
Technical Report 2016-630

Title: A Controller Synthesis Framework for Automated
Service Composition

Authors: Francis Atampore, Juergen Dingel and Karen Rudie

School of Computing
Queen’s University

Kingston, Ontario, K7L 3N6, Canada

September 12, 2016

© Francis Atampore, Juergen Dingel and Karen Rudie, 2016

A Controller Synthesis Framework for Automated Service Composition I

Francis Atamporea,∗, Juergen Dingela, Karen Rudieb

aSchool of Computing, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
bDepartment of Electrical and Computer Engineering, Queen’s University, Kingston, Ontario, K7L 3N6, Canada

Abstract

Nowadays, Web services allow interoperability among distributed software applications deployed on different platforms
and architectures which in effect plays a major role in electronic businesses. Web services allow organizations to carry
out certain business activities automatically and in a distributed fashion. However, in some circumstances, a single
service is not able to perform a certain task and it becomes imperative to compose two or more services in order to
complete a task. Thus, a key research challenge in this field is the problem of automatic service composition. Several
approaches exist that tackle the problem of automatic service composition, however, the task of generating provably
correct Web service compositions still remains a challenging and complex task.

In this paper, we develop a formal framework for modeling Web service compositions based on Supervisory Control
Theory (SCT) of discrete-event systems. We model services that exchange messages and exhibit nondeterministic be-
haviours. The objective is to synthesize a supervisor which interacts with a given set of Web services through messages
to guarantee that a given specification is satisfied. A key novelty of this work is the application of control theory to
service-oriented computing and the incorporation of run-time input into the supervisor generation process. First, we
describe a novel supervisory control framework for automated composition of Web services. The framework employs
Labelled Transition Systems (LTSs) equipped with guards and data variables to model Web services and provides a tech-
nique to synthesize a controller. We model the interactions of services asynchronously and we use the guards and data
variables to allow us to express certain preconditions which are then propagated from the system requirements through
the overall composite service. Second, we then develop a set of algorithms to generate a controller satisfying a given
functional requirement also specified in LTSs. Besides the standard disabling and enabling of events, the generated
controller in our framework has the ability to enforce certain events based on run-time information to drive the system
towards its goal. In addition, the controller is able to impose restrictions on the kind of data that can be sent or received
by services. This includes the automatic generation of stronger guards or preconditions which impose restrictions on
which path to take during execution. Lastly, we state a theorem capturing the existence of a controller and provide a
proof to demonstrate the correctness of the proposed approach.

Keywords: Automatic Service Composition, Supervisory Control Theory, Controller Synthesis, Web Services, Discrete Event
Systems, Labelled Transition Systems

IThe authors gratefully acknowledge support from the Natural Sciences and Engineering Research Council of Canada
∗Corresponding author
Email addresses: akfransua@yahoo.com (Francis Atampore), (dingel@cs.queensu.ca) (Juergen Dingel),

(karen.rudie@queensu.ca) (Karen Rudie)

1. Introduction

Today, we are undergoing a major paradigm shift in software development as a result of the emergence
of the World Wide Web. This has brought about the Service-Oriented Computing paradigm which aims to
encapsulate software components and expose them as services through network-accessible, platform and
language independent interfaces. The most widely adopted software design patterns in SOC for realizing the
SOC model into an architecture is known as Service-Oriented Architecture (SOA) [17], which in essence
is a logical way of organizing and developing distributed software systems by providing services to end-
user applications or to others, and whose interface descriptions can be published and discovered. The most
widely used implementation of SOA are Web services [35].

The vision underpinning Web services can be fully achieved if we envision a collaboration between a
community of numerous service providers and service consumers who interact in order to achieve certain
business goals. Thus, one of the key functionalities of Web services is service composition, which seeks
to create, select and integrate pre-existing services to develop new value-added services and applications.
Hence, it promotes the rapid development of software systems by reducing the cost and effort for developing
new services from scratch. Furthermore, the output of a service composition (i.e., composite service) could
serve as the input (atomic service) for further service compositions (re-usability). A typical motivating
example of a Web service composition is given as follows. Consider a group of business clients who are
going on a business trip and want to make a reservation for a flight ticket, a hotel room and a car for a
particular destination and a period of time. There exist only an airline reservation Web service, a hotel
reservation Web service and a car rental Web service separately. Clearly, we want to combine these Web
services rather than implementing a new one.

Several approaches have been proposed that attempt to address the problem of automatic service compo-
sition and most of these techniques are motivated by the works in AI planning and cross-enterprise workflow
techniques [60, 27, 11, 29, 23, 40, 44]. However, the task of generating provably correct Web service com-
positions still remains a challenging and complex task.

In this paper, we develop a formal framework Supervisor Aware Service Composition Architecture
(SASCA) for modeling Web service composition based on Supervisory Control Theory (SCT) of Discrete-
Event Systems (DES). Discrete-Event Systems control theory is a branch of control theory that models
behaviours as sequences of discrete events instead of continuous functions of time. The classical Ramadge-
Wonham approach to the supervisory control problem (SCP) [14], [55] is defined as follows: given a plant
G modeled in the form of a state-transition system which captures the behaviours of the process to be con-
trolled according to some possible events, given a set of specificationsLwhich describes the legal sequences
of events of the plant, synthesize a supervisor S so that S restricts G in such a way that all its executions
satisfy L and such that S is maximally permissive. The DES control methods fit well into the problem of
automatic service composition if the problem is reduced to observing events of a system and restricting its
behaviour to specific sequences. Hence, we can apply existing DES techniques and algorithms to address
the problem of automatic service composition. With respect to other service composition approaches, Su-
pervisory Control Synthesis has several benefits which are as follows. It results in a correct-by-construction
control synthesis, and the generated controller is maximally permissive by preventing a system behaviour
only if it violates the system requirements. It also relies on automata theory to provide a well-defined syntax
and semantics for modeling systems which could be very useful for specifying services. In addition, DES
provides a standard way that can be used to model various business logics and requirements in a dynamic
environment. Supervisory control theory has been applied to generate concurrency control code in multi-
threaded programs, and some these works have been very successful. Notable ones are the work by Dragert
et al. [16, 4] and the work by Wang et al.[52, 51]. It is based on this background that we propose to apply

2

SCT to service-oriented computing. To the best of our knowledge our work is the first of its kind to apply
SCT to deal with the problem of Web service composition.

The approach we propose employs Labelled Transition Systems (LTSs) equipped with guards, and data
variables to model a given set of Web services specified in WS-BPEL [3]. To this end, we provide an SCT
modeling formalism based on LTSs and then we describe a novel technique to synthesize a composition
satisfying a given functional requirement (data and control flow) also specified in LTS. That is, the problem
of synthesizing a composition can be reduced to the problem of supervisor synthesis when the available
services and a goal specification represent the plant and the legal language (desired behaviour), respectively,
in DES. In this way, the problem of orchestrating data and control flow requirements can be achieved using
the notion of controllability in DES where the supervisor enacts control by disabling and enabling certain
actions in order to enforce the given goal. The inputs to the system are the set of Web services specified
in WS-BPEL and the requirements also specified in LTSs. Internally, we represent these Web services
using LTSs, Next, the proposed supervisory control framework based on LTSs is applied to synthesize a
controller that ensures that the given composition requirements are satisfied. A key novelty of this work is
the application of control theory to service-oriented computing and the incorporation of run-time input into
the supervisor generation process. The contributions that we make in this paper are as follows:

(I) We provide a novel supervisory control framework for automated composition of Web services, which
uses Labelled Transition Systems (LTSs) with guards and data variables to model a given set of Web
service specifications in industrial standard languages like WS-BPEL. The framework models the
interactions of services asynchronously and uses guards and data variables to allow us to express
certain preconditions which are then propagated from the system requirements through the overall
composite service. We provide insight into how to express and define functional requirements (data
and control flow) for a composition and then we provide a formalism for the problem of automated
composition based on controller synthesis.

(II) We then develop a set of algorithms based on the formalism provided to generate a controller satisfying
a given functional requirement also specified in LTSs. Beyond the standard disabling and enabling of
events, the generated controller in our framework has the ability to enforce certain events based on
run-time information to drive the system towards its goal. In addition, the controller is able to impose
restrictions on the kind of data or variables that can be sent or received by the services. This includes
the automatic generation of stronger guards or conditions which impose restrictions on which path to
take during execution.

(III) We demonstrate the correctness of our approach by stating a theorem on the existence of a controller
and providing a proof for this theorem.

The rest of the paper is organized as follows. First, in Section 2, we will provide a brief introduction to the
standard supervisory control theory of DES and then, we will describe informally the problem of automated
service composition by means of an illustrative example in the travel domain. In Section 3, we present
the formal language and various definitions that will serve as the basis for our formalism. In Section 4,
we develop the service composition framework based on the formalism provided in Section 3. We present
the set of algorithms for composition synthesis in Section 5 and in Section 6, we provide proofs for our
formalism. In Section 7 we discuss the relevant related work and in Section 8 we provide some concluding
remarks and an overview of future work.

3

2. Background

2.1. Supervisory Control Theory

In this section, we give a brief overview of the supervisory control approach of Ramadge and Wonham,
often called Ramadge Wonham Theory (RWT) [42]. They considered a DES modeled at an untimed level
of abstraction which relies on feedback control to restrict the system so as to achieve a given set of spec-
ifications. In this framework, the behaviour of a system is modeled with an FSM known as the plant G.
Events are represented by the transitions in G, and the language generated L(G) represents the behaviour of
G. That is, the language L(G) contains strings that may be unacceptable because they violate some rule or
nonblocking conditions that we wish to impose on the system. The undesirable behaviour could be states
where G blocks, through a deadlock or a livelock, or inadmissible states. To this end, the behaviour of G is
not satisfactory and must be controlled by restricting the behaviour to a subset of L(G). A supervisor S is
introduced in order to alter the behaviour of G.

In the basic model, the event set of G is partitioned into two disjoint sets, namely, the set of controllable
events Σc, meaning an event in Σ that can be disabled and the set of uncontrollable events Σuc, meaning an
event in Σ that cannot or should not be prevented from occurring. According to Cassandras et al. [14], an
event might be modeled as uncontrollable because it is inherently unpreventable or it models a change of
sensor readings not due to a command; it cannot be prevented due to hardware or actuation limitations; or
it is modeled as uncontrollable by choice, as an example when the event has high priority and thus should
not be disabled, or when the event represents the tick of a clock. Ideally, a supervisor is given by a function
S : L(G)→ 2Σ that maps the sequence of generated events to a subset of controllable events to be disabled.
The synchronous product of S and G is the marked language denoted by LM(S/G) that represents the
behaviour of the plant G under supervision of S. The work by Ramadge et al. [55] states the necessary
and sufficient conditions for the existence of a supervisor. In this framework, a specification given as an
FSM provides the desired behaviour of the plant, and is called the legal language E. A plant G is called
controllable with respect to a specification E if for any string s from the prefix closure of E, there are no
uncontrollable events e that could be generated by G at the state reached by s, such that se would not be
in the prefix closure of E. That is, if something cannot be prevented, it must be legal. The Supervisory
Control Architecture addressed by this work assumes that the plant spontaneously generates all events and
the role of the supervisor is to enable/disable controllable events (since S is not allowed to ever disable a
feasible uncontrollable event). The supervisor S guarantees not only deadlock-freedom (nonblocking) and
adherence to the specification E, but also minimal restrictiveness. These strong theoretical guaranteeness set
DES apart from other approaches.

2.2. Highlights of the Proposed Method

In the following, we will highlight some of the relevant concepts that are pertinent to the proposed
technique. Our approach lies between the event-based supervisory control [55] and state-avoidance control
problem [22]. However, our approach extends the basic control capabilities in these approaches as follows.
Apart from the supervisor being able to prevent certain events from occurring by properly disabling and
enabling controllable events, the supervisor is also able to prevent the system from reaching certain sets of
states designated as forbidden states by using run-time information of variables in the system. This is due to
the fact that some of the events in our model are black-box (atomic actions) in nature and may exhibit non-
deterministic properties. We deal with this non-determinism through model refinement and the adaptation
of event enforcement supervisory control theory [15]. Therefore, the generated supervisor not only restricts
the behaviour of the plant, but also has the opportunity to actively enforce certain events. In addition, the

4

generated supervisor is able to restrict the system by assigning stronger guards to data variables. This allows
us to control the data a service can send or receive.

The use of run-time information in our model is inspired by the fact that the services we model are
nondeterministic and partially controllable. That is, the outputs of a service cannot be predicted a priori
and some of the internal computations of a service are hidden from other external services. For example,
the information whether there are still seats available on a flight cannot be known until run-time or whether
there is enough cash in a customer bank account will only be available at run-time. Due to non-determinism
and the black box nature of some of the events in our model, the use of the classic supervisory control theory
in many cases will result in an empty controller or an overly restrictive controller.

Intuitively, in order to model services using supervisory control theory, we need to provide support for
(i) message exchanges (ii) data and variables (iii) conditions and (iv) information or data that may not be
known until runtime. Standard supervisory control theory may not be sufficient to model services or may
lead to an overly restrictive controller.

Let us illustrate the above discussions with the following example. Consider Figure 1 which models
an airline reservation system and its specification. For now we are not interested in the formal details of
this example; we will deal with this in subsequent sections. Figure 1(a) represents an airline system (plant)
which upon accepting a request, checks the availability of an airline and returns an offer if it is available.
Assume that Figure 1(b) is the system requirements to be met. The specification permits the plant to do
everything except for the transition from state S 4 to S 5 where there is a restriction on what branch to take
based on the value of the variable. Assume the transitions labeled checkAirlinesAvail(date, loc :: av) and
processBooking() are not controllable. Now, at state S 4 the specification allows the plant to transition to
state S 5 only if the value of the variable av is either KLM or Delta; anything else is not allowed. The use
of the classic DES will never allow the plant to reach state S 4 which implies that the system will receive a
request but will never return a response, which does not make much sense in the service domain. In other
words, it will be overly restrictive if the classic DES is applied directly. The use of supervisory control based
on extended finite state machines would also not work, since the value of the variable av is unknown and
can not be tracked until state S 4. The event checkAirlinesAvail(date, loc :: av) is assumed to be black-box,
i.e., the effect that it has on variables are not known.

2.3. Service Composition Problem
In this section, we present the composition problem by means of an example. The example described

here is a modified version of a well-known example for illustrating Web service composition in the busi-
ness domain. As mentioned above, the service composition problem comes into play when a request to a
service (component service) is not satisfied by a single service and then multiple services are identified and
constructed into a new service (composite service) to satisfy the request or the desired functionality through
orchestrating the services involved.

Let us consider a Flight Reservation and Purchase System (FRPS) that offers customers travel packages
by allowing customers to make a reservation for a specified airline and to make payment in order to reserve
the flight. All interactions are managed by Web services. The objective of the Flight Reservation and
Purchase System can be attained by composing an Airline Service, a Bank Service, a Hotel Service and
an On-line Customer Interface Service. We assume that these services are represented in WS-BPEL. The
main challenge is how to compose these services so that the user can directly ask the combined service to
reserve and purchase a ticket satisfying some given system requirements. In the following, we will provide
an informal description of these services.

• Airline Service: The Flight service is designed to receive requests for booking a specified flight for a
given date and location. It checks an internal database for flight availability, and sends an offer with

5

S 1start

S 2

S 3

S 4

S 5

S 6

S 7

S 8

S 9

!fRequest(date, loc)

?fRequest(date, loc)

checkAirlinesAvail(date, loc::av)

processBooking()
[(av = KLM) ∨ (av = AirCanada) ∨ (av = Delta)]

!booked(itinerary)

?booked(itinerary)

!notAvail()

?notAvail()

(a) S 1

S 1start

S 2

S 3

S 4

S 5

S 6

S 7

S 8

S 9

!fRequest(date, loc)

?fRequest(date, loc)

checkAirlinesAvail(date, loc::av)

processBooking()
[(av = KLM) ∨ (av = Delta)]

!booked(itinerary)

?booked(itinerary)

!notAvail()

?notAvail()

(b) S 2

Figure 1

a cost and a flight schedule in response to the client’s request. The client can either accept or refuse
the offer; if the client decides to accept the offer, the FRPS will book the flight and provide additional
information such as an electronic ticket.

• Bank Service: The Bank service is designed to receive a request to check that a credit card, debit card
or money order can be used to make a payment and provides an option for its clients to check their
current balance or withdraw from the account to make a payment for a purchase. The transaction may
fail if the card provided is not valid or if there are not sufficient funds in the client’s accounts.

• Hotel Service: The Hotel service accepts requests for providing information on available hotels for
a given date and a given location. It checks for the availability of hotels and selects a specific hotel
based on the client’s request and returns an offer with a cost and other hotel information. The external
service that invoked the Hotel service can choose to refuse or accept the offer. In case of acceptance,
the hotel proceeds with the booking and sends a confirmation message to the client.

• On-line User Interface Service: This service serves as a customer interface through which the client
can interact with the Flight Reservation and Purchase System. It receives input messages from the user
and in return sends output messages to the user and also facilitates interactions among the available
services.

The following is a typical sequence of events that can take place when making a reservation using the above

6

services. The customer makes a travel reservation by sending a request through the On-line User Interface
Service to the Flight Reservation and Purchase System. The request is received by the Flight Reservation and
Purchase System which may specify the type of airline (example, KLM, Delta or Air Canada), the location
and the time of travel as well as the details of the hotel the customer wants. The Flight Reservation and
Purchase System checks for the availability of a flight based on the information provided by the customer
and a given system requirement, and returns an offer to the customer if available, otherwise a failure message
is generated. In case an offer is sent to the customer, he or she may decide to accept or cancel the offer. In
the event that the customer accepts to purchase the ticket, then the Flight Reservation and Purchase System
proceeds to check the customer’s credit card or authenticates his or her debit card or any other means of
payment and finally transfers an appropriate amount of funds from the client’s bank account to the airline’s
bank account. Composing these services must take into account certain business constraints such as the
following: (1) The Hotel service should not be booked if the flight is not available. 2) The client can make
payment using either a debit card or a credit card but not money order payment. 3) The composed service
should process only flight reservations involving KLM or Delta Airlines but not Air Canada. 4) The customer
must accept the offer before his or her bank account is charged.

3. Service and Supervisory Control Theory Representation

In this section, we discuss a well known formal model known as Labelled Transition Systems which
can be used to express services represented in the standard WS-BPEL/WSDL. That is, in order to represent
services we use Labelled Transition Systems augmented with guards and variables which have semantics
similar to most existing service description languages (e.g., WSDL, WS-BPEL) and can easily be modeled
and manipulated to provide a solution to the composition problem. As noted before, basic supervisory
control theory utilizes finite state machines (FSM) for modeling systems which falls short when it comes
to service representations with variables and data. Labelled transition systems extended with data variables
and guards which we will refer to as a Service Labelled Transition System (SLTS) have the ability to model
the manipulation of data conveniently, and to support compact representation of models relative to FSM.
In addition, finite state machines are not sufficient to represent reactive systems and systems that store and
exchange data information. A Service Labelled Transition System will have infinitely many states whenever
the variables take their values from an infinite domain (often called Symbolic Transition Systems). Hence,
an SLTS can have an infinite number of states. However, in this paper, we consider a deterministic finite
state SLTS which takes its variables from a finite domain. Before going into the details of our formalization,
we will first formally define the notion of an SLTS and its properties.

3.1. The Web Service Labelled Transition System (SLTS)

In this paper, we assume that each WS-BPEL/WSDL of a Web service is formally represented as a
Service Labelled Transition System. In the literature this formal language is often referred to as a guarded
automaton [21]. It is essentially an Extended Finite State Machine (EFSM) [49] without an update function
or an action language.

