
Two-Dimensional Automata

Taylor J. Smith

January 2019
External Technical Report

ISSN-0836-0227-
2019-637

School of Computing
Queen’s University

Kingston, Ontario, Canada K7L 3N6

Document prepared January 7, 2019
Copyright c©2019 Taylor J. Smith

Keywords: automata theory, closure properties, complexity theory, decision problems,
formal languages, recognizability, two-dimensional automata, two-dimensional words

Abstract

In traditional automata theory, a finite automaton operates on linear strings of symbols.
However, the automaton model can be extended to handle nonlinear inputs, such as trees,
graphs, and multidimensional words. The well-known cellular automaton is an example
of an automaton that operates on multidimensional words. Here, we consider automata
that operate on two-dimensional words in a sequential manner. Such automata are called
“two-dimensional automata”.

Two-dimensional automata exhibit a number of interesting properties compared to one-
dimensional automata. Due to their increased computational power, two-dimensional au-
tomata can recognize properties of input words that one-dimensional automata cannot rec-
ognize. Additionally, unlike in the one-dimensional case, a separation exists between deter-
ministic and nondeterministic two-dimensional automata. However, this increase in power
comes at the expense of losing some desirable automaton properties.

In this report, we introduce the two-dimensional automaton model and its variants. We
discuss a number of properties this model possesses, operations under which this model is
closed, and properties of input words that can be recognized by this model. We analyze
decision problems for this model and present computational complexity results for some of
these decision problems. We also review a number of open problems.

This report is based on the research proposal paper written as part of the author’s PhD
comprehensive examination.



Contents

1 Introduction 1

2 One-Dimensional Automata 2
2.1 Deterministic and Nondeterministic Automata . . . . . . . . . . . . . . . . . 2
2.2 Two-Way Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Closure and Decidability Results . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Complexity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Two-Dimensional Automata 5
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Closure Results 11

5 Recognition Results 14
5.1 Recognizing General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Recognizing Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Decidability Results 17
6.1 Four-Way Two-Dimensional Automata . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Three-Way Two-Dimensional Automata . . . . . . . . . . . . . . . . . . . . . 18

7 Complexity Results 20
7.1 Complexity of Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 Complexity of Other Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Conclusion 22

References 23

i



List of Figures

1 An example of a two-dimensional input word . . . . . . . . . . . . . . . . . . 6
2 An illustration of Lemma 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Inclusions among two-dimensional automaton classes . . . . . . . . . . . . . . 11
4 Recognizing a two-dimensional word with coprime dimensions . . . . . . . . . 15
5 Recognizing a two-dimensional word with exponential dimensions . . . . . . . 16

List of Tables

1 State complexity results for one-dimensional automaton models . . . . . . . . 5
2 Closure results for two-dimensional automaton models . . . . . . . . . . . . . 13
3 Decidability results for four-way two-dimensional automaton models . . . . . 18
4 Decidability results for three-way two-dimensional automaton models . . . . . 19

ii



1 Introduction

A finite automaton, also called a finite-state machine, is an abstract model of computation.
In a finite automaton, a computation being performed by the automaton is in one of some
finite number of states at any given moment, and the next step in the computation is given
by a transition from that state to some possibly-different state based on the input word
supplied to the automaton.

Traditionally, the input word supplied to a finite automaton is considered to be a linear
object. However, the finite automaton model can be extended to allow for automata that
operate on nonlinear objects; such extensions include tree automata [9], graph automata [8],
and multidimensional automata [32, 50]. Here, we focus on multidimensional automata.

Nonlinear objects can be processed by their corresponding automaton model either se-
quentially (by reading one symbol at a time) or in parallel (by reading multiple symbols at
a time). There are a number of multidimensional automaton models designed to process
multidimensional words in parallel; these models include cellular automata [32], bounded
cellular acceptors [55], online tessellation acceptors [16], parallel/sequential array automata
[51], and pyramid cellular automata [11]. In the sequential case, however, only a small
variety of models exist.

In this report, we consider extensions to the finite automaton model that operate on
two-dimensional words in a sequential manner. Such automata are called “two-dimensional
automata”. The two-dimensional automaton model was originally introduced by Blum and
Hewitt in 1967 [4, 5]. Some surveys on two-dimensional automata have since appeared in the
literature [24, 35, 50], though the survey by Inoue and Takanami [24] has a stronger focus on
the more general two-dimensional Turing machine model. Surveys are also available on the
related fields of two-dimensional language theory [13, 50] and two-dimensional grammars
[50, 52, 59, 60].

A two-dimensional automaton, given a sufficiently large input word, can simulate the
computations of a two-counter machine [6]. Since two-counter machines are known to be
Turing-equivalent, the two-dimensional automaton is much more powerful than its one-
dimensional counterpart. Two-dimensional automata have both deterministic and nonde-
terministic variants. Although deterministic and nondeterministic finite automata in one
dimension are equivalent [49], nondeterministic two-dimensional automata have more com-
putational power than deterministic two-dimensional automata [4, 5]. It is possible to aug-
ment two-dimensional automata with a rudimentary kind of memory in the form of markers,
and this addition gives us more computational power [4, 5, 46]. However, we will not discuss
marker automata in this report.

Due to their increased computational power, two-dimensional automata can recognize
properties of input words that one-dimensional automata cannot recognize. For instance,
two-dimensional automata can recognize square words by moving diagonally and checking
whether the input head reaches a corner or an edge [4, 5]. It is even possible for the
automaton to recognize more peculiar properties, such as if a word has exponential side
length [34, 40]. This may come as a surprise, since the two-dimensional automaton model
has no ability to write symbols; in fact, the enhanced movement of the input head is enough
to recognize such properties. However, this increased power comes at the cost of losing
the ability to decide certain language problems, such as emptiness and universality [5, 63].
In fact, most decision problems for two-dimensional automata are undecidable, apart from
language membership.

1



We can restrict some aspects of the two-dimensional automaton model to obtain other
interesting models of computation. For example, a straightforward restriction limits the
alphabet size to one symbol, but unary two-dimensional automata have no particular ad-
vantage over the usual model. One particularly useful variant of the two-dimensional au-
tomaton model is the three-way two-dimensional automaton [50]. This model is permitted
to move its input head left, right, or down, but not up. Similarly, a two-way two-dimensional
automaton can only move its input head right or down [10], but this results in the automa-
ton not being able to read its entire input. Restricting the input head movement allows us
to regain some—but not all—of the decision properties lost with the four-way model; empti-
ness is once again decidable, and universality is decidable in the deterministic case [22, 47].
However, with this restriction, we forfeit certain crucial abilities, such as the ability to read
a column more than once.

Despite the amount of research on automata theory, relatively little is known about two-
dimensional automata. Basic results on closure, recognizability, and decidability properties
are known, but certain problems in these areas remain open. Other areas, such as com-
plexity measures for two-dimensional automata, have very few known results. Remarkably,
the existing literature has almost no results on the state complexity of two-dimensional
automata, with the most meaningful results being Sipser’s construction for converting an
n-state two-dimensional automaton to an equivalent O(n2)-state halting automaton by per-
forming a depth-first search through the computation tree [57] and an improvement on this
bound to O(n) by Kunc and Okhotin [37, 38]. This gap in the literature persists despite
state complexity being a much-investigated topic in automata theory. Throughout this re-
port, we will see a number of open problems that offer promising opportunities for future
research.

2 One-Dimensional Automata

In this section, we recall some fundamental definitions and results from the area of automata
theory. Many of the definitions we recall here can be found in the textbook by Hopcroft
and Ullman [14], and citations are provided in-line for other results.

2.1 Deterministic and Nondeterministic Automata

A finite automaton is an abstract machine that receives input in the form of a string of
symbols from some finite, nonempty alphabet Σ. Formally, it is defined as follows.

Definition 2.1 (Deterministic finite automaton). A deterministic finite automaton is a
tuple (Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is the input alphabet, δ : Q×Σ→ Q
is the transition function, q0 ∈ Q is the initial state of the computation, and F ⊆ Q is a
finite set of final states of the computation.

A deterministic finite automaton will always produce the same computation on the same
input, since the transition function δ maps pairs of states and alphabet symbols to exactly
one state. The notation δ(qi, aj) denotes the state corresponding to the transition on the
pair consisting of state qi and input symbol aj . We may instead consider nondeterministic
finite automata by making one small modification to the transition function.

