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Abstract

A self-adaptive software (SAS) system must be able to cope with complex requirements and changing envi-
ronmental conditions to fulfill its desired behavior without violating its specified properties. Model-driven
development (MDD) is a promising way to decrease the complexity of system design and implementation,
and thereby facilitate formal verification of self-adaptive systems. In this paper, we review the state of the art
in application of MDD approaches to the design and verification of SAS systems. To do so, we identify the
key qualitative features of SAS, MDD, and formal verification systems, and evaluate the current MDD-based
SAS verification approaches with respect to these features. We discuss the results and their implications,
and identify the remaining challenges and research opportunities in the application of MDD techniques to
SAS system design and verification.
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1 Introduction

Application domains such as embedded, autonomic and ultra-large-scale systems require flexible, con-
figurable, and self-optimizing software. In recent years, self-adaptive software (SAS) systems have gained
popularity in these contexts. SAS systems can adapt their behavior by evolving their current configuration
(e.g., by adding/removing components or modifying parameters) in response to a changing environment such
that they continue to provide the required services and satisfy the intended properties. This capability is
achieved by continually reconsidering environmental and system requirements, and applying adaptations to
cope with changing conditions.

The uncertain and dynamic nature of SAS systems makes their design a complex task and raises many
other challenges, such as safety and scalability issues. When the adaptation occurs at run-time, the updating
of a system with new components requires that the transfer of state from old components to new compo-
nents fully satisfies the expected functional and safety properties. While formal verification can be used to
check that a system preserves certain properties, determining which aspects of the environment to monitor,
analyzing potentially conflicting goals, accounting for incomplete or uncertain information, and adaptation
complexity have all made formal verification of SAS systems a very challenging task. The number of adap-
tation configurations can grow exponentially with the number of components, and each configuration needs
to be both specified and verified. In this context, model-driven development (MDD) techniques have the
potential to simplify and strengthen SAS system design and verification.

MDD approaches use models which are an abstraction or reduced representation of a system built for
specific purposes [1, 2, 3]. The models can be used to define the structure, behavior, and even the adaptation
mechanisms of an SAS system. The defined model can be analyzed, simulated, and executed. It is also
intended that the application of formal methods to such models should be automated. However, while the
input for verification tools is often low-level mathematical representations of system, such as Kripke structures
or finite transition systems, modeling concepts are based on high-level abstractions to independently specify
relevant system aspects. Application of formal verification approaches to MDD-based SAS systems thus
raises different issues than traditional approaches.

While a number of literature surveys on SAS systems have already been done [4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
to our knowledge no previous study has specifically focused on the application of MDD for designing SAS
systems and their formal verification. In this paper, we try to fill this gap, in summary, our paper makes the
following contributions:

1. We present a classification of the most important features of SAS systems, MDD approaches, and
formal verification techniques. When applicable, we relate these features to an illustrative example.

2. We evaluate how and where current approaches to MDD-based SAS system verification are applied
with respect to the specified features, and how verification is addressed in these approaches.

3. We discuss the patterns and challenges that can be inferred from current research efforts in the MDD-
based SAS system verification field.
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For researchers trying to address challenges in the design and verification of SAS systems using MDD
approaches, this work provides a high-level literature review of existing contributions. Researchers can use the
catalogued features to evaluate the suitability of their approaches; or perhaps more importantly to improve
the capabilities of their approaches through addressing the required features. Overall, we aim to provide a
better understanding of the current state of the art in the design and verification of SAS systems using MDD
and formal verification approaches, and to identify new research opportunities in this field.

The remainder of this paper is organized as follows. Section 2 provides an overview of the research
method used in our study. Section 3 presents the required background. Section 4 describes an adaptive
failover system – an illustrative example used throughout our paper. Section 5 specifies a set of features that
can affect the MDD-based SAS system verification, and evaluates some current approaches with respect to
these features. Section 6 discusses research challenges in designing and verifying SAS systems using MDD
and formal verification approaches. Section 7 examines related work, and we conclude the paper in Section
8.

2 Research Method

The main contribution of this paper is a classification of the system features that are key to MDD-based
SAS system verification, and a presentation of example approaches to supporting these features. We begin
by explaining the analysis we used to identify key features.

2.1 Approach Selection
Our feature catalogue is based on an analysis of the attributes of existing approaches to verification of

SAS systems using MDD. In order to select the approaches for our study, we began by identifying the main
conferences (i.e. Software Engineering for Adaptive and Self-Managing Systems (SEAMS), IEEE Interna-
tional Conference on Autonomic Computing (ICAC), Adaptive and Self-Adaptive Systems and Applications
(ADAPTIVE), Self-Adaptive and Self-Organizing Systems (SASO)), journals (i.e., ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS), Software Engineering for Self-Adaptive Systems (SESAS)), and
workshops (i.e., Foundations of Coordination Languages and Self-Adaptive Systems (FOCLASA), Workshop
on Self-Healing (WOSS)) in the field. Since our focus is on design of SAS systems and their verification in
this context, so we excluded those approaches that apply to MDD but do not consider the verification of
SAS systems, and vice versa. This step resulted in a list of 17 directly relevant papers.

In the next stage, we used a range of related search terms on websites, such as Google Scholar, to search
for locateing more approaches. Our search terms are: “model-driven approaches”, “model-driven engineering
techniques” “self-adaptive systems” and “formal verification”. This step identified an additional 12 papers.
Our final list includes 29 published approaches.

