Unsupervised gene/protein entity normalization using dictionaries automatically extracted from online databases

Aaron M. Cohen Oregon Health & Science University June 24, 2005

Outline of Talk

- Background
- Methods
- Evaluation
- Results
- Discussion
- Conclusions

Gene/Protein NER and Normalization

- Named Entity Recognition (NER)
 - Identify the terms/strings within text that refer to genes and proteins
- Normalization
 - Mapping of recognized terms to unique identifiers
- Important fundamental task in biomedical text mining, basis for further text mining:
 - Association detection, Relationship extraction, etc.
- Proteins/genes that code them often treated as equivalent in biomedical text mining

NER Plus Normalization (NER+N)

- NER simply identifies terms of a given type
- Additional normalization step required to:
 - Ensure identical handling of identical concepts
 Increase sample size by combining synonyms
- NER can be dictionary or machine-learning based (SVM, CRF, HMM, etc.)
- "+N" requires dictionaries in some form
- Evaluated in BioCreative Task 1B:

Hirschman L, Colosimo M, Morgan A, Yeh A: **Overview of BioCreAtIvE** task 1B: normalized gene lists. *BMC Bioinformatics* 2005;6(Suppl 1):S11.

Dictionary NER+N Basics

- Online genome databases
 - Great information source (single & multi-organism)
 - Represent many years of curator effort
- How well can we do with a dictionary-based NER+N approach for genes and proteins?
- Potential Benefits:
 - Simple, leverage genome DB information
 - Avoid machine learning, training corpus issues
 - Automatically update to include new genes
 - Good performance on long multi-word names
 - Fast (most computation is constructing dictionary)

Practical Questions:

- Which curated databases are the best source of gene symbols and names?
- Can simple rules be used for generating sufficient orthographic variants?
- How can common English word false positives be reduced?
- Overall, how well can a purely dictionary-based, untrained approach perform?

Method

1. Building the initial dictionary

Compile Time Pre-processing

- 2. Generate orthographic variants
- 3. Separate common English words
- 4. Screen out most common words

1. Build the initial dictionary

- Extract gene names, symbols, aliases from downloadable extracts of online databases
- Simple process, but each database has its own format
- Used several databases for this work:
 - MGI (mouse specific)
 - Saccharomyces (yeast specific)
 - UniProt (multi-organism)
 - LocusLink (multi-organism)
 - Entrez Gene (multi-organism)
- Organize names by unique gene identifier

2. Generate variants

- Expand names in dictionary using orthographic generator rules:
 - 1. Replace spaces with hyphens
 - 2. Replaces hyphens with spaces
 - 3. Remove internal spaces & hyphens
 - 4. Insert hyphen before trailing digits
 - 5. Replace trailing a/b following digit with alpha/beta
 - 6. Replace trailing "-1" or "-2" with Roman numeral
 - 7. Append "p" to single word names (yeast only)
- Apply singly and iteratively until no new names are generated

3 & 4. Separate English words

- Many genes have names easily confused with common English words
- Reduce false positives by handling these specially
- Separate into two dictionaries using Moby (75K) into main and confusion dictionaries
 – Example: "DARK"
- Remove names that match stop words (300 most common English words + a few others)

5. Search text

- Search text using the two dictionaries
 - Case-insensitive match for main dictionary
 - Strict case-sensitive match for confusion dictionary
- No need to tokenize, first search for matching names, then check for bordering delimiters
- Collect matching (string, unique identifier) pairs for entire text sample
- Text sample can be any size, but Abstract/Paragraph good for next step

6. Disambiguation

- Large number of terms refer to more than one gene/protein (5% intra-, 85% inter-species)
- Need to disambiguate these cases to perform normalization, extract maximum accurate information
- Previous algorithms based on simply ignoring ambiguous terms or concept frequency
- Our approach based on using complementary unambiguous information in the text sample

Disambiguation Process 1

Disambiguation Process 2

Evaluation

- Select best general DB source of gene names using GENIA corpus as test collection
- 2. Evaluate NER+N performance on mouse and yeast using BioCreative Task 1B test collections and scoring method

Results: NER only

NER-only using names from a single database:

Dictionary	Precision	Recall	F-measure
Entrez	0.735	0.776	0.755
LocusLink	0.723	0.773	0.747
UniProt	0.785	0.474	0.591

NER-only using two databases:

Dictionaries	Precision	Recall	F-measure
Entrez	0.735	0.776	0.755
Entrez+UniProt	0.707	0.792	0.747
Entrez+LocusLink	0.734	0.780	0.756

Results: NER+N on Mouse

• With Organism-specific database:

Dictionary	Precision	Recall	F-measure
Entrez/MGI	0.775	0.726	0.750
MGI	0.710	0.535	0.610

Effect of individual features:

System	Precision	Recall	F-measure	Difference
full system	0.775	0.726	0.750	-
- case	0.493	0.746	0.594	-15.6%
- stop	0.643	0.726	0.682	-6.8%
- variant	0.771	0.693	0.730	-2.0%
- ambiguity	0.697	0.748	0.722	-2.8%
- all	0.301	0.713	0.423	-32.7%

Mouse & Yeast Results Comparison

Organism	System	Precision	Recall	F-measure
Mouse	biocreative-			
	highest	0.765	0.819	0.791
[cohen	0.775	0.726	0.750
	biocreative-			
	median	0.765	0.730	0.738
	biocreative-			
	lowest	0.418	0.898	0.571
Yeast	biocreative-			
	highest	0.950	0.894	0.921
	cohen	0.950	0.837	0.890
	biocreative-			
	median	0.940	0.848	0.858
	biocreative-			
	lowest	0.661	0.902	0.763

Discussion

- Entrez Gene best single source of names
- Entrez + species-specific database for NER+N with unique id sufficient
- All dictionary pre-processing methods and ambiguity resolution improved performance
- Likely not to work well on Fly
 - Too many genes polysemous with common words
 - Cannot rely on differences in capitalization
- Easily extended to human, but how to test?

Conclusions

- State of the art performance on mouse and yeast using simple dictionary-based methods
- Makes good use of curated information
- Dictionaries processed without human intervention or review
- Easy to incorporate additions to genomic databases, can be done automatically
- Training corpus and system training not needed