2



Definition 2.2 (Nondeterministic finite automaton). A nondeterministic finite automaton
is a tuple (Q,Σ, δ, q0, F ), where Q, Σ, q0, and F are defined as in Definition 2.1 and δ :
Q× Σ→ 2Q is the transition function.

We can now consider what it means for a finite automaton to compute something;
specifically, under which conditions a finite automaton accepts or rejects some input.

Definition 2.3 (Accepting and rejecting computations). Given an input word w = a1a2 · · · an
consisting of symbols chosen from an alphabet Σ, a finite automaton A = (Q,Σ, δ, q0, F )
accepts w if there exists a sequence of states r0, r1, . . . , rn ∈ Q such that

1. q0 = r0;

2. ri+1 = δ(ri, ai+1) for all i = {0, 1, . . . , n− 1}; and

3. rn ∈ F .

If such a sequence of states does not exist, then the finite automaton rejects w.

The language of an automaton A, denoted L(A), is the set of all input words accepted
by the automaton A. We denote the class of all languages accepted by deterministic (re-
spectively, nondeterministic) finite automata by DFA (respectively, NFA).

In the sequel, to distinguish the previous notions of deterministic and nondeterministic
finite automata from the main topic of two-dimensional automata, we will occasionally refer
to the former notions collectively as “one-dimensional automata”.

2.2 Two-Way Automata

In the traditional “one-way automaton”, the input head reads the input word only in the
forward direction. We can extend the one-way automaton model in such a way that, al-
though it still operates on linear input words, it gains the ability to reread symbols in the
input word. Since the input head can now move both forward and backward through the
input word, we say that it is a “two-way automaton”. We denote the class of all languages
accepted by deterministic (respectively, nondeterministic) two-way automata by DFA-2W
(respectively, NFA-2W).

When introducing a second direction of movement to our automaton model, we must
make some assumptions about the input word in order to avoid undesirable effects. For
instance, we assume that our input word is surrounded by two boundary symbols. The
inclusion of these symbols does not affect the computational power of our model; it only
prevents the input head from moving off of the input word.

In fact, not even the addition of the second direction of movement affects the compu-
tational power of our model. Rabin and Scott [49] and, independently, Shepherdson [56]
proved that every two-way finite automaton has an equivalent one-way representation. As
a consequence, both deterministic and nondeterministic two-way automata are equivalent
in terms of computational power.

For an overview of other results relating to two-way automata, see, for example, the
survey paper by Pighizzini [48]. We will revisit the two-way automaton model later during
our discussion on two-dimensional automata.

3



2.3 Closure and Decidability Results

When we talk about a set having closure under an operation, we mean that, given two
elements from that set, applying the operation to those elements produces an element again
from that same set. Studying the closure properties of an abstract machine model is impor-
tant, since it gives us insight into how we can combine multiple machines to achieve certain
results while still maintaining the same amount of computational power.

Most “natural” operations are closed for languages accepted by one-dimensional au-
tomata. These operations include the set operations of union (∪), intersection (∩), and
complement (¬) and the word operations of concatenation (◦), Kleene star (∗), and reversal
(R).

Similar to how closure problems investigate operations on languages, decidability prob-
lems investigate questions we can ask about languages in general. We say that a problem
is decidable if there exists an algorithmic procedure to solve that problem. However, decid-
ability does not necessarily imply efficiency in either time or space.

One of the most common decidability problems is the membership problem. For a
fixed finite automaton A accepting the language L(A), the membership problem asks, given
w ∈ Σ∗, whether w ∈ L(A).

Remark. The membership problem, as stated here, is also known as the non-uniform variant
of the problem. In the uniform variant of the problem, A is given as input instead of being
fixed. Unless otherwise stated, we will assume in future sections that we are dealing with
the non-uniform variant of the membership problem.

There are a number of other decidability problems for languages, but here we will focus
on five problems in particular. Assume that we are given two finite automata A and B
that accept the languages L(A) and L(B), respectively. Then the emptiness problem asks
whether L(A) = ∅, the universality problem asks whether L(A) = Σ∗, the equivalence
problem asks whether L(A) = L(B), the containment problem asks whether L(A) ⊆ L(B),
and the disjointness problem asks whether L(A)∩L(B) = ∅. Each of these six problems are
decidable for languages accepted by one-dimensional automata.

2.4 Complexity Results

There exist a number of complexity measures in formal language and automata theory. The
most well-known of these measures is computational complexity: the amount of resources
in time or space required to perform some task, like deciding a problem.

In a sense, the membership problem is the most straightforward decision problem for
an abstract machine to solve, since it only has to determine one thing: whether or not a
given word is in the machine’s language. Therefore, this problem serves as a good baseline
to evaluate the computational complexity and power of an abstract machine model.

The non-uniform membership problem for both deterministic and nondeterministic one-
dimensional automata is in the complexity class NC1 [1, 2]. It is known that NC1 ⊆ L,
where L contains all problems that are solvable by a deterministic Turing machine using
logarithmic space.

Another measure we can investigate is state complexity: the number of states that are
both necessary and sufficient for anm-state minimal deterministic finite automaton to accept
the language corresponding to some operation. For binary operations, we assume we have

4



DFA DFA-2W
Upper/lower bound Ref. Upper bound Lower bound Ref.

∪ m · n [3] 4m+ n+ 4 m+ n− o(m+ n) [30]
∩ m · n [3] m+ n+ 1 m+ n− o(m+ n) [30]
¬ m — 4n+ 3 n [12]

◦ m · 2n − 2n−1 [64] 2mm+1 · 2nn+1

Ω
(
m
n

)
+ 2Ω(n)

log(m) [30]

∗ 2m−1 + 2m−2 [64] 2O(nn+1) 1
n · 2

n
2−1 [30]

R 2m [39] n+ 2 n+ 1 [30]

Table 1: State complexity results for one-dimensional automaton models

two minimal deterministic finite automata that consist of m and n states, respectively. We
can define nondeterministic state complexity in the same way by making the appropriate
change to the abstract machine model.

Table 1 summarizes a number of state complexity results for both one-way and two-
way automaton models. Note that the bound for the complement of DFA is immediate,
since taking the complement is equivalent to converting all final states in an automaton to
non-final states (and vice versa).

A well-known result in automata theory is that both nondeterministic and deterministic
finite automata have the same computational power. However, the process of determiniza-
tion may result in an exponential blowup of states in the worst case. The proof of equivalence
is an elementary result that can be found in any standard automata theory textbook; for
example, Hopcroft and Ullman [14] or Sipser [58]. The proof of possibly-exponential blowup
is due to Meyer and Fischer [42], and it uses the subset construction of Rabin and Scott
[49].

Although exponential blowup does not always occur, 2n is the tight upper bound for
the number of states in the worst case after determinization; that is, there exist n-state
nondeterministic finite automata where the 2n-state bound will always be reached after
determinization [41, 45].

3 Two-Dimensional Automata

We can extend the power of one-dimensional automata in two ways: first, by considering
arrays of symbols instead of linear strings of symbols, and second, by allowing the automaton
to traverse the input in more than two directions. Together, these modifications result in an
abstract machine model known as a two-dimensional automaton (also known as a four-way
automaton, a picture automaton, or an array automaton).

3.1 Definitions

To begin, we define the objects on which a two-dimensional automaton operates. A two-
dimensional word W ∈ Σm×n is a map from {0, 1, . . . ,m − 1} × {0, 1, . . . , n − 1} to some
alphabet Σ, for some dimensions m and n. In other terms, a two-dimensional word is an
m × n array of symbols. (More generally, a two-dimensional word can be any contiguous
shape of symbols from Σ, but here we only consider rectangular and square two-dimensional

5



# # # · · · # #

# a1,1 a1,2 · · · a1,n #

# a2,1 a2,2 · · · a2,n #

...
...

...
. . .

...
...

# am,1 am,2 · · · am,n #

# # # · · · # #

Figure 1: An example of a two-dimensional input word

words.) The notation Σm×n represents the set of all two-dimensional words of dimension
m × n, and we have similar notations for other special sets: Σ∗∗ denotes the set of all
two-dimensional words of any dimension, for example.

Two-dimensional automata receive two-dimensional words as input. The input word to a
two-dimensional automaton is special, in that the first and last row and column of the input
word consists entirely of a unique boundary symbol, denoted here by #. To accommodate
these boundary symbols, we must adjust the indexing of symbols in the input word so that
the top-left symbol of the input word is at index (1, 1) instead of index (0, 0). An example
of a two-dimensional input word is shown in Figure 1.

