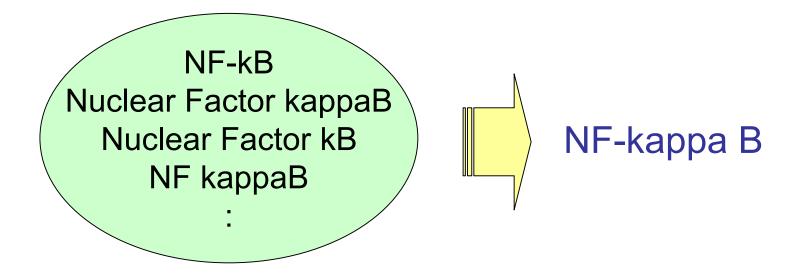
A Machine Learning Approach to Acronym Generation

Yoshimasa Tsuruoka¹, Sophia Ananiadou⁴, and Jun'ichi Tsujii¹²³

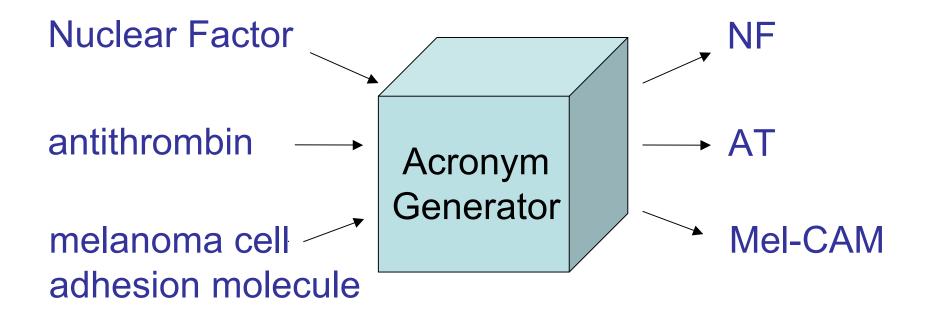
¹Japan Science and Technology Agency ²The University of Tokyo ³The University of Manchester ⁴National Centre for Text Mining

Variation in Biomedical Terms



- Term variation is a big obstacle in knowledge integration.
 →Internal similarity of terms (edit-distance), spelling variation generator based on a probabilistic model, etc.
- Acronyms constitute a major source of difficulties

Acronym Generation

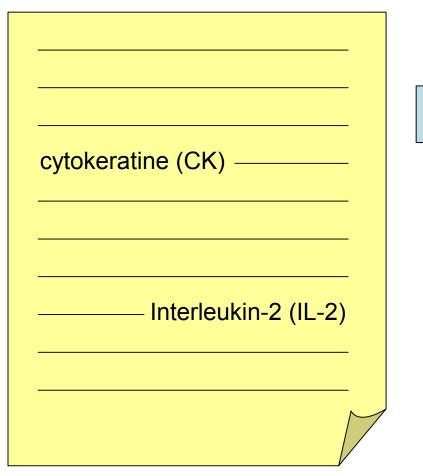


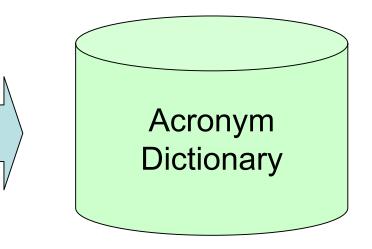
 The system generates possible acronyms from a given expanded form.

Term similarities for applications such as term clustering, term variation generator, etc.

Dictionary-Building Approaches

Running text





 Collect acronymdefinition pairs from running text and construct a dictionary.

Problems of Dictionary-Building Approaches

- Coverage
 - Limited available resources (corpora) and lack of generalization
 - Dynamic nature of terms
- Term variation in expanded forms
 - We need to address the problems of term variations in which acronyms are mixed with other variations such as spelling, lexical variations, etc.

Our approach

- Machine learning-based
 - Acronym generation as sequer
 - Probabilistic modeling
- Advantages

Collection of MEMM can weak cues features that check intuition of rule-based methods with statistical modeling

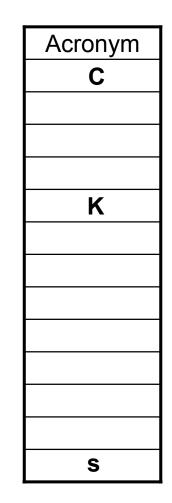
- Wide coverage can be achieved by generalization.
- Similarities can be computed in a probabilistic form.
- Drawbacks
 - Needs training data
 - Unsupervised approach (future work)

Acronym Generation as Sequence Tagging

cytokeratines

CKs

Definition	Тад			
С	UPPER			
У	SKIP			
t	SKIP			
0	SKIP			
k	UPPER			
е	SKIP			
r	SKIP			
а	SKIP			
t	SKIP			
i	SKIP			
n	SKIP			
e	SKIP			
s	LOWER			



Sequence Tagging with MEMM

Maximum Entropy Modeling with Inequality Constraints (Kazama and Tsujii 2003, 2005)

Smoothing effects

 Performance is better or comparable to that achieved with the use of Gaussian prior.

