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ABSTRACT
The heterogeneity and complexity of Internet of Things (IoT) ap-
plications present new challenges to the software development
process. Model-Driven Software Development (MDSD) is increas-
ingly being recognized as a key paradigm in tackling many of these
challenges, as evident by the emergence of a significant number
of MDSD frameworks targeting IoT in the past couple of years. At
the heart of IoT applications are embedded and realtime systems, a
domain where model-driven development is well-established and
many existing tools have a proven track record. Unfortunately, only
a handful of these tools support out-of-the-box integration with the
IoT. In this work, we discuss the different design and implementa-
tion decisions for enabling existing actor-oriented MDSD tools for
the IoT. Moreover, we propose an integration approach based on
the use of proxy actors and system interfaces. The approach offers
seamless and flexible integration of external IoT devices into the
user’s model. We implement and evaluate our approach using the
MDSD tool Papyrus for Realtime as a testbed.
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1 INTRODUCTION
The Internet of Things (IoT) is arguably one of the biggest leaps in
the evolution of the Internet since the introduction of the World
WideWeb. From a technological perspective, IoT is the logical result
of the proliferation of Internet-ready, non-conventional computing
devices, motivated in part by advances in wireless networking.
A growing number of everyday physical objects – ranging from
simple home appliances, wearables, and automotive, to complex
industrial pipelines – are being connected to the Internet at an
unprecedented rate. In fact, the number of IoT devices is expected
to exceed 30 billion by the year 2020 [27], doubling a 2015 estimate
of 15 billion devices [23].

The IoT promises far-reaching impact that touches nearly every
aspect of our lives. Home automation, health monitoring, traffic
management, and smart cities [36] are just a few examples of what
IoT entends to enable. The enormous amount of data generated
by hundreds of sensors embedded in our everyday lives, coupled
with rapid breakthroughs in data analytics and machine learning,
has given the promise of a trillion-dollar economy [1]. Now more
than ever, businesses and governments are relying on data-driven
insights to optimize industrial processes, guide management deci-
sions, and draft public policies.

The IoT is envisioned as an infrastructure for a wide range of
heterogeneous "things" that exchange all sort of data using a battery
of network protocols. Things range from simple physical objects
embedded with sensors and actuators to traditional computing
devices and user interfaces, all the way to complex cloud services.
An IoT application typically combines several of these entities in a
well-defined manner to achieve certain goals, and provide the user
with a unified, coherent experience.

The scale and complexity of envisioned IoT systems set forth
new challenges for their design and development. Researchers have
recently begun to recognize Model-Driven Engineering (MDE) as a
key-enabler in tackling many of these challenges. The most promi-
nent challenge being heterogeneity in both software and hardware
[6]. Not only can IoT devices differ in terms of hardware and soft-
ware, but the latter itself is often expected to be deployable on a
wide variety of hardware. The abstraction capabilities that Domain
Specific Languages (DSL) offer, coupled with automation by means
of code generation, allows the specification of software systems in
a way that transcends any single platform. A remarkable number of
Model-Driven Development (MDD) tools for the Internet of Things
has been proposed in the past couple of years [26] [28] [15] [13]
[9] [18].

While MDD tools for the holistic design, development, and anal-
ysis of IoT systems continue to emerge, an array of tools and frame-
works for the modeling real-time and embedded systems already
exists and have a proven track record. Unfortunately, many of these
tools lack integration with the IoT, as in they do not provide an
explicit way to interact with third-party IoT devices. Significant
effort has already been invested in recent years to remedy this
problem, as we demonstrate in Section 5, however, as far as we can
tell, the literature lacks a systematic presentation and discussion of
the ’design space’, i.e., the different fundamental design decisions
and their advantages and disadvantages, and how to integrate code
created with MDD tools into IoT applications.

In this work, we provide such a discussion of the design space
while also describing a specific approach that we have chosen,
implemented, and evaluated. We propose a combination of proxy
model-components that acts as representative for external IoT de-
vices and are easily embeddable in the user’s model, along with
specialized system interfaces that offer the modeller full control
over the communication channel. This approach has the dual bene-
fit of offering the complete abstraction of external devices when the
particular details of the communication process are unimportant,
as well as utmost flexibility and control over the network protocol
when the application requires it. We describe the requirements for
this integration at the different levels of the model-driven develop-
ment stack and present the different design and implementation



options when possible. We corroborate some of our recommenda-
tions by conducting an experimental analysis using Papyrus-RT,
an MDSD tool for embedded and realtime systems, as a testbed.

The rest of this paper is organized as follows: in Section 2 we in-
troduce our intended application domain and introduce our testbed
platform. We present our main approach in Section 3 and conduct
our experimental analysis in Section 4. We highlight other tools
and attempts in the literature to integrate into the IoT in Section 5.
Section 6 concludes this work.

2 BACKGROUND
2.1 IoT Applications
While an IoT application can be composed of a multitude of compo-
nents, they can generally be grouped into five categories: physical
objects, gateway devices, people, services, and middlewares.