A two-dimensional automaton uses an input head to scan the symbols of the input word
in both the horizontal and vertical directions. The input head is initially positioned over
the top-left symbol of the input word—that is, at position (1, 1)—and the two-dimensional
automaton proceeds with its computation by reading symbols, transitioning between states,
and moving the input head. Once the two-dimensional automaton either accepts or rejects
the word, it halts the computation. The notions of acceptance and rejection will be presented
shortly.

We are now ready to formalize our definition of a two-dimensional automaton.

Definition 3.1 (Two-dimensional deterministic finite automaton). A two-dimensional de-
terministic finite automaton is a tuple (Q,Σ, δ, q0, qA, qR), where

• Q is a finite set of states;

• Σ is the input alphabet (with # 6∈ Σ acting as a boundary symbol);

• δ : (Q \ {qA, qR})× (Σ ∪ {#})→ Q× {U,D,L,R} is the transition function;

• q0 ∈ Q is the initial state of the computation;

• qA ∈ Q is the accepting state of the computation; and

• qR ∈ Q is the rejecting state of the computation.

At a glance, the definition of a two-dimensional automaton appears to be very similar
to its one-dimensional analogue, apart from the added dimension. However, there are a few

6



differences that set two-dimensional automata apart from one-dimensional models in other
ways.

The first difference is in the way the automaton input head moves. While a one-
dimensional automaton may move its input head in at most two directions, a two-dimensional
automaton may move its input head in four directions: up, down, left, or right. We denote
these directions using the symbols U , D, L, and R, respectively. We may optionally specify
a “no move” option, where the input head does not move in any of the four directions after
reading a symbol. This report does not assume automata are able to use the “no move”
option.

To make the notion of a two-dimensional transition more precise, consider some two-
dimensional automaton A with transition function δ. If A is in state qi and its input head
reads symbol aj ∈ (Σ ∪ {#}), and if δ(qi, aj) = (qk, d) where d ∈ {U,D,L,R}, then in the
next computation step, A transitions to state qk and moves its input head by one square in
the direction d. Since the domain of the transition function δ includes only non-accepting
and non-rejecting states, the computation must necessarily halt upon reaching either an
accepting or a rejecting state.

The second difference is that, while the alphabet of a two-dimensional automaton may
again consist of any set of symbols, the input word is required to be surrounded by the
boundary symbol #. This symbol ensures that the two-dimensional automaton does not
move its input head outside of the boundaries of its input word. If the input head encounters
a boundary symbol after moving in some direction d, then it makes a second move d−1 to
return to the input word. (In this context, d−1 is the inverse of d; for example, if d = L,
then d−1 = R.) We may assume that the last move made by the input head is stored by the
current state in order to perform this inverse move. Alternatively, the inverse move may be
specified directly by using distinct boundary symbols for each border of the word.

Finally, a two-dimensional automaton can specify explicitly a rejecting state qR in addi-
tion to an accepting state qA. Once the automaton reaches either qA or qR, the computation
halts.

Remark. The first two differences—enhanced input head movement and inclusion of bound-
ary symbols—also apply to the two-way automaton model from Section 2.2. Indeed, a
two-way automaton is essentially a two-dimensional automaton operating on an input word
with one row.

Similar to the one-dimensional case, we can introduce nondeterminism to the two-
dimensional automaton model in the usual way.

Definition 3.2 (Two-dimensional nondeterministic finite automaton). A two-dimensional
nondeterministic finite automaton is a tuple (Q,Σ, δ, q0, qA, qR), where Q, Σ, q0, qA, and qR
are defined as in Definition 3.1 and δ : (Q \ {qA, qR}) × (Σ ∪ {#}) → 2Q×{U,D,L,R} is the
transition function.

In order to perform a computation, a two-dimensional automaton moves through a se-
quence of configurations specified by the automaton’s state and the symbol being read by
the automaton’s input head at each stage of the computation.

Definition 3.3 (Configuration of a two-dimensional automaton). A configuration of a two-
dimensional automaton A on an input word W ∈ Σm×n is a tuple (q, i, j), where q is the
current state of A and i and j are the current positions of the input head in W , where
1 ≤ i ≤ m and 1 ≤ j ≤ n.

7



We naturally define the starting configuration of a two-dimensional automaton as the
tuple (q0, 1, 1). Note that the automaton does not have access to the values i or j; these
values are only used to distinguish configurations in writing. We connect configurations to
the transition function δ in the following way. Given a two-dimensional automaton A with
input word W , if

• A is currently in state p ∈ Q;

• the symbol at position (i, j) in W is a ∈ Σ; and

• δ(p, a) = (q, U);

then we say that configuration (p, i, j) yields configuration (q, i − 1, j). If i = 1, then the
input head moves onto the boundary symbol # and the upward move is reversed. The
configurations yielded for directions D, L, and R are defined similarly.

With this notion of configurations, we can now specify how a two-dimensional automaton
accepts and rejects input words.

Definition 3.4 (Accepting and rejecting computations). A two-dimensional automaton A
accepts a word W if, at some point in its computation, it enters a configuration (qA, i, j),
where 0 ≤ i ≤ m + 1 and 0 ≤ j ≤ n + 1. Likewise, A rejects W if, at some point in its
computation, it enters a configuration (qR, i, j).

Note that our definition of acceptance for two-dimensional automata differs from Defi-
nition 2.3 for one-dimensional automata, since a one-dimensional automaton may visit any
number of accepting states during its computation before halting. Acceptance for a one-
dimensional automaton is determined only by the state reached upon reading the last symbol
in the input word.

Moreover, it is possible for a two-dimensional automaton not to halt. If the automaton
never enters one of the configurations specified in Definition 3.4, then it will continue its
computation indefinitely.

We denote the class of all languages accepted by two-dimensional deterministic (respec-
tively, nondeterministic) finite automata by 2DFA (respectively, 2NFA).

Remark. It is important to note that our notion of a two-dimensional automaton is distinct
from the more well-known notion of a cellular automaton [32], which also operates in two-
dimensional space. The two-dimensional automata we consider in this report are purely
sequential models, whereas cellular automata are capable of processing each symbol, or
“cell”, of their input in parallel.

3.2 General Properties

By adding a dimension to a finite automaton, it stands to reason that we will gain compu-
tational power. Intuitively, this must be the case, since one-dimensional automata cannot
process the input words supplied to two-dimensional automata.

In an early paper, Blum and Sakoda proved a much stronger result: two-dimensional au-
tomata can, in some sense, simulate one-dimensional Turing machines [6]. Blum and Sakoda
proved this result by modeling a two-dimensional automaton as a two-counter machine and
using a result of Minsky stating that two-counter machines are Turing-equivalent [44].

8



# # # # # # #

# 0 0 0 1 0 #

# 1 1 0 0 1 #

# 0 1 1 0 0 #

# 1 0 0 0 1 #

# 0 0 1 0 0 #

# # # # # # #

Figure 2: An illustration of Lemma 3.5

Since introducing an additional dimension increases the computational power of our
machine model, does the introduction of nondeterminism have the same effect? Although
nondeterministic and deterministic finite automata in one dimension have the same com-
putational power, Blum and Hewitt proved that this is not the case in two dimensions
[4, 5]. They proved this result by showing that the following problem for two-dimensional
automata is decidable with nondeterminism, but is undecidable without nondeterminism.

Lemma 3.5. A nondeterministic two-dimensional automaton can decide the problem of
whether a square input word of odd side length contains a 1 as its center symbol.

The idea behind Lemma 3.5 is that nondeterminism allows the automaton to “guess”
its next move based on what symbol is read by the input head. The input head moves
along the diagonal of the input word and, upon reading a 1, nondeterministically switches
its direction with a 90-degree counterclockwise turn. The movement of the input head on
an example input word is shown in Figure 2, where a combination of one R movement and
one {U,D} movement is illustrated by a diagonal arrow. If the input head reaches the
upper-right corner of the input word, then it must have read a 1 in the center square of the
input word.

The key argument given by Blum and Hewitt [4, 5] is that deterministic two-dimensional
automata do not have sufficient power to distinguish distinct input words in this way, so they
cannot decide the problem. As a consequence, we get a separation between deterministic
and nondeterministic two-dimensional automata.

Theorem 3.6. A nondeterministic two-dimensional automaton has more computational
power than a deterministic two-dimensional automaton.