The formal model we present here consists of a set of states which model the dynamism of a system. The
evolution of the system from one state to another is determined by its current state and the evaluation of a
guard of a transition. We distinguish among four kinds of events, namely, input actions, which represent the
reception of messages, output actions, which represent messages sent to external services, atomic actions
which may modify the value of a variable arbitrarily, and a special action τ, which represents an internal
unobservable event.

7

Definition 3.1. A Service Labelled Transition System is modeled by a tuple
GW = (S,S0,I,O,A,Γ,SF) where

• S is a finite set of states

• S0 ⊆ S is the set of initial states

• Σ = I ∪ O ∪ A ∪ {τ} is the set of events (i.e, set of actions), where I, O, A denote the set of input
messages (denoted ?m(−→x)), outputs messages (denoted !m(−→x)) and atomic operations, respectively,
and I ∩ O = ∅, and τ represents an internal unobservable event

• V = {v1, ..., vn} is a finite set of data variables over a given domain

• Γ ⊆ S × (I ∪ O ∪A) ×G × S is the transition relation, where G is the set of guards over a subset of
the variables in V

• SF ⊆ S is the set of final states

We employ infix notation and we write s
e[g]
−−−→ s′ as shorthand for (s, g, e, s′) ∈ Γ. A tuple λ ∈ Γ,

λ=s
e[g]
−−−→ s′ is a transition in GW , where e ∈ Σ, and g is a guard in G, a condition or a predicate defined

over variables and formulas. The absence of an explicit guard on a transition means that the condition is
always true. The dynamics of an SLTS depends on the current stage of the system and on the valuation of
the transition guards with respect to the current value of a variable. In the sequel, let Σ∗ denote the set of all
finite strings of the form α1α2...αn of events from Σ, including the empty string ε.

The possible behaviour of an SLTS is modeled by the set of executions. The execution of an SLTS is

represented by the set of all possible runs. A run of an S LTS is a sequence of transitions r = s0
α0[g0]
−−−−→

s1
α1[g1]
−−−−→ ...

αn−1[gn−1]
−−−−−−−→ sn such that ∀i < n, si

αi[gi]
−−−−→ si+1 ∈ Γ and the trace of the run is given by α1α2...αn−1.

The language generated by an SLTS, denoted by L(Gw), is the set of words L(Gw) ={w ∈ Σ∗|s0
w[g]
===⇒ y,

s0 ∈ S
0, y ∈ S} where s0

w[g]
===⇒ y denotes a multi-step transition relation which is defined inductively as a

finite sequence of applications of a transition relation which produces a state y that a sequence of events
leads to from the initial state s0 and g denotes a sequence of guards.

The formal language that we define here differs from extended finite state automata [49] in that we do
not require an update function. Hence, in some cases it becomes impossible to track the values of variables
in our model. That is, there is no action language, but we assume the updating of variables is done internally,
which makes it difficult to track the values of variables.

We distinguish between two kinds of transitions, the first one is a static transition s
e
−→ s′ which does

not depend on a variable; the guard of this transition is always true and is triggered when the event on the

transition takes place. The second type of transition is a dynamic transition s
e[g]
−−−→ s′ which has non-trivial

guards that depend on a variable which is fired only if the guards on the transition evaluates to true and the

event has occurred. For example, in Figure 1(a), the transition S 1
! f Request(date,loc)
−−−−−−−−−−−−−→ S 2 is a static transition

whereas the transition S 4
processBooking() [(av=KLM)∨(av=AirCanada)∨(av=Delta)]
−−−→ S 5 is a dynamic transition.

Definition 3.2. Subguards
Let g1 and g2 be two guards. We call g2 a subguard of g1 denoted by g2 ≤ g1, if g2 is stronger than g1, i.e.,
g1 ∧ g2 = g2.

8

In order to model behaviours common to two or more SLTSs, we define parallel product in such a way
that an event can be executed only if it is contained in all the SLTSs involved. This will allow us to model
multiple requirements of a system. For example, given LTS 1 and LTS 2 specifying certain given system
requirements, an event is allowed to occur only if it is allowed in both SLTSs.

Definition 3.3. Parallel Product
Given two SLTSs GW1 = (S1,S

0
1,I1,O1,A1,Γ1,S

F
1) and GW2 = (S2, S

0
2, I2, O2, A2, Γ2, S

F
2) their parallel

product is given by GW1×GW2 = (S1 × S2,S
0
1 × S

0
2,I1 ∪ I2,O1 ∪ O2,A1 ∪A2,Γ1 × Γ2,S

F
1 × S

F
2) such that

the transition relation Γ1 × Γ2 is defined as follows.

• (s1, s2)
α[g]
−−−→ (s′1, s

′
2) ∈ Γ1 × Γ2, α ∈ Σ1 ∩ Σ2 if s1

α[g]
−−−→ s′1 ∈ Γ1 and s2

α[g]
−−−→ s′2∈ Γ2,

• Undefined otherwise

In the parallel product, the transitions of two SLTSs must always synchronize on shared events Σ1 ∩ Σ2,
where Σ1 = (I1 ∪ O1 ∪A1) and Σ2 = (I2 ∪ O2 ∪A2).

Analogous to the standard SCT where the legal language is a sublanguage of the plant, in our framework
we use the notion of a simulation relation to describe the relationship between a system (plant) and a given
specification, both modeled as SLTSs.

Definition 3.4. Simulation Relation with Guards
Given two SLTSs GW1 = (S1,S

0
1,I1,O1,A1,Γ1,S

F
1) and GW2 = (S2, S

0
2, I2, O2,A2, Γ2, S

F
2), GW2 simulates

GW1 if there exists a relation R ⊆ S1 × S2 such that ∀(s1, s2) ∈ R, if s1
α[g1]
−−−−→ s′1 ∈ Γ1 then ∃ s′2,∃ g′ such that

s2
α[g′]
−−−→ s′2 ∈ Γ1 and g1 ≤ g′ and (s′1, s

′
2) ∈ R.

That is, every transition taken by GW1 can be matched by GW2 . In essence, when the two SLTSs are
represented as their respective execution trees (i.e, a possible infinite unfolding of a given SLTS) often
GW1 � GW2 means that GW1 is a subtree of GW2 .

3.2. Service Representation
In our framework, we assume that Web services are described in WS-BPEL; based on this we automati-

cally extract the SLTS models. Formally, we model a service as an SLTS as defined above. We also assume
that the available Web services reside in a repository in which we select the required services that meet a
given functionality. As defined above an event α ∈ Σ of an SLTS could be an input message, an output
message, an atomic operation or an internal action.

Input and Output Messages: We denote a reception of a message as ?m(−→t) and an emission of message
as !m(−→t), where m is the name of the message also known as the message header, and t is the set of data
parameters or variables. The symbols ? and ! are used to denote the direction of messages. Variables are
local to a service and only one service can modify a variable.

Atomic Operations: Operations such as function invocations are denoted by nameOperation(I::O) with
input parameters I and output parameters O. Atomic operations are indivisible functions that can modify the
variables in a service. The atomic operations/functions that we consider here are similar to atomic processes
defined in OWL-S and BPEL, which can access and modify the variables of a Web service. OWL-S defines
an atomic process as a non-decomposable Web-accessible program. It is executed by a single (e.g., http)
call, and returns a response. It does not require an extended conversation between the calling program or
agent. We assume that these atomic functions are local to a given service. The atomic operation, e.g.,
f unction(i1, i1 :: o1, o2) takes as inputs a set of variables {i1, i1} and returns a set of variables {o1, o1} as

9

output. The effects that the atomic operation has on its output variables are not visible to the entire system.
It can be observed that there are many cases where it will not make sense to assume static information about
Web services. In a dynamic environment, Web services information may change while the Web service
procedure is operating at runtime. Typical examples are the following: whether a product is in stock, how
much it will cost or how much has been bid for it, what the weather is like, what time a train or airplane
will arrive, what seats are available for an airplane or a concert, what shipping facilities are available for a
shipping request, all of which are unknown before runtime. The output of an atomic function in our model
depends on the time and the circumstances of invocation. That is, the output of the atomic operation depend
not only on the available input, but also on the current state of the whole system. In addition, we assume
that the service providers keep details about the atomic operations secret. For example, if a service solves
sophisticated routing problems, the service provider does not want the description of the service to reveal
how the results are computed. Due to the nondeterministic nature of atomic operations, we treat them as
black-box events.

We model input messages and atomic functions as uncontrollable since we cannot control inputs from
the user. We assume that no service can deny an input action from other services, while it is completely up
to the service to control its outputs. On the other hand, output messages from the system are modeled as
controllable. In the context of Web services a guard (g) represents the preconditions on variables. Internal
actions represent internal unobservable computations of a service but we will not model such behaviours
in this paper. Figure 2 below shows the SLTS representations of the four component services of the Flight
Reservation and Purchase System example introduced in Section 2.3.

4. Supervisor Aware Service Composition Architecture (SASCA)

4.1. Controller Synthesis for Service Composition
In this section, based on the representation of services using SLTSs, we formalize the problem of com-

posing Web services, and we describe its solution by means of supervisory control theory of discrete-event
systems. Our model of synthesized Web services relies deeply on message passing, interaction with data and
actions. The composition problem that we consider here is as follows: given a set of available services GW1 ,
GW2 , . . . ,GWn and a set of specifications TW representing the goal (or desired) service over the same environ-
ment (same set of atomic actions), we would like to construct a controller C satisfying some controllability
and nonblocking constraints which interacts with the available services to satisfy the specificationTW . Thus,
C serves as a controller that restricts the system in such a way that all its executions satisfy TW and so that
C is maximally permissive. In addition to requiring that the generated controller satisfies the controllability
and nonblocking criteria, the controlled system is also free of errors that may result from communication
among component services. We assume that both the available services and the goal service are expressed
in SLTSs as defined above. Figure 3 shows the basic architecture diagram for the SASCA framework. The
inputs to the system are the set of component Web services specified in WS-BPEL and the requirements are
specified as SLTSs. We then provide a translator to generate the SLTSs representations from the WS-BPEL
descriptions of the available services. The diagram shows the important internal representations from when
the input enters the system to when a controller is generated. The framework also depicts an intermediate
preprocessing step of the plant to achieve a more refined model suitable for composition synthesis. The final
output of the synthesis is a WS-BPEL executable file. In the rest of this section, we discuss the core details
of our approach including relevant definitions and theorems.

4.2. Asynchronous Communication and System to be Controlled
In our formalism, we use asynchronous communication to model the interaction among the available

services. Synchronous semantics requires that during a message exchange, the sender and the receiver have

10

S 1start

S 2

S 3

S 4

S 5

S 6

S 6

? f Request(date, loc)

checkAirlinesAvail(date, loc :: av)

processBooking()
[(av = KLM) ∨ (av = AirCanada) ∨ (av = Delta)]

!o f f er(in f or)

?con f irmed()

?o f f erRe jected()

!notAvail()

!booked(itenary)

(a) The SLTS GW1 of an Airline Service

S 1start

S 2

S 3

S 4

S 5

S 6

S 7

S 8

?hRequest(date, loc)

checkHotelsAvail(date, loc :: av)

!o f f er(cost, hotelDetails)
[av = T]

?o f f erCon f irmed()

!booked(hotelIn f or)

?cancel()

!notAvail()
[av = F]

(b) The SLTS GW2 of a Hotel Service

S 1start

S 2

S 3S 6

S 4

S 5

?authenticate(card, payType)

creditC
ard(card

::
status)

[payT
ype

=
cc]

[payT
ype

=
m

o]

m
oneyO

rder(card
:: status)

debitC
ard(card

::
status)payT

ype
=

db]

!authorized()

[status = ok]

!notAuthorized()

[status = f ail]

?requestBalance()

!availableBalance()

?orderCon f irmed()

!tran f erApproved(receipt)

(c) The SLTS GW3
of a Bank Service

Figure 2: Available Component Services for Flight Reservation and Purchase System
11

S 0start S 1 S 2

S 2

S 4

S 7

S 8

S 10

S 12

S 13

S 14

S 5

S 6

S 9

!fRequest(date,loc) ?!offer(infor)

?notAvail()

!hRequest(date,loc)?notAvail

?offer(c,hd)

!fRequest(date,loc) ?offer(infor)

!offerConfirmed

!authenticate

!cancel

!offerRejected()

!confirmed()

!authenticate

?notAuthorized()

?authorized()

!notAvail()

!offerRejected

!confirmed

!hRequest(date,loc)

?offer()

!offerConfirmed()

?notAvail

!cancel

!requestBalance()

?transferApproved()

?booked(itininary)

(d) The SLTS GW4 of an On-line Interface Service

Figure 2: Available Component Services for Flight Reservation and Purchase System

12

Figure 3: Supervisor Aware Service Composition Architecture (SASCA)

to synchronize the send and receive actions, and the sender blocks until a reply is received. However, in
the domain of Web services where component services are dynamically discovered and plugged in to ob-
tain a composite service (loosely coupled), using synchronous semantics may go a long way to limit the
applicability of our model. Hence, in this paper we assume that Web services interact in an asynchronous
fashion. Asynchrony can be achieved by employing unbounded memory to store the variables and param-
eters exchanged among component services. However, in this work the way we model service interactions
does not take into consideration how the messages are stored and retrieved. Asynchrony eliminates the situ-
ation where the sender halts its process and wait for a reply from the receiver. The asynchronous semantics
that we adopt here make implementation easier compared to synchronous semantics, however, it is very
hard to reason about communication systems modeled using asynchronous semantics. In general, modeling
the composition of communicating systems could result in various undesirable behaviours such as unspec-
ified receptions and non-executable interactions of the system [58, 12]. We will refer to these undesirable
properties (unspecified receptions and non-executable interactions) as communication design errors.

The framework we propose has two inputs as shown in Figure 3, the composition requirements TW and
the set of component Web services with SLTSs as GW1 , GW2 , . . . , GWn . The set of available services GW1 ,
GW2 , . . . , GWn evolves independently, but together they form a combined system GW whose behaviours we
need to control. The individual component services cannot communicate among themselves; in order to
exchange messages a controller is generated to mediate the interactions among component services. In the
supervisory control domain, GW models the plant which represents the set of possible behaviors. As a first
step in the composition process we obtain GW by combining the set of available services whose SLTSs is
given by GW1 , GW2 , . . . , GWn by means of an Asynchronous Parallel Composition which captures the notion
of asynchronous communication [25].

Definition 4.1. Asynchronous Parallel Composition
Given two SLTSs GW1 = (S1,S

0
1,I1,O1,A1,Γ1,S

F
1) and GW2 = (S2, S

0
2, I2, O2, A2, Γ2, S

F
2) their asyn-

chronous parallel composition is given by GW1 ‖ GW2 = (S1 × S2,S
0
1 × S

0
2,I1 ∪ I2,O1 ∪ O2,A1 ∪A2,Γ1 ‖

Γ2,S
F
1 × S

F
2) such that the transition relation Γ1 ‖ Γ2 is defined as follows.

• (s1, s2)
α[g1]
−−−−→ (s′1, s2) ∈ Γ1||Γ2, if s1

α[g1]
−−−−→ s′1 ∈ Γ1

13

• (s1, s2)
α[g2]
−−−−→ (s1, s′2) ∈ Γ1||Γ2, if s2

α[g2]
−−−−→ s′2 ∈ Γ2

• Undefined otherwise

Definition 4.1 can be extended to n services by observing that it is associative, i.e., (GW1 ‖ (GW2) ‖
GW3 = GW1 ‖ (GW2 ‖ GW3). Therefore, without ambiguity we can write GW1 ‖ GW2 ...‖ GWn to represent
the composition of multiple Web services. The definition of asynchronous parallel composition given above
is defined so that the output from one service is consumed by the input of another service to produce an
internal action such that the guards on both the output and input transitions are satisfied. In addition, we
allow individual services to make independent moves. Definition 4.1 describes all possible behaviours of
a given set of available services. We assume that the available services do not interact among themselves;
any form of communication is through the supervisor. Hence, we require that the input (output) messages of
a service are disjoint from the inputs (output) of another service. Atomic operations are local to a service.
Generally, variables of a service have local scope and hence, each service refers to different internal variables.
In cases where the name of variables conflicts among the components services, we assume appropriate
relabeling of variables will be made to resolve the conflicts. Figure 4 illustrates Definition 4.1 with an
example without guards on transitions. The SLTS in Figure 4(c) represents the asynchronous composition
of SLTSs in Figure 4(a) and Figure 4(b).

Given a set of available services, forming the asynchronous parallel compositionGW=GW1 ‖ GW2 ... ‖ GWn

could result in communication errors. This leads us to the second step of our composition process in the next
section.

4.3. Preprocessing Design Errors

Applying Definition 4.1 to combine the available services may result in two main communication de-
sign errors: cases where messages are sent to a service but it is unable to receive them and cases where
a service expects a message which another service is unable to provide. That is, given the system to be
controlled which represents the asynchronous parallel composition of available services GW = GW1 ‖ GW2 ...‖
GWn , GW may contain the following errors as defined below. We want the combined set of services to be
free from communication errors. Consider for instance an airline service that provides several functionali-
ties and is able to receive requests to book different kinds of flights from customers including book KML,
book Air Canada, book Ethiopian airline and so on. In this situation, the airline service may be providing
more functionalities than what a particular client service actually needs. Therefore, it will be necessary to
make the airline service cooperate with the client service by restricting its set of messages to a subset of the
client’s request.

An unspecified reception is a situation where one service can send a message at a reachable state, but
other services are not able to receive it. That is, the SLTS description of a service contains an emission that
cannot be consumed by the related component services involved in the composition. Consider Figure 5(a)
and Figure 5(b), S 1 and S 2 can communicate based on the message headers requestFlight and flightOffer,
however when S 2 is in state s1, it is capable of sending an additional message !searchFlight which cannot
be consumed by S 1. In the following, we formally define unspecified receptions.

Definition 4.2. Unspecified-receptions

Given an SLTS GW = (S,S0,I,O,A,Γ,SF) of a web service, a transition s j
!m(x)[g j]
−−−−−−→ s j+1 ∈ Γ is an unspec-

ified reception, if for a given execution or run r = s0
α0[g0]
−−−−→ s1

α1[g1]
−−−−→ . . . s j

!m(x)[g j]
−−−−−−→ s j+1 . . . sn−1

αn−1[gn−1]
−−−−−−−→ sn

of GW there is no i > j such that si
?m(x)[gi]
−−−−−−→ si+1 ∈ Γ.

14

s0start

s1

s2

!m1(x)

!m2(z)

(a) GW1

s′0start

s′1

s′2

?m1(x)

opera(x, y)

(b) GW2

s0, s′0start

s0, s′1

s1, s′0

s1, s′1 s2, s′2

s2, s′1

s1, s′2

s2, s′0

s0, s′2

?m1(x)

!m1(x)

!m2(z)

opera(x, y)

!m2(z)

opera(x, y)

?m1(x)

!m1(x)

?m1(x)

!m1(x)

opera(x, y)

m2(z)

(c) GW1 ‖ GW2

Figure 4: Asynchronous Parallel Product

Similarly, non-executable interactions refer to a situation in which one service is able to receive a mes-
sage that has not already been sent by some other service. This results in additional unmatched receptions.
For instance, in Figure 5, when S 1 and S 3 are combined by asynchronous parallel composition, the com-
bined system will be stuck at a state in which S 1 will be waiting on the reception of ?flightOffer at state s1
while S 3 will be waiting on either the reception of ?searchFlight or ?requestHotel which is not being sent
by any of these services.