Physical objects. Physical objects, or Things, are everyday de-
vices augmented with sensors and/or actuators and serve a specific
purpose. These devices are often equipped with a short-range com-
munication chip such as RFID, Bluetooth, or ZigBee, and their com-
munication is restricted to immediate gateway devices. Common
examples in a smart home application include smart light bulbs,
electronic locks, and smart thermometers.
Gateway Devices. Due to their constrained nature, physical ob-
jects are not typically capable of communicating with the outside
world. Instead, they rely on gateway devices, also known as IoT
hubs. A gateway is a small computing device equipped with mul-
tiple radio technologies to manage Physical Objects, as well as
LAN interfaces, such as Ethernet or WiFi, to connect to Internet
services. Gateway devices vary in capabilities, but are typically
programmable and provide an API that allows external actors to
monitor and control connected Things. Examples include Sam-
sung’s SmartThings Hub, Wink Hub, and Raspberry Pies running
the open source openHAB software, to name a few. In this work,
gateway devices are our main concern. Our intention is to enable
the model-driven development of software applications that can
be deployed to these devices to control connected physical objects,
and interface with the outside world.
People. People interact with IoT systems through user interfaces.
User interfaces serve as a frontend to the system and provide refined
views and interaction to accomplish a variety of tasks. Interfaces
can be mobile, web-based, or even natural such as voice-controlled
or gesture-based. A user interface commonly pulls data from many
sources, including gateway devices and cloud services.
Services. Services are software systems that provide a set of func-
tionalities via well-defined APIs. Services often run in the cloud
and empower resource-constrained devices with functionalities
that would otherwise be impossible to implement. Cloud services
range from simple data providers, such as weather or traffic data
providers, to advanced data analytics services.
Middlewares. An IoT middleware is a software system that facili-
tates the integration of different parts of an IoT system. By offering
seamless interoperability between gateways, services, and user
interfaces, a middleware helps in managing the heterogeneity of
complex IoT applications. Popular examples include Node-RED,
Flogo, and Eclipse Kura.

2.2 Distributed Real-time Systems
Our application domain encompasses distributed soft-realtime sys-
tems built upon message passing. In particular, we consider dis-
tributed applications that adopt the Actor model of concurrency [2].
The actor concurrency model proclaims computational entities,
denoted actors, as first-class citizens; much like objects in Object-
Oriented Programming. An actor is a unit of execution (possibly
only conceptual) that, in response to a message it receives, can
concurrently perform any sequence of three possible actions: up-
date its own internal state, send messages to other actors, and
create/destroy other actors.

Actors have well-defined interfaces that abstract their internal
states and govern the way they interact with other actors. The in-
terface of an actor exposes special communication points known as
ports. Ports are linked using channels that mediate communication
and dictate which actors are allowed to communicate via a given
interface.

The actor paradigm continues to prove itself as one of the premier
choices for the design of scalable and highly-distributed systems,
as evident by its adoption in concurrent languages such as Erlang
and Scala. Its inherently concurrent, modular, decoupled, and fault-
tolerant structure, lessen many of the problems associated with
distributed systems and alleviate the developers from having to deal
with concurrency control and thread management. In short, the
actor model makes it easier to write correct concurrent and parallel
programs, by design. It is therefore to no surprise that a signifi-
cant number of model-driven development tools and languages for
real-time systems also adopts this model. Examples includes: Math-
Work’s Simulink, The Generic Modeling Environment (GME) [22],
Real-Time Object-Oriented Modeling (ROOM) [32], and Ptolemy
[12], just to name a few.

2.3 The Model-Driven Development Stack
In general, we can identify three components in a typical model-
driven development framework: the modeling language, the mod-
eling environment, and the runtime system. At the top of the stack
is the modeling language which defines the language elements,
the abstract syntax, and the semantics. The modeling environment
implements the language’s concrete syntax and provides the users
with facilities to edit, debug, and analyze models. The modeling
environment can also offer a number of model transformations,
most commonly a code generator to generate executable code from
the model. At the bottom of the stack is the runtime system. The
runtime system is the collection of services that the generated
code can lean on to accomplish various tasks. In an actor-oriented
framework, the runtime system could manage the actors’ life cycle,
implement the infrastructure for message exchange, and provide
interfaces that give access to low-level system services such as
logging, timing, and networking. It is important to note that the
runtime system is not necessarily a discrete layer. While some tools
might implement the runtime system as a collection of libraries
linked against the generated code, or even as a virtual machine
that executes the generated code, some others might embed the
runtime services right into the generated code. In that case, the
runtime system is simply the "extra" common code added to enable
the execution of the model’s code.
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Figure 1: Themain concepts of UML-RT. Capsules are active,
executing classes whose behaviour is specified using a state-
chart. Capsules communicate solely via message passing us-
ing a well-defined protocol.

2.3.1 UML for Real Time. Although we do not assume any par-
ticular language or toolset in our approach, we use the UML for Real
Time (UML-RT) profile to illustrate various concepts and provide
concrete examples. UML-RT, an evolution from ROOM, is a small
subset of UML specific to soft-realtime system modeling. UML-RT
enjoys a range of successful tool support including IBM Rational
RoseRT, IBM RSA-RTE, and more recently Papyrus-RT 1.

Figure 1 shows a rough summary of the main concepts in UML-
RT (see [31] for a comprehensive discussion). UML-RT adopts a
distributed message passing model based on the actor paradigm.
Capsules are active, self-contained classes (i.e., actors) that encap-
sulate certain functionalities or represent a system component.
Each Capsule maintains an internal state and can receive messages
through its Ports. Each Port is typed with a specific Protocol that
defines the set of messages that can be sent and/or received through
that port (i.e. actor interface). Ports using the same Protocol can
be linked via a connector (communication channel) which permits
their corresponding Capsules to exchange messages as defined by
the Protocol.

A Capsule’s behaviour is specified using a statechart whose
transitions are triggered by incoming messages. Snippets of action
code can be hooked to transitions to perform arbitrary calculations,
modify internal attributes, and send messages to other Capsules.

2.3.2 Papyrus-RT. Papyrus-RT is an open-source modeling envi-
ronment developed by the PolarSys Eclipse Working Group. Based
on the Papyrus platform [21], Papyrus-RT implements the UML-RT
profile and allows complete, executable C++ code generation from
UML-RT models. In this work, we use Papyrus-RT as a testbed to
implement and analyze our proposed IoT integration approach.