By definition, we know that two-dimensional input words are surrounded by a boundary
symbol #, and the input head of a two-dimensional automaton is not permitted to leave the
boundary of the input word. However, even if we allowed the input head to travel outside
of the input word and onto an infinite plane of boundary symbols, we would not gain any
computational power. Milgram showed that deterministic two-dimensional automata that
can traverse boundary symbols in this way are no more powerful than those that cannot
[43], and Salo showed the same result for nondeterministic two-dimensional automata [53].

9



A nice property for a machine model to have is an assurance that the machine will
halt on every input. We can use this property to simplify certain proofs of closure or
decidability. Sipser proved that, for any space-bounded deterministic Turing machine T ,
there exists a deterministic Turing machine T ′ using the same amount of space as T such
that L(T ′) = L(T ) and T ′ is guaranteed to halt on every input [57]. Moreover, if the
machine T consists of n states, then T ′ consists of O(n2) states. It is possible to obtain a
similar result for two-dimensional automata by using Sipser’s construction [34, 40].

Theorem 3.7. For any deterministic two-dimensional automaton A, we can construct a
deterministic two-dimensional automaton A′ with L(A′) = L(A) that is guaranteed to halt
on every input.

The automaton A′ specified in the theorem operates by working backward through its
computation. Starting in the accepting state of A, the automaton A′ performs a depth-first
search through the computation tree to reach the initial state of A. This technique produces
a loop-free automaton that accepts if and only if the original automaton accepts, and the
loop-freeness property ensures that A′ halts.

In order to obtain precise complexity results for problems where we construct a specified
two-dimensional automaton from a given initial automaton, we must know how long the
construction takes (time complexity) and how many additional states are needed compared
to the initial automaton (state complexity). State complexity is the most salient question,
since in the case of automaton constructions, the time complexity cannot be better than
the state complexity.

Although Sipser’s construction gives a O(n2) bound on the number of states for a loop-
free deterministic two-dimensional automaton, Kunc and Okhotin have since improved this
bound to 8n + 9 states for an n-state deterministic two-dimensional automaton [37, 38].
The model used by Kunc and Okhotin is slightly different than the model considered in this
report, since their model uses different boundary symbols on each edge of the input word.
Adapting this construction to our model will likely change the additive constant, but not
the multiplicative constant.

Problem 1. Can the 8n+O(1) state bound on the number of states for a loop-free deter-
ministic two-dimensional automaton be improved (either in the multiplicative constant or
the additive constant)?

3.3 Variants

We can define a number of variants of the two-dimensional automaton model by either
restricting or enhancing some aspect of the definition of a two-dimensional automaton.
The simplest variant is obtained by restricting the automaton’s alphabet Σ to consist of
one symbol. This gives us a unary two-dimensional automaton, and we denote the classes
of deterministic and nondeterministic unary two-dimensional automata by 2DFA-1Σ and
2NFA-1Σ, respectively.

If we restrict the transition function, then we obtain yet another variant. In the three-
way two-dimensional automaton model, we restrict the movement of the input head to three
directions instead of four. Specifically, we prohibit the input head from moving upward. This
change has a substantial impact on the ability of a two-dimensional automaton to read its
input word, since once the input head leaves a row, it cannot return to that row by moving

10



2DFA

2DFA-3W

2NFA

2NFA-3W

Figure 3: Inclusions among two-dimensional automaton classes

upward. We denote the classes of three-way deterministic and nondeterministic automata
by 2DFA-3W and 2NFA-3W, respectively. We also define the equivalent unary classes by
2DFA-3W-1Σ and 2NFA-3W-1Σ, respectively.

There exist a number of inclusion results between two-dimensional automaton models.
Figure 3 illustrates some of the results most relevant to this report. From the result of
Blum and Hewitt given in Theorem 3.6, we get the proper inclusion 2DFA ⊂ 2NFA [4, 5].
Moreover, this inclusion is proper even over a unary alphabet [33]. Rosenfeld gives the
proper inclusions 2DFA-3W ⊂ 2NFA-3W, 2DFA-3W ⊂ 2DFA, and 2NFA-3W ⊂ 2NFA [50].

No other non-trivial inclusions exist between four-way and three-way automata in the
deterministic or nondeterministic cases [28]. Namely, both 2DFA \ 2NFA-3W 6= ∅ and
2NFA-3W \ 2DFA 6= ∅, where the first result comes as a consequence of Theorem 5.3 and the
second result comes from a stronger separation due to Kari and Salo [35].

4 Closure Results

Two-dimensional automata are closed under certain operations, depending on the model
being considered. However, positive closure results for two-dimensional automata are sparser
due to the increase in complexity incurred by adding a second dimension to our model.

To begin, let us define the two-dimensional analogues to each operation we introduced
in Section 2.3. We follow the definitions given in the survey by Inoue and Takanami [24].
Assume we have two two-dimensional words

A =

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

and B =

b1,1 · · · b1,n′

...
. . .

...
bm′,1 · · · bm′,n′

of dimension m × n and m′ × n′, respectively. Note that the words A and B are not
surrounded by the boundary symbol #; this is because we do not assume here that the
words are being used as the input to some two-dimensional automaton.

The vertical and horizontal concatenations of two two-dimensional words, denoted by :

11



and 	, respectively, are defined only when m = m′ (for :) or n = n′ (for 	).

A:B =

a1,1 · · · a1,n b1,1 · · · b1,n′

...
. . .

...
...

. . .
...

am,1 · · · am,n bm,1 · · · bm,n′

A	B =

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n
b1,1 · · · b1,n

...
. . .

...
bm′,1 · · · bm′,n

The reversal operation, also called “row reflection” [24], is performed by reversing the
order of the rows in a two-dimensional word. The rotation operation is performed by rotating
a two-dimensional word clockwise by 90 degrees. Here, we denote reversal by a superscript
letter R, which is a common notation in the literature, and we denote rotation by the
less-common symbol �.

AR =

am,1 · · · am,n
...

. . .
...

a1,1 · · · a1,n
A� =

am,1 · · · a1,1
...

. . .
...

am,n · · · a1,n

Using concatenation operations, we can define additional operations on rows and columns
of two-dimensional words. For a set of two-dimensional words L, let L1	 = L and L(i+1)	 =
Li	 	 L. We define the row closure of L as L	 =

⋃
i≥1 L

i	. We define the column closure

of L, denoted by L:, in a similar way.
Row and column cyclic closures are similar to row and column closures, but instead of

operating on an entire two-dimensional word, we operate only on individual rows or columns.
We say that a row cyclic shift of a two-dimensional word A is a rearrangement of rows such
that the k top rows of A, for some value 1 ≤ k ≤ m, are removed and concatenated beneath
the bottom row of A. Diagrammatically, we have the following situation:

ak+1,1 · · · ak+1,n
...

. . .
...

am,1 · · · am,n
a1,1 · · · a1,n

...
. . .

...
ak,1 · · · ak,n

Then the row cyclic closure of a set of two-dimensional words L is the set of all row cyclic
shifts of words in L. We define column cyclic shifts and column cyclic closures in a similar
way.

With our operations defined, we can now discuss specific closure results. Each of the
results discussed in this section are summarized in Table 2.

For deterministic two-dimensional automata, we have positive closure results for all set-
theoretic operations. We also have positive results for some word operations, but not all.

Theorem 4.1. The class 2DFA is closed under union, intersection, complement, reversal,
and rotation. It is not closed under concatenation, row/column closure, or row/column
cyclic closure.

12



2DFA 2NFA 2DFA-3W 2NFA-3W
∪ 3 3 7 3
∩ 3 3 7 7
¬ 3 7 3 7

:/	 7 7 7 3	 7:
R 3 3 7 3
� 3 3 7 7

row/column
7 7 7 3R 7Cclosure

row/column
7 7 7 7

cyclic closure

Table 2: Closure results for two-dimensional automaton models

We can prove deterministic two-dimensional automata are closed under set-theoretic
operations such as union, intersection, and complement by using Sipser’s construction [57].
Non-closure under concatenation, row/column closure, and row/column cyclic closure was
proved by Inoue, Takanami, and Nakamura [18, 19, 25].

Recall the state complexity bounds for two-way deterministic one-dimensional automata
from Table 1 in Section 2.4. Since the two-way one-dimensional automaton model is similar
to the two-dimensional automaton model, we should expect to obtain similar—but not
identical—state complexity bounds for operations on two-dimensional automata.

We conjecture that the union of two nondeterministic two-dimensional automata has a
state complexity of m+ n− 1. A proof sketch for the upper bound is immediate: we make
a nondeterministic choice for which automaton to run first, then accept if either the first
or second automaton accepts. The constant term comes from not needing to repeat states
qA and qR, but since we require a new initial state for our nondeterministic choice, we only
save one state.