 Smaller model size -> quick decoding

 Fx > DOS tagging

- Ex.) POS tagging
 - •Gaussian prior: 12MB
 - Inequality constraints: 1.3MB

MEMM can integrate features that reflect intuition of rule-based methods with statistical modeling

maximum entropy classifier (model size = 60kB)

Features (1)

target letter ↓ lactate dehydrogenase

- Letter unigrams (UNI)
- Letter bigrams (BI)
- Letter trigrams (TRI)
- Tagging history (HIS)

- Orthographic features (ORT)
- Definition length (LEN)
- Letter sequence (SEQ)
- Distance (DIS)

Features (2)

lactate dehydrogenase

- Letter unigrams (UNI)
- Letter bigrams (BI)
- Letter trigrams (TRI)
- Tagging history (HIS)

- Orthographic features (ORT)
- Definition length (LEN)
- Letter sequence (SEQ)
- Distance (DIS)

Features (3)

target letter

- Letter unigrams (UNI)
- Letter bigrams (BI)
- Letter trigrams (TRI)
- Tagging history (HIS)

- Orthographic features (ORT)
- Definition length (LEN)
- Letter sequence (SEQ)
- Distance (DIS)

Features (4)

target letter

- Letter unigrams (UNI)
- Letter bigrams (BI)
- Letter trigrams (TRI)
- Tagging history (HIS)

- Orthographic features (ORT)
- Definition length (LEN)
- Letter sequence (SEQ)
- Distance (DIS)

Features (5)

target letter lactate dehydrogenase Uppercase? ---- false

- Letter unigrams (UNI)
- Letter bigrams (BI) •
- Tagging history (HIS) Distance (DIS)
- Orthographic features (ORT)
- Definition length (LEN)
- Letter trigrams (TRI) Letter sequence (SEQ)

Features (6)

- Letter unigrams (UNI)
- Letter bigrams (BI)
- Letter trigrams (TRI)
- Tagging history (HIS)

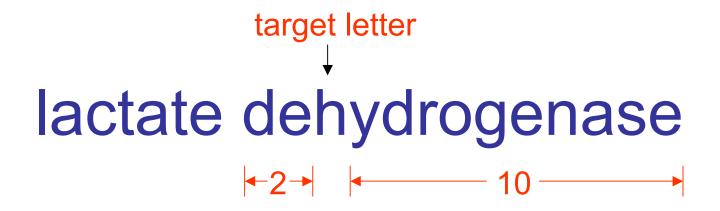
- Orthographic features (ORT)
- Definition length (LEN)
- Letter sequence (SEQ)
 - Distance (DIS)

Features (7)

- Letter unigrams (UNI)
- Letter bigrams (BI)
- Letter trigrams (TRI)
- Tagging history (HIS)

- Orthographic features (ORT)
- Definition length (LEN)
- Letter sequence (SEQ)
- Distance (DIS)

Features (8)



- Letter unigrams (UNI)
- Letter bigrams (BI) •
- Tagging history (HIS)
- Orthographic features (ORT)
- Definition length (LEN)
- Letter trigrams (TRI) Letter sequence (SEQ)
 - Distance (DIS)

Training data

 Acronym-definition pairs are extracted from running text, and position information is manually added to each pair.

Acronym	Definition	Position	
IM	Intestinal metaplasia	1, 12	
LDH	lactate dehydrogenase	1, 9, 11	
СК	cytokeratine	1, 5	
CKs cytokeratines		1, 5,12	
EBV Epstein-Barr virus		1, 9, 14	
:	•	•	

Experiments

- Training data
 - 1,901 acronym-definition pairs extracted from MEDLINE abstracts published in 2001.
 - A simple deterministic method (Schwartz 2003) was used for extraction.
 - Position information is semi-manually added.
- Evaluation
 - 10-fold cross validation

• For "traumatic brain injury"

Rank	Probability	String	
1	0.779	TBI	
2	0.062	TUBI	
3	0.028	ТВ	
4	0.019	Tbl	
5	0.015	TB-I	
6	0.009 tBI		
7	0.008	TI	
8	0.007	TBi	
9	0.002	TUB	
10	0.002	.002 TUbl	

• For "open reading frame 1"