We use an Intrusion Detection System (IDS), as a running exam-
ple throughout this work. Figure 2(a) shows the structure of the
system using a composition diagram as modeled in Papyrus-RT.

1Available at https://www.eclipse.org/papyrus-rt/

(a)

(b)

Figure 2: (a) Composition diagram for the Intrusion Detec-
tion System. (b) Statechart for the Controller capsule

The IDS system is composed of four capsules: a controller, a motion
sensor, a flood light, and a siren. The controller communicates with
various elements of the system via its ports. The controller receives
periodic update messages from the motion sensor parametrized by a
confidence level. When engaged, and depending on the confidence
level, the controller decides whether to move to the Alarm state,
activate the floodlight, and sound the siren. The controller then
waits for a disengage message to move back to the IDLE state or
move back to the Monitoring state whenever the confidence level
of the motion sensor drops below a certain threshold (Figure 2(b)).

Note that the controller’s engage/disengage signals are assumed
to be sent by a component external to the IDS system, possibly an
IoT device. This is currently not possible with Papyrus-RT and this
was, in fact, part of the motivation for this work: how to best allow
communication with external, arbitrary IoT components.

3 IOT INTEGRATION
In this section, we discuss the most important design decisions and
lay out our proposed approach to enable collaboration with IoT
devices in MDD environments. We discuss the support required at
three different levels of the model-driven development stack, start-
ing from the runtime system, through the modeling environment,
up to the language level.

3.1 Runtime Support
In an actor-based distributed application stack, the runtime system
(RTS) manages the actors’ lifecycle, directs their execution, and
provides them with an infrastructure for message passing. The RTS
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also often implements an array of services that are extended to the
application via System Interfaces. Examples of services offered in-
clude services for timing and scheduling, logging, and networking,
among others. To support communication with external IoT devices,
the runtime system must introduce support for IoT-related applica-
tion protocols and data encoding formats, as well as new services
to manage the communication channels with external devices.

3.1.1 Communication Protocols. There is literally a sea of
IoT protocols, and choosingwhich ones to support can be a daunting
task. Here, we are mainly concerned with data exchange protocols
at the application layer rather than transport layer or link layer
protocols, which we assume are implemented at the operating
system level. In general, IoT protocols can be grouped into two
categories depending on their messaging model: publish-subscribe
or request-reply.

Publish-Subscribe. In publish-subscribe based protocols, a set
of clients dubbed subscribers express interest in receiving certain
kinds of messages by subscribing to topics. Messages are published
to topics by publishers. A subscriber receives all messages published
to a topic to which it subscribed. Some protocols that adopt publish-
subscribe rely on brokers to relay messages between publishers
and subscribers. Brokers are centralized servers that serve as a
communication endpoint for all clients. The broker is primarily
responsible for managing subscriptions, receiving messages, and
delivering them to interested clients. One of the most prominent IoT
protocols [16], the Message Queuing Telemetry Transport (MQTT),
adopts this model. The MQTT Protocol is specifically designed
for resource-constrained devices, adding very little overhead to
messages and requiring only a few control packets. A major con-
tributor to its lightweight-ness is its reliance on message brokers,
which comes at the cost of scalability. Since all messages must travel
through brokers, a broker acts as a single point of failure and can
become a network bottleneck for high throughput applications. In
essence, scaling an MQTT-based application requires scaling the
brokers.

An alternative approach is through broker-less protocols, such
as the Data Distribution Service (DDS) protocol. The DDS protocol
is a decentralized publish-subscribe protocol that focuses primar-
ily on high, near real-time performance. Its mainly intended for
message-intensive machine-to-machine communication through
direct messaging, although it still relies on centralized servers for
initial peer discovery. Compared to MQTT, DDS can handle thou-
sands of messages per second more while keeping latency and jitter
to a minimum.

Request-Reply. Publish-subscribe is primarily a many-to-many
paradigm where clients are more or less equals (though certain bro-
kers might deny certain clients publishing rights). Request-reply, on
the other hand, is a point-to-point paradigm. In the request-reply
model, a client issues requests to (typically) a server and wait for
replies, the most notable example being HTTP. HTTP is so ubiqui-
tous that there is virtually no escape from supporting the protocol
for IoT applications. A significant number of cloud services imple-
ment their API following the REST model over the HTTP protocol.
The success of RESTful APIs over HTTP motivated the develop-
ment of the Constrained Application Protocol (CoAP) [8]. Unlike

Intention Transport Model Security QoS Availibility

MQTT D2C TCP Pub/Sub TLS Reliable
delivery

Broker is
SPOF

DDS D2D
D2C

TCP
UDP Pub/Sub TLS Reliable

delivery Decentralized

CoAP D2D UDP Req/Rep DTLS None Decentralized

Table 1: Comparison of the MQTT, DDS, and CoAP IoT pro-
tocols. D2D: Device-to-Device, D2C: Device-to-Cloud, TCP:
Transmission Control Protocol, UDP: User Datagram Proto-
col, TLS: Transport Layer Security, DTLS: Datagram Trans-
port Layer Security.

HTTP, CoAP is designed specifically for constrained environments,
allowing clients not only to issue traditional HTTP requests (via
web proxies) but also expose their own RESTful services by acting
essentially as a server. Like MQTT, CoAP is very wire-efficient with
a very small header overhead. Unlike MQTT however, CoAP uses
UDP as the underlying transport layer protocol. This allows CoAP
to achieve a much higher message throughput at the expense of
reliable message delivery.