2.2 Feature Selection
To identify relevant features, we first reviewed previously published surveys of the literature on SAS

systems [5, 14, 15, 8, 16, 6, 11, 10, 12, 17], MDD [18, 2, 3, 19], and formal verification of SAS systems
[4, 20, 21]. We then analyzed the features identified in these surveys to select those that can be relevant to
MDD-based SAS system verification. We labeled each selected feature with a reference to the corresponding
previous publication(s). In some cases, the attribute values of shared features are at a different level of
granularity than in the original publication, to adapt to the information we were able to collect from the
selected approaches. We classified the extracted features in three dimensions: self-adaptive, model-driven,
and formal verification. To help validate that our list of features is complete and correct, we evaluated the
29 selected approaches with respect to each of these features.

3 Background

To understand how using MDD and formal verification has the potential to improve SAS systems, we
present a brief background of these two research areas and their characteristics.
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Figure 1: Adaptive Failover System State Machine Diagram.

3.1 Model-driven Development (MDD)

MDD uses models as the primary artifacts in the software development process [22, 3, 2]. Models of a
system can be used at both design-time and run-time to provide abstract, precise and unambiguous repre-
sentations of the system. Metamodels are used to define the appropriate and necessary structures, and the
properties to which a model must conform. The structure, possible behaviors and environment of an SAS
system can all be represented in models conforming to appropriate respective metamodels. Model trans-
formation lies at the very core of MDD, supporting model-to-text transformations to code or reports, and
model-to-model transformations between levels, kinds or versions of models [2]. In addition, the models
can be analyzed before the actual functionality is implemented. This allows discovery of design flaws and
inconsistencies in specifications early in the software development. Errors can thus be corrected more easily
and at lower cost, which is important for safety-critical applications.

3.2 Formal Verification
Formal methods can be used to ensure that an SAS system avoids undesirable behaviors and satisfies

desirable ones. The high complexity of SAS systems makes the verification process challenging and expensive.
(Semi)-automatic verification techniques can be used to facilitate the assessment of required properties of the
system to increase its reliability. Formal methods can be used to verify and validate the models against several
different kinds of properties, namely global, local, and adaptation. Global properties specify requirements
that must be satisfied by the adaptive system throughout any execution of the system. Local properties
specify requirements on each individual configuration/domain satisfied by the specific adaptive system. To
ensure the system properties, it is not sufficient to consider each model/configuration separately, but the
adaptation process as a whole needs to be checked [23]. Furthermore, adaptation properties must be satisfied
during the adaptation process itself [24].

4 A Motivating Example

To ground our discussion, we use an adaptive failover system as an illustrative example [25]. This
system involves a set of server components to handle client requests. It relies on either passive or active
replications [26], two common strategies for maximizing availability when building real-time distributed
fault-tolerant systems. In passive replication, one server component works as a master, handling all the
client requests while the backup servers are largely idle. Passive replication does not create run-time overhead,
except for handshake operations, and for receiving state updates from the master [27]. In active replication,
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client requests are multicast and can be served by all service components. In case of server failure, the
remaining servers can continue to provide the service to the clients, which leads to faster failure recovery.

Fig. 1 shows how the adaptive failover system can be modeled using UML-RT (additional details of this
model can be found in [25]). The model consists of two main states, where the server can run as either a
master or a backup server. A failure state simulates the failure of the master server and is reached after
a randomly calculated time. When the server recovers from a failure, it may restart as either a master or
a backup server, depending on the replication mode and other parameters. The tasks of a master server
and a backup server are different. The master server is required to update its state by sending two kinds of
messages: IAmAlive (sent to the backup servers), and IAmMaster (sent to the environment component). If
it fails in sending these messages, its execution is considered to have failed and a new server must be ranked
up. It is also responsible for receiving and processing client requests.

5 Classification of Features

Our classification scheme is grouped into self-adaptive, model-driven, and formal verification features. To
specify these features, we analyzed existing surveys in each of the three fields [2, 4, 5, 14, 15, 16]. We then
explored how features of each kind can be effective and useful in MDD-based SAS system verification. For
each feature group we began with a top-level classification based on the existing surveys of the area. We then
refined and further classified features from the point of view of leveraging the surveyed formal verification
and MDD approaches in SAS systems.

5.1 Self-Adaptation Features
The self-adaptation dimension includes features of the SAS system itself that can be useful in MDD-based

SAS system verification.
Application Domain. Self-adaptation can apply to a wide range of application domains, often involving

an unpredictable, safety-critical, and dynamic environment. Examples include embedded systems (e.g.,
automotive and automation systems [28, 29, 23, 30, 31, 32, 33, 34]); parallel computing (e.g., cloud computing
[35, 36]); service-oriented architectures (web-services [37, 38, 39, 40, 41]); multi-agent systems (e.g., mobile
applications [42, 43, 44], robotic systems [45, 46, 47, 48, 49, 50]); and ultra-large-scale software (ULSS) systems
(e.g., transit systems [51, 52]). Adaptation helps these systems react to changing environmental conditions
or recover from system failures during execution, which otherwise could cause injury, financial loss, system
thrashing problems, or environmental impact. Thus, the type of SAS system can affect the modeling and
verification process. For example, verification of hard real-time systems is particularly challenging as it needs
an understanding of the complete system and its detailed specifications. As shown in Fig. 2, the assessed
approaches concentrate primarily on the embedded and multi-agent domains. One of the reasons is that the
safety requirements of these domains are more demanding, which can motivate researchers to work on these
areas more. Our illustrative example is a distributed embedded system.

Management Level [5, 14, 16]. Reconfiguration management of the SAS systems can be classified as
centralized or decentralized [5]. In centralized approaches, such as Bucchiarone [51], Yang [44], Inglés-Romero
[46], Klarl [50], Iftikhar [49] and Fleurey [47], adaptation control is performed by a specialized component,
where the domain concerns are separated from the adaptation ones. While the most common approach,
centralized control suffers from a single point of failure, and scalability problems in large-scale distributed
systems. In a decentralized approach (e.g., Adler [23], Khakpour [31] and Hachicha [33]) a system consists
of several components, where the control over the system is distributed across components. Decentralized
control is crucial for quality properties, such as resilience, and flexibility. However, verification of decentralized
adaptation is more difficult due to the collaboration of multiple components, which can impose consistency
problems. As shown in Fig. 2, the majority of the assessed approaches are based on centralized control,
indicating that there is a need for more focused research on decentralized approaches.

