
Seminar

Gradual typing for refinements

Writing good software is hard. Much of the thought and expertise that
goes into designing a program isn’t recorded formally. My research gives
programmers the means to express their intent, and the tools that use that
intent to improve software.

 In this talk, I’ll focus on making datasort refinements easier to use.
Refinements express more precise invariants than ordinary static types do,
but this precision makes them harder to apply in practice. Gradual typing was
originally developed to allow smooth migration from a dynamically typed
program to a statically typed program, but the underlying idea also applies
to adding refinements to a statically
typed program. I will present recent work on gradual typing for datasort
refinements, and discuss ongoing work that I hope will serve as a unified
foundation for a variety of gradual type systems.

Friday, May 19 2017
2:30-3:30 pm

Dupuis Hall 215
Light Refreshments

Dr. Joshua Dunfield
Researcher

University of British Columbia

Joshua Dunfield is a researcher at the University of British Columbia. He
works on programming languages from a type-systems perspective, from
refinement types (more precise static typing) to type-based incrementalization
(using type information to generate an incremental program). After receiving
a PhD from Carnegie Mellon for work on refinement typing, he went to McGill
to work on dependently typed programming languages, then to MPI-SWS
in Kaiserslautern to work on incremental computation. Having undergone
three international moves in the last decade, he is looking forward to staying
in Canada for the foreseeable future.