Discussion. Table 1 shows a summary of the features of the
three protocols discussed. Evidently, the choice of protocols is
highly dependant on the application domain, and there are certainly
many more than we can possibly discuss. In general, we can iden-
tify the need for at least one protocol suitable for device-to-cloud
communication and another for device-to-device communication.
MQTT serves well as a device-to-cloud protocol where message
frequency is relatively low, while DDS and CoAP are better suited
for high-frequency messaging where low-latency and jitter are re-
quired [34]. Between the two, DDS has the scalability advantage as
a publish-subscribe protocol, while CoAP RESTful APIs shines for
interoperability.

3.1.2 Message Serialization. In certain cases, the runtime
system must serialize domain-level messages into payloads that can
be delivered over the network protocol to its intended destination.
Likewise, incoming payloads must be deserialized to messages that
adhere to model-defined interfaces and that can be passed to local
actors. Note that the necessity of these steps depends entirely on
how communication with IoT devices is manifested at the model
level (discussed in detail in Section 3.3. It may be, for example,
that the raw IoT protocol is exposed to the modeller in which case
preparing the payload is the responsibility of the modeller.

JSON. When serialization is necessary, however, the RTS must
use a data format that is compatible with the other end of the com-
munication channel. While there are infinitely many data formats,
JSON remains overwhelmingly popular in the IoT domain and the
Web in general, as evident by its adoption in major IoT platforms
[24]. JSON is supported virtually by all programming languages. Its
success is largely due to its simple, human-friendly notation and
handful of data types.

To demonstrate how a language-level message specification can
be serialized into a JSON message, consider the example UML-RT
protocol for a Motion Detector shown in Figure 3. The protocol
has one output signal motion that takes one integer parameter
confidence. Whenever such message is directed to an external
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Figure 3: Serializing a UML-RT signal into a genericmessage
encoded in JSON format

IoT device, the RTS can serialize the signal into the JSON string as
shown in Figure 3, and transmit it over the wire.

Unfortunately, the user friendly and simple notation of JSON
is a double-edged sword. The textual notation and extra syntactic
decorators that makes the language human-readable can result in
unnecessarily large payloads and significant processing time. This
problem has not gone unnoticed, many binary compressed formats
on top of JSON were introduced. Examples include BSON, Smile,
and MessagePack, just to name a few.

Interface Definition Languages. A second problem entailed
by the simplicity of JSON is its limited data type support. JSON
supports four primitive data types, namely strings, integers, floats,
and booleans, along with generic lists and objects. During dese-
rialization, the RTS might be able to successfully deduce certain
types, although not without loss of precision. However, the type
of certain fields, such as character fields, might need to be stated
explicitly in the message to avoid ambiguity.

For application domains that require absolute precision in data
types, such as financial applications, a better approach is to adopt
a data format that implements an Interface Definition Language
(IDL). Example IDLs include Google’s Protocol Buffer (Protobuf),
Apache Thrift, and Apache Avro. IDLs allows the precise specifica-
tion of messages in a language-and platform-neutral way through
user-defined schemas. Out of these schemas, data serialization and
deserialization classes for a variety of programming languages can
be generated. The generated classes guarantee data interoperability
among heterogeneous platforms.

Discussion. IDL-based serializers encode the data using a bi-
nary representation which often translates to superior performance
and a smaller footprint than ASCII format such as JSON. However,
in our context, the IDL schemas will need to be generated out of
the models (for instance, out of protocols in UML-RT). This adds
another layer of complexity to the code generator.

3.1.3 Network Services. For the chosen IoT protocols, the
RTS needs to implement services to establish and maintain com-
munication channels with IoT devices. These services typically run
asynchronously from themain application thread, and continuously
listen for incoming messages. Incoming messages are stored in a
local FIFO queue, from which the message deserializer periodically
polls in a producer-consumer fashion. After deserialization, a mes-
sage is passed on to the main controller thread to be delivered to
the appropriate actor. Similarly, the service also maintains a queue

Figure 4:Handling of outgoing and incomingmessage by the
network service

for outgoing messages. Messages pushed into the queue by the con-
troller thread are serialized and transmitted over the wire. Figure 4
depicts this behaviour.

Failure recovery. An important factor in designing network
services is failure recovery, or how to recover from network errors.
Network errors vary from failure to deliver certain messages to
complete connection drops. One option for handling errors is to
follow a user-defined policy collected by the modeling tool as part
of the configuration process. The policy could dictate, for example,
whether to drop or re-transmit undelivered messages, or whether
to automatically try and re-established dropped connections.

Another option for failure recovery is to expose an error-handling
interface to the user’s model. As mentioned earlier, the runtime
system could uncover a number of system services to the user’s
model via specialized interfaces. In actor-oriented languages, ports
can be typed with these interfaces to exchange message with sys-
tem services. An error-handling interface could be used to notify
the user’s model of network-related events, such as undelivered
messages, and the user model can choose to act accordingly by, for
example re-sending the message or ignoring it all together.

3.2 Tooling support
The modeling environment can offer a number of facilities to ease
the integration of external IoT components. The most essential of
all is perhaps configuration options that supplement the model
elements with the parameters required to establish and maintain
communication channels with IoT devices. Take for instance a proxy
actor (see Section 3.3.1) whose specific behaviour is implemented at
the runtime level. In this case, the tool needs to collect parameters
such as the IoT communication endpoint, network protocol, data
format, authentication parameters, and other options that the run-
time requires to successfully establish the communication channel.

In addition to basic configuration options, the modeling environ-
ment could also provide a number of tools to facilitate the integra-
tion of the model into IoT systems.

3.2.1 Interoperability. One of the biggest challenge in IoT
that the modeling environment can help mitigate is interoperability.
It is given that heterogenous IoT devices must be able to cooperate
using different protocols, such CoAP or MQTT, and using differ-
ent data formats such as JSON and XML. However, IoT devices
must also be able to correctly interpret the meaning of exchanged
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messages, i.e. their semantics. Consider for instance, the generic
representation of a UML-RT signal in JSON format shown in Figure
3. It is highly unlikely that a large number of IoT devices, if any,
are capable of interpreting the meaning of such message out of the
box, even if they manage to successfully receive it and deserialize
it. An IoT device at the receiving end would typically expect and
act on device-specific messages.