In our illustrative example, the failover system is performed in decentralized mode, that is, each server
takes the backup or master role based on an initial configuration and environment conditions (e.g., is any
master available?), and after that the backup servers send their request to the available master server.

Architecture [11]. This dimension refers to whether the architecture of the SAS system is flat or
hierarchical. Unlike flat approaches, hierarchical components are arranged in multi-level hierarchies. The
hierarchical structure can deal with complex systems in a scalable way, which makes them more suitable
for SAS systems. Most of the assessed approaches have hierarchical structures, where components can



5

R
ul

e−
ba

se
d

G
oa

l−
ba

se
d

S
ta

tic

D
yn

am
ic

S
tr

uc
tu

re

B
eh

av
io

r

E
m

be
dd

ed
 S

ys
.

P
ar

al
le

l C
om

p.

S
er

vi
ce

−
or

ie
nt

ed
 A

rc
h.

M
ul

ti−
ag

en
t S

ys
.

U
LS

S
 S

ys
.

F
la

t 

H
ie

ra
rc

hi
ca

l 

In
te

rn
al

E
xt

er
na

l

A
ut

om
at

ic
  

S
em

i−
au

to
m

at
ic

C
en

tr
al

iz
ed

 

D
ec

en
tr

al
iz

ed
 

Lo
ca

l

G
lo

ba
l

Adaptation Models Adaptation Spec. Type Adaptation Type Application Domain Architecture

Control Mechanism Level of Automation Management Level Scope of change 

0

25

50

75

100

0

25

50

75

100

P
er

ce
nt

ag
e

Figure 2: SAS feature summary of assessed approaches.

communicate with each other according to the system specification (Fig. 2). This allows integration of
multiple interconnected components implementing a similar behavior under the control of the same composite
to facilitate the verification process. Examples of hierarchical structure can be found in approaches such as
[31, 45, 53, 51, 38, 48, 49]. Zhang [42] and Becker [54] are examples of flat architectures. Our illustrative
example uses a flat architecture.

Adaptation Type [5, 14]. Adaptation of SAS systems can be structural, behavioral, or a combination of
the two. Behavioral adaptation (e.g., supported by [28, 29, 32, 48, 23, 49, 50]) focuses on dynamic changes
to the functionality or interaction of the computational entities. Transition systems can be used to represent
system behavior in terms of states and transitions. Story patterns, which are an extension of UML Object
diagrams, also support modeling the behavior of the system. The MechatronicUML approach [45] uses graph
transformation rules represented by story patterns to formally describe the behavioral adaptations of the
system. Zhang [42] uses formal models for the behavior of adaptive systems.

Structural adaptation is based on changing the system’s architecture or environmental constraints. Struc-
tural SAS systems support fundamental reconfiguration operations, such as adding, deleting, refining, and
updating new/existing components and their interconnections [5]. Eckardt [52], and Becker [45, 54, 53]
propose systems in which structure is updated using these operations. Becker and Giese [53] use graph
transformations for the specification of component reconfigurations. In addition to these fundamental op-
erations, approaches for adaptable systems need to support composition of the operations using constructs,
such as sequencing, choice, and iteration [5]. Performing reconfiguration operations in response to changes
by installing, updating, integrating, and composing/decomposing components can be extended to run-time.
Thus, it is required to check that these dynamic changes do not cause inconsistency problems, or unexpected
changes in the behavior of the system. For example, a component can be safely removed from a system only
if it does not have cyclic dependencies with other components. Approaches such as [31, 51, 45, 52, 55, 38, 37]
allow for both structural and behavioral adaptation. As shown in Fig. 2, few of the assessed approaches ad-
dress structural adaptation. Dynamic architectures and specifically dynamic components of the SAS systems
can make the modeling and verification of structural adaptation challenging [5] . Our illustrative example
supports both behavioral and structural adaptation (for details see [25]).

Control Mechanism [15, 8]: Adaptation mechanisms can be divided into two categories: internal and
external. Internal control mechanisms are woven into system itself as a built-in component of the code.
External control uses a separate adaptation engine running in parallel with the target system [38]. An
advantage of internal mechanisms is a simpler architecture and run-time infrastructure for interaction and
management of adaptations. They are also better suited to handling local adaptations, such as exception
handling [15]. However, they are more specific to the application and hidden in the application code, and so



6

can be difficult to build, generalize, model, reuse, analyze, and verify. By contrast, external approaches, such
as Bucchiarone [51] and [49] allow specification and reuse of adaptation strategies across multiple systems
and system properties. External control separates the concerns of target system functionality from the
adaptation, which may assist in modeling and verification. Kŕikava [38] and Yang [44] propose an external
approach based on feedback control loops. Examples using internal control can be found in Adler [23],
Fleurey [47], and Zhang [42]. Our study shows that the majority of the assessed approaches use external
control mechanisms (Fig. 2).

In our example system, the control mechanism is internal for behavioral adaptation, which is embedded
in the server component’s behavior. While for structural adaptation, the control mechanism is implemented
by external approaches.

Scope of Change [14, 16]. This dimension identifies whether adaptation is localized, local, or affects
the whole system, global. In local adaptation, verification overhead is reduced by verifying only a small part
of a large system. The work by [31] is an example where adaptation is localized. If adaptation affects the
entire system, then a more thorough verification is required to verify the adaptation process. Schaefer [28, 29]
and Klarl [50] use global adaptation, where different components are involved. Reasons for Change can be
external, such as dynamic features of the environment (e.g., communication infrastructure) independent of
the system, or internal reasons, such as reconfiguration, or evolved requirements [14]. Features, such as the
frequency (i.e., how often a specific change occurs), type (e.g., functional or non- functional) and where the
change has occurred (e.g., application or infrastructure) play an important role to determine the adaptation
and verification overhead in terms of cost, time, and performance. Fig. 2 shows how the assessed approaches
address this feature.