Definition 4.3. Non-executable interactions
Given an SLTS GW = (S,S0,I,O,A,Γ,SF) of a Web service, a transition s j

?m(x)[g j]
−−−−−−→ s j+1 ∈ Γ is non-

executable interaction if for a given execution or run r = s0
α0[g0]
−−−−→ s1

α1[g1]
−−−−→ . . . s j

?m(x)[g j]
−−−−−−→ s j+1 . . . sn−1

αn−1[gn−1]
−−−−−−−→

sn of GW if there is no i < j such that si
!m(x)[gi]
−−−−−−→ si+1 ∈ Γ.

That is, if there is a transition in the trace that expects an input message (?m(−→x)) but there is no corre-
sponding output message (!m(−→x)) on a transition that precedes the input message.

Definition 4.4. Communication-Error Free SLTSs

15

An SLTS GW = (S,S0,I,O,A,Γ,SF) is said to be communication-error free if it is free from unspecified
receptions and non-executable interactions.

s0start

s1

!requestFlight

? f lightO f f er

(a) S 1

s0start

s1

?requestFlight

! f lightO f f er

!seachFlight

(b) S 2

s0start

s1

s2 s3

?requestFlight

?searchFlight ?requestHotel

(c) S 3

Figure 5: Unspecified-receptions and Non-executable interactions

In order to ensure freedom from non-executable interactions and freedom from unspecified receptions
in the composition system, we perform a prefiltering step as part of our composition generation process to
refine the system to be controlled. Given the SLTS GW representing asynchronous parallel composition of
the available services, we perform a refinement or preprocessing on GW to get a communication-error free
SLTS. We denote a plant which is a valid SLTS or the refined plant as Ref(GW). This preprocessing step
removes all paths that contain any unspecified and non-executable interaction errors from the original plant.
This does not affect the functionality of the system, since we want to consider a communication-error free
set of communicating services. That is, once the services are composed, input (output) messages that are not
consumed by other services will become useless and may obstruct system progress.

4.4. Composition Requirements

The composition requirements are also given as SLTSs which specify the possible accepted interactions
that must hold in the composition. We require that the system requirements to be satisfied be clearly specified
in terms of its input/output messages and atomic operations that would be made available to other services.

16

We also assume that the SLTSs of the specification are also communication-error free by Definition 4.4.
There could be multiple specifications. In that case, we use parallel product to put them together. Intuitively,
a supervisor in this case will be one that guarantees that all specifications are achieved. We assume that
the designer of the specification is aware of the set of services available and must specify the specification
in such a way that it is simulated by the combined services. In the case that the specification cannot be
simulated by the plant, then further refinement must be done. This refinement can be done manually or
automatically. However, we do not discuss that in this paper.

In this framework, specification can take one of the following forms: (i) A composition requirement can
specify a set of constraints on the ordering of events and actions. A typical example of these constraints in
our flight booking system is that the credit card of the user must be verified by the Bank service before a
booking confirmation is delivered to the customer. Another ordering requirement could be that the Flight
service must confirm flight availability before the hotel is booked. In other words, the hotel should not be
booked if the flight cannot be booked. A simple SLTS specification expressing this composition requirement
is depicted in Figure 6(a). We assume that self loops would be used at certain states to indicate that other
transitions are allowed to occur at those states. ii) Another form of composition requirement is to specify
stronger guards that limit the values that can be taken by a variable or a data parameter from a given domain.
This can be used to restrict the values of a variable that can be sent or received by services. In Figure 6(b),
the SLTS specifies that the airline service from our running example can accept reservations for only KLM
and Delta ((av = KLM) ∨ (av = Delta)) but not Air Canada. This specification restricts the values of the
variable av. Hence, a correct composition must not allow Air Canada reservations to be made. Figure 6(c)
also specifies the kind of payment that can be made by a client to the Flight Reservation and Purchase
System. The SLTS specifies that the system can only accept payment made by credit card or debit card. iii)
One can also explicitly specify a set of forbidden states that the system should not reach during execution.
For example, a specification that specifies that the cost of a product c should not exceed a limit m, i.e., c < m
implies that c ≥ m leads to an unsafe state.

4.5. Controller Synthesis

In this section, we study how to synthesize a controller that will ensure that the system's behaviour
satisfies the given requirements. We assume that the system to be controlled is given by the asynchronous
parallel composition of the available servicesGW1 ‖ GW2 ...‖ GWn and the system requirements (target service)
are given by TW . Now, we require that the asynchronous parallel composition of the available services
simulates the goal services. That is, TW � GW . In the case that it does not simulate the goal service
we perform refinement on the target services. The following definition specifies the parallel product with
refinement to safe (good) and forbidden (bad) states.

Definition 4.5. Composition Refinement
Given two SLTSs GW1 = (S1,S

0
1,I1,O1,A1,Γ1,S

F
1) and TW = (S2, S

0
2, I2, O2, A2, Γ2, S

F
2) representing

the plant and the specification respectively, we can compute their parallel product as well as refine the plant
with respect to the specification in such a way that the behaviour not allowed by the specification end in
bad or forbidden states in the plant. A bad or forbidden state is a state reachable in GW1 but not in TW .
The composition refinement of the plant and the specification denoted by GW1 ×re f T

W is given by C0 =

(S1 × (S2 ∪ {sBad}),S0
1 × S

0
2,I1 ∪ I2,O1 ∪ O2,A1 ∪ A2,Γ1 × Γ2,S

F
1 × S

F
2), where sBad denotes a bad or

forbidden state and the transition relation Γ1 × Γ2 is defined as follows.

• (s1, s2)
α[g1∧g2]
−−−−−−→ (s′1, s

′
2) ∈ Γ1 × Γ2 and (s1, s2)

α[g1∧¬g2]
−−−−−−−→ (s′1, s

Bad) ∈ Γ1 × Γ2, if s1
α[g1]
−−−−→ s′1 ∈ Γ1 and

s2
α[g2]
−−−−→ s′2 ∈ Γ2

17

s0start

s1

? f light.booked()

?hotel.booked()

(a) S 1

s0start

s1

? f light.booked()
processBooking()

[(av = KLM) ∨ (av = Delta)]

(b) S 2

s0start

s1

creditCard(card :: status), debitCard(card :: status)
[payType = cc ∨ payType = db]

!bank.notAuthorized()

(c) S 3

Figure 6: Composition Requirements for Flight Booking Example

• (s1, s2)
α
−→ (s′1, s

Bad) ∈ Γ1 × Γ2, if s1
α
−→ s′1 ∈ Γ1 and s2

α
−→ s′2 < Γ2

• Undefined otherwise

The first item of the definition creates two new transitions in C0 (the refined SLTS) with the same events

but different guards. Intuitively, The first transition given by (s1, s2)
α[g1∧g2]
−−−−−−→ (s′1, s

′
2) replaces the guards of

C0 with that of the specification and the resultant state is a state allowed by both the plant and the speci-

fication. The second transition given by (s1, s2)
α[g1∧¬g2]
−−−−−−−→ (s′1, s

Bad) is essentially the same as the former,
however the guard of the latter transition is g1 ∧ ¬g2 which results in a new state allowed by the plant but
unsafe in the specification. The second item of the definition creates a new transition in C0 if an event is
allowed by the plant but not legal in the specification.

Now the set of states of C0 is given by Y=S1 × (S2 ∪ {sBad}). A state (s1, s2) ∈ Y is said to be forbidden
if s2 = sBad. That is, it is a bad state. We will denote SBad as the set of bad states of C0. That is the set of
states reachable in GW1 but not in TW . The state (s1, s2) ∈ Y is safe if s2 , sBad. States that are not in SBad

are called safe or good states denoted by SGood
C0 . Now, by strengthening the guards of C0 with respect to the

18

plant so that forbidden states in C0 are not reachable we obtain a new SLTS which we will call a safe SLTS
of C0. We will show how to strengthen the guards of C0 later on in Algorithm 5 of Section 5.

We assume that the set of events Σ is partitioned into three disjoint subsets namely, controllable events
Σc⊆ Σ, uncontrollable Σuc⊆ Σ and enforceable events Σ f⊆ Σ . Controllable events can be disabled by
the controller while uncontrollable events cannot be prevented from occurring. In addition, the enforceable
events are special events that can be enforced by the controller. They are able to preempt both controllable
and uncontrollable events at run-time but not static transitions. We do not assume any relationship between
the set of controllable and enforceable events at this moment. The notion or the intent of control in this
framework involves the following techniques. That is, the controller exert control as follows. Firstly, the
generated controller prevents the system from firing or taking a particular path that violate the control re-
quirement and secondly, it also prevents the system from reaching states designated as forbidden. In order
to achieve the above control goals the supervisor enacts control based on the following three control criteria:

1. Disabling of controllable events on a transition (static transition)
2. Assignment of stronger guards to controllable transitions (transitions whose events are controllable)
3. Enforcement of enforceable events

To develop our control synthesis algorithms and strategies, we assume that the system evolves from one
state to another based on the kind of transitions (static or dynamic transitions) at a given state. Thus, it is
imperative to study the kind of transitions at a given state. We will explore the notion of control based on
whether the transition is static or dynamic, or whether the values of the variable used on the transition can be
tracked or not. Once, we have generated C0 from the Definition 4.5, we will iteratively pare down C0 until it
satisfies the requirements.

Static Transition Case: Given a static transition (i.e., a transition with the trivial guard “true”), if this
transition is associated with a controllable event which is allowed by the plant GW but that violates system
requirements, then we assume that this transition will be disabled by the supervisor. However, if the event
associated with this transition is an uncontrollable event, then we must ensure that this static transition does
not occur in the plant. For a static transition if the specification does not allow it, we will not allow the
system to reach a state where it can occur.

Dynamic Transition Case (Dynamic Type 1 Transition): Let GW1 = (S1,S
0
1,I1,O1,A1,Γ1,S

F
1) and

GW2 = (S2,S
0
2,I2,O2,A2,Γ2,S

F
2) be two Web services, and suppose that the transition t1 = s1

!m(v1)[g1]
−−−−−−−→

s′1 ∈ Γ1 is an emission of a variable v1 from GW1 to GW2 and t2 = s2
?m(v1)[g2]
−−−−−−−→ s′2 ∈ Γ2 is reception of v1

by GW2 . Now, if the variable v1 (the content of the message !m(v1)) has not been modified from its original
value at the state where it was defined or last assigned until the state at which it is actually used, then the
value of v1 has not changed. This implies that we can easily track the value of the variable v1 in the message
from the service that sent it to the receiving service. Now, at the state that this variable is being used, if there
is a condition on a transition (t2) from this state that imposes a restriction on the set of values the variable can
take, then we need to make sure that the guard on t1 is never true for those values to prevent the system from
reaching an illegal state. Hence, the supervisor can enact control by restricting the value of the variable at the
sending service side before it would be received by the receiving service. The control strategy employed to
deal with this kind of transition is to assign stronger guards to a controllable transition. Hence, we generate
the guard g1 ∧ ¬g2 and attach it to the transition t1. In our example above, the Bank service Figure 2(c) can
accept a debit card, credit card or money order as a means of payment, but the specification in Figure 6(c)
prevents a payment with money order. To satisfy this constraint, we put a condition on the transition of
the service that will send a request for payment to the Bank service not to send a request for money order
payment.

19

Dynamic Nondeterministic Transition Case (Dynamic Type 2 Transition): This case deals with
atomic operations whose output value is unknown until runtime. This introduces an issue of nondeter-
minism into our model. Since the values of the variable are unknown until runtime we cannot treat this
case in the same way as the previous case. During design time we will classify certain events (e.g., fail-
ure message events) as enforceable events. If such a transition does not exist we will introduce a new
transition into the plant and the specification. To be able to prevent transitions that may cause a specifi-
cation violation and that have guards containing outputs of atomic operations, we will rely on enforceable
events to preempt uncontrollable events from happening when the output of the variable from atomic op-
erations violates a specification. That is, if a failure could occur in the system due to values associated
to atomic operations, then enforceable transitions are used to preempt the failure. This can be done by
modification of the plant [15, 54]. Consider Figure 2(a), the transition from state S 2 to S 3 labeled with
checkAirlinesAvail(date, loc :: av) has an output variable av which can take KLM, AirCanada or Delta as
its values. The operation checkAirlinesAvail(date, loc :: av) is assumed to be black-box, so we do not know
which value it will assign to av. Now, the specification in Figure 6(b) limits the values that av can take to
only KLM and Delta. To ensure that the transition from state S 3 to S 4 in Figure 2(a) is never taken when the

value of av is AirCanada, we mark the transition S 3
!notAvail()
−−−−−−−→ S 1 in Figure 2(a) as a enforceable transition.

The value of av is monitored so that this enforceable transition can be used to preempt other transitions at
runtime when the value of av violates a specification.

Definition 4.6. Controlled System
LetGW = (S,S0,I,O,A,Γ,SF) be the an SLTS of a given plant, and letC = (SC,S0

C
,IC,OC,AC,ΓC,S

F
C

) rep-
resent the controller of GW . The controlled system C ⊗ GW representing the behaviour of GW when con-
strained (controlled) by C is given by C⊗GW = (SC ×S,S0

C
×S0,IC ∪I,OC ∪O,AC ∪A,ΓC ×Γ,SF

C
×SF)

where:

• (s1, s2)
m[g1∧g2]
−−−−−−→ (s′1, s

′
2) ∈ ΓC × Γ

if

s1

!m[g1]
−−−−→ s′1 ∈ ΓC and s2

?m[g2]
−−−−→ s′2 ∈ Γ,

or

s1
?m[g1]
−−−−→ s′1 ∈ ΓC and s2

!m[g2]
−−−−→ s′2 ∈ Γ,

• (s1, s2)
α[g]
−−−→ (s′1, s

′
2) ∈ ΓC × Γ, α ∈ Ac ∪A if s1

α[g]
−−−→ s′1 ∈ ΓC and s2

α[g]
−−−→ s′2∈ Γ,

• Undefined otherwise

In other words, a transition is possible in the plant if it is also possible in the controller transition system,
which implies that the guards are true and the transition can be fired.

Definition 4.7. (Controlled System and Specification) Let m be the message header of the output message !m
and the input message ?m. LetH be the set of message headers of a given SLTS. Given a controlled system
C ⊗ GW = (S1,S

0
1,I1,O1,A1,Ω1,S

F
1) and a specification TW = (S2,S

0
2,I2,O2,A2,Ω2,S

F
2) a simulation

relation between C ⊗ GW and TW is a relation R ⊆ S1 × S2 such that ∀(s1, s2) ∈ R,

• if s1
m[g]
−−−→ s′1 in Ω1 and m ∈ H then ∃s′2, s2

!m[g]
−−−−→ s′2 in Ω2 and (s′1, s

′
2) ∈ R or ∃s′2, s2

?m[g]
−−−−→ s′2 in Ω2

and (s′1, s
′
2) ∈ R

• if s1
α[g]
−−−→ s′1 in Ω1 and α ∈ A1 then ∃s′2, s2

α[g]
−−−→ s′2 in Ω2 and (s′1, s

′
2) ∈ R

20

4.6. Controllability

The original setting of supervisory control theory considers language-based controllability [14, 55]
which assumes the underlying automata to be deterministic. Language-based controllability was subse-
quently extended to provide a stronger notion of controllability called state-controllability [31, 18, 59] for
non-deterministic discrete-events systems. In this work, we rely on a notion similar to state-based controlla-
bility to capture the concept of controllability of SLTS in our model.

For a given SLTS TW specification which is simulated by a given plant GW , a reachable state (pGW , qT
W

)
in GW × T

W is uncontrollable if the following holds. 1) If an uncontrollable transition labeled with α (static
transition) can be fired from the state pGW in the plant but not from the state (pGW , qT

W
) in GW× T

W . 2) If
an uncontrollable transition labeled with α and a guard g1 can be fired in GW at state pGW and this same
uncontrollable transition labeled with α but a different guard g2 is possible at (pGW , qT

W
) in the GW × T

W ,
then whenever g1 evaluates to true for a given set of values of a variable v, g2 does not always evaluate to
true for the same values of v. That is, g1 does not imply g2. This implies that the uncontrollable transition at
(pGW , qT

W
) leads to a forbidden state.

Let s
δ
−→ denote that there exists at least one state s′ such that s

δ
−→ s′ and denote ESP (s) = {a ∈ Σ | s

a
−→} as

the set of enabled static transitions of the state s ∈ S of the SLTS P. Similarly, let s
δ[g]
−−−→ denote that there

exists a guard g and at least one state s′ such that s
δ[g]
−−−→ s′ and let EDP (s) = {(a, g) | s

a[g]
−−−→, a ∈ Σ, g ∈ G}

represent the set of dynamic transitions enabled at state s of the SLTS P.

Definition 4.8. Controllability
Given two SLTSs GW = (S1,S

0
1,I1,O1,A1,Γ1,S

F
1) and TW = (S2,S

0
2,I2,O2,A2,Γ2,S

F
2), representing the

plant and the specification, respectively, such that TW� GW . A state (p, q) ∈ S1 × S2 is controllable if the
following holds:

1. Static Controllability:

∀δ ∈ Σuc : δ ∈ ES
GW

(p) =⇒ δ ∈ ES(GW×T
W)((p, q))

2. Dynamic Controllability:

∀δ ∈ Σuc : (δ, g1) ∈ ED
GW

(p) =⇒ [∃g2 : (δ, g2) ∈ ED(GW×T
W)((p, q)) ∧ (g1 =⇒ g2)]

or [∃ δ′,∃ g3 : (δ′, g3) ∈ ED(GW×T
W)((p, q)) and δ′ ∈ Σ f]

A plant GW is said to be state controllable with respect to TW if all reachable states of GW × T
W are

state controllable. According to Definition 4.8, uncontrollable transitions that are enabled in the reachable
states of the plant state q by following the same trace, must also be enabled at the corresponding reachable
state (p, q) of GW × T

W . Thus, we say GW is controllable if: 1) δ is uncontrollable and δ is the current static
transition event enabled in GW implies that δ is also enabled at the corresponding state of GW ×T

W . 2) δ is a
dynamic uncontrollable event and a guard g1 is possible at the current state of GW then, it implies that there
exists a corresponding uncontrollable dynamic transition and a guard g2 in GW × T

W such that g2 is true
only if g1 is true, or there exists an enforceable transition δ′ that can preempt any uncontrollable transition
in the current enabled state.

Now, let gA
n (v) denote a guard gn with a variable v whose values depend on an output of an atomic

operation A of a given transition system (e.g., in Figure 7, A = f unc1(x, y), v = y, gn = (y < 10)). We state
the following corollary as a consequence of controllability of a given plant and a specification. Here we will
assume that a guard depends on only one variable.

21

S 1start S 2 S 3
f unc1(x, y) f unc2() [y < 10]

Figure 7

Corollary 4.1 below states that given a plant GW and a specification TW , if a dynamic type 2 transition,
say T , is enabled at a state p of the plant GW but not at a corresponding state (p, q) of the specification TW

then, for the state (p, q) to be state controllable it implies that there must exist an enforceable transition also
enabled at (p, q) to preempt T .

Corollary 4.1. Let GW = (SGW , S
0
GW
, IGW , OGW , AGW , ΓGW , S

F
GW

) and TW = (STW , S0
TW , ITW , OTW ,

ATW , ΓTW , SF
TW) denote a plant and its specification, respectively, and let (p, q) ∈ SGW × STW . If

∃ δ ∈ Σuc,∃ gA(v) ∈ G : (δ, gA(v)) ∈ ED
GW

(p) but @ (gA(v))′ : (δ, (gA(v))′) ∈ ED
TW (p, q), and gA(v) ∧ (gA(v))′

satisfiable, then if (p, q) is state controllable then there must exists δ′ ∈ Σ f and a guard g′′ such (δ′, g′′) ∈
ED
TW (p, q).