Middlewares. One typical solution to the interoperability prob-
lem is by means of IoT middlewares [7]. A middleware can be a
third-party, standalone service, that bridges IoT devices by provid-
ing support for a range of protocols and data formats, as well as
user-defined functions to process messages as they flow from one
device to another. One example middleware that fits this category
is Node-RED 2. Node-RED is a visual modeling environment that
allows the user to construct data pipelines. Data flows from a source
(MQTT client, for instance) and can be deserialized, reformatted,
and translated, before it goes into a data sink (such as an HTTP
client).

While third-partymiddleware can effectively remedy the interop-
erability problem, they can also contribute to extra communication
overhead as all the messages must go through them, which also
makes them a single point of failure for the entire system. An-
other class of interoperability middlewares are those that can be
embedded directly into the IoT device software stack, offering a
compatibility layer by implementing a common IoT standard. There
has been a lot of effort in the IoT community to define standardized
ways to accurately describe IoT components, as well as to standard-
ize their interaction. Notable examples include the Open Mobile
Alliance Light Weight Machine to Machine (LWM2M) specification
[5], the oneM2M standard [33], and more recently, the Eclipse Vorto
project.

IoTObjectModels. Middlewares such as LWM2Mand openM2M
define a metamodel to accurately describe the resources and func-
tionalities of IoT devices (commonly referred to as Object Models),
along with a set of interfaces that specifies how this resources
may be accessed and managed. Any device that implements these
interfaces can effectively communicate with any other device by
interpreting its corresponding object model, which is often kept
in public repositories. By automatically generating these object
models from the user’s model, the modeling environment can ease
the interoperability challenge between the user’s model and exter-
nal IoT devices. Of course, for other devices to be able to interface
with the user’s model, the runtime system must implement the
compatibility layer as defined by the chosen specification.

Tool support for semantic interoperability. An alternative
approach to handle semantic interoperability without relying on a
middleware is to allow the modeller to define templates for mes-
sage serialization and deserialization. This effectively integrates
the message translation capabilities of a middleware right into the
modeling environment. Instead of serializing model-level messages
to generic messages (as shown in figure 3), the modeling tool could
implement a templating language that allows the user to compose
arbitrary messages. The templating language defines special place-
holders for model-level variables, such as the signal name and the
2Available at https://nodered.org/

Figure 5: Serializing a UML-RT signal using a user-defined
template

type and value of its formal parameters, that are resolved at run-
time by a templating engine implemented as part of the runtime
system. Figure 5 shows an example for serializing the UML-RT
motion signal into a custom message using a user-defined template.
Special placeholders such as signal.name and signal.param[0]
are automatically resolved at runtime to the appropriate values
depending on the input signal. This approach also works the other
way around. Whenever a message is received, it is matched against
the template to extract the value of the fields, such as the signal
name, needed to construct the language-level message.

3.3 Modeling Language support
As a basic requirement, the modeling language must present the
modeller with a notation to specify external IoT components, as
well as their role within the model. While the specific notation is
language-dependent, we can identify two generic approaches for
message-passing based languages. The first is by means of Proxy
Actors and allows the transparent inclusion of IoT components
into existing models, while the second offers more flexibility to the
modeller by exposing IoT protocols using Internal Ports and System
Interfaces.

3.3.1 ProxyActors. Generally, languages that provide ameans
to specify collaboration between components in a way that is inde-
pendent of their internal behaviour can make use of existing nota-
tion, and thus, avoid convoluting the language. In actor-oriented
languages such as UML-RT, an actor’s interface serves as an ab-
straction layer that allows collaboration with other model elements
irrespective of the actor’s nature and realization. Therefore, an ex-
ternal IoT component can be represented as just another actor with
an interface that defines the messages that may be exchanged with
said component. The actor here serves as a mere proxy to some IoT
device and does not necessarily implement any behaviour.

Like any other actor, proxy actors can receive and send messages
to/from other actors in the system. However, proxy actors do not
generally act upon received messages, instead, they simply relay
them to the IoT component they substitute. In addition, a proxy ac-
tor listens for incoming messages from the external IoT component
and delivers the message to the appropriate actor as specified by the
collaboration model. Naturally, the proxy might need to reformat
the messages between the IoT domain and the model domain. To
illustrate, consider adding a mobile interface that allows the user to
remotely engage and disengage our example Intrusion Detection
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System. To implement this in UML-RT, we can represent the mobile
user device as a regular capsule that is connected to the controller
via its engageProtocol port, as shown in Figure 6(a).

The behaviour of a proxy actor can be implemented entirely at
the model level or as part of the runtime library (see section 3.1). In
the former case, there is virtually no need to modify any other part
of the MDD toolchain. The actor encapsulates everything needed
to communicate with the IoT component including the communica-
tion protocol and the message serialization/deserialization process.
In the latter case, the behaviour of the proxy is deferred down the
stack to the runtime system. In this case, it would suffice to label
the actor as a "proxy" and annotate it with the appropriate parame-
ters that allow the runtime system to establish the communication
channel such as network protocol, data format, among others. As
discussed in Section 3.2, this configuration can be provided by the
IDE. However, other language features such as annotation, stereo-
types, and deployment models could also be used.