In our illustrative example, adaptation occurs globally, and all components are required to perform
adaptations (i.e., master and backup servers, and clients).

Adaptation Specification Type [16, 6]. This dimension indicates if the adaptation specification is
static or dynamic based on when it is specified. Static refers to pre-defined or pre-constrained adaptations,
which are specified at design-time but implemented at run-time. Whereas in dynamic, the adaptations
are not pre-constrained and instead are both defined and implemented during run-time. Both static and
dynamic adaptations can play a key role in SAS systems, however; dynamic adaptations are more complex
to implement and verify. Furthermore, it is challenging to determine if unknown dynamic adaptations may
violate uncertain and changing properties. Most of the approaches, such as [42, 54, 45, 52, 49, 34, 41, 46, 50,
44], focus on static self-adaptation of the software in response to changes in the environment. Fig. 2 shows
that only a few assessed approaches support dynamic specification. It is evident that dynamic adaptation is
one of the main challenges requiring more attention, most urgently in safety-critical systems. Adaptation
in our illustrative example can be both static and dynamic (for details see [25]).

Adaptation Models [47]. Adaptation models can be classified into two types: rule-based and search-
based. Rule-based approaches use a set of rules or policies to specify when and how adaptation should be
performed, and under which conditions. Efficient run-time evaluation of adaptation rules allows predefinition
of the specified target configurations, supporting design-time analysis of whether the system can be trans-
formed to a model satisfying critical requirements. However, rule-based approaches have scalability issues
with large sets of rules [56]. Several approaches [53, 33, 57, 54, 51, 52, 36, 38, 47, 37, 29, 57, 46, 50] use a
set of rules to perform the adaptation. Papers such as [31, 39] use policies as a mechanism to adapt and
control the system behavior. Search-based approaches provide another way to avoid explicit specification
of the adaptation, by simply specifying the goals that the adapted system should achieve. Andersson [14]
examines different dimensions of goals, such as evolution (static to dynamic), flexibility (rigid, constrained,
unconstrained), and duration (temporary to persistent). Goal-based approaches are triggered by conditions
or events, and guided by utility functions to find the best or a suitable target configuration fulfilling these
goals [56]. However, search-based approaches suffer from costly run-time reasoning and planning processes,
and provide less support for validation [56]. One can leverage both the efficiency of rule-based and the
scalability of search-based approaches by combining them. Fleurey and Solberg [47] use rules to cope with
the variability space explosion problem, combined with a search for suitable configurations. Ahmad [30]
expresses non-functional requirements as goals. In Fig. 2 we can see that rule-based approaches currently
outnumber goal-based ones.

In the context of our example, the adaptation model is rule-based, where the main rule checks the
availability of the master server, and tries to replace the master when there is no master server available.

Level of Automation [14, 16]. This dimension captures the degree of automation during adaptation,
ranging from entirely automatic to semi-automatic with the aid of other systems or human advice [14]. For
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example, in Bucchiarone [51] and Ghezzi[43], manual effort is needed to select the most suitable adaptation
in the case that more than one adaptation are possible. Semi-automatic adaptation requiring human inter-
vention is known as the human-in-the-loop problem. Using a human-in-the-loop approach in areas, such as
machine learning [58] and search-based software engineering [59] benefits from both the efficiency of these
techniques and the quality of human judgments and intelligence. However, keeping the users in the loop
makes them a critical part of the adaptation process. SAS systems often consist of hundreds of configura-
tions to cope with a large variety of possible environmental conditions, requiring the user to select the correct
model from the huge solution space of a safety-critical system. Hence, the user needs to deeply understand
how the system behaves at design-time/run-time to guarantee the quality of system properties. Keeping
the users of SAS systems in the loop also requires trust and transfer policies (e.g. business policies) [15].
An example of an automated approach can be found in Khakpour [31] where there is no need for outside
intervention during adaptation. As shown in Fig 2, few of the assessed approaches provide fully automatic
adaptation. Full automation of adaptation therefore represents a potential research opportunity. In our
illustrative example, adaptation is automated.

5.2 Model-Driven Development Features
In the following we examine the main features of MDD that are useful for verification of SAS systems.
Specification Approach [4, 6, 12]. Modeling languages can be useful in tackling the ever-increasing

complexity of SAS development, and addressing the need for new requirements languages to handle the
uncertainty present in SAS systems [10]. Different modeling languages can be used depending on the type
of system and the particular verification problem that the system is being modeled for [60]. While there are
many different modeling languages, we concentrate on those used in the literature for the verification of SAS
systems. Fig. 3 shows that almost every kind of modeling language has been used to specify SAS systems,
and there is no real consensus as to which is most appropriate. A detailed comparison of these languages
would be required to provide more insight.

General-purpose Modeling Languages (GPMLs). GPMLs, such as the System Modeling Language (SysML)
and the Unified Modeling Language (UML) can be used to express the structure and/or behavior of a wide
range of systems. Hachicha [33] and Becker [54] use UML diagrams. In Zhang and Cheng [42], UML State
diagrams are used to specify the behavior of the system. The ADAM approach [43] supports SAS systems
modeled by Activity diagrams. An example using SysML for modeling SAS can be found in [30].

Domain-specific Modeling Languages (DSMLs). DSMLs, such as Simulink are dedicated to modeling in
a particular domain or context. DSMLs support concepts and notations tailored to the particular problem
domain, and thus can support higher-level abstractions than GPMLs. Several approaches [47, 38, 36, 40,
32, 28, 39, 34, 46] use DSMLs for the modeling of SAS systems. Trapp [32] has used Simulink in modeling
automotive systems.

