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Variation in Biomedical Terms

• Term variation is a big obstacle in knowledge integration.   
�Internal similarity of terms (edit-distance), spelling 
variation generator based on a probabilistic model, etc.

• Acronyms constitute a major source of difficulties

NF-kB
Nuclear Factor kappaB

Nuclear Factor kB
NF kappaB

:

NF-kappa B



Acronym Generation

– The system generates possible acronyms 
from a given expanded form.

Acronym
Generator

Nuclear Factor NF

antithrombin AT

melanoma cell 
adhesion molecule

Mel-CAM

Term similarities for applications such as term clustering,
term variation generator, etc.



Dictionary-Building Approaches

cytokeratine (CK)

• Collect acronym-
definition pairs from 
running text and 
construct a dictionary.

Acronym
Dictionary

Interleukin-2 (IL-2)

Running text



Problems of Dictionary-Building 
Approaches 

• Coverage
– Limited available resources (corpora) and lack 

of generalization
– Dynamic nature of terms

• Term variation in expanded forms
– We need to address the problems of term 

variations in which acronyms are mixed with 
other variations such as spelling, lexical  
variations, etc.



Our approach

• Machine learning-based
– Acronym generation as sequence tagging
– Probabilistic modeling

• Advantages
– Wide coverage can be achieved by generalization.
– Similarities can be computed in a probabilistic form.

• Drawbacks
– Needs training data

• Unsupervised approach (future work)

MEMM can integrate 
features that reflect 
intuition of rule-based 
methods with statistical 
modeling

Collection of 
weak cues



Acronym Generation as Sequence Tagging
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TagDefinition Acronym

cytokeratines CKs
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SKIP
SKIP
SKIP

SKIP
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Sequence Tagging with MEMM
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• A Sequence Tagging Problem

• Maximum Entropy Markov Modeling (MEMM)

maximum entropy classifier
(model size = 60kB)
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Maximum Entropy Modeling with Inequality 
Constraints (Kazama and Tsujii 2003, 2005)

• Smoothing effects
Performance is better or comparable to that 
achieved with the use of Gaussian prior.

• Smaller model size   ->  quick decoding
Ex. ) POS tagging

•Gaussian prior: 12MB
•Inequality constraints: 1.3MB

MEMM can integrate 
features that reflect 
intuition of rule-based 
methods with statistical 
modeling



Features (1)

lactate dehydrogenase
target letter

• Letter unigrams (UNI)
• Letter bigrams (BI)
• Letter trigrams (TRI)
• Tagging history (HIS)

• Orthographic features (ORT)
• Definition length (LEN)
• Letter sequence (SEQ)
• Distance (DIS)



Features (2)

lactate dehydrogenase
target letter
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• Definition length (LEN)
• Letter sequence (SEQ)
• Distance (DIS)



Features (3)

lactate dehydrogenase
target letter

• Letter unigrams (UNI)
• Letter bigrams (BI)
• Letter trigrams (TRI)
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• Orthographic features (ORT)
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Features (4)

lactate dehydrogenase
target letter

• Letter unigrams (UNI)
• Letter bigrams (BI)
• Letter trigrams (TRI)
• Tagging history (HIS)

• Orthographic features (ORT)
• Definition length (LEN)
• Letter sequence (SEQ)
• Distance (DIS)

SKIP



Features (5)

lactate dehydrogenase
target letter

• Letter unigrams (UNI)
• Letter bigrams (BI)
• Letter trigrams (TRI)
• Tagging history (HIS)

• Orthographic features (ORT)
• Definition length (LEN)
• Letter sequence (SEQ)
• Distance (DIS)

Uppercase? false



Features (6)

lactate dehydrogenase
target letter

• Letter unigrams (UNI)
• Letter bigrams (BI)
• Letter trigrams (TRI)
• Tagging history (HIS)

• Orthographic features (ORT)
• Definition length (LEN)
• Letter sequence (SEQ)
• Distance (DIS)

2 words



Features (7)

lactate dehydrogenase
target letter

• Letter unigrams (UNI)
• Letter bigrams (BI)
• Letter trigrams (TRI)
• Tagging history (HIS)

• Orthographic features (ORT)
• Definition length (LEN)
• Letter sequence (SEQ)
• Distance (DIS)



Features (8)

lactate dehydrogenase
target letter

• Letter unigrams (UNI)
• Letter bigrams (BI)
• Letter trigrams (TRI)
• Tagging history (HIS)

• Orthographic features (ORT)
• Definition length (LEN)
• Letter sequence (SEQ)
• Distance (DIS)

2 10



Training data
• Acronym-definition pairs are extracted from 

running text, and position information is 
manually added to each pair.