Discussion. Obviously, there are benefits to both approaches.
Implementing proxy actors as importable model-level components
is a future-proof option and allow relatively easy support for emerg-
ing IoT technologies without the need to modify the runtime library.
However, the behaviour of proxy actors is relatively complex and
themodeling languagemight not be expressive enough tomodel the
required behaviour. This is especially true when the action code is a
restricted domain-specific language rather than a general-purpose
language such as C++. Moreover, the introduction of many complex
elements into the user’s model might have a negative impact on
the performance of the modeling environment and might introduce
redundancy into the generated code, substantially increasing the
size of the resulting binary. On the other hand, the runtime sys-
tem can bundle resources for multiple proxy actors (for instance,
using a single thread or socket connection for similar proxies), to
optimize performance. Of course, the major drawback is the need
to continuously update the runtime system and tooling to support
emerging IoT protocols, data formats, etc.

3.3.2 Internal Ports. Internal ports are commonly used to ex-
pose low-level services provided by the runtime library to themodel.
Like border ports, internal ports are typed with an interface, typ-
ically referred to as a system interface, that defines the messages
that may be exchanged with the underlying service.

Using a system interface, we can expose a generic IoT applica-
tion protocol, implemented as a runtime service, to the modeller.
While this approach does not provide the abstraction offered by
proxy actors, it gives complete control and utmost flexibility to
the user. Through the system interface, it is then up to the user
to manage connections with the external IoT device, decode and
process raw messages, and prepare and send outgoing data. Fig-
ure 6(b) shows how the external mobile user interface can be used
to engage/disengage the IDS system via the MQTT IoT protocol
implemented as a system interface.

The MQTT system interface declares the necessary functions to
connect, subscribe, and publish messages, as well as inbound trig-
gers to deliver received messages to the actor. In its initial transition,
the IDS controller connects to the MQTT message broker and sub-
scribes to a predefined topic "ids_control" using the connect() and

(a)

(b)

Figure 6: Connecting an external user mobile device to en-
gage/disengage the controller using (a) a proxy actor and (b)
using a system interface

subscribe() functions of the MQTT interface. Whenever a mes-
sage with the topic "ids_control" is received by the MQTT service,
the "msg_received()" signal is triggered with the received message
as a parameter. The controller’s statechart then parses the received
message and decides whether to engage or disengage the system.

Discussion. It is worthy to mention that proxy actor and inter-
nal ports are not mutually exclusive. Rather a combination of both
can prove to be a powerful addition to the language. Proxy actors
provide a seamless integration of external components into the
model with little effort from the modeller, at the expense of giving
up control over the specific operation of the underlying protocol.
In certain scenarios, however, such control is necessary. As an ex-
ample, consider an application that needs to communicate with a
cloud service using the MQTT protocol. However, in this example,
the MQTT topic to which the service is listening to is not known
before-hand, rather it is provided at runtime by some other device.
By exposing the MQTT subscribe() and publish() functions to
the modeller through a system interface, the model could dynami-
cally subscribe to the topic once known and publish messages to
the service. One thing to note here is that the flexibility of system
interfaces is controlled by the tool developer. The developer can
choose to expose all the functionalities of the underlying protocol
or just a subset of them, depending on the intended use cases.

7



4 EXPERIMENTAL ANALYSIS
4.1 Implementation
Our implementation requires no modification to the UML-RT mod-
eling language. A UML-RT capsule (with no behaviour) serves well
as a proxy actor and integrates seamlessly with the rest of the
model. The only requirement is to highlight a proxy capsule so
that the runtime system can treat it appropriately. For that, we
use a deployment map specified in a textual configuration file and
supplied to the generated program as a command line argument.
A deployment map typically maps components (capsules in our
case) to processes or network hosts. The deployment map specifies,
for each component, the address of the host where the component
resides. In our implementation, we extend the deployment map to
support IoT addresses. A capsule with an IoT protocol in its address,
such as mqtt://host:port or coap://host:port, is treated by
the runtime service as a proxy capsule. Support for another type
of relevant configuration options, such as data format, quality-of-
service (QoS) policies, and authentication parameters, were also
added to the deployment map.

The deployment map is parsed by the Papyrus-RT runtime li-
brary, where most of our implementation resides. A network service
at the runtime-level establishes a communication channel with each
IoT device proxied by a capsule using the protocol specified in its
address. UML-RT signals destined to proxy capsules are relayed
to the network service by the capsule’s execution controller. The
network service serializes the signal and delivers it to the IoT device
over the established communication channel. Similarly, messages
received from the channel are deserialized by the network service
and delivered to the destination capsule’s controller.

Our implementation supports JSON and Google’s Flatbuffers for
message serialization. Flatbuffers is similar to Protobuf (discussed in
Section 3.1.2), except that it supports in-buffer modification of the
data prior to deserialization. Like Protobuf, Flatbuffers defines an
Interface Definition Language (IDL) to describe structured data for
serialization. From IDL models, Flatbuffers generates C++ helper
classes that allow us to easily serialize and deserialize data in a
platform-independent way. For JSON support, we use the RapidJ-
SON library. While there are no official benchmarks, RapidJSON
seems to be one of the fastest open-source JSON parsers available
today. To encode UML-RT signals in JSON format, we use the same
structure shown Figure 3.