Behavioral Modeling Languages (BMLs). Modeling languages, such as finite-state automata (FSA), and
Petri Nets (PNs) have been used to model the behavior of SAS systems. State machines are especially well-
suited for discrete-time systems. Both Tan [48] and Radu [37] use an extension of FSA called Statecharts
to model SAS. Statecharts are well-suited for modeling complex systems at different levels of abstraction
by refining states using hierarchical sub-charts and their composition. MechatronicUML [45] uses real-time
Statecharts, a combination of UML state machines and timed automata.

PNs are used to formally capture the dynamic semantics of concurrent and distributed systems. The
work by Zhang [42] is an example of using PNs in SAS, to model different behavioral variants of a process.

Formal Modeling Languages (FMLs). FMLs, such as Z, force an analysis of the system requirements.
Z notation is a model-oriented specification language used for describing and modeling abstract data. SAS
systems with complex data operations, especially complex state transformation functions are modeled in Z.
Zhang [42] provides an example using a Z model.

Mathematical Modeling Languages (MMLs). Markov models and graphs are examples of mathematical
models. Markov models are a stochastic model consisting of a list of the possible states to model and analyze
reliability and dependability of the systems. In Ghezzi [43] a Markov model of the SAS system is generated
from UML interaction diagrams.

Graphs models can be used to model system states, and can represent SAS input and output models using
variations of typed, attributed graphs. In Becker [54, 53], the SAS system’s states are modeled by graphs,
and a set of graph transformation rules is defined by story patterns. Bucchiarone [51] uses the Algebraic
graph transformation (AGT) typed graphs and typed graph grammars to model static and behavioral parts
of the system respectively.
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Figure 3: MDD feature summary of assessed approaches.

In the context of our example, we use the UML-RT language which is a DSML in the context of soft
real-time system development [25]. UML-RT designed as a UML profile uses an extension of UML structure
diagram (i.e., capsule diagrams) for structural specification of the system, and an extension of UML state
machines for behavioral specification.

Transformation Support [19, 6, 2]. Model transformations can be classified into two main categories,
model-to-model (M2M), and model-to-text (M2T). M2M transformations can be used to transform an input
model into a formal model. The transformed models are then checked to verify that the desired properties
hold. An M2T transformation can be used to implement adapting operations by generating the adapted code
from the model(s). There are many model transformation languages and tools applicable to SAS systems
[2, 61]. Examples of using M2T and M2M transformations to perform transformation operations for adapting
SAS systems can be found in approaches, such as [38, 43, 30, 23, 53, 34, 47, 28, 29, 40, 32, 37, 48, 33, 41, 50, 44].
Kŕikava [38] uses M2T to translate the model elements into source code artifacts that implement the self-
adaptive control layer. Both Schaefer [29] and Adler [23] use M2M transformations to reduce the complexity
of verification in SAS systems. Fig. 3 shows that the majority of the assessed approaches use M2M
transformations. However, this is not an indication that M2T research is not important in SAS. Rather, it
is likely an artifact of the fact that many frameworks and tools already provide M2T features out-of-the-box
[2].

In our example, tools such as IBM Rational Rose-RT can be used to support code generation from UML-
RT models to different programming languages. It is also possible to apply M2M techniques and provide
analysis and verification facilities.

Traceability Capabilities [19, 16, 2]. Traceability has become a key part of the development of safety-
critical systems. Traceability links can be established between model elements at different levels of ab-
straction, between requirements and model elements, or between model elements and code [62]. In SAS,
traceability can help to identify the origin of errors, to perform impact analysis for created/modified ele-
ments, or to re-check consistency of models after changes are applied. Because requirements can change
rapidly at run-time in SAS systems, traceability monitoring is critical to verification, but as shown in Fig.
3, only a few of the assessed approaches, such as Kŕikav [40] leverage this feature.

In our example, supporting traceability would help monitor adherence to requirements at run-time, in
order to keep the system model synchronized with the run-time environment.

Adaptation Execution [18, 2]. Practical modeling of SAS systems requires executable models. When
the operational semantics of a model are completely defined, the model is complete enough to be executable.
Strategies to make executable models execute include: compiler-based, interpreter-based, and hybrid of
both. While interpretive approaches may be flexible but have problems with large models, compiler-based
methods may have good performance but lack flexibility. Ghezzi [43], Iftikhar [49], and Bucchiarone [51] use
interpreters to support the execution of adaptation engine operations. In Ghezzi [43], the model is executed
by an interpreter that drives the execution of the system. There are several examples of compiler-based
approaches [38, 42, 32, 29, 40, 48, 41, 50]. Zhang [42] for example proposes a method to construct adaptation
models and automatically generate adaptive programs from the models. We can see in Fig. 3 that the
majority of the assessed approaches are compiler-based. Overall, model execution is one of the features
not well addressed by existing MDD approaches, not only for SAS systems, but also for other domains.
In our example, we use a compiler-based approach since the MDD tools supporting UML-RT provide only
code-based execution.

Abstraction Level [20]. This dimension addresses the level at which verification can be exercised:
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Figure 4: Formal verification feature summary of assessed approaches.

metamodel-level versus model-level. Metamodel-level verification uses metamodel information to verify prop-
erties of any well-formed model [20], using sophisticated formal verification techniques, such as theorem
proving. By contrast, model-level verification works on specific input and output models, using model check-
ing or testing techniques. Because model-level verification works with a lower level of abstraction, the range
of properties it can deal with is broader [20]. Approaches, such as Adler and others [23, 47, 53, 52, 42, 37],
address verification at the model-level, and require models to be represented at run-time. Surprisingly, none
of the studied approaches uses a meta-model approach, which implies that no generic solution is presented.
All of the assessed approaches specifically work at the instance-level. In our example, using UML-RT for
modeling allows the use of many different model-based checking tools through model transformation to
representations handled by the tools.