1, 9, 14Epstein-Barr virusEBV
1, 5,12cytokeratinesCKs

:::

1, 5cytokeratineCK
1, 9, 11lactate dehydrogenaseLDH
1, 12Intestinal metaplasiaIM

Position DefinitionAcronym



Experiments

• Training data
– 1,901 acronym-definition pairs extracted from 

MEDLINE abstracts published in 2001.
– A simple deterministic method (Schwartz 

2003) was used for extraction.
– Position information is semi-manually added.

• Evaluation
– 10-fold cross validation



Generated acronyms
• For “traumatic brain injury”

TBi0.0078

TUB0.0029

TbI0.0194

TB-I0.0155

tBI0.0096

TI0.0087

TUbI0.00210

TB0.0283

TUBI0.0622

TBI0.7791

StringProbabilityRank



Generated acronyms
• For “open reading frame 1”

OR-10.0198

R10.0169

RF10.0704

OrF10.0475

OF10.0366

ORf10.0257

RF-10.01410

ORF-10.0853

OR10.0962

ORF10.4231

StringProbabilityRank



Generated acronyms
• For “RNA polymerase”

RN-P0.0418

RNA-PM0.0349

RNAP0.1104

RA-P0.0645

R-P0.0516

RAP0.0437

RPM0.03010

RNP0.1183

RP0.1472

RNA-P0.1631

StringProbabilityRank



Generated acronyms
• For “meta-chlorophenylpiperazine”

MP0.0118

mCPP0.0119

MPP0.0314

McPP0.0285

MchPP0.0246

MC0.0207

MCRPP0.01010

MCP0.0563

MCP0.1492

MCPP0.4051

StringProbabilityRank



Generated acronyms
• For “Toscana virus”

TSCV0.0048

T-v0.0029

Tv0.0214

TVs0.0195

T-V0.0136

TOV0.0087

TOSV0.00110

TCV0.0303

TSV0.0342

TV0.8111

StringProbabilityRank



Coverage (recall)
• Coverage achieved with 

top-N candidates.
– Below top 10
ex.)
melanoma cell adhesion molecule

Mel-CAM

• Baseline
– Rule-based

• Take the initial letter of each 
word and capitalize them.

– Coverage: 47.3% 79.8%8
81.1%9

73.2%4
75.4%5
76.7%6
78.3%7

82.2%10

70.4%3
65.8%2
55.2%1

CoverageRank



Effectiveness of Features

75.4%
75.0%
74.6%
73.9%
73.6%
72.3%
71.2%
66.2%

Top 5
Coverage

55.1%
54.4%
53.9%
51.0%
50.6%
50.4%
50.1%
48.2%

Top1
Coverage

82.2%UNI, BI, TRI, HIS, ORT, LEN, DIS, SEQ

81.2%UNI, BI, TRI, HIS
80.9%UNI, BI, TRI, HIS, ORT
81.3%UNI, BI, TRI, HIS, ORT, LEN
81.8%UNI, BI, TRI, HIS, ORT, LEN, DIS

80.1%UNI, BI, TRI
78.3%UNI, BI
74.2%UNI

Top 10
Coverage

Features



Learning curve
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Conclusion
• Spelling variation in biomedical terms
• Acronym generation with a similarity measure
• Sequential tagging with MEMM
• Experiments

– 1,901 acronym-definition pairs
– Top 1 coverage: 55.1%
– Top 5 coverage: 75.4%

• Future work
– Unsupervised learning using acronym-definition pairs with 

unambiguous position information.
– More features reflecting rule-based intuition such as specific 

combining forms, prefixes, suffixes, etc. and features of resultant 
acronyms such as consonant, vowel, etc. 

– Integration with larger systems (term variation generator, term 
clustering, etc)