Furthermore, we conjecture that the intersection of two nondeterministic two-dimensional
automata has a state complexity of m+ n. Here, we run one automaton until it halts, then
move the input head back to the initial state before running the second automaton, and
accept if both automata accept. In this case, we again don’t need to repeat states qA and
qR, but we do require two states to move the input head back to the initial state.

A proof for the lower bound is not as immediate, though we conjecture that a matching
lower bound holds for both operations.

Problem 2. Prove that m+n−1 (respectively, m+n) is the tight state complexity bound
of the union (respectively, intersection) of two nondeterministic two-dimensional automata.

The state complexity of the intersection of two deterministic two-dimensional automata
should match the previous bound for the nondeterministic case. For the union operation, we
have a similar (but more interesting) conjecture since we must convert one of the automata to
a loop-free halting automaton by the construction of Kunc and Okhotin [37, 38]. Without
loss of generality, we may convert the smaller of the two automata, leading to a state
complexity upper bound of O(m+ n).

Problem 3. Prove that Ω(m+ n) is the lower bound for the state complexity of the union
of two deterministic two-dimensional automata.

13



Interestingly, if we consider three-way deterministic two-dimensional automata, then we
lose all closure properties except for complement. Non-closure under union, intersection,
concatenation, reversal, rotation, row/column closure, and row/column cyclic closure were
all proved by Inoue and Takanami [20, 21, 23, 27]. Closure under complement was proved
by Szepietowski [62]. Since the general construction due to Sipser [57] cannot be applied to
automata with restricted moves, Szepietowski used a different technique to establish closure
under complement.

In the nondeterministic case, we preserve all of the same closure properties as determin-
istic two-dimensional automata except for complement.

Theorem 4.2. The class 2NFA is closed under union, intersection, reversal, and rotation.
It is not closed under complement, concatenation, row/column closure, or row/column cyclic
closure.

Non-closure of nondeterministic two-dimensional automata under complement was proved
by Kari and Moore [33], while non-closure under concatenation, row/column closure, and
row/column cyclic closure was proved by Inoue, Takanami, and Nakamura [18, 19, 25, 26].

Three-way nondeterministic two-dimensional automata again lose some closure proper-
ties compared to the corresponding four-way model. Closure under union is preserved with
three-way automata, but closure under intersection and rotation are lost [21]. In exchange,
however, three-way automata gain two closure results: horizontal concatenation and row clo-
sure [20]. The fact that three-way automata gain only row-centric closure properties stems
from the fact that the input head cannot move upward, thus preventing the automaton from
reading multiple columns.

Szepietowski showed that three-way nondeterministic two-dimensional automata were
closed under reversal by proving the same result for the more powerful two-dimensional
nondeterministic Turing machine model [61, 62].

We may ask similar state complexity questions for three-way automata as before. In par-
ticular, the state complexity of the closure properties gained by three-way nondeterministic
two-dimensional automata would be interesting to investigate. For instance, in the case of
horizontal concatenation, it seems that a reasonable state complexity bound is m+ n.

Problem 4. What is the state complexity of the horizontal concatenation of two three-way
nondeterministic two-dimensional automata?

5 Recognition Results

Earlier, we learned by Lemma 3.5 that nondeterministic two-dimensional automata are ca-
pable of recognizing two-dimensional words that have a 1 as their center symbol, while deter-
ministic two-dimensional automata are not able to recognize the same property. This is one
of the earliest results relating to the recognition power of two-dimensional automata; that
is, the ability of such an automaton to answer questions about individual two-dimensional
words. In this section, we review a number of other results relating to the recognition power
of two-dimensional automata.

14



•

Figure 4: Recognizing a two-dimensional word with coprime dimensions

5.1 Recognizing General Properties

In their seminal paper, Blum and Hewitt presented a number of properties of two-dimensional
words that a deterministic two-dimensional automaton A is capable of recognizing [4, 5].
These properties include deciding:

1. whether A contains exactly k occurrences of a given symbol;

2. whether A contains a single, contiguous rectangle/square consisting of the same sym-
bol, with sides parallel to the edges of A; and

3. whether one of any number of pathwise-connected components in A is square.

In the same paper, Blum and Hewitt gave the following example of a property that
cannot be recognized by a deterministic two-dimensional automaton.

Theorem 5.1. No deterministic two-dimensional automaton can recognize whether a two-
dimensional word A is symmetric about its central column.

The fact that a deterministic two-dimensional automaton cannot recognize symmetry
within an input word relates to our earlier discussion about Lemma 3.5 and is a consequence
of Theorem 3.6.

5.2 Recognizing Dimensions

It is easy to see that two-dimensional automata are capable of recognizing two-dimensional
words of given dimension m × n for m,n ≥ 1; construct a two-dimensional automaton
that recognizes input words of dimension m× n for fixed m and n, then check if the given
two-dimensional word is accepted by this automaton.

Two-dimensional automata can also recognize two-dimensional words that are square
(that is, of dimension n × n for n ≥ 1) by moving along the diagonal of the word. In this
case, we can use a general automaton that works for any value n.

A number of recognizability results relate to the side lengths of a given two-dimensional
word and the relationship between dimensions. Many of these recognizability results illus-
trate the increase in power that comes with adding a dimension to our computational model;
two-dimensional automata are capable of testing properties that one-dimensional automata
cannot test. For instance, Lindgren, Moore, and Nordahl showed that two-dimensional
automata are capable of recognizing the following relationship between dimensions [40].

15



•

Figure 5: Recognizing a two-dimensional word with exponential dimensions

Theorem 5.2. Deterministic two-dimensional automata can recognize the language of two-
dimensional words with dimension m× n, where m,n ≥ 1 and m and n are coprime.

An automaton recognizing such a “coprime dimension” language moves its input head
around the input word like a billiard ball around a table, reflecting off of each border of
the word at a 90-degree angle. If the input head moves onto the symbol to the right of
its initial position, then it accepts the input word. Essentially, this construction mimics a
two-counter machine that branches both when a counter reaches zero and when a counter
reaches its maximum value. An illustration of this technique is shown in Figure 4.

Lindgren et al. [40] also proved that deterministic two-dimensional automata can recog-
nize two-dimensional words with exponential side length.

Theorem 5.3. Deterministic two-dimensional automata can recognize the language of two-
dimensional words with dimension 2n × 2n, where n ≥ 0.

In this case, an automaton recognizing the “exponential dimension” language uses a series
of knights’ moves to verify that its input word belongs to the language. An illustration of
this technique is shown in Figure 5. The same figure originally appeared in the paper by
Lindgren et al. [40].

Kari and Moore gave a more complex construction to show that two-dimensional au-
tomata were capable of recognizing two-dimensional words of doubly-exponential side length
[34].

Theorem 5.4. Deterministic two-dimensional automata can recognize the language of two-
dimensional words with dimension 22

n × 22
n

, where n ≥ 0.

In the more general case of two-dimensional words of dimension n×f(n) for some function
f(n), there exist some results showing that certain functions cannot be recognized. Inoue
and Nakamura introduced the notion of a function acceptable by a unary two-dimensional
automaton [17] and proved that the functions f1(n) = n2, f2(n) = kn for k ≥ 2, and
f3(n) = n! are unacceptable; that is, no unary two-dimensional automaton can recognize
words of dimension n× fi(n) for i = {1, 2, 3}.

Despite the number of positive results in the literature relating to recognizability, some
problems remain unsolved. Kari and Moore note that there currently exist no methods
to prove that a language L cannot be square-recognized by a two-dimensional automaton,

16



where “square recognition” denotes a matching of horizontal and vertical dimensions in each
word of the language [34]. In the same paper, the authors make the following conjecture,
which they believe to be false.

Problem 5. Can deterministic two-dimensional automata recognize the language of unary
two-dimensional words with dimension p× p, where p is prime?

Recognizability for three-way two-dimensional automata is not understood as well as the
four-way model. The main result specifying the kinds of words recognizable by three-way
automata is given by Kinber, who proves that the dimensions of a two-dimensional input
word recognized by a three-way deterministic two-dimensional automaton are related by
certain bilinear forms [36].

One approach to gaining a better understanding of the recognition power of three-way
and four-way automata is to investigate properties of new operations on languages accepted
by those automata. We define one such operation as follows: given a two-dimensional
automaton A, let the “row projection” of L(A) be the set of all first rows of words in L(A).
We define the “column projection” of L(A) in a similar way. Note that these operations
produce one-dimensional languages.