5.3 Formal Verification Features
We review here the features of formal verification methods to be considered when verifying SAS systems

using MDD.
Location [17]. The two main subsystems of an SAS system are the managed system, which delivers the

basic function or service, and the adaptation controller, which deals with the adaptations of the managed
system for the appropriate adaptive behaviors [63]. The adaptation controller might itself be adaptive so
that the required properties can be evaluated on the managed system or the controller. Properties, such
as accuracy and safety can be evaluated for both the controller and the managed system. However, most
properties can only be observed in the managed system [17], as recognized in [53], [52], [49], and [42]. Fig. 4
shows that despite the importance of adaptation verification at the controller level, the assessed approaches
mostly focus on the managed system. In our example we need to verify both the managed system (the
master and backup components) and the controller. The whole system should be verified, using an exhaustive
analysis of fail-over scenarios.

Application Time [4]. This dimension addresses the time at which formal methods can be applied,
run-time or design-time. Verification at run-time helps avoid verification difficulties in highly dynamic
environments with limited computational resources. However, the uncertainty in SAS systems can make
modeling the system’s behavior before deployment time-consuming and costly. Approaches such as [48, 44, 34]
support run-time verification. Becker [54] proposes a technique to verify structural safety properties for
infinite-state systems with structural adaptation behavior at run-time. Examples of design-time verification
can be found in approaches, such as [47, 28, 41, 32, 29, 49, 42, 57, 46, 50]. Verification of safety-critical
applications, such as autonomous cars must be preformed at design-time, to ensure a priori that adaptation
does not fail at run-time. However, the unpredictable environment of SAS systems may cause the incomplete
and uncertain knowledge at the design-time to be invalidated at run-time. Thus for SAS, to guarantee the
fulfillment of the system’s properties, formal methods should be applied at both design-time and run-time.
Our study shows that only a few approaches support run-time verification (Fig. 4), despite the fact that
verification at run-time helps avoid problems such as state explosion. In the context of our example,
verification should be applied at both run-time and design-time.

Incremental Verification [11]. Incremental verification [64] involves saving and updating previous
verification analysis in response to change, in order to avoid repeating the entire verification process. Thus,
only the validity of properties that may be affected by changed parts need to be re-established. While
Bucchiarone [51] incrementally checks conflicts of newly added adaptation rules with respect to existing
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ones. Overall, the majority of the studied approaches do not support incremental verification (Fig. 4). In
our example, incremental verification would significantly increase efficiency of the verification process.

Compositional Techniques [11]. Approaches should support design and verification of large and com-
plex SAS systems. Time and memory consumption for modeling and verification can increase exponentially
with system size and complexity. Compositional techniques, such as decomposed verification, interface ab-
stract interpretation, functional decomposition, and assume-guarantee reasoning [29], can boost the scalability
and efficiency of SAS verification using modular and incremental techniques, as for example in Becker [45].
Eckardt [52] uses compositional verification to enable scalable formal verification of large mechatronics sys-
tems.

Decomposed verification enables scalable formal verification as a sequence of steps using a range of ver-
ification techniques, such as theorem provers and model checkers [65]. Schaefer [29, 28] reduces verification
complexity by decomposing the verification task for the global system model into a number of less com-
plex verification tasks for parts of the model. Interface abstract interpretation (e.g., used in [23], [29]) is
a static analysis method used to reduce the complexity of the verification process [66]. Tools for abstract
interpretation can lead to false positives, which hampers the possibility of fully automating the process [67].
In functional decomposition (e.g., used in [23]), there is a separation between functionality and behavioral
adaptation in a module using a set of predetermined functional configurations that it may adapt to [28].
Assume-guarantee reasoning (e.g., used in [28]) decomposes the system into several components, implement-
ing verification of the system as the separate verification of each of the components [68]. Similarly to the
incremental verification techniques, only a few of the assessed approaches apply compositional techniques.
Compositional techniques could significantly increase the verification efficiency of the adaptation process in
our example.

Verified Properties [16, 4, 17]. The SAS adaptation process may create a behavior that violates one
or more critical properties of the system. The properties of interest may vary according to the structural
and behavioral configuration of SAS systems, and the nature of the models. They can be classified as either
functional properties, describing specific functions of the system, or non-functional properties, describing
operational qualities of the system [63]. Both can be further classified according to whether they are observed
in the target system, or in the adaptation process. Properties can also be categorized according to whether
they can be verified at design-time, or at run-time. A detailed review of adaptation properties can be found
in Villegas [17].

Becker [54] uses graph patterns to model safety properties (hazards, accidents) of large multi-agent systems
in the mechatronics domain. Bucchiarone [51] defines a set of operational properties (corrective, enhancing,
direct (normal) self-adaptation) to check system correctness using related rules. A graph transformation-
based approach [53] uses simulation and invariant checking techniques to check the correctness of the modeled
SAS systems. Invariant checking is used to verify that a given set of graph transformations will never reach
a forbidden state. Another important thing is to assure that the adaptation does not lead the system into
inconsistent, deadlock, or unstable states. Bucchiarone [51] uses the consistency constraints to check that all
reachable system states are consistent. Zhang [42] checks consistency among the models. Schaefer [29] uses
static analysis methods to check that models are consistent with respect to syntactical constraints. A number
of approaches [36, 55, 23, 42, 37] check for deadlock-freedom. Adler [23] and [36] both propose frameworks to
verify the stability of the adaptation process. Other properties to be guaranteed are: liveness (e.g., checked
in [42, 45]); safety (e.g., checked in [45, 28, 32, 55]); fairness (e.g., checked in [36, 55]); reachability (e.g.,
checked in [38]); scalability (e.g., checked in [38]); response time (e.g., checked in [43]); robustness (e.g.,
checked in [42]), (e.g., checked in [43]); and termination (e.g., checked in [55]).