	Rank Probability String		String	
	1	0.423	ORF1	
	2	0.096	OR1	
	3	0.085	ORF-1	
	4	0.070	RF1	
	5 0.047 OrF1		OrF1	
6 0.036 OF		OF1		
	7 0.025 ORf1		ORf1	
8 0.019 OR-1 9 0.016 R1 10 0.014 RF-1		OR-1		
		R1		
		RF-1		

• For "RNA polymerase"

Rank	Probability	String	
1	0.163	RNA-P	
2	2 0.147 RP		
3	0.118	RNP	
4	0.110	RNAP	
5	0.064	RA-P R-P	
6	0.051		
7	0.043	RAP	
8	0.041	RN-P	
9	0.034	RNA-PM	
10	0.030	RPM	

• For "meta-chlorophenylpiperazine"

Rank	Probability	String	
1	0.405	MCPP	
2	0.149	MCP	
3	0.056	MCP	
4	0.031	MPP	
5	0.028	McPP	
6	0.024	MchPP	
7	0.020	MC	
8	0.011	MP	
9	0.011	mCPP	
10	0.010	MCRPP	

• For "Toscana virus"

Ran	<	Probability String		
1		0.811	TV	
2		0.034	TSV	
3		0.030	TCV	
4		0.021	Tv	
5		0.019	TVs	
6		0.013	T-V	
7		0.008	TOV	
8		0.004	TSCV	
9		0.002	T-v	
10		0.001	TOSV	

Coverage (recall)

- Coverage achieved with top-N candidates.
 - Below top 10

ex.)

melanoma cell adhesion molecule

Mel-CAM

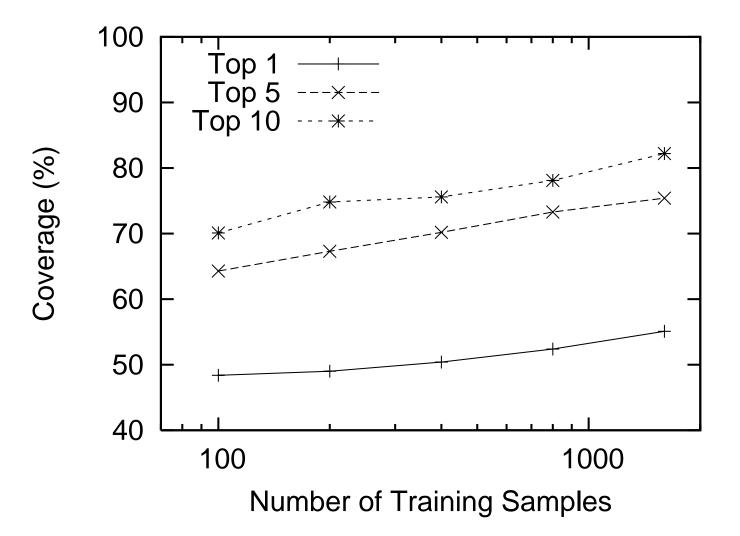
- Baseline
 - Rule-based
 - Take the initial letter of each word and capitalize them.
 - Coverage: 47.3%

	_			
Rank	Coverage			
1	55.2%			
2	65.8%			
3	70.4%			
4	73.2%			
5	75.4%			
6	76.7%			
7	78.3%			
8	79.8%			
9	81.1%			
10	82.2%			

Effectiveness of Features

Features	Top1	Top 5	Top 10
	Coverage	Coverage	Coverage
UNI	48.2%	66.2%	74.2%
UNI, BI	50.1%	71.2%	78.3%
UNI, BI, TRI	50.4%	72.3%	80.1%
UNI, BI, TRI, HIS	50.6%	73.6%	81.2%
UNI, BI, TRI, HIS, ORT	51.0%	73.9%	80.9%
UNI, BI, TRI, HIS, ORT, LEN	53.9%	74.6%	81.3%
UNI, BI, TRI, HIS, ORT, LEN, DIS	54.4%	75.0%	81.8%
UNI, BI, TRI, HIS, ORT, LEN, DIS, SEQ	55.1%	75.4%	82.2%

Learning curve



Conclusion

- Spelling variation in biomedical terms
- Acronym generation with a similarity measure
- Sequential tagging with MEMM
- Experiments
 - 1,901 acronym-definition pairs
 - Top 1 coverage: 55.1%
 - Top 5 coverage: 75.4%
- Future work
 - Unsupervised learning using acronym-definition pairs with unambiguous position information.
 - More features reflecting rule-based intuition such as specific combining forms, prefixes, suffixes, etc. and features of resultant acronyms such as consonant, vowel, etc.
 - Integration with larger systems (term variation generator, term clustering, etc)