For four-way automata, row/column projection languages are not always regular; con-
sider, for example, taking the projection of the “exponential dimension” languages in The-
orems 5.3 and 5.4. Even for unary four-way automata, regularity is not guaranteed. Asking
the same question about the three-way automaton model could give us additional insight
about the kinds of words recognized by this weaker model.

Problem 6. Does applying the row/column projection operation to the language of a
three-way two-dimensional automaton produce a regular language?

We note that Kinber’s result [36] solves this problem for three-way deterministic au-
tomata over a unary alphabet, since bilinear forms define unary regular languages.

6 Decidability Results

In this section, we revisit the problems we introduced in Section 2.3 and investigate whether
these same problems are decidable for two-dimensional automata. Recall that the six prob-
lems we introduced previously were the membership, emptiness, universality, equivalence,
containment, and disjointness problems.

In the one-dimensional case, we found that each of our six decision problems was decid-
able for both deterministic and nondeterministic finite automata. However, as we will see,
the situation is quite different for two-dimensional automaton models. Results for four-way
two-dimensional automata are summarized in Table 3, while results for three-way two-
dimensional automata are summarized in Table 4. Open problems relating to decidability
properties are represented in each table by “?”.

6.1 Four-Way Two-Dimensional Automata

To begin, the membership problem for two-dimensional automata is decidable, since we can
simply check whether a given input word is accepted by a given two-dimensional automaton.
Decidability holds for all two-dimensional automaton models, though the procedure used to

17



2DFA 2NFA 2DFA-1Σ 2NFA-1Σ
membership 3 3 3 3
emptiness 7 7 7 7

universality 7 7 7 7
equivalence 7 7 7 7
containment 7 7 7 7
disjointness 7 7 7 7

Table 3: Decidability results for four-way two-dimensional automaton models

test membership differs based on the model. We will discuss specific membership testing
procedures and their complexity in Section 7.

Unfortunately, the remaining problems are mostly undecidable in two dimensions. Both
the emptiness and the universality problems are undecidable for two-dimensional automata
[4], even when we restrict the automaton to be deterministic and the alphabet to be unary
[63].

Theorem 6.1. The emptiness and universality problems are undecidable for the class 2DFA-
1Σ.

The proof of Theorem 6.1 uses Minsky’s result that two-counter machines are Turing-
equivalent [44]. To prove the undecidability of the emptiness problem, we construct a
deterministic unary two-dimensional automaton A in such a way that L(A) 6= ∅ if and
only if a given two-counter machine M accepts the empty word. Since the problem of
determining whether a given Turing machine accepts the empty word is undecidable by
Rice’s theorem, the problem of determining whether L(A) 6= ∅ is also undecidable. The
proof of the undecidability of the universality problem is similar, since the problem of
determining whether a given Turing machine accepts all words is also undecidable by Rice’s
theorem.

Since the emptiness problem is a special case of the equivalence and containment prob-
lems (in that the emptiness problem is the same as asking whether L(A) = ∅ or L(A) ⊆ ∅,
respectively), we get negative results for decidability with these problems over unary deter-
ministic two-dimensional automata.

Corollary 6.2. The equivalence and containment problems are undecidable for the class
2DFA-1Σ.

Since the emptiness problem is also a special case of the disjointness problem (in that
L(A) = ∅ if and only if L(A) ∩ Σ∗∗ = ∅, where Σ∗∗ is the notation for the set of all two-
dimensional words from Section 3.1), we get a similar outcome for the decidability of this
problem.

Corollary 6.3. The disjointness problem is undecidable for the class 2DFA-1Σ.

6.2 Three-Way Two-Dimensional Automata

If we restrict the input head movement, then our decidability results become much more
favourable. Both the emptiness and the universality problems are decidable for deterministic

18



2DFA-3W 2NFA-3W 2DFA-3W-1Σ 2NFA-3W-1Σ
membership 3 3 3 3
emptiness 3 3 3 3

universality 3 7 3 ?
equivalence ? 7 3 ?
containment 7 7 3 ?
disjointness 7 7 3 ?

Table 4: Decidability results for three-way two-dimensional automaton models

two-dimensional automata when movement is restricted to three directions. Decidability
holds for both unary automata and general-alphabet automata.

However, when we introduce nondeterminism, we get a different result. While the empti-
ness problem remains decidable for three-way nondeterministic two-dimensional automata
over both unary and general alphabets, the universality problem becomes undecidable over
general alphabets.

Theorem 6.4. The emptiness problem is decidable for the classes 2NFA-3W and 2NFA-3W-
1Σ. The universality problem is undecidable for the class 2NFA-3W.

Inoue and Takanami proved the decidability of the emptiness problem for unary three-
way two-dimensional automata [22]. Their proof uses the fact that the emptiness problem
for two-way nondeterministic one-dimensional automata is decidable. The corresponding
result for general alphabets was later proved by Petersen [47].

The proof of the decidability of the universality problem for three-way deterministic
two-dimensional automata is also due to Inoue and Takanami as well as Petersen. It follows
from the decidability of the emptiness problem and the closure of the complement operation
for three-way deterministic two-dimensional automata.

Since we know that the universality problem is undecidable for three-way nondetermin-
istic automata over a general alphabet, it would be useful to know if the same outcome
occurs for automata over a unary alphabet.

Problem 7. Is the universality problem decidable for the class 2NFA-3W-1Σ?

For the remaining decision problems on three-way two-dimensional automata, we have
a variety of results. In the deterministic case, Kinber obtained positive results for the
containment and disjointness problems over a unary alphabet, but negative results for the
same problems over general alphabets [36]. In the nondeterministic case over a general
alphabet, the containment and disjointness problems are undecidable [22]. A lack of similar
results for unary alphabets suggests that the following problem would be worth investigating.

Problem 8. Are the containment and disjointness problems decidable for the class 2NFA-
3W-1Σ?

For the equivalence problem in particular, we have only the following results.

Theorem 6.5. The equivalence problem is decidable for the class 2DFA-3W-1Σ. The equiv-
alence problem is undecidable for the class 2NFA-3W.

19



Kinber uses a novel technique to obtain the result for the class 2DFA-3W-1Σ by formu-
lating the problem algebraically and reducing to a solvable system of bilinear equations [36].
This technique extends to Kinber’s decidability proofs for the containment and disjointness
problems, suggesting that it could be used as a template for similar proofs. Inoue and
Takanami proved the result for the class 2NFA-3W [22].

A natural question to ask is whether either of the techniques used in the proof for The-
orem 6.5 can be used to prove the remaining unknown results for the equivalence problem.

Problem 9. Is the equivalence problem decidable for the classes 2DFA-3W or 2NFA-3W-1Σ?

Note that Problems 7, 8, and 9 are all related due to the formulation of each decision
problem. A positive result for the containment problem would imply a positive result for the
equivalence problem, since testing whether L(A) = L(B) is equivalent to testing whether
L(A) ⊆ L(B) and L(B) ⊆ L(A). Likewise, a positive result for the equivalence problem
would imply a positive result for the universality problem, since the universality problem
can be decided by testing whether L(A) = Σ∗∗. Therefore, settling Problem 8 positively
would also settle Problems 7 and 9 for the class 2NFA-3W-1Σ.

7 Complexity Results

As was mentioned in Section 2.4, the membership problem can be considered to be the
most straightforward problem for an abstract machine to solve. Indeed, for an abstract
machine as powerful as a four-way two-dimensional automaton, the membership problem is
the only decidable problem. Therefore, the membership problem makes a good candidate
for investigating complexity properties of that model.

Although many complexity results are known for one-dimensional automata, the mem-
bership problem seems to be the only problem studied in this context for two-dimensional
automata. In this section, we will review some existing results relating to the complexity of
the membership problem for four-way two-dimensional automata. We will also consider a
few directions for future research.

7.1 Complexity of Membership

Deciding membership of a given input word for a nondeterministic two-dimensional automa-
ton is a straightforward process. We store the current automaton configuration (state and
input head position) on the work tape of a nondeterministic Turing machine, then count
the number of configurations we have entered to ensure that the computation is not loop-
ing. Since the nondeterministic Turing machine requires only a logarithmic amount of space
to store this information, the uniform membership problem is in NL; the nondeterministic
variant of the class L.

