Engineering Technology (pp. 50-54).

[137] Eramo, R., Marinelli, R., and Pierantonio, A. Towards a Taxonomy for Bidirectional Transformation.

[138] Hidaka, S., Tisi, M., Cabot, J., and Hu, Z. (2015). Feature-based classification of bidirectional trans-
formation approaches. Software and Systems Modeling (pp. 1-22).

[139] Hildebrandt, S., Lambers, L., Giese, H., Rieke, J., Greenyer, J., Schifer, W., Lauder, M., Anjorin,
A., and Schiirr., A. (2013). A survey of triple graph grammar tools. In International Workshop on
Bidirectional Transformations (Bz).

[140] Varrd, D., Asztalos, M., Bisztray, D., Boronat, A., Dang, D. H., Geif}, R., Greenyer, J., Gorp, P.
V., Kniemeyer, O., Narayanan, A., Rencis, E., and Weinell, E. (2008). Transformation of UML models
to CSP: A case study for graph transformation tools. In Applications of Graph Transformations with
Industrial Relevance (pp. 540-565).

[141] Stevens, P. (2008). A landscape of bidirectional model transformations. In Generative and transforma-
tional techniques in software engineering (pp. 408-424).

[142] Leblebici, E., Anjorin, A., Schiirr, A., Hildebrandt, S., Rieke, J., and Greenyer, J. (2014). A Comparison
of Incremental Triple Graph Grammar Tools. IElectronic Communications of the EASST.

[143] Schétz, B. (2010). Verification of model transformations. IElectronic Communications of the EASS.

[144] Winkler, S., and Pilgrim, J. (2010). A survey of traceability in requirements engineering and model-
driven development. Software and Systems Modeling (SoSyM) (pp. 529-565).

[145] Ferry, N., Song, H., Rossini, A., Chauvel, F., and Solberg, A. (2014, December). Cloud MF: Applying
MDE to tame the complexity of managing multi-cloud applications. In Proceedings of the IEEE/ACM
7th International Conference on Utility and Cloud Computing (pp. 269-277).

[146] Réth, 1., Bergmann, G., Okros, A., and Varré, D. (2008). Live model transformations driven by incre-
mental pattern matching. In Theory and Practice of Model Transformations (pp. 107-121).

[147] Cuadrado, J. S., Guerra, E., and de Lara, J. (2013). The program is the model: Enabling transforma-
tions run. time. In Software Language Engineering (pp. 104-123).

[148] Ahmad, M., Bruel, J. M., Laleau, R., and Gnaho, C. (2012). Using RELAX, SysML and KAOS for
Ambient Systems Requirements Modeling. Procedia Computer Science (pp. 474-481).

[149] France, R. B., Bruel, J. M., and LarrondoPetrie, M. M. (1997). An integrated object-oriented and
formal modeling environment. Journal of Object-Oriented Programming.

[150] Rogers, E. M. (2010). Diffusion of innovations. Simon and Schuster.

[151] Blouin, D., Plantec, A., Dissaux, P., Singhoff, F., and Diguet, J. P. (2014). Synchronization of models
of rich languages with triple graph grammars: An experience report. In Theory and Practice of Model
Transformations (pp. 106-121).

[152] Klatt, B. (2007). Xpand: A closer look at the model2text transformation language. Language.

	Introduction
	Research Method
	Background
	Classification of Tools
	Model-to-Model (M2M) Tools
	Relational/Declarative Approaches
	Imperative/Operational/Constructive Approaches
	Graph-based Approaches
	Others Approaches
	Hybrid Approaches

	Model-to-Text (M2T) Tools
	Visitor-based Approaches
	Template-based Approaches
	Hybrid Approaches

	Comparison of Tools
	General Category
	Model-level Category
	Transformation Category
	Capability Category
	Implementation Category
	Quality Category

	Evaluation of Tools
	Discussion of Tool Facets
	Discussion of Maturity of Model-driven Development
	Related Work
	Conclusion