In addition to the data serializers, our implementation supports
the following IoT protocols:
TCP.While not an IoT application protocol, we added support for
raw TCP for evaluation purposes. With the absence of application-
layer-protocol overhead, TCP allows us to set benchmarks for our
performance metrics.
MQTT.We use the Paho C++ client, part of the Eclipse IoT project,
to support MQTT. An MQTT proxy capsule uses the broker’s ad-
dress as its deployment map address. The network service is opti-
mized to bundle connections to the same broker, regardless of the
number of capsules using the broker. Other protocol requirements,
such as the topic name and quality-of-service (QoS) policy, are also
specified in the deployment map.
CoAP.We added support for the CoAP protocol using the open-
source libcoap library. Since CoAP is a request-reply protocol, the

runtime network service always listens for incoming requests and
responds appropriately. Messages are delivered and received using
POST requests, for the most part.
DDS.We used OMG’s OpenDDS library to support the DDS proto-
col. OpenDDS is a fairly mature library with many features, includ-
ing support for both UDP and TCP as a transport-layer protocol.
Unfortunately, however, DDS forces the use of its own specific
IDL for message serialization. Since our implementation does not
support DDS-IDL model generation from UML-RT signal, signals
are always serialized into JSON or Flatbuffers messages first, then
serialized again into a byte stream using DDS-IDL. This adds a
small overhead to message serialization/deserialization whenever
DDS is used.

4.2 Evaluation
4.2.1 Setup. To eliminate any chance for network variance and

uncertainty, we conducted all of our experiments on the same host
using UML-RT models to simulate external IoT devices. Moreover,
whenever the protocol requires a message broker, a local broker
on the same host is used. The host is equipped with a 2.2Ghz Intel
Core i7 quad-core processor and 16GB of RAM. For performance
evaluation, we use two simple Papyrus-RT models that represent a
sender-receiver relationship. The twomodels, shown in Figure 7, are
separate and the codes generated from these models run in separate
processes. The Sender capsule in the Sender Model communicates
with the Receiver capsule in the Receiver Model via a proxy
(ReceiverProxy) capsule, and vice versa. From the perspective of
the Sender (Receiver) capsule, ReceiverProxy) (SenderProxy) is
an external IoT device, although it actually proxies a capsule in
another UMLR-RT model.

On initialization, the Sender generates a random string message
of a given length and sends it via its sendRecvProtocol port to the
ReceiverProxy capsule then waits for an acknowledgement. Of
course, the runtime system transmits this message to the Receiver
capsule in the other model using the protocol defined in the de-
ployment map. When the Receiver receives the message, it simply
sends an acknowledgement signal to the SenderProxy capsule,
which in turn is eventually delivered to the Sender capsule. When-
ever the Sender receives an acknowledgement, it retransmits the
same string again. This behaviour continues indefinitely.

4.2.2 Message serialization. We first evaluate the performance
of data serialization using JSON versus Flatbuffers. Using themodels
of Figure 7, we vary the length of the random message transmit-
ted by the Sender and measure the average message serialization
and deserialization wall-time, as well as the message latency. The
latency is computed at the Sender and is defined as the time spent
between the moment a message is transmitted until an acknowl-
edgement is received. In all of our experiments, we use raw TCP as a
communication protocol and we let the models exchange messages
for three minutes.

Table 2 shows the average serialization time, deserialization time,
and round-trip latency for messages ranging from 1KB up to 256KB
in size. As expected, Flatbuffers binary encoding outperformed
JSON’s ASCII representation for all cases. Message serialization
and deserialization using Flatbuffers took respectively 94% and 90%
less time than JSON, on average. Consequently, Flatbuffers message
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Figure 7: Models used for performance evaluation. The
sender model communicates with the receiver model, and
vice versa, via a proxy capsule.

Size
(KB)

JSON Flatbuffers
Avg. Ser.
Time(µs)

Avg. Des.
Time (µs)

Avg. Msg.
Latency (ms)

Avg. Ser.
Time (µs)

Avg. Des.
Time (µs)

Avg. Msg.
Latency (ms)

1 64.56 80.73 1.83 11.197 5.77 0.74
2 88.93 128.66 2.38 17.98 11.40 0.80
4 186.89 226.69 4.41 26.43 16.33 0.88
8 342.36 402.97 7.31 28.09 22.50 1.06
16 657.28 772.82 15.61 53.52 27.77 1.33
32 1337.87 1516.41 26.40 53.52 40.40 1.94
64 2518.11 2954.26 48.62 53.52 98.97 2.82
128 4593.13 5137.96 91.14 269.63 212.76 5.07
256 9280.38 10653.55 167.22 656.45 382.46 9.7

Table 2: Average message serialization and deserialization
times in microseconds using JSON versus Flatbuffers

latency was on average 15% that of JSON, with the percentage
decreasing as the message size increases. It is worthy to mention
that the evaluation scenario does not put JSON at a disadvantage.
The transmitted messages generated by Sender capsule are ASCII
strings which can be represented efficiently in JSONwith little over-
head from syntactic additions. In comparison, in other experiments
we conducted where we transmitted binary payloads (as a list of in-
tegers in JSON), the size of the encoded JSON message quadrupled,
tripling the latency (which includes network transmission time)
when compared to ASCII payloads. In any case, JSON was never
intended to carry binary data.

4.2.3 Protocols. We evaluate the IoT protocols we implemented
by measuring the message throughput while varying the message
size. The message throughput is defined as the number of acknowl-
edged messages per second at the Sender. We use Flatbuffers for
serialization in all the experiments, and we let the models run for
three minutes. When applicable, we relax the QoS policy as much
as possible, as long as message delivery is guaranteed.

Figure 8(a) shows the throughput for messages up to 64KB, while
Figure 8(b) shows the throughput for larger messages up to 2048KB.
Note that the CoAP and DDS/UDP protocols were unable to handle
messages greater than 64KB due to their reliance on the unreliable
UDP protocol. This, of course, can be mitigated in the future by
implementing application-layer error-checking and retransmission
in the network service.

Overall for small messages, CoAP performed very well and came
close to the performance of pure TCP. On average, CoAP’s through-
put was 88% that of TCP. On the other hand, all the other protocols
showed similar performance for messages smaller than 64KB, reach-
ing roughly 55% the throughput of TCP. No significant difference
in throughput was observed when using UDP versus TCP as a
transport protocol for DDS. The outperformance of CoAP and TCP
may be primarily due to their point-to-point architecture. In con-
trast, MQTT and DDS implement a publish-subscribe model, which
will give them an edge in applications where many-to-many and
one-to-many communication is prevalent.