Proof. The proof follows from the second part of definition 4.8 where the transition is a dynamic type 2
transition with guard gA

n (v). �

Example 4.1. Illustration of Corollary 4.1

Consider the plant service GW in Figure 8 and the target service TW of Figure 9. T = S 2
f unc2()[y<10]
−−−−−−−−−−→ S 3 ∈

ΓGW is a dynamic type 2 transition whose guard (y < 10) has a variable whose values depends on the output
of the atomic operation f unct1(x, y).

Since TW does not allow T at state S 2, if GW is state controllable with respect to TW then there must

exist an enforceable transition T ′ also enabled at state S 2 which is given by S 2
! f ailMesg()
−−−−−−−−→ S 4 ∈ ΓTW to

preempt T at runtime.

S 1start S 2 S 3

S 4

f unc1(x, y) f unc2() [y < 10]

! f ailMesg()

Figure 8: Plant Service GW

The control solution that we seek in our approach requires that the system does not reach a state from
which the only exiting transitions lead to unsafe states. We formalize this in the following definition.

Definition 4.9. Non-blocking

An SLTS GW = (S,S0,I,O,A,Γ,SF) is non-blocking if s
s[gi]
−−−→ s′ ∈ Γ⇒ ∃ δ ∈ Σ∗ and a guard g j such that

s′
δ[g j]
===⇒ s′′ and s′′ ∈ SF\SBad, where SBad is the set of unsafe (bad) states.

22

S 1start S 2

S 4

f unc1(x, y)

! f ailMesg()

Figure 9: Target Service TW

A controller is minimally restrictive in the sense that it only disallows transitions that must be disallowed.
It is natural to require that a controller restricts the plant as little as possible. We formalize this qualitative
property in the following definition using the pre-order notion implied by simulation relation.

Definition 4.10. Minimally Restrictive Controller
Given a plant GW and a specification TW , a controller C for GW is minimally restrictive if there does not
exist a controller C′ for GW such that C ⊗ GW � C

′ ⊗ GW .

The composition problem that we consider is as follows. Given a set of available servicesGW1 ,GW2 ,...,GWn

and a set of specifications TW representing the goal service over the same environment (same set of mes-
sages and atomic actions), we would like to construct a controller C such that the C⊗ (GW1 ‖ GW2 ...‖ GWn)
is simulated by TW satisfying some controllability and nonblocking constraints. Thus, C serves as a con-
troller that interacts with the uncontrolled system in such a way that all its executions satisfy TW and that
C is maximally permissive. That is, we seek to generate an SLTS which interacts with the system GW1 ‖

GW2 ...‖ GWn to satisfy the specification TW . In addition to requiring that the generated controller satisfies
controllability and nonblocking criteria, the controlled system is also free of errors that may result from
communication among component services. We formalize this in the following problem statement.

Definition 4.11. Composition Problem
Let GW1 , GW2 , . . . , GWn be a set of SLTSs and let TW be the composition requirements. The composition
problem is to find a non-blocking, communication-error free and minimally restrictive controller C such
that C⊗ (GW1 ‖ GW2 ...‖ GWn) �TW .

The definition implies that the controller constrains the plant such that every transition that can be taken
by the controlled system C ⊗ (GW1 ‖ GW2 ...‖ GWn) can also be taken in the specification. The intuition is that
controllability will be necessary and sufficient to solve the composition problem as formulated in Section 6.

5. Composition Synthesis Algorithm

In this section, we provide the core details of our approach by presenting a set of algorithms that can
be used to generate a composition. The composition generation technique proposed in our framework is an
incremental process. Algorithm 1 presents a step-by-step process that can be used to build a controllable,
non-blocking and communication error free controller. The algorithm takes the set of available component

23

services and a goal service specifying the functional requirements as inputs. The algorithm first refines the
plant GW by removing communication design errors (non-executable interactions and unspecified recep-
tions) which is given by Line 2. Once the plant has been transformed into its communication-error free
SLTS form, we check whether the target service is simulated by the plant TW � GW (Line 3). The func-
tion simulationCheck(GW ,T

W) is an implementation of the simulation relation given in Definition 3.4.
The function simulationCheck(GW ,T

W) takes GW and TW as inputs, and checks if GW simulates TW .
It returns ”true“ if GW simulates TW and false if GW does not simulate TW . In the case that a simulation
relation exists between the plant and the target service, we then make adjustments to the plant to include a
special event that will enable the controller to enforce enforceable events at runtime. This is given at Line
4 of Algorithm 1. The algorithm then computes the composition refinement (given by Definition 4.5) of the
plant and the target service to get a new SLTS C0 upon which further minimization steps will be performed
(Line 5).

The next step of the algorithm (repeat until loop Lines 7-12) then performs various reductions on
C0. Line 9 performs static controllability minimization which is given by Algorithm 2. Line 10 eliminates
blocking states and states from which only bad states are reachable. In Line 11 of the algorithm we perform
dynamic controllability minimization and generate stronger guards to ensure that all executions of the C0

lead to safe states. Lines 7-12 performs a fixed point computation on C0 and terminates when a fixed point
is reached (i.e., if Ck == Ck−1). Finally, we refine CK by removing communication errors in each trace.
To ensure that the generated controller is able to communicate with the available services, we reverse the
direction of the messages of Ck in Line 14. This implies that an input message say ?m(x) in Ck will become
an output message !m(x) and vice versa. The message header m does not change, it is only the directions
of the message that change. In the event that the algorithm does not find a simulation relation between the
plant and the target service we iteratively refine the target service until a simulation relation is found.

24

Algorithm 1 Composition Synthesizer (Controller)
Input: The SLTS representing synchronous parallel product of the available services (GW1 ‖ GW2 ...‖ GWn)
given by GW = (S, S0, I, O,A, Γ, SF) and a target service TW = (STW , S0

TW , ITW , OTW ,ATW , ΓTW , SF
TW)

Output: communication-error free, nonblocking and controllable Controller
1: procedure Composer(GW , TW)
2: GW← removeCommunicationErrors(GW)
3: if simulationCheck(GW , TW) then
4: GW← plantAndSpecAdjustment(GW), TW ← plantAndSpecAdjustment(TW)
5: C0 ←GW ×refT

W

6: k ← 0
7: repeat
8: k ← k + 1
9: Ck ← staticControllability(GW , Ck−1)

10: Ck ← unsafeStateMinimization(Ck)
11: Ck ← dynamicControllabilityAndGuardGeneration(GW , Ck)
12: until Ck == Ck−1

13: Ck ← removeUnsafeState(Ck)
14: Ck ← removeCommunicationErrors(Ck)
15: C ← reverseMessageDirection(Ck)
16: else if (refineTargetToSimulatePlant(GW , TW), ∅) then
17: TW ← refineTargetToSimulatePlant(GW , TW)
18: Go to step 4.
19: else
20: return null
21: end if
22: return C
23: end procedure

Algorithm 2 converts a given SLTS into its communication-error free form as given in Definition 4.2 and
Definition 4.3. The input to this algorithm is the asynchronous parallel composition of the available services.
Algorithm 2 traverses the SLTS to eliminate unspecified receptions and non-executable interactions. Line
3-9 checks every run of the given SLTS for unspecified receptions and removes it. Similarly, Line 12-19
deals with non-executable interactions.

Algorithm 3 constructs a static controllable SLTS and iteratively creates new transitions that lead to bad
states from a given SLTS. The input to this algorithm is the plant, and the composition refinement of the
plant and the target service Ck. In the first iteration of the repeat until loop Ck is given by C0.

25

Algorithm 2 removeCommunicationErrors
Input: GW = (S, S0, I, O,A, Γ, SF)
Output: communication-error free SLTS of GS

1: procedure removeCommunicationErrors(GW)
2: * Removal of unspecified receptions */

3: for each transition, t = s j
!m(x)[g j]
−−−−−−→ s j+1 ∈ Γ do

4: for each run r = s0
α0[g0]
−−−−→ s1

α1[g1]
−−−−→ ...s j

!m(x)[g j]
−−−−−−→ s j+1 . . . in GW do

5: if @ t′ : t′ = si
?m(x)[gi]
−−−−−−→ si+1 ∈ Γ with j < i then

6: Eliminate(r) * removes an the execution r from a set of executions */

7: end if
8: end for
9: end for

10: * Removal of non-executable interactions */

11: for each transition, t = s j
?m(x)[g j]
−−−−−−→ s j+1 ∈ Γ do

12: for each run r = s0
α0[g0]
−−−−→ s1

α1[g1]
−−−−→ . . . s j

?m(x)[g j]
−−−−−−→ s j+1 . . . in GW do

13: if @ t′ : t′ = si
!m(x)[gi]
−−−−−−→ si+1 ∈ Γ with i < j then

14: Eliminate(r) * removes an the execution r from a set of executions */

15: end if
16: end for
17: end for
18: return GW

19: end procedure

The set of states of Ck is partitioned into safe states SGood
Ck and bad states SBad

Ck . For a given state p in GW

and a corresponding state in (p, q) ∈ Ck, if a static uncontrollable transition is enabled at state p but not in
(p, q) (this is given by the first and second for loops), first the algorithm creates a new bad state sBad ∈ SCk

and all dynamic transitions leading to (p, q) are diverted to sBad (Lines 6-10). This keeps the structure of
dynamic transitions. Second, the uncontrollable state is eliminated including all outgoing transitions (Lines
11-13). Finally, unreachable states and associated transitions are also eliminated at Line 14. On the other
hand, in Lines 19-23 of the algorithm, if there is a controllable transition enabled at state p of GW but not in
(p, q) of Ck then Line 21 of the algorithms marks this transition as disabled.

26

Algorithm 3 Static Controllability Minimization
Input: GW = (S, S0, I, O,A, Γ, SF) and Ck = (SCk , S0

Ck , ICk , OCk ,ACk , ΓCk , SF
Ck)

Output: Static controllable SLTS of Ck, I.e., this algorithm produces an SLTS Ck such that all state of GW

are state controllable with respect to Ck

1: procedure staticControllability(GW , Ck)
2: Let SCk = SGood

Ck ∪ SBad
Ck , where SGood

Ck is the set of safe states and SBad
Ck is the set of unsafe states

3: for each state p ∈ S and a corresponding state (p, q) ∈ SCk do,
4: for each static transition in Γ with an event t ∈ Σuc such that t ∈ ES

GW
(p) do

5: if t < ES
Ck ((p, q)) then

6: for all state b ∈ SCk with a dynamic transition t′ = b
e[g]
−−−→ (p, q) do

7: Create a new state sBad in Ck such that z = b
e[g]
−−−→ sBad, where sBad is an unsafe state

8: SBad
Ck ← S

Bad
Ck ∪ {sBad}

9: ΓCk ← ΓCk ∪ {z}
10: end for
11: Eliminate all transitions associated to the state (p, q)
12: and update the set of transitions ΓCk accordingly
13: SCk ← SCk\{(p, q)}
14: Ck ← unreachableStateTransitionMinimization(Ck) * remove unreachable

states and associated transitions */

15: end if
16: end for
17: for each static transition in Γ with an event t ∈ Σc such that t ∈ ES

GW
(p) do

18: if t < ES
Ck ((p, q)) then

19: ES
GW

(p)\{t} * disable t */

20: end if
21: end for
22: end for
23: return Ck

24: end procedure

Algorithm 4 presents a minimization technique to deal with unsafe states and blocking states. This
algorithm takes an SLTS Ck as its input. Ck is assumed to be the SLTS obtained after some iterations of the
repeat Until loop in Algorithm 1 (Lines 7-11). Specifically Ck is the output of Algorithm 3. The iteration
of the first for loop statement collects and stores all states from which no marked state is reachable or
from which only bad states can be reached (Lines 6-9). The algorithm stores these states in the buffer
BlockandUnsafe. For each state in BlockandUnsafe, Lines 12-16 of the algorithm create a new bad state sBad

and assign any dynamic transition that leads to a state in BlockandUnsafe to sBad. This is done to preserve
the structure of dynamic transitions as done in Algorithm 3. Finally, Lines 18-24 eliminate all states and
transitions collected at Lines 6-10. That is, all states in BlockandUnsafe and all associated transitions that
lead to a state in BlockandUnsafe are removed.

27

Algorithm 4 Unsafe State Minimization
Input: Ck = (SCk , S0

Ck , ICk , OCk ,ACk , ΓCk , SF
Ck)

Output: non-blocking SLTS
1: procedure UnsafeStateMinimization(Ck)
2: Let SCk ← SGood

Ck ∪ SBad
Ck , where SGood

Ck is the set of safe states and SBad
Ck is the set of unsafe states

3: Let Σ← ICk ∪ OCk ∪ACk

4: Let BlockandUsafe = ∅

5: * The following for loop collects and store all the states that lead to

blocking */

6: for each state s ∈ SCk do,

7: if @ δ ∈ Σ , @ g ∈ G and @ s′ ∈ SF\SBad
Ck such that s

δ[g]
==⇒ s′ then

8: BlockandUsafe← BlockandUsafe ∪{(s)}
9: end if

10: end for
11: * The following for loop creates new bad states */

12: for all state b ∈ SCk\SBad
Ck with a dynamic transition such that b

e[g′]
−−−→ q and q ∈ BlockandUsafe do

13: Create a new state sBad ∈ SBad
Ck in Ck such that z = b

e[g′]
−−−→ sBad

14: SBad
Ck ← SCk ∪ {sBad}

15: ΓCk ← ΓCk ∪ {z}
16: end for
17: * We eliminate all states and associated transitions in BlockandUsafe */

18: for All q ∈ BlockandUsafe do

19: for All t ∈ ΓCk , such that t = q
α[g1]
−−−−→ or ∃ b such that t = b

α[g2]
−−−−→ q do

20: * eliminate all transitions associated with q */

21: ΓCk ← ΓCk\{t}
22: SCk ← SCk\{q}
23: end for
24: end for
25: return Ck

26: end procedure

Algorithm 5 presents an approach that can be used to compute a safe and dynamic controllable SLTS of
a given system. This algorithm implements the second part of the definition of controllability given in Defi-
nition 4.8. It involves the generation and attachment of stronger guards to transitions and the collections of
variables to be monitored at runtime as well as the removal of dynamic uncontrollable states and transitions.
In addition, controllable dynamic transitions that lead to bad states are disabled.

First, we assume that the set of variables is partitioned into trackable and non-trackable variables. Track-
able variables (which we will call deterministic variables because their occurrence is deterministic) are those
variables whose values do not change from where they were declared to where they are being used, whereas
non-trackable (which we will call nondeterministic variables because their occurrence is nondeterministic)
variables are those whose values we cannot predict from when they were declared to when they are used.
Specifically, trackable variables are associated with dynamic type 1 transitions while non-trackable variables
are associated with dynamic type 2 transitions. Non-trackable variables are the output of atomic operations.

28

Now, the algorithm starts by collecting all transitions that lead to bad states from a given state (Lines 13-27).
In these steps we keep track of transitions that lead to a bad state based on the evaluation of nondeterministic
variables (Lines 14-19), this is given by the first if statement. The else statement after the if statement
keeps track of transitions that lead to an unsafe states due to the evaluation of deterministic variables (Lines
20-27). The next step of the algorithm strengthens the guards of each transition (Lines 30-38). Now, given
that the value of deterministic variables can be tracked implies that we can trace back to where it was orig-
inally defined from where it is being used in order to strengthen the guard. Given a transition which leads

to a bad state due to deterministic variable (z = sx
α[gi(d)]
−−−−−→ sx+1), we check every run of Ck to locate where

it was declared first (s j
!m(d)[g]
−−−−−−→ s j+1) and then we strengthen the guards which is given by taking the con-

junction of the current guard on the transition and the negation of the guard of where it is being used (

t = s j
!m(d)[g j∧¬gi(d)]
−−−−−−−−−−−−→ s j+1). Lines 40-53 of the algorithm checks every state that has a transition that leads

to a bad state due to nondeterministic variables for enforceable transitions. In the case that an enforceable
transition is enabled at this state, we save the variable for runtime monitoring (Lines 42-44). The runtime
monitoring involves equipping the generated controller with additional capability to be able to track a given
variable for certain values and then trigger certain actions based on the values of this values .On the other
hand, if there is no enforceable transition enabled at this state, the algorithm (Line 46) first creates a new
state in SBad

C
and diverts all dynamic transitions to it as done in Algorithm 2. Next we completely eliminate

the entire state and all transitions associated with this state from Ck. Finally, Line 52 disables all dynamic
controllable transitions (both dynamic type 1 and dynamic type 2 transitions) that are enabled at the plant
state but not at the corresponding state of Ck.

29

Algorithm 5 Dynamic Controllability and Guard Generation
Input: GW = (S, S0, I, O,A, Γ, SF) and Ck = (SCk , S0

Ck , ICk , OCk ,ACk , ΓCk , SF
Ck)

Output: A safe and dynamic controllable SLST of Ck with respect to GW

1: procedure dynamicControllabilityAndGuardGeneration(GW , Ck)
2: Let BP← ∅ be the set of bad state predicate transitions with trackable variables
3: Let BS ← ∅ be the set of states from which a bad state is reachable based on trackable variables
4: Let BPN ← ∅ be the set of bad state predicate transitions with non-trackable variables
5: Let BS N ← ∅ be the set of states from which a bad state is reachable based on non-trackable variables
6: Let S P← ∅ be the set of safe state predicate
7: Let gi(d) be a guard which depends on a variable d ∈ V
8: Let Det ⊆ V be the set of deterministic variables
9: Let nonDet ⊆ V be the set of non deterministic variables (i.e., variables whose values depends on the output

10: of atomic operations)
11: Let i← 0, j← 0
12: Let runtimeVariables be the set of variables to be monitored at runtime
13: for All sx ∈ SCk do

14: for each δ ∈ Σuc and gi(d) ∈ G enabled at state sx (i.e., (δ, gi(d)) ∈ ED
C

(sx)) such that t = sx
δ[gi(d)]
−−−−−→ sx+1 in Ck do,

15: if sx+1 ∈ S
Bad
Ck then

16: if d ∈ nonDet is the output variable of the atomic operation then
17: BPN ← BPN ∪ {t}
18: BS N ← BS N ∪ {sx}

19: end if
20: else
21: if d ∈ Det then
22: BP← BP ∪ {t}
23: BS ← BS ∪ {sx}

24: end if
25: end if
26: i← i + 1
27: end for
28: end for
29: * Guard propagation and Attachment */

30: for each sx ∈ BS do

31: for each z ∈ BP, such that z = sx
α[gi(d)]
−−−−−→ sx+1 ∈ BP do

32: for each t ∈ ΓCk , such that t = s j
!m(d)[g]
−−−−−−→ s j+1 do

33: for all run r = s0
α0[g0]
−−−−→ s1

α1[g1]
−−−−→ . . . s j

!m(d)[g j]
−−−−−−→ s j+1 . . . sx

α[gi(d)]
−−−−−→ sx+1... in Ck, j < x do

34: t ← s j
!m(d)[g j∧¬gi(d)]
−−−−−−−−−−−−→ s j+1 * guard strengthening */

35: end for
36: end for
37: end for
38: end for
39: * Event Enforcement and collection of runtime monitoring variables */

40: for each sx ∈ BS N do

41: for each z ∈ BPN, such that z = sx
α[gi(d)]
−−−−−→ sx+1 ∈ BPN do

42: if exists α′ ∈ ED
Ck (sx) ∧ α′ ∈ Σ f then

43: save variable for runtime monitoring and enforcement
44: runtimeVariables← runtimeVariables ∪{d} * variable saved to be monitored at runtime */

45: else
46: Create new bad state sBad and divert all dynamic transitions that lead to sx to sBad

47: Eliminate all transitions (t, g) ∈ ED
Ck (sx)

48: SCk ← SCk\{sx}

49: end if
50: end for
51: end for
52: C ← disableControllableDynamicTransition(GW , C) * disable dynamic controllable transitions */

53: return C
54: end procedure

30

Algorithm 6 Disable Dynamic Controllable Transitions
Input: GW = (S, S0, I, O,A, Γ, SF), C = (SC, S0

C
, IC, OC,AC, ΓC, S

F
C

)
Output: C where dynamic controllable transitions that do not satisfy system requirements are disabled.

1: procedure disableControllableDynamicTransition(GW , C)
2: for each state p ∈ S such that ∃ δ ∈ Σc and ∃g ∈ G such that (δ, g) ∈ ED

GW
(p) do

3: for each state (p, q) ∈ SC such that @ (δ, g′) ∈ ED
C\SBad

C

(p) and g ∧ g′ is satisfiable do

4: ((δ, (g ∧ ¬g′)) < ED
C\SBad

C

(p, q)) * disable (δ, (g ∧ ¬g′)), since δ ∈ Σc */

5: end for
6: end for
7: end procedure

Algorithm 6 is called by Algorithm 5 at Line 52 to disable dynamic controllable transitions that lead to
a bad state.

Algorithm 7 Remove All Bad States and Associated Transition
Input: An SLTS C with states partitioned into good and bad states
Output: A SLTS C without bad states and transitions that lead to bad states

1: procedure removeUnsafeState(C)
2: while (SBad

C
, ∅) do

3: if (∃ t = s
δ[g]
−−−→ sBad such that sBad ∈ SBad

C
) then

4: * eliminate all transitions associated with s′ */
5: ΓC ← ΓC\{t}
6: SC ← SC\{sBad}

7: end if
8: end while
9: return C

10: end procedure

Once the iteration of the repeat until loop of Algorithm 1 has terminated, all states in SBad
C

would
been made unreachable and there is no need to keep them. Hence, Algorithm 7 is called to remove all bad
states and transitions in the set of bad states SBad

C
. Algorithm 7 iterates over the set of states in SBad

C
and

eliminates all states in SBad
C

including associated transitions.

31

Algorithm 8 Reverse The Direction Of Messages Of C
Input: An SLTS C
Output: An SLTS C with input messages changed to output messages and vice versa.

1: procedure reverseMessageDirection(C)

2: for each transition t = s
!m[g]
−−−−→ s′ ∈ ΓC such that !m ∈ IC do

3: t ← s
?m[g]
−−−−→ s′ ∈ ΓC * set output messages to input messages */

4: IC ← IC ∪ {?m}
5: OC ← OC\{!m}
6: end for

7: for each transition t = s
?m[g]
−−−−→ s′ ∈ ΓC such that ?m ∈ OC do

8: t ← s
!m[g]
−−−−→ s′ ∈ ΓC * set output messages to input messages */

9: OC ← OC ∪ {!m}
10: IC ← IC\{?m}
11: end for
12: return C
13: end procedure

Once all the issues relating to controllability and non-blocking have been dealt with, the next stage of
the algorithm is to reverse the directions of the messages of the resulting controller. This is done to allow
for communication between the plant and the controller. This ensures that an output message in the plant’s
transition system can be consumed by an input message in the controller’s transition system and vice versa.
Given an SLTS C as the input to Algorithm 8, it reverses the direction of the messages of C. That is, given
an input (output) message ?m(x), Algorithm 8 will change it to and output (input) message !m(x) and vice
versa.

A composition generation process may fail if the given plant cannot simulate its specification. Algo-
rithm 9 iteratively pares down a given specification so that it can be simulated by a given plant. The algo-
rithm takes GW and TW as inputs such that there is no simulation relation between GW and TW and returns
a new specification TW′ that can be simulated by GW . Line 2 of Algorithm 9 defines a maximal relation R
given by the cross product of the states of GW and TW . Now Line 6 of the algorithm iterates over each pair

of reachable states (t1, si) ∈ R such that there exists a transition ti
δ[g1]
−−−→ t′i ∈ ΓTW and then checks for the

following three cases where a plant may fail to simulate a given specification.

• There is no matching transition at state si of the plant. In this case the transition ti
δ[g1]
−−−→ t′i ∈ ΓTW will

be removed (Lines 8-9).

• There is exists a transition si
δ[g2]
−−−→ t′i ∈ ΓGW and (t1, si) ∈ R but the guard g1 is not a subguard of g2,

i.e., g1 ≤ g2 . In this case the guard on TW is strengthened to that of GW (Lines 11-12).

• There is exists a transition si
δ[g2]
−−−→ t′i ∈ ΓGW and g1 ≤ g2 but (t1, si) < R. In this case the transition

ti
δ[g1]
−−−→ t′i ∈ ΓTW is eliminated (Lines 13-15).

The algorithm terminates when all transitions that prevent the specification from being simulated by the
plant have been dealt with, i.e., TW == TW′ .

32

Algorithm 9 Refine Target To Simulate Plant
Input: GW = (SGW ,S

0
GW
,IGW ,OGW ,AGW ,ΓGW ,S

F
GW

) and TW = (STW ,S0
TW ,ITW ,OTW ,ATW ,ΓTW ,SF

TW)
Output: TW′ where TW′ is derived from TW and TW′ � GW

1: procedure refineTargetToSimulatePlant(TW ,GW)
2: Let R← STW × SGW

3: Let TW′ ← ∅

4: repeat
5: TW′ ← TW

6: for each (ti, si) ∈ R such that ∃ δ ∈ Σ, a guard g1 such that there is a transition ti
δ[g1]
−−−→ t′i ∈ ΓTW do

7: where ti and si are reachable states

8: if (there is no transition si
δ[g2]
−−−→ s′i ∈ ΓGW such that (g1 ≤ g2) and (t′i , s

′
i) ∈ R) then

9: ΓTW \{ti
δ[g1]
−−−→ t′i } \∗ this removes the execution from the initial state to

10: t′i in TW */

11: else if (there is a transition si
δ[g2]
−−−→ s′i ∈ ΓGW and (t′i , s

′
i) ∈ R but and (g1
 g2)) then

12: g1 ← g2 \∗ change the guards to that of GW */

13: else if (there is a transition si
δ[g2]
−−−→ s′i ∈ ΓGW and (g1 ≤ g2) but (t′i , s

′
i) < R) then

14: ΓTW \{ti
δ[g1]
−−−→ t′i } \∗ this removes the execution from the initial state to

15: t′i in TW */

16: end if
17: end for
18: until (TW′ == TW)
19: return TW′

20: end procedure

Algorithm 10 present a procedure to modify a given SLTS to include a special transition (ε transition) which we will call a
“timeout” transition which will be used at runtime to provide the generated controller the ability to be able to preempt certain
dynamic type 2 transitions (which we will call preemptable transitions) using enforceable transitions. Self-loops are treated in a
similar way. The technique presented here is identical to that in the work by Wonham [54].

33

Algorithm 10 Plant and Specification Adjustment
Input: A SLTSM = (SM,S0

M
,IM,OM,AM,ΓM,S

F
M

)
Output: A new SLTS constructed by modifyingM to include a “timeout” transition (ε transition) to enable
event enforcement at runtime.

1: procedure plantAndSpecAdjustment(M)
2: Initialize the set dynamic 2 Transition to be all dynamic type 2 transitions such that
3: dynamic 2 Transition ⊆ ΓM
4: \∗ Initialize the set of dynamic 2 transitions which forms the set of

5: preemptable transitions*/

6: for each state s ∈ SM do

7: if (∃ δ ∈ Σ f and exists a guard g such that s
δ[g]
−−−→∈ ΓM) ∧ (∃ λ and exists a guard g′

8: such that s
λ[g′]
−−−→∈ dynamic 2 Transition) then

9: split s into 2 states s′ands′′ and create a new transition such that s′
ε
−→ s′′ where ε serves as a

10: delay to help preempt preemptable events.
11: for each transition t enabled at s do
12: if t ∈ dynamic 2 Transition then
13: define t with its source state at s′′

14: else define t with its source state at s′

15: end if
16: end for
17: SM\{s} ∪ {s′} ∪ {s′′}
18: ΓM ∪ {s′

ε
−→ s′′}

19: end if
20: end for
21: returnM
22: end procedure

Example 5.1 below is a small example to illustrate how Algorithm 1 works.

Example 5.1.

Consider the plant GW (assumed to be the asynchronous parallel composition of some given services)
in Figure 10(a) and the specification TW in Figure 10(b) as the input to Algorithm 1. As noted above
input and function invocation transitions are considered as uncontrollable and output transitions are con-
trollable (i.e., !msg1(x), !msg3(var), !msg2(z) ∈ Σc, ?msg2(z), ?msg1(x), ?msg2(z), ?msg3(var), atom3(x),
atom1(x, y), atom2(y, v), atom3(x), ? f ail() ∈ Σuc, ! f ail() ∈ Σ f). Clearly, GW simulates TW and both SLTSs
are communication-error free. Line 5 of Algorithm 1 computes the composition refinement C0 which is
represented in Figure 10(c). Applying the rest of Algorithm 1 (Lines 7-22) to C0 gives the following (where
we will only consider steps of the algorithm that are relevant to this example):

1. (Algorithm 1 Lines 7-12) within the repeat until loop we have the following steps:
(a) k=1 means we will pass C0 to the three functions within the repeat until loop (Algorithm 1

Lines 7-12)
i. Static Controllability (Line 9 Algorithm 1)

Starting from the initial state of C0 every state of C0 satisfies the static controllability condi-
tion except for state (s5, t5) where there is an uncontrollable static transition (s5)

?msg2(z)
−−−−−−→ (s6)

34

enabled in the plant but not at the corresponding state (s5, t5) of C0. This implies that state

(s5, t5) and the associated transitions ((s5, t5)
atom3(x)
−−−−−−→ (s2, t2) and (s3, t3)

?msg1(x)
−−−−−−→ (s5, t5)) will

be eliminated from C0 (Lines 11 -14 of Algorithm 3). This produces the SLTS in Figure 10(d)
ii. Blocking states (Line 10 Algorithm 1)

At this stage no state of the C0 in Figure 10(d) is blocking, we proceed to the next step.
iii. Dynamic Controllability (Line 11 Algorithm 1)

At this stage of the algorithm, there are three transitions that lead to bad states ((s2, t2)
atom1(x,y)[3≤x<7]
−−−−−−−−−−−−→

(BAD1), (s4, t4)
atom2(y,v)[y=a]
−−−−−−−−−−→ (BAD2), (s1, t2)

msg3(var)[var ∈ {dr}]
−−−−−−−−−−−−−−→ (BAD3)) in the C0 of Figure 10(d). By

applying the next step of the algorithm we have the following.
• Strengthening and Attachment of Guards (Lines 30-38 of Algorithm 5)

The two uncontrollable transitions (s2, t2)
atom1(x,y)[3≤x<7]
−−−−−−−−−−−−→ (BAD1) and (s1, t1)

msg3(var)[var ∈ {dr}]
−−−−−−−−−−−−−−→

(BAD3) are dynamic type 1 transitions since the values of the variables x and var can be
tracked from where they were declared. Hence, at this stage the algorithm strengthens
the guards of these transitions so that the state BAD1 and BAD3 are made unreachable
by attaching the guard ¬(3 ≤ x < 7) and var < {dr} to the transition (s0, t0)

!msg1(x)
−−−−−−→ (s1, t1)

and the transition (s0, t0)
!msg3(var)
−−−−−−−→ (s1, t1), respectively. The resultant SLTS is given in

Figure 10(e).
• Event Enforcement and Collection of Runtime Variable (Lines 40-50 of Algorithm 5)

The transition (s4, t4)
atom2(y,v)[y=a]
−−−−−−−−−−→ (BAD2) is a dynamic type 2 transition since the variable

y depends on the output of the atomic operation atom1(x, y) which cannot be tracked.
This step of the algorithm will check for the enforceable transition (s4, t4)

! f ail()
−−−−→ (s0, t0)

and save the variable y to be monitored at runtime and then enforce ! f ail() when y=a, to
prevent BAD2 from being reached.

(b) k=2 means we will pass C1 (Figure 10(e)) to the three functions in the repeat until loop
(Algorithm 1 Lines 7-12)

i. Static Controllability(Line 9 Algorithm 1)
Again starting from the initial state of C1 (Figure 10(e)) every state of C1 satisfies the static
controllability condition except for state (s3, t3) where there is an uncontrollable static transi-
tions (s3)

?msg1(x)
−−−−−−→ (s5) enabled in the corresponding state of the plant but not at the state (s3, t3)

of C1. This implies that state (s3, t3) and the associated transitions ((s3, t3)
?msg2(z)
−−−−−−→ (s1, t1) and

(s7, t7)
!msg2(z)
−−−−−→ (s3, t3)) will be eliminated from C1 (Lines 11 -14 of Algorithm 3).

ii. Blocking states (Line 10 Algorithm 1).
Now, because in the previous step the transition from state (s7, t7) to state (s3, t3) was elimi-
nated, state (s7, t7) becomes a blocking state since it is not a final state and does not lead to a
final state. Given this we have the following steps:
• create a new state BAD4 and assign any dynamic transition leading to state (s7, t7) to

BAD4 (Algorithm 4 Lines 13-15)
• then eliminate (s7, t7) (Algorithm 4 Lines 18-24)

The results of (i) and (ii) are shown in the diagram in Figure 10(f).
iii. Dynamic Controllability (Line 11 Algorithm 1)

A new bad state BAD4 was added to C1 and needs to be made unreachable. (Note that all
other BAD states are still unreachable.) We have the following step:
• Strengthening and Attachment of Guards (Lines 30-38 of Algorithm 5)

(s1, t1)
msg3(var)[var ∈ {cr}]
−−−−−−−−−−−−−−→ (BAD4) is an uncontrollable dynamic type 1 transitions since the

35

values of the variable var can be tracked from when it was declared. Hence, at this
stage the algorithm strengthens the guard of this transition so that the state BAD4 is made
unreachable by attaching the guard var < {cr} to the transition (s0, t0)

!msg3(var)[var<{dr}]
−−−−−−−−−−−−−−→ (s1, t1)

(shown Figure 10(f)).
(c) k=3 means we will pass C2 (Figure 10(f)) to the three functions in the repeat until loop.

Iterating over the repeat until loop again will return the same SLTS shown in Figure 10(f),
i.e., C3 = C2, hence the loop terminates.

2. Line 13 of Algorithm 1
Now once the loop terminates, the next stage is to remove all the bad states (BAD1, BAD2, BAD3, BAD4)
from C3 by calling Algorithm 7. In addition, all transitions in and out of these bad states are removed.

3. Line 14 of Algorithm 1
C3 is not communication-error free since the transition (s0, t0)

!msg3(var)[var<{dr,cr}]
−−−−−−−−−−−−−−−→ (s1, t1) can emit the

message !msg3(var) but there is no matching input transition in C3 to consume it, hence this step
eliminates (s0, t0)

!msg3(var)[var<{dr,cr}]
−−−−−−−−−−−−−−−→ (s1, t1) from C3 and the plant is updated accordingly.

4. Line 15 of Algorithm 1,
This step reverses the messages of C2 producing the final output C as shown in Figure 10(g).

5.1. Discussion

The task of labeling an existing transition as enforceable transition or creating a new enforceable tran-
sition in the controlled system to be used to preempt dynamic type 2 transitions is mostly dependent on the
domain and the designer perspective. In addition, in choosing the target state of an enforceable transition is
dependent of the current state of the system and the domain being modeled. That is, in case there is a failure
as a result unsuspected output of a dynamic type 2 transition, what state should the system go to; should the
system transition to the initial state, should the system try to do the previous transition again and so on. In
Example 5.1 the choosing of the enforceable transition was trivial since the plant already had a transition

(s4, t4)
! f ail()
−−−−→ (s0, t0) that lead to the initial state and because this example had no domain restriction.

36

s0start s1

s2

s3

s4 s5 s6

s7

!msg3(var)

!msg1(x)

?msg1(x)

?msg3(var)
[var ∈ {cr, db}]

atom1(x,y) [x < 7]

?msg2(z)

?msg1(x)atom2(y,v)
[y=a or y=b]

!fail()

?msg2(z)

atom3(x)

!msg2(z)

?fail()

(a) Plant GW

t0start t1

t2

t3

t4 t5

t7

!msg3(var)

!msg1(x)

?msg1(x)

?msg3(var)
[var ∈ {cr}]

atom1(x,y) [x < 3]

?msg2(z)

?msg1(x)atom2(y, v)
[y=b]

fail()

atom3(x)

!msg2(z)

?fail()

(b) Target services TW

Figure 10: Illustrative Example using the Algorithm

37

(s0, t0)start (s1, t1)

(s2, t2)

(s3, t3)

(s4, t4) (s5, t5)

(s7, t7)

BAD1BAD2

BAD3

!msg3(var)

!msg1(x)

?msg1(x)

?msg3(var)
[var ∈ {cr}]

atom1(x,y) [x < 3]

?msg2(z)

?msg1(x)atom2(y,v)
[y=b]

!fail()

atom3(x)

!msg2(z)

?fail()

atom1(x,y) [3 ≤ x < 7]
atom2(y,v)

[y=a]

?msg3(var)
[var ∈ {dr}]

(c) Composition Refinement C0= GW × ref T
W

(s0, t0)start (s1, t1)

(s2, t2)

(s3, t3)

(s4, t4)

(s7, t7)

BAD1

BAD2

BAD3

!msg3(var)

!msg1(x)

?msg1(x)

?msg3(var)
[var ∈ {cr}]

atom1(x,y) [x < 3]

?msg2(z)

atom2(y,v)
[y=b]

!fail()
!msg2(z)

?fail()

atom1(x,y) [3 ≤ x < 7]

atom2(y,v)
[y=a]

?msg3(var)
[var ∈ {dr}]

(d) C0 after applying static controllability

Figure 10: Illustrative Example using the Algorithm

38

(s0, t0)start (s1, t1)

(s2, t2)

(s3, t3)

(s4, t4)

(s7, t7)

BAD1

BAD2

BAD3

!msg3(var) [var < {dr}]

!msg1(x)[¬(3 ≤ x < 7)]

?msg1(x)

?msg3(var)
[var ∈ {cr}]

atom1(x,y) [x < 3]

?msg2(z)

atom2(y,v)
[y=b]

!fail()
!msg2(z)

?fail()

atom1(x,y) [3 ≤ x < 7]

atom2(y,v)
[y=a]

?msg3(var)
[var ∈ {dr}]

(e) C1 (the variable y = a is monitored at runtime)

(s0, t0)start (s1, t1)

(s2, t2)(s4, t4)

BAD4

BAD1

BAD2

BAD3

!msg3(var) [var < {dr, cr}]

!msg1(x)[¬(3 ≤ x < 7)]

?msg1(x)

?msg3(var)
[var ∈ {cr}]

atom1(x,y) [x < 3]

atom2(y,v)
[y=b]

!fail()

?fail()

atom1(x,y) [3 ≤ x < 7]

atom2(y,v)
[y=a]

?msg3(var)
[var ∈ {dr}]

(f) C2 (the variable y = a is monitored at runtime)

Figure 10: Illustrative Example using the Algorithm

39

(s0, t0)start (s1, t1)

(s2, t2)(s4, t4)

?msg1(x)[¬(3 ≤ x < 7)]

!msg1(x)

atom1(x,y) [x < 3]

atom2(y,v)
[y=b]

?fail()

!fail()

(g) Final output of Algorithm 1 C (the variable y = a is monitored at runtime)

Figure 10: Illustrative Example using the Algorithm

We have applied Algorithm 1 to various small examples. Also, Algorithm 1 has been manually applied
to the flight booking example introduced earlier. The asynchronous parallel product forming the plant of
this example has 150 states and 3410 transitions while computing the composition refinement of the plant
and the specification yielded a transition system C0 with 175 states and 3945 transitions. Applying Lines
6-16 of the algorithm to C0 will further reduce the number of states and transitions. We hope to automate
the process in the near future.

6. Proof of Correctness (Soundness and Completeness)

In this section, we present a theorem and a proof that proves the correctness of our approach. Theo-
rem 6.4 shows that there exists a controller which solves the composition problem stated in Definition 4.11.
We will start with various definitions and then we will state the main theorem of the section and finally
provide a constructive proof for the theorem.

6.1. Proof of Controller Existences

Before we prove Theorem 3, let us consider the following lemmata resulting from observations made
from the construction of the controller C by Algorithm 1. Let SC and SC0 denote the set of states of C and
C0, respectively. Also, let SC0\SBad

C0 = {s | s ∈ SC0 ∧ s < SBad
C0 }. In the proofs that follow, we will refer to bad

states SBad
C

as states that are not reachable in the specification or that violate controllability or nonblocking
conditions. Also, during the construction of C by Algorithm 1, new states are created. These states are also
marked as bad states, since they do not satisfy either some controllability or nonblocking conditions.

The first lemma says that in constructing C, our algorithm only removes states from C0 that are bad. That
is, a state in the resulting C is a state in the original C0 and is not a bad state.

40

Lemma 6.1. Given a controller C generated by Algorithm 1 such that C0 = GW ×ref T
W , then SC ⊆

SC0\SBad
C0 .

Proof. The proof is done constructively,
In Algorithm 1, Line 5, C is initially given by C0 = GW ×ref T

W and SC0 = SGood
C0 ∪ SBad

C0 . This implies that
at this stage in the construction of C by the algorithm, the set of states of C is equal to the set of states of C0.
That is, SC = SC0 which means SC = SGood

C0 ∪ SBad
C0 . Let Ck denote the resultant SLTS obtained after some

k iterations of the repeat until loop of Algorithm 1 on C0. Now to show that SC ⊆ SC0\SBad
C0 , we prove

the following:

(i) Upon termination of Algorithm 1, all the states in SBad
C0 have been made unreachable and eliminated

and hence would not be in the final output C of Algorithm 1,
(ii) In the iterations of Algorithm 1, some of the states in SGood

C0 become bad states and are made unreach-
able and eliminated,

(iii) All new bad states created by the algorithm are made unreachable and eliminated before the algorithm
terminates .

To show (i), let q ∈ SBad
C

and suppose that ∃ p ∈ SC0 ,∃ δ ∈ Σ and ∃ g ∈ G such that the transition

t = p
δ[g]
−−−→ q in C0, then in the first iteration of the repeat until of Algorithm 1 loop one of the following

holds:

(a) if δ ∈ Σuc then

• in the case that t is static Lines 11-13 of Algorithm 3 will eliminate t which implies that q is also
eliminated.

• in the case that t is a dynamic type 1 transition, then the guard g will be strengthened by Algorithm
5 in Lines 30-38. Hence, q becomes unreachable from any good state and finally deleted at Line
13 of Algorithm 1.

• in the case that t is a dynamic type 2 transition then by Corollary 4.1, Algorithm 5 Lines 40-51
will ensure that there is an enforceable transition also enabled at state p to preempt t at runtime.
Hence, state q becomes unreachable and is later deleted at Line 13 of Algorithm 1.

(b) if δ ∈ Σc then
in all cases t (static or dynamic transition) would be disabled by Algorithm 1, making q unreachable and
later deleted at Line 13 of Algorithm 1.

To show (ii) we note that after some k iteration of the repeat until loop of Algorithm 1 on C0 some
good state in SGood

C0 becomes bad due to controllability (Definition 4.8) or blocking (Definition 4.9). These
new bad states are treated in the same way as done in (i), which implies that they are never reachable in the
final output of Algorithm 1.

The proof of (iii) is as follows: During the construction of C, Algorithm 1 creates completely new bad
states in the process of constructing C (Lines 7-9 of Algorithm 3, Lines 12-15 of Algorithm 4 and Line 46
of Algorithm 5), however, these new bad states are also treated and deleted in the same way as in (i) before
the termination of Algorithm 1.

From (i), (ii) and (iii) it is clear that by the time Algorithm 1 terminates the set of bad states of its final
output C will be empty, i.e., SBad

C
= ∅, and some of the states in SGood

C0 would have been converted into bad
and removed too. This means that the set of states of C is only a subset of SGood

C0 . Thus, SC ⊆ SC0\SBad
C0 . �

41

In the following lemma we show that a state s ∈ SC0\SC is either a bad state in C0 or was made bad at
the kth iteration of the repeat until loop of Algorithm 1 over C0.

Lemma 6.2. Given that C0 = GW ×ref T
W and s ∈ SC0\SC, then one of the following holds

(i) s ∈ SBad
C0 ,

(ii) s ∈ SBad
Ck where Ck is the SLTS obtained after some k iterations of the repeat until loop of Algo-

rithm 1

Proof. Proof of (i): given that s ∈ SC0\SC implies that s < SC and from Lemma 6.1 it implies that s ∈ SBad
C0

which proves (i).
Proof of (ii): This follows from Lemma 6.1 item (ii) by noting that, during the iterations of the repeat

until loop of Algorithm 1, a good state s in Ck−1 is changed to a bad state s ∈ SBad
Ck because either

s is not state controllable or leads to a violation of controllability (Definition 4.8) or results in blocking
(Definition 4.9). �

In the following lemma we show that the set of good states of C is a subset of the set of good states of
C0.

Lemma 6.3. Given a controller C generated by Algorithm 1 such that C0 = GW×refT
W , then SGood

C
⊆ SGood

C0 .

Proof. The proof of this lemma is similar to that of Lemma 6.1 and so we omit it here. �

Theorem 6.4 (Controller Existence). Given a system modeled by an SLTSGW and a specification TW with
TW�GW , a controller C exists such that C⊗ GW�T

W if and only if GW is state controllable with respect to
TW .

Proof. The proof is done constructively,

Let GW = (SGW ,S
0
GW
,IGW ,OGW ,AGW ,ΓGW ,S

F
GW

) and TW = (STW , S0
TW , ITW , OTW ,ATW , ΓTW , SF

TW)
Let Composer(GW ,T

W) denote the transition system obtained from GW and TW by applying Algorithm 1
(i.e., the final output of Algorithm 1). Let C = Composer(GW ,T

W).
We will denote the set of states of C0 as SC0 and the set of transitions of C0 as ΓC0 . Let SGood

C0 and SBad
C0

denote the set of good states of C0 and the set of bad states of C0, respectively. Let C0\SBad
C0 denote the SLTS

obtained after removing the set of bad states SBad
C0 from C0, i.e., C0 excluding the set of bad states. We will

assume similar notation for C. We make the following observations. In Algorithm 1, C is initially computed
from GW × ref T

W (Line 5) and then certain reduction steps are further performed on it. By definition,
C0 = GW × ref T

W in Line 5 of Algorithm 1 (definition of composition refinement). The states of C0 are
partitioned into the set of good states and the set of bad states, respectively. That is, SC0 = SGood

C0 ∪ SBad
C0 .

The set of good states and transitions leading to good states of C0 lie in TW . Specifically, C is obtained
from C0 after removing certain transitions and bad states.

Let C ⊗ GW=(SC⊗GW ,S
0
C⊗GW

,IC⊗GW ,OC⊗GW ,AC⊗GW ,ΓC⊗GW ,S
F
C⊗GW

) denote the controlled system when
GW is under control of C.

42

Part 1:
if: given that C = Composer(GW ,T

W) and TW is controllable.
To prove:

1. C ⊗ GW � T
W

That is, show that when the plant is coupled with C, the resultant transition system is simulated by
TW .

Example 6.1. First let us illustrate this part of the proof of Theorem 6.4 by an example (i.e., given that
C = Composer(GW ,T

W) and TW is controllable, show that C ⊗ GW � T
W). Let the SLTS in Figure 10(a)

and Figure 10(b) represent the plant and the specification, respectively. It can be verified that TW � GW .
Figure 10(c) is the result of computing the composition refinement (C0 = GW × ref T

W) of the SLTSs in
Figure 10(a) and Figure 10(b), respectively. Now it can be seen that C0 is made up good states and
bad states. Our proof to the theorem will be in two parts. The first part of the proof would be to show
that (C0 ⊗ GW) simulates TW when the transitions ((s2, t2)

atom1(x,y)[3≤x<7]
−−−−−−−−−−−−→ (BAD1), (s4, t4)

atom2(x,y)[y=a]
−−−−−−−−−−→ (BAD2),

(s1, t2)
mesg3(var)[var ∈ {dr}]
−−−−−−−−−−−−−−→ (BAD3)) have been eliminated from C0 and the bad states made unreachable. It can be

seen that the controller C in Figure 10(g) has no transitions that lead to bad states and it can also be easily
verified that C ⊗GW � T

W which will constitute the proof of the second part. That is, the second part of the
proof would be to show that C generated from C0 by Algorithm 1 has no bad states and has no transitions
that lead to bad states and, hence, satisfies C ⊗ GW � T

W .

The proof of Part 1 will proceed as follows. Firstly, in (a) we would define a relation R and show that
R is a simulation relation between (C0 ⊗ GW) and TW when C0 is restricted to having only good states. i.e.,
(C0\SBad

C0 ⊗ GW) � TW . Secondly, in (b) we shall further define another relation R � SC, a subset of R and
establish that R � SC is a simulation relation between (C ⊗ GW) and TW if C is generated without bad states
and transitions that lead to bad states. Finally, in (c) we shall show that actually C has no bad states and has
no transitions that lead to bad states.

We define the relation
R = { (((sn, tn), sn), tn) | ∃ δ0, δ1, . . . , δn ∈ Σ,∃ s0, s1, . . . , sn ∈ SGW ,∃ t0, t1, . . . , tn ∈ STW ,∃ g0, g1, . . . , gn ∈ G :

(s0 ∈ S
0
GW
, t0 ∈ S0

TW , [∀ (0 < i ≤ n) [si−1
δi−1[gi−1]
−−−−−−→ si ∈ ΓGW] ∧ [ti−1

δi−1[gi−1]
−−−−−−→ ti ∈ ΓTW]]) } (1)

(a) We will start by showing that R is a simulation relation between C0 ⊗ GW and TW when the states of
C0 ⊗ GW are constrained to only good states, i.e., TW simulates ((C0\SBad

C0) ⊗ GW).
Consider (((sn, tn), sn), tn) ∈ R and (sn, tn) ∈ SGood

C0 ,

and suppose ((sn, tn), sn)
δn[gn]
−−−−→ ((sn+1, tn+1), sn+1) ∈ ΓC0⊗GW for some δn ∈ Σ and (sn+1, tn+1) ∈ SGood

C0 ,

then by definition of × ref used in the construction of C0 it implies that ∃ tn+1 ∈ S TW such that tn
δn[gn]
−−−−→

tn+1 ∈ ΓTW and therefore (((sn+1, tn+1), sn+1), tn+1) ∈ R.
This is because from the definition of C0 = GW × ref T

W , every transition that leads to a good state in C0

from (sn, tn) can be matched by TW . This implies that R is a simulation relation between ((C0\SBad
C0) ⊗

GW) and TW .
As in Example 6.1 if we eliminate all bad states and their associated transitions ((s2, t2)

atom1(x,y)[3≤x<7]
−−−−−−−−−−−−→

43

(BAD1), (s4, t4)
atom2(x,y)[y=a]
−−−−−−−−−−→ (BAD2), (s1, t2)

mesg3(var)[var ∈ {dr}]
−−−−−−−−−−−−−−→ (BAD3)) from C0 of Figure 10(c) and combine it

with the plant in Figure 10(a) we get a system that is simulated by the specification in Figure 10(b).
Now in (b) and (c) we prove the following claim:

C ⊗ GW � T
W

(b) (Transitions of C that lead to good states from good states)
Based on the results obtained in (a), we want to show that TW also simulates C ⊗ GW based on the fact
that C is constructed from C0 and that C has no bad states and no transitions that lead to bad states.

From Algorithm 1, C is built from C0 by making bad states unreachable and removing all transitions
that lead to bad states.

(i) Based on Lemma 6.1 and Lemma 6.2, we define another relation R � SC a projection of the states
of SC into R given by:

R � SC = R\{(((sn, tn), sn), tn) | ((sn, tn), sn) < SC⊗GW }

i.e., the set of pairs in R excluding those not in SC⊗GW . We also note that (R � SC) ⊆ R.

(ii) Now we are ready to show that R � SC is a simulation relation between C ⊗ GW and TW if no
transition in C leads to a bad state.
Consider (((sn, tn), sn), tn) ∈ R � SC for some states ((sn, tn), sn) ∈ S C⊗GW and tn ∈ S TW , and
(sn, tn) ∈ SGood

C
, then from (i) we have that (((sn, tn), sn), tn) ∈ R

Now suppose

((sn, tn), sn)
δn[gn]
−−−−→ ((sn+1, tn+1), sn+1) ∈ ΓC⊗GW and (sn+1, tn+1) ∈ SGood

C

=⇒ ((sn, tn), sn)
δn[g′n]
−−−−→ ((sn+1, tn+1), sn+1) ∈ ΓC0⊗GW with (gn ≤ g′n), and (sn+1, tn+1) ∈ SGood

C0

(by the construction of C from C0)

=⇒ ∃ tn+1 ∈ S TW such that tn
δn[g′n]
−−−−→ tn+1 ∈ ΓTW with (gn ≤ g′n),

and (((sn+1, tn+1), sn+1), tn+1) ∈ R
(by the fact that R is a simulation relation between C0 ⊗ GW and TW)

=⇒ ∃ tn+1 ∈ S TW such that tn
δn[g′n]
−−−−→ tn+1 ∈ ΓTW with (gn ≤ g′n),

and (((sn+1, tn+1), sn+1), tn+1) ∈ R � SC (by definition of R � SC)

=⇒ ∃ tn+1 ∈ S TW such that tn
δn[gn]
−−−−→ tn+1 ∈ ΓTW and (((sn+1, tn+1), sn+1), tn+1) ∈ R � SC

(by definition of simulation relation on gn and g′n)

That is, R � SC is a simulation relation between (C\SBad
C

) ⊗ GW and TW . So now we have that every
transition that leads to a good state from a good state in C ⊗ GW can be simulated by TW . Hence, we
only have left to show that C has no bad states and has no transitions that lead to bad states from a good
state.

(c) (Transitions of C that lead to bad states from a good state)
Here, we show that all bad states and transitions that lead to bad states are eliminated from C during
the construction of C from C0. That is, C has no bad states and has no transitions that lead to bad

44

states. For example, the synthesis of the controller C in Figure 10(g) from C0 in Figure 10(c) resulted
in the elimination of all transitions that lead to bad states and transitions that violate controllability
(Definition 4.8).
Now consider

T = ((sn, tn), sn)
δn[gn]
−−−−→ ((sn+1, tn+1), sn+1) ∈ ΓC⊗GW (2)

and (sn+1, tn+1) ∈ SBad
C

such that T is a transition in the sequence (execution)

s0
δ0[g0]
−−−−→ s1

δ1[g1]
−−−−→ s2 . . . sn−1

δn−1[gn−1]
−−−−−−−→ sn

In Cases 1, 2, 3 and 4 below, we show that the final output of Algorithm 1 given by C has no bad states
and has no transitions that result in bad states. That is, after applying Algorithm 1 to C0 results in the
elimination of all bad states and transitions that lead to bad states. We show that (2) is never the case.
There are three possible cases based on control decision and the kind of transition during the synthesis
of C from Algorithm 1.That is, given a transition T which leads to a bad state in C, then after applying
Algorithm 1 T would be eliminated.

(I) Case 1 (Static controllability)
We assume that T is a static transition which leads to a bad state in C and we consider the case
where T is uncontrollable and the case where T is controllable. In the case that T is an uncon-
trollable transition, it implies that T is not enabled in TW due to the fact that TW is controllable.
Now since T is not enabled in TW , it follows that Algorithm 1 would have eliminated T during
the construction of C. Hence it would be a contradiction if it holds that T is in C. A similar situa-
tion prevails in the case that T is a controllable transition and leads to a bad state. It follows that
T is not enabled in TW , hence Algorithm 1 would have disabled T to prevent it from occurring.
Hence, it contradicts the hypothesis that T is in C. We formally prove the above two cases in the
following two steps, respectively.

• Suppose that T is a static transition where gn = true and let δn ∈ Σuc Then, from (2) we have

((sn, tn), sn)
δn
−→ ((sn+1, tn+1), sn+1) ∈ ΓC⊗GW and (sn+1, tn+1) ∈ SBad

C

=⇒ (sn, tn)
δn
−→ (sn+1, tn+1) ∈ ΓC and (sn+1, tn+1) ∈ SBad

C

(from the definition of ⊗)

=⇒ tn
δn
−→ tn+1 < ΓTW

(Since TW is controllable, any bad state and transition leading to a bad state which is not in C is also not in TW)

=⇒ δn < ES
TW (tn)

(δn will not be enabled at tn of TW (which violates the definition of static controllability))

=⇒ T would have been eliminated from C by algorithm 1 (Lines 3-15)

(hence it will be a contradiction to say that (sn, tn)
δn
−→ (sn+1, tn+1) ∈ ΓC⊗GW)

This can be seen from the construction of C by algorithm 3 (Lines 3-15), where any uncon-
trollable transition T enabled at sn in GW but not enabled at a corresponding state (sn, tn) of
C will lead to the elimination of (sn, tn) from the states of C (Line 12). The state (sn, tn) will
not even exist in the set of states of C.

45

• Similarly, suppose that T is a static transition where gn = true and let δn ∈ Σc, then from (2)
we have

((sn, tn), sn)
δn
−→ ((sn+1, tn+1), sn+1) ∈ ΓC⊗GW and (sn+1, tn+1) ∈ SBad

C

=⇒ (sn, tn)
δn
−→ (sn+1, tn+1) ∈ ΓC and (sn+1, tn+1) ∈ SBad

C

(from the definition of ⊗)

=⇒ tn
δn
−→ tn+1 < ΓTW

(any static controllable transition that leads to a bad state in C is disabled in TW)

=⇒ δn < ES
TW (tn) (δn will not be enabled at tn of TW)

=⇒ T will be disabled by Algorithm 3 (Line 19) (Since δn ∈ Σc)
=⇒ It will be a contradiction to say that T ∈ ΓC⊗GW

That is, T will be disabled if it leads to a bad state. Hence, no controllable transition will end
up in a bad state.

(II) Case 2 (Dynamic controllability 1, stronger guards generation)
Here we assume that T is a dynamic type 1 transition which leads to a bad state in C and we con-
sider the case where T is uncontrollable and the case where T is controllable. In the case that T is
an uncontrollable transition, it implies that T is either not allowed in TW at all or it allowed but the
guards on both transitions are not satisfied as a result of the controllability of TW . It follows that
Algorithm 1 would have strengthened the guard on T during the construction of C and making
the guard on T stronger, which implies that the state (sn+1, tn+1) is not reachable. It follows that
T is not a valid transition. Hence, it would be a contradiction if it holds that T is in C. A similar
scenario holds in the case that T is a controllable transition and leads to a bad state. It follows
that T is not allowed in TW at all or the guards on both transitions do not agree. Now since T is
controllable, Algorithm 1 would have disabled T when the guards are not satisfiable preventing it
from occurring. Hence, it contradicts the hypothesis that T is in C. We formally prove the above
two cases in the following two steps, respectively.

• Suppose that T is a dynamic type 1 transition and δn ∈ Σuc (e.g., in Example 6.1 take T to be
the transition ((s2, t2)

atom1(x,y)[3≤x<7]
−−−−−−−−−−−−→ (BAD1)) of Figure 10(c)).

Then, from (2) we have,

((sn, tn), sn)
δn[gn]
−−−−→ ((sn+1, tn+1), sn+1) ∈ ΓC⊗GW and (sn+1, tn+1) ∈ SBad

C

=⇒ (sn, tn)
δn[gn]
−−−−→ (sn+1, tn+1) ∈ ΓC and (sn+1, tn+1) ∈ SBad

C

(from the definition of ⊗)

=⇒ @ (tn
δn[g′n]
−−−−→ tn+1) ∈ ΓTW such that (g′n ∧ gn) is satisfiable

(since TW is controllable and the from the contruction of C)

=⇒ (δn, gn) < ED
TW (tn) (T would not be enabled at the state tn of the TW)

=⇒ the guard gn of C would have been strengthened and transition T eliminated

46

By Algorithm 5 (Lines 28-37), the guards of C are strengthened to that of TW , in particu-

lar the guard gn on T = ((sn, tn), sn)
δn[gn]
−−−−→ ((sn+1, tn+1), sn+1) ∈ ΓC⊗GW will never be true and

the state (sn+1, tn+1) will be eliminated. Hence, it will be a contradiction to say that T ∈ ΓC⊗GW

• Similarly, suppose that T is a dynamic transition of type 1 and let δn ∈ Σc, then from (2) we
have

((sn, tn), sn)
δn[gn]
−−−−→ ((sn+1, tn+1), sn+1) ∈ ΓC⊗GW and (sn+1, tn+1) ∈ SBad

C

=⇒ (sn, tn)
δn[gn]
−−−−→ (sn+1, tn+1) ∈ ΓC and (sn+1, tn+1) ∈ SBad

C

(from the definition of ⊗)

=⇒ @ (tn
δn[g′n]
−−−−→ tn+1) ∈ ΓTW such that (g′n ∧ gn) is satisfiable)

(i.e., a controllable transition that leads to a bad state in C means either the transition is in
TW but the guards are not satisfied for all values or the transition is not in TW at all)

=⇒ T will be disabled by Algorithm 6 (Line 4) (since δn ∈ Σc)
=⇒ It will be a contradiction to say that T ∈ ΓC⊗GW

(III) Case 3 (Dynamic controllability type 2, event enforcement)
Suppose that T is a dynamic type 2 transition which leads to a bad state in C . In this particular
case (Case 3) the guard on T has a variable whose value depends on the output of an atomic op-
eration (e.g., in Figure 7). We consider separately the case where T is uncontrollable and the case
where T is controllable.

In the case that T is an uncontrollable transition, it implies that T is either not allowed in TW

at all or it allowed but the guards on both transitions are not satisfied as a result of controllabil-
ity of TW . Now by controllability of event enforcement, there must exist another enforceable
transition, say T ′, also enabled at the same state as T to be used to preempt T during runtime.
This means that (sn+1, tn+1) is unreachable. It follows that T is not a valid transition in C. This
contradicts the hypothesis that T is in C.

Similarly, consider the case that T is a controllable transition and leads to a bad state. It fol-
lows that T is not allowed in TW at all or the guards on both transitions do not agree. Now
since T is a controllable transition, Algorithm 1 would have disabled T when the guards were not
satisfiable preventing it from occurring. Hence, it contradicts the hypothesis that T is in C. We
formally prove the above two cases in the following two steps, respectively.

• Recall that gA
n (v) denote a guard gn with a variable v whose values depend on an output of

an atomic operation A of a given transition system. Suppose that T is a dynamic type 2
transition where gn = gA

n (v) and let δn ∈ Σuc (e.g., in Example 6.1 take T to be the transitions

47

(s4, t4)
atom2(x,y)[y=a]
−−−−−−−−−−→ (BAD2) of Figure 10(c)). Then, from (2) we have,

((sn, tn), sn)
δn[gA

n (v)]
−−−−−−→ ((sn+1, tn+1), sn+1) ∈ ΓC⊗GW and (sn+1, tn+1) ∈ SBad

C

=⇒ (sn, tn)
δn[gA

n (v)]
−−−−−−→ (sn+1, tn+1) ∈ ΓC and (sn+1, tn+1) ∈ SBad

C

(from the definition of ⊗)

=⇒ @ (tn
δn[(gA

n (v))′]
−−−−−−−−→ tn+1) ∈ ΓTW such that ((gA

n (v))′ ∧ gA
n (v)) is satisfiable

(since TW is controllable and from the construction of C)

=⇒ (δn, gA
n (v)) < ED

TW (tn) (T is not enabled at the state tn of TW)

=⇒ ∃ δ′n : δ′n ∈ ED
TW (tn) and δ′n ∈ Σ f

by Corollary 4.1, i.e., from the controllability of dynamic transition of type 2 using event

enforcement. Otherwise Algorithm 1 (Lines 46-47) would have eliminated (sn, tn)
δn[gA

n (v)]
−−−−−−→

(sn+1, tn+1) from C. Since there is an enforceable event δ′n also enabled at state (sn, tn) of the
controller, the state (sn+1, tn+1) is not reachable because δ′n would be used to preempt T at
runtime

=⇒ It will be a contradiction to say that T ∈ ΓC⊗GW

This can be seen from Lines 39-51 of algorithm 5, if there is a state (sn, tn) in the set of states
of C with a transition T whose guard is given by gA

n (v) and leads to a bad state, it implies
that there must be an enforceable transition T ′ exiting (sn, tn), otherwise the state (sn, tn) is
removed from the states of C. Hence, it will be a contradiction to say that T ∈ ΓC⊗GW .
Algorithm 5 monitors the variable v at runtime and ensures that δ′n is enforced.

• Similarly, suppose that T is a dynamic transition of type 2 where gn = gA
n (v) and let δn ∈ Σc,

then from (2) we have

((sn, tn), sn)
δn[gA

n (v)]
−−−−−−→ ((sn+1, tn+1), sn+1) ∈ ΓC⊗GW and (sn+1, tn+1) ∈ SBad

C

=⇒ (sn, tn)
δn[gA

n (v)]
−−−−−−→ (sn+1, tn+1) ∈ ΓC and (sn+1, tn+1) ∈ SBad

C

(from the definition of ⊗)

=⇒ @ (tn
δn[(gA

n (v))′]
−−−−−−−−→ tn+1) ∈ ΓTW such that ((gA

n (v))′ ∧ gA
n (v)) is satisfiable

48

(a dynamic type 2 controllable transition that leads to a bad state in C means either the
transition is in TW but the guards are not satisfied for all values or the transition is not in TW

at all)

=⇒ T will be disabled by Algorithm 6 (Line 4) (Since δn ∈ Σc)
=⇒ It will be a contradiction to say that T ∈ ΓC⊗GW

(IV) Finally, in the computation of C by Algorithm 1 (Line 13), any new transition that was created as
a result of the checking for controllability is removed.

From cases I, II, III, IV, we have shown that any transition T ∈ ΓC0 that leads to a bad state is eliminated
from the set of transitions of C0 upon termination of Algorithm 1. Thus, the final output of Algorithm 1
given by C has no bad states and has no transitions that lead to a bad state. This implies that every transition
in the controlled system C ⊗ GW leads to a good state which can be matched by TW . Hence, C ⊗ GW � T

W

49

In the following we prove the reverse direction of the theorem.

Part 2
Only if: Assume TW � GW and C ⊗ GW � T

W

To prove:
TW is controllable

To prove the claim we shall consider two cases based on the type of transitions and the given assumption
C ⊗ GW � T

W to prove controllability. We note that no matter, what algorithm is used to construct C the
theorem must be satisfied.

• Static Case:
Here we prove the first part of controllability (i.e., controllability of static transitions) by using the fact
that if there is a simulation relation between C⊗GW and TW , then it implies every static transition that
is enabled in C⊗GW is also enabled in TW , which proves static controllability. We show this formally
as follows.

Given C ⊗ GW � T
W =⇒

[there exists a relation R ⊆ S(C⊗GW) × STW such that ∀((p, r), q) ∈ R,

if (p, r)
δ
−→ (p′, r′) ∈ ΓC⊗GW =⇒ ∃ q′ such that q

δ
−→ q′ ∈ ΓTW and ((p′, r′), q′) ∈ R]

(from the definition of simulation relation)

=⇒ [∀δ ∈ Σ, ((p, r), q) ∈ R ⊆ S(C⊗GW) × STW :

(p, r)
δ
−→ (p′, r′) ∈ ΓC⊗GW =⇒ ∃ q′ such that q

δ
−→ q′ ∈ ΓTW

and ((p′, r′), q′) ∈ R ⊆ S(C⊗GW) × STW]

=⇒ [∀δ ∈ Σuc : (p, r)
δ
−→ (p′, r′) ∈ ΓC⊗GW =⇒ ∃ q′ such that q

δ
−→ q′ ∈ ΓTW] (since Σuc ⊆ Σ)

=⇒ [∀δ ∈ Σuc : δ ∈ ES
C⊗GW

(p, r) =⇒ δ ∈ ES
TW (q)]

• Dynamic Case:
Similarly, we prove the second part of controllability (i.e., dynamic controllability) by using the fact
that if there is a simulation relation between C⊗GW and TW , then it implies every dynamic transition
that is enabled in C ⊗ GW is also enabled in TW and the guards are satisfied. In this case, no matter
how Cwas constructed and whether the construction uses event enforcement techniques or not, it must
ensure that the guards on both transitions of C⊗GW and TW are satisfiable. We show this formally as

50

follows by considering both dynamic 1 and dynamic 2 transitions together.

Given C ⊗ GW � T
W =⇒

[there exists a relation R ⊆ S(C⊗GW) × STW such that ∀((p, r), q) ∈ R,

if (p, r)
δ[g1]
−−−→ (p′, r′) ∈ ΓC⊗GW =⇒ ∃q′ such that q

δ[g2]
−−−→ q′ ∈ ΓTW ,where g1 ≤ g2

and ((p′, r′), q′) ∈ R]
(from the definition of simulation relation)

=⇒ [∀δ ∈ Σ, ((p, r), q) ∈ R ⊆ S(C⊗GW) × STW :

(p, r)
δ[g1]
−−−→ (p′, r′) ∈ ΓC⊗GW =⇒ ∃q′ such that q

δ[g2]
−−−→ q′ ∈ ΓTW , where g1 ≤ g2

and ((p, r), q) ∈ R ⊆ S(C⊗GW) × STW]

=⇒ [∀δ ∈ Σuc : (p, r)
δ[g1]
−−−→ (p′, r′) ∈ ΓC⊗GW =⇒ ∃q′ such that q

δ[g2]
−−−→ q′ ∈ ΓTW where g1 ≤ g2]

(since Σuc ⊆ Σ)

=⇒ [∀δ ∈ Σuc : (δ, g1) ∈ ED
C⊗GW

(p, r) =⇒ [(δ, g2) ∈ ED
TW (q) such that (g1 ≤ g2)]

From the above two steps it implies that controllability is satisfied, which completes the proof of the theorem.
�

7. Related Work

In this section, we will discuss related work and highlight the differences between existing work and our
work. As there exists an extensive body of work on automatic service composition, due to space limitations
we discuss only the work most relevant to ours.

We will start by looking at work that applies supervisory control theory to the SOC paradigm. As stated
earlier in this paper, supervisory control theory has been applied to software systems such as concurrency in
multithreaded programs and component based software systems [16, 4, 52, 51].

7.1. DES and Services

With respect to applying DES to SOA, the work of Wang et al. [53] investigates the use of supervisory
control in the artifact-centric design paradigm. They present a framework to synthesize an artifact-centric
process from a given set of artifacts such that a correct execution is guaranteed by properly handling un-
controllable events. However, this work relies on the standard SCT which utilizes finite state machines for
modeling. In addition, this approach does not deal with data and how messages are actually exchanged
among component services. Another related work is the paper by Balbiani et al. [5] which applies a variant
of supervisory control theory in which system requirements are specified in modal logic to model an ab-
stract form of service composition where non-deterministic communicating automata are used to represent
Web services. The composition synthesis problem considered here is, given a community of services and
a goal service, to synthesize a mediator such that the triplet client/mediator/community is equivalent to the
goal service. The composition problem considered in their paper is restricted to synthesizing a specification
(mediator) that realizes a given goal, but does not show how to actually orchestrate the services in terms of
data and control flow requirements during execution time.

51

7.2. AI and Service Composition

Next, we look at work that employs AI planning techniques. A lot of AI planning based approaches
have been proposed to solve the problem of automatic service composition. Pistore et al. [27, 11, 39, 24, 13]
present a model-checking based planning approach that uses transition systems to model Web services that
communicate by exchanging messages. The authors adopt symbolic model-checking techniques into plan-
ning in order to deal effectively with non-determinism, partial observability, and complex goals. They use
these techniques to find a parallel composition of all the available services and then synthesize a controller
that ensures that the composed service satisfies the given requirement by controlling it. That is, given a
set of available services W = W1,W2, ...,Wn and ρ describing the goal specification, they compute a
controller (plan)Wc such thatWc B(W1 ‖ W2... ‖ Wn) |= ρ, where ‖ is the composition operator. Their
work converts OWL-S processes to state transition systems and then goals are expressed using a require-
ment specification language called EAGLE. Both the state transition systems and the goals are fed into an
MBP planner. Even though this approach can produce correct plans, it suffers from scalability problems
partly due to the way goals are expressed. Pistore et al. [41, 38] tried to solve the scalability issues in the
aforementioned approach by defining an appropriate model for providing a knowledge level description of
the component services which uses BPEL workflows instead of OWL-S process models. The work has been
incorporated into a well-known automated service composition project called the ASTRO framework [30].
The main difference between the work by Pistore et al. and our work is that Pistore et al. make use of AI
techniques in generating a controller while in our work we make use of supervisory control theory. In ad-
dition, our approach makes use of Labelled Transition Systems augmented with guards and variables while
the approach by Pistore et al. make use of State Transition Systems.

Another AI planning approach is the work in [43] which presents a mixed initiative framework for
semantic Web service discovery and composition which does not attempt to automate all decisions, but
assumes that the users should retain close control over many decisions while having the ability to selectively
delegate tedious aspects of their tasks. They used an AI planning algorithm known as GraphPlan to build
their composition engine which combines rule-based reasoning on OWL ontologies with Jess (a rule engine
and scripting environment for Java platforms) and planning functionalities. The main use of planning here
is to provide suggestions of composition schemata to the user, instead of enforcing decisions which form the
ultimate goal of this work.

Wu et al. [56] also employed graph-based planning to solve the service composition problem. The
approach considers both process heterogeneity and data heterogeneity problems. They implemented their
own definition of an abstract semantic Web service built on top of SAWSDL and WSDL-S. Then, they
extended GraphPlan that automatically generates the control flow of a Web process. The system automati-
cally generates an executable BPEL process from a given specification of the initial state, the goal state and
a semantically annotated Web service description in SAWSDL. Data mediation is done using assignment
activities in BPEL or by a data mediator which may be embedded in a middleware. At runtime the data me-
diator converts the available service into the format of the input message of the operation which is invoked
when called by the BPEL process.

Sirin et al. [46] attempt to leverage the Hierarchical Task Network (HTN) planning techniques for the
automated composition of semantic Web services. The authors are motivated to use this technique based on
the fact that the concept of task decomposition in HTN planning is very similar to the concept of composite
process decomposition in OWL-S process ontology. They built a system that translates OWL-S service de-
scriptions into SHOP2 (a domain-independent HTN planning system for HTN) [33] and then they provided
a method to automatically synthesize a feasible composition plan. The system is also capable of executing
information-providing Web services during the planning process. They went ahead to prove the correctness
of their algorithm/approach by showing the correspondence to the situational calculus semantics of OWL-S.

52

Peer [37] shows how the Partial Order Planner known as Versatile Heuristic Partial Order Planner (VH-
POP) can be combined with re-planning algorithm for automatic service composition. They provide their
own definition of semantic Web services which is then translated into PDDL as an input for VHPOP. The
PDDL description of the Web service is fed into VHPOP as well as a set of links between tasks to avoid.
One or more plans are automatically generated which may be partially defined. During runtime, execution
is done one step at a time since the generated plan(s) does not necessarily ensure correct execution. Hence,
if a plan fails, a re-planning is performed and a new plan is produced, given the conditions of the failure;
however, if the execution of a plan is successful, there is no need to re-plan and one can move on to the next
task.

Klusch et al. [29] present an approach similar to that of Peer. However, they built their framework on
OWL-S descriptions rather than developing their own ontology service language. Similarly, the OWL-S
descriptions are converted into PDDL descriptions and then fed into their AI planner. They used a hybrid
AI planner known as Xplan which combines the benefits of both graph based planning and HTN. Their ap-
proach increases planning efficiency in two ways. The graph-plan based FastForward-planner always finds
a composition/solution if it exists in the action state space, whereas HTN planning provides decomposi-
tion planning techniques. In addition, their planner supports re-planning components which automatically
updates or reacts to changes during the composition planning process.

Recently, Sohrabi and McIlraith [48] presented an approach that supports customization, optimization
and regulation enforcement during composition construction time by incorporating preferences and regula-
tions into HTN planning. This work builds on the work in [1] by extending and customizing Golog [20]
to support personalized constraints and nondeterminism in sequential executions and then, they redesigned
ConGolog, the interpreter of Golog to take care of these changes. Interestingly, this development took place
alongside the development of the definition of OWL-S and was one of the first works to use semantic Web
services as an input to planners through translation to PDDL.

Continuing in the AI approaches, Zou and his group [60] use numerical temporal planning to tackle the
problem of dynamic Web service composition which considers quality of service properties. One unique
feature of this approach is that it does not rely on existing predefined workflows but it automatically gener-
ates temporal and numeral specifications from a composition task. This approach is basically made up of
two steps. Firstly, a quality of service aware composition task is translated into a PDDL which is further
transformed into a cost-sensitive temporally-expressive planning problem. This stage presents the service
composition problem as a numeral planning problem involving time and cost optimization. Finally, the
temporally expressive planning problem is solved using a SAT-based cost planning solver developed by
the group. This solver deals with logical reasoning, temporal planning and optimization of composition.
Other recent works using AI planning to deal with Web service composition can be found in the literature
[45, 19, 32, 2, 34]. However, most of the AI planning techniques assume that the behaviour of services is
deterministic and, hence, these approaches fail when unexpected events occur [6].

7.3. Other Categories of Service Composition Approaches

Other categories of Web service composition approaches are those that exploit transition systems and for-
mal modeling languages such as Petri nets, UML and FSMs to model service composition. In the following
paragraphs we discuss a number of them.

One of the earliest works in this category is by Berardi et al. [9, 8, 7, 10] who present a formal frame-
work in which execution trees are used to describe the exported behaviour of services (an abstraction for its
possible executions). These execution trees are represented using Finite State Machines. In the approach, a
service is modeled using two schemata, an external and internal schema which are represented using FSMs.
The external schema specifies the exported behaviour (externally-visible) of services, whereas the internal

53

schema contains information on which service instances execute a given action within the community of
services. Their approach reduces the problem of composition synthesis into the satisfiability of a suitable
formula of Deterministic Propositional Dynamic Logic (DPDL). That is, both the FSM models of the avail-
able services and the target service are encoded into DPDL, and a target service exists if and only if the
set of formulas are satisfiable and then an FSM is automatically synthesized. The resulting FSM is further
translated into a BPEL process and executed in a BPEL engine.

Pathak et al. [36] propose a Framework for Modeling Service Composition and Execution (MoSCoE)
where both the available services and the goal service exhibit infinite-state behaviour. The approach employs
Symbolic Transition Systems (STSs) to model services that are associated with guards over infinite domain
variables. They use refinement analysis to guide users to refine their composition goal in the case of a failure.
Typically, the framework consists of three steps, abstraction, composition and refinement. Both component
services and the goal service are described using UML state machines and are translated into STSs. To this
end, they apply their composition algorithms to synthesize a composition if it exists. In the case that it does
not exist, the users refine their requirements and then try again.

Skogan et al. [47] also proposed an approach for semantic Web service composition using Model-Driven
Development (MDD). UML is used to model Web services. They first translate WSDL descriptions into
UML models. This allows existing services to be modeled using UML platforms designed for building
compositions. They apply MDD techniques to generate a composition based on the UML models of the
Web services, which in turn can be translated into executable BPEL specifications. Furthermore, this paper
presents an open-source implementation that realizes their technique.

Jingjing et al. [26] solve the service composition problem using timed automata. A formal model built
on timed automata is used to model Web services and provides an approach for automatic Web service
composition. They implemented an algorithm that automatically generates a timed automaton model for
each Web service interface which are all put together by synchronizing them through their branches and
end tags. In this case, the equivalent graph is a topology which connects each Web service interface by an
equivalence relation. The algorithm has been implemented in a composition automation engine which uses
the Web service interface description language (WSIL). The Web service interface description language is
a context-free grammar language developed to describe Web service interfaces. The engine is basically a
compiler which takes inputs in the form of WSIL and produces outputs via semantic analysis in the form of a
graph or an equivalent tree for Web service interface. The equivalent tree represents a data structure without
loops which can be obtained by performing a breadth-first traversal of the equivalent graph described above.
The output is then verified with a verification tool known as UPPAAL.

The work of Wang et al. [50] presents an approach in which conditional branch structures are used to
model the problem of service composition. This approach supports user preferences as well as the ability
to adapt to changes in a dynamic real-world environment. In order to model conditional branch structures
accurately, they employ activity diagrams in UML to represent the dependencies in composite services.
They consider two types of user preferences during composition synthesis. “One type is that a user prefers
a class of services over another according to certain conditions (e.g., Lucy prefers to go by air over car, if
the driving time is greater than 4 hours). The other type is that the user assigns priorities over services with
similar functionalities” [50]. Based on these user preferences and a set of services (each specified by an
activity diagram) they provide an algorithm that generates all the feasible composite services.

In another direction, the work by Yang et al. [57] adopts the extended BDI (Belief-Desire-Intention)
logic to deal with the problem of Web service composition in the case where a user’s goal is not consistent
with the composition goal. The Belief-Desire-Intention model is used to specify a service’s belief, desire
and intention, which are mapped into the environment of BDI, the goal of the web service (and user) and
composition schemes respectively. A process model is then used to characterize the results. In order to allow

54

for dynamic evolution of their workflow, they use AgentSpeak(L) (a communication language) to express it.
Khoumsi [28] casts the service composition problem as a control problem using a simple input-output

automata-based method. The problem is to synthesize an orchestrator Orch from a given set of Web service
S 1, ..., S n and a desired goal S 0 such that Orch coordinates the available services to achieve S 0. However,
this approach is limited to only the input and output parameter descriptions of services and does not capture
the behavioural constraints of services.

In a nutshell, relative to supervisory control theory, none of the above approaches is able to prevent a
system from violating its requirements or guarantees that the system requirement would always be satisfied
until a violation occurs.

8. Conclusion and Future Work

In this paper, we have developed a supervisory control framework for modeling Web service composi-
tion. We have provided a formalism based on SLTS and have also formalized the problem of Web service
composition. We have described a technique to generate a composition from a given set of Web services and
a specification specified in SLTS.

In future work, we will show that the controller C generated by Algorithm 1 is in fact, minimally re-
strictive. In this framework, we assume full observability of events but it will be of great interest to model
partial observability aspects of services. That is, sometimes a service could progress from one state to an-
other after executing some sequence of internal events or actions which cannot be observed by the controller.
Hence, a new control mechanism is needed in order to prevent the system from violating any system require-
ments. Another direction is to research into how non-functional requirements could be incorporated into the
framework. One can also look into how to efficiently represent the SLTSs for our formalism using data
structures such as BDDs and process algebra and to also provide a prototype and evaluations of the proposed
approach. Another general extension of our approach could be the use use decentralized control of DES to
model automated choreography synthesis Web services.

9. Bibliography

[1] S. A. McIlraith and T. C. Son. Adapting Golog for Composition of Semantic Web Services. In Dieter
Fensel, Fausto Giunchiglia, Deborah L. McGuinness, and Mary-Anne Williams, editors, Proceedings
of the Eighth International Conference on Principles and Knowledge Representation and Reasoning
(KR-02), Toulouse, France, April 22-25, pages 482–496. Morgan Kaufmann, 2002.

[2] A. Abdullah and l. Xining. An Efficient I/O Based Clustering HTN in Web Service Composition. In
International Conference on Computing, Management and Telecommunications (ComManTel), pages
252–257, Ho Chi Minh City, Vietnam, Jan 2013.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language for
Web Services Version 1.1. http://msdn.microsoft.com/en-us/library/ee251594(v=bts.

10).aspx#feedback, May 2003. [Online; accessed 10-June-2014].

[4] A. Auer, J. Dingel, and K. Rudie. Concurrency Control Generation for Dynamic Threads Using
Discrete-Event Systems. Science of Computer Programming, 82:22–43, March 2014.

[5] P. Balbiani, F. Cheikh, and G. Feuillade. Composition of Interactive Web Services Based on Controller
Synthesis. In 2008 IEEE Congress on Services - Part I, pages 521–528. IEEE Computer Society, 2008.

55

http://msdn.microsoft.com/en-us/library/ee251594(v=bts.10).aspx#feedback
http://msdn.microsoft.com/en-us/library/ee251594(v=bts.10).aspx#feedback

[6] P. Bartalos and M. Bielikov. Automatic Dynamic Web Service Composition: A Survey and Problem
Formalization. Computing and Informatics, 30(4), 2012.

[7] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, M. Lenzerini, and M. Mecella. Modeling Data
& Processes for Service Specifications in Colombo. In Proceedings of the Open Interop Workshop
on Enterprise Modeling and Ontologies for Interoperability (EMOI-INTEROP’05) Co-located with
CAiSE’05 Conference, Portugal, Porto, 13th-14th June 2005.

[8] D. Berardi, D. Calvanese, G. D. Giuseppe, R. Hull, and M. Mecella. Automatic Composition of Web
Services in Colombo. In Proceedings of the Thirteenth Italian Symposium on Advanced Database
Systems, (SEBD), pages 8–15, Brixen-Bressanone (near Bozen-Bolzano), Italy, 19-22 June 2005.

[9] D. Berardi, D. Calvanese, G. D. Giuseppe, R. Hull, and M. Mecella. Automatic Service Composi-
tion Based on Behavioral Descriptions. International Journal of Cooperative Information Systems,
14(4):333–376, 2005.

[10] D. Berardi, F. Cheikh, G. D. Giuseppe, and F. Patrizi. Automatic Service Composition via Simulation.
International Journal of Foundations of Computer Science, 19(2):429–451, 2008.

[11] P. Bertoli, M. Pistore, and P. Traverso. Automated Composition of Web Services via Planning in
Asynchronous Domains. Artificial Intelligence: An International Journal, 174(3-4):316–361, 2010.

[12] D. Brand and P. Zafiropulo. On Communicating Finite-State Machines. J. ACM, 30(2):323–342, April
1983.

[13] A. Bucchiarone, M. de Sanctis, and M. Pistore. Domain Objects for Dynamic and Incremental Service
Composition. In Service-Oriented and Cloud Computing - Third European Conference, ESOCC, pages
62–80, Manchester, UK, 2-4 September 2014.

[14] C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer, 2nd edition, 2007.

[15] R. Diekmann and D. Weidemann. Event Enforcement in the Context of the Supervisory Control The-
ory. In 18th International Conference on Methods and Models in Automation and Robotics (MMAR),
Midzyzdroje, Poland, pages 783–788, Aug 2013.

[16] C. Dragert, J. Dingel, and K. Rudie. Generation of Concurrency Control Code using Discrete-Event
Systems Theory. In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, volume FSE-16, pages 146–157, 2008.

[17] T. Erl. Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services. Prentice
Hall, New Jersey, 09 2004.

[18] M. Fabian and B. Lennartson. On Non-deterministic Supervisory Control. In Proceedings of the 35th
IEEE Conference on Decision and Control, volume 2, pages 2213–2218 vol.2, Kobe, Japan, Dec 1996.

[19] M.Y. Fayyad, A. Kamel, and A. Salah. ACUAI Framework for Automatic Composition of Web Ser-
vices using Gaming AI. In Fifth International Conference on Digital Information and Communication
Technology and its Applications (DICTAP), pages 1–6, Lebanese University, Lebanon, April 2015.

[20] A. Ferrein, S. Schiffer, and G. Lakemeyer. Embedding Fuzzy Controllers in Golog. In IEEE Interna-
tional Conference on Fuzzy Systems, FUZZ-IEEE’09, pages 894–899, Istanbul, Turkey, Aug. 2009.

56

[21] X. Fu, T. Bultan, and J. J. Suc. Analysis of Interacting BPEL Web Services. In Proceedings of the
13th International Conference on World Wide Web, WWW ’04, pages 621–630, New York, NY, USA,
2004. ACM.

[22] T. Le Gall, B. Jeannet, and H. Marchand. Supervisory Control of Infinite Symbolic Systems using
Abstract Interpretation. In 44th IEEE Conference on Decision and Control and European Control
Conference. CDC-ECC ’05, pages 30–35, Dec 2005.

[23] O. Hatzi, M. Nikolaidou, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, and I. Vlahavas. Seman-
tically Aware Web Service Composition Through AI Planning. International Journal on Artificial
Intelligence Tools, 24(01):1450015, 2015.

[24] J. Hoffmann, P. Bertoli, M. Helmert, and M. Pistore. Message-Based Web Service Composition, In-
tegrity Constraints, and Planning under Uncertainty: A New Connection. Computing Research Repos-
itory, abs 1401.3470, 2014.

[25] G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, 2003.

[26] H. Jingjing, Z. Wei, M. Pesic, Z. Xing, and Z. Dongfeng. Web Service Composition Automation
Based on Timed Automata. Applied Mathematics and Information Sciences: An International Journal,
8(4):2017–2024, 2014.

[27] R. Kazhamiakin, A. Marconi, M. Pistore, and H. Raik. Data-Flow Requirements for Dynamic Service
Composition. In IEEE 20th International Conference on Web Services, pages 243–250, Santa Clara,
CA, USA, June 28 - July 3 2013.

[28] A. Khoumsi. A Simple Formal Method to Synthesize an Orchestrator in Web Service Composition. In
American Control Conference (ACC), pages 107–112, Washington, DC, USA, June 2013.

[29] M. Klusch and A. Gerber. Semantic Web Service Composition Planning with OWLS-XPlan. In Pro-
ceedings of the 1st International Association for the Advancement of Artificial Intelligence (AAAI) Fall
Symposium on Agents and the Semantic Web, Technical Report FS-05-01, pages 55–62, Arlington VA,
USA, 2005. AAAI Press.

[30] A. Marconi, M. Pistore, and P. Traverso. Automated Composition of Web Services: The ASTRO
Approach. IEEE Data Engineering Bulletin Issues, 31(3):23–26, 2008.

[31] Sajed Miremadi, Knut Åkesson, and Bengt Lennartson. Extraction and Representation of a Supervisor
using Guards in Extended Finite Automata. In 9th International Workshop on Discrete Event Systems,
WODES 08, pages 193–199, Gothenburg, Sweden, 2008. IEEE.

[32] P. Na-Lumpoon, M.-C. Fauvet, and A. Lbath. Toward a Framework for Automated Service Compo-
sition and Execution. In 8th International Conference on Software, Knowledge, Information Manage-
ment and Applications (SKIMA), pages 1–8, Kathmandu, Nepal, December 2014.

[33] D. Nau, T. Au, O. Ilghami, U.Kuter, J. W. Murdock, D. Wu, and F. Yaman. SHOP2: An HTN Planning
System. Journal of Artificial Intelligence Research, 20(1):379–404, December 2003.

[34] Artur Niewiadomski, Wojciech Penczek, and Jaroslaw Skaruz. A Hybrid Approach to Web Service
Composition Problem in the PlanICS Framework. In A. Irfan, Y. Muhammad, F. Xavier, and Q. Carme,
editors, Mobile Web Information Systems, volume 8640 of Lecture Notes in Computer Science, pages
17–28. Springer International Publishing, 2014.

57

[35] M. P. Papazoglou, P. Traverso, D. Dustdar, and F. Leymann. Service-Oriented Computing: State of the
Art and Research Challenges. IEEE Computer, 40(11):38–45, 2007.

[36] J. Pathak, S. Basu, R. Lutz, and V. Honavar. MOSCOE: An Approach for Composing Web Services
through Iterative Reformulation of Functional Specifications. International Journal on Artificial Intel-
ligence Tools, 17(1):109–138, 2008.

[37] J. Peer. A POP-Based Replanning Agent for Automatic Web Service Composition. In Proceedings
of the Second European Conference on The Semantic Web: Research and Applications, Heraklion,
Greece, ESWC’05, pages 47–61, Berlin, Heidelberg, 2005. Springer-Verlag.

[38] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated Composition of Web Services by Plan-
ning at the Knowledge Level. In Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence, pages 1252–1259, Edinburgh, Scotland, UK, July 30-August 5 2005. Profes-
sional Book Center.

[39] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated Synthesis of Composite BPEL4WS Web
Services. In IEEE International Conference on Web Services (ICWS’05), pages 293–301, Orlando, FL,
USA, 11-15 July 2005. IEEE Computer Society.

[40] V. Portchelvi and V. Prasanna Venkatesan. A Goal-Directed Orchestration Approach for Agile Ser-
vice Composition. International Journal of Information Technology and Computer Science (IJITCS),
7(3):60–67, 2015.

[41] H. Raik, A. Bucchiarone, N. Khurshid, A. Marconi, and M. Pistore. ASTRO-CAptEvo: Dynamic
Context-Aware Adaptation for Service-Based Systems. In 2012 IEEE Eighth World Congress on Ser-
vices (SERVICES), pages 385–392, Hyatt Regency Waikiki Resort and Spa, Honolulu, Hawaii, USA,
24-29 June 2012. IEEE Computer Society.

[42] P. J. Ramadge and W. M. Wonham. Supervisory Control of a Class of Discrete Event Processes. SIAM
Journal on Control and Optimization (SICON), 25(1):206–230, January 1987.

[43] J. Rao, D. Dimitrov, P. Hofmann, and N. M. Sadeh. A Mixed Initiative Approach to Semantic Web
Service Discovery and Composition: SAP’s Guided Procedures Framework. In IEEE International
Conference on Web Services (ICWS’06), pages 401–410, Chicago, Illinois, USA, September 2006.

[44] G. Rodrguez, A. Soria, and M. Campo. Artificial Intelligence in Service-Oriented Software Design.
Engineering Applications of Artificial Intelligence, 53:86 – 104, 2016.

[45] P. Rodriguez-Mier, M. Mucientes, and M. Lama. Automatic Web Service Composition with a
Heuristic-Based Search Algorithm. In IEEE International Conference on Web Services (ICWS), pages
81–88, Washington DC, USA, 2011.

[46] E Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN Planning for Web Service Composition using
SHOP2. Web Semantics: Science, Services and Agents on the World Wide Web, 1(4):377 – 396, 2004.
International Semantic Web Conference 2003.

[47] D. Skogan, R. Grønmo, and I. Solheim. Web Service Composition in UML. In Proceedings of the
Eighth IEEE International Enterprise Distributed Object Computing Conference, EDOC ’04, pages
47–57, Washington, DC, USA, 2004. IEEE Computer Society.

58

[48] S. Sohrabi and S. A. McIlraith. Optimizing Web Service Composition while Enforcing Regulations.
In Proceedings of the 8th International Semantic Web Conference, ISWC ’09, pages 601–617, Berlin,
Heidelberg, 2009. Springer-Verlag.

[49] M. Teixeira, R. Malik, J.E.R. Cury, and M.H. de Queiroz. Supervisory Control of DES with Extended
Finite-State Machines and Variable Abstraction. IEEE Transactions on Automatic Control, 60(1):118–
129, Jan 2015.

[50] P. Wang, Z. Ding, C. Jiang, and M. Zhou. Automated Web Service Composition Supporting Condi-
tional Branch Structures. Enterprise Information Systems, 8(1):121–146, January 2014.

[51] Y. Wang, H. Cho, H. Liao, A. Nazeem, T. Kelly, S. Lafortune, S. Mahlke, and S. Reveliotis. Super-
visory Control of Software Execution for Failure Avoidance: Experience from the Gadara Project. In
International Workshop on Discrete Event Systems (WODES’10), volume 43, pages 259 – 266, Tech-
nische Universitt Berlin, 2010.

[52] Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S. Mahlke. The Theory of Deadlock Avoidance via
Discrete Control. In Proceedings of the 36th Annual SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’09), pages 252–263, New York, NY, USA, 2009.

[53] Y. Wang and A. Nazeem. Artifact-Centric Business Process Synthesis Framework Using Discrete
Event Systems Theory. Technical report, HP Laboratories, April 2011.

[54] W.M. Wonham. Supervisory Control of Discrete-Event Systems. 2012. [http://www.control.
utoronto.ca/cgi-bin/dldes.cgi, Online; accessed 10-Sept-2015].

[55] W. M. Wonham and P. J. Ramadge. On the Supremal Controllable Sublanguage of a Given Language.
SIAM Journal of Control and Optimization, 25(3):637–659, 1987.

[56] Z. Wu, A. Ranabahu, K. Gomadam, A. P. Sheth, and J. A. Miller. Automatic Composition of Semantic
Web Services using Process and Data Mediation. Technical report, KNO.E.SIS Center, Wright State
University, Dayton, Ohio, USA, 2 2007.

[57] J. Yang, X. Zhou, J. Wang, and X. Zhu. A Novel Method for Web Service Composition Based on
Extended BDI. In IEEE 11th International Conference On Networking, Sensing and Control, (IC-
NSC’14), pages 310–315, Miami, FL, USA, IEEE, April 7-9 2014.

[58] P. Zafiropulo, C. West, H. Rudin, D. Cowan, and D. Brand. Towards Analyzing and Synthesizing
Protocols. IEEE Transactions on Communications, 28(4):651–661, Apr 1980.

[59] C. Zhou and R. Kumar. Control of Nondeterministic Discrete-event Systems for Simulation Equiva-
lence. IEEE Transactions on Automation Science and Engineering, 4(3):340–349, 2007.

[60] G. Zou, Q. Lu, Y. Chen, R. Huang, Y. Xu, and Y. Xiang. QoS-Aware Dynamic Composition of Web
Services Using Numerical Temporal Planning. IEEE Transactions on Services Computing, 7(1):18–31,
Jan 2014.

59

http://www.control.utoronto.ca/cgi-bin/dldes.cgi
http://www.control.utoronto.ca/cgi-bin/dldes.cgi

	Introduction
	Background
	Supervisory Control Theory
	Highlights of the Proposed Method
	Service Composition Problem

	Service and Supervisory Control Theory Representation
	The Web Service Labelled Transition System (SLTS)
	Service Representation

	Supervisor Aware Service Composition Architecture (SASCA)
	Controller Synthesis for Service Composition
	Asynchronous Communication and System to be Controlled
	Preprocessing Design Errors
	Composition Requirements
	Controller Synthesis
	Controllability

	Composition Synthesis Algorithm
	Discussion

	Proof of Correctness (Soundness and Completeness)
	Proof of Controller Existences

	Related Work
	DES and Services
	AI and Service Composition
	Other Categories of Service Composition Approaches

	Conclusion and Future Work
	Bibliography