In our example, properties, such as safety, liveness, reachability, and correctness need to be preserved. For
example, there is always a available master server to serve the backup ones (liveness); two servers must not be
master at the same time (safety); and the master will return to the backup mode after failing (reachability).

Property Specification [4]. One of the most common ways to specify properties is the use of temporal
logics [69]. On the one hand, Linear Temporal Logic (LTL) provides a mathematically notation to specify
properties that hold during the adaptation process over a linear time. Zhang [42], Luckey [36], Kŕikav [40],
Yang [44], and Adler [23] all use LTL. On the other hand, Computation Tree Logic (CTL) describes properties
using a branching tree-like structure, where different operations may occur in each state. In CTL the model
of time is a non-deterministic tree, leading to the various states. Adler [23], Iftikhar [49] and Schaefer [28]
use CTL as a property specification to specify model properties.

Verification Approaches [20, 4]. Techniques for the formal verification of SAS systems can be classified
as semi-automatic or automatic. Approaches can benefit from combining different formal techniques, such as
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simulation and model checking. Adler [23] uses theorem proving, model checking, and specialized verification
methods to verify the system. In the context of the failover system, many different approaches can be applied.

Model Checking. Since the number of system states can grow exponentially with the number of compo-
nents, model checking [70] is often too expensive to apply directly to SAS systems of more than moderate
size. To handle larger models, model checking can be combined with abstraction or decomposition tech-
niques. Schaefer [28] proposes a framework for modular model-based verification of adaptive systems using
model checking. Symbolic model checking, such as Binary Decision Diagrams (BDDs), can also cope with
large models by representing sets of states rather than enumerating individual states. Bounded Model
Checking (BMC) is a complementary technique to BDD-based unbounded model checking. Bounded means
only those states are explored which can be reachable within a limited number of steps. Many approaches
[42, 47, 36, 23, 30, 52, 32, 40, 28, 34] use model checking to validate and verify SAS system models and
properties.

Model checking tools, such as Alloy (e.g., used by Fleurey [47] to check functional properties and perform
simulations), NuSMV (e.g., used by Adler [23], Schaefer [28]), UPPAAL (e.g., used by Becker [45], Iftikhar
ActivForms, and Eckardt [52]), SPIN (e.g., used by Kŕikava [38] and Klarl [50]), and PRISM (e.g., used by
Ghezzi [43] and Yang [44]) have all been used to verify properties of adaptive systems expressed in temporal
or other logics. As shown in Fig. 4, model checking is the most popular method for formal verification of
SAS systems.

Process Algebras. Process algebras [71] are commonly used to describe and verify properties of concurrent
systems based on send and receive messages through channels. Process algebra techniques can be difficult
to extend to other types of formalisms and the corresponding analysis. Example process algebras include
the Calculus of Communicating Systems (CCS), Communicating Sequential Processes (CSP), Algebra of
Communicating Processes (ACP), and the Π-calculus. Process algebra is employed in Mateescu’s work [37],
and Adler [23] uses Π-calculus to check stability.

Logical Inference/Theorem Proving. Unlike model checking, theorem proving [72] does not suffer from
the state explosion problem, since many properties can be verified without enumerating all possible states.
However, it can be error-prone, and requires substantial user interaction and advanced proof skills. There
are many theorem proving systems, including Isabelle/HOL, Coq, Prototype Verification System (PVS), and
A Computational Logic for Applicative Common Lisp (ACL2). The approaches of Adler [23], Hachicha [33],
and Schaefer [29, 28] use theorem proving to evaluate the correctness and the validity of the transformations
performed on SAS models.

Static Analysis. Static analysis techniques can be used to guarantee that models are consistent with
syntactical constraints [73]. Although static analysis can find flaws in the structural design of the models
at initial design stages, it cannot assure the overall correctness of the design. Bucchiarone [51] employes
static analysis techniques supported by the algebraic graph tool AGG to analyze SAS system models. Static
analysis is also used by Schaefer [29] to check models for structural consistency. Bucchiarone [74] uses static
conditions to verify that consistency and operational properties are maintained across adaptations.

Testing. Testing as a general approach can be leveraged for different types of SAS systems. However,
testing can only show the presence of errors, not their absence. Model-based Testing (MBT) [75] has recently
gained popularity as a way to address this issue. MBT systematically generates test suites from a formal
model, with the aim of thoroughly testing whether the implementation of the system behaves according to
its specification. Testing cannot in general deal with all kinds properties, such as safety. A combination
of testing with other verification methods, such as model checking is needed to fully reason about system
correctness. Zhang [42] uses MBT to guarantee conformance between system models and their subsystems,
and Tan [48] and Bartel [41] also use MBT for SAS systems.

Simulation. In this technique, a formal model of the system is established and simulated. Model-based
simulation uses a small subset of model states, and like testing cannot provide correctness guarantees. The
results of a simulation can vary widely based on the scenarios executed and similarly to testing can only
uncover the faults, not prove their absence. Bucchiarone [51] uses simulation to find suitable adaptation
sequences using adaptation rules in AGG. Zhang [42], Iftikhar [49], and Ghezzi [43] employ a simulation
method to validate SAS models against specified properties. MechatronicUML [45] simulates the behavior
of mechatronic systems to ensure correctness of their design.
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6 Discussion

This section highlights the important features that are not well supported by current approaches, the
major remaining challenges in modeling and verification of SAS systems, and threats to validity of our study.