For larger messages, the performance of MQTT began to quickly
degrade, especially beyond the 512KB mark. MQTT’s throughput
averaged 39% that of TCP, reaching as low as 8msg/s for 2048KB
messages. This degrade in performance is primarily due to MQTT’s
reliance on a third-party message broker. This requirement causes
each message to be transmitted twice. In comparison, the peer-to-
peer architecture of DDS/TCP managed to average 74% of TCP’s
throughput.

5 RELATEDWORK
Models are becoming more central not only to the design and
development of IoT systems [26][15][13], but also for managing
interoperability [17] [3], wiring IoT components [29], securing IoT
applications [25][19], testing and simulation [4][11], deployment
[14], and predicting their performance [20].

The separation of concerns, abstraction, and automation that
MDD offers, and their role in taming the complexity of large het-
erogeneous systems, has motivated the development of MDD tools
geared specifically towards IoT systems. The authors in [30] pre-
sented IoTLink, a framework for the rapid prototyping of IoT appli-
cations. Build on top of the Eclipse Modeling Framework, IoTLink
allows the specification of IoT devices and their interactions through
a visual modeling tool, out of which full Java code generation is pos-
sible. IoTLink implements a number of communication components
that can be integrated into the model to consume data from external
IoT devices, including an MQTT input and a REST input capable
of parsing JSON and XML data. Calvin [28] is an actor-oriented
framework for the complete development of IoT applications, from
the initial specification all the way to deployment and provisioning.
Actors are specified using CalvinScript and depend on the Calvin
runtime for execution. One important aspect of Calvin, directly
related to our work, is the ability to communicate with external,
non-Calvin components by wrapping their REST API in a "dumb
actor", essentially acting as a proxy for the service.

Beside emergent IoT-specific tools, there has been an effort to
connect existing tools, that were primarily intended for the devel-
opment of closed systems, to the Internet of Things. The authors in
[35] recognized the importance of integrating legacy mechatronic
systems into modern IoT manufacturing environment as a key re-
quirement for Industry 4.0. For that, they introduced UML4IoT, a
UML profile to generate IoT-compliant interfaces for mechatronic
components. Given a UMLmodel that expresses the object-oriented
structure of the target component, the authors show how to gen-
erate an IoTWrapper, a RESTFul interface that exposes the compo-
nent’s properties to the outside world. Their IoTWrapper interface
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(a) (b)

Figure 8: Message throughput for messages up to (a) 64KB and (b) 2048KB.

adopts the LWM2M standards that allow interoperability with other
LWM2M-compliant IoT devices. The authors also show how this
interface can be generated from annotated Java code of the compo-
nent in case its UML model was not available.

The Ptolemy II modeling framework adopts Accessors [10], a
concept similar to proxy actors introduced in Section 3.3.1. Also
intended for actor-oriented systems, an Accessor is basically an
actor that wraps a remote device or service, and can interface with
the rest of the system. Unlike proxy actors, however, Accessors
are not just a modeling concept whose specific behaviour is im-
plemented by the tool’s runtime system, according to the tool’s
specific needs. Instead, Accessors have well-defined execution se-
mantics. An Accessor is defined in a Javascript file that specifies
the Accessor’s interface, such as inputs, outputs, and parameters,
as well as its functionalities in reaction to incoming triggers. In-
ternally, Accessors implement asynchronous atomic callbacks to
invoke remote services and handle responses asynchronously. The
execution of Accessors is managed by a swarmlet host, which in-
cludes a Javascript interpreter and a collection of libraries that offer
the Accessor’s script access to system services such as disk I/O and
networking.

IBM Rhapsody, a UML-based system engineering modeling tool
for embedded and realtime systems, offers MQTT support through
an MQTT UML Profile extension. Rhapsody integrates nicely with
IBM’s IoT ecosystem. Part of that ecosystem is IBM’s Internet of
Things Workbench, a cloud service for specifying the architecture
of IoT systems. The workbench allows the definition of abstract
IoT devices as well as their interaction using Interaction Diagrams.
For any IoT device defined in the workbench, the user can export
a UML class that can be imported directly into a Rhapsody model.
The class inherits the MQTTProfile stereotype and includes all the
functions defined in the interaction diagram. When triggered, these
functions are transmitted as MQTT messages to the corresponding
device.

MathWorks Simulink is another model-based design tool for
embedded systems that offers model simulation as well as C, C++,
and HDL code generation. The Simulink modeling environment
offers configurable MQTT blocks that can be linked to the rest of
the model. Data delivered to the input ports of an MQTT sink block
is published as MQTT messages to the broker/topic specified in

the block’s configuration. Similarly, source blocks can be used to
receive MQTT messages.

6 CONCLUSION
In this work, we presented and discussed the different design and
implementation options for enabling actor-based, model-driven
software development tools for the Internet of Things. We pro-
posed an approach based on the combination of proxy actors and
system interfaces to enable seamless integration of external IoT
devices in the user’s model while offering control over the protocol
operations when the application demands it. We implemented our
approach in Papyrus-RT and evaluated the performance of several
popular IoT protocols and data serializers. Our experiments showed
that IDL-based message serialization not only offers cross-platform
portability but also superior performance. In addition, we showed
that the CoAP protocol, although relatively new, can easily outper-
form other protocols when the message size is reasonably small.
For larger messages, the broker-based MQTT architecture throttles
performance and is surpassed by DDS’s peer-to-peer architecture.
Our future work is geared towards supporting runtime adaptation,
a growing requirement for IoT applications, at the model level.
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