Lindgren, Moore, and Nordahl alternatively showed that the uniform membership prob-
lem for nondeterministic two-dimensional automata is a special case of the graph reachability
problem [40]. Since the graph reachability problem is known to be NL-complete [54], we
arrive at a similar result.

Remark. Although the result of Lindgren et al. [40] seems to be the first to show that the
uniform membership problem for nondeterministic two-dimensional automata is in NL, the

20



proof of NL-completeness is not novel. The uniform membership problem for nondetermin-
istic one-dimensional automata was known to be NL-hard since 1975 [31]. As a corollary, the
same problem in two dimensions is NL-hard. Together with our Turing machine construc-
tion, we get the same completeness result for nondeterministic two-dimensional automata.

Lindgren et al. [40] also showed that deciding the uniform membership problem for
deterministic two-dimensional automata can be done using a procedure similar to their
procedure for the nondeterministic case. The deterministic uniform membership problem is
essentially a special case of the graph reachability problem where each node in the graph
has outdegree at most one. This variant of the graph reachability problem is L-complete,
where L is defined as in Section 2.4.

Remark. Again, the result of Lindgren et al. [40] can be derived from previous results in the
literature. The uniform membership problem for deterministic one-dimensional automata
was known to be L-complete as early as 1991 [29]. As a result, L-hardness follows for
the two-dimensional case, and we can use a similar Turing machine construction to show
completeness.

Given that all of these results pertain to the uniform variant of the membership problem,
it would be worthwhile to investigate the same questions for the non-uniform variant to
determine the differences in the complexity of the problem. In the deterministic case, we
can decide non-uniform membership by simulating the computation of the automaton on
the input word and keeping track of the current state to ensure loop-freeness. Since this
procedure runs in linear time on a two-dimensional Turing machine, we obtain a O(n2)
algorithm for a single-tape one-dimensional Turing machine.

In the nondeterministic case, we do not know of any corresponding procedure. However,
since the membership problem is in the class NL, the time complexity of such a procedure
would be polynomial. Thus, finding a low-rank polynomial upper bound for the non-uniform
membership problem would be desirable.

Problem 10. What is a reasonable upper bound for the non-uniform membership problem
for the class 2NFA?

7.2 Complexity of Other Problems

As we saw in Section 6.2, more problems are decidable for three-way two-dimensional au-
tomata than for the four-way model. For example, emptiness is decidable for all variants of
the three-way model and universality is decidable for deterministic variants. Investigating
the complexity of decision problems in the three-way model could give further insight into
how restricting the movement of the input head impacts the performance of the automaton.

One of the obvious candidates for study is the emptiness problem for three-way two-
dimensional automata. Since the emptiness problem is decidable for both deterministic
and nondeterministic three-way variants, we could get complexity results that are more
interesting and fine-grained than the corresponding results for the membership problem.

The nonemptiness problem—the problem of determining whether L(A) 6= ∅ for some au-
tomaton A—is PSPACE-complete for two-way deterministic one-dimensional automata [15].
Clearly, the nonemptiness problem is equivalent to the emptiness problem by switching “yes”
and “no” answers. As a corollary, the emptiness problem for three-way two-dimensional au-
tomata is PSPACE-hard.

21



If we restrict ourselves to a unary alphabet, then we can develop a straightforward
method for deciding the emptiness problem. Given a three-way two-dimensional automaton
A, we construct a two-way one-dimensional automaton B that operates only on the first
row of the input word to A. Then L(A) = ∅ if and only if L(B) = ∅, and we can test both
the emptiness of L(B) and the equivalence of L(A) to L(B) in polynomial space for both
deterministic [15] and nondeterministic [7] two-way one-dimensional automata. Therefore,
the emptiness problem for three-way two-dimensional automata over a unary alphabet is in
PSPACE, so the problem in this case is PSPACE-complete.

Since we know that the emptiness problem is PSPACE-hard for general alphabets and
PSPACE-complete for unary alphabets, the natural question to ask is whether we can obtain
completeness results for the general alphabet case.

Problem 11. Does the emptiness problem for either the class 2DFA-3W or the class 2NFA-
3W belong to PSPACE?

8 Conclusion

Two-dimensional automata are a natural extension of the classical finite automaton model
with a number of interesting properties. Despite the fact that the model was introduced
in the late 1960s, very little work has been done to investigate the power and applicability
of two-dimensional automata in contrast to the vast body of work on similar models (i.e.,
cellular automata).

Although this report focuses on a few specific operations, decision problems, and com-
plexity measures, the open problems presented in this report are representative of the overall
research that remains to be done in this area.

Investigating problems relating to the closure and decidability properties of two-dimensional
automata would give a clearer picture of the capabilities of this model of computation. Pos-
itive results could then lead to further work on the state complexity of operations or on the
time and space complexities of decision problems.

The same types of problems asked in this report could be generalized to obtain results
for other novel closure or decidability properties. Certain problems, such as the problem of
recognizing unary two-dimensional words with prime dimension given in Section 5.2, seem
difficult to solve using only the currently-known techniques. However, there is a possibility
that new techniques developed through the study of other questions could be used to settle
these more difficult problems.

Finally, it would be worthwhile to investigate applications of two-dimensional automata
to domains such as image processing, pattern recognition, or searching. These applied
questions would likely only be investigated after the more foundational problems stated
in this report are resolved, but such results could serve to introduce the powerful two-
dimensional automaton model to a new audience of computer scientists and stimulate further
research in this area.

22



References

[1] David A. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences, 38(1):150–
164, 1989.

[2] David A. Mix Barrington, Kevin Compton, Howard Straubing, and Denis Thérien.
Regular languages in NC1. Journal of Computer and System Sciences, 44(3):478–499,
1992.

[3] Jean-Camille Birget. Intersection and union of regular languages and state complexity.
Information Processing Letters, 43(4):185–190, 1992.

[4] Manuel Blum and Carl Hewitt. Automata on a 2-dimensional tape. In R. E. Miller,
editor, Proceedings of the 8th Annual Symposium on Switching and Automata Theory
(SWAT 1967), pages 155–160, 1967.

[5] Manuel Blum and Carl Hewitt. Automata on a 2-dimensional tape. Technical report
AIM-135, Massachusetts Institute of Technology, Cambridge, 1967.

[6] Manuel Blum and William J. Sakoda. On the capability of finite automata in 2 and 3
dimensional space. In P. Young, editor, Proceedings of the 18th Annual Symposium on
Foundations of Computer Science (FOCS 1977), pages 147–161, 1977.

[7] Sougata Bose, Anca Muscholl, Vincent Penelle, and Gabrielle Puppis. Origin-
equivalence of two-way word transducers is in PSPACE, 2018. arXiv:1807.08053.

[8] Symeon Bozapalidis and Antonios Kalampakas. Graph automata. Theoretical Com-
puter Science, 393(1–3):147–165, 2008.

[9] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez,
Christof Löding, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and
Applications. Self-published, 2008. http://tata.gforge.inria.fr.

[10] Jing Dong and Wenbing Jin. Comparison of two-way two-dimensional finite automata
and three-way two-dimensional finite automata. In X. Yang, editor, Proceedings of the
2nd International Conference on Computer Science and Service System (CSSS 2012),
pages 1904–1906, 2012.

[11] Charles R. Dyer and Azriel Rosenfeld. Triangle cellular automata. Information and
Control, 48(1):54–69, 1981.

[12] Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini. Complementing two-way
finite automata. Information and Computation, 205(8):1173–1187, 2007.

[13] Dora Giammarresi and Antonio Restivo. Two-dimensional languages. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 3, pages 215–267.
Springer-Verlag, Berlin Heidelberg, 1997.

[14] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, 1979.

23



[15] Harry B. Hunt III. On the time and tape complexity of languages I. In A. V. Aho,
editor, Proceedings of the 5th Annual ACM Symposium on Theory of Computing (STOC
1973), pages 10–19, 1973.

[16] Katsushi Inoue and Akira Nakamura. Some properties of two-dimensional on-line tes-
sellation acceptors. Information Sciences, 13(2):95–121, 1977.

[17] Katsushi Inoue and Akira Nakamura. Two-dimensional finite automata and unaccept-
able functions. International Journal of Computer Mathematics, 7(3):207–213, 1979.

[18] Katsushi Inoue and Itsuo Takanami. Cyclic closure properties of automata on a two-
dimensional tape. Information Sciences, 15:229–242, 1978.

[19] Katsushi Inoue and Itsuo Takanami. A note on closure properties of the classes of sets
accepted by tape-bounded two-dimensional turing machines. Information Sciences,
15:143–158, 1978.

[20] Katsushi Inoue and Itsuo Takanami. Closure properties of three-way and four-way
tape-bounded two-dimensional Turing machines. Information Sciences, 18(3):247–265,
1979.

[21] Katsushi Inoue and Itsuo Takanami. Three-way tape-bounded two-dimensional Turing
machines. Information Sciences, 17:195–220, 1979.

[22] Katsushi Inoue and Itsuo Takanami. A note on decision problems for three-way two-
dimensional finite automata. Information Processing Letters, 10(4–5):245–248, 1980.

[23] Katsushi Inoue and Itsuo Takanami. A note on deterministic three-way tape-bounded
two-dimensional Turing machines. Information Sciences, 20(1):41–55, 1980.

[24] Katsushi Inoue and Itsuo Takanami. A survey of two-dimensional automata theory.
Information Sciences, 55(1–3):99–121, 1991.

[25] Katsushi Inoue, Itsuo Takanami, and Akira Nakamura. A note on two-dimensional
finite automata. Information Processing Letters, 7(1):49–52, 1978.

[26] Katsushi Inoue, Itsuo Takanami, and Akira Nakamura. Nonclosure property of nonde-
terministic two-dimensional finite automata under cyclic closure. Information Sciences,
22(1):45–50, 1980.

[27] Katsushi Inoue, Itsuo Takanami, and Hiroshi Taniguchi. Three-way two-dimensional
simple multihead finite automata—closure properties. Transactions of the Institute
of Electronics and Communications Engineers of Japan, J62-D:273–280, 1979. In
Japanese.

[28] Akira Ito, Katsushi Inoue, and Itsuo Takanami. A note on three-way two-dimensional
alternating Turing machines. Information Sciences, 45:1–22, 1988.

[29] Tao Jiang and Bala Ravikumar. A note on the space complexity of some decision
problems for finite automata. Information Processing Letters, 40(1):25–31, 1991.

24



[30] Galina Jirásková and Alexander Okhotin. On the state complexity of operations on
two-way finite automata. Information and Computation, 253(1):36–63, 2017.

[31] Neil D. Jones. Space-bounded reducibility among combinatorial problems. Journal of
Computer and System Sciences, 11(1):68–85, 1975.

[32] Jarkko Kari. Theory of cellular automata: A survey. Theoretical Computer Science,
334(1–3):3–33, 2005.

[33] Jarkko Kari and Cristopher Moore. New results on alternating and non-deterministic
two-dimensional finite-state automata. In A. Ferreira and H. Reichel, editors, Pro-
ceedings of the 18th Annual Symposium on Theoretical Aspects of Computer Science
(STACS 2001), volume 2010 of Lecture Notes in Computer Science, pages 396–406,
Berlin Heidelberg, 2001. Springer-Verlag.

[34] Jarkko Kari and Cristopher Moore. Rectangles and squares recognized by two-
dimensional automata. In J. Karhumäki, H. Maurer, G. Paun, and G. Rozenberg,
editors, Theory is Forever: Essays Dedicated to Arto Salomaa on the Occasion of His
70th Birthday, volume 3113 of Lecture Notes in Computer Science, pages 134–144,
Berlin Heidelberg, 2004. Springer-Verlag.

[35] Jarkko Kari and Ville Salo. A survey on picture-walking automata. In W. Kuich and
G. Rahonis, editors, Algebraic Foundations in Computer Science: Essays Dedicated to
Symeon Bozapalidis on the Occasion of His Retirement, volume 7020 of Lecture Notes
in Computer Science, pages 183–213, Berlin Heidelberg, 2011. Springer-Verlag.

[36] Efim B. Kinber. Three-way automata on rectangular tapes over a one-letter alphabet.
Information Sciences, 35:61–77, 1985.

[37] Michal Kunc and Alexander Okhotin. Making graph-walking automata reversible. Tech-
nical report 1042, Turku Centre for Computer Science, Turku, 2012.

[38] Michal Kunc and Alexander Okhotin. Reversibility of computations in graph-walking
automata. In K. Chatterjee and J. Sgall, editors, Proceedings of the 38th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2013), volume
8087 of Lecture Notes in Computer Science, pages 595–606, Berlin Heidelberg, 2013.
Springer-Verlag.

[39] Ernst Leiss. Succinct representation of regular languages by boolean automata. Theo-
retical Computer Science, 13(3):323–330, 1981.

[40] Kristian Lindgren, Cristopher Moore, and Mats Nordahl. Complexity of two-
dimensional patterns. Journal of Statistical Physics, 91(5/6):909–951, 1998.

[41] Oleg B. Lupanov. O sravnenii dvukh tipov konechnykh istochnikov. Problemy Kiber-
netiki, 9:328–335, 1963. In Russian.

[42] Albert R. Meyer and Michael J. Fischer. Economy of description by automata, gram-
mars, and formal systems. In F. C. Hennie, editor, Proceedings of the 12th Annual
Symposium on Switching and Automata Theory (SWAT 1971), pages 188–191, 1971.

25



[43] David L. Milgram. A region crossing problem for array-bounded automata. Information
and Control, 31(2):147–152, 1976.

[44] Marvin L. Minsky. Computation: Finite and Infinite Machines. Series in Automatic
Computation. Prentice-Hall, Englewood Cliffs, 1967.

[45] Frank R. Moore. On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transactions on
Computers, C-20(10):1211–1214, 1971.

[46] John Mylopoulos. On the recognition of topological invariants by 4-way finite automata.
Computer Graphics and Image Processing, 1(3):308–316, 1972.

[47] Holger Petersen. Some results concerning two-dimensional Turing machines and finite
automata. In H. Reichel, editor, Proceedings of the 10th International Conference on
Fundamentals of Computation Theory (FCT 1995), volume 965 of Lecture Notes in
Computer Science, pages 374–382, Berlin Heidelberg, 1995. Springer-Verlag.

[48] Giovanni Pighizzini. Two-way finite automata: Old and recent results. Fundamenta
Informaticae, 126(2–3):225–246, 2013.

[49] Michael O. Rabin and Dana Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3(2):114–125, 1959.

[50] Azriel Rosenfeld. Picture Languages: Formal Models for Picture Recognition. Computer
Science and Applied Mathematics. Academic Press, New York, 1979.

[51] Azriel Rosenfeld and David L. Milgram. Parallel/sequential array automata. Informa-
tion Processing Letters, 2(2):43–46, 1973.

[52] Azriel Rosenfeld and Rani Siromoney. Picture languages—a survey. Languages of
Design, 1(3):229–245, 1993.

[53] Ville Salo. Classes of picture languages defined by tiling systems, automata and closure
properties. Master’s thesis, Turku Centre for Computer Science, 2011.

[54] Walter J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

[55] Shigeko Seki. Real-time recognition of two-dimensional tapes by cellular automata.
Information Sciences, 19(3):179–198, 1979.

[56] John C. Shepherdson. The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development, 3(2):198–200, 1959.

[57] Michael Sipser. Halting space-bounded computations. Theoretical Computer Science,
10(3):335–338, 1980.

[58] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Company,
Boston, 1997.

26



[59] Rani Siromoney. Advances in array languages. In H. Ehrig, M. Nagl, G. Rozenberg,
and A. Rosenfeld, editors, Proceedings of the 3rd International Workshop on Graph-
Grammars and Their Application to Computer Science, volume 291 of Lecture Notes
in Computer Science, pages 549–563, Berlin Heidelberg, 1986. Springer-Verlag.

[60] Rani Siromoney. Array languages and Lindenmayer systems —a survey. In G. Rozen-
berg and A. Salomaa, editors, The Book of L, pages 413–426. Springer-Verlag, Berlin
Heidelberg, 1986.

[61] Andrzej Szepietowski. On three-way two-dimensional Turing machines. Information
Sciences, 47(2):135–147, 1989.

[62] Andrzej Szepietowski. Some remarks on two-dimensional finite automata. Information
Sciences, 63(1–2):183–189, 1992.

[63] Kenichi Taniguchi and Tadao Kasami. Some decision problems for two-dimensional
nonwriting automata. Transactions of the Institute of Electronics and Communications
Engineers of Japan, 54-C(7):578–585, 1971. In Japanese.

[64] Sheng Yu, Qingyu Zhuang, and Kai Salomaa. The state complexities of some basic
operations on regular languages. Theoretical Computer Science, 125(2):315–328, 1994.

27