6.1 Features
Our work shows that existing formal approaches for adaptation mainly focus on structural or behavioral

changes in SAS systems. It is evident that a real need exists for work on both behavioral and structural
verification of MDD-based SAS systems to improve their quality and reliability. In a same way, adaptation
time of the majority of approaches is static, whereas, both static and dynamic adaptations are important
in SAS systems, as changes in the system such as reconfiguation of the system can be happened during
deployment, code generation, or run-time. Traceability also receives less attention in the assessed approaches.
While, an existing challenge in SAS systems is a need to traceability from requirements to implementation
[16], which can be supported through establishing the links between models and code.

In general run-time formal verification is not supported by the majority of studied approaches to SAS.
While, run-time verification can help increase the evidence for assurances by using information from the
running system and its environment. Therefore, applying formal methods at both design-time and run-time
can boost assurance of the system. Incremental verification is another important feature not supported well
by the assessed approaches. In systems that do not support incrementality, the complete verification process
must be re-performed in dealing with changing models.

6.2 MDD in SAS Systems
As we have seen, MDD can aid in providing a comprehensive description of the system, using different

models to describe different aspects [2], thus reducing the complexity of verification. On the other hand,
dealing with multiple models, especially at run-time, can cause problems with consistency among models.
To avoid that, tracebility, and incremental approaches can be applied to keep the models consistent. The
level of abstraction is another major difficulty in modeling of SAS systems, which must be carefully selected
to include only the required details. A high-level abstraction may not contain the required information, but
a too detailed abstraction would make the system complex or less comprehensible [10].

Modeling behavioral adaptation can be complex because of interdependencies between the modules of
a system. This can be partially addressed by separating adaptation-specific behavior from non-adaptive
behavior. Another concern is the synchronization between run-time models and the evolving system, as
system requirements may evolve and change at run-time. These changes make it difficult to define and
verify a complete model before system deployment. Therefore, models need to be evolved and maintained
at run-time to reflect theses changes. Models@run.time approaches are leveraged to provide the required
abstractions of a running system, and its environment [76, 63]. In case of adaptation, changes are planned
and analyzed using run-time models before they are propagated to the running system. Such adaptations
require automatic reasoning and planning mechanisms that work online and on top of run-time models [77].
Taking time between propagating the changes between run-time models and running systems makes them
unsuitable for hard real-time systems. In addition, MDD benefits can be leveraged to the run-time phases
of SAS systems [56].

6.3 Verification of SAS Systems

It is necessary to show that when switching between models/ configurations (structural or behavioral),
essential system properties (e.g. local, global, adaptation) are preserved. It is not sufficient to simply consider
each model/configuration separately; rather, adaptation as an entire process along with the input and output
models must be checked. The existing techniques focus primarily on verifying the adapted system and its
subsystems; however, verification of the adaptation process itself has received less attention.

A major difficulty in verification of SAS systems is that the usability of formal approaches depends on
their integration in MDD-based SAS systems. Formal verification cannot always be immediately applied in
model-based development. On the one hand, we often have low-level mathematical concepts models as the
input for verification tools, on the other hand, the modeling concepts are based on a high-level abstraction
to specify the relevant system aspects. Therefore, there is a need of bridging the gap between high-level
modeling concepts and low-level verification input, such as Schaefer [29]’s approach. Another challenge is
related to selecting the most appropriate verification approach, as the usability of formal approaches depends



13

on the specific domain and the kind of property one wishes to verify. Sometimes, it needs to use different
verification techniques to perform the same verification task, as different properties are suited to different
verification techniques. For example, model checking is well-suited to safety and security properties.

6.4 Threats To Validity
The main threat to our findings is missing information. Not all of the assessed approaches provide the

detailed specifications of their design and implementation, so a risk of missing information for some of these
approaches are possible. However, we believe it is low enough for our results to still provide the current state
of application of MDD to the design and verification of SAS systems. A second threat comes from the list of
the assessed approaches. We searched the websites, such as Google Scholar and examined the main venues
in the filed to identify the existing approaches to verification of SAS systems using MDD. However, there is
still a risk of missing some related approaches. To decrease this threat, we also checked the related work of
the assessed approaches, along with previously published surveys of the filed to make sure that our list of
the assessed approaches is complete.

7 Related Work

A number of authors have explored different aspects of SAS systems. Bradbury [5] surveyed 14 formal
specification approaches for self-adaptation based on graphs, process algebras, and logic formalisms. The
survey concluded that existing approaches need to be enhanced to cope with issues regarding expressiveness
and scalability. Anderson [14] has classified the modeling dimensions of SAS systems into: goals (what is the
system supposed to achieve), changes (causes for adaptation), mechanisms (system reactions to changes) and
effects (the impact of adaptation upon the system). Weyns [4] has surveyed formal methods in SAS systems.

Tahvildari [15] proposed a taxonomy, based on concerns of adaptation, i.e., how (should adaptation be
performed), what (elements should be changed), when (should adaptation actions be applied) and where
(the adaptation should occur). Cheng [63] proposed a research roadmap to identify critical challenges for
the systematic software engineering of SAS systems. There have been other surveys, such as Villegas’s work
[17] on quality evaluation of self-adaptive systems, and Mac̀ıas-Escrivá’s work [8] reviewing recent progress
on self-adaptivity from the standpoint of computer science and cybernetics. McKinley [78] focused on the
techniques and technologies in SAS systems.

Unlike these works, our work focuses on the required properties and intended goals of application of MDD
approaches to the design and verification of SAS systems.

8 Conclusion

We have reviewed the state of the art in leveraging MDD techniques to the design and verification of
SAS systems, and have identified existing research challenges. Our work is potentially useful to many parties
in the modeling and SAS communities, including practitioners who need to solve a specific SAS problem,
and researchers trying to address existing challenges in using MDD in verification of SAS systems. The
highlighted features and challenges that are not addressed by different approaches might inspire researchers
to tackle these challenges